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ABSTRACT

As applications are moving towards peta and exascale data sets, it has be-

come increasingly important to develop more efficient data retrieval and stor-

age mechanisms that will aid in reducing network traffic, server load, as

well as minimizing user perceived retrieval delays. We propose an Intelligent

Caching technique and a Graph Summarization technique in order to achieve

low latency data retrieval for big data based applications.

Our caching approach is developed on top of HDFS to optimize the read

latency of HDFS. HDFS is primarily suitable for Write Once Read Many

(WORM) applications where the number of reads is significantly more than

that of writes. In our Intelligent Caching approach, we analyze real world

map reduce traces from Facebook and Yahoo in terms of file size and access

pattern distribution. We combine it with the existing analysis from literature

to develop a new caching algorithm that builds on top of the HDFS caching

API recently released. Based on the findings that a majority of accesses in a

map reduce cluster occur within the first 2 hours of file creation, our caching

algorithm uses a sliding window approach to ensure that most popular files

remain in cache at appropriate time instances. It uses file characteristics for

a particular window to determine a file’s popularity. File popularity is cal-

culated using file access patterns, file age and workload characteristics. We

use a simulator based technique to evaluate our algorithm on various perfor-

mance metrics by using real world and synthetic traces. We have compared

our algorithm with some of the existing variants of LRU/LFU.

Recent rapid growth in real-world social networks has incentivized re-

searchers to explore optimizations which can provide quick insights about

the network. Due to this motivation, graph summarization and approxima-

tion has been an important research problem. Most of the work in this area

has been focused on concise and informative representations of large graph.

These large graphs are billion nodes and edges graphs and need a distributed
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storage/processing system for any kind of operations on them. Our work pri-

marily focuses on task-based summarization of large graphs that are stored

in a distributed fashion and answer queries which are computationally ex-

pensive on original graph, but have tolerance with regards to minor errors in

exact results. These queries, semantically, provide the same amount of in-

formation even with approximate results. Our contribution is a distributed

framework which can answer queries probabilistically in a highly efficient way

using compact representations of original graph stored in form of summary

graphs across a cluster of multiple nodes. These summary graphs are also

optimized for space complexity, and only grow in terms of the number of

attributes used to answer the query. One can then use a combination of

these graphs to answer complex queries in an extremely efficient manner.

Our results are promising and show that significant gains in runtime can be

achieved using our framework without sacrificing too much on accuracy. In

fact, we observe decreasing trend in error as the graph size increases.
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CHAPTER 1

INTRODUCTION

As applications are moving towards peta and exascale data sets, it has be-

come increasingly important to develop more efficient data retrieval and stor-

age mechanisms that will aid in reducing network traffic, server load, as well

as minimizing user perceived retrieval delays. In this thesis, we aim to solve

the problem of minimizing latency incurred in data retrieval using Intelli-

gent Caching and Graph Summarization techniques. Our caching approach

primarily focuses on efficient data storage and retrieval based on popularity

of data so that popular data items are cached and can be retrieved faster

at any particular instant of time. The graph summarization approach deals

with providing quick insight into large-scale graph data by using probabilistic

estimates obtained from compact representations of original graph.

1.1 Caching

Distributed computing frameworks such as MapReduce [1], Hadoop [2] and

Dryad [3], coupled with fault-tolerant distributed data storage like HDFS

[4] have become popular for data intensive applications. Such frameworks

have been widely deployed in various industries across extensive domains

including health care, financial services, energy and utilities, telecoms, social

networking and many more [5]. In all these domains, the volume of data that

needs to be processed has been growing exponentially causing distributed

frameworks to grow increasingly popular as industries attempt to keep up

with their data growth. With large volumes of data, there is not only a need

for constant data availability but also for minimum delays in data retrieval.

Thus, latency has emerged as one of the most important performance metrics

when determining if workload constraints can be met.

HDFS is a popular distributed file system that forms the backbone of
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Hadoop and all applications built on top of it. It has been designed to

be fault-tolerant, highly scalable, robust and is mostly suitable for WORM

applications. HDFS is primarily suited for applications that require batch

processing rather than those that require interactive usage by users. Histor-

ically, the main concentration of HDFS is on data throughput and not on

latency. Many of today’s applications are interactive and often jobs have

time based constraints. Improving latency of HDFS based applications will

extend the functionality of HDFS beyond WORM and greatly increase the

performance of existing batch style workloads.

Though scalable and robust, HDFS fails to provide efficient support for

applications that require random read accesses as its basic storage system

is disk. Currently, users will experience extreme latency when reading from

HDFS. There have been many approaches to improve the read latency of

HDFS. One approach is RAM-HDFS [6] where the authors store the entire

data in memory and use the disk for backup and failure recovery. However,

this is not an optimal solution since there is very limited RAM available

for computations as most of it is occupied by HDFS data. As most of the

files are not accessed frequently, keeping the entire data in memory leads to

wasted resources.

Another approach is to use basic caching mechanisms like LRU or LFU to

maintain recently and frequently accessed data so that data can be fetched

faster than that of disk. LRU uses only the last reference time whereas

LFU uses only access count of a file to take caching and eviction decisions.

Most of the HDFS workloads follow a Zipf distribution [7] i.e. only a small

number of files account for majority of accesses. LRU and LFU are not

optimal as they use the entire history instead of a particular timespan. Files

that were accessed heavily initially will still be in an LFU cache even after

not being accessed for a long period of time. Similarly, files that haven’t

been accessed frequently but have been referenced in the immediate past will

remain in an LRU cache irrespective of their access count. Although both

these parameters are equally important for caching decisions, for Zipf type

distributions, it is important to consider these parameters for a certain time

window rather than the entire history.

We propose IDecider - an intelligent caching and eviction algorithm that

can achieve significant improvements in latency for HDFS based applications.

IDecider uses a sliding window to decide upon file caching and eviction. It
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uses file characteristics for a particular window to determine a file’s popu-

larity. File popularity is one of the most important metrics is gauging if a

file is going to be accessed again in the future and is seldom used in exist-

ing caching algorithms for HDFS. File popularity is calculated as a weighted

metric using file access patterns, file age and workload characteristics over a

particular time window. A time window is maintained on a per file basis and

can be dynamically configured. The window size is determined based on a

file’s popularity at that particular instant of time. IDecider uses the access

rate of a file in a particular time window and a threshold value in order to

decide whether the file needs to be cached or not. The threshold is a con-

figurable parameter and its value is decided by analyzing various production

workloads. Least popular files in the cache are evicted if the cache is full. We

use a simulator based technique to evaluate IDecider using various perfor-

mance metrics by using real world and synthetic traces. These traces were

obtained from the Mimesis benchmark [8], which is a synthetic meta-data

workload generator.

1.2 Graph Summarization

It has become exceedingly important to provide data driven models in order

to make decisions based on the data present. In order to provide quick

insight into the data, we have designed a scalable framework to efficiently

answer complex queries over large-scale graphs. The framework provides an

approximate result for the queries by combining information from underlying

attribute-based summary graphs constructed from the original network. The

results are obtained using a Näıve Bayes approximation model.

Recent rapid growth in real-world social networks has incentivized re-

searchers to explore optimizations which can provide quick insights about

the network. Due to this motivation, graph summarization and approxima-

tion has been an important research problem. Most of the work in this area

has been focused on concise and informative representations of large graph.

It is, however, difficult to come up with a single universal representation

optimized for all purposes. Our work primarily focuses on task-based sum-

marization of large graphs and answer queries which are computationally

expensive on original graph, but have tolerance with regards to minor errors

3



in exact results. These queries, semantically, provide the same amount of

information even with approximate results. One such example can be that

of an agency which wants to estimate the number of people impacted by

a certain advertising budget on a social network. The agency is less likely

to change it’s decision if the result is 4,515,736 or 4,481,973 but is mostly

interested if the result is close to 4.5 Million or 8.5 Million.

