
c© 2016 by Xin Zhao. All rights reserved.

RUNTIME SUPPORT FOR IRREGULAR COMPUTATION IN
MPI-BASED APPLICATIONS

BY

XIN ZHAO

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Doctoral Committee:

Professor William D. Gropp, Chair
Professor Laxmikant V. Kalé
Professor Marc Snir
Dr. Pavan Balaji, Argonne National Laboratory

Abstract

In recent years there are increasing number of applications that have been using irregular

computation models in various domains, such as computational chemistry, bioinformatics,

nuclear reactor simulation and social network analysis. Due to the irregular and data-

dependent communication patterns and sparse data structures involved in those applications,

the traditional parallel programming model and runtime need to be carefully designed and

implemented in order to accommodate the performance and scalability requirements of those

irregular applications on large-scale systems.

The Message Passing Interface (MPI) is the industry standard communication library for

high performance computing. However, whether MPI can serve as a suitable programming

model / runtime for irregular applications or not is one of the most debated aspects in

the community. The goal of this thesis is to investigate the suitability of MPI to irregular

applications.

This thesis consists of two subtopics. The first subtopic focuses on improving MPI runtime

to support the irregular applications from perspective of scalability and performance. The

first three parts in this subtopic focus on MPI one-sided communication. In the first part, we

present a thorough survey of current MPI one-sided implementations and illustrate scalability

limitations in those implementations. In the second part, we propose a new design and

implementation of MPI one-sided communication, called ScalaRMA, to effectively address

those scalability limitations. The third part in this subtopic focuses on various issuing

strategies in MPI one-sided communication. We propose an adaptive issuing strategy which

can adaptively choose between delayed issuing strategy and eager issuing strategy in MPI

ii

runtime to achieve high performance based on current communication volume in MPI-based

application. The last part in this subtopic is to tackle the scalability limitations in the virtual

connection (VC) objects in MPI implementation. We propose a scalable design to reduce

the memory consumption of VC objects in MPI runtime.

The second subtopic of this thesis focuses on improving MPI programming model to

better support the irregular applications. Traditional two-sided data movement model in

MPI standard designed for scientific computation provides a paradigm for user to specify

how to move the data between processes, however, it does not provide interface to flexibly

manage the computation, which means user needs to explicitly manage where the compu-

tation should be performed. This model is not well suited for irregular applications which

involve irregular and data-dependent communication pattern. In this work, we combine

Active Messages (AM), an alternative programming paradigm which is more suitable for

irregular computations, with traditional MPI data movement model, and propose a gen-

eralized MPI-interoperable Active Messages framework (MPI-AM). The framework allows

MPI-based applications to incrementally use AMs only when necessary, avoiding rewriting

the entire MPI-based application. Such framework integrates data movement and compu-

tation together in the programming model and MPI can coordinate the computation and

communication in a much more flexible manner. In this subtopic, we propose several strate-

gies including message streaming, buffer management and asynchronous processing, in order

to efficiently handle AMs inside MPI. We also propose subtle correctness semantics of MPI-

AM to define how AMs can work correctly with other MPI messages in the system, from

perspectives of memory consistency, concurrency, ordering and atomicity.

iii

To my parents, for their endless love and support.

iv

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER 1 INTRODUCTION . 1
1.1 Plan of Study . 3

1.1.1 Improvements to MPI Implementations for Irregular Applications . . 4
1.1.2 Improvements to MPI Standard for Data-driven Computations 4

1.2 Outline of the Thesis . 5

CHAPTER 2 BACKGROUND . 6

CHAPTER 3 TACKLING SCALABILITY CHALLENGES
IN MPI ONE-SIDED INFRASTRUCTURE . 11
3.1 Overview . 12
3.2 Survey of RDMA Capabilities on Modern Networks 14

3.2.1 Window Address Calculation . 15
3.2.2 Memory Protection Keys . 16
3.2.3 Remote Notification . 17
3.2.4 Summary of Network RDMA Capabilities 17

3.3 State-of-the-Art of MPI Implementations and Scalability Challenges 18
3.3.1 Implementation Choices for MPI RMA Operations 18
3.3.2 Window Creation . 19
3.3.3 RMA Synchronization . 23
3.3.4 Data Movement Operations . 27
3.3.5 Consolidating the State-of-the-Art . 31

3.4 Design and Implementation of Scalable MPI One-Sided Infrastructure 31
3.4.1 Window Creation . 32
3.4.2 RMA Synchronization . 35
3.4.3 Data Movement Operations . 40
3.4.4 Resource Management Strategies . 44
3.4.5 Making Efficient RMA Progress . 45
3.4.6 Trade-offs Between Scalability and Performance 46

3.5 Experimental Evaluation . 46
3.5.1 Microbenchmarks . 48
3.5.2 Data Movement Operations . 53

v

3.5.3 Evaluation with Mini-apps . 54
3.6 Related Work . 55
3.7 Conclusion . 56

CHAPTER 4 ADAPTIVE ISSUING STRATEGY
FOR MPI ONE-SIDED COMMUNICATION . 58
4.1 Overview . 59
4.2 Adaptive Strategy Design . 60

4.2.1 LOCK-UNLOCK Synchronization . 60
4.2.2 POST-START-COMPLETE-WAIT (PSCW) Synchronization 62
4.2.3 FENCE Synchronization . 63
4.2.4 Comparison with Existing Algorithms 65

4.3 Experimental Evaluation . 66
4.3.1 Latency Impact . 67
4.3.2 Overlapping Impact . 68
4.3.3 Performance Impact in Mini-Apps . 70

4.4 Related Work . 71
4.5 Conclusion . 72

CHAPTER 5 SCALABLE VIRTUAL CONNECTION INITIALIZATION 74
5.1 Overview . 74
5.2 Linear Memory Growth in Virtual Connections 75
5.3 Lazy Initialization of Virtual Connections 76
5.4 Experimental Evaluation . 77

5.4.1 Scalable Memory Use . 78
5.4.2 Performance Impact . 78
5.4.3 Application Impact . 79

5.5 Conclusion . 80

CHAPTER 6 GENERALIZED MPI-INTEROPERABLE
ACTIVE MESSAGES . 82
6.1 Overview . 83
6.2 Background and Related Work . 84
6.3 Restrictions of Accumulate-Style Active Messages 85

6.3.1 Data Access . 86
6.3.2 Message Segmentation and Temporary Buffers 88
6.3.3 Lack of Concurrency . 89
6.3.4 Interoperation with Other MPI Messages 89

6.4 Design and Implementation of Generalized MPI-Interoperable Active Mes-
sages Framework . 90
6.4.1 Data Streaming in Active Messages 90
6.4.2 Data Buffering Requirements . 91
6.4.3 Generalized Interface . 92
6.4.4 Workflow of MPI-Interoperable Active Messages 99
6.4.5 Correctness Semantics . 101

vi

6.5 Experimental Evaluation . 106
6.5.1 Microbenchmarks . 106
6.5.2 Graph 500 Benchmark . 112

6.6 Conclusion . 114

CHAPTER 7 OPTIMIZATION STRATEGIES
FOR MPI-INTEROPERABLE ACTIVE MESSAGES 116
7.1 Performance Shortcomings of MPI-Interoperable Active Messages 117

7.1.1 Synchronization Stalls in Data Buffering 117
7.1.2 Inefficiency in Data Transmission . 119

7.2 Optimization Strategies . 120
7.2.1 Efficient Data Buffering Schemes . 120
7.2.2 Improving Efficiency in Data Transmission 123

7.3 Experimental Evaluation . 129
7.3.1 Effect of Exclusive User Buffers . 129
7.3.2 Comparison between MPIX AM and MPIX AMV 134

7.4 Conclusion . 135

CHAPTER 8 ASYNCHRONOUS PROCESSING
OF MPI-INTEROPERABLE ACTIVE MESSAGES 136
8.1 Classification of Asynchronous Active Messages with MPI Runtime 138
8.2 Design and Implementation of Asynchronous MPI-Interoperable Active

Messages . 139
8.2.1 Network Solution . 140
8.2.2 Shared Memory Solution . 140
8.2.3 Thread Safety and Process Safety . 142

8.3 Experimental Evaluation . 142
8.3.1 Communication Latency . 143
8.3.2 Overlapping Effects . 144
8.3.3 Interoperability Performance . 146
8.3.4 Stencil Kernel Benchmark . 147

8.4 Conclusion . 148

CHAPTER 9 CONCLUSION . 149

REFERENCES . 152

vii

LIST OF TABLES

3.1 Different capabilities provided by modern network hardwares 17
3.2 Baseline memory usage for window metadata 22
3.3 Metadata needed in each operation state . 29
3.4 Consolidating the best of the state of the art into MPI-RMA-base 32
3.5 Comparison of metadata sharing schemes . 34
3.6 Trade-offs between scalability and performance in ScalaRMA 47

4.1 Overlapping results on breadboard . 70

5.1 Performance of selected NAS Parallel Benchmarks 80

viii

LIST OF FIGURES

2.1 Comparing one-sided and two-sided communication paradigms 8
2.2 Synchronization modes in MPI RMA interface 9

3.1 FENCE algorithms used in existing MPI implementations 24
3.2 Graph 500 benchmark results with RS-based algorithm 25
3.3 Optimization in queued locks strategy . 26
3.4 Operation states transition . 28
3.5 Fence algorithms used in ScalaRMA . 35
3.6 RMA table . 37
3.7 Speculative issuing strategy . 39
3.8 Multi-layered Design for MPI RMA operations 41
3.9 Multi-level strategy for making RMA progress 45
3.10 Memory usage of different window metadata schemes in MPI WIN CREATE . . 49
3.11 Message rate of different window metadata schemes in MPI WIN CREATE . . 50
3.12 Comparison between two FENCE algorithms in ScalaRMA (MXM) 51
3.13 Performance of piggybacking and speculative issuing strategies (MXM) . . . 53
3.14 Impact of speculatively issued operations . 54
3.15 Message rate with increasing message size, number of operations and num-

ber of processes (MXM) . 55
3.16 Experimental results of Graph 500 . 57

4.1 Adaptive FENCE . 65
4.2 Single-op results on SMP and breadboard 67
4.3 Many-ops results on SMP . 68
4.4 Many-ops results on breadboard . 69
4.5 Graph 500 results on breadboard . 71
4.6 Halo exchange results on breadboard . 71

5.1 Per process memory consumption . 78
5.2 Netpipe ping-pong performance results . 79
5.3 Per process memory consumption in Sequoia AMG benchmark 80

6.1 Prototype of AM buffer attach / detach routines 92
6.2 Prototype of AM handler . 94
6.3 Prototype of AM creation and registration routines 95
6.4 Prototype of AM trigger routine . 97

ix

6.5 Code example of AM . 100
6.6 MPI-AM workflow . 101
6.7 Communication latency and operation throughput with different numbers

of segments per AM packet . 107
6.8 Throughput: impact of system buffer size . 109
6.9 Execution time: impact of system buffer size 110
6.10 Throughput: impact of ordering . 111
6.11 Throughput: Impact of concurrency . 112
6.12 Graph 500 comparative performance results 113

7.1 Handshake operation for reserving user buffers 119
7.2 Example of attaching / detaching of AM buffers 122
7.3 Prototype of vector-based AM user-defined function 124
7.4 Prototype of vector-based AM trigger routine 126
7.5 Different strategies of origin output data layout 127
7.6 Communication latency . 130
7.7 Operation throughput for remote search . 131
7.8 Scalability performance for remote search . 132
7.9 Contention performance for remote search 133
7.10 Operation throughput of MPIX AMand MPIX AMV 134

8.1 Working scenario of asynchronous progress engine 141
8.2 Latency of single AM operation . 143
8.3 Latency of multiple AM operations . 144
8.4 Overlapping effects of AM asynchronous progress engine 145
8.5 Interoperability performance . 146
8.6 Execution time of stencil kernel benchmark 147

x

CHAPTER 1

Introduction

As we move from the current multi-petaflop machines to Exascale computing, the primary

constraint that impacts all aspects of hardware, software and design of application is the

power usage of the machine. Data movement is the main consumer of the power and the

community believes that this trend will not change. Consequently, applications and system

software are reacting by migrating from traditional regular computational models involving

regular data structures such as dense matrix to more sparse computational models involving

irregular computational and communication patterns.

Irregular computation and communication models have already gained significant impor-

tance in recent years. Such models are widely used in applications from various domains

such as bioinformatics (SWAP [1], Kiki [2]), computational chemistry (MADNESS [3] [4],

NWChem [5]), and graph algorithms in social network analysis. Newer applications in other

domains such as material science and nuclear reactor research are also looking to investigate

more irregular computational models to improve their data movement efficiency ([6] [7]).

Irregular models differ from traditional computational models in many ways. For example,

they are often organized around sparse structures such as sparse matrices or graphs rather

than dense matrices. Similarly, their data movement is often irregular and data-driven rather

than relying on a static predictable communication pattern. Furthermore, the growth rate

of data movement cost with respect to system size or problem size is typically significantly

1

higher than that of the computation cost. Given the trend towards irregular computations,

there is a large debate in the community with respect to whether traditional communica-

tion models that have been designed for more traditional communication patterns would be

suitable to irregular computation.

Message Passing Interface (MPI) [8] is the industry standard communication library for

high performance computing, with implementations available on virtually every parallel sys-

tem in the world. Despite MPI’s great success in high performance computing, whether it

can serve as a runtime system for irregular applications or not is one of the most debated

aspects in the community, especially as we move to exascale systems.

Some researchers believe that MPI can sufficiently well support higher-level programming

models and runtimes that support irregular computations. For instance, there are several

tasking models and irregular applications in the literature: ADLB [9], Scioto [10], NWChem

[5], MADNESS [3]. Other researchers, however, doubt MPI’s ability to succeed in such

environments due to several reasons:

• Scalability: MPI has traditional been viewed as a communication library suitable (or

“optimized”) for regular or structured communication patterns such as stencil compu-

tations or distributed dense matrix computations. However, as we move to irregular

communication patterns, such as those used within graph-centric applications (e.g.,

in the bioinformatics domain), researchers wonder if MPI is still a suitable runtime

system. A commonly mentioned example in the literature is the failure of MPI in

scaling to large problem sizes with the Graph 500 benchmark [11]. Specifically, most

MPI implementations run out of internal resources when scaling the Graph 500 bench-

mark on large systems due to internal resource management issues within the MPI

implementation.

• MPI communication semantics: The MPI standard provides mechanisms to

move data using several communication patterns, including two-sided (MPI SEND,

MPI RECV), collective (MPI BARRIER, MPI BCAST) and one-sided communication. Even

2

though there are different communication patterns being provided in MPI, there is still

a concern that MPI solely focuses on the mechanisms for data movement and leaves

the control of what data needs to be moved (e.g., whether it is better to fetch data

and compute locally or send data and trigger computation remotely) to a higher-level

runtime system or application. Some people’s opinion is that this is the responsibility

of high-level runtime systems and should not be handled by MPI library, whereas other

people believe that MPI could absorb a more data-driven communication style (such

as active messages) into its communication semantics.

In summary, despite the debate in the community, we do not believe that the suitability

of MPI for irregular applications is a black-or-white question. Rather, we believe that there

exists a whole spectrum of grayscale, where MPI would lie. The goal of this thesis is not

to prove or disprove either point of view, but to perform a detailed study as to where in

this spectrum MPI lies. The idea of this thesis is to influence future MPI implementations

and standards to understand the implications of irregular applications and propose what if

anything needs to change to efficiently support such applications.

1.1 Plan of Study

The thesis focuses on two pieces. The first part focuses on improving the MPI implementation

to better support irregular applications through improved scalability and performance. The

second part focuses on potential extensions to the MPI standard to be more data-driven

allowing for simultaneous migration of computation and data in an “active-messages” like

model.

3

1.1.1 Improvements to MPI Implementations for Irregular Appli-

cations

Current MPI implementations suffer from several shortcomings and challenges in the context

of irregular computations. One challenge is scalability. Irregular computation involves large

number of outgoing asynchronous operations and MPI runtime needs to maintain the states

for all of them. This can potentially cause the runtime to consume most of internal resources

and leave no resources for the application. A scalable and sustainable resource management

strategy that can maintain internal resources meanwhile not sacrificing the performance

too much is necessary. Furthermore, since one process can communicate with many other

peers concurrently in the application, the runtime has to maintain the states for all possible

communication peers which potentially can cause O(P 2) memory consumption. With the

rapid growth of the size of HPC systems in the world [12], steps must be taken to avoid

linear growth of memory consumption with respect to system scale.

1.1.2 Improvements to MPI Standard for Data-driven Computa-

tions

The second part of the thesis focuses on extending the MPI programming model to better

support the irregular applications. Traditional programming approaches that were designed

for environments where computation is regular and its cost is typically significantly larger

than the data movement cost are not well suited for irregular computation. The Active Mes-

sages (AM) model [13] is an alternative parallel programming paradigm that can potentially

bridge this gap. It allows the sender to move a small piece of data to the receiver and to

trigger computation upon arrival of the data, without the receiver explicitly receiving the

data. Such a model can be more natural to use in some, though not necessarily all, scenarios

in irregular computation. A generalized framework is needed which can combine both tradi-

tional MPI and AM capabilities in the MPI runtime, so that an application can be modified

4

incrementally to use AMs only when necessary, avoiding being rewritten entirely. Given such

a framework, interesting questions rise including: How to make AMs work correctly with

MPI infrastructure? How to optimize the performance of the framework in different applica-

tion scenarios? And since AM is working in an one-sided manner, what is the performance

impact for an asynchronous progress engine to process the incoming AMs? In this work we

propose a generalized MPI-interoperable AM (MPI-AM) framework to address these issues.

1.2 Outline of the Thesis

The rest of this thesis is organized as follows: Chapter 2 presents the related background

this thesis relies on; Chapter 3, Chapter 4 and Chapter 5 describe the problems in MPI

runtime with respect to scalability and performance, and corresponding solutions; Chapter

6, Chapter 7 and Chapter 8 present the work on combining MPI with Active Messages model

and discusses critical issues raised including message streaming and buffering, correctness

semantics, performance optimization and asynchronous processing. Chapter 9 presents the

conclusion of this thesis.

5

CHAPTER 2

Background

Because the work described in this thesis is largely relying on MPI communication paradigms,

with an emphasis on the semantics of MPI one-sided communication, in this section we

provide related background on MPI communication paradigms so that the reader can better

understand the semantics MPI standard provides.

MPI standard provides various communication paradigms for upper layer applications

and runtimes to use, including two-sided communication (e.g. MPI SEND and MPI RECV),

collective communication (e.g. MPI BARRIER, MPI BCAST and MPI REDUCE), and one-sided

communication (e.g. MPI PUT and MPI GET).

In MPI two-sided communication, both sender and receiver are required to explicitly par-

ticipate in the communication: the sender invokes an MPI SEND call, and the receiver invokes

a corresponding MPI RECV call. Only when MPI SEND is completed on the sender, the data

is safely sent out from the sender’s buffer; similarly, only when the matching MPI RECV is

completed on the receiver, the data is safely received in the receiver’s buffer. Collective com-

munication coordinates date movement and synchronization among a group of processes in a

communicator. Even though such communication can be implemented using two-sided calls,

MPI provides convenient interfaces for user to directly perform such commonly used commu-

nication patterns (e.g. MPI BARRIER, MPI BCAST, MPI REDUCE) and MPI implementations

can implement those communication patterns using optimized collective algorithms.

6

Both two-sided and collective communication paradigm have been supported since MPI-1

standard. They combine data movement and synchronization together, and the programmer

is clear about when communication is finished and when data in sender’s and receiver’s buffers

can be safely accessed. Even though theoretically every MPI application can be implemented

by using two-sided communication, in practice such an implementation brings significant

overhead. The two-sided communication requires that the parameters in MPI SEND and

MPI RECV to be matched with each other. Consequently, the programmer must plan for data

layout and communication pattern on both the sender side and receiver side—a significant

inconvenience in writing the application where data access patterns are not determined but

dynamically change throughout the execution, resulting in complex code structure. On the

other hand, the receiver must explicitly poll for potential incoming messages, and the runtime

system must guarantee the ordering of two-sided messages, which incurs significant overhead

to the application.

In order to overcome these issues, MPI-2 standard added a new communication paradigm,

called one-sided communication, also known as remote memory access, or RMA. One-sided

communication is a message passing paradigm that allows one process, the “origin” process

(i.e., the process who initializes one-sided operations), to specify all communication param-

eters, for both the local side and the remote side; the “target” process (i.e., the process who

is remotely accessed by origin process) does not need to explicitly make any call in order

to processing incoming one-sided operations. Typical example of communication calls in-

cludes MPI PUT and MPI GET. One-sided communication was extended in MPI-3 with richer

functionality and better accommodation with the latest hardware.

Compared with two-sided communication, one-sided communication decouples data move-

ment and synchronization. The runtime system is able to move the data without requiring

the remote process to synchronize, and the delay on the receiver process does not effect the

process on the sender, as illustrated in Figure 2.1. This capability is achieved by having

every process expose a part of its memory to the other processes from the beginning. The

7

sender process can directly read from or write to this memory, and processes involved in the

communication define the synchronization points before one-sided communication begins

and after it ends.

Sender Receiver

MPI_SEND

MPI_RECV

D
E
L
A
Y

Delay
happened
on receiver

causes
sender
delayed

(a) Two-sided communication

Origin Target

MPI_PUT D
E
L
A
Y

Delay
happened
on target
does not

affect origin

MPI_GET

(b) One-sided communication

Figure 2.1: Comparing one-sided and two-sided communication paradigms

In order to allow the origin process to directly access the data on the target side,

the target process needs to first expose a memory region, called a “window”, before-

hand, which is remotely accessible by all other processes. A window may be created

in four ways: MPI WIN CREATE, MPI WIN ALLOCATE, MPI WIN ALLOCATE SHARED, and

MPI WIN CREATE DYNAMIC. MPI WIN CREATE requires the user to pass an existing memory

region to the function call and creates a window in that region; MPI WIN ALLOCATE allocates

a memory region by itself and creates a window in it; MPI WIN ALLOCATE SHARED is similar

to MPI WIN ALLOCATE except that it is used by processes within the same node and creates

a window in a shared-memory region among those processes; MPI WIN CREATE DYNAMIC

creates an empty window and allows the user to dynamically attach memory buffers to the

window afterwards.

After a remote accessible window has been defined, the origin process needs to initialize a

one-sided communication “epoch” in which the one-sided communication occurs. The epoch

defines when one-sided operations can be issued and when modifications by one-sided opera-

tions are completed on the origin and target processes. Two synchronization modes—“Active

Target (AT)” mode and “Passive Target (PT)” mode—are defined in the MPI standard and

must be called at the beginning and end of a one-sided communication epoch. Figure 2.2

8

Win_fence Win_fence Win_fence

Win_fence Win_fence Win_fence

Win_fence Win_fence Win_fence

Rank 0 Rank 1 Rank 2

Put

ACC

Put

Put ACC

Get

(a) FENCE (AT mode)

Win_start
Win_post

Win_complete
Win_wait

Rank 0

Put

Rank 1

CAS

(b) PSCW (AT mode)

Win_lock

Win_unlock

Rank 0

Put

Rank 1

Get
Win_flush

Win_flush_local

(c) LOCK-UNLOCK
(PT mode)

Win_lock_all

Win_unlock_all

Rank 0 Rank 1 Rank 2

Put
Get

Win_flush_all
FOP

GACC

Win_flush_local_all

(d) LOCK ALL-UNLOCK ALL
(PT mode)

Figure 2.2: Synchronization modes in MPI RMA interface

illustrates how those synchronization modes work. The Active Target mode requires that

both the origin and the target processes invoke the synchronization calls. MPI offers two

types of Active Target synchronization: FENCE and POST-START-COMPLETE-WAIT (PSCW).

