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ABSTRACT

Galaxy classification, using digital images captured from sky surveys to de-

termine the galaxy morphological classes, is of great interest to astronomy

researchers. Conventional methods rely heavily on a few handcrafted mor-

phological features while popular feature extraction methods that developed

for natural images are not suitable for galaxy images. Deep convolutional

neural networks (CNNs) are able to learn powerful features from images by

hierarchical convolutional and pooling operations. This work applies state-of-

the-art deep CNN technologies to galaxy classification for both a regression

task and multi-class classification tasks. We also implement and compare the

performance with several different conventional machine learning algorithms

for a classification sub-task. Our experiments show that convolutional neural

networks are able to learn representative features automatically and achieve

high performance, surpassing both human recognition and other machine

learning methods.
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CHAPTER 1

INTRODUCTION

Image classification is a significant and recurring theme in pattern recognition

and digital image processing, with many applications in a number of domains

related to images, including computer vision, medical image analysis, biology,

etc. In the field of astronomy, galaxy classification, using digital images

collected from large-scale sky surveys to determine the galaxy morphological

classes, has long been of great interest to astronomy researchers.

There are more than 170 billion galaxies in the observable universe, and

the astronomical community has captured image data covering more than

a quarter of the whole sky with powerful telescopes and ambitious sky sur-

veys such as the Sloan Digital Sky Survey (SDSS) [1]. To tackle the galaxy

classification task, astronomy experts Fukugita, Nair, Baillard, etc., inde-

pendently classified thousands of galaxy images by themselves [2],[3],[4], and

the Galaxy Zoo project used crowdsourcing to collect more than 60 mil-

lion classification results from online citizen scientists [5],[6]. On the other

hand, researchers have been investigating automated classification methods

in the past two decades using popular machine learning algorithms along

with dozens of handcrafted morphological features [7],[8],[9], and the results

have contributed to the study of astronomy [5].

However, conventional automated classification algorithms are inadequate

in terms of classification accuracy because, to a certain extent, they rely heav-

ily on handcrafted features: feature extraction is hard for galaxy images with

many visual subtleties such as large intra-class variance, similar appearance,

and gradual change between different galaxy classes. Convolutional neural

networks (CNNs)[10], along with the recently developed high performance

GPU implementations [11], have enabled us to implement deep network ar-

chitectures to learn representative features from images automatically and

achieve high accuracy in image classification.

In this work, we implement deep CNNs on galaxy datasets for regression
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and multi-class classification tasks. We also compare the performance of

several different machine learning algorithms for a binary galaxy classification

task. The experimental results demonstrate the feature extraction power of

CNNs in terms of their learned feature filters and classification accuracy for

galaxy images.

The remainder of the thesis will be organized as follows. Chapter 2 dis-

cusses the datasets for galaxy classification. Chapter 3 studies different clas-

sification algorithms with a focus on algorithmic performance aspects and

then discusses CNNs in detail. In Chapter 4 and Chapter 5, we present im-

plementation details and results for galaxy classification as regression and

multi-class classification tasks. Finally, we conclude the thesis in Chapter 6.
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CHAPTER 2

GALAXY CLASSIFICATION DATA

The Sloan Digital Sky Survey (SDSS) mapped nearly one quarter of the entire

sky and included millions of images in five different bands in its data release

7 (SDSS DR7) [1]. The survey contains a huge amount of information as well

as image data (more than 40TBs of galaxy images and catalogs, etc.), which

is difficult to process in bulk and to analyze directly for scientific research.

Galaxy Zoo Project 2 is a recent citizen science project hosted by Galaxy-

Zoo [12] to classify around 200, 000 RGB galaxy images from both SDSS DR7

and other similar surveys. The project collected more than 60 million human

classifications within 14 months, and published its results in 2013 [12]. In

December 2013, Kaggle [13] started a worldwide challenge for the automated

classification algorithms using almost half of the data from the Galaxy Zoo

Project 2 [13].

Figure 2.1: Galaxy image samples from Kaggle dataset

In this challenge, the training dataset consists of 61, 578 JPEG images of

size 424×424 with RGB channels; each image has an ID number and a galaxy

(or like shape) in the center (see Figure 2.1), in addition to 37 probability

labels from volunteer classification results. The probability label for each

image is generated by averaging the votes from about 44 volunteers who
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answer 11 questions regarding classifying the corresponding image, and by

post-processing techniques over the whole probability distribution [5]. The

tree structure of the 37 probabilities and 11 questions is demonstrated in

Figure 2.2.