Calculating the exact result of such queries can possibly take one or mul-

tiple passes of the complete original graph, which scales even up to Peta

or Exa Bytes. Our contribution is a framework which can answer queries

probabilistically in a highly efficient way using compact representations of

original graph stored in form of summary graphs. These summary graphs

are also optimized for space complexity, and only grow in terms of the num-

ber of attributes used to answer the query. One can then use a combination

of these graphs to answer complex queries in an extremely efficient man-

ner. While calculating the approximate results, the attributes are assumed

to follow Näıve Bayes conditional independence. This assumption allows us

to store pairs of attributes, and enables the computation of the joint prob-

ability of any combination of attributes. Thus, we can represent the entire

summary and still avoid the combinatorial explosion of attribute combina-

tions. We analyze our framework in terms of efficiency and accuracy over

varying graph size and query complexity. Our results are promising and show

that significant gains in runtime can be achieved using our framework with-

out sacrificing too much on accuracy. In fact, we observe decreasing trend in

error as the graph size increases.

The rest of the thesis is organized as follows: In the first part of this the-

sis, we first talk about caching in HDFS and improvement in read latencies

in HDFS using popularity aware caching. In Chapter 2 we discuss related

work and compare IDecider with existing caching literature. In Chapter 3,

we present a detailed statistical analysis on data access patterns in produc-

tion clusters that we have obtained by studying file traces from Yahoo and

Facebook. In Chapter 4, we discuss the two approaches of IDecider and give

a detailed algorithm for both these approaches. We start off with a basic

IDecider approach and then go on to explain the more complex popularity

based sliding window IDecider approach. In Chapter 5, we give the imple-

mentation details for both the IDecider approaches. This chapter also details
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out on several experimental evaluations done to evaluate IDecider . The next

part of this thesis covers graph summarization and using graph summariza-

tion to efficiently probabilistically approximate the result of various data

intensive queries. Chapter 6, gives a detailed literature review of various

Graph Summarization, Graph Sampling and Query processing techniques

used for obtaining information from graph data. In Chapter 7, we propose

the graph summarization framework and methodology and also detail out

on the dataset used to evaluate this framework. Chapter 8 provides details

on the various experiments performed to evaluate the graph summarization

framework and also gives a detailed complexity analysis of the algorithm

along with various results on real-world data. We discuss directions for fu-

ture work in Chapter 9. Finally, we conclude the thesis in Chapter 10.
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CHAPTER 2

RELATED WORK - CACHING

There has been a large amount of work done on caching in general but limited

work has been done on caching specifically in HDFS. Also, it is extremely

difficult to obtain real world traces and lately much work targets generating

synthetic traces that resemble those used in real production scenarios. In

this section we first detail some existing solutions used to obtain petascale

workloads characteristics and then restrict ourselves to cache replacement

policies used in HDFS.

2.1 Workload Generation

Release of peteascale traces by industry would certainly open new opportuni-

ties for research into next generation distributed file systems, but until that

happens we are limited to the few model based traces and literature sum-

maries that are available today. Obtaining full traces regarding file system

meta-data such as file access patterns, file sizes, and timestamps of impor-

tant file events for the life time of a file is limited to researchers in industrial

settings. This limitation is due in part to the fear of information leaks or

business practices. An alternative to full traces has been the usage of model-

ing tools to statistically model a given workload and then use that model to

generate synthetic traces. instead of releasing full traces, corporations have

opt-ed to release model traces. One such workload generator is Mimesis [8].

Mimesis captures the statistical model and workload characteristics based

on access patterns and then generates synthetic traces that mimic actual

workloads. These traces are file level traces which capture the various events

carried out on a file at different instances of time during the file’s lifespan.

IDecider uses traces generated from Mimesis in order to analyze the different

patterns in data and then use this analysis to develop caching and eviction
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policies.

2.2 Caching

Simple cache replacement policies leverage a single basic property among the

numerous file meta-data characteristics. Least Recently Used (LRU) lever-

ages temporal locality - namely, that recently accessed objects are likely to

be accessed again in the near future. Least Frequently Used (LFU) leverages

the fact that files that were accessed for a large number of times are likely

to be popular; this guides the design of the LFU eviction mechanism. One

of the other popular caching mechanisms is Largest File First (LLF) that

leverages the negative correlation that exists between file sizes and likeli-

hood of accesses - small objects have a higher probability of being referenced

in the near future. Another variant of LRU that outperforms the basic LRU

was the adaptive replacement cache (ARC) [9]. ARC is a self-tuning, low-

overhead algorithm that responds online to changing access patterns. It con-

tinually balances between the recency and frequency features of the workload,

demonstrating that adaptation eliminates the need for the workload-specific

pretuning that plagued many previous proposals to improve LRU.

Early characterizations of file access patterns suggest the presence of strong

temporal locality of reference [10]. Also, many of the early characterizations

of access patterns suggest a strong preference for small objects. However,

more recent studies have concluded that this temporal locality and pref-

erence for smaller objects is weakening [11]. Most popular files in HDFS

workloads range from MBs to GBs, not quite what has historically been con-

sidered “small”. Most of the HDFS workloads observed and analyzed led

us to conclude that a lot of recently accessed files are unlikely candidates

for accesses in the near future [12]. This limits caching algorithms based

on LRU and, as we show with our simulation, these algorithms prove to be

inadequate. Also, an important observation has been that a large number of

objects are popular over short periods of time. These objects later become

unpopular even though they have been accessed in a large number, limiting

the applicability of caching algorithms based soled on access count.

The above characteristics of HDFS workloads limit the functionality of

LFU based caching algorithms as objects which were accessed a large number
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of times in a short time frame, (i.e.: right after being loaded into HDFS) will

always remain in the cache even though they have a small probabilistic chance

of being accessed in near future. These observations have strongly motivated

our idea of IDecider as it does not consider the entire history of the file but

only considers a particular window of time in which the file is being accessed.

As time progresses, the window size per file dynamically changes based on

the file’s popularity in the previous window and IDecider makes sure that

files that have been popular in the recent past remain in cache rather than

unnecessary files leading to a strong performance boost over algorithms that

use LRU, LFU and LLF as shown in our simulations.

2.3 Improvements in HDFS Latency

A limited amount of work has been done in reducing latency in HDFS, leaving

opportunity for researchers to work on improvements. PACMan [13] is one

such system for coordinated memory caching for parallel jobs and aims at

reducing the job completion times to improve cluster efficiency. However,

PACMan uses a variant of LFU called LFU-F as its eviction policy and thus

does not provide the most effective solution to today’s Zipf HDFS workloads.

A number of in-memory solutions have been proposed for improving la-

tency in HDFS workloads. Memcache [14] has been used widely by indus-

try to achieve faster reads and reduce latency. Facebook leverages Mem-

cached [15] to construct and scale a distributed key-value store for all of its

social network data. However, in-memory solutions may not always prove

to be the best as they require a majority of RAM usage to go into storing

HDFS files, leaving only a small portion available for the actual computa-

tional workload, such as mappers and reducers in Hadoop. A similar paper,

RAM-Cloud [6], provides an in-memory caching solution and faces the same

resource limitations.

IDecider is a novel caching approach that takes file popularity over a cer-

tain instance of time for a file and decides whether to cache the file or not.

It does not consider any history outside of the time window for that par-

ticular file and thus provides a more optimal solution when compared with

LRU and LFU for Zipf type workloads. We also propose a feedback looped
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based version of IDecider which will decide the file’s popularity based on the

feedback received from the accesses of the file in the previous time window

and then come to a more efficient eviction decision. Since we have file pop-

ularity as a decision metric, we can use this metric to characterize files into

hot, warm and cold files. We can maintain files in different levels of storage

like Memory, SSD and Disk based on the category decided. Based on these

characterizations of files, IDecider can also be configured to decide the ex-

act storage location of files in order to improve the latency even further by

providing tier based caching.
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CHAPTER 3

ANALYSIS OF DATA ACCESS PATTERNS
IN REAL-WORLD PRODUCTION

CLUSTERS

We analyze statistical information regarding files and access patterns in one

of the Yahoo clusters. In one of the Yahoo clusters, grid(dilithium-gold), we

used Hadoop command (hadoop dfs -lsr) to collect stats for file and ana-

lyze audit log (NameNode logs) to identify access pattern for each file. The

data set contains the total number of files, total file size, number of file ac-

cesses, number of days between the first access and the most recent access,

file distribution, deletion rate of files and directories, creation rate of files and

directories in the dilithium-gold cluster. The data set was collected between

01/01/2009 to 03/13/2010.