The Passive Target mode only requires the origin process to make the synchronization call,

which also contains two types: LOCK-UNLOCK, and LOCK ALL-UNLOCK ALL. Note that there

are two types of locks defined in the PT mode: (a) MPI LOCK SHARED: multiple process can

acquire a lock on the same target concurrently; (b) MPI LOCK EXCLUSIVE: only one process

can acquire a lock on the target process.

MPI defines six types of data movement operations: MPI PUT,

MPI GET, MPI ACCUMULATE, MPI GET ACCUMULATE, MPI FETCH AND OP, and

MPI COMPARE AND SWAP. MPI PUT transfers the data from the origin process to the

target window. MPI GET transfers the data from the target window to the origin pro-

9

cess. MPI ACCUMULATE combines the data from the origin process with the data on

the target window by triggering certain predefined computations on the target process.

MPI GET ACCUMULATE is similar to MPI ACCUMULATE except that it returns the original

value of the target data. MPI FETCH AND OP is a special case of MPI GET ACCUMULATE

in which it accumulates only one basic element from the origin buffer to the target buffer.

In this thesis we call MPI ACCUMULATE, MPI GET ACCUMULATE, and MPI FETCH AND OP

as “MPI ACCUMULATE-like operations”, since all of them involves an computation to accu-

mulate origin data and data on the target side. MPI COMPARE AND SWAP also moves one

basic element from the origin buffer to the target buffer. However, it moves two elements:

the origin element and the compare element. It first compares the compare element with

the target element; if they are identical, it replaces the target element with origin element

and returns the original target value. MPI GET ACCUMULATE, MPI FETCH AND OP and

MPI COMPARE AND SWAP perform a “read-modify-write” style of one-sided operation

between the origin and target processes.

10

CHAPTER 3

Tackling Scalability Challenges

in MPI One-Sided Infrastructure

Irregular applications often involve massive outstanding asynchronous messages, in which

each process can potentially communicate with large amount of peers. Such characteristics

make the scalability and performance of handling massive asynchronous communication in

MPI runtime to be crucial for the performance of the irregular applications. In this chapter,

we describe the challenges existing in the current MPI runtime, with respect to scalability

and performance in two aspects: MPI one-sided communication and initialization of virtual

connection objects. We propose corresponding solutions to make the MPI runtime be capable

of addressing those challenges in order to efficiently support irregular applications on large

scale systems.

MPI one-sided communication, also known as Remote Memory Access (RMA), is becoming

increasingly popular in many applications particular those that rely on irregular communi-

cation patterns. One-sided communication provides a different execution model, compared

to traditional two-sided or group communication, which is better suited for some classes of

applications. However, current implementations of MPI one-sided communication are noto-

rious for their inability to scale to large systems or problem sizes. In this section, we first

present a thorough study of various MPI one-sided communication implementations, includ-

ing their strengths and shortcomings. Next, we present a new MPI one-sided communication

11

system, called ScalaRMA, that addresses the scalability problems of these implementations

and provides a highly scalable MPI one-sided communication runtime. The driving goal

of ScalaRMA is to achieve perfect scalability with respect to constant maximum resource

usage, irrespective of problem or system size. We present our investigation and show that

doing so with little to no performance degradation is possible in most, but not all, cases.

In cases where this is possible, we present a detailed analysis of the workings of ScalaRMA,

including a thorough performance evaluation and profiling information internal to the MPI

implementation. In cases where this is not possible, we present aspects within the MPI-3

standard and / or the network hardware implementation that make this challenging.

3.1 Overview

The MPI Forum introduced one-sided or remote memory access (RMA) communication, as

an alternative to the traditional two-sided and group communication operations, in MPI-2.

In MPI-3 [8], the RMA capabilities of MPI went through a significant revamp leading to

newer, cleaner, and more performance-capable RMA semantics. In the RMA model, one

process (i.e., the origin) can directly and implicitly access the memory on another process

(i.e., the target) without requiring any explicit communication calls from the target. Such a

model provides a different execution paradigm than traditional two-sided or group commu-

nication, making it an attractive alternative for some applications.

In the recent past, several applications, particularly those with irregular communication

patterns, have started investigating MPI RMA as an alternative to their existing usage of

MPI. Such a move is motivated primarily by the fact that MPI RMA does not require pro-

cesses to be “cooperative”; that is, the origin does not need to explicitly match a call on

the target. This approach improves the ease of writing applications especially when commu-

nication is irregular and data-driven, because the programmer no longer needs to carefully

plan the communication pattern. For example, in NWChem [5], a large quantum chemistry

12

application, massive asynchronous messages need to be communicated and a process typi-

cally does not know whom to receive the message from. Thus, it uses RMA to implement a

model where each process can dynamically fetch data to local memory, compute, and write

the computed output to a target remote memory region.

Despite its growing prominence, current implementations of MPI RMA are notorious for

their inability to scale to large systems or problem sizes. A commonly mentioned example in

the literature is the failure of MPI to scale to large problem or system sizes with the Graph

500 benchmark [11]. Specifically, most MPI implementations run out of internal resources

when scaling Graph 500 to large problem or system sizes. Irregular communication, such as

that evidenced in Graph 500, involves a large number of outgoing asynchronous operations,

and the MPI runtime needs to maintain the state of each one of them. This requirement can

potentially cause the runtime system to consume large amounts of internal resources and

leave no resources for the application. Clearly needed are scalable and sustainable resource

management strategies that can manage internal resources. Similarly, since each process can

communicate with many other peers in the application, the runtime has to maintain state

for all possible communication peers, a situation that potentially can cause O(P) memory

consumption.

While significant research has been done on improving MPI RMA, such work is fragmented

over a number of different MPI implementations. Such fragmentation makes it hard to create

a baseline of comparison for additional improvements that we will propose in this section.

Therefore, before we discuss any new research contributions of this section, we first present a

thorough study of various MPI RMA implementations. In particular, we survey the strengths

and shortcomings of these implementations and consolidate the best of these capabilities

into a common “state-of-the-art” baseline MPI implementation. Next, we present a new

highly scalable MPI RMA implementation, called ScalaRMA, that addresses the scalability

problems of these implementations. Our experimental evaluation compares ScalaRMA with

the consolidated baseline MPI implementation.

13

The primary objective of ScalaRMA is to achieve perfect scalability with respect to con-

stant maximum resource usage, irrespective of problem or system size. Through the course

of our investigation, however, we identified that doing so with little to no performance degra-

dation is possible in most, but not all, cases. In cases where such perfect scalability is not

possible, we present aspects within the MPI standard and / or the network hardware im-

plementation that make achieving this goal challenging. We also propose potential future

enhancements to network hardware to alleviate some of these issues.

3.2 Survey of RDMA Capabilities on Modern Net-

works

Remote direct memory access (RDMA) for network hardware is a common and significant

feature occurred on most modern network architectures today. However, each network pro-

vides these capabilities in a slightly different manner, making it important for upper layer

runtime to understand those differences and design suitable algorithms for each network. In

this section, we present a survey of RDMA capabilities on six different networks: Mellanox

InfiniBand [14] [15], Portals-4 on Bull BXI [16] [17], the Tofu network architecture [18], the

Cray Aries [19], the IBM Blue Gene/Q network (BG/Q) [20] and RDMA over Converged

Ethernet (RoCE) [21]. For Mellanox InfiniBand, our survey is based on the ConnectX-4

hardware. Portals-4 is technically not a hardware specification but an API specification,

and currently no hardware implements it. However, several network hardware implementa-

tions of Portals-4 have been announced, such as the BXI interconnect from Bull. Our survey

is based on the available open literature on BXI. The Tofu network architecture is based on

Fujitsu’s K computer and the follow-on Fujitsu FX100 computer [22]: these are two separate

generations of the Tofu network, for the purposes of this survey we consider them as the

same. For Cray Aries, our survey is based on the Cray XC30 system used on NERSC Edison.

BG/Q is the third generation in the IBM Blue Gene line of massively parallel supercomput-

14

ers and our survey on IBM network is based on it. RoCE is a network protocol that allows

RDMA over an Ethernet network; our survey is based on the RoCE version 2 protocol. Of

the various capabilities hardware capabilities provided by these networks, three out of them

are of particular interest to us in this work of achieving scalability: window address calcu-

lation, memory protection keys, and remote notification. In the following sections, we will

introduce each of them.

3.2.1 Window Address Calculation

The calculation of window address in communication operations of MPI RMA are often based

on a model of “scaled offset”. This means that the user on the origin side provides an offset

within the window buffer on the target side and a “scaling factor” (or called displacement

unit) that determines where the data needs to be written to or read from. Note that the offset

is in scaling factors. Such a model, however, does not directly map to what current network

hardwares provide. Some networks, such as Mellanox InfiniBand, accept only an absolute

address to which data can be written to or read from: we classify them as “HW-addr”-based

networks. In such cases, the MPI implementation needs to maintain the associated start

or base address and scaling factor for each target process and translate the user-provided

information to what the network hardware expects (absolute address). In order to do this

translation, the MPI implementation needs to maintain O(P) base addresses and scaling

unit sizes.

Other networks, however, provide a richer model where the MPI implementation can di-

rectly provide the offset (in bytes) to the network hardware during an RDMA operation:

we classify them as “HW-offset”-based networks. For such networks, MPI implementations

no longer have to maintain an O(P) data structure for the base addresses but do need to

maintain an O(P) data structure for the scaling factors. Fortunately, in practice, most ap-

plications provide the same scaling factor on all processes, thus requiring only O(1) memory.

Portals-4 is an example of such networks.

15

We can envision a network architecture that could allow the MPI implementation to di-

rectly provide the offset in units of the scaling factor, even though such hardware does not

exist today. We classify such future network architecture as “HW-scalad-offset”-based net-

works. Given such network hardware, the MPI implementation no longer needs to maintain

any O(P) data structure for window address calculation at all. Such architecture is listed

here because of completeness, but we do not propose any new techniques based on it in this

work.

3.2.2 Memory Protection Keys

Occurrence of RDMA in network architecture allows multiple processes to directly access

the memory region on the target side. While it is a very convenient feature for the upper

layer runtime and application to use, it also brings a security concern. Considering secure

HPC environments where multiple users may share the same supercomputer or the non-

HPC environments where multiple users may share the same node, in those cases, protection

between users is required. In order to guarantee the security among different users, some

networks provide a scheme where the target side generates a protection key for its own

memory, and only processes that have access to the corresponding protection key can access

the memory region of that target.

Mellanox Infiniband is an typical example of such kind of networks, where a memory

protection key, called an “remote key (rkey)”, is required for the origin side in order to

access a location on memory region with RDMA on target side. Furthermore, this key is

asymmetric. This means that each process may generate a different key, therefore the origin

side has to store a key for each potential target, which results in potential O(P) memory

usage. Other networks, like Tofu, requires no keys to access the memory region on target.

Even though it is scalable, such network requires separate security protection scheme against

unauthorized accesses.

16

3.2.3 Remote Notification

As we introduced before, RDMA operations are performed by the network hardware on target

memory region without any involvement of the processor on target side. While this model

is true for all networks, their notification mechanism is different with each other. Some

networks, such as Mellanox InfiniBand, Cray Aries and IBM BG/Q, provide origin-side

notification for both reading operations (GET) and writing operations (PUT), but target-

side notification only for writing operations (PUT). Other networks, such as Portals-4 and

Tofu, provide both origin-side notification and target-side notification for all kinds of RDMA

operations.

This subtle difference in remote notification has a significant impact on how one MPI im-

plementation would design synchronization algorithms for MPI RMA runtime. Specifically,

if the network hardware provides target-side notification, the MPI implementation can de-

sign an algorithm where the target side can count the number of operations that are issued

on it, therefore the origin side can avoid wait for remote completion for issued operations.

More details of such designs are described in Section 3.4.

3.2.4 Summary of Network RDMA Capabilities

Table 3.1 summarizes the different hardware capabilities provided by each of the networks

surveyed, from perspectives of window address calculation, memory protection keys and

remote notification.

Table 3.1: Different capabilities provided by modern network hardwares

Network Window Address
Calculation

Protection Keys Remote
Notification

InfiniBand HW-addr Yes PUT

Portals-4 HW-offset No PUT / GET

Tofu HW-addr No PUT / GET

IBM BG/Q HW-offset No PUT

Cray Aries HW-offset No PUT

RoCE HW-addr Yes PUT

17

3.3 State-of-the-Art of MPI Implementations and

Scalability Challenges

Most MPI implementations have several areas, in aspects of window creation, synchroniza-

tion and communication, that use nonscalable data structures, and there is no upper bound

for the internal resources consumed by those data structures. This makes MPI runtime tend

to use up all internal resources when problem size or system scale is large, not say leaving

any resources for the application. In those cases, the application even cannot finish running.

MPI runtime needs to be carefully investigated and re-designed in order to guarantee the

sustainable and scalable execution of the application, meanwhile avoids sacrificing the perfor-

mance too much. Here we describe the scalability challenges we observed when investigating

existing MPI implementations.

Existing MPI implementations have several scalability limitations in their RMA infras-

tructure. Some of these limitations are common in all implementations while some of them

are not the common issue but exist in one or two MPI implementations. In this section, we

first introduce different implementation choices for MPI RMA operations, and then we in-

vestigate three existing open-source MPI implementations: MPICH (3.1.4) [23], Open MPI

(1.10.2) [24], and MVAPICH (2.2b) [25]. The goal of this section is to identify the best

choices of the different capabilities needed within MPI RMA and to consolidate them into

a common “state-of-the-art” baseline of MPI implementation. The baseline will be referred

to as “MPI-RMA-base” in the rest of this thesis.

3.3.1 Implementation Choices for MPI RMA Operations

Two implementation choices exist for MPI RMA operations in existing MPI RMA imple-

mentations: hardware-based (HW-based) operation, which is implemented by directly us-

ing hardware RDMA functionality, and active-message-based (AM-based) operation [13], in

18

which a software handler is invoked on the target process to execute the incoming operation.

• HW-based operation: it typically can achieve higher performance than do AM-based

implementation but are restrictive. Most networks implement simple RDMA commu-

nication (such as writing or reading contiguous data) in hardware. But more complex

communication such as that involving accumulating noncontiguous data segments is

often not implemented in hardware.

• AM-based operation: it works as follows. An origin process issues a one-sided

operation using a nonblocking SEND operation; a set of message handlers is predefined

on the target process; and there is a receiving progress on the target process to process

incoming messages (progress is triggered whenever the target process makes an MPI

call). When an one-sided operation arrives, a corresponding message handler will be

triggered in the receiving progress to process that operation.

Since HW-based operations is restrictive, most MPI implementations use a combination of

HW-based and AM-based implementations where an operation uses hardware RDMA when

available and otherwise falls back to AMs. We note that RMA between processes on the

same node is often implemented by using direct memory accesses to a shared-memory region.

We treat such operations as HW-based operations.

3.3.2 Window Creation

In MPI RMA interface, each RMA window is created with its own base address, window

size, scaling factor size, and window handle. In MPI one-sided communication, the origin

process needs to quickly access such information about remote processes in order to issue

data movement operations. Most MPI implementations locally stores those information for

all ranks on the window which requires O(P) memory consumption per window on each

process.

19

Window creation is the “setup phase” where memory region on target processes are

made available for remote accesses. Like introduced in Chapter 2, MPI provides four ways

of creating a window: MPI WIN CREATE, MPI WIN ALLOCATE, MPI WIN CREATE DYNAMIC

and MPI WIN ALLOCATE SHARED. In each of these window creation models except for

MPI WIN CREATE DYNAMIC, the user needs to specify a scaling factor (i.e., displacement

unit) and window base address (or window creation call generates a base address by itself),

which is used to calculate the location of the data an RMA operation would access. Window

creation calls are collective. During this phase, the MPI implementation needs to exchange

necessary metadata information between different processes, allowing them to access mem-

ory region among each other. This metadata includes user-specified information such as the

start address of the target buffer on the window and size of scaling factor, as well as network-

hardware-specific metadata such as memory protection keys, as introduced in Section 3.2.2.

The amount of memory required for storing such metadata information is the focus of this

section.

As mentioned in Section 3.3.1, RMA operations are typically implemented as a combina-

tion of HW-based and AM-based operations. These different kinds of operations have unique

characteristics as to what metadata they require. Specifically, AM-based operations require

neither the user-specified nor the hardware-specific metadata for the target at the origin

process. The origin process can simply send the origin-side data in the active message, while

the active message handler that executes on the target process can look up the target-specific

information on the target side. Open MPI, for example, implements AM-based operations

in this way, thus using O(1) memory for the associated metadata. MPICH and MVAPICH,

on the other hand, store the window base address for each target process even for AM-based

communication, thus using O(P) memory for the associated metadata. We consider the

Open MPI implementation as the state-of-the-art in this context, and adopt that model for

the consolidated MPI-RMA-base implementation.

HW-based operations are more efficient than AM-based operations but can require more

20

metadata to be kept track of. Specifically, if the network hardware requires “HW-addr”-based

communication (like Mellanox InfiniBand), the MPI implementation needs to keep track of

the window base addresses of each of the target processes, thus requiring O(P) storage for

the corresponding metadata. Similarly, if the network hardware requires an asymmetric

memory protection key for each target process (like Mellanox InfiniBand), that needs to be

kept track of at the origin as well, again requiring O(P) storage for the metadata. All three

MPI implementations that we surveyed (Open MPI, MPICH, and MVAPICH) use O(P)

memory in this case, which we adopt for the consolidated MPI-RMA-base implementation.

Such metadata, however, is not required on network hardware that requires “HW-offset”-

based communication (e.g., Portals-4). For such networks, the Open MPI implementation

uses an O(1) storage for the metadata. However, the MPICH implementation stores the

window base address for each target process, thus effectively ignoring the “HW-offset” ca-

pability of the network and using an O(P) storage for the metadata. We consider the Open

MPI implementation as the state of the art in this context, and we adopt that model for the

consolidated MPI-RMA-base implementation.

With respect to the user-provided metadata, if the user specifies different size of scaling

factor for each process, such information also needs to be kept track of at the origin process

as well, thus requiring O(P) storage for the metadata. All three MPI implementations that

we surveyed (Open MPI, MPICH, and MVAPICH) use O(P) memory in this case, which we

adopt for the consolidated MPI-RMA-base implementation.

These memory requirements are summarized in Table 3.2. AM-based operations should

only require O(1) memory since they do not need the origin to keep track of the user-specified

or hardware-specific metadata. On the other hand, for HW-based operations, the amount

of metadata required depends heavily on the capabilities of the network. Networks that

require asymmetric memory protection keys require O(P) memory. Networks that require

“HW-addr” based communication only require O(1) memory when the base address of the

target window can be looked up efficiently (e.g., if the allocation is symmetric where all

21

Table 3.2: Baseline memory usage for window metadata

Window creation calls
AM-
based

operation

HW-based operation
Asymmetric

keys
Symmetric or no keys
HW-
offset

HW-
addr

HW-
scaled-
offset

MPI WIN CREATE DYNAMIC

O(1) O(P)

O(1)

O(1)

MPI WIN ALLOCATE SHARED O(P *)
MPI WIN CREATE + same

scaling unit size
O(1) O(P)

MPI WIN CREATE +
different scaling unit size

O(P)

MPI WIN ALLOCATE +
same scaling unit size

O(1)

MPI WIN ALLOCATE +
different scaling unit size

O(P)

* P is smaller than or equal to the number of processes within one node. We consider
it as constant memory usage.

targets have the same base address); otherwise, their memory usage would go up to O(P).

As discussed in Section 3.2, the MPI implementation and network interface need to trans-

late the offset in scaling units in one-sided operations to an absolute address on the target

window. This step requires either the MPI runtime or the network interface to use O(P)

memory in order to maintain the necessary window metadata: namely, the base addresses

and sizes of scaling units. In some situations, however, such memory consumption can be

completely avoided in the MPI runtime. First, for hardware that is HW-scaled-offset (as

discussed in Section 3.2), the runtime system does not need to maintain any window meta-

data because no translation is required. Second, if all operations are AM-based operations,

the runtime system does not need to maintain any metadata because the origin process can

send the offset in scaling units to the target and the target can calculate the absolute ad-

dress by itself. Third, both MPI WIN CREATE DYNAMIC and MPI WIN ALLOCATE SHARED

use constant memory for window metadata.

When these conditions are not satisfied, the runtime system needs to maintain window

metadata for all other processes. Nevertheless, in some specific situations, the runtime sys-

22

tem still can save O(P) memory usage. Specifically, it does not need to always maintain

base addresses. In the case of MPI WIN CREATE, either the runtime system or the hardware

network needs to maintain base addresses in order to calculate absolute addresses. For the

HW-offset network, which can maintain them by itself and accept offset in bytes as input

argument, the runtime system does not need to maintain base addresses at all. When a

window is created by MPI WIN ALLOCATE, memory usage of base addresses can be com-

pletely avoided by using a “symmetric allocation” strategy, which can generate the same

base addresses on all processes.

3.3.3 RMA Synchronization

In this section, we describe the synchronization algorithms used in existing MPI implemen-

tations and scalability challenges in different algorithms.

Active Target Algorithms. We first discuss algorithms used in Active Target mode. The

MPI-3 standard states that the return of the epoch-ending routine MPI WIN FENCE on the

origin process guarantees that all operations issued are locally completed, whereas its return

on the target process guarantees that all operations targeting that process are completed.

Two algorithms are used in MPICH, Open MPI, and MVAPICH: the BARRIER-based

algorithm and the REDUCE SCATTER-based (RS-based) algorithm.

In the BARRIER-based algorithm (Figure 3.1a), starting MPI WIN FENCE performs a BAR-

RIER among all processes on the window; all posted operations are issued immediately (“eager

issuing”); the MPI WIN FENCE waits for remote completion for all issued operations and per-

forms another BARRIER at the end. This algorithm is scalable. However, it imposes a stricter

synchronization than what the MPI standard requires: it forces a starting call to be blocking,

which is not required by the MPI-3 standard, and origin processes have to wait for remote

completion, a requirement that is stricter than the local completion required in the MPI-3

standard. Existing MPI implementations use this algorithm for HW-based operations.

23

Each process

Barrier

Wait for
remote

completion

Barrier

OP (issued)

OP (issued)

Starting
Win_fence

Ending
Win_fence

(a) BARRIER-based algorithm

Each process

Wait for my AT
counter to be 0

Issue all OPs and decr
targets’ AT counter

Reduce_scatter

Wait for local
completion

OP (queued)

OP (queued)

Ending
Win_fence

Starting
Win_fence

(b) RS-based algorithm

Figure 3.1: FENCE algorithms used in existing MPI implementations

In the RS-based algorithm (Figure 3.1b), starting MPI WIN FENCE does nothing and re-

turns immediately; all posted operations are queued in the runtime system (“lazy issuing”);

MPI WIN FENCE first performs a REDUCE SCATTER to get the number of processes that will

issue operations to it and initializes a local Active Target (AT) counter with that value.

