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ABSTRACT

Activity recognition systems detect the hidden actions of an agent from sen-

sor measurements made on the agents’ actions and the environmental condi-

tions. For such systems, metrics are important for both performance evalu-

ation and visualization purposes. In this thesis, such metrics are developed

and illustrated.

For human activity recognition datasets, a reporting structure is described

to visualize the metrics in a systematic manner. The other contribution of

this thesis is to describe a visualization tool for estimating the orientation

(attitude) of a rigid body from streaming motion sensor (accelerometer and

gyroscope) data. A feedback particle filter (FPF) is implemented algorith-

mically to solve the estimation problem.
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CHAPTER 1

INTRODUCTION

The goal of activity recognition (AR) is to identify the physical activity from a

set of sensor measurements. In an offline system, the activities are identified

from stored time-indexed values of sensor data. In an online system, the

activities are identified from streaming sensor measurements.

An automatic AR system has many benefits. In the 21st century our work

and leisure activities tend to be less physically demanding. Activity recog-

nition systems provide us with means to study the impact of this sedentary

lifestyle and to an extent establish links between physical activity and say

hypertension, diabetes, cancer and depression. Healthy People 2010 [1], a

program of nationwide health-promotion and disease-prevention goals set by

the United States Department of Health and Human Services has tagged

physical activity as a leading health indicator. Furthermore, tracking phys-

ical activities and providing useful metrics to the user can help motivate

him/her to lead an active lifestyle.

With advancements in the fields of medicine and enhancement in the qual-

ity of life, life-expectancy has increased dramatically leading to an increase in

the elderly population. One of the major hazards for the elderly population

is falling. The fall can be attributed to muscle weakness, variations in blood

pressure, balancing issues, etc. An AR system can help detect a fall and

alert emergency workers. This can help reduce the emergency response time

and help lower the rate of fall-related deaths among the elderly. In a best

case scenario, it could be used to track situations or events that may lead

to a fall and alert the elderly user, preventing the fall as well as expense of

emergency services.

Sources of measurements for current AR systems are based are heart-rate

monitors, video cameras and micro-electro-mechanical-systems (MEMS) such

as accelerometers and gyroscopes. Heart-rate monitors involve strapping the

sensor around the chest and are considered obtrusive and uncomfortable.
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Processing video content is known to be computationally exhaustive and it

is difficult to obtain accurate real-time results.

MEMS that are widely used in AR applications include the accelerometers

and gyroscopes measuring 3D accelerations and angular velocities respec-

tively. The first publication reporting the use of accelerometers for activity

recognition dates back to 1983 [2]. Advancements in MEMS technology over

the past two decades have led to their miniaturization, lowered the power

consumption and reduced manufacturing costs. As a result accelerometers,

gyroscopes and magnetometers are widely embedded in smart phones, smart

watches, etc., and can be leveraged to design AR systems.

The contributions of this thesis are two-fold:

1. We develop metrics and associated methodology to evaluate different

AR machine learning algorithms. The results are presented in Chap-

ter 3.

2. We develop a visualization framework to re-create the in-place 3D rota-

tional motion using gyroscope and magnetometer measurements with

the objective of understanding the physics underlying the motion of

the motion sensors. This framework is presented in Chapter 4.
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CHAPTER 2

DATASET

This chapter provides a brief overview of the University of Illinois at Urbana-

Champaign (UIUC) dataset and the University of Southern California Hu-

man Activity Recognition dataset (USC-HAD). These datasets are primarily

composed of measurements logged at a frequency of 50 Hz to 100 Hz from

MEMS sensors such as accelerometers, gyroscopes and magenetometers. The

framework discussed in Chapter 3 is applied and illustrated for these datasets.

2.1 MEMS Sensors

2.1.1 Accelerometers

Accelerometer sensors measure acceleration. The unit of measurement is

meters per second squared (m/s2) or G-forces (g). For activity recognition

a 3-axis accelerometer is used. Such an accelerometer measures acceleration

along the x, y and z directions in the device’s coordinate system.

2.1.2 Gyroscopes

Gyroscope sensors measure angular velocity. The unit of measurements is

degrees per second (◦/s) or radian per second (rad/s).