We also used a Facebook trace that was generated using the Mimesis tool

for our simulations. This Facebook trace is a 24 hour data set containing

timestamps, file ids and file operations performed on those files. Table 3.1

gives details of this data set.

Table 3.1: Facebook Dataset Features

Total number of files 4,307,299
Total number of unique timestamps 46,442,327
Total number of events or file operations 72,299,640
Total number of create operations 4,307,299
Total number of open operations 66,222,501
Average operations per timestamp 4

The following is our analysis based on the above data sets.
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3.1 File Accesses - Yahoo

Figure 3.1 shows a distribution of files accessed and the frequency of file

accesses. The data set consists of 41, 223, 652 files in total out of which

8, 673, 686 files were never accessed. It can be seen that most of the files

(73%) were accessed less than 30 times in the cluster. We see that very few

files are accessed more than 50 times. We use this information to decide the

threshold value for access rate of a file beyond which the file needs to be

cached.

Figure 3.1: File Accesses and Frequency of Files accessed

3.2 File Size - Yahoo

Figure 3.2 shows a distribution of file sizes in the Yahoo Cluster. It is con-

sistent with most of the observations of previous studies which establish the

fact that majority of file sizes (58%) lie in the range of MB to GB. There

is peak in the graph which clearly depicts this observation. Also, it can be

seen that there are a lot of small files (41%) which are below 1MB. These

parameters are used in deciding cache size.
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Figure 3.2: File Size Distribution

3.3 File Life Span - Yahoo

Figure 3.3(a) depicts the life span of files in the Yahoo Cluster. Life of a file

is defined as the number of days between the first access of the file and its

most recent access. We can see from Figure 3.3(a) that, majority of the files

(73%) are accessed within the initial 1 week. As time progresses, the number

of accesses for a file decreases exponentially.

Figure 3.3(b) represents a cumulative distribution function of the file age

at time of access. This shows a high temporal correlation in accesses. We

found that approximately 73% of the accesses of a file occur during 2 days

after creation. A similar graph is presented by Abad et al. [16] obtained from

a Yahoo 4000 node production cluster from January 2010. Another work by

Kaushik et. al. [17] on power aware HDFS conveys similar analysis. The

cluster had 2600 servers, and approximately 34 million files comprising of

5PB of data. It was seen that about 90% of the files were accessed within

first 2 days of creation. The study also concluded that the majority of the

data is hot for less than 10 days after its creation in the system. We use this

analysis to decide the initial window size.

Similar industrial workload patterns were also analyzed and we observed

a similar distribution of file accesses and life span. Muralidhar et. al. [18]

have given similar analysis for Facebook’s warm BLOB storage. We can see

from the graphs in their study that the file distribution follows Zipf law.
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(a) File Life Span

(b) CDF of File Age at time of access

Figure 3.3: File Life Span and Age

3.4 File Popularity - Facebook

The trace that was used consisted of data for an entire day. We divided it

into 1 hour chunks and computed the popularity for two random files F1

and F2. These were created at the same timestamp and thus, we ignore the

file age as it will be same for both the files. Figure 3.4(a) and Figure 3.4(b)

show the popularity distribution over 24 hours files F1 and F2. Total access

count for file F1 was 1,084,663 and that for file F2 was 517,885.

It can be seen from the figures that the computed popularity also follows

Zipf distribution and thus, is a good measure to decide caching and eviction.
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(a) Popularity over 24 hours for file F1

(b) Popularity over 24 hours for file F2

Figure 3.4: File Popularity Analysis for the Facebook trace
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CHAPTER 4

IDECIDER ALGORITHM

We explain the IDecider algorithm in this chapter. We begin with a very

basic IDecider algorithm and then move on to a more complex algorithm

which is a sliding window based IDecider approach based on file popularity.

4.1 A Very Basic IDecider Approach

Algorithm 1 describes the caching and eviction policies for our basic IDecider

approach.

Input: File Name, Timestamp.

Output: Flag to indicate whether to cache the file or not.

Assumptions: File age here denotes time elapsed between the first access

and most recent access of the file. The threshold indicates the number of

times a file needs to be accessed before it will be cached. By analyzing the

Yahoo and Facebook traces, a threshold value of 3 was decided. An LRU list

is maintained based on file age.

Initial: age = current timestamp, access count = 1, threshold = 3

access count+ + ; // For every read operation

if access count > threshold then
if isCached == true then

; // File is already cached

else
isCached = true ; // Cache the file

end
update LRU list

Algorithm 1: Algorithm for Basic IDecider Approach

Figures 4.1(a) and 4.1(b) describe the decision and eviction phases of Al-

gorithm 1 based on access count and file age.

15



(a) Decision phase of Basic IDecider (b) LRU based Eviction phase of
Basic IDecider

Figure 4.1: IDecider Decision and Eviction Algorithms

4.2 Popularity and Sliding Window based IDecider

Approach

Algorithms 2 3 and 4 describe the sliding window based IDecider mechanism

using file popularity. As discussed in Chapter 2 in the literature review, the

file access patterns follow a Zipf distribution and LRU and LFU both use

history in order to make decisions, resulting in inefficient caching decisions.

In order to improve the efficiency of caching, we use a sliding window based

approach. As per our analysis specified in Chapter 3, we have decided the

initial window size for all files should be 24 hours. This is because a file

typically remain hot for a day after creation. These observations are clearly
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depicted in our analysis of the Yahoo and Facebook data set in Chapter 3.

We define AccessRate of a particular file as the total number of accesses

during its specific window period.

Access Rate =
Number of accesses of a file

F ile Window size

Based on our analysis, we initialize the threshold to

Threshold =
3

Window size

At the end of each window for a file, we calculate the file’s popularity using

a popularity function given as

Popularity(file) =
AccessRate

F ileage

We use the above file popularity function, to decide the next window size for

that file. Window size is directly proportional to the file’s popularity. It can

be seen that, as the popularity increases, window size will increase because

the access rate for popular files will be higher than that of others. Whenever

a window expires for a file, we reinitialize the access count of the file to 0

since so as to not account for any historical meta-data outside of a given

window. This makes sure that file popularity is always based on a particular

instance of time and not on the entire history. We use a Least Popular Files

(LPF) list in order to decide which files need to be evicted when the cache

is full. The file at the head of this list is the least popular among all files in

the list

Input: File Name, Timestamp, File Operation.

Output: A flag which tells whether a file is cached or not.

Assumptions: We assume that files are hot for 24 hours after their cre-

ation. This assumption comes from our analysis of the Yahoo data set.

Initialize: window size = 24 hours, access count = 0, threshold = 3
24

The basic idea of Algorithm 2 is to check if the cache is full or not and
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decide whether we need to evict anything from the cache or just calculate

popularity and update the window size for the new file and add it to the

cache.

Function LPFcache(file) is
if cache == full then

evict() Least Popular File from cache
addToCache(file)

else
calculatePopularity(file)
updateWindowSize()
addToCache(file)

end
Update Cache Size

end

Algorithm 2: Skeleton of the LPF Caching IDecider algorithm

Algorithm 3 explains how we update the popularity and window size for a

particular file. As defined in the previous equations, popularity is computed

using file access rate in the current window and the file age. If the new

popularity of the file is greater than the old popularity, we double the window

size. If not, we reduce the window size to half of the original.