The test dataset in this challenge consists of 79, 975 images from the same

Galaxy Zoo Project 2 but without giving the probability labels. The task

of this challenge is to predict all 79, 975 × 37 probability labels for the test

dataset, and the result is evaluated by calculating the root mean squared

error (RMSE) over all predictions.

Besides experimenting with regression over all the given labels and images

in the training set from the challenge dataset, we generate subsets to perform

the multi-class classifications.

For the 2-class classification subtask, we first choose the two most impor-

tant galaxy classes among the 37 classes to study: the “smooth galaxy” class

and “galaxy with a feature or disk” class. These two classes are related to

early-type and late-type galaxies, respectively, which are of greatest research

interest to astronomers. We then generate our ground truth categorical class

label from the given probability labels. More specifically, in accordance with

some astronomical research conventions [9], we choose the subset of images

and labels with label probabilities that are greater than 0.8 for the chosen

classes. Finally, we get our new dataset with 24, 273 galaxy images and its

corresponding labels for the chosen two classes. We perform classification

tasks based on the generated new datasets with classification accuracy as

the performance measure.
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Figure 2.2: The ontology of galaxy classes. The nodes represent the 11
questions and the 37 answers derived from the Galaxy Zoo dataset (better
viewed when zoomed in).
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CHAPTER 3

CLASSIFICATION METHODS

In this chapter, we will briefly introduce the conventional learning algorithms

we used in the classification task with a focus on their algorithmic perfor-

mance. We will also discuss CNNs in detail.

3.1 Conventional Classification Algorithms

3.1.1 Nearest Neighbor

Nearest neighbor (NN) is one of the simplest classification algorithms. NN

is non-parametric and needs no training. It predicts the label of a given

observation to be the class label of the closest neighboring observation from

the training set in the feature space. From the rules it is obvious that NN as-

sumes nearest proximity of samples with the same label. The computational

complexity of the NN algorithm depends on the underlying search algorithm

we are using.

3.1.2 Logistic Regression

Logistic regression is a probabilistic linear classifier which projects the input

vector onto a set of hyperplanes. Each hyperplane corresponds to a class, and

the distance between the input vector and the hyperplane corresponds to the

probability of the input belonging to that class. The complexity of solving

the linear regression as an optimization problem depends on the optimizer;

for example, using the L-BFGS we can get linear time on the size of the

training set [14].
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3.1.3 Naive Bayes

Naive Bayes is a family of probabilistic classifiers based on the strong naive

Bayesian assumption that features of each dimension are conditionally inde-

pendent given the label. The complexity of training is O(n).

3.1.4 Decision Trees and Random Forest

Decision tree is an intuitive and popular method for classification. It maps

the training dataset to a decision-making tree structure where the leaves

represent the class labels, and the branches represent the conjunction of

different features. Many versions of decision tree algorithms are available;

for the C4.5 algorithm the complexity is O(n×d2) [15], where n is training set

size and d is number of features. Random forest [16] is an ensemble learning

method that constructs multiple decision trees during training and outputs

the mode of the classes of trees during prediction.

3.1.5 Support Vector Machines

Support vector machines (SVMs), along with the “kernel trick,” are one of

the most powerful classification algorithms introduced by Vapnik [17]. For

the linear case, SVMs maximize the margin between the feature vectors in

the feature space. And for the non-linear case, SVMs, by using the kernel

trick, implicitly map the inputs into a higher dimensional space. Many op-

timization implementations are available for SVM, for example, O(n2 × d)

when using the RBF kernel with SMO solver, and O(n× d) for linear SVMs

[18].

3.2 Convolutional Neural Networks

Inspired by the hierarchical human visual recognition system, convolutional

neural networks are naturally designed for images. The idea of CNNs is

to build models with multiple and hierarchical levels of abstraction of data

representation from input images, to learn representative and adaptive fea-

tures from data automatically and hence to improve the performance of later
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classification action in the model.

Compared with traditional fully connected feed-forward neural networks,

a CNN mainly introduces two types of layers with restricted connectivity:

the convolutional layers and pooling layers.

3.2.1 Local Connectivity

A convolutional layer introduces local connectivity and sharing parameters [10],

where local connectivity (each point in feature maps only corresponds to a

local patch of the original image) enables us to discover and represent the

2-D topology structure, and sharing parameters (the use of the same filter

for each feature map) reduce both the model parameter size, enabling more

efficient computation, and the overfitting issue that might arise due to too

many parameters and insufficient data.