2.1.3 Magnetometers

Magnetometer sensors measure the strength and direction of the magnetic

fields. The unit of measurement is microtesla (µT).
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2.2 Datasets

2.2.1 UIUC Dataset

This dataset was collected at the Coordinated Science Laboratory, University

of Illinois at Urbana-Champaign (UIUC). An Android application was de-

veloped to log motion sensor (accelerometer, gyroscope and magnetometer)

data from Android Wear smart watches and Android smart phones. The ap-

plication was set to sample data at 50 Hz. The Android Wear smart watch

was mounted on either the left or right wrist of the subject. The subject

performed an average of 10 repetitions of the 7 different strength training

exercises/activities listed in Table 2.1 for 10 days.

Table 2.1: Overview of the UIUC Dataset

Dataset No. of Subjects Activities Sensors

UIUC

Dataset

15

10 male

5 female

Dumbbell Hammer Curl

Dumbbell Front Raise

Dumbbell Flyes

Dumbbell Lunges

Dumbbell Rear Lunge

Dumbbell Shoulder Press

Dumbbell Side Raise

Barbell Curl

Barbell Squat

Kettlebell One-Arm Row

Machine - Walking

3-axis

accelerometer

(±2 g)

3-axis

gyroscope

(± 500 ◦/s)

A session is defined as set of measurements for the subject performing 10

(or more) repetitions of a particular activity/exercise. In each session for

each incoming measurement the following data was logged:

1. Timestamp

2. Acceleration along the X-axis

3. Acceleration along the Y-axis
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4. Acceleration along the Z-axis

5. Angular velocity around the X-axis

6. Angular velocity around the Y-axis

7. Angular velocity around the Z-axis

The coordinate system relative to the device is show in Figure 2.1. Each ses-

sion is labeled with the corresponding activity/exercise name, wrist location

and the number of repetitions performed by the user during a session.

Figure 2.1: Coordinate System Relative to the Device (Sony Smartwatch 3)

2.2.2 University of Southern California Human Activity
Dataset (USC-HAD)

USC-HAD is an open-source dataset [3]. Activity types and the sensors used

are listed in Table 2.2. Each subject performs each activity for 5 trials (a

trial is defined as an individual performing an activity repeatedly for approx-

imately 20 seconds), and the data for each single trial is stored separately.

The inertial measurement unit (IMU) comprising a 3D accelerometer and

gyroscope is affixed to the front right hip of the subject, with the x-axis
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pointing in the gravity direction and perpendicular to the y − z plane. The

sampling rate of the IMU is 100 Hz. Figure 2.2 illustrates the data of the

3D accelerations and angular velocities for walking forward and jumping. It

can be seen from the figure that jumping incurs more intensive accelerations

but relatively milder angular rotations compared with walking forward.

Table 2.2: Overview of USC-HAD

Dataset No. of Subjects Activities Sensors

USC-HAD
14

7 male

7 female

Walk forward

Walk left

Walk right

Walk upstairs

Walk downstairs

Run forward

Jump

Sit on a chair

Stand

Sleep

Elevator up

Elevator down

3-axis

accelerometer

(±6 g)

3-axis

gyroscope

(±500 ◦/s)
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Figure 2.2: Comparison of Sensor Measurements for Walking Forward and
Jumping Activities
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CHAPTER 3

FRAMEWORK

The aim of this chapter is to propose a framework for reporting and visualiza-

tion for the purposes of performance evaluation and comparison of machine

learning algorithms for activity recognition.

3.1 Definitions

The following terminology will be used throughout this chapter:

• Configuration: A user wearing a smart watch or smart phone at a

particular body location

• Set: A collection of repetitive motion(s) of the same activity

• Workout: A collection of sets of one or more activities

• Ground Truth: The number of repetitive motions for a set as reported

by the user

• Estimated Count: The number of repetitive motions estimated by

the algorithm for each set

• Noisiness: The assimilation of measurements from a workout for which

no repetitive activity is reported by the user

• Representative Model: Features extracted from a single set of an

activity for a configuration

3.2 Set-wise Performance Evaluation

The objective is to evaluate the performance of a feature-set on the sensor

data from which it was developed. The following metrics are developed for
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each set.