Algorithm 4 explains the eviction decision based on popularity. We use two

popularity thresholds θ1 and θ2 to choose whether to evict a file or not. If the

file’s popularity falls below θ2, we evict the file and update the cache size. If

it’s between θ1 and θ2, we just mark the file for eviction and evict it on the

next run whenever the popularity falls even more.
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Function calculatePopularity(file) is

fileAccessRate =
file.AccessCount

file.getWindowSize()

fileAge = file.getStartWindowSize()

+ file.getWindowSize()− file.lastAccessT ime()

newPopularity =
fileAccessRate

fileAge

if newPopularity ≥ oldPopularity then

file.windowSize = file.windowSize× 2

else

file.windowSize =
file.windowSize

2

end
updatePopularityThreshold() ; // Set θ1 to newPopularity and θ2

to oldPopularity

end

Algorithm 3: Popularity and Window Size update

Function evict() is
for file in cacheList do

if file.popularity ≤ θ2 then
cacheList.pop(file) cacheSize–

else
if file.popularity ≤ θ1 then

; // mark for eviction

file.markForEvict = True
end
if cacheSize == cacheCapacity then

cacheList.pop()
end

end

Algorithm 4: Eviction algorithm
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CHAPTER 5

IDECIDER IMPLEMENTATION,
EVALUATION AND RESULTS

This chapter describes the implementation details of IDecider algorithm. The

chapter also covers the experimental setup, the evaluation framework used

and the evaluation results of the IDecider algorithm in comparison to some

of the other popularly used caching techniques.

5.1 IDecider Implementation Details

This section covers the implementation details of the IDecider algorithm. We

begin with the IDecider design and architecture when coupled with HDFS

and then talk about the implementation of basic IDecider approach described

in Section 4.1 and then later move on to the implementation of the more

complex sliding window based approach described in Section 4.2 of Chapter 4.

5.1.1 IDecider Design and Architecture

Figure 5.1: IDecider Architecture
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Figure 5.1 shows the IDecider architecture with HDFS. IDecider is placed

in the Namenode. The advantage of having IDecider in the Namenode is

that it can easily interact with the Namespace. Files in HDFS consist of

blocks. The information about any particular file is contained in the HDFS

Namespace. Each block is replicated and stored on multiple Datanodes.

The mapping from block replicas to Datanodes is stored in the INode data

structure. The HDFS Namenode has two critical tables managed as HDFS

Namespace.

1. filename → block sequence (NameSpace)

2. block replica → machine list (INodes)

The Namespace is persistent while INodes are not. The FsImage file contains

all information about the file in an INode data structure. On startup, the

FsImage file is loaded and various objects are created based on the INode

entries in this file. INodes are created in the event of a Namenode restart

with the help of block report sent by Datanodes. This block replica entity

contains all the information related to the different blocks of a particular file.

The design choice of having IDecider in the Namenode is motivated by the

easy access to file information from the Namespace and all the block infor-

mation from the INodes. The IDecider component keeps track of statistical

information about the file.

Here, we introduce two implementations of IDecider . First, we imple-

mented a simple access count based caching policy using LRU as its eviction

policy. We evaluated this approach using a pseudo-distributed system envi-

ronment. Second, we implemented a more complex version of IDecider that

uses the sliding window based caching policy and the popularity metrics spec-

ified above. We evaluate this approach using a trace driven simulator and

compare it’s results with some of the existing caching algorithms.

One of the most important design decisions was whether to store file pop-

ularity and metadata in a map or whether to store it as part of the INode.

Below we highlight the pros and cons of the two methods considered.

1. Store file meta-data in a map data structure

This implementation method requires an entirely new map data struc-

ture to be maintained. The map will contain all file popularity informa-
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tion and must be explicitly maintained as a separate entity, requiring

much error prone maintenance code. There are a few advantages of

this implementation, which have been listed below.

(a) Easy to verify whether a file is cached or not.

(b) Adding dynamic information at a later time is easy as it requires

only updating the map data structure.

However, there are some disadvantages of using a separate map data

structure.

(a) Since a new data structure is being added, it will require a lot of

maintenance code to be written to ensure that the map is persis-

tent and up to date.

(b) Persisting the map will increase the size of FsImage file and also

the edit logs. Since the FsImage and edit logs are used during

startup and checkpointing, both these processes will require more

time; this is already a problem for the HDFS community at large.

2. Storing popularity information in the INode data structure

In order to avoid the drawbacks of maintaining a separate map, another

approach was investigated. This new approach involves storing of all

the popularity related information directly in the INode data struc-

ture provided by HDFS instead of maintaining a separate map. The

following are the advantages of using this method of implementation.

(a) Minimal number of code changes.

(b) Low maintenance cost since the inode data structure is already

handled by the existing HDFS implementation.

(c) Persistence is easier and the size will not be affected since these

parameters will add very little to the size of the edit logs and

FsImage.

One of the major disadvantages of using this method is that if infor-

mation is to be added dynamically, it will require more code changes

in the INode data structure in addition to changes wherever such data

is being referenced.
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Next, we give the implementation details of the basic and sliding window

based IDecider approaches.

5.1.2 Basic IDecider Implementation

This section describes the basic implementation of IDecider and its function-

ality. The main function of the IDecider component is to consider all the

necessary file parameters and dynamically decide whether to cache the file or

not. Our basic approach uses access count of the file as a metric in making

its decision. Based on a configurable caching threshold parameter, IDecider

knows that the file has been accessed frequently and should be cached. Based

on decision made by the IDecider , the Namenode will send a cache command

to the Datanode. This command is generally piggybacked on the Datanode’s

heartbeat so as to reduce the network bandwidth utilization. Upon recep-

tion of a cache command, the Datanode will cache the respective file. After

every cache interval time, the Datanode will send a cache report back to the

Namenode. Cache interval time is a configurable parameter. We have pro-

grammatically configured this parameter in such a way as to ensure that the

cache report is only sent if it has been updated in the last caching interval.

This prevents redundant caching information being sent by the Datanode to

the Namenode and helps in reducing the network traffic.

Figure 5.2: Simple IDecider LRU based Eviction Policy

Figure 5.2 shows our current implementation of the cache eviction policy

based on LRU. An LRU list is prepared based on the file access times and

the latest accessed file is placed at the head of the list. If the cache is full, the
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file, which has been least recently used (tail end of the LRU list), is removed

and the new file is inserted at the head of the list.

5.1.3 Popularity and Sliding Window based IDecider
Implementation

This section describes the sliding window approach for IDecider to perform

caching decisions. Using Mimesis [8], statistical information about real world

workloads was obtained through the Statistical Analysis Engine (SAE). This

information was fed as input to the Workload Generator Engine (WGE) of

the Mimesis tool. This outputs a workload trace in the following format <

timestamp, file id, file operation >. A trace driven simulator was devel-

oped that replayed events from the traces obtained. We define a transaction

as an event in the trace of the form < timestamp, file id, file operation >.

At a particular timestamp, there might be more than one transactions that

needs to be processed. These were found by computing the inter-arrival

times between consecutive transactions. Based on these inter-arrival times,

we group transactions that have the same timestamp into a chunk so that we

can fire all these transactions simultaneously using a pool of threads. Each

chunk is processed by the simulator and caching and eviction decisions are

evaluated based on the algorithm discussed in Section 4.2 of Chapter 4. The

results obtained are discussed in Section 5.3.

5.2 Experimental Setup

We evaluate IDecider using a trace driven simulator technique as described

in Section 5.1.3. We simulate a distributed cache environment on a cluster

of 5 nodes and compare the various caching algorithms with our IDecider

approach.

We use a dedicated cluster of 5 nodes to simulate the distributed cache

environment. Each server contains 4 Intel Xeon E5620 processors and 32 GB

RAM. The servers are connected to each other using a 1 Gbps network. We

configure a master server that has 20GB of cache and configure 4 slaves to

have 10GB of cache per node. We use the traces that were obtained from

the Mimesis Workload Generator Engine. We deploy our generic simulator
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on to the master. The trace is stored in the underlying HDFS and is fed

to the generic simulator. This generic simulator is basically a plug-and-play

engine which takes as input a caching algorithm and the trace and evaluates

the caching algorithm in terms of the hit and miss ratios based on the trace.