Next it issues all pending operations, in which the last operation to each target decrements

the target’s AT counter; then it waits for local completion of all issued operations and the

local AT counter to be 0, which means all operations targeting it have been completed.

This algorithm implements exact semantics as required by the MPI-3 standard and does

not have extra synchronization overhead. However, it has two disadvantages. First, a RE-

DUCE SCATTER call requires a O(P) data structure to be used. Second, since there is no

synchronization at the beginning and all operations are queued until the end, the runtime

system has to maintain an unlimited amount of operation metadata (issuing parameters).

Existing MPI implementations use this algorithm for AM-based operations. If the imple-

mentation can utilize the remote side notification feature from hardware, this algorithm also

can be used with HW-based operations.

24

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

2 4 8 16

32

64

12
8

25
6

51
2

10
24

20

48

TE
P

S

#procs

mpich-3.1.4

(a) Strong scaling
(problem size: 222)

0.0E+00
1.0E+05
2.0E+05
3.0E+05
4.0E+05
5.0E+05
6.0E+05
7.0E+05

2 4 8 16

32

64

12
8

25
6

51
2

10
24

20

48

TE
P

S

#procs

mpich-3.1.4

(b) Weak scaling
(problem size: 219 to 229)

Figure 3.2: Graph 500 benchmark results
with RS-based algorithm

Figure 3.2 shows examples of running the Graph 500 benchmark with the RS-based

algorithm. The benchmark is broken when the runtime system tries to maintain too much

operation metadata.

Passive Target Synchronization. In this section, we discuss the algorithms used

in Passive Target mode, including maintaining lock state correctly in LOCK-UNLOCK and

LOCK ALL-UNLOCK ALL and managing concurrent passive lock.

In Passive Target (PT) mode, the MPI runtime system needs to maintain a “target object”

for each target to store two kinds of state: a flag indicating whether MPI MODE NOCHECK is

set and an error-checking flag to prevent issuing two concurrent locks to the same target. On

the other hand, if MPI WIN LOCK or MPI WIN LOCK ALL is implemented as a nonblocking

call, a target object is also needed to store state indicating whether a lock is granted. Such

target objects require O(P) memory in the worst case.

Several processes may try to acquire a lock on the same target simultaneously, which has

already been granted exclusively to someone else. In such a case, those processes have to wait

for the lock to be released and then compete for that lock. Open MPI uses a “network polling”

strategy for HW-based implementations. In MPI WIN LOCK the origin process acquires a

lock by repeatedly checking a memory location on the target process by issuing RDMA

25

operations (COMPARE AND SWAP) until the lock is granted; in MPI WIN UNLOCK the origin

releases the lock by writing to that memory location using an RDMA PUT. This strategy

generates considerable network traffic in the blocking call MPI WIN LOCK, and it cannot

guarantee fairness among all competitors. On the other hand, MPICH and MVAPICH use

a “queued locks” strategy. Each process issues a lock query message to a target process in

MPI WIN LOCK; on that target process, a lock will be granted to the query that arrives first,

whereas all other unsatisfied lock queries are queued up; when the current lock is released,

the target process grants the lock to the next query in the queue. This strategy involves no

extra traffic because each competitor issues only one message to the target, and it guarantees

fairness among all competitors. However, there is no upper bound on how many lock queries

will be queued on the target; in the worst case, it can be O(P).

Two optimization are available with the queued locks strategy, as shown in Figure 3.3.

One is “piggybacking locks (PB)”: the origin merges the lock query with the first operation

and issues it. Another is “speculative issuing (SI)”: the origin speculatively issues the first

operation without receiving acknowledgment of a granted lock; if the lock is not granted but

is queued on the target, that operation is queued on the target also until the corresponding

lock is granted. Queuing of speculative operations also leads to unlimited resource usage.

lock ACK

lock query

origin target

op1

lock

op1
op2

op3

op2

op3

… …

(a) No optimization

lock query + op1

origin target

op1

lock

op2

op3
op2

op3

… …

lock ACK

(b) PB optimization

lock query

lock ACK

origin target

op1

lock

op2

op3

op2

op3

… …

op1

(c) SI optimization

Figure 3.3: Optimization in queued locks strategy

26

3.3.4 Data Movement Operations

In this section, we first defines five states of RMA operation, then we describe the strategies

used to issue HW-based operations and AM-based operations in existing MPI implementa-

tions and scalability challenges.

Operation States. After an RMA operation is posted on the origin, it can be in

five states. The initial state is “not issued”, in which synchronization has not been finished,

operation cannot be issued, and the runtime system must maintain issuing parameters

for that operation, including buffer address, count, datatype, and computation type

(MPI ACCUMULATE-like operations). When synchronization is finished, the runtime system

can start to issue that operation. For a large MPI ACCUMULATE-like operation, MPI

implementations may stream it into multiple smaller units and issue them out one by one;

in such cases, the operation state is switched to “partially issued”. For units that have not

been issued out, the runtime system needs to maintain issuing parameters; for units that

have been issued out, it needs to maintain the metadata required for detecting local and

remote completion. When the entire operation is issued out, the operation state is switched

to “fully issued”. In such cases, the runtime system no longer needs to maintain any issuing

parameters, but it needs to maintain the metadata for local and remote completion. When

local completion is detected—for example, data is completely issued out from the origin

buffer in MPI PUT—the operation state is switched to “locally completed”. When remote

completion is detected—for example, the origin process receives a notification from the

target that all data in MPI PUT has arrived on the target—the operation state is switched to

“remotely completed”, and the runtime system no longer needs to maintain any metadata

for that operation. The state transition is shown in Figure 3.4.

As shown in Table 3.3, it is clear that runtime always needs to maintain metadata for

every operation except for the final state. Whenever the operation state is changed, some

27

not
issued

is it a
streamed

OP?

partially
issued

fully issued but
not locally
completed

is it a
writing
OP?

locally
completed but
not remotely
completed

locally
completed and

remotely
completed

synchronization
is finished

YES NO

all units
are issued

local completion
detected

YE
S

NO

remote completion
detected

Figure 3.4: Operation states transition

metadata is no longer needed and can be dropped, but some still needs to be maintained by

the runtime. Because there is no upper bound on how many operations will be posted in an

application, the memory consumption of metadata can be very large and is likely to use up

all internal resources of MPI runtime. A proper resource management strategy is required

to keep the memory usage for operation metadata at a constant level.

Operation Issuing Strategies. In the irregular computation, one process usually

issues large number of asynchronous operations. If those operations are not issued out

by the runtime, or are issued but not completed immediately, the MPI runtime needs to

maintain the states for them.

There are two strategies of issuing asynchronous operations in MPI runtime: one is de-

28

Table 3.3: Metadata needed in each operation state

Operation
states

Metadata
Issuing

parameters
Metadata for

local completion
Metadata for

remote
completion

Not issued ! % %

Partially
issued

! ! !

Fully issued % ! !

Locally
completed

% % !

Remotely
completed

% % %

laying issuing till the ending synchronization, in which case the runtime can save synchro-

nization overhead by piggybacking synchronization message with RMA operations, and does

optimization of coalescing operations. Another strategy, which is more naive with the RDMA

operations, is to issue out the operation as soon as possible. Most current MPI implemen-

tations choose the first way to issue the RMA operations, which potentially causes large

number of operations to be maintained in the runtime simultaneously.

Another issues is that, currently most MPI implementations implement RMA operations

using software method, which essentially use SEND / RECV underlying to implement func-

tionality of RMA. This enforces the MPI runtime to take charge of all outgoing operations

and maintain the states of them until they are completed. Similar with the problem of

issuing strategy, since there are no upper bound for how many operations are going to be

issued in the application, the internal resources are very easy to be used up. When MPI

is running on top of the hardware which provides the one-sided capability, MPI runtime

should offload the handling of RMA operations to the hardware as much as possible and

let the hardware to detect the completion state, releasing itself from the responsibility of

maintaining all operations internally.

In Section 3.3.3, we mentioned two strategies for issuing operations in FENCE algorithms:

29

eager issuing and delayed issuing. These two strategies are used in other synchroniza-

tions [26] also. The eager issuing strategy issues every operation as soon as possible and

does not need the runtime to maintain issuing parameters for each operation; however, it

requires both starting and ending synchronization calls to be blocking. Lazy issuing stores

issuing parameters for each operation in an “operation object” and queues up all operation

objects in the runtime system until an ending call. By doing so, synchronization in the

starting call can be avoided; but it can cause serious problem in memory usage because

the number of queued operation objects can potentially use up all internal resources when

the problem size is large. Existing MPI implementations use eager issuing for HW-based

operations and delayed issuing for AM-based operations.

Metadata for Local and Remote Completion. As discussed above, after an

RMA operation is completely issued out, the runtime system or hardware needs to maintain

metadata in order to detect the local and remote completion for that operation. For

HW-based operations, such metadata is maintained by hardware, and the runtime system

does not need to care about it. For AM-based operations, the MPI runtime needs to use a

“request object” to keep track of issued but incomplete operations. MPICH, Open MPI,

and MVAPICH have no resource management strategy in the runtime system to manage

request objects, which can easily use up internal resources; for example, the origin process

may issue numerous AM-based operations, but the target process may be busy with local

computation and cannot make progress to complete those operations. On the other hand,

currently all metadata for outgoing AM-based operations are managed by the runtime

system, an inefficient process because hardware can manage some of them. The runtime

system should offload as many operations as it can to the hardware queue and maintain

them only when operation metadata exceeds the hardware queue capacity.

Note that some synchronization calls do not require remote completion semantics, such

as MPI WIN FENCE, MPI WIN COMPLETE and MPI WIN FLUSH LOCAL, in which metadata

30

for remote completion is not needed and the last state can be ignored.

Issuing MPI ACCUMULATE-Like Operations. In MPI ACCUMULATE-like op-

erations, when origin data arrives on the target, the runtime system allocates a temporary

buffer, places data in that buffer, and then performs computation between the temporary

buffer and target buffer. Existing MPI implementations have two scalability problems. One

is about derived datatypes. Existing MPI implementations allocate a temporary buffer

that has the same datatype and count as does origin data, an approach that wastes a lot

of memory if the datatype is sparse. Another problem is that the lack of an upper bound

on the size of the temporary buffer because origin data can be extremely large. Open MPI

does not support operations with derived datatypes, whereas both MPICH and MVAPICH

have both these problems for MPI ACCUMULATE-like operations.

3.3.5 Consolidating the State-of-the-Art

We consolidate the state-of-the-art of RMA infrastructures from MPICH, Open MPI and

MVAPICH into one single baseline implementation: MPI-RMA-base. The final feature set

of the consolidated MPI-RMA-base implementation is presented in Table 3.4.

3.4 Design and Implementation of Scalable MPI One-

Sided Infrastructure

In this section, we propose a new design of the MPI RMA runtime, called ScalaRMA,

to address the scalability challenges discussed in Section 3.3. We describe the design of

ScalaRMA from three aspects of MPI RMA: window creation, synchronization, and data

movement operations.

31

Table 3.4: Consolidating the best of the state of the art into MPI-RMA-base

Challenge Best of the
State-of-the-Art

MPICH Open
MPI

MVAPICH

Window metadata
storage

Baseline memory usage in
Table 3.2

% ! %

FENCE algorithms RS-based algorithm for
AM-based operations and
BARRIER-based algorithm
for HW-based operations

! ! !

Metadata for targets O(P) memory usage ! ! !

Managing concurrent
locks

Queued locks (O(P)
memory usage)

! % !

Piggybacking or not Non-piggybacking % ! %

Speculative issuing or
not

speculative issuing ! % !

Operation issuing
strategies

Eager issuing for HW-based
operations and delayed
issuing for AM-based

operations

! ! !

Metadata for outgoing
operations

Unlimited memory usage ! ! !

Issuing
MPI ACCUMULATE-like

operations

Unlimited memory usage ! % !

3.4.1 Window Creation

As discussed in Section 3.3.2, although we can eliminate O(P) memory usage of window

metadata in many situations, in some situations the runtime system still has to consume

O(P) memory.

For MPI WIN ALLOCATE, we apply “symmetric allocation” on each process so that every

process generates the same window base address and does not need to maintain metadata for

base addresses anymore. Previous work [27] uses the similar techniques but does not consider

shared-memory allocation capability in MPI WIN ALLOCATE. In ScalaRMA, we support both

symmetric allocation and shared-memory allocation: the root process first decides a base

address and broadcasts it to every other processes. Each process then uses that base address

to calculate the correct starting address of the shared-memory region and passes it to the

32

mmap() function.

For the rest of window creation routines, We propose solutions according to different

patterns of window information. When the value of window information has certain patterns,

for example, the base addresses on all ranks are the same due to symmetric allocation, or

window information is set to the same value on all ranks or on odd / even ranks by user, we

store the information in a compressed manner. When window information has no patterns,

we propose two methods to store the information:

• Information sharing: multiple processes share the same window metadata copy.

Each process fetches necessary metadata via local load on shared memory or MPI GET

operation on network.

• Information caching: each process is attached with a local “cache” which contains

the information that is actively used. When the process cannot find information in the

current window’s cache, it will issue one-sided operations to server processes to fetch

the information to the local cache.

In information sharing, depending on how metadata copies are shared among processes,

two schemes can be used: (1) fixed number of metadata copies being shared and (2) fixed

number of processes sharing the same copy. In the first scheme, the total number of copies is

fixed, and therefore the overall memory consumption for the window metadata is constant.

However, the communication cost of fetching the metadata is not flat: in the worst case,

one process has to talk with P processes in order to fetch metadata. In the second scheme,

the memory usage of the metadata copy is not fixed but increases linearly with the number

of processes. On the other hand, since the number of processes sharing the same copy is

fixed, the communication cost remains constant. Note that in the second scheme the perfor-

mance can be optimized by configuring the metadata copy in a topology-aware manner, and

each process needs to talk only with neighbors within a given physical location. Figure 3.5

compares the differences between these two schemes.

33

When one process cannot find any metadata in its local memory, it needs to fetch metadata

from another process. That process can be on the same node or a different node. If the

process is on the same node, the runtime system can place the metadata on a shared-memory

region on that node, and the process can fetch it immediately. If that process is on a different

node, the origin needs to issue a MPI GET operation to fetch data, and the performance relies

on a fast RMA implementation. The efficiency of fetching metadata can be improved by

using a local “cache”: when metadata is in a shared-memory region within the same node,

that local cache is hardware cache; when metadata is on a different node, ScalaRMA uses

a software-based LRU cache on each process to improve accessing efficiency. To guarantee

constant memory usage of software-based cache, we use a minimal perfect hashing (MPH)

library [28] that can generate a hashing function using the CHD algorithm [29] with memory

consumption of 2.07 bits per key. Because MPH requires the set of keys to be static, we

need to reconstruct the hashing function whenever a cache miss occurs.

Table 3.5: Comparison of metadata sharing schemes

Metadata sharing
scheme

Memory usage Communication
cost

Fixed number of
metadata copies

Constant In worse case: talks
with P processes

Fixed number of
processes sharing the
same metadata copy

O(P) Talks with fixed
number of processes

In the Mellanox Infiniband, in order to enable an internode process to share base addresses

and scaling unit sizes, every process needs to create an internal window to expose the meta-

data for remote access, and that window needs to be created by using symmetric allocation

to ensure that base addresses are the same and uses constant memory (scaling unit sizes are

always the same). Moreover, except for base addresses and scaling unit sizes, the runtime

system needs to maintain protection keys for all other processes; and it passes a pointer of

each key to the network interface whenever a process invokes an RDMA call. In ScalaRMA,

we use internode sharing with local cache: whenever a cache miss happens, the origin process

34

waits for remote completion of all issued operations to one target before it can replace the

MXM key of that target in cache.

3.4.2 RMA Synchronization

In this section, we describe the synchronization algorithm used in ScalaRMA to address

scalability and performance challenges.

Active Target Algorithms. In Section 3.3.3, we introduced two FENCE algorithms

used in existing MPI runtime systems: a BARRIER-based algorithm and an RS-based

algorithm. Here we propose two new algorithms based on them: IBARRIER-BARRIER-based

algorithm and IBARRIER-RS-based algorithm. These new algorithms successfully achieve

three goals: (1) scalability, (2) issuing of operations as early as possible, and (3) reduced

synchronization cost.

Each process

Barrier

Wait for
remote

completion

Ibarrier

OP (queued)

OP (issued)

Starting
Win_fence

Ending
Win_fence

Ibarrier is
completed Issue all

queued OPs

(a) IBARRIER-BARRIER-based algorithm

Each process

Wait for my AT
counter to be 0

Reduce_scatter

Wait for local
completion for AM OPs

OP (queued)

OP (issued)

Ending
Win_fence

Starting
Win_fence Ibarrier

Ibarrier is
completed Issue all

queued OPs

Wait for remote
completion for HW OPs

decr targets’ AT
counter

(b) IBARRIER-RS-based algorithm

Figure 3.5: Fence algorithms used in ScalaRMA

35

In both algorithms, the starting MPI WIN FENCE performs an IBARRIER to initialize the

synchronization phase and returns immediately. All the following posted operations are

queued in the runtime system. As soon as IBARRIER is completed, all queued operations

are issued out, and newly posted operations are issued immediately. By using nonblocking

communication, the runtime system is able to overlap synchronization with local work.

In the IBARRIER-BARRIER-based algorithm, as shown in Figure 3.5a, the ending

MPI WIN FENCE is the same as that with the BARRIER-based algorithm in that it first waits

for remote completion of all issued operations, then performs a BARRIER, and returns. Its

memory usage is flat; however, it introduces more synchronization overhead than what the

MPI-3 standard requires. ScalaRMA uses this algorithm for large P . In the IBARRIER-

RS-based algorithm, as shown in Figure 3.5b, the ending MPI WIN FENCE first performs

a REDUCE SCATTER to determine how many processes have operations targeting itself; it

next initializes a local AT counter with that value; then, it waits for remote completion

for issued HW-based operations and issues a message to decrement the AT counter on all

targets (because targets cannot be aware of completion of HW-based operations but need

origins to notify them); then it waits for local completion of issued AM-based operations;

and finally it waits for the local AT counter to be zero and return. This algorithm does not

have extra synchronization overhead, but the REDUCE SCATTER call requires O(P) memory

usage. ScalaRMA uses this algorithm for small P .

Passive Target Synchronization. In this section, we describe the algorithms used

in Passive Target mode, including different algorithms for single lock case and window-wide

lock case and scalable algorithm to manage concurrent locks.

In Section 3.3 we noted that each process needs to allocate a target object for each peer

in order to maintain the necessary metadata for the passive lock. Those target objects can

use O(P) memory in the worst case. In ScalaRMA, for LOCK-UNLOCK synchronization,

we still create a new target object whenever MPI WIN LOCK is called. That target object

36

is stored in an internal data structure called the “RMA table,” as shown in Figure 3.6.

During window creation, the runtime first allocates a slots array with fixed size. Target

objects are assigned to corresponding slots in a round-robin fashion. Except for metadata

mentioned in Section 3.3.3, the target object also maintains a list of pending operations to

the corresponding target.

slot 0�

rank 0� rank 7� rank 14�

rank 6� rank 13� rank 20�

window�

 �
slot� operation�target�

slot 1�
slot 2�

slot 5�
slot 6�

slot 3�
slot 4�

origin�

priority queue
head�

rank 1�

rank 5�

rank 8�

rank 12�rank 19�

used as target process� used as origin process�

Figure 3.6: RMA table

To avoid creating an unlimited number of target objects, the runtime system preallocates a

global pool of target objects sharing among all windows during initialization. When resources

in the global pool are used up, the runtime system uses an aggressive clean-up strategy to

restore resources: it selects one target object in the RMA table, waits for its synchronization

to be finished, flushes out all pending operations in that target object, and waits for remote

completion of them. After remote completion is detected, the runtime system can free that

target object back to global pool so that the resource is restored. Note that by freeing the

target object in the middle of an epoch, we lose metadata for MPI MODE NOCHECK and error

checking. How to pick a target to restore a resource is critical for performance in aggressive

clean-up. If we randomly pick one target, a large number of pending operations may remain

37

in that target object, and hence aggressive clean-up will be slow. To avoid this situation,

we give highest priority for selection to a target that satisfies the following two conditions:

(1) pending operations can be issued immediately (synchronization is finished) and (2) the

number of pending operations is small. To reduce searching overhead when the number of

target objects is large, we use a threshold that specifies a maximum number of targets being

visited.

For LOCK ALL-UNLOCK ALL synchronization, we want to avoid creating O(P) target ob-

jects, and we wish to reduce synchronization cost. We use two protocols to achieve these

goals. The first is a “per-target” protocol, which is used when the number of active peers

is small. In this protocol, MPI WIN LOCK ALL does nothing and returns immediately; when

the origin is going to issue the first operation to one target, the runtime system first issues

a lock query and creates a target object for it. In this way the origin creates a target object

only for processes it really talks with. When too many target objects are in the runtime

system and resources in the global pool are used up, the runtime system uses the second

protocol: a “window-wide” protocol. In this protocol, the origin issues a lock query to every

process on the window and waits until it receives granted locks from everyone. After that,

the origin no longer needs to maintain any target objects.

As with MPICH and MVAPICH, ScalaRMA uses a queued lock strategy to manage con-

current locks instead of network polling, in order to avoid expensive network traffic. However,

a memory management strategy is required to prevent a lock query queue on the target from

using up internal resources. In ScalaRMA, we use an “origin object” to store information

about the lock query from each origin, as shown in Figure 3.6. As with the target object, we

provide a global pool to supply the resources of origin objects on the origin process. When

a lock query arrives, the target fetches one origin object from the global pool and enqueues

it into both the priority queue and the corresponding slot. When origin objects are used

up, the target discards the current lock query and sends a notification to the corresponding

origin; the origin then tries to issue a lock query again later.

38

lock query

lock

ACK

origin target

op1
lock

op1 (SI)
op2

op4

op2 (SI)
op3

op4
op5

op3 (SI)

op5

lock is
granted

… …

(a) Lock query is granted

lock is
queued

(until lock is granted
or SI op is dropped)

lock query

origin target

op1
lock

op1 (SI)
op2

op4 (SI)

op2 (SI)
op3

op4
op5

op3 (SI)

op5 (SI)

… …

(b) Lock query is queued

(try to re-issue
lock query later)

lock query

lock

NACK

origin target

op1
lock

op1 (SI)
op2 op2 (SI)
op3

op4
op5

op3 (SI)

lock is
discarded

…

(c) Lock query is discarded

Figure 3.7: Speculative issuing strategy

In Section 3.3.3 we noted that MPICH and Open MPI use two optimization: piggybacking

locks (PB) and speculative issuing (SI). PB can save network traffic by reducing the number

of messages; however, the benefit becomes smaller as the communication volume increases,

and it delays issuing of a lock query until the first operation is posted, thus losing the

opportunity of overlapping communication with local computation. In ScalaRMA, we drop

the PB strategy because we want to issue a lock query as early as possible; and we keep the

SI strategy in order to issue as many operations as possible before a lock is granted, until

the origin receives notification of dropping operations from the target. Figure 3.7 illustrates

this model in various cases.