As we can see in equation 3.1, Z l is the activations in layer l, h is the

activation function, and W l is the shared convolutional filters for layer l.

Z l+1 = h(Z l ∗W l) (3.1)

3.2.2 Hierarchical Structure

As illustrated in Figure 3.1, the first convolutional layer in the network corre-

sponds to low level and local features, but in later convolutional layers, it will

hierarchically represent more high level concepts and more global features as

the convolution operations continue.

Then we use pooling layers to reduce the spatial resolution of an input

feature map; thus, we can do the dense convolution operation first to find

useful features and concepts and then reduce the model capacity by pool-

ing to prevent too many parameters. Pooling also introduces certain spatial

invariance to features positions. Pooling operations are special types of con-

volutional operations with fixed weights for the fitlers, such as max pooling

and average pooling.

Convolutional layers and pooling layers are essential components of the

CNN architecture; different choices of their numbers, sizes, and orders lead

to different efficiency and accuracy of the final performance.
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Figure 3.1: The hierarchical architecture of CNNs

3.2.3 Nonlinear Activation Units

Another significant feature of CNNs is the rectified linear unit (ReLU) acti-

vation function specified in equation 3.2. ReLU can simplify computation,

introduce sparsity in the networks and, unlike the sigmoid and other func-

tions, does not suffer from gradient vanishing.

h(a) = max(0, a) (3.2)

3.2.4 Training Algorithm

To train the CNNs, we use mini-batch stochastic gradient descent (SGD)

with the back propagation algorithm [19] to calculate the gradient. SGD is

the stochastic version of the general gradient descent using mini-batches of

the training dataset instead of using all of it. The gradient descent updating

formula is stated in equation 3.3, where W t is the parameters at iteration t,

and α is the learning rate which we anneal using a certain strategy.

W t+1 = W t + α∇W t (3.3)

We can further apply other techniques like data augmenting and cross

validation to address the overfitting issues.
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CHAPTER 4

GALAXY CLASSIFICATION AS
REGRESSION

4.1 Preprocessing of Raw Pixel Features

We plan to use raw pixel image features as our input to the learning algo-

rithms. Given that the input image has 424×424×3 = 539, 328 dimensions,

it will be very difficult to learn from the limited training examples due to

the curse of dimensionality. However, given the characteristics of the galaxy

images, with most energy centered in the middle of the image, we are able to

crop and resize the images to reasonable dimensions and still process them

as raw pixel features.

4.1.1 Center-cropped Resized Dataset

We choose the dimensions of the RGB image to be 32× 32× 3 = 3, 072. The

size is as small as possible, as long as we can still identify its class visually

with our eyes; i.e., we try to keep the discriminative visual information (see

Figure 4.1). As for the choice between 64×64 gray images and 32×32×3 color

images, we choose the latter after performing some test experiments, and the

color images performed much better. Furthermore, an astronomy researcher

informed us that color is an important feature for visually classifying galaxies.

4.1.2 Data Augmentation

We also applied a series of data augmentation techniques to fight the over-

fitting issue. We randomly flipped, rotated, and changed the color channels

slightly for each training example. Feeding input data in this fashion, we

have largely augmented our data and improved the later training results.
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Figure 4.1: Examples of choices for preprocessing. We use the 32× 32× 3
color images as our final input features for some subtasks.

4.2 Training the CNN

We divided the dataset into 80% training images and 20% validation images.

All data was sealed in the form of pickled Python objects for fast processing

of the neural network code.

Even at the high level of choosing neural network structure hyperparam-

eters, the possibilities are enormous (see Figure 4.2). We carried out ex-

periments to search over about 40 different neural networks, based on the

pre-trained parameters and layer structures provided with the code for the

CIFAR-10 dataset [11], using different numbers and sizes of filters, different

numbers of convolutional network layers, fully connected layers, pooling and

normalization layers, etc.

The best neural networks in the search came with three convolutional layers

with more 6 ∗ 6 sized filters, each followed by a max-pooling layer, and only

one fully connected layer to output the 37 predictions, which then connected

to the final sum layer to compare with the ground truth labels to compute

the MRSE as the training objective.

This network is much smaller than that trained in the ImageNet ILSVRC-

2012 dataset, referred to as AlexNet [20], because the dataset is much smaller
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Figure 4.2: Scheme for searching the best neural network architecture

than the ImageNet, and the task is simpler compared to the 1000 class natural

image classification task.