3.2.1 Ground Truth minus Estimated Count (GT-EC)

Subtract the number of repetitions detected by the algorithm from the num-

ber of repetitions reported by the user. In an ideal case this metric should

be zero; i.e., the algorithm tracks the number of repetitions with 100 percent

accuracy.

3.2.2 False Positive - Estimated Count (FP-EC)

The number of repetitions detected by the feature-set on the data points

tagged as noisiness. In an ideal case this metric should be zero.

3.2.3 Normed Maximum Acceleration (NMA)

For each of the measurements across a set, compute using the following:

Normed Acceleration :=
√
ax2 + ay2 + az2 (3.1)

where:

ax is the acceleration along the X-axis extracted from the measurement

ay is the acceleration along the Y-axis extracted from the measurement

az is the acceleration along the Z-axis extracted the measurement

Consider the maximum value for Equation (3.1) across measurements for the

set.

3.2.4 Normed Maximum Gyroscopic Rotation (NMG)

For each of the measurements across a set, compute the following:

Normed Gyroscopic Rotation :=
√
gx2 + gy2 + gz2 (3.2)

where:

gx is the angular velocity around X-axis extracted from the measurement

gy is the angular velocity around Y-axis extracted from measurement
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gz is the angular velocity around Z-axis extracted from the measurement

Consider the maximum value for Equation (3.2) across measurements for the

set.

3.2.5 Logging Time

The logging time is computed as end time minus start time of the set. This

information can be used to determine if the set is valid or not. If the logging

time is zero or exceptionally large (exceptions are walking, running, etc.) the

set can be classified as an invalid set. An invalid set is not considered during

the performance evaluation.

3.2.6 Overview

Table 3.1 is constructed based on the metrics developed above for each of

the activities.

Table 3.1: Performance across Sets for an Activity

1 - Activity Name

No. Identifier GT-EC FP-EC NMA NMG Logging Time

In the table:

No. is the set number

Identifier is the unique identifier used to capture additional information

(user, device, device location, etc.) of the set

Thus for each set of an activity we have an overview of the performance of the

algorithm. Table 3.2 presents a snapshot for UIUC’s dataset for the activity

Barbell Curl.
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Table 3.2: Snapshot of Performance across Sets for Barbell Curl

1 - Barbell Curl

No. Identifier GT-EC FP-EC NMA NMG Logging Time

.. .. .. - .. .. .. .. ..

9 86f1 58b3 10.0 - 10.0 0.0 5.922 2.165 19.26

10 fe6b 1ba2 10.0 - 9.0 0.0 4.75 2.165 21.20

11 007d fd0d 10.0 - 10.0 0.0 5.251 2.139 19.22

12 8a44 6d9d 10.0 - 10.0 0.0 5.105 2.373 19.32

.. .. .. - .. .. .. .. ..

3.3 Activity-wise Performance Evaluation

In order to garner an overview of the algorithm’s performance for a single

activity, three metrics are developed which are described in the following

subsections.

3.3.1 Average Accuracy (Avg. Acc.)

Based on number of repetitions detected by the algorithm, the accuracy

metric is defined as:

(Ground Truth− Estimated Count) (3.3)

This accuracy metric is compartmentalized into:

• Accuracy ±0: Herein the absolute value of (3.3) is 0

• Accuracy ±1: Herein the absolute value of (3.3) is 1

• Accuracy ±2: Herein the absolute value of (3.3) is 2

An average accuracy metric is computed for each of the above listed compart-

ments by summing up the accuracy values corresponding to a compartment

for each valid set for an activity and then dividing it by the total number of

valid sets for that activity.
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3.3.2 Average Normed Acceleration (ANMA)

ANMA is derived by adding the NMA values for all of the valid sets for an

activity and then dividing by the total number of valid sets for that activity.

3.3.3 Average Normed Gyroscopic Rotation (ANMG)

ANMG is derived by adding the NMG values for all of the valid sets for an

activity and then dividing by the total number of valid sets for that activity.

3.3.4 Overview

Table 3.3 is constructed based on the metrics developed above for each of

the activities.

Table 3.3: Overview of Set-wise Performance across Activities

Activity # S Acc. 0 Acc. 1 Acc. 2 ANMA ANMG

In the table:

# S corresponds to the total number of valid sets for an activity

Acc. 0 is the average accuracy metric for the first compartment

Acc. 1 is the average accuracy metric for the second compartment

Acc. 2 is the average accuracy metric for the third compartment

Table 3.4 presents a snapshot of the performance on UIUC’s dataset across

activities.