When an SI operation arrives on the target, the target needs to decide whether it can

perform that operation (previous lock query is granted), queue that operation (previous lock

is queued), or discard that operation (previous lock is discarded). The target makes such a

decision by searching for a corresponding origin object in the RMA table. For shared locks,

the target needs to maintain an origin object in the RMA table, not only for queued locks,

but also for granted locks. For exclusive locks, the target needs to maintain an origin object

in the RMA table only for queued locks. We note that maintaining an origin object for a

granted shared lock is needed only when shared locks have been discarded. Therefore, we

optimize the memory usage of the origin objects by keeping track of the number of shared

39

locks being dropped and not retried and by creating an origin object for a granted shared

lock only when it is not zero. When a lock is discarded, notification from the target to the

origin will disable the SI strategy on the origin side because all future SI operations from

that origin will be discarded as well. Note that even though we implement such SI strategy

only in PT mode, it can be extended to AT mode as well to speculatively issue operations

before IBARRIER synchronization is finished.

3.4.3 Data Movement Operations

In this section, we present scalable solutions to issue data movement operations in MPI

RMA infrastructure, including both HW-based operations and AM-based operations.

Multi-Layered Design to Support Different RMA Implementations. Our

framework supports both AM-based operations and HW-based operations in MPI runtime

using a multi-layered design. MPI runtime provides corresponding function pointers for

each RMA operation, and the network module overwrites those function pointers when it

can implement those operations. The AM-based implementation in software serves as a

fallback when the network module does not provide the implementation. As is indicated in

Figure 3.8, when the RMA operation is invoked in the application, the runtime first invokes

the corresponding implementation in network module; if the hardware implementation is

not available, a software implementation is triggered as a fallback, which is using the SEND

/ RECV operations in network module to implement the one-sided capability. In such case

the target side keeps receiving RMA messages in the progress engine by making MPI calls.

Issuing with “Bounded Laziness”. In Section 3.3.4 we introduced two issuing

strategies used in MPI implementations: eager issuing and lazy issuing [30]. Here we discuss

in detail about how each of them works.

40

HW-based PUT

AM-based PUT

ISEND

MPI_PUT (…, datatype, …)

Is HW-based
implementation

available?

RDMA
operation

SEND
operation

Network

Runtime

Application

YES NO

Figure 3.8: Multi-layered Design for MPI RMA operations

• “Eager” strategy: in the synchronization call that opens an epoch, origin process

first performs proper synchronization with target processes; and all following RMA

operations are issued immediately after they are posted; in the synchronization call

that ends an epoch, origin process performs proper synchronization with targets again

to guarantee that all previous RMA operations are completed. It is a native choice of

implementation, which involves two synchronization for each epoch: one is at beginning

call and another is at ending call. Every RMA operation is issued in an “eager” pattern,

namely, as soon as being posted.

• “Lazy” (delayed) strategy: in the synchronization call that opens an epoch, origin

process and target process do nothing; all following posted RMA operations are queued

internally in MPI runtime; in the synchronization call that ends an epoch, origin process

does proper synchronization with targets and then issues out all queued operations;

finally origin process merges the ending synchronization with the last operation sent

to each target.

41

Currently most MPI implementations implement MPI RMA interface using lazy strategy,

because it has the advantage of lower synchronization overhead when number of operations

is small. However, for the irregular application which involves large number of outgoing

operations, lazy strategy hurts the scalability and can potentially cause the application to

be aborted. The reason is that, in order to delay issuing operations to the end, the MPI

runtime has to internally queue up all posted operations and maintain the states of them.

In ScalaRMA, we propose a new issuing strategy, called “bounded laziness” issuing, to

combine the advantages of those two strategies. In bounded laziness issuing, we perform non-

blocking communication at the beginning of an epoch—IBARRIER in FENCE (Figure 3.5b),

ISENDs / IRECVs in PSCW, LOCK-UNLOCK, and LOCK ALL-UNLOCK ALL—to initialize the

synchronization phase. All epoch-opening calls are nonblocking. Issuing parameters of the

following posted operations are stored in the operation object and queued in the correspond-

ing target object, as shown in Figure 3.6. The progress engine on each process keeps checking

whether the synchronization phase is completed. As soon as it is finished, the runtime sys-

tem issues all queued operations; and all newly posted operations are issued out immediately

without queuing. A blocking synchronization is performed at the end. By using nonblock-

ing communication at the beginning, we overlap synchronization with local work on each

processes.

The strategy of bounded laziness can be considered as a hybrid strategy which combines

advantages of both eager and lazy strategies: in the synchronization call that opens an epoch,

origin processes and target processes do synchronization using nonblocking operations, and

return without waiting for its completion; when an operation is posted, the runtime will

check if the synchronization is completed or not, if completed, it will issue all operations

currently in the system (queued and currently posted), otherwise it will queued the current

operation; in the synchronization call that ending an epoch, origin processes does another

synchronization with the target processes.

42

A naive implementation for MPI WIN FENCE is: each process invokes a BARRIER in the

opening fence, then issues operations eagerly and waits for the remote completion for all

operations, and finally invokes another BARRIER in the ending fence. Even though this

implementation guarantees the correctness of MPI WIN FENCE, the acknowledgment of re-

mote completion brings significant overhead. Another implementation option is that, each

process still issues operation eagerly, but just detects the local completion for operations,

after that, each process invokes collective communication (REDUCE SCATTER) so that every

process can know how many operations targeting at me, and it set a local counter to that

value and waits until receiving such number of operations. The second option eliminate the

overhead of acknowledgment messages, however, the RS-based algorithm requires an O(P)

data structure. Therefore, in our work, we use RS-based algorithm for small P and switch

fence to BARRIER-based algorithm when P is large.

Before nonblocking communication is completed, there is still operation metadata (issuing

parameters) buffered in the runtime system that has the risk of using up internal resources.

We use an aggressive clean-up strategy similar to that used with target objects to restore

operation objects. The only difference is that for operation objects, we do not need to wait

for local or remote completion, because operation objects are no longer needed after an

operation is fully issued out. Apart from operation objects, there are also request objects in

the runtime system that keep track of issued but incomplete operations. To prevent them

from using up memory, we set the maximum number of request objects that can exist in

the runtime system; if the actual number exceeds that level, the runtime system will wait

until the number of request objects is reduced.

Issuing MPI ACCUMULATE-Like Operations. In ScalaRMA, we solve the

problem of MPI ACCUMULATE-like operations by first staging derived datatype data from

origin in a packed buffer on target, so that there is no waste space on temporary buffer,

and secondly streaming a large MPI ACCUMULATE-like operation into multiple small units,

43

so that the size of temporary buffer is fixed on the target side and communication and

computation can be pipelined.

3.4.4 Resource Management Strategies

In an MPI implementation using delayed strategy, the internal resources are very likely to

be used up by MPI runtime when the application involves large number of RMA operations.

The reason is that, the runtime has to internally maintain all operations posted within the

epoch and delay issuing them out till the ending synchronization call. Due to this reason,

our implementation issues out operations as early as possible. However, the runtime still

needs to maintain some RMA operations internally in the following two cases: (1) when the

RMA synchronization has not been completed, the runtime cannot issue posted operations

but must internally maintain them; (2) if one operation is issued but is not completed

immediately, the runtime needs to maintain that operation until it is completed. The data

structure used to maintain such operations is significant for performance. One option is to

store operations separately according to the target rank. This allows further optimization on

operations with the same target rank, but it introduces an unscalable O(P) data structure.

Another option is to store all operations in a single linked list. It does not have scalability

problem but prohibits any further optimization related to the same target ranks.

Our implementation uses a three-dimensional data structure that combines the charac-

teristics of the above two methods. The data structure, called RMA operation table, is

illustrated in Figure 3.6. When creating the RMA window, a fixed size of array is allocated

and attached to the window. Each slot in the array maintains a list of states of current

active targets. Each target contains a list of pending operations, a list of issued incomplete

operations, and other important states like synchronization states.

The RMA progress engine on the origin side includes two types of work: completing

RMA synchronization, and issuing RMA operation (communication). We first check if RMA

synchronization is completed, if so, we issue out RMA operations as many as possible;

44

issued but incomplete operation slot

per-target progress on issuing

garbage collection
win 1 win 2

slot 0
slot 1
slot 2
slot 3

per-process progress on issuing

P0

slot 0
slot 1
slot 2

pe
r-

w
in

 p
ro

gr
es

s
on

is

su
in

g pending operation active target

Figure 3.9: Multi-level strategy for making RMA progress

otherwise we exit the progress engine.

On the origin side, we use a multi-level strategy to trigger the RMA progress engine. The

first and the most general level is per-process : the progress engine makes progress on all

windows on the origin process. This is called from the normal progress engine of MPI; the

second one is per-window: the progress engine makes progress on one specific window. It is

typically used in the ending synchronization calls with window argument (MPI WIN FENCE,

MPI WIN COMPLETE, MPI WIN FLUSH ALL), since they care about the completion of all op-

erations on the current window; the third one is per-target: the runtime makes progress

on operations to one specific target. This one is used in RMA communication calls and

synchronization calls for single target (MPI WIN UNLOCK and MPI WIN FLUSH).

In addition to making progress on pending operation list, we also need to make progress

on issued operation list. The operations in issued list are ones that are issued out but not

completed yet. If the runtime discover operations in the issued list that are completed now,

it can be removed from the issued list and free.

3.4.5 Making Efficient RMA Progress

To achieve efficient RMA progress, we define two types of RMA windows in ScalaRMA:

45

• Inactive window: where a process does not have work to do in this window unless

there are either user events or network events happening (e.g., an operation is posted

by the user or synchronization is finished by the network).

• Active window: where a process has work to do on this window even though neither

a user event nor a network event is happening. By identifying active and inactive

windows, the runtime system can know when to execute RMA progress and avoid

unnecessary progress execution.

In the runtime system we maintain a list for both RMA window types: “active window

list” and “inactive window list”. Every newly created window is first added to the inactive

window list. When we set one window to active, we move it from the inactive window list

to the active window list. When we add the first window to the active window list, we

activate the RMA progress. When we remove the last window from the active window list,

we deactivate the RMA progress. By doing so, the RMA progress will not be triggered unless

there are active RMA windows in the runtime system.

3.4.6 Trade-offs Between Scalability and Performance

In ScalaRMA, there are several places that we need to trade off between scalability and

performance. When MPI runtime provides more memory, the runtime will spend less com-

munication cost. If we want to achieve constant memory consumption, spending more com-

munication cost is inevitable. Table 3.6 lists all trade-offs involved in the design of ScalaRMA.

We use communication-efficient algorithms when P is small, but switch to memory-efficient

algorithms when P is large.

3.5 Experimental Evaluation

We used two clusters for our evaluation. The first is configured with Mellanox InfiniBand

and has 320 nodes (each node has 8 cores). The second consists of 16 nodes (each node has

46

Table 3.6: Trade-offs between scalability and performance in ScalaRMA

Aspects Comparison Memory
usage

Communication cost

Window
metadata
storage

Fixed number of metadata
copies

O(1) In worse case: talks with P
processes

Fixed number of processes
sharing the same metadata

copy

O(P) Talks with fixed number of
processes

Data
movement
operation

HW-based operation O(1) More cost: waits for remote
completion in AT mode

AM-based operation Relative to
problem

size

Less cost: waits for local
completion in AT mode

FENCE

algorithms
IBARRIER-BARRIER-based

algorithm
O(1) More cost: waits for remote

completion in AT mode
IBARRIER-RS-based

algorithm
O(P) Less cost: waits for local

completion in AT mode
LOCK-

UNLOCK

algorithms

No lock query pool In the
worse case
O(P)

Less cost: origin does not
need to re-issue lock query

Lock query pool O(1) More cost: Origin may need
to re-issue lock query

LOCK ALL-
UNLOCK ALL

algorithms

Per-target alforithm In the
worse case
O(P)

Less cost: origin issues lock
query only to targets it really

talks with
Window-wide algorithm O(1) More cost: origin issues lock

query to all P processes

47

16 cores) configured with the Portals-4 network. MPI PUT and MPI GET with basic datatypes

are implemented in hardware, and the rest of operations are AM-based implementation.

3.5.1 Microbenchmarks

In this section, we present micro-benchmark results of ScalaRMA, from perspective of

window creation, synchronization algorithms and data movement operations.

Window Creation. In this section we measure the impact of different window

metadata schemes on memory usage and communication. In our tests, every process creates

a window with a different scaling unit size using MPI WIN CREATE and performs all-to-all

communication using MPI PUT. Operations are issued in batches of 10. We compare

MPI-RMA-base with three schemes in ScalaRMA. The first is locality-aware distribution

(“ScalaRMA-LAD”), in which a fixed number of processes share the same copy; it is

implemented by intranode sharing via a shared-memory region. The second scheme is

constant memory distribution (“ScalaRMA-CMD”), which is implemented by internode

sharing; each process keeps only its own window metadata and issues a MPI GET to fetch

metadata. The third is a combination of the second scheme and a software-based cache of

32 cache lines (“ScalaRMA-CMD-cache”).

Figure 3.10a shows memory usage on the Portals-4 network, in which the window metadata

to be maintained by the runtime system includes the scaling unit size (4 bytes). The results

are gathered from 1 process to 256 processes, and dot lines after 256 processes are the trend

lines based on current results. In MPI-RMA-base, O(P) memory is used to store window

metadata for all processes. In ScalaRMA-LAD, 16 processes within one node share the same

copy, and therefore memory usage on each process is largely reduced; however, it is still

increased with P and not scalable. In both ScalaRMA-CMD and ScalaRMA-CMD-cache,

as O(P) grows, the maximum number of metadata copies is fixed, and memory usage is

reduced to O(1).

48

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1 2 4 8 16

32

64

12
8

25
6

51
2

10
24

20

48

40
96

81

92

16
38

4
32

76
8

65
53

6
13

10
72

26

21
44

52

42
88

10

48
57

6
20

97
15

2

M
em

or
y

us
ag

e
(b

yt
es

)

procs

mpi-rma-base scalarma-lad
scalarma-cmd(m1) scalarma-cmd(m1C32)

(a) Memory usage (Portals-4)

1.0E+00
1.0E+01
1.0E+02
1.0E+03
1.0E+04
1.0E+05
1.0E+06
1.0E+07
1.0E+08
1.0E+09

1 2 4 8 16

32

64

12
8

25
6

51
2

10
24

20

48

40
96

81

92

16
38

4
32

76
8

65
53

6
13

10
72

26

21
44

52

42
88

10

48
57

6
20

97
15

2

M
em

or
y

us
ag

e
(b

yt
es

)

procs

(b) Memory usage (MXM)

Figure 3.10: Memory usage of different window metadata
schemes in MPI WIN CREATE

On Sequoia machine, totally there are 1,572,864 cores. If we run one process per core with

MPI-RMA-base, each process needs to consume 6.3MB per window and each node needs to

consume 100MB memory per window. Suppose an application generates 64 windows at one

time, each node needs to consume 6.4GB for window metadata. This already uses up 40%

of memory on each node on Sequoia.

Figure 3.11a shows the message rate on the Portals-4 network. Both MPI-RMA-base

and ScalaRMA-LAD can achieve the best performance because they can directly access

the window metadata stored on the local process or local node. ScalaRMA-CMD is about

80% worse than MPI-RMA-base, however, because each process needs to do an additional

49

-90
-80
-70
-60
-50
-40
-30
-20
-10
0
10

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

3.5E+05

4.0E+05

2 4 8 16 32 64 128 256

Im
pr

ov
em

en
t (

%
) c

om
pa

rin
g

w
ith

 m
pi

-r
m

a-
ba

se

M
es

sa
ge

 ra
te

 (#
m

sg
/s

)

procs

IMPROVE (scalarma-LAD) IMPROVE (scalarma-CMD)
IMPROVE (scalarma-CMD-cache) MSG_RATE (mpi-rma-base)
MSG_RATE (scalarma-LAD) MSG_RATE (scalarma-CMD)
MSG_RATE(scalarma-CMD-cache)

(a) Message rate (Portals-4)

-90
-80
-70
-60
-50
-40
-30
-20
-10
0
10

0.0E+00
5.0E+04
1.0E+05
1.5E+05
2.0E+05
2.5E+05
3.0E+05
3.5E+05
4.0E+05
4.5E+05
5.0E+05

2 4 8 16 32 64 128 256 512 1024 2048 Im
pr

ov
em

en
t (

%
) c

om
pa

rin
g

w
ith

 m
pi

-r
m

a-
ba

se

M
es

sa
ge

 ra
te

 (#
m

sg
/s

)

procs

(b) Message rate (MXM)

Figure 3.11: Message rate of different window metadata
schemes in MPI WIN CREATE

MPI GET before each RMA operation. ScalaRMA-CMD-cache optimizes ScalaRMA-CMD

by maintaining metadata in local cache; however, it still has some performance loss com-

pared with MPI-RMA-base because of cache misses, in which the runtime system needs to

reconstruct the MPH function.

Figure 3.10b shows memory usage on the MXM network, in which window metadata that

needs to be maintained by the runtime system includes the scaling unit size (4 bytes), base

address (8 bytes), and MXM key (48 bytes). In MPI-RMA-base and ScalaRMA-LAD, the

memory consumed is relative with number of processes and keeps increasing when number of

50

0
2
4
6
8
10
12
14
16

1.0E+04

1.0E+05

1.0E+06

1.0E+07

2 4 8 16

32

64

12
8

25
6

51
2

10
24

20

48

Im
pr

ov
em

en
t (

%
) c

om
pa

rin
g

w
ith

 Ib
ar

rie
r-

B
ar

rie
r-

ba
se

d
Fe

nc
e

M
es

sa
ge

 ra
te

 (#
m

sg
/s

)

#procs

Improvement (%) Ibarrier-Barrier-based Fence Ibarrier-RS-based Fence

(a) AM-based operations only

0
2
4
6
8
10
12
14
16

1.0E+04

1.0E+05

1.0E+06

1.0E+07

2 4 8 16

32

64

12
8

25
6

51
2

10
24

20

48
 Im

pr
ov

em
en

t (
%

) c
om

pa
rin

g
w

ith
 Ib

ar
rie

r-
B

ar
rie

r-
ba

se
d

Fe
nc

e

M
es

sa
ge

 ra
te

 (#
m

sg
/s

)

#procs

(b) Mix of AM-based and HW-based operations

Figure 3.12: Comparison between two FENCE algorithms in ScalaRMA (MXM)

processes is increased. In ScalaRMA-CMD and ScalaRMA-CMD-cache, the memory usage

keeps constant. Note that the metadata maintained for each rank in ScalaRMA-CMD and

ScalaRMA-CMD-cache is slightly larger than MPI-RMA-base and ScalaRMA-LAD because

we need to maintain two MXM remote keys, one for user window and one for internal

window (used for inter-node sharing). Size of metadata maintained for each rank in Mellanox

InfiniBand is much larger than the size in Portals-4, therefore it is more easily to use up

internal resources on large scale machine like Sequoia. Figure 3.11b shows the message rate

on MXM, which has a trend similar to that seen with the Portals-4 results.

51

Synchronization.

In this section, we present experimental results for synchronization algorithms, including

FENCE synchronization and passive lock synchronization algorithms.

Here we compare the performance of two FENCE algorithms in ScalaRMA: the IBARRIER-

RS-based algorithm and the IBARRIER-BARRIER-based algorithm. The microbenchmark per-

forms an all-to-all communication, in which each process issues 1,000 small RMA opera-

tions to everyone else. Figure 3.12a shows the performance with AM-based operations only.

The performance of the IBARRIER-RS-based algorithm is about 12% better than that of the

IBARRIER-BARRIER-based algorithm because the IBARRIER-RS-based algorithm waits for local

completion, whereas the IBARRIER-BARRIER-based algorithm waits for remote completion.

Figure 3.12b shows the performance of a mix of AM-based and HW-based operations. The

gap between the two algorithms is reduced because the IBARRIER-RS-based algorithm has

to wait for remote completion for HW-based operations. If a network can perform remote

notification, its performance can be improved.

Here we first compare MPI-RMA-base, which has a piggybacking (PB) strategy, with

ScalaRMA, which does not have this strategy but speculatively issues one operation. As

shown in Figure 3.13a, the performance of MPI-RMA-base is about 6% better than that of

ScalaRMA when there is only one operation between MPI WIN LOCK and MPI WIN UNLOCK

and the message size is below 16K bytes. As the number of operations grows or the message

size increases, ScalaRMA becomes better than or similar to MPI-RMA-base. Many applica-

tions involve massive outstanding messages within an epoch, in which case the benefit from

PB to those applications is limited.

In Figure 3.14 we evaluate the impact of different numbers of speculatively issued (SI)

operations in ScalaRMA. In the test, the origin issues a shared lock to the target, and that

lock is granted immediately. We observe that as we increase the number of SI operations,

we can fill more operations issuing with a network waiting time of the lock acknowledgment.

After 700 SI operations, performance no longer increases; that is, the issuing of SI operations

52

-8
-6
-4
-2
0
2
4
6

0.0E+00
5.0E+05
1.0E+06
1.5E+06
2.0E+06
2.5E+06
3.0E+06
3.5E+06
4.0E+06

1 2 4 8 16

32

64

12
8

25
6

51
2

10
24

20

48
 Im

pr
ov

em
en

t (
co

m
pa

rin
g

w
ith

 m
pi

-r
m

a-
ba

se
, %

)

M
es

sa
ge

 ra
te

 (#
m

sg
/s

)

#ops

Improvement (%) scalarma (#SI=1) mpi-rma-base

(a) Piggybacking vs. non-piggybacking for multiple operations

-6
-5
-4
-3
-2
-1
0
1
2

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

1 4 16

64

25
6

10
24

40

96

16
38

4

65
53

6

Im
pr

ov
em

en
t (

%
) c

om
pa

rin
g

w
ith

 m
pi

ch
-3

.1
.4

-b
as

e

M
es

sa
ge

 ra
te

 (#
m

sg
/s

)

message size (bytes)

Improvement (%) scalarma (#SI=1) mpich-3.1.4-base

(b) Piggybacking vs. non-piggybacking for single operation

Figure 3.13: Performance of piggybacking and speculative issuing strategies (MXM)

is fully overlapped with network transaction of the lock acknowledgment.

3.5.2 Data Movement Operations

In this test we compare bounded laziness issuing in ScalaRMA with delayed issuing in MPI-

RMA-base. Specifically, we measure the message rate of all-to-all communication by varying

three metrics: message size, number of operations, and number of processes. Figure 3.15

compares ScalaRMA with MPI-RMA-base. When there is a single operation, the message

size is smaller than 64 bytes, and the number of processes is only 2, ScalaRMA is worse

53

-10

0

10

20

30

40

50

60

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

1 2 4 8 16 32 64 128 256 512 1024 2048

Im
pr

ov
em

en
t (

%
) c

om
pa

rin
g

 w
ith

 #
S

I=
1

M
es

sa
ge

 ra
te

 (#
m

sg
/s

)

#ops

IMPROVE(scalarma,#SI=100) IMPROVE(scalarma,#SI=700)
IMPROVE(scalarma,#SI=2500) MSG_RATE(scalarma,#SI=1)
MSG_RATE(scalarma,#SI=100) MSG_RATE(scalarma,#SI=700)
MSG_RATE(scalarma,#SI=2500)

Figure 3.14: Impact of speculatively issued operations

than MPI-RMA-base. As the message size, number of operations, and number of processes

increase, however, ScalaRMA performs the same as or better than MPI-RMA-base. When

the number of operations is 4,096, ScalaRMA is better than MPI-RMA-base—around 10%

at maximum.