The trace is fed to the simulator in order of file operations occurring as per

the timestamp values.

Along with IDecider , we have implemented various existing caching tech-

niques like LRU, LFU and Adaptive Replacement Cache or ARC. We plug

each one of these algorithms into the generic simulator and evaluate the hit

and miss ratios. We have discussed the results in detail in Section 5.3.

5.3 IDecider Results

This section discusses the results of IDecider and gives a comparison between

IDecider and various other caching algorithms like LRU, LFU, LRFU [19] and

ARC. We compared the performance of various caching algorithms with our

IDecider approach. We use two traces to evaluate the performance. The first

set of experiments was performed on a synthetic trace produced by Mimesis

and IDecider was compared with LRU, ARC and LFU. The second set of

experiments was performed using the Yahoo trace described in Chapter 3

and we compared IDecider with LRU, ARC and LRFU.

Table 5.1 shows the hit ratio percentages of various caching algorithms

for different cache sizes on the synthetic trace generated by Mimesis. We

can see that on this trace, IDecider performs significantly better than LRU

and LFU and has better hit ratios. However, IDecider couldn’t beat ARC

because ARC uses a multi-level caching and eviction technique which is quite

similar to our popularity based technique. Figure 5.3 shows the performance

comparison between these algorithms.

Table 5.2 shows the hit ratio percentages of various caching algorithms

for different cache sizes on the Yahoo trace described in Chapter 3. We

compare the performance of IDecider with ARC, LRU and LRFU which is

a combination of LRU and LFU. We can see that on this trace, IDecider

performs better than LRU and sometimes also better than ARC but not as

good as LRFU. IDecider couldn’t beat LRFU because combining LRU and

LFU gives the same notion as popularity based eviction. Figure 5.4 shows
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Table 5.1: Performance of caching algorithms on Mimesis trace

Cache Size
(number of 512-byte pages)

Hit Ratios (%)
ARC LRU LFU IDecider

1000 38.93 32.83 27.98 34.76
2000 46.08 42.47 35.21 43.04
5000 55.25 53.65 44.76 55.20
10000 61.87 60.70 52.15 61.66
15000 65.40 64.63 56.22 65.02
20000 66.98 65.2 60.08 66.27

Figure 5.3: Performance of caching techniques - Mimesis trace

the performance comparison between these algorithms.
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Table 5.2: Performance of caching algorithms on Yahoo trace

Cache Size
(number of 512-byte pages)

Hit Ratios (%)
ARC LRU LRFU IDecider

1024 4.16 4.09 4.09 4.10
2048 4.89 4.84 4.84 4.86
4096 5.76 5.61 5.61 5.61
8192 7.14 6.22 7.29 7.09
16384 10.12 7.09 11.01 10.03
32768 15.94 8.93 16.35 14.98
65536 26.09 14.43 25.35 25.98
131072 38.68 29.21 39.78 38.12
262144 53.47 49.11 54.56 53.03
524288 63.56 60.91 63.13 63.33

Figure 5.4: Performance of caching techniques - Yahoo trace
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CHAPTER 6

LITERATURE REVIEW - GRAPH
SUMMARIZATION AND

APPROXIMATION

This chapter describes the literature review for the graph summarization

and approximation techniques. The chapter is organized to detail out litera-

ture review for the four areas namely, graph summarization, graph sampling,

query processing on large graphs and bayesian networks.

6.1 Graph Summarization

Graph summarization and network approximation using representative graphs

has been an important research problem due to the ever-increasing size of

real-world social networks. Since real-world graphs are massive in size and

continuously evolving, a summary graph is often constructed using graph

sampling techniques [20] in order to represent the entire network and study

properties of the entire network. While most studies focus on graph sum-

marization in terms of reducing the description length of graphs and graph

compression [21], [22], recent developments in social network analysis give

prominence to constructing the representative graph in a way that will al-

low studying properties of the entire network using just the representative

graph. These developments offer new challenges to network summarization

and extend the idea of summarization beyond just compression or minimum

description length.

One such representative graph technique is constructing the supernodes

using an interestingness-driven technique by Leskovec and Faloutsos given

in [23]. Their work primarily focuses on computing the summary graph based

on the evolving diffusion process over time. The idea is to summarize the

entire network of millions of nodes by only capturing few interesting nodes or

edges based on an interestingness measure defined for each node. The more

interesting a node is, the higher is the probability of that node being a su-

28



pernode. The work studies dynamic network properties such as diffusion rate

over time on this representative graph. One of the most important strengths

of this work is that it is an online algorithm which will consider changes in

the graph over time. However, a very important challenge in this approach

is choosing the interval of time after which the network snapshot needs to

be studied. If this interval is too small, the performance of the algorithm

will deteriorate. If the interval is too large, some important diffusion prop-

erties might be missed. Also, the work fails to address whether the detected

summary is actually a good summary and will capture the properties of the

underlying graph and if it does, to what extent the properties are captured.

Even though this work captures diffusion rate and change in information

exchange, it does not describe any static measures such as degree distribu-

tion, path length distribution, etc. that can be studied on the representative

graph and may represent the same behavior on the underlying network. Our

approach involves storing attribute-specific summary graphs which preserve

such underlying properties of the main graph.

6.2 Graph Sampling

Ahmed, et. al. proposed different graph sampling techniques [24] which

actually capture the properties of the underlying network and preserve the

same in the representative graphs. The paper lists different measures that

can be evaluated on the sampled graph. Evaluation metrics include degree

distribution, path length distribution, clustering coefficient, etc. One of the

major strengths of this paper is that these algorithms are defined taking

into consideration both static as well as streaming data. However, the pa-

per constructs the sample based on edge connectivity and topology of nodes,

but doesn’t take into account attribute-based similarities. Answering multi-

attribute queries using such sampling techniques will not be possible with-

out sufficient preprocessing of the summary graph which stores attributes

for nodes of the summary graphs. Our approach is to store different sum-

mary graphs based on the query type and the attributes that this query is

dependent on, which cannot be done using generic graph sampling.
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6.3 Query Processing Techniques for Large Graphs

Previous research on query processing for large graphs generally involves in-

troducing different methods for indexing these large graphs so that queries

can be handled in a manner similar to how they are handled in Relational

Database Management System. [25] focus on developing indices over super-

graphs and sub-graphs so as to efficiently process queries. The main strength

of this paper is that the cost of complex join operations is avoided by storing

intermediary metadata about the graph using the indices built on top of the

graph. Using this indexing mechanism, they translate graph queries into SQL

scripts and thus leverage the computational efficiency of relational operations

in SQL in order to achieve fast query processing. The main drawback of this

paper is that metadata about specific queries must be recomputed irrespec-

tive of the repetitive nature of successive queries. [26] deals with developing

an indexing technique called eIndex over the supergraph. The entire graph is

considered as a database in their graph query processing algorithm and can-

didate subgraphs are generated based on the query. The index creation step

makes use of all the nodes in the original graph as well as the entrire feature

set. The main strength of this paper is the proposal of an efficient solution

for the super-graph query problem, such that approximate algorithms are

used to reduce the number of sub-graph tests. The authors make use of this

result for querying super-graphs efficiently. A major weakness in this paper

is that it includes a post-processing step that takes time that is polynomial

in the size of the graph. Though this step is carried out only once per run

of the algorithm, it will not be practical for large graphs of the order of hun-

dreds of millions of nodes. [27] proposes a high-performance graph indexing

mechanism to solve the problem of efficient querying in large graphs. The

major strength of this approach as compared to other indexing mechanisms

is that a shortest-path approach with respect to vertex neighborhood is taken

rather than a per-vertex approach, which makes the indexing highly scalable

and much more efficient computationally.