4.3 Results Post-processing

The predictions of the neural network were flattened 37-dimension vectors.

The network did not utilize the correlation of the 37 classes. By applying

boundary restraints at the final output, the final results (the RMSE calcu-

lated by submitting entries) can be improved by 4%. The restraints here are

the boundary conditions of probabilities.

4.4 Final Results for the Regression Problem

The final result we achieved in this regression task is RMSE of 0.10090, which

can be considered approximately 90% accurate.

Looking more closely at the CNN model, the learned filters from the first

convolutional layer of the optimized convolutional neural networks are shown

in Figure 4.3. The fitlers represent some of the low level visual patterns

learned automatically and directly from the galaxy images, such as edges,

corners, colors, etc. These patterns could capture and represent the charac-

teristics of the galaxy images to a great extent but apparently are hard for

people to handcraft and select, which again illustrates the feature extraction

power of CNNs.
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Figure 4.3: Filters from first convolutional layer
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CHAPTER 5

GALAXY CLASSIFICATION AS
MULTI-CLASS CLASSIFICATION

5.1 Preprocessing for Classification

In contrast to the regression task, for multi-class classification we need to

preprocess both the galaxy image data and class labels for the task.

5.1.1 Preprocessing Galaxy Image Data

For the classification task, we also apply center-cropping, resizing and data

augmentation techniques to the galaxy image data. In addition, we applied

dimensionality deduction algorithms to perform extra experiments.

Principal component analysis (PCA) [21] is a widely used unsupervised

dimension reduction algorithm. PCA converts a set of observations into a

set of linear uncorrelated “principal components” where the number of such

components is generally less than the number of original features.

In our implementation, we generated a reduced dataset from the 32 ×
32 × 3 color image dataset and performed experiments with some of the

classification algorithms. In the choice of number of principal components,

we used the criterion of keeping 99% of the variance calculated during the

decomposition, and our final number of features is 1, 143.

5.1.2 Preprocessing Galaxy Class Labels

There are two problems making the galaxy classification subtle and difficult:

(1) the intrinsic ambiguity of galaxy classes, and (2) the noisy labels from

the dataset and our lack of ground truth labels.

Currently, there are two basic ways to classify the galaxies. The first

method is based either on the classic T-types catalogue [3], or on the mor-
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phological index T [2], which is a numerical index of a galaxy’s stage along

the Hubble sequence. The second method is based on shapes and structures

as in the GalaxyZoo Project 2. Volunteers answer multiple-choice questions

regarding the shapes and features (see Figure 2.2) of the given images, and

the website generates the final result from all collected answers by voting and

some post-processing [12],[5]. The intrinsic ambiguity of the galaxy classes

here comes from the fact that some galaxy images are very likely to rank

between two nearby classes in the catalogue, or have very similar appear-

ance so that it is difficult to decide which class they belong to (for example,

some galaxy images might be exactly between T-type “E0” and “S0”, or

equidistant between “smooth” and “having a disk or feature”).

Another issue is the trustworthiness of the label. There are on average 44

people to classify one image; when the image has gone down all four levels,

there might be only a few people on the last level to make the classification.

Thus, the error here could have introduced more uncertainty than we can

accept.

Figure 5.1: Illustration of the 14 labels choosing strategy
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We finally generated the ground truth labels and prepared data in two

ways. As illustrated in Figure 5.1, we chose 3, 6, or 14 labels of all training

images (eliminating the labels with father-son relationship, so the 3, 6, or

14 probability labels are mutually exclusive and add up to 1). The 3-class

problem is also reduced to a binary classification problem due to only very

few examples from the 3rd class. And we chose only the images with certain

trustworthiness (probability above a certain threshold to be some class).

Figure 5.2: Cleaned data with threshold P(P=0.8 here) for the reduced
2-class classification task. Each data point represents an example. Dots in
the upper blue region mean “smooth” and in the lower blue region “with
features or disk.”

We also divided the dataset into strips of certain probability regions to

represent the different levels of trustworthiness (or different levels of classifi-

cation difficulty), similar to what is illustrated in Figure 5.2.

5.2 Learning the Classification Model

For the classification task, we implemented both convolutional neural net-

works and conventional machine learning techniques.

To adapt the CNN model from the regression task to the classification
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task, instead of using a fully connected layer to generate a real-valued vector

as final prediction, we used a softmax layer following fully connected layers’

input components, xi’s, to generate the probability of predictions for different

classes.

softmax(xi) =
exi∑
j e

xj
(5.1)

And instead of using RMSE as loss function, we used cross entropy as loss.