3.5.3 Evaluation with Mini-apps

In this section, we present experimental results evaluating with mini-apps, including Graph

500 benchmark. Graph 500 is a supercomputing benchmark used to test data intensiveness

for runtime systems and large-scale systems. It generates a graph with vertexes and edges

and performs a breadth-first search on that graph; its performance metric is traversed edges

per second. The MPI RMA implementation of Graph 500 performs a large number of small

MPI ACCUMULATE operations among all the peers during FENCE epochs. We ran the Graph

500 benchmark with both ScalaRMA and MPI-RMA-base with strong scaling and weak

scaling. The results are shown in Figure 3.16a and Figure 3.16b. In both cases, MPI-RMA-

base fails to finish the benchmark when the problem size on each process is large, because

the operation metadata maintained in the runtime uses up all internal resources. On the

other hand, ScalaRMA can finish running the benchmark for any problem size, because the

resource management strategy in ScalaRMA guarantees that memory consumption by the

54

-30
-25
-20
-15
-10

-5
0
5

10
15
20

1 4 16

64

25
6

10
24

40

96

16
38

4

65
53

6

Im
pr

ov
em

en
t (

%
)

Message size (bytes)
#procs=2

#ops=1 #ops=16
#ops=256 #ops=4096

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

1 4 16

64

25
6

10
24

40

96

16
38

4

65
53

6

Im
pr

ov
em

en
t (

%
)

Message size (bytes)
#procs=8

#ops=1 ops=16
ops=256 #ops=4096

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

1 4 16

64

25
6

10
24

40

96

16
38

4

65
53

6

Im
pr

ov
em

en
t (

%
)

Message size (bytes)
#procs=32

#ops=1 #ops=16
#ops=256 #ops=4096

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

1 4 16

64

25
6

10
24

40

96

16
38

4

65
53

6

Im
pr

ov
em

en
t (

%
)

Message size (bytes)
#procs=128

#ops=1 #ops=16
#ops=256 #ops=4096

Figure 3.15: Message rate with increasing message size, number of operations and number
of processes (MXM)

runtime system is restricted within a certain amount.

3.6 Related Work

Several researchers have studied the scalability of MPI implementations with respect not

only to MPI one-sided communication but also to other aspects in the MPI library. In [31],

Balaji et al. address several significant issues related to scaling MPI to millions of cores, in

terms of what is needed both in the MPI-3 specification and in MPI implementations. In [27],

Gerstenberger et al. present a design and implementation of MPI-3 over the Cray Gemini and

Aries systems; the design directly uses RDMA features from hardware to implement scalable

protocols for MPI RMA synchronization. In [32] [33] [34], the authors propose memory-space-

related optimization for MPI implementations, such as the memory required for storing

communicators and groups. The operation issuing strategy is studied in [26], in which

REDUCE SCATTER-based FENCE algorithm and delayed issuing are proposed in order to

55

reduce synchronization overhead over TCP networks. In [35], an issuing strategy is proposed

that can adaptively switch from delayed issuing to eager issuing in an MPI runtime system.

The implementation of MPI-2.2 RMA over InfiniBand has been discussed in [36] [37] [38].

In [39], Zounmevo et al. discuss a scalable message queue mechanism for large-scale jobs.

In [40], Darius et al. implement MPI runtime over the Nemesis communication system and

streamline the critical path to reduce the overhead of sending and receiving a message for

intra-node communication. Even though the work effectively reduces the instructions over

MPI stack, there is still more overhead in MPI runtime compared to other programming

models such as SHMEM and UPC. To the best of our knowledge, no previous work has

addressed all the scalability limitations in current MPI one-sided implementations.

3.7 Conclusion

In this section, we propose a new MPI RMA runtime system, called ScalaRMA, to address

scalability challenges in MPI one-sided communication. Existing MPI implementations have

several limitations in MPI RMA with respect to window creation, synchronization, and

data movement operations. These limitations prevent the MPI runtime system from suc-

cessfully scaling applications onto large-scale machines, because metadata for processes and

outstanding operations uses up all internal resources. ScalaRMA provides new algorithms

and strategies to manage different kinds of metadata in MPI one-sided communication on dif-

ferent hardware interconnects. Approximately 80% this work is included in MPICH release

with production quality.

56

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

2 4 8 16

32

64

12
8

25
6

51
2

10
24

20

48

TE
P

S

Number of processes

ScalaRMA

MPI-RMA-Base

(a) Strong-scaling Graph 500 with
problem size of 222 vertices

0.00E+00
5.00E+05
1.00E+06
1.50E+06
2.00E+06
2.50E+06
3.00E+06
3.50E+06
4.00E+06

2 4 8 16

32

64

12
8

25
6

51
2

10
24

20

48

TE
P

S

Number of processes

ScalaRMA
MPI-RMA-Base

(b) Weak-scaling Graph 500 with
problem size of 219 to 229 vertices

Figure 3.16: Experimental results of Graph 500

57

CHAPTER 4

Adaptive Issuing Strategy

for MPI One-Sided Communication

There are two issuing strategies commonly used in current popular MPI one-sided imple-

mentations: the first strategy is called “eager issuing” approach, in which the epoch-opening

RMA synchronization call performs a blocking synchronization; all following operations are

issued as early as possible; the epoch-closing RMA synchronization call performs another

blocking synchronization call at end. Another strategy is called “delayed issuing” approach,

in which the epoch-opening RMA synchronization call does nothing and returns immediately;

all following operations are queued up and issued in the epoch-closing RMA synchroniza-

tion. By doing so, the RMA synchronization overhead at beginning can be eliminated.

Delayed issuing approach has advantages for communication with small data because of the

reduced network operations, whereas eager issuing approach can achieve better performance

for large data transfers. In this chapter, we describe a design and implementation of an adap-

tive issuing strategy for MPI one-sided communication, which can be used with various MPI

RMA synchronization modes, including FENCE, POST-START-COMPLETE-WAIT (PSCW) and

LOCK-UNLOCK. Such adaptive strategy can combine the benefits from both delayed issuing

and eager issuing approaches. We conduct a thorough performance evaluation and the ex-

perimental results show that the adaptive approach performs as well as the delayed issuing

approach when data volume is small and can achieve similar performance with eager issu-

58

ing approach when data volume is large. Apart from this, our approach can achieve good

overlapping performance of communication and computation.

4.1 Overview

The MPI-3.0 specification provides a lot of flexibility on when an MPI one-sided operation

can complete, which allows an MPI one-sided implementation to be optimized internally,

specifically in terms of when data transmission are initialized within MPI RMA epoch.

When number of operations is small and data transferred in each operation is short,

issuing those operations at the ending of the epoch allows the aggregation of the operations

into fewer communication operations, which can improve the performance. On the other

hand, when number of operations is large or data transferred is large amount, issuing those

operations as early as possible may be beneficial, this is because their transmission latency

is much more expensive and issuing them early enough allows the opportunities to overlap

the communication with local computation.

In many situations in MPI application, it is not clear beforehand that when eager issuing

is better and when delayed issuing is better, since the communication pattern tends to be

changed throughout the execution. Therefore, it is necessary for MPI runtime to have an

adaptive issuing strategy, which can automatically select the suitable issuing strategy based

on the current situation in MPI application. Such adaptive strategy takes over the burden

from the user to understand MPI implementation choices in detail, and avoid the possibility

of making mistakes by the user, since MPI runtime can adaptively select the most suitable

approach. In this work, we design and implement an adaptive issuing approach for MPI

one-sided communication.

59

4.2 Adaptive Strategy Design

In this section, we describe the adaptive algorithm for different three MPI RMA synchro-

nization: LOCK-UNLOCK, POST-START-COMPLETE-WAIT, and FENCE synchronization.

4.2.1 LOCK-UNLOCK Synchronization

The existing implementation of LOCK-UNLOCK in MPICH uses a “delayed issuing” strat-

egy. In beginning MPI WIN LOCK, the origin process does nothing but enqueues the lock

request and returns immediately. During the following synchronization epoch, the origin

process enqueues all posted MPI PUTs, MPI GETs and MPI ACCUMULATEs. In the ending

MPI WIN UNLOCK, the origin process first issues out the lock request and waits for the lock

granted acknowledgment from the target process. After that, it issues all queued opera-

tions and sets a field in the packet header in the last operation to make the target process

decrements the counter at the window. When that counter becomes zero, all operations

have already arrived at the target side. By doing so, the delayed issuing approach is able to

combine the synchronization message with the last data movement operation. The delayed

approach also contains an optimization for single small data movement operation: if there

is only one operation between MPI WIN LOCK and MPI WIN UNLOCK, the data size is small

and the MPI datatype is predefined, the origin process sends that operation together with

the beginning lock request in MPI WIN UNLOCK. In such situation, both synchronizations at

the epoch-opening and at the epoch-closing can be eliminated. Another choice for LOCK-

UNLOCK is an “eager issuing” approach. In this approach, during MPI WIN LOCK, the origin

process issues the lock request as soon as possible and waits for lock to be granted before

it returns. For all following posted MPI PUTs, MPI GETs and MPI ACCUMULATEs, it issues

them as soon as they are posted in the application. In the ending MPI WIN UNLOCK, the

origin process issues a 0-byte message to release the lock on the target. Such eager issuing

approach needs two synchronizations operations and three messages: one message for the

60

lock request and one for the lock acknowledgment, and one message for the unlock request

at the end. On the other hand, since it issues the lock request and operation separately in-

stead of merging them together, the optimization for single short operation described above

is impossible in eager issuing strategy. Our adaptive design for LOCK-UNLOCK eliminates

the synchronization message at the epoch-closing and still keeps the optimization for single

short operation. In MPI WIN LOCK, the origin process enqueues the lock request and returns

immediately, just like what delayed issuing does. All following posted RMA operations are

enqueued in the runtime. If the number of queued operations reaches a certain threshold,

which is the value of operation number or message size, the origin issues the lock request

immediately, but does not wait for the lock granted acknowledgment. Instead, it continues

to queue up RMA operations until the lock is granted. Once the lock acknowledgment is

back, it issues all queued operations, switches from delayed issuing to eager issuing, and

issues all the following operations as early as possible. Even though the rest of operations

are issued in an eager manner, we still can avoid the synchronization in the epoch-closing

by maintaining a pointer to the current last RMA operation, which keeps one operation not

issued until the ending MPI WIN UNLOCK. We also preserve the optimization of single short

operation in the new design, since the lock request is not issued in MPI WIN LOCK, if there is

only single short operation existing within the epoch, it will be issued together with the lock

request in MPI WIN UNLOCK. The semantic of MPI WIN UNLOCK in MPI standard requires

that when the function returns, MPI one-sided operations are completed at both origin side

and target side. We use an optimization strategy to ensure this. For shared lock, when origin

meets a MPI GET operation, the origin keeps it in a buffer and issues it at last, otherwise

the target needs to explicitly issue an acknowledgment message to the origin after receiving

the last operation. This strategy assumes that the underlying network is ordered. If the

underlying network hardware is unordered, the acknowledgment message is always needed

at last. For exclusive lock, no acknowledgment is needed since there will be only one origin

modifying the memory region on target process.

61

4.2.2 POST-START-COMPLETE-WAIT (PSCW) Synchroniza-

tion

The current implementation of PSCW in MPICH also uses a delayed issuing strategy. In

beginning MPI WIN POST, processes in the target group issues a synchronization message to

each process in the origin group, and sets the initial counter on the window to the size of the

origin group. In beginning MPI WIN START, processes in the origin group do nothing and

return immediately. The following posted MPI PUTs, MPI GETs and MPI ACCUMULATEs are

all queued in the MPI runtime. In ending MPI WIN COMPLETE, every process in the origin

group is first blocked until it gets all synchronization messages from all processes in the tar-

get group, after that, it issues all queued operations. For target process of each operation,

the origin process sets a field in the packet header of the last operation in order to decrement

the counter on the window. In MPI WIN WAIT, every process in the target group is blocked

until its own counter on the window becomes zero. For each pair of processes between origin

group and target group, only one synchronization message is needed. If the origin process

has no operation issued to one target process, it needs to explicitly issue an additional 0-byte

message to that target process, which means that they need two synchronization messages.

Another choice for the implementation of PSCW is an eager issuing approach. In begin-

ning MPI WIN START or the first one-sided operation function if exists, the origin process is

blocked until it receives all post messages from all processes in the target group. After that,

all following MPI PUTs, MPI GETs and MPI ACCUMULATEs are issued immediately without

queuing in the runtime. In ending MPI WIN COMPLETE, the origin process issues an addi-

tional 0-byte message to all processes in the target group to decrement the counter on their

window to finish the current epoch. The eager approach always needs two synchronization

messages.

Like the delayed issuing approach, our design for PSCW needs only one synchronization if

the origin process owns operations issued to a target process, and requires two synchroniza-

62

tion messages if the origin has no operation issued to a target process. In MPI WIN START,

processes in the origin group do nothing and return immediately. During the following MPI

RMA epoch, each origin process performs as the delayed issuing at beginning: they queue up

all posted operations in MPI runtime. When number of queued operations reaches the cer-

tain threshold, the origin process is blocked to wait for all the synchronization messages from

target processes, and then issues all queued operations, and switches from delayed issuing

mode to eager issuing mode. For the following MPI PUTs, MPI GETs and MPI ACCUMULATEs,

the origin process issues them as early as possible. Like LOCK-UNLOCK, we avoid issuing an-

other synchronization message by maintaining a pointer pointing to the last RMA operation

for each target.

4.2.3 FENCE Synchronization

Like the above described LOCK-UNLOCK and PSCW synchronization, the current implemen-

tation of FENCE in MPICH also uses a delayed issuing approach. In the MPI WIN FENCE

that initializes an MPI RMA epoch, all processes perform no synchronization at all and re-

turn immediately. All the following posted MPI PUTs, MPI GETs and MPI ACCUMULATEs are

enqueued in MPI runtime. In the ending MPI WIN FENCE, each process first goes through

all queued operations to decide that, for each other process rank i, how many operations

have rank i as the target, and stores such information in an O(P) array. After that, all

processes perform a MPI REDUCE SCATTER communication with MPI SUM operation on this

array over the communicator of the window. After that, each process knows how many

processes have operations targeting this process, and stores this information in the counter

on that window. After that, each process issues out all queued operations, and the counter

is decremented when all operations from the same origin process have been arrived, which is

indicated by the packet header of the last operation from that origin process. Therefore, in

the delayed issuing approach, only one synchronization, MPI REDUCE SCATTER, is required.

Another choice for implementing fence is an eager issuing approach, in which all one-sided

63

operations are issued as early as possible. In the MPI WIN FENCE that open a new epoch,

all processes perform a MPI BARRIER synchronization over the communicator of the window.

After that, every process issues out operations immediately. At the ending MPI WIN FENCE,

all processes perform another MPI BARRIER synchronization to ensure that no process leaves

this MPI WIN FENCE before everyone have finished accessing the window. Therefore, in the

eager issuing approach, two synchronizations (two MPI BARRIER) are required. Our adap-

tive design for FENCE synchronization needs one synchronization (MPI REDUCE SCATTER)

when number of operations is small, and two synchronizations (one MPI BARRIER and one

MPI REDUCE SCATTER) when number of operations reaches the certain threshold. As is

shown in Figure 4.1, in the beginning MPI WIN FENCE, everyone does nothing and returns

immediately. For all the following posted MPI PUTs, MPI GETs and MPI ACCUMULATEs, the

process queues them in the runtime by default. If number of queued operations does not

reach the threshold, which is the case for rank 0 in Figure 4.1, the process just goes into

the ending MPI WIN FENCE and is blocked at the MPI REDUCE SCATTER synchronization

in it. If the number reaches the certain threshold during the epoch, which is the case for

rank 1 and rank 2 in Figure 4.1, the process is blocked at the MPI REDUCE SCATTER in

the data movement operation function. Therefore, rank 1 and rank 2 are synchronized by

MPI REDUCE SCATTER with rank 0. After the MPI REDUCE SCATTER completes, rank 0

issues all queued operations, whereas rank 1 and rank 2 also issue queued operations and

the operations called after the MPI REDUCE SCATTER immediately without queuing any of

them. When rank 1 and rank 2 enter the ending MPI WIN FENCE, they do not need to

perform the MPI REDUCE SCATTER in it. At the end of MPI WIN FENCE, all processes need

to be synchronized again by invoking a MPI BARRIER. This strategy applies to ordered net-

works, or networks with remote completion mechanisms, in which processes can first wait for

all remote completion events and then invoke MPI BARRIER at end. On an unordered net-

work without such mechanisms, MPI BARRIER cannot ensure the completion ordering and

all processes need to perform an all-to-all communication acknowledgment after complet-

64

Figure 4.1: Adaptive FENCE

ing all operations. Note that full ordering for all data is not required to be imposed on

the communication, just ordering of particular transfers with respect to others should be

addressed.

If every process has small number of operations, which means FENCE is always in

delayed issuing mode throughout the entire epoch, they only need one synchroniza-

tion, which is the MPI REDUCE SCATTER in the second MPI WIN FENCE. An additional

area in MPI REDUCE SCATTER is needed to indicate whether some process have called

MPI REDUCE SCATTER before the closing MPI WIN FENCE; this is how the processes know

whether a MPI BARRIER synchronization is also required at end of fnMPI WIN FENCE.

4.2.4 Comparison with Existing Algorithms

For all three synchronization algorithms discussed above, the general approach for delayed

issuing is to do nothing and return immediately in the beginning synchronization, enqueue

all the following operations in MPI runtime, and to issues all operations and the ending syn-

chronization call in the ending MPI RMA synchronization. The general approach for eager

65

issuing is to perform a blocking synchronization in the epoch opening MPI RMA synchro-

nization call, to issue the following posted operations as early as possible, and to do another

synchronization at end of MPI RMA synchronization. Compared with delayed issuing, ea-

ger issuing has more synchronization overhead and there is no optimization opportunity to

aggregate or schedule the operations. However, eager avoids the cost of enqueuing opera-

tions and has the advantage of issuing operations immediately, in which they can arrive the

target and be completed as early as possible. This is an especially desirable feature when

there are large number of operations or the amount of data to transfer is large in MPI-based

applications. Eager issuing also make it possible for overlapping communication and compu-

tation, which is impossible in delayed issuing. Our adaptive design combines features of both

delayed issuing and eager issuing, while introducing a modest overhead in MPI runtime.

4.3 Experimental Evaluation

We implemented the adaptive approach based on the MPICH2 (1.4.1p1). For each synchro-

nization mechanism, we also implemented the eager issuing to compare with delayed issuing

and adaptive issuing approaches. Two metrics are used as the adaptive threshold: number

of operations (hop) and message size in each operation in bytes (hmsg). In the benchmarks,

we set hop as 10,000 and hmsg as 400. Our implementation implements the one-sided opera-

tions in AM-based way using a two-sided communication model to emulate the behavior of

one-sided communication.

We use three kinds of microbenchmarks: single-operation test, many-operations test and

overlapping test, which are described in Section 4.3.1 and Section 4.3.2 respectively. We

measure the benchmarks on two different architectures: (a) an SMP machine with 4 Intel

Core i5 CPU (2.67 GHz) and 8GB memory, we use it to emulate a architecture with a very

fast interconnect hardware; (b) the “breadboard” cluster at Argonne National Laboratory

on which each node has two Intel Xeon quad-core processors (2.66 GHz) and 16GB memory,

66

Figure 4.2: Single-op results on SMP and breadboard

and nodes are connected with Ethernet, we use it to examine the performance on a slow

interconnect network hardware.

While all experiments in this section make use of a simple communication layer, the idea

also apply to one-sided transports, particularly those transports that can implement the

one-sided semantics as HW-based operations by directly exploiting RDMA features. It is

notable that the delayed issuing mode allows the use of a single remote direct memory access

operation, as long as the MPI semantics are observed, whereas the eager issuing mode allows

the use of asynchronous communication for one-sided communication.

4.3.1 Latency Impact

Single Operation Results. We first measure the latency between two processes when

single operation issued between synchronization calls. Figure 4.2 illustrates the MPI PUT

latency with LOCK-UNLOCK, with message size varying from 1 byte to 218 bytes.

On SMP and breadboard, both adaptive approach and delayed approach perform better

than eager approach when message size is small, due to the optimization for single short

operation. Similar results are also observed for MPI GET and MPI ACCUMULATE operation.

Multiple Operations Results. We also evaluate the latency with increased number of

short operations between synchronization calls. Figure 4.3 and Figure 4.4 presents the

67

Figure 4.3: Many-ops results on SMP

MPI PUT latency with LOCK-UNLOCK and PSCW on SMP and breadboard. Since FENCE

is commonly used for with many neighbors, we did not measure its performance here.

On SMP, when number of operations is small, data transmission is very fast and there is

no obvious difference between delayed issuing approach and eager issuing approach. When

number of operations is relatively large, eager issuing approach and adaptive issuing approach

perform better than lazy issuing approach. This is because of the extra queuing overhead in

delayed issuing approach.

Figure 4.4 shows that on a slow network delayed issuing approach and adaptive issu-

ing approach are better than eager issuing approach when number of operations is small,

due to the extra synchronization cost in eager issuing approach; when number of opera-

tions becomes large, eager issuing approach and adaptive issuing approach perform better

than delayed issuing approach, because the extra synchronization cost can be ignored due

to the large amount of outgoing operations. Here we used number of operations as the

threshold for adaptive issuing approach. Similar results are also observed for MPI GET and

MPI ACCUMULATE operations.

4.3.2 Overlapping Impact

In this section we evaluate the overlapping performance by modifying the previous many-

operations benchmark. We first evaluate the latency (t1) for fixed number of operations plus

68

Figure 4.4: Many-ops results on breadboard

synchronization overhead between two processes, with no computation inserted. After that,

we inserted some computation after one-sided operations with certain amount of computation

corresponding to t1. If the total execution time does not change, it means that all compu-

tation is overlapped by network transaction and the overlapping percentage achieves 100%;

otherwise, we decreased the amount of computation until it can be completely absorbed by

network communication.

Assuming time corresponding to the inserted computation is t2, and the overlapping per-

centage equals to t2
t1

. Table 4.1 illustrates the overlapping results of the adaptive issuing

approach for MPI PUT operation on breadboard, with number of operations being 4096.