A significant weakness of all index-based approaches to graph querying is

the requirement of a large amount of storage. In all cases, to store indexes

for all the nodes of a super-graph, without narrowing down the set of nodes

based on attributes, will require storage proportional to the size of the entire

graph (the number of nodes can be in the order of millions). We thus propose
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a solution that generates attribute-based sub-graphs requiring storage that

is considerably smaller than the size of the entire graph. These sub-graphs

can furthermore be reused for queries that require the same combinations of

attributes for their resolution.

6.4 Bayesian Belief Networks and Markov Networks

Bayesian Belief Networks make use of conditional probabilities across at-

tributes to infer joint probability distributions. The exact inference task on

these networks is NP-hard. In [28], Paul Dagum et. al. proved that there

is no tractable deterministic algorithm that can approximate probabilistic

inference to within an absolute error ε < 1
2
. Second, they proved that there

is no tractable randomized algorithm that can approximate probabilistic in-

ference to within an absolute error ε < 1
2

with confidence probability greater

than 1
2
. Even in special cases of approximate inference, computation time has

been shown to be polynomial in input size. Thus, Bayesian Belief Networks

are computationally expensive when it comes to query resolution. Unlike

Bayesian Belief Networks which are directed graphs, Markov networks rep-

resent an undirected graph with conditional probabilities as edge weights.

However, even in this case, above computational limitations hold true.

We have shown that our approach, which uses summary graphs, is com-

putationally efficient and the runtime is independent of the underlying data

size, but only depends on number of attributes and their values.
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CHAPTER 7

GRAPH SUMMARIZATION FRAMEWORK

In this chapter we explain our graph summarization framework to get quick

insight on large scale graphs. We explain the methodology behind construct-

ing summary graphs, the math involved and the query resolution technique

using the Näıve Bayes approximation. We also describe the dataset that we

have used to evaluate our framework. We give the working of our summary

graph technique on an illustrative example in Section 7.3 of this chapter.

7.1 Proposed Methodology

Our model involves a preprocessing step which computes and stores the sum-

mary graphs followed by a query resolution step based on the Näıve Bayes

approximation model.

7.1.1 Preprocessing

The graph has N nodes. Each node has k attributes, and each attribute can

take up to v values.

The preprocessing step involves constructing attribute based summary

graphs of the underlying network. Since we want to compute pairwise condi-

tional probabilities of attributes, we construct summary graphs for every pair

of attributes. Since there are k attributes, we will have to construct

(
k

2

)
summary graphs. For constructing each of these graphs, we will have to tra-

verse the underlying N nodes. Once these summary graphs are constructed

and stored, each query just uses these in the query resolution step. An ad-

vantage of using pairwise combinations is that we can compute any larger

combination of conditional probabilities using these graphs in an efficient

way.
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7.1.2 Query Resolution using Näıve Bayes Approximation

In this section, we formally define the query resolution step of our model

which uses Näıve Bayes approximation for estimating query results over the

large social network graph. Currently, we focus on queries that investigate

relationship among a given set of attributes. We can model a general query to

have the form - Find the probability of co-existence of attributes a1, a2, · · · , aq
given that the attributes b1, b2, · · · , br are present. Thus, we want to estimate

the probability

Pr(a1, a2, · · · , aq|b1, b2, · · · , br)

We use Näıve Bayes independence assumption for the attributes. Thus, the

above expression of probability breaks down to the following

Pr(a1, a2, · · · , aq|b1, b2, · · · , br)

= Pr(a1|b1, b2, · · · , br)×

Pr(a2|b1, b2, · · · , br)×

· · · × Pr(aq|b1, b2, · · · , br)

=
Pr(b1, b2, · · · , br|a1) Pr(a1)

Pr(b1, b2, · · · , br)
×

Pr(b1, b2, · · · , br|a2) Pr(a2)

Pr(b1, b2, · · · , br)
×

· · · × Pr(b1, b2, · · · , br|aq) Pr(aq)

Pr(b1, b2, · · · , br)

Using Näıve Bayes Independence assumption,

=

r∏
i=1

Pr(bi|a1)

Pr(b1, b2, · · · , br)
Pr(a1)×

r∏
i=1

Pr(bi|a2)

Pr(b1, b2, · · · , br)
Pr(a2)×

· · · ×

r∏
i=1

Pr(bi|aq)

Pr(b1, b2, · · · , br)
Pr(aq)
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Also, the evidence attributes b1, b2, · · · , br are assumed to be independent of

each other and so, we have

Pr(b1, b2, · · · , br) =
r∏

i=1

Pr(bi)

The final expression thus breaks down to

q∏
j=1

r∏
i=1

Pr(bi|aj) Pr(aj)

r∏
i=1

Pr(bi)
q

7.2 Data

We are using the network of candidates applying to American graduate

schools. Each student has multiple attributes such as standardized test

scores, undergraduate university, demographic properties, and so on. Also,

each student applies to multiple graduate universities, gets accepted by some

and gets rejected by others. These interactions can be modeled as a social

network with students and universities as entities. This dataset has entities

i.e. students with several attributes, and is of considerable size to evaluate

difference in performance on original graph versus summarization technique.

We chose this dataset because it comes from a public forum, the complete

dataset is thus available and there were no restrictions in regards to any pri-

vacy concerns or crawling limits. In case of networks like Facebook, Twitter,

etc, since there are restrictions on crawling entire data, we only get a sample

of data in every snapshot which might not be a representative sample of a

complete graph.

There are several online resources where applicants share their admission

experiences; Edulix is one commonly used resource [29]. It is an active re-

source which hosts applicant profiles from all over the world. GRE scores,

undergraduate university name, GPA, TOEFL scores and other accomplish-

ments such as work experience and research publications pertinent to the

graduate admissions are reported in the profile. In addition, users mention
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Table 7.1: Features of Data

General Features
Total number of users before sanitization 36,207
Total number of users after sanitization 26,148

Features for CS related dataset
Number of users 10,788
Application year range [2001 2015]
Median Application Year 2013
Most Frequent Application Term Fall
Number of universities with reported data 313
Number of applications per student (Mean) 6
Number of applications per university (Mean) 51
Number of undergraduate universities 2353
Degrees sought [MS, PhD]

the universities that they applied to and the result of each application (Ad-

mit, Reject or Result Not Available).

The data used here was collected from this website. Since the data is self

reported, it had some erroneous reports, which were identified and removed

by completely deleting any such record. Any application that was not clas-

sified as either Admit or Reject was also excluded. It is observed that GRE

and TOEFL scores have undergone various changes in grading scale over

the years. Also, undergraduate institutions all over the world follow differ-

ent scales for reporting GPA. As a standardization measure, these fields are

mapped linearly to a scale of 0-100. An undergraduate university might be

referred to by the differing names due to reasons such as usage of a popular

acronym or spelling errors. This problem was mitigated by mapping the uni-

versity names to their unique website URL. The dataset has students from

various undergraduate departments and applying to multitude of graduate

departments. Some of the statistics of a sample of this dataset, candidate

applying to Computer Science graduate department, are in Table 7.1. Al-

though Computer Science candidates make the plurality of our dataset, it is

rich enough to accommodate students applying to various other engineering

departments, business, humanities as well as biological sciences.
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7.3 Illustrative Example

This section details out on an illustrative example to show the working of

our framework. The example chosen consists of data sampled randomly from

our dataset, which consists of 75 candidates. We ran simple queries on our

model to observe the quality of results. We will go through the intuition and

explanations of our framework by providing a walk-through of this query

example. Based on the sample dataset, we have considered a query in which

we only consider four attributes, namely Undergraduate School, Program.

Decision and Graduate School. For the Undergraduate School, we have A

and B as the possible values. For the Program, we have MS and PhD as the

possible values, for the Decision, we have Ad and Rj as possible values to

denote an admit or a reject, and for the Graduate School, we have S, C and

U as the possible values.