3.4 Insights

3.4.1 GT-EC Histogram

A histogram of ground truth values along an estimated count for each activity

helps us to draw a conclusion about the performance of the algorithm.
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Table 3.4: Overview of Set-wise Performance across Activities for the UIUC
dataset

Activity # S Acc. 0 Acc. 1 Acc. 2 ANMA ANMG

Dumbbell Front Raise 66 0.3 0.89 0.97 5.03 1.80

Dumbbell Hammer Curl 60 0.2 0.9 0.93 6.64 2.39

Kettlebell One-Arm Row 54 0.24 0.85 0.98 4.66 0.83

Dumbbell Flyes 64 0.19 0.81 0.94 4.19 0.77

Dumbbell Side Raise 14 0.07 0.57 0.71 5.24 2.12

Dumbbell Lunges 44 0.20 0.34 0.52 1.56 0.31

Barbell Curl 75 0.32 0.92 0.97 5.29 2.21

Dumbbell Rear Lunge 33 0.16 0.35 0.39 1.714 0.31

Dumbbell Shoulder Press 57 0.14 0.41 0.63 1.66 0.35

Barbell Squat 48 0.42 0.79 0.89 1.36 0.17

3.4.2 NMA vs. NMG Scatter Plot

NMA vs. NMG plot provides a quantitative description with regard to the

quality of the feature-set developed.
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3.5 Workout-wise Performance Evaluation

The objective here is to evaluate the performance of a feature-set(s) selected

for an activity on workouts. This workout-wise evaluation facilitates the

following:

• Quick understanding of the flow of the workout

• Re-validation of the ground truth

A typical tabular visualization for a workout session is described in the

following three subsections.

3.5.1 Ground Truth minus Estimated Count (GT-EC)

Subtract the number of repetitions detected by the algorithm from the num-

ber of repetitions reported by the user.

3.5.2 Confusions

This accounts for the cases where the algorithm’s prediction contradicts the

ground truth, i.e., a user may be performing barbell curl but the algorithm

predicts that the user is performing hammer curl. One of the effective ways

to represent this information is by listing the activity and the number of

counts predicted by the algorithm against the set.

3.5.3 False Positives

This metric is the number of repetitions detected by the algorithm during pe-

riods of a workout session tagged as noisiness (no repetitive activity periods).

In an ideal case this metric should be zero.

3.5.4 Overview

Table 3.5 is constructed for each workout session. In addition to the tabular

information, the false positives estimated during the workout session are also

computed. Below the table the activity names and the false positive counts

14



estimated by the algorithm for each of the representative models during the

workout are listed.

Table 3.5: Workout Overview

User Workout Session Identifier

Activity - Set True Positive GT − EC Confusions

A workout-wise performance evaluation for one of the workout sessions

from UIUC’s dataset is represented in Table 3.6.

Table 3.6: Overview of a Workout from the UIUC Dataset

User - Tim 88317ac9-5f3d-4a4d-beea-99f19b41aa33

Activity-Set True Positive GT − EC Confusions

Barbell Curl 10.0, 6.0 None

Barbell Curl 10.0, 6.0 None

Barbell Curl 10.0, 3.0 None

Dumbbell Row 10.0, 11.0 None

Dumbbell Row 10.0, 8.0 None

Dumbbell Row 10.0, 8.0 None

False Positives

Machine - Walking: 3.0

3.5.5 Workout-wise Activity-wise Performance Evaluation

The objective is to evaluate the performance of the representative model.

The metrics garnered in the workout-wise performance evaluation (previous

section) are viewed differently. The sets of the same activity are viewed

collectively. The sets tagged as invalid based on the discussion in Section

3.2.5 are not taken into consideration. An asterisk(*) is used to indicate the

representative model. Table 3.7 showcases the outline for the workout-based

activity-wise tabular visualization.
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Table 3.7: Workout-wise Activity-wise Performance

Activity Name

No. Identifier GT-EC Conf.

The workout-wise performance evaluation for sets across an activity are

presented in Table 3.8.