Percentage for MPI ACCUMULATE operation is similar with MPI PUT operation, whereas

percentage for MPI GET operation is only half of it is for MPI PUT operation. This is because

for MPI GET operation, the second synchronization needs to spend certain amount of time

waiting for returning data, which is unable to be overlapped with local computation. For

69

Table 4.1: Overlapping results on breadboard

Message Size (bytes) MPI PUT (LOCK-UNLOCK) MPI PUT (FENCE) MPI PUT (PSCW)

210 30% 30% 15%
211 25% 25% 20%
212 60% 50% 50%
213 70% 60% 60%
214 70% 70% 65%
215 70% 75% 80%
216 70% 85% 80%
217 70% 70% 75%

delayed issuing approach, there is nearly no overlapping effects observed, and for eager issuing

approach the overlapping percentage is similar to adaptive issuing approach. We did not

run overlapping test on SMP, because the communication speed on SMP is very fast and

computation is hard to be absorbed by one-sided communication.

4.3.3 Performance Impact in Mini-Apps

In this section, we measured the performance impact of adaptive strategy on Graph 500

benchmark [11] and MPPTEST benchmark [41]. Graph 500 benchmark is designed to

demonstrate the suitability of systems for data-intensive applications by performing BFS

on a randomly generated graph. The one-sided implementation of BFS in Graph 500 bench-

mark is implemented using MPI WIN FENCE and MPI ACCUMULATE operations. Between

each pair of MPI WIN FENCE calls, every process issues a lot of short operations to ran-

dom other neighbors. MPPTEST benchmark includes an implementation of halo exchange,

which can reflect common communication pattern in common simulation applications. In

halo exchange, one process exchanges data with several other neighbors via multiple short

data transmission between those processes. We use halo exchange to measure the impact of

adaptive algorithm in PSCW. All benchmarks are run on breadboard.

Figure 4.5 illustrates the results of Graph 500 benchmarks and Figure 4.6 demonstrates

70

Figure 4.5: Graph 500 results on breadboard

Figure 4.6: Halo exchange results on breadboard

the results of halo exchange with 128 processes and 8 neighbors. Both of them are run with

three different issuing strategies. For halo exchange, we use message size instead of number

of operations as the threshold in adaptive issuing approach.

4.4 Related Work

There are multiple studies regarding the implementation of one-sided communication in MPI.

MPI implementations that support one-sided communication include MPICH [23], Open

71

MPI [24] and NEC [42]. Besides MPI, there are other programming models that provide

one-sided communication paradigm, include CRAY SHMEM [43], ARMCI [44], GASNET

[45] and BSP [46].

Some previous BSP works, especially paper [47] and [48], discuss the benefits of aggre-

gating and scheduling communication operations to achieve better performance as well as

avoiding message contention. Other papers, such as [49] and [50], described the design op-

tions and challenges in implementing one-sided communication in MPI. The authors in [51]

have studied different optimization for reducing the synchronization overhead involved in

implementing MPI one-sided communication. Designs for MPI RMA in InfiniBand clusters

has been described in [52] and [53].In [54] and [55], the author describes a design for efficient

passive synchronization using hardware support from InfiniBand atomic operations. In [56],

authors discuss some performance guidelines for one-sided communication in MPI.

4.5 Conclusion

In this chapter, we describe the design and implementation of an adaptive issuing strat-

egy used for one-sided communication in MPI. The current MPICH implementation uses

a delayed issuing approach to issue operations, in which MPI runtime queues up posted

operations and issues them at the epoch closing synchronization phase. This has certain ad-

vantages with respect to single short operations because of the reduced network operations.

For large data transfers, however, issuing operations as early as possible is more beneficial

than delaying them to the ending synchronization phase, and it can provide optimization

opportunity for overlapping communication and computation.

Our design and implementation of adaptive issuing approach combine the advantages of

both delayed issuing and eager issuing approaches with modest overhead. The performance

results show that the adaptive approach performs as good as the delayed issuing approach

for small data transfers and be able to achieve performance similar to eager issuing for

72

large data transfers. We also demonstrate the benefits of adaptive approach using Graph

500 benchmark and MPPTEST benchmark. This work is also included in author’s Master

thesis [57].

73

CHAPTER 5

Scalable Virtual Connection Initialization

One of the factors that can limit the scalability of MPI to exascale systems is the amount

of memory consumed by the MPI implementation. In fact, some researchers believe that

existing MPI implementations will consume a large fraction of the available system mem-

ory at exascale systems because there are several O(P) data structure being used in MPI

implementations. In this chapter, we describe our work focusing on reducing the memory

consumption for virtual connection objects (VC objects) in MPI implementations.

5.1 Overview

Nowadays we have reached an era when the largest parallel systems in the world have achieved

a few hundred thousand cores and will be approaching million-core systems. For instance,

an IBM Blue Gene/Q system (Sequoia) at Lawrence Livermore National Laboratory in 2012

have more than 1.5 million cores. Community believes that on future systems we can expect

systems with many millions of cores over the next 5 to 10 years. Another outstanding trend

is that, even though the number of cores is increasing rapidly in recent years, the amount of

memory provided on each core is not increasing respectively. As systems scale is increased

to these sizes, many researchers wonder whether MPI runtime will be able to scale to such

large-scale systems. An often-mentioned concern in the community is the potential memory

consumption of MPI at large scale. It is widely believed that as the system size grows, the

74

memory consumed by MPI on each process will also grow rapidly. Considering the limited

amount of memory per core and per node, it is believed that MPI will consume a large

fraction of available memory and resources on Exascale systems. Effective solutions are

necessary to prevent such situation coming.

To investigate these aspects and address potential problems, we designed and implemented

specific optimizations for virtual connection objects inside MPI implementation to avoid lin-

ear memory growth. We describe these techniques and present experimental results demon-

strating the memory savings achieved and the negligible impact on performance.

5.2 Linear Memory Growth in Virtual Connections

In most existing and popular MPI implementations, each process must maintain a state

object for each other process with which it is actively communicating with. In MPICH,

such state is kept in a virtual connection (VC) object associated with each of the remote

processes. MPICH runtime creates one of these objects for each other process within MPI

runtime, which means that, these VC objects consume O(P) memory per process across

an entire MPI application in the worst case. However, we note that the current design in

MPICH is slightly more scalable than a naive design and implementation of maintain VC

objects. In current MPI implementation, many buffers that are attached to the VC object are

not allocated until communication actually happens with the target process corresponding

to that VC. In other words, for connection-oriented communication substrates such as TCP

network, such connections are not created until the communication really happens, therefore

valuable saving operating system resources.

The VC implementation is also related another example where additional space is con-

sumed in the trade-off with reduced access time. Each VC contains a area of “scratch pad”

in which it is used by lower-level layer to store per-VC metadata. In order to clearly de-

couple lower-level layer from the upper layer stack of MPICH, space for such storage must

75

exist and allocated in MPI runtime. However, it would be sufficient for such space to be

just large enough to maintain one single pointer, so that the lower-level layer could allocate

and initialize a separate object and store a pointer in this minimal scratch pad region. Such

approach would require an additional pointer dereference for the lower-level layer in order

to access its own VC-specific metadata. Instead, by making the scratch pad region larger,

this additional pointer dereference is saved for latency-sensitive data accesses that can be

fit into the scratch pad region. Of course, tuning the size of this scratch pad is critical for

performance of large P situation.

5.3 Lazy Initialization of Virtual Connections

To address the limitation of virtual connections, we developed an implementation that sub-

stantially re-designs the way VCs are managed. Under the new strategy, entire VC objects

are created lazily only as needed instead of statically during MPI INIT time. This change

requires a fundamental shift in the way VCs are stored and accessed within MPI runtime.

In MPI runtime, MPI communicators are responsible for storing enough metadata so that

they can determine which underlying process corresponds to a given rank in that commu-

nicator. This means that, given a communicator and a rank, the implementation must be

able to generate a VC object. An naive implementation of this is to support this by a vir-

tual connection reference table (VCRT). VCRTs consist of a dense array of VC references

(VCR), each of them is indexed by communicator rank. The VCR is an opaque type, how-

ever, because of practical details of the interface, it must be implemented as a pointer to the

underlying VC object. Each communicator stores a pointer to its VCRT and manipulates

reference counts inside that VCRT table. In our design, the VCRTs on each communicator is

replaced with a similar but more efficient concept: the Local Process ID mapping (or LPM).

These objects perform a similar role with VCRTs, but rather than mapping communicator

ranks to VCs directly and always via a dense array data structure, the LPM maps commu-

76

nicator ranks to LPIDs. This mapping decouples the upper-level layer, for instance MPI

collective routines, from any notion of VCs that exist only at the lower-level layer. Unlike

VCRTs, LPMs are truly transparent objects that are accessed only via function calls and

macros. This design provides the chance to encode the communicator representation in a

succinct, memory-efficient manner. Typical examples include using compression techniques

that take advantage of domain-specific knowledge [34], more general compression methods

[58]. Another example of domain-specific compression is supporting identity mappings, in

which the LPID is equal to the communicator rank. Implementing this identity mapping is

simple, given the new interface, and reduces memory usage on each process from O(P) to

O(1) for communicators for which this mapping holds, such as MPI COMM WORLD. Conve-

niently, the LPM concept and interface also allow us to unify the representation of groups

and the representation of communicator VC objects. Future improvements to this common

LPM facility will provide dividends in both the group and communicator subsystems within

MPICH. At the lower-level layer, VCs are obtained only via interfaces that refer to them by

their LPIDs. This design allows true lazy instantiation and storage of VC objects, such as

in a hash table, since upper-level layer no longer needs to hold pointers to all VCs.

5.4 Experimental Evaluation

In this section we provide substaintial experimental results to prove that a MPI implemen-

tation can restrict the use of memory within MPI runtime for scalable applications, without

introducing a significant performance overhead. We first look at several microbenchmarks,

after that we evaluate several application-based benchmarks. All results were gathered on

the “Fusion” cluster at Argonne National Laboratory. Each node consists of two Intel Xeon

X5550 quad-core processors, and the nodes are connected by Mellanox QDR Infiniband.

77

 4000

 4200

 4400

 4600

 4800

 5000

 5200

 5400

 8 32 64 128 256 512M
e

a
n

 b
yt

e
s

co
n

su
m

e
d

 /
 p

ro
ce

ss
 (

K
iB

)

size of MPI_COMM_WORLD

no communication
allreduce only

all communication

Fig. 1. Per process memory consumption in the prototype for three microbenchmarks.

102

103

104

210 212 214 216 218 220 222 224 226

B
a

n
d

w
id

th
 (

M
b

/s
)

Message Size (B)

Trunk
Eager
Lazy

10-5

10-4

20 22 24 26 28 210 212 214

L
a

te
n

cy
 (

s)

Message Size (B)

Trunk
Eager
Lazy

Fig. 2. Netpipe ping-pong performance results (log-log plot for relevant message sizes).

5.2 Performance Impact

The techniques discussed in Section 4 are expected to at least slightly impact
performance. Figure 2 shows MPI-level bandwidth and one-way latency numbers
for the stable (“Trunk”) version of MPICH2 as a reliable baseline, as well as the
prototype configured to use an eagerly constructed dense array (“Eager”) or lazily
constructed sparse hash table (“Lazy”) for VC storage. Both a slight decrease
in large-message bandwidth and a slight increase in small-message latency can
be seen. We emphasize, however, that the prototype code has not been tuned
to any noteworthy extent; we expect to eliminate most of this performance gap
with further effort.

5.3 Application Impact

We measured the impact of our changes on scalable applications by examin-
ing the performance and memory consumption behavior of certain NAS Parallel
Benchmarks [2] and the Sequoia AMG benchmark that are representative of
application behavior. All of these benchmarks exhibit fairly scalable commu-
nication patterns; that is, the number of communication partners remains flat

Figure 5.1: Per process memory consumption

5.4.1 Scalable Memory Use

In order to varify the memory usage of the strategy proposed in the previous section, we

use three microbenchmarks here which extract the basic communication behavior from so-

phisticated application scenarios. These microbenchmarks respectively perform (a) no com-

munication, (2) scalable communication (a single MPI ALLREDUCE), and (c) nonscalable

communication (pairwise communication between all processes). Furthermore, the MPI li-

brary was configured to allow for memory consumption measurements to be taken. Figure

5.1 illustrates the results of running these experiments with the “lazy” initialization approach

enabled. As we expected, the “no communication” and “allreduce” benchmarks consumed

no additional memory on each process as the job size grows, whereas the “all communica-

tion” benchmark shows that memory usage per process is increased linearly with job size.

This increase indicates an O(P 2) memory consumption in the entire system.

5.4.2 Performance Impact

Figure 5.2 shows the evaluation of bandwidth and latency with the stable “Trunk” version of

MPICH as a reliable baseline, and the strategy configured to use an eagerly constructed dense

array (“Eager”) or lazily constructed sparse hash table (“Lazy”) for storage of VC objects.

A slight decrease at large-message bandwidth and a slight increase at small-message latency

78

 4000

 4200

 4400

 4600

 4800

 5000

 5200

 5400

 8 32 64 128 256 512M
e

a
n

 b
yt

e
s

co
n

su
m

e
d

 /
 p

ro
ce

ss
 (

K
iB

)

size of MPI_COMM_WORLD

no communication
allreduce only

all communication

Fig. 1. Per process memory consumption in the prototype for three microbenchmarks.

102

103

104

210 212 214 216 218 220 222 224 226

B
a

n
d

w
id

th
 (

M
b

/s
)

Message Size (B)

Trunk
Eager
Lazy

10-5

10-4

20 22 24 26 28 210 212 214

L
a

te
n

cy
 (

s)

Message Size (B)

Trunk
Eager
Lazy

Fig. 2. Netpipe ping-pong performance results (log-log plot for relevant message sizes).

5.2 Performance Impact

The techniques discussed in Section 4 are expected to at least slightly impact
performance. Figure 2 shows MPI-level bandwidth and one-way latency numbers
for the stable (“Trunk”) version of MPICH2 as a reliable baseline, as well as the
prototype configured to use an eagerly constructed dense array (“Eager”) or lazily
constructed sparse hash table (“Lazy”) for VC storage. Both a slight decrease
in large-message bandwidth and a slight increase in small-message latency can
be seen. We emphasize, however, that the prototype code has not been tuned
to any noteworthy extent; we expect to eliminate most of this performance gap
with further effort.

5.3 Application Impact

We measured the impact of our changes on scalable applications by examin-
ing the performance and memory consumption behavior of certain NAS Parallel
Benchmarks [2] and the Sequoia AMG benchmark that are representative of
application behavior. All of these benchmarks exhibit fairly scalable commu-
nication patterns; that is, the number of communication partners remains flat

Figure 5.2: Netpipe ping-pong performance results

can be observed from the experiment results. We note that the prototype code has not been

tuned to achieve the best performance; we expect to eliminate most of this performance gap

in future effort.

5.4.3 Application Impact

In this section, we measured the impact of our changes on scalable applications by evaluating

the performance and memory consumption behavior of certain NAS Parallel Benchmarks [59]

and the Sequoia AMG benchmark. Both of them are representative of application behavior.

These codes are also well known and commonly used to represent the behavior of many

real-world scientific applications. All of these benchmarks exhibit scalable communication

patterns; which means that the number of communication peers keeps flat or increases slowly

when job size increases. Table 5.1 lists the performance impact and memory usage per process

of our techniques when applied to the CG and MG class D NAS Parallel Benchmark. The

benchmarks were run with the same three configurations from Figure 5.2. MPI memory

consumption is reduced in the lazy approach by about 550 bytes per process (≈11%), at a

cost of less than 5% in performance. Figure 5.3 illustrates memory consumption on each

process versus job size when running the Sequoia AMG benchmark [60] with both eager and

lazy VC initialization strategies. The benchmark was to solve a Laplace-type problem4 with

two different three-dimensional processor layouts. The first layout was cubic, for example

79

Table 1. Performance of selected NAS Parallel Benchmarks, version 3.3 run with 512
processes.

Benchmark MPI Time (s) Memory/Process (kiB)

cg.D.512
Trunk 536.77 5,149.2
Eager 520.55 (�3.02%) 5,144.7 (�0.09%)
Lazy 556.82 (+3.74%) 4,588.2 (�10.89%)

mg.D.512
Trunk 18.69 5,154.2
Eager 19.19 (+2.68%) 5,154.3 (+0.00%)
Lazy 19.49 (+4.28%) 4,602.3 (�10.71%)

 4000

 4500

 5000

 5500

 6000

 6500

 27 64 125 216 343 512 729 1000

M
e
a
n
 b

yt
e
s

/
p
ro

ce
ss

 (
K

iB
)

size of MPI_COMM_WORLD

eager / linear
 lazy / linear

eager / cubic
 lazy / cubic

Fig. 3. Per process memory consumption in the prototype for the Sequoia AMG bench-
mark.

or increases slowly as job size increases. These codes are also well known and
commonly used to represent the behavior of many real-world MPI numerical
applications.

Table 1 lists the performance impact and average per-process memory con-
sumption of our techniques when applied to the CG and MG class D NAS Parallel
Benchmark. The benchmarks were run with the same three configurations from
Figure 2. At this modest scale MPI memory consumption is reduced in the Lazy
approach by approximately 550 bytes per process (⇡11%), at a cost of less than
5% in performance. We did observe variability in the run times, despite great
consistency in the memory consumption numbers, which we attribute to noise
from the shared Infiniband network on this system.

Figure 3 shows per process memory consumption versus job size when run-
ning the Sequoia AMG benchmark [1] on the prototype with both the eager
and lazy VC initialization strategies. The benchmark was configured to solve a
Laplace-type problem4 with two different three-dimensional processor layouts.
The first layout was cubic (e.g., 36 processes organized as Px⇥Py⇥Pz = 6⇥6⇥6).
The plot clearly shows a substantially slower-growing memory consumption
4 AMG was run with the following options: -laplace -n 25 25 25 -solver 4.

Figure 5.3: Per process memory consumption in Sequoia AMG benchmark

36 processes organized as Px×Py×Pz = 6× 6× 6. The plot demonstrates a substantially

growing of memory consumption for this case when lazy VC initialization is used. The second

layout was entirely linear, for example by 36×1×1. This layout has far fewer communication

peers, which results in the expected almost flat memory usage on each process.

Table 5.1: Performance of selected NAS Parallel Benchmarks

Benchmark MPI Time (s) Memory /
Process (kiB)

cg.D.512
Trunk 536.77 5,149.2
Eager 520.55 (-4.02%) 5,144.7 (-0.09%)
Lazy 556.82 (+3.74%) 4,588.2 (-10.89%)

mg.D.512
Trunk 18.69 5,154.2
Eager 19.19 (+2.68%) 5,154.3 (+0.00%)
Lazy 19.49 (+4.28%) 4,602.3 (-10.71%)

5.5 Conclusion

In this chapter, we propose a new implementation of MPI virtual connection objects, and

show that an MPI implementation can be constructed so that memory use grows slowly as

the number of processes increase and that the performance cost for a real application is low.

This work is a collaboration between the author of this thesis and David Goodell [61] and

the implementation was completed by both of them. Specifically, David Goodell completed

80

the design of the work and the implementation of upper-level framework, whereas the au-

thor completed the implementation of lower-level framework, including lazily initializing VC

objects and storing VC objects in a hash table.

81

CHAPTER 6

Generalized MPI-Interoperable

Active Messages

In recent years, irregular and data-intensive applications have become increasingly important

in many areas, however, traditional data movement approaches like two-sided communica-

tion for scientific computation are not well suited for such kind of new applications. The

Active Messages (AM) paradigm is an alternative communication paradigm that is better

suited for such applications by allowing computation to be dynamically moved closer to the

data. Considering the wide usage of MPI in scientific computing and many other applica-

tions, enabling an MPI-interoperable AM paradigm would allow traditional applications to

incrementally start utilizing AMs in portions of their applications, thus avoiding the pro-

gramming effort of rewriting the entire MPI-based irregular application. In this chapter,

we present a design and implementation of a generalized framework of MPI-interoperable

AM, called MPI-AM, which can provide a general semantics of Active Messages integrated

with MPI to accommodate a wide variety of computational patterns in irregular applica-

tions. Together with a set of new APIs, we describe a detailed description of the correctness

semantics of MPI-interoperable AM, optimization techniques and asynchronous processing,

and a reference implementation that demonstrates how various implementation choices affect

the flexibility provided to the MPI implementation and consequently its performance.

In the generalized framework for MPI-interoperable Active Messages, we first propose a

82

new set of functionality and semantics that do not extend the existing MPI ACCUMULATE-

like operations but still maintain complete compatibility with the MPI-3 standard. The new

semantics allow the implementation to achieve better performance for example by controlling

streaming and data usage granularity, concurrency capabilities among AMs, and ordering

semantics.

6.1 Overview

Many new, irregular and data-intensive applications have become popular in recent years in

various domains such as bioinformatics, computational chemistry and social network analy-

sis. A fundamental and common characteristic of these applications is that they involve a

large amount of transferred data, possibly in irregular patterns, requiring computation and

data movement to be carefully balanced in order to achieve high performance. Traditional

programming models, such as MPI two-sided communication or collective communication,

that were designed for environments where computation is regular and communication cost

is significantly larger than the data movement cost, are not well suited for such applications.

Alternative programming frameworks are needed.

The Active Messages (AM) model [13] is a parallel programming paradigm that is more

suitable for irregular applications. It allows a process to specify a function handler to be

executed when an active message arrives the target side, therefore relieving the responsi-

bility of the target to explicitly receive and process the incoming message. Such a model

can be more natural to use in some scenarios in irregular applications. A combination of

the traditional MPI SEND / MPI RECV or MPI PUT / MPI GET models to move data and

an AM-based model to move computation can provide applications and high-level libraries

capabilities to efficiently and dynamically balance their computation and data movement in

order to achieve high performance.

In this chapter, we present a generalized framework for MPI-interoperable AMs. Specif-

83

ically, we propose a new set of functionality and semantics that does not rely on existing

MPI ACCUMULATE-like operations but still maintain complete compatibility with the latest

MPI-3 standard. The new semantics allow the implementation to achieve better perfor-

mance, for instance by controlling message streaming and data usage granularity, concur-

rency capabilities among AMs, ordering semantics and asynchronous processing. In addition

to the design description, in this chapter, we also present a reference implementation of the

generalized framework and experimental evaluation results demonstrating the performance

impact of the various semantic choices, different buffer supplement strategies and message

streaming configuration, and asynchronous processing.

6.2 Background and Related Work

The concept of Active Messages (AM) was proposed by von Eicken et al. for Split-C in [13]

in 1992 and has been used internally to implement various communication libraries and run-

time systems, such as MPI implementations, Co-Array Fortran (CAF) and Unified Parallel

C (UPC). With the capability of AM, the sender of a message can specify a message handler

to be executed at the receiver side upon arrival of that message. When the message arrives,

the corresponding AM handler is triggered to perform certain user-defined computation with

the data in that message and the data on the target side. Unlike traditional MPI two-sided

communication, the application on the receiver side does not need to explicitly make a func-

tion call in order to receive that message. Previous libraries that support such capability of

AM include GASNet [62], IBM DCMF [63], IBM LAPI [64] and IBM PAMI [65]. While they

are popular in high performance computing, those libraries either do not maintain runtime

compatibility with MPI infrastructures, or are too low-level and platform-specific. Existing

MPI-based applications cannot directly use them without duplicating runtime resources such

as internal buffers or asynchronous threads. Since existing AM libraries and interfaces are

too low-level for application to directly use, there is previous work that has been done on

84

supporting AM on top of the MPI library, so that existing MPI applications can gradually

utilize the AM communication paradigm only when necessary. Previous works of MPI and

AM include AM++ [66] and AMMPI [67]. While they are portable implementations, those

libraries are too restricted in a number of ways, including inability to marshall and demar-

shall datatypes, lack of asynchronous progress and absence of explicit semantics for memory

consistency, ordering, concurrency of AMs, and atomicity.