The Fig 7.1(a), 7.1(b), 7.1(c), 7.1(d), 7.1(e) and 7.1(f) show the summary

graphs constructed from the preprocessing done on the sample dataset. An

edge in a graph from node i to node j corresponds to the number of appli-

cations having i and j as their corresponding attribute values.

The sample query which we chose to evaluate our model on, asks - If a

person is from an undergraduate school A, what are her chances of getting

admitted to the MS program at school S? This query is important for stu-

dents on the forum to get an idea of whether they can expect an admit

from a university for a given program. Though the admission decision and

graduate school are actually dependent attributes, we observe that assuming

conditional independence by applying Näıve Bayes rule gets us approximate

results which are very close to the actual probability. This slight compromise

in accuracy is worth it since our framework provides query resolution in much

less time than the actual approach which runs in time that is linear in the

data size.

Ideally, if we were to look at the entire graph, we would have looked at

all nodes that have Undergraduate School = A, Program = MS, Decision

= Ad, Graduate School = S as their attribute value tuple. However, if

we just consider the above summary graphs, from Fig 7.1(a), 7.1(b), 7.1(c),

7.1(d), 7.1(e) and 7.1(f) we can estimate the probability of the person coming
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(a) Undergraduate School to
Graduate School mapping

(b) Undergraduate School to
Program mapping

(c) Program to Graduate
School mapping

(d) Program to Decision
mapping

(e) Undergraduate School to
Decision mapping

(f) Graduate School to Deci-
sion mapping

Figure 7.1: Summary graphs for the Illustrative Example

37



from Undergraduate School A and getting admitted to the MS program at

Graduate School S.

From our model, we get an approximate result of 0.3853 for the query. A

walk-through of this estimated result for the query is given below.

Pr(S,Ad,MS|A) = Pr(S|A)× Pr(Ad|A)× Pr(MS|A)

=
32

50
× 35

50
× 43

50

= 0.3853

From this we can say that if a person were to finish her undergraduate

education at school A, there is a 38.53% chance that she will get admitted to

the MS program at graduate school S. The graphs in corresponding figures

are generated for all 75 candidates that are contained in our sample dataset.

In general, for a subgraph between attributes a1 and a2, we can see the num-

ber of candidates out of the total 75 that map to different values of a1 and a2.

In order to prove the correctness of our estimated value, we find extreme

case bounds for the estimated result.

One extreme case will occur when the maximum number of applicants

that get admitted to the MS program to graduate school S are from the

undergraduate school A. This means that out of the 32 people that applied

to S from A, 30 got admits (since we can see that 30 people got admits to

university S overall). We make sure that this is consistent with the number

of people that apply for the MS program from undergraduate school A (since

30 < 43). This is consistent with the number of people that applied for MS

to graduate school S (since 30 < 37) and is also consistent with the number

of MS applicants that got admits (since 30 < 35). We also note that the

total number of applicants from undergraduate school A is 50.

Thus, now the probability,

Pr(S,Ad,MS|A) = 30/50 = 0.60

The opposite extreme case will occur when as many applicants from under-

graduate school A that apply to graduate school S for the MS program get

rejected as possible. We have 32 applicants from undergraduate university
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A that apply to graduate school S. If we assume the maximum number of

these applicants to be PhD applicants, we are left with 27 applicants since

graduate school S has received only 5 PhD applications. Of these 27 MS ap-

plicants to graduate school S from undergraduate university A, we assume

that the maximum possible number of these applicants get rejected. Thus we

are left with 15 applicants from undergraduate university A that got admit-

ted to the MS program at graduate school S (there are 12 applications that

got rejected by graduate school S ). Again, we note that the total number of

applicants from undergraduate school A is 50.

Thus, the probability,

Pr(S,Ad,MS|A) = 15/50 = 0.30

These extreme case scenarios provide the bounds within which the actual

answer of query (probability) should lie. It can be seen that our approxima-

tion model estimates a result within this range formed by the bounds.

0.30 ≤ 0.3853 ≤ 0.60

Calculating the exact result on the original graph will take processing of at

least 50 nodes (75 in the worst case), connected to university A. For our

estimation, we needed only 3 nodes from Fig 7.1(a), 2 nodes from Fig 7.1(b)

and 2 nodes from Fig 7.1(e) resulting in only 7 nodes. Also, if the same graph

were to scale to 50 million nodes, our model wouldn’t need 5 million nodes,

but most likely require nodes in the order of thousands (based on distinct

values of undergraduate and graduate universities). Also, as the size of our

original graph increases, the number of attributes participating in a query,

and the categorical values of each attribute increase, the bounded window

keeps on decreasing, and hence, our algorithm provides even better estimates.
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CHAPTER 8

COMPLEXITY ANALYSIS,
EXPERIMENTS AND RESULTS - GRAPH

SUMMARIZATION

This chapter explains the complexity of the graph summarization algorithm

in terms of time and space. Further it continues to detail out on the exper-

imental setup, the various experiments performed on the dataset as well as

the results for simple and complex queries on the summary graphs.

8.1 Complexity Analysis

In this section, we analyze our summary graph technique both in terms of

time complexity and space complexity and compare it with the ordinary

querying technique on large graphs.

8.1.1 Time Complexity Analysis

The preprocessing step involves constructing

(
k

2

)
summary graphs. For

constructing each of these graphs, we will have to traverse the underlying N

nodes. Thus, the complexity involved in the preprocessing step is O(k2N)

The preprocessing step also involves computing aggregate values for each at-

tribute. This will take additional O(kN) time. Thus the total preprocessing

time is O(k2N + kN) = O(k2N).

Let’s look at the time complexity to process a query once we have summary

graphs in place. For each query, of type Pr(a1, a2, · · · , aq|b1, b2, · · · , br), there

can be a maximum of k2 graphs that we need to look at. In each of these

graphs, we need to look at v values at maximum. Thus, the complexity of

processing each query is O(k2v). Without the summary graphs, if we were to

answer the query based on the entire underlying network, we would require
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to look at all possible

(
k

2

)
combinations of attributes with v values each over

N nodes resulting in a O(k2Nv) time complexity. Thus, the preprocessing

step reduces the query latency by a factor of N .

Also, with addition of a node to the underlying graph, the complexity

doesn’t change as we do not have to recompute any summaries but we just

need to update the summaries based on the various attributes of the new

added node. Let’s say that there are N nodes in the underlying graph and

we add another node with all k attributes present. So, we will have to update

at max the k2 graphs and each of this update is a O1 time. So, in all the

time complexity of adding a node is Ok2 since it just involves updating the

summaries that were already computed during the preprocessing step of the

algorithm.

8.1.2 Space Complexity Analysis

As far as the space complexity is concerned, we have

(
k

2

)
summary graphs,

each consisting of O(v) nodes and O(v2) edges. Thus, the space complexity

can be given by O(k2v2).

8.2 Experimental Evaluation

This section describes the various evaluation metrics that we have used to

evaluate our summary graph technique and also describes the experimental

setup.

8.2.1 Evaluation Metrics

Our evaluation metrics are based on both the efficiency and accuracy of our

algorithm in answering queries of varying complexity. The complexity of a

query is based on the number of attributes for which we need to store sub-

graphs. Based on this observation, we evaluate our algorithm on the basis of

the following metrics:
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1. Per-Query Runtime: Per-query runtime is defined as the amount

of time required to resolve a query as a function of data size. The

resolution time of a query according to our model depends on the square

of the number of attributes as we have shown in previous sections and

independent of the data size. So, we expect the runtime to remain

almost constant even when data size changes. In order to calculate the

speed-up that we achieve, we have compared our per-attribute query

time to the corresponding time required for retrieving the exact answer

by processing the entire graph. The Results section shows that this

speed-up is significant (in polynomial order of data size).