As in equation 5.2, y′ is ground truth and y is the prediction.

Hy′(y) = −
∑
i

y′i log(yi) (5.2)

For some of the conventional methods, we used both raw pixel features and

PCA features as input, and results are discussed in the following section.

5.3 Final Results for the Classification Problem

5.3.1 Results for the Multi-class Classification

For the 6-class classification task, we achieved around 70% classification ac-

curacy.

Figure 5.3: Predictions for the 14-class experiment with 59% accuracy
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For the 14-class case with 64 ∗ 64 sized training images, we achieved 59%

accurate classification rate. Some random predictions for the test dataset

are in Figure 5.3. The length of the bar below each image represents the

confidence of the prediction being a certain class, and red means correct

prediction.

5.3.2 Results for the 2-class Classification

Using 32×32×3 raw pixel features, we achieved relatively high classification

accuracy on the test set for the “smooth galaxy” versus “galaxy with feature

or disk” 2-class classification task. As shown in Figure 5.4, most of the

results are between 0.8 and 0.9 except for naive Bayes and random forest.

Notice that using PCA features does not reduce the classification score in

the experiments due to the highly concentrated energy in galaxy images.

Figure 5.4: Comparison of classification accuracy for different algorithms

The highest classification accuracy of 97.7% is achieved by convolutional

neural networks, which is significantly better than previous automated algo-

rithms using handcrafted morphological features that are in general below

88% and even 2% − 7% better than astronomy experts in the sense of re-

producing crowdsourcing classification results [5]. An example of prediction

using CNNs with random picked test data from the original dataset is shown

in Figure 5.5.
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Figure 5.5: Predictions for the 2-class experiment with 97.7% accuracy

5.3.3 Training and Testing Time Efficiency

As we mentioned earlier, the training time and testing time are implementa-

tion oriented. However, we can still get some insights from the results.

Figure 5.6: Comparison of training time for different algorithms

The training times (or setup time in the case of nearest neighbors) for

naive Bayes, random forest, decision trees, nearest neighbor, and logistic

regression are much shorter than that of SVMs, as shown in Figure 5.6.

Here, linear SVM trains much more slowly than RBF kernel SVM; however,

this is because the underlying library is not optimized for linearSVM. And
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algorithms using PCA features are much faster due to the lower feature

dimensionality.

Figure 5.7: Comparison of testing time for different algorithms

For the testing time, shown in Figure 5.7, as we would expect, nearest

neighbor method takes the longest time to calculate all the pairwise distances,

and SVMs still take much longer than the rest of the algorithms except for

nearest neighbor.

5.3.4 Comparison of Results to Human Learning

We also experimented with the trained convolutional neural networks on the

different difficulty data. The results are in Table 5.1. Testing results with

training set from [0.8, 1.0] are listed here, but similar results are achieved for

training set from [0.5, 1.0], [0.5, 0.6], [0.9, 1.0]).

The results are interesting in this way: All learned neural networks testing

at different difficulty levels performed well at the tasks humans are good at,

and badly at the tasks humans are bad at. If adding the data not listed here,

another interesting comparison is that learning over the easy ones (training

set in [0.9, 1.0]) with good understanding level (with 97.6% validation accu-

racy) produces slightly better results overall than learning the difficult one

(training set in [0.5, 0.6]) at an average understanding level (with 59.5% val-

idation accuracy). In this sense, artificial neural networks do have some sort

of high level intelligence similar to that of humans.
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Table 5.1: TEST with different difficulty levels

Test difficulty level(P) Test with learning from [0.8, 1.0]

[0.8, 1.0](validation) 0.023(test error)

[0.5, 0.6] 0.390
[0.6, 0.7] 0.200
[0.7, 0.8] 0.100
[0.8, 0.9] 0.025
[0.9, 1.0] 0.008
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CHAPTER 6

CONCLUSION

Conventional galaxy classification methods take advantage of carefully hand-

designed morphological features, but our experiments show that preprocessed

raw pixel features are also discriminative enough with state-of-the-art ma-

chine learning classification algorithms. However, feature extraction is still

a key underlying step in galaxy image classification tasks, and convolutional

neural networks can automatically learn more meaningful and representa-

tive features from the raw pixels to improve the classification performance.

Experimental results show that an optimized CNN model with its hierar-

chical representation produced significantly better results than conventional

methods and is suited for studying astronomical galaxy images.
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