Like what we introduced in Chapter 2, MPI programming model and runtime systems

are widely portable and support two-sided, collective and one-sided communication. In

MPI one-sided communication, the originator of the operation (e.g. MPI PUT, MPI GET and

MPI ACCUMULATE) specifies the memory location of the buffer at the remote target where

the data is to be sent to or received from. This “one-sided” style of communication is similar

with AM in which the originator of AM specifies the location of the buffer at the remote

target where the AM is going to interact with. On the other hand, in MPI ACCUMULATE-like

operations, the originator specifies a certain type of computation (e.g. MPI SUM, MPI MIN,

MPI MAX) that is going to be performed on the remote side. This is quite close to the AM

handler in Active Messages. However, MPI ACCUMULATE-like operations only supports a

limited predefined set of computation and does not support user-defined computation. It

is natural to consider extending MPI ACCUMULATE-like operations to support user-defined

computation in order to achieve AM capability in MPI, however, there are several inevitable

restrictions with it. In this thesis, we call such design as “accumulate-style AM” and we will

discuss those restrictions in Section 6.3.

6.3 Restrictions of Accumulate-Style Active Messages

The semantics of MPI ACCUMULATE-like operations, including MPI ACCUMULATE,

MPI GET ACCUMULATE and MPI FETCH AND OP, are very close to the concept of AM.

MPI ACCUMULATE-like operations allow users to specify certain calculations to be performed

85

on remote memory. However, they only support a limited set of predefined computation and

do not support user-defined computation. To allow for more flexible computation on remote

processes, one solution is to extend MPI ACCUMULATE-like operations to support user-defined

function in MPI, i.e., to implement as accumulate-style AMs.

In MPI-3 standard, user-defined function is proposed to be used with MPI REDUCE-like col-

lective communication. We can use the same mechanism to allow user to define user-defined

function for MPI ACCUMULATE-like operations. The ISO C prototype of user-defined function

is as the following: typedef void MPI User function (void∗ invec, void∗ inoutvec,

int∗ len, MPI Datatype∗ datatype). Arguments invec and inoutvec represent two

buffers that the function combines, whereas arguments len and datatype describe the data

amount and data layout of those buffers. Each invocation of the function leads to the pairwise

execution of user-defined computation on elements in buffers. The results of the function are

returned to the buffer specified by inoutvec. After defining the user function, user needs to

call MPI OP CREATE routine to bind the function to an MPI operation handle that can be

subsequently passed to MPI ACCUMULATE-like operations.

Even though enabling MPI ACCUMULATE-like operations to support user-defined functions

would achieve a functionality of “one-sided” style communication and allow user to spec-

ify computation on the remote side, MPI ACCUMULATE-like operations were not originally

intended for AMs, and their semantics do not quite match with what AMs need. Conse-

quently, accumulate-style AM, which are based on MPI ACCUMULATE-like operations, has

several restrictions when being used as an AM framework in practice. We will discuss those

restrictions in the following sections.

6.3.1 Data Access

One restriction in using accumulate-style AMs comes from the way it represent the data

layouts. More specifically, the user-defined function which was originally intended for

MPI REDUCE-like operations in MPI accepts a single data layout, i.e. a single datatype and

86

count. Therefore, both the input and output buffers must have exactly the same layout when

using with that user-defined function. While this requirement is suitable for MPI REDUCE,

where multiple input arrays are reduced into a single target array, it is too restrictive for

the usage of AMs. For instance, considering an application where the data on the target

process is an array of bins of containers representing value ranges. When the target process

receives an AM with an integer that falls into one of those bins, the corresponding counter

is incremented. In such a scenario, the AM input data contains a single integer, while the

AM handler needs access to the entire array of bins to do the necessary computation. Such

kind of computation cannot be handled by accumulate-style AMs.

A similar restriction arises with respect to the data that is returned back to the origin pro-

cess. While both MPI GET ACCUMULATE and MPI FETCH AND OP provide such capability,

their semantics require it to return the original data at the target before the modification

is performed. Therefore, the AM cannot flexibly return any arbitrary user-specified data.

One example where such capability is necessary is DNA sequence assembly applications (e.g.,

SWAP [1] and Kiki [2]). These applications rely on storing databases with large data volume

of DNA sequences on distributed-memory system. A process that needs to search for a DNA

sequence in the database would issue the query sequence to the target as an AM, which

would then search through its database and return the matches. Although the AM requires

access to the entire data on the target process, it does not necessarily require all of this data

to be returned to the origin. Only the matches need to be returned. To emulate such a func-

tion, SWAP currently uses MPI SEND / MPI RECV with threads, potentially wasting cores

waiting for incoming requests. Kiki uses dedicated “server processes” that only process such

messages but perform no application computation, again wasting some user-defined number

of cores for these processes. Applications in other domains, such as MADNESS [4] (compu-

tational chemistry), are similarly restricted and emulate AM functionality using MPI SEND

/ MPI RECV with threads.

87

6.3.2 Message Segmentation and Temporary Buffers

The MPI-3 standard has not required the MPI implementation to have any temporary

buffers. That is, the application cannot assume that there are any temporary buffers within

MPI implementation for communication and has to perform correctly when no such buffers

are available in MPI runtime. For example, although most MPI implementations use “eager

buffers”, also referred to internal temporary buffers, when communicating small messages and

application (or user) buffers through a “rendezvous” synchronized hand-shake when commu-

nicating large messages, the MPI-3 standard does not expose such modes to the application.

Thus MPI implementations is free to experiment with different buffering techniques in order

to improve performance.

This concept is also apparent in MPI ACCUMULATE-like operations that guarantee atomic-

ity only at the granularity of predefined datatypes. Therefore, an MPI implementation that

has no internal buffers can segment operations into multiple smaller operations, which is

potentially at the granularity of one predefined datatype per operation, and issue them one

by one. Since MPI ACCUMULATE-like operations permits only predefined computations, the

MPI implementation knows these operations beforehand and can implement them appropri-

ately in order to compute on segmented data. For accumulate-style AM, however, because

the computation is now defined by the user’s application, the MPI implementation is unable

to know what an appropriate segmentation granularity would be. Segmenting data to the

granularity of a predefined datatype might be too restrictive for the irregular application.

For instance, in the DNA assembly example given in Section 6.3.1, if the MPI runtime dev-

ides the input DNA string sequence to the granularity of individual characters, the AM user

function cannot search for the entire string in the target database with this input informa-

tion. On the other hand, if the MPI runtime had to send the entire input data to the target

process, it will be required to buffer arbitrarily large input data internally, which causing

the memory usage problem.

88

6.3.3 Lack of Concurrency

In accumulate-style AM, semantic of concurrent execution of AMs is not well defined. In an

environment where multiple origin processes simultaneously trigger AMs on the same target

process, or where the same origin process triggers multiple concurrent AMs on the same

target process, can the MPI implementation simultaneously execute those different AMs?

MPI ACCUMULATE-like operations are atomic at the granularity of predefined datatypes.

That is, if two such operations target at the same memory location on the same target,

the MPI implementation will ensure that these updates do not interfere with each other.

With user-defined operations, however, MPI can no longer keep track of such atomicity

on target window. A conservative implementation of accumulate-style AM would be to

serialize all AMs computing on overlapping memory locations and process them one by one,

thus forcing no concurrency in execution. However, such an implementation would bring

expensive performance overhead. For instance, for AMs that only need to read the target

data but do not need to update it, no such atomicity is required, and the lack of concurrency

can hurt performance a lot.

6.3.4 Interoperation with Other MPI Messages

MPI ACCUMULATE-like operations have well-defined interoperation semantics with other MPI

messages. Multiple MPI ACCUMULATE-like operations updating the same memory region are

guaranteed to leave the data in a consistent state (i.e., as if they executed in some sequen-

tial order). However, if multiple MPI PUT operations target the same memory location or if

MPI ACCUMULATE-like operations are mixed with MPI PUT or MPI GET, the resultant data is

undefined. For accumulate-style AM, no such interoperability semantics are defined. Unlike

MPI ACCUMULATE-like operations, the MPI implementation cannot keep track of the atomic-

ity of each accumulate-style AM. Hence, interoperability semantics of MPI ACCUMULATE-like

operations are not relevant for accumulate-style AM.

89

6.4 Design and Implementation of Generalized MPI-

Interoperable Active Messages Framework

In this section, we present a design and implementation for generalized MPI-interoperable

AMs that addresses the shortcomings discussed in Section 6.3. The design leverages the MPI

RMA interface but is no longer based on MPI ACCUMULATE-like operations but proposes a

much more generalized framework of AM capability.

6.4.1 Data Streaming in Active Messages

The MPI implementation can invoke a user-defined AM function multiple times to handle a

single large message. If the origin and target buffers are arrays, then the user-defined AM

function may be called to process smaller portions of the array. This allows the message

reception to be pipelined with the execution of the user-defined AM function, meanwhile

reduces the memory required to stage the incoming message. We implemented pipelining by

first receiving a chunk of the incoming data then calling the user-defined function with the

data received from origin and the data in the target buffers. Each chunk is defined as one

“segment”.

Each AM contains multiple segments as represented by the argument num segments in AM

handler, as illustrated in Figure 6.2 (AM handler is described in Section 6.4.3). The MPI

implementation is allowed to split an AM at any system-dependent size at the granularity of

one segment, which means that such system-dependent size must be a multiple of segment

size. Such capability is helpful, for instance, when the user or the MPI implementation does

not have enough temporary buffers to stage the entire input and output data of one AM han-

dler. Even when enough temporary buffer space is available, the MPI implementation can

still choose to pipeline the data transfer with the AM computation in order to improve the

performance. One significant difference with MPI ACCUMULATE-like operations is the gran-

90

ularity of segmentation. As described in Section 6.3, in MPI ACCUMULATE-like operations,

the MPI implementation is allowed to segment a message at the granularity of predefined

datatypes. With MPIX AM, the runtime system cannot know the minimum granularity of

segmentation for each AM, therefore it must be specified by the user via num segments in AM

handler. For example, in the example of DNA sequence assembly discussed in Section 6.3.1,

the minimum granularity for input data to AM handler is one DNA sequence, therefore, the

user should define one segment as one DNA sequence and specify num segments at least as

one in order to trigger the execution of AM handler on target side.

6.4.2 Data Buffering Requirements

In MPI-AM framework, each AM handler is associated with a temporary input buffer and

a temporary output buffer that are valid only within the execution of AM handler. An

important question here is who is responsible for allocating and managing such temporary

buffers. Most previous AM frameworks assume that the runtime system (in this case, MPI)

would allocate and maintain such internal buffers. However, since the runtime does not

know the minimum granularity maximum consumption of AM handler, and there is no

upper bound on how much memory an AM would need in order to perform computation,

that is not a reasonable assumption and should be carefully defined.

To this end, we propose two new routines: MPIX AM WIN BUFFER ATTACH

and MPIX AM WIN BUFFER DETACH, as illustrated in Figure 6.1.

MPIX AM WIN BUFFER ATTACH allows the user to provide certain amount of tempo-

rary buffer in user’s memory space to the MPI implementation in order to accommodate

data in incoming AMs. MPIX AM WIN BUFFER DETACH reclaims the buffer from the MPI

implementation. While the MPI implementation might also internally provide additional

temporary buffers, the MPI application should not assume the availability of such internal

buffers but should always explicitly provide enough user buffers beforehand.

The size of the user-provided buffer must be large enough to serve input and output

91

MPIX AM WIN BUFFER ATTACH (b u f f e r , s i z e , win)

IN b u f f e r i n i t i a l b u f f e r a d d r e s s (c h o i c e)

IN s i z e b u f f e r s i z e , i n b y t e s (i n t e g e r)

IN win window o b j e c t (h a n d l e)

MPIX AM WIN BUFFER DETACH (b u f f e r , win)

IN b u f f e r i n i t i a l b u f f e r a d d r e s s (c h o i c e)

IN win window o b j e c t (h a n d l e)

Figure 6.1: Prototype of AM buffer attach / detach routines

buffers corresponding to at least one AM segment. On the other hand, the temporary

user buffer is shared by AMs from all origin processes. Therefore, in the implementation

of MPI-AM framework, the origin process needs to perform appropriate synchronization

beforehand with the target process in order to “reserve” portion of the user buffer before

it can issue the AM data. Furthermore, the user-provided temporary buffer must be large

enough to accommodate the target input and output data in the user-described, potentially

sparse, data layout, which means that the temporary buffer should be at least the “MPI true

extent” of the target input and output datatype counts. The true extent can be returned

using MPI TYPE GET TRUE EXTENT. While MPI-Am allows sparse datatypes, which have a

small size but a large extent, to be used in the AM handler, such datatypes are discouraged

in practice because of the large unnecessary memory usage they consumes.

Apart from user buffers, in the implementation of MPI-AM, we also provide internal system

buffers for the usage of AMs. The internal buffers are not shared among origin processes

but are allocated separately for each origin process, therefore the origin side does not need

to synchronize with the target in order to reserve buffers beforehand. When internal buffers

are used up, the MPI runtime will switch to use user-provided buffers.

6.4.3 Generalized Interface

In this section, we introduce the generalized interface for MPI-AM framework, including

user-defined AM handler, AM trigger routine, and handler creation routine and handler

92

registration routine. We also include an example showing how to use MPI-AM in the

program.

User-Defined Active Messages Handlers. We first propose a new prototype of

the user-defined function handler, MPIX AM USER FUNCTION, that would execute when an

AM arrives at a target. In this thesis we refer to that handler as the “AM handler”. The

prototype of it is illustrated in Figure 6.2.

In the high-level working model, the user defines a AM handler with the

MPIX AM USER FUNCTION prototype and creates an MPI operation handle with that handler

using MPIX AM OP CREATE. Once an MPI operation handle is created, the user collectively

registers the operation handles across a group of processes where every process provides a

functionally equivalent AM handler.

The handler executes in user context, as opposed to an interrupt or signal context,

and has access to three buffers: input buffer (specified by arguments with prefix input),

persistent buffer (specified by arguments with prefix persistent , and output buffer (specified

by arguments with prefix output). Data in the input buffer is provided by the origin; data

in the output buffer is generated during the execution of AM handler and is returned to

the origin at the completion of the AM. Both the input and output buffers are private to

the AM handler and are temporary. That is, neither the buffer nor its content is valid

outside of the AM handler. The MPI implementation can stage such data in temporary

buffers and discard the buffers or the data in those buffers at the end of the AM handler.

The persistent buffer points to the part of the target window that the AM handler has

access to and is persistent across AMs. That is, the buffer is available and valid outside

of the AM handler as well. The AM handler can update the data in the persistent buffer.

Argument num segments specifies the granularity of data segmentation and argument

segment offset specifies the starting offset in segment units for current AM. Data streaming

and segmentation is described in Section 6.4.1.

93

MPIX AM USER FUNCTION (i n p u t a d d r , i n p u t s e g m e n t c o u n t ,

i n p u t s e g m e n t d a t a t y p e , p e r s i s t e n t a d d r ,

p e r s i s t e n t c o u n t , p e r s i s t e n t d a t a t y p e , o u t p u t a d d r ,

o u t p u t s e g m e n t c o u n t , o u t p u t s e g m e n t d a t a t y p e ,

num segments , s e g m e n t o f f s e t)

IN i n p u t a d d r a d d r e s s o f i n p u t b u f f e r (c h o i c e)

IN i n p u t s e g m e n t c o u n t number o f e l e m e n t s i n one i n p u t segment

(non−n e g a t i v e i n t e g e r)

IN i n p u t s e g m e n t d a t a t y p e d a t a t y p e o f each e n t r y i n i n p u t segment

(h a n d l e)

INOUT p e r s i s t e n t a d d r a d d r e s s o f p e r s i s t e n t b u f f e r (c h o i c e)

INOUT p e r s i s t e n t c o u n t number o f e l e m e n t s i n p e r s i s t e n t b u f f e r

(non−n e g a t i v e i n t e g e r)

INOUT p e r s i s t e n t d a t a t y p e d a t a t y p e o f each e n t r y p e r s i s t e n t b u f f e r

(h a n d l e)

OUT o u t p u t a d d r a d d r e s s o f output b u f f e r (c h o i c e)

OUT o u t p u t s e g m e n t c o u n t number o f e l e m e n t s i n one output segment

(non−n e g a t i v e i n t e g e r)

OUT o u t p u t s e g m e n t d a t a t y p e d a t a t y p e o f each e n t r y i n output segment

(h a n d l e)

IN num segments number o f segments i n i n p u t and output

b u f f e r s (non−n e g a t i v e i n t e g e r)

IN s e g m e n t o f f s e t c u r r e n t segment o f f s e t i n i n p u t and

output b u f f e r s (non−n e g a t i v e i n t e g e r)

Figure 6.2: Prototype of AM handler

Registration of Active Messages Handler. We propose four new routines for

AM handler creation and registration, as illustrated in Figure 6.3. MPIX AM OP CREATE

is similar with MPI OP CREATE in MPI-3 standard [8] which associates an user-defined

function to an operation handle. Difference is that MPIX AM OP CREATE associates

user-defined AM handler with an MPI operation handle whereas MPI OP CREATE associates

user-defined function (used in MPI REDUCE-like operations) with an MPI operation handle.

MPIX AM OP FREE is used to free the MPI operation handle.

MPIX AM OP REGISTER is a call among all processes that are in the same window. When

the routine is called, the operation handle and a AM handler index are passed in and run-

94

MPIX AM OP CREATE (u s e r f n , op)

IN u s e r f n AM u s e r d e f i n e d h a n d l e r (f u n c t i o n)

OUT op o p e r a t i o n (h a n d l e)

MPIX AM OP FREE (op)

INOUT op o p e r a t i o n (h a n d l e)

MPIX AM OP REGISTER (op , index , win)

IN op o p e r a t i o n (h a n d l e)

IN i n d e x i n d e x f o r t h i s h a n d l e r (i n t e g e r)

IN win window (h a n d l e)

MPIX AM OP DEREGISTER (op , win)

IN op o p e r a t i o n (h a n d l e)

IN win window (h a n d l e)

Figure 6.3: Prototype of AM creation and registration routines

time stores them in a hash table on that window. This registration routine is collective to

ensure that the operation is registered on all processes including potential targets before any

origins starting issuing active messages. Because operation handles are local objects, an AM

handler index is necessary for AMs to identify handler functions on remote processes. In

this way, the user-defined operation can be “available everywhere”. It is user’s responsibility

to guarantee that operations defined on different processes with the same AM handler index

have equivalent functionalities. MPIX AM OP DEREGISTER is used to de-register the AM

handler from the window.

Two handlers are “functionally equivalent”, if one can be executed instead of the other

to get an equivalent result. For architectures that use different byte-widths or byte-ordering

for datatypes, the MPI implementation will need to do necessary data transformation before

executing the AM handler. Thus, the MPI operation represents a group of functionally

equivalent handlers distributed across processes. The functional equivalence of the handlers

makes it valid for the MPI implementation to replace one handler with another. For

example, instead of transmitting the AM to the target process, the MPI implementation

can fetch the target data locally and execute the AM using the local equivalent handler.

95

Such an approach is particularly useful for shared-memory systems where the “remote data”

might be directly visible to the process through shared memory.

Active Messages Trigger. We propose a new routine for issuing AMs, called MPIX AM,

that manages the data and computation associated with an AM, as illustrated in Figure 6.4.

This section describes the data associated with the AM. The computational function

handler is represented by op.

MPIX AM allows the user to specify arguments associated with totally five buffers on origin

side and target side: origin input buffer (specified by arguments with prefix origin input),

target input buffer (specified by arguments with prefix target input), target persistent buffer

(specified by arguments with prefix target persistent), target output buffer (specified by ar-

guments with prefix target output), and origin output buffer (specified by arguments with

prefix origin output).

Argument origin input addr provides the buffer on the origin side associated with the input

data, while arguments origin input segment count and origin input segment datatype represent the

data layout. The target input buffer stages data that would be transmitted to the AM handler

as input data. When the data is transferred to the target process, we allow the data repre-

sentation to be modified to a different layout as represented by target input segment datatype.

This capability is useful for applications that use sparse data layouts on the origin for the

input buffer (e.g., elements on the nonleading dimension of a matrix), but can represent

them in a more space-concise format at the target (such as a contiguous list of elements).

Note that the type signature of origin input segment datatype does not need to match that of

target input segment datatype. However, there must exist a non-negative integer “N”, where

the type signature of origin input segment count × origin input segment datatype should match

that of “N × target input segment datatype”. In other words, the runtime system should be

able to represent the data in each segment using a collection of target input segment datatype

elements. “N” is internally calculated by the MPI implementation.

96

MPIX AM (o r i g i n i n p u t a d d r , o r i g i n i n p u t s e g m e n t c o u n t ,

o r i g i n i n p u t s e g m e n t d a t a t y p e , o r i g i n o u t p u t a d d r ,

o r i g i n o u t p u t s e g m e n t c o u n t , o r i g i n o u t p u t s e g m e n t d a t a t y p e ,

num segments , t a r g e t r a n k , t a r g e t i n p u t s e g m e n t d a t a t y p e ,

t a r g e t p e r s i s t e n t d i s p , t a r g e t p e r s i s t e n t c o u n t ,

t a r g e t p e r s i s t e n t d a t a t y p e , t a r g e t o u t p u t s e g m e n t d a t a t y p e , op , win)

IN o r i g i n i n p u t a d d r i n i t i a l a d d r e s s o f o r i g i n i n p u t

b u f f e r (c h o i c e)

IN o r i g i n i n p u t s e g m e n t c o u n t number o f e n t r i e s i n each segment

i n o r i g i n i n p u t b u f f e r (non−n e g a t i v e

i n t e g e r)

IN o r i g i n i n p u t s e g m e n t d a t a t y p e d a t a t y p e o f each e n t r y i n o r i g i n

i n p u t b u f f e r (h a n d l e)

OUT o r i g i n o u t p u t a d d r i n i t i a l a d d r e s s o f o r i g i n output

b u f f e r (c h o i c e)

IN o r i g i n o u t p u t s e g m e n t c o u n t number o f e n t r i e s i n each segment

i n o r i g i n output b u f f e r (non−n e g a t i v e

i n t e g e r)

IN o r i g i n o u t p u t s e g m e n t d a t a t y p e d a t a t y p e o f each e n t r y i n o r i g i n

output b u f f e r (h a n d l e)

IN num segments number o f segments i n o r i g i n i n p u t

and output b u f f e r s (non−n e g a t i v e

i n t e g e r)

IN t a r g e t r a n k rank o f t a r g e t p r o c e s s (non−n e g a t i v e

i n t e g e r)

IN t a r g e t i n p u t s e g m e n t d a t a t y p e d a t a t y p e o f each e n t r y i n t a r g e t

i n p u t b u f f e r (h a n d l e)

IN t a r g e t p e r s i s t e n t d i s p window o f f s e t to t a r g e t p e r s i s t e n t

b u f f e r (non−n e g a t i v e i n t e g e r)

IN t a r g e t p e r s i s t e n t c o u n t number o f e n t r i e s i n t a r g e t p e r s i s t e n t

b u f f e r (non−n e g a t i v e i n t e g e r)

IN t a r g e t p e r s i s t e n t d a t a t y p e d a t a t y p e o f each e n t r y i n t a r g e t

p e r s i s t e n t b u f f e r (h a n d l e)

IN t a r g e t o u t p u t s e g m e n t d a t a t y p e d a t a t y p e o f each e n t r y i n t a r g e t

output b u f f e r (h a n d l e)

IN op use r−d e f i n e d o p e r a t i o n f o r th e AMs

(h a n d l e)

IN win window o b j e c t used f o r communicat ion

(h a n d l e)

Figure 6.4: Prototype of AM trigger routine

97

Argument origin output addr provides the buffer on the origin side associated with the out-

put data, while arguments origin output segment count and origin output segment datatype rep-

resent the data layout. The target output buffer stages data that is returned to the origin

side once the AM handler completes. Like the origin input buffer, the data layout used at the

target process (as represented by target output datatype) can be different from that returned

to the origin process. Each segment can be viewed as a unit of work to be executed in the

AM. The input and output segment datatypes and their counts represent the data associated

with each unit of work.