2. Per-Query Error: Since the resolution of a query depends on the

Näıve Bayes assumption, we evaluate the accuracy of our query res-

olution as compared to the exact solution after having examined the

entire graph. We define per-query error as the metric of accuracy. It

can be defined as:

Error = |Accurate result − Estimation|

As the proposed query approximation framework is efficient, we are

able to achieve results that are within some error margin of the actual

solution. This error margin is sufficiently small given the use case for

our specific queries.

By evaluating the results obtained by our model on the above two metrics, we

can observe the effect of query complexity (based on the number of attributes)

on the accuracy of our model. Similar readings can be obtained for the speed-

up that we achieve when compared to the scenario when the entire graph

must be processed and a series of joins be taken in order to derive the exact

solution to a query.

8.2.2 Experimental Setup

We evaluate both of the above metrics on simple as well as complex queries.

The complexity of a query is defined by the number of attributes involved.

As the number of attributes increases, more summary graphs are needed to

obtain the estimation and thus the query complexity increases. For both
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types of queries, we evaluate per-query runtime and per-query error for dif-

ferent data sizes. The results of our experiments are discussed in the next

section.

8.3 Results

This section gives details about the results in terms of both accuracy and

running time of simple as well as complex queries using our summary graph

techniques. We compare our results with the ordinary technique and show

significant improvements.

8.3.1 Per-Query Runtime

Fig 8.1(a) and 8.1(b) show the results of our experiments on simple queries.

Fig 8.2(a) and 8.2(b) shows the results on a complex query. The plots are

per-query runtime as a function of data size. We can see from these figures

that the query estimation using summary graph remains almost constant as

the data size increases while the time taken for actual query result calculation

increases linearly. In Fig 8.1(b), our algorithm performs so efficiently that the

time is very close to zero. This is because, the number of categorical values

for each attribute i.e. v is very small. Even when this v is significantly large,

as is the case in Fig 8.1(a) and 8.2(a), the run time is still constant for our

algorithm.

In Fig 8.1(a) and 8.2(b), we can see that initially our algorithm is out-

performed by the linear processing of data because of compiler and runtime

optimizations. The cost of finding and accessing relevant summary graphs

causes the extra time because of hashing operations. However, this cost

remains constant irrespective of the graph size.

8.3.2 Per-Query Error

Fig 8.3(a) and 8.3(b) show the results of our experiments on simple and

complex queries respectively. It can be seen from both these graphs that

there is generally a decreasing trend in error as the data size increases. This
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(a) Pr(MS,NCSU |BITS) (b) Pr(MS,CS|Fall)

Figure 8.1: Data Size vs Runtime for Simple Queries

(a) Pr(MS,CS,UTDallas|Fall,MU) (b) Pr(MS,CS,NCSU,UTDallas|Fall, BITS)

Figure 8.2: Data Size vs Runtime for Complex Queries

is expected since, as the data size grows, the bounds for extremities narrow

down and our estimate always lies within these bounds.

The first peak for both the graphs is because the data is not yet large

enough for probabilities to make sense. But as data size increases, proba-

bilistic results model the actual data much better. The second peak in Fig

8.3(b) is because data in the last few chunks is extremely skewed in terms

of Graduate School attribute distribution. However, over all error has a de-

creasing trend. In spite of the skewed nature of data, our algorithm always

produces results within a 0.025 tolerance window of the actual probability.
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(a) Simple Query - Pr(MS,CS|Fall)

(b) Complex Query - Pr(MS,CS,NCSU |Fall, BITS)

Figure 8.3: Data Size vs Accuracy for Simple and Complex Queries
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CHAPTER 9

FUTURE WORK

We discuss possible future directions and extensions to our work both with

respect to caching as well as graph summarization.

9.1 Caching - Next Steps

It can be seen that our IDecider approach is more efficient that the basic LRU

and LFU approaches since it does not use any kind of historical information.

File popularity has been a seldom used metric in making caching decisions. It

is one of the most important parameters and can be used to effectively decide

on what files are to be cached. Specifically when real world HDFS workloads

follow a Zipf distribution, file popularity seems to be of utmost importance.

Currently, we have defined file popularity only on the basis of file access

rate and file age. However, we can extend the definition of popularity to

incorporate other aspects such as file size, underlying workload characteristics

and also a feedback loop provided by a dynamic caching algorithm. It can

be then modeled as a weighted sum of all these different parameters as:

File Popularity = αFile Size + βAccess Rate +

γF ile Age + δWorkload Characteristics

+ εFeedback

α, β, γ, δ and ε denote the normalized weight vectors.

Based on the above equation, we can device a feedback driven IDecider ap-

proach which will prove to be more efficient than the currently implemented

one.

Since we have file popularity as a decision metric, we can even use this
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metric to characterize files into hot, warm and cold files. We can maintain

files in different levels of storage like Memory, SSD and Disk based on the

category decided. At top level it appears to be one logical storage block but

physically it will be multiple levels of storage. We can extend IDecider to

even decide the storage location for files based on file popularity. We can also

leverage the already existing heterogeneous storage API developed as part of

the Apache Hadoop Project. This API was released as part of Hadoop 2.3.0

version. There has also been some work done on Heterogeneous storage by

HortonWorks which can be leveraged to extend the IDecider functionality.

We can also do a detailed cost analysis and show how the choice of caching

algorithm affects the cost of the cluster based on the cache size required

to make each algorithm operate at equivalent performance. A comparison

between LRU, LFU and our intelligent caching algorithm in terms of cost

of cache per throughput increase can be done which will allow us to explore

various ways in which we can reduce cache cost through the addition of multi-

tiered caching using SSD’s. We can thus solve the cost performance trade-off

using a knapsack approximation to maximize the cache performance at the

lowest cost.

9.2 Graph Summarization - Next Steps

Our graph summarization framework is computationally and spatially ef-

ficient and can be applied to large scale social networks. Our results are

promising and as part of future work, we wish to apply these to other large

scale graphs like Facebook and Twitter. We can then look at social net-

work graphs and find out network characteristics such as diffusion statistics,

influence metrics and ways in which you can have information diffusion ef-

ficiently using our approach. This will help in targeting information to the

super-nodes in the graph so that we achieve maximum information diffusion.

Some of the probable future extensions to our work are lazy initialization

of summary graphs using heuristics to predict probable and frequent queries,

in order to reduce computations even further. We also plan to extend our

framework to capture various social relationships and compute the proba-

bilistic estimates based on these relationships.
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CHAPTER 10

CONCLUSION

In this thesis, we have provided two solutions for low latency data retrieval

on big data. We presented IDecider - an intelligent caching technique that

does popularity aware caching to efficiently perform data accesses and reduce

the read latency on HDFS. We also presented a Näıve Bayes based graph

summarization framework that efficiently gives data insights without looking

at the entire large graph but only looking at the summaries developed on

the large graph. Our caching solution aims at faster data retrieval and our

graph summarization solution aims at faster data insight.

10.1 Caching and IDecider

We found that file access patterns in HDFS workloads are heavily tailed with

some files being more popular than others. For non-uniform file access pat-

terns, current caching mechanisms that use historical file access data such as

access count and last access time are inadequate and can result in inefficient

caching by evicting popular files thereby leading to a higher job latency. We

propose IDecider , an Intelligent caching and eviction mechanism that can

significantly improve read latency of HDFS workloads by maintaining most

popular files in cache at all times. Exploring both approaches of IDecider has

led to a conclusion that file popularity is an extremely important parameter

while taking caching and eviction decisions. Although we couldn’t beat the

results of ARC, it still means that LRU is somewhat an equivalent metric

for popularity and there can be popularity incorporated into a basic LRU to

make it more effective for Zipf type workloads.
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10.2 Graph Summarization

In this paper, we have provided an efficient framework for query resolution

over large graphs. Our summary graph approach does not depend on the

size of the graph. By computing the summary graphs only once, we provide

efficient calculations for subsequent queries. We achieve reductions in run-

time in order of input data size. Moreover, even for varying complexity of

the query and varying data size, our framework provides probability results

within 0.025 of the actual. It is computationally and spatially efficient and

can be applied to large scale social networks.
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