Table 3.8: Workout-wise Activity-wise Performance for Barbell Curl

Barbell Curl

No. Identifier GT-EC Conf.

1 e4c 4c5f * 10 - 10.0 None

2 e4c 7386 10 - 9.0 None

3 e4c ba18 10 - 10.0 None

4 dbe 4c86 10 - 9.0 None

3.5.6 Summary

Based on this collective drawn above and drawing from our definitions of

average accuracy defined in Section 3.3.1, Table 3.9 is constructed. In the

table:

# W is the total number of workouts having the particular physical activity

# S is the total number of valid sets for the particular physical activity

For definitions of Acc. 0, Acc 1 and Acc. 2 see Section 3.3.1

Table 3.9: Outline for the Performance Summary Table

Activity # W # S Acc. 0 Acc. 1 Acc. 2

Performance summary for the UIUC dataset is shown in Table 3.10
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Table 3.10: Performance Summary Table (UIUC Dataset) - Sorted as per
Accuracy 2: ±2

Activity # W # S Acc. 0 Acc. 1 Acc. 2

Dumbbell Hammer Curl 19 57 0.18 0.95 0.98

Dumbbell Front Raise 22 64 0.13 0.8 0.89

Kettlebell One-Arm Row 18 54 0.13 0.83 0.89

Dumbbell Side Raise 5 13 0.08 0.62 0.85

Dumbbell Flyes 21 63 0.17 0.68 0.78

Barbell Squat 14 39 0.23 0.49 0.64

Barbell Curl 24 72 0.1 0.51 0.61

Dumbbell Shoulder Press 18 53 0.09 0.38 0.45

Dumbbell Lunges 12 37 0.08 0.22 0.38

Dumbbell Rear Lunge 11 33 0.09 0.21 0.36

3.6 An Overview of False Positives

3.6.1 Maximum Count (Max. Count)

Herein the maximum value of the false positive estimated count across work-

out sessions for an activity is listed.

3.6.2 Median

Herein the median value of the false positive estimated count across workout

sessions for an activity is listed.

3.6.3 Occurrences

The unique values of the false positive estimated counts and their associated

number of occurrences across workout sessions for an activity are listed.

To study of false positives in Table 3.11 is constructed, where # W is the

total number of workouts having the particular physical activity.
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Table 3.11: Overview of False Positives across Workouts

Activity # W Max. Count Median Occurrence

18



CHAPTER 4

REAL TIME VISUALIZATION

The objective of this work is to set up a framework to visualize the motion of

a motion sensing device in real time, primarily an implementation of attitude

estimation. An attitude is defined as the orientation of a rigid body sensor

device with respect to an inertial reference frame.

4.1 Framework

The device we selected for developing our framework is TI’s SensorTag CC2650.

The framework, as shown in Figure 4.1, encompasses the following:

1. SensorTag CC2650[4]: A Bluetooth low-energy device with an ac-

celerometer, gyroscope and magnetometer. The device streams out

sensor measurements at 10 Hz. SensorTag CC2650 measures the ac-

celeration in G-forces in each of the three axes with a range of ± 8G,

the angular velocity around each of the three axes with a range of 250

degrees/sec and the magnetic field in microtesla.

2. C library: Low-level byte manipulations on incoming sensor measure-

ments

3. PyQt application: Performs mathematical computations for con-

trol and OpenGL based 3D visualization as explained in sections 4.2

and 4.3.

4.1.1 Sensor Calibration

Magnetometers are essential for gyroscope drift correction. One of the prob-

lems in using a magnetometer is that the response surfaces are not ideally

centered at the origin in 3D space. This artifact is largely due to the mis-

match between the operating condition and the testing conditions during
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Figure 4.1: Overview of the Framework

manufacturing. As a result, some form of calibration is required prior to the

use of magnetometers.

There are two types of corrections involved in the calibration:

1. Hard iron correction

2. Soft iron correction

Hard iron correction is basically to recenter the response to the origin via

appropriate shifting. More specifically, the amount of shift is estimated to

be the mean of the largest and the smallest calibration data. These offset

values (also known as bias) are then subtracted from the real measurements

for each axis. Mathematically,

(Mi)bias =
(Mi)max + (Mi)min

2
, (Mi)

′ = Mi − (Mi)bias, i = x, y, z

where Mi and (Mi)
′ are respectively magnetometer response before and after

hard iron correction.

Soft iron correction is dedicated to make the response more spherical

through proper scaling in each direction. The scaling factor of each direction

is estimated according to Equation (4.1).

(Mi)scale =

∑
j=x,y,z[(Mj)max − (Mj)min]

3[(Mi)max − (Mi)min]
, i = x, y, z (4.1)
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Figure 4.2: Magnetometer Responses in XY, XZ and YZ Planes Before and
After Applying both Hard Iron and Soft Iron Correction

The real measurements in each direction are then multiplied by their respec-

tive scaling factors. Figure 4.2 shows the magnetometer responses before and

after hard and soft iron correction.

4.2 Algorithm

The mathematics underlying the 3D visualization are based on the theory

developed for attitude estimation using the feedback particle filter (FPF)[5].

FPF is a Monte Carlo estimation algorithm comprising of a particle sys-

tem. FPF provides for a generalization of the Kalman filter to a general

class of nonlinear non-Gaussian problems. It inherits the innovation error-

based feedback structure and robustness properties from the widely accepted

Kalman filter which has been widely applicable over the past five decades.

The procedure for initialization of the particles:

1. Sample X i from Gaussian N(0, I4)

2. Normalize: qi = X i/|X i|
In Algorithm 1, N is total number of particles for FPF. U t and Zt are the

gyroscope and the magnetometer measurements in the three axes. ∆t is the

time interval between two consecutive measurements. σu is the sensor-specific

gyroscope noise parameter. qt is the quaternion vector at time t. Kx, Ky

and Kz is Galerkin gain vector for each of the axis. ∆ωt is the instantaneous

angular velocity change at time t. ⊗ is the quaternion product operator. R

is the rotation matrix associated with the quaternion. vref is the reference

model for the magnetometer.
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Algorithm 1 Feedback particle filter using quaternion

1: for each measurement at time t do
2: for i = 1, 2...N do
3: // Prediction
4: (∆ωi

t)1 = U t∆t−
√

∆t∆U i
t, ∆U i

t ∼N(0, σuI3)
5: // Update

6: ĥ ≈
(∑N

i=1 h(qi
t)
)
/N, h(qi

t) = R(qi
t)

T
vref

7: ∆I i
t = Zt∆t−

(
h(qi

t) + ĥ
)

∆t/2

8: (∆ωi
t)2 = Kx(qi

t)∆I i
t,x + Ky(q

i
t)∆I i

t,y + Kz(q
i
t)∆I i

t,z

9: ∆ωi
t = (∆ωi

t)1 + (∆ωi
t)2

10: qi
t+∆t = qi

t ⊗

 cos
(
|∆ωi

t|
2

)
∆ωi

t

|∆ωi
t|
sin
(
|∆ωi

t|
2

) 
11: end for
12: end for

For detailed mathematical derivation(s), refer to [6].

4.3 3D Visualization

After the quaternion is obtained from the controls step, the quaternion is

mapped back to the rotation space. The conversion from quaternion to a

rotational vector is given by Equation (4.2).

φ = 2arctan(|qv|, qw), u = qv/|qv| (4.2)

where qv and qw are respectively the vector and the scalar parts of quaternion

q. φ is the rotation angle and u is the axis the object rotates about. It is

worth pointing out that the rotation is defined with respect to the sensor

frame rather than the global inertial frame.

The 3D object is rendered using OpenGL library written in C++. For

this framework, we make use of Python wrappers, namely PyOpenGL and

PyQt, to access the functions in the OpenGL library. The code rendering

the 3D object is derived from the PyQt4 OpenGL example [7]. Plotting of

the gyroscope measurements is purely done via PyQt. Figure 4.3 displays

our framework in action.
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Figure 4.3: Current Framework in Action - Gyroscope Measurements
against Rotational Motion of a 3D Object
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

Metrics for comparing different algorithms for activity recognition have been

developed, and a visualization framework to benchmark the performance of

attitude estimation algorithms has been set up.

Future work will focus on extending the proposed metrics and framework

for non-repetitive activities such as drawing alphabets and numbers. An-

other work would be to extend the visualization environment to replicate

the translational and rotational motion of the motion sensing device in free

space.
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