The target persistent buffer represents data that already exists at the target process and

is used within the AM handler. Arguments target persistent disp, target persistent datatype and

target persistent count represent the portion of the data that is accessed by the AM. While

the AM can represent the entire target memory window using these parameters, an accurate

representation of the required target data can allow the MPI implementation to optimize

data movement in some cases (e.g., where the target data is smaller than the origin data,

by fetching the target data and computing on it locally) or better identify opportunities

for concurrency or out-of-order execution of AMs. Argument num segments specifies the

granularity of data segmentation for the current AM. The data streaming and segmentation

is described in Section 6.4.1.

MPIX AM specifies the computation to be performed on the data but does not specify

where the computation actually happens. In the other words, the AM origin process

and target process only describe the locality of the data. The MPI implementation can

choose to execute the AM computation on the target side, on the origin side, or at any

other location. While forcing the computation to occur at the target side would allow

applications to be able to better control the computational resource, it would take away the

MPI implementation’s capability to do trade-off between computational locality and data

movement, for instance by moving the target data to the origin process and computing on it

locally. Unfortunately, there is no clear winner between these two choices. In our design of

98

MPI-AM, we allowed the MPI implementation to have more flexibility at the cost of fewer

guarantees on the computational locality.

Code Example. In this section, we describe an example code using the interface

of MPI-AM described above. This example can take advantage of generalized MPI-

interoperable AM.

In the code illustrated in Figure 6.5, my sum represents the user-defined AM handler that

the application would like triggered when an AM arrives. The function itself sums up the data

at the origin side. The application first creates an operation sum op out of the user-defined

function handler using MPIX AM OP CREATE. After he operation is created, the application

collectively registers it across all processes on the window using MPIX AM WIN OP REGISTER.

Once the operation is registered, rank 0 issues a single AM to rank 1 within a LOCK-UNLOCK

epoch. We note that the application attached a user buffer of 100 bytes to rank 1 beforehand,

in preparation for the AM.

6.4.4 Workflow of MPI-Interoperable Active Messages

The workflow of the MPI-AM framework is illustrated in Figure 6.6. With the routines

proposed in this section, users can manage data content and movement among five associated

buffers: origin input buffer, target input buffer, target persistent buffer, target output buffer,

and origin output buffer. We note that target input buffer and target output buffer are

internal buffers associated with each AM handler whereas the rest buffers are public buffers.

When MPIX AM is called, the origin input data is sent to the target process and is staged in

the target input buffer. This staged data serves as the input data to the AM handler, and

the handler stores its output data into the target output buffer. Once the computation in

the handler is finished, the output data is returned back to the origin output buffer. The

target persistent buffer stores the data that already exists at the target’s window and is

accessed within the AM handler. All modifications on this buffer can be seen by future AM

99

1 v o i d my sum (v o i d ∗a , MPI Aint ∗ a s e g o f f , i n t ∗ a s e g c n t ,
2 MPI Datatype ∗ a dtp , v o i d ∗b , i n t ∗ b cnt ,
3 MPI Datatype ∗b dtp , v o i d ∗ r s t , i n t ∗ r s t s e g c n t ,
4 MPI Datatype ∗ r s t d t p)
5 {
6 i n t i ;
7 i n t ∗ i n a = (i n t ∗) a ;
8 d o u b l e ∗ i n b = (d o u b l e ∗) (b + (∗ a s e g o f f) ∗ 2) ;
9 d o u b l e ∗ o u t r s t = (d o u b l e ∗) r s t ;
10
11 f o r (i = 0 ; i < (∗ a s e g c n t) ; i ++)
12 {
13 /∗ Each output e l ement depends on many t a r g e t e l ement s ∗/
14 ∗ o u t r s t = (d o u b l e) (∗ i n a + ∗ i n b + ∗(i n b +1)) ;
15 i n a ++;
16 i n b += 2 ;
17 o u t r s t ++;
18 }
19 }
20
21 i n t main (i n t argc , c h a r ∗ a r g v [])
22 {
23 . . .
24
25 /∗ a t t a ch u s e r b u f f e r to window ∗/
26 i f (rank == 1)
27 M P I X A m w i n b u f f e r a t t a c h (u s e r b u f , 100 , win) ;
28
29 /∗ c r e a t e and r e g i s t e r u s e r o p e r a t i o n ∗/
30 MPIX Am op create (my sum , &sum op) ;
31 M P I X A m w i n o p r e g i s t e r (sum op , 1 , win) ;
32
33 /∗ a t t a ch b u f f e r and i s s u e a c t i v e message ∗/
34 i f (rank == 0) {
35 MPI Win lock (MPI LOCK EXCLUSIVE , 1 , 0 , win) ;
36 MPIX Am(a , 10 , MPI INT , r s t , 20 , MPI DOUBLE , 100 , 1 ,
37 MPI INT , 0 , 2000 , MPI DOUBLE , MPI DOUBLE , sum op , win) ;
38 MPI Win unlock (1 , win) ;
39 }
40
41 /∗ detach and f r e e u s e r o p e r a t i o n ∗/
42 M P I X A m w i n o p d e r e g i s t e r (sum op , win) ;
43 MPI Op free (sum op) ;
44
45 /∗ detach u s e r b u f f e r from window ∗/
46 i f (rank == 1)
47 MPIX Am win buf fe r detach (u s e r b u f , win) ;
48 . . .
49 }

Figure 6.5: Code example of AM

100

and RMA operations.

AM#
input#
data�

AM#
output#
data�

RMA#window�

origin#input#buffer� origin#output#buffer�

target#input#buffer� target#output#buffer�

target#persistent#buffer�

AM#handler�

private#memory� private#memory�

Figure 6.6: MPI-AM workflow

6.4.5 Correctness Semantics

In this section, we introduce important correctness semantics of MPI-interoperable AM

framework, from perspective of ordering, concurrency, atomicity and memory consistency,

to define how MPI-AM can work correctly and efficiently with other MPI messages within

MPI infrastructure.

Memory Consistency. Two memory models are defined in MPI RMA specifica-

tion: UNIFIED and SEPARATE. In the SEPARATE model, the MPI process can be viewed as

having two copies of the window: one copy is the “public window”, which is addressable

by all processes, and another is the “private window”, which is local to each process.

In the UNIFIED model, there is a single copy of the window. In practice, the SEPARATE

model is more natural for non-cache-coherent architectures in which the consistency of the

101

cache with respect to memory has to be handled in software by the MPI implementation,

whereas the UNIFIED model is more natural for cache-coherent architectures in which such

consistency needs to be managed properly in hardware. MPI RMA operations like MPI PUT

and MPI GET access the public window copy, and local loads and stores access the private

window copy. One primary difference between AMs and traditional RMA operations is

that AM handlers access the private window copy instead of the public window copy. This

is because operations involved in the AM function are local loads and stores invoked by

the target process instead of MPI PUTs, MPI GETs and MPI ACCUMULATEs invoked by the

remote process. Furthermore, concurrent AMs at the same target process have a separate

private window copy.

This difference between AMs and traditional RMA opertions brings several subtle

interoperability issues. For instance, in the SEPARATE model, if an AM and a regular RMA

operation update the same window within the same epoch, the state of the data in that

window is undefined, even if these operations update nonoverlapping memory regions. This

is because during the execution of an AM handler, if the target process fetches a block of

data from cache and an RMA operation updates another nonoverlapping variable on the

same cache line, such modification would be lost when the cache line is written back to

memory. MPI runtime is unable to keep track of such accesses. Similarly, if two concurrent

AMs modify non-overlapping regions on the same target window region, they both might

have two different copies of the private window, and can therefore overwrite each other’s

modifications on that window memory. Furthermore, in both memory models, each AM

handler has to gurantee that it uses the latest modifications by previous RMA operations

and leaves the window in a consistent state for future following RMA operations. Since

the AM handler function is performed upon the private window memory region, in the

SEPARATE model, the MPI implementation will have to flush the cache back to memory

before sending the AM completion notification to the origin process. In the UNIFIED model,

even though the status of the cache is managed by hardware and coherency is ensured, the

102

MPI implementation still needs to perform a full memory barrier before and after the AM

function handler, in order to ensure that future reads from the window memory sees the

latest updated data.

Ordering. In MPI-AM, we define three types of ordering: (a) ordering between

AMs with the same operation; (b) ordering between AMs with different operations; and (c)

ordering between segments within one AM. By default, MPI-AM imposes strict ordering

for all three types from the same origin process to the same target process on the same

window with overlapping target memory region. For all other cases, there is no ordering

requirements. The default strict ordering permits applications to reason about the state of

the target window buffer when multiple AMs update it concurrently. The application knows

that a later AM is guaranteed to see the modifications made by all previous AMs. However,

such strict ordering requirements also place a significant performance overhead within

the MPI implementation. For instance, if an AM is blocked because of lack of sufficient

buffer space or any other reasons, a future AM might also need to block. To address this

issue, we allow the user to release the ordering constraint of AMs using the MPI info hint

am ordering, which is set on the MPI window during window creation phase. This value is

a comma-separated list of the required ordering with permitted values: sameop, diffop and

sameam, for the three cited types of ordering, respectively. The default value for am ordering

is {sameop, diffop, sameam}, which imposes all three strict orderings. Any subset of those

three orderings, or a value “none” can be passed to relax strict orderings of MPI-AM.

Reduced ordering ensures can be beneficial for some applications, for example those which

use AMs that only read the target data but do not modify it. For such kind of applications,

the more relaxed semantics can give the MPI implementation freedom to reorder AM

operations in order to achieve better performance. Note that AMs are completely unordered

relative to other MPI operations.

103

Concurrency. When one or more origin processes issues multiple AMs on the same

target window, the target can either serialize those messages and process one by one,

or execute them concurrently. While concurrent execution has an obvious performance

benefit with respect to the amount of computational resources it is used, it is restrictive for

applications since the AM handler has to be careful with respect to its data accesses, and

it has to rely on atomic operations or locks in order to not conflict with other concurrent

AMs. For some applications, such a execution model might not be suitable or even feasible.

To handle this issue, by default, we require the MPI implementation to behave “as if” the

AMs are executed in some sequential order at target side. An MPI implementation is free

to apply AM operations concurrently for cases where concurrency is not important for the

application. For example, if the implementation can prove to itself that the target data is

nonoverlapping on the granularity that it cares about, it can execute them concurrently.

For cases where the MPI implementation cannot identify whether such concurrency would

be inconsequential or not, the MPI implementation needs to serialize the execution of those

AMs at the target process.

For MPI-based applications that can handle concurrent AMs, the user can further

provide a MPI hint to the MPI implementation using an epoch start-time assertion,

MPIX MODE CONCURRENT AM, which would specify to the MPI implementation that within

this synchronization epoch the AMs are safe to be concurrent. For example, for those ap-

plications whose AMs do not overwrite each other’s modifications or only read data from

the target window, user can provide such an assertion to MPI runtime. If such an assertion

is passed, AMs that are within the same epoch and are not separated by MPI WIN FLUSH

operation or other flush-style operations may be executed concurrently on a target window

at the same target. AMs from the same origin or from different origins may be executed

concurrently.

Note that an MPI implementation might not be able to control the ordering of concurrent

AMs. Thus, if the user requests strict ordering but provides an assertion to specify that

104

the AMs are safe to release the concurrency, an MPI implementation might still have

to disable concurrency to satisfy the ordering requirement. We also note that concur-

rency of AMs does not restrict AMs from executing concurrently with other RMA operations.

Atomicity. MPI-AM framework does not guarantee atomicity of modifications be-

tween concurrent AMs or between AMs and other RMA operations. Thus, if two AMs

update the same memory location on a target window, the resulting value is undefined.

Similarly, if an AM accesses the same memory region as another RMA operation, the

resulting value is also undefined. An exception is read-only accesses; if multiple AMs read

from the same memory location, or if an AM and another RMA operation read from the

same memory location, such accesses would return the actual value at the corresponding

target memory. Note that the atomicity requirements are valid only for the public persis-

tent buffer and do not impact the input buffer and output buffer that are private to each AM.

Other Considerations. One additional aspect is whether an AM handler can make a

call of other MPI functions and how. Two factors must be considered carefully. First, an

AM handler might be executed by the MPI implementation while it is making progress

for another MPI function for instance, while it is waiting for a request to complete, in

this situation, allowing the AM handler to execute an MPI function would result in the

execution re-entering the MPI stack, thus requiring the MPI routines to be re-entrant safe.

Secondly, since an AM might execute concurrently with the main thread which performs

the application, calling MPI routines within an AM would require MPI to be initialized in

a thread-safe pattern. Since the application does not know whether the MPI runtime would

execute the AM concurrently with the main thread, the application would need to initialize

MPI with a higher thread-level than it would otherwise require. To avoid these issues, in

our current model we prohibit AM handlers to call other MPI functions.

105

6.5 Experimental Evaluation

In this section, we demonstrate the experimental results for the generalized MPI-

interoperable AM framework. Results in Section 6.5.1 are gathered on a 310-node system,

with each compute node containing 16 cores Total number of cores is 4,096. The nodes

are connected with QLogic QDR InfiniBand Interconnect with fat-tree topology. Results in

Section 6.5.2 are gathered on a 320-node system, each has two Intel Xeon X5550 quad-core

CPUs, and QDR InfiniBand HCAs. Our implementation is based on MPICH (version 3.0.2).

We implemented two common operations using AMs. The first operation is a remote search

operation, where the origin issues muliple AMs with DNA sequences composed of 20 char-

acters to the target process in order to search for matching DNA strings and return them to

the origin side. Each segment has 20 characters as input and 20 characters as output. The

second operation is a remote compute of the summation of absolute values of two arrays.

Each segment has 100 integers as input and 100 integers as output. All experiments use an

internal system buffer of 8 KB per peer process, except for Figures 6.8 and Figure 6.9 which

vary the internal buffer size.

6.5.1 Microbenchmarks

In this section, we first illustrates the experimental results using multiple microbenchmarks,

including measuring impact of message streaming, data buffering management and different

configurations for semantic choices including concurrency and ordering of AMs.

Streaming Active Messages. As discussed in Section 6.4, MPIX AM is designed to

allow the MPI implementation to devide an AM into multiple smaller segments for better

pipelining or to limit memory usage for temporary buffers. Here, we analyze the impact

of such streaming / pipelining of segments within an AM. Figure 6.7(a) illustrates an

experiment with the remote search operation, in which we measure the latency of a single

106

40	

50	

60	

70	

80	

90	

100	

110	

120	

130	

10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	

co
m

m
un

ic
at

io
n

la
te

nc
y

(u
s)

segments per pipeline unit

(a) Remote search, latency test

 latency	
 (us)	

 func8on	
 call	
 8me	
 (us)	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

0.00E+00	

5.00E+03	

1.00E+04	

1.50E+04	

2.00E+04	

2.50E+04	

3.00E+04	

10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	

th
ro

ug
hp

ut
 (#

 o
ps

 /
s)

segments per pipeline unit

(b) Remote search, throughput test

user	
 buffer	
 usage	

internal	
 buffer	
 usage	

throughput	
 (ops/s)	

1540	

1640	

1740	

1840	

1940	

2040	

2140	

2240	

2340	

10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	

co
m

m
un

ic
at

io
n

la
te

nc
y

(u
s)

segments per pipeline unit

(c) Absolute value, latency test

 latency	
 (us)	

 func8on	
 call	
 8me	
 (us)	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

0.00E+00	

1.00E+02	

2.00E+02	

3.00E+02	

4.00E+02	

5.00E+02	

6.00E+02	

7.00E+02	

10	
 30	
 50	
 70	
 90	

th
ro

ug
hp

ut
 (#

 o
ps

 /
s)

segments per pipeline unit

(d) Absolute value, throughput test

user	
 buffer	
 usage	

internal	
 buffer	
 usage	

throughput	
 (ops/s)	

Figure 6.7: Communication latency and operation throughput with
different numbers of segments per AM packet

AM within an epoch. When the epoch is closing, the AM has completed and a completion

notification has been sent from target process to the origin process. Each AM consists of

100 segments, each segment requiring 20 bytes for each of the input and output data buffers.

The MPI runtime uses an internal buffer of 8 KB per peer process; thus, with a single AM

within the epoch, we are guaranteed that the MPI internal buffer can serve the entire AM

and the user buffer is never being used.

We can observe that there is a continuous drop in latency as we increase the size of each

pipeline unit. With a pipeline unit of 10 segments the latency of each AM is 115µs, while

with a pipeline unit of 20 segments the latency drops to 95µs, about 17% performance

degradation. When we further increase the pipeline unit, the latency is dropped by another

16%. To analyze this behavior, we profiled the execution time by measuring the cost of

computation without the overhead of AM data transfers and synchronization. The time

drop in computation time with increasing pipeline unit size is because of the reduction

107

in the total number of function calls. When each pipeline unit is 10 segments long, the

AM handler is invoked 10 times in total, each is involved with 10 segments to perform

computation. However, when each pipeline unit is 100 segments long, the AM handler is

invoked just once with 100 segments to perform computation. While the total amount of

computation in both cases is the equivalent, the former case has a 10X larger times of function

invocations. We also observe that the time to execute the computation closely follows the

trend of the AM latency. The additional overhead compared to the computation time is

attributed to the AM data transfer and synchronization overhead.

In Figure 6.7(b) we illustrates a similar experiment with the remote search operation,

where we measure the throughput by performing 100,000 AMs within an RMA epoch. Each

AM consists of 100 segments and each segment requires 20 bytes for each of the input and

output buffers. The MPI implementation uses an internal system buffer of 8 KB per peer

process; thus AMs internally use the system internal buffers when it is available and fall back

to the user buffer when internal buffers are all used up. We can seen that when the pipeline

unit is 40 segments, the highest throughput can be achieved. To analyze this observation,

we profiled the number of segments that utilize the MPI system internal buffers and the

number of segments that use the user buffers in Figure 6.7(b). As we increase the pipeline

unit, there is an increasingly large fraction of the segments that uses the user buffer, thus

resulting in additional more synchronization with the target side. At the same time, when

pipeline unit size is very small, the number of function calls can add a quite high overhead,

as illustrated in Figure 6.7(a). Consequently, we expect the best throughput can be achieved

at somewhere in between. For the remote search operation, a pipeline unit of 40 segments

happened to be the best case.

Figures 6.7(c) and Figure 6.7 (d) show the results of experiments similar to those above

but for the second type of computation: absolute values computation. The performance

trends are similar to Figures 6.7(a) and Figure 6.7(b), except that in Figure 6.7(c) the AM

latency reaches its lowest point at a pipeline size of 40 segments and increases after that.

108

0.0E+00	

1.0E+04	

2.0E+04	

3.0E+04	

4.0E+04	

5.0E+04	

6.0E+04	

7.0E+04	

2.E+03	
 2.E+04	
 1.E+05	
 1.E+06	
 8.E+06	
 7.E+07	
 5.E+08	

th
ro

ug
hp

ut
 (#

 o
ps

 /
s)

internal buffer size (bytes)

Figure 6.8: Throughput: impact of system buffer size

This is because unlike the remote search computation, the absolute values computation is

more input data intensive, which requires a larger amount of data to be transferred between

the origin process and target process. Thus, the pipeline size makes a obvious difference in

the overlapping performance of computation and data movement.

Impact of Internal Buffers. As we described in the design section, the user is re-

quired to attach enough temporary buffers that can be used by the MPI implementation

to stage AM input and output data. However, the MPI implementation can always choose

to allocate additional internal buffers in order to improve performance if it has available

internal buffers. In our implementation, the target process pre-allocates a small amount

of buffer space and statically assign them to each origin process. Total internal buffer size

would be this size times the number of processes. In this section, we evaluate the impact of

such internal temporary system buffers on the performance of MPI-AMs.

Figure 6.8 shows the performance impact of increasing system internal buffer size on the

throughput of AMs. We used the remote search benchmark for this experiments, in which

each AM contains 100 segments and each epoch issuing 100,000 AMs. We observe that

the throughput of AMs increases with growing system internal buffer size up to a point and

109

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

2	
 4	
 8	
 16	
 32	
 64	
 128	
 256	
 512	
 1024	
 2048	
 4096	

ex
ec

ut
io

n
tim

e
(m

s)

processes

 buffer	
 size	
 =	
 1KB	
 buffer	
 size	
 =	
 2KB	

 buffer	
 size	
 =	
 4KB	
 buffer	
 size	
 =	
 8KB	

Figure 6.9: Execution time: impact of system buffer size

then keeps flat. The reason for the performance increase is quite straightforward: when more

internal system buffer space is available, the MPI implementation can directly use the system

internal buffer instead of performing a handshake synchronization with the target process to

get access to the shared user buffer space. With growing internal buffer space, the number of

times such a handshake synchronization occurs is decreasing, which improves performance.

The reason for the leveling off of the performance at large internal buffer sizes is relatively

subtle: the amount of internal buffer size that a series of AMs can use is very limited. When

the MPI runtime keeps issuing more AMs, previously issued AMs complete their execution

on target side and frees up more buffers. Even with a large number of AMs, the runtime

system can reach a steady-state where the data transmission and AM computation cound

match up with each other and more temporary buffer space will not make a difference after

certain point.

Figure 6.9 illustrates the performance impact of the internal system buffer size when

multiple origins issue AMs to the same target process. This experiment is similar to the

previous experiment except that a large number of origin processes issue AMs to the same

target concurrently. We notice that for a small number of origin processes, the internal

system buffer size does not make obvious difference. However, as the number of processes

increases, there is as much as a 1.7 times performance difference.

110

0	

200	

400	

600	

800	

1000	

1200	

10000	
 20000	
 30000	
 40000	
 50000	
 60000	
 70000	
 80000	
 90000	
 100000	

th
ro

ug
hp

ut
 (#

 o
ps

 /
se

c)

AM operations

 ordered AMs
 unordered AMs

Figure 6.10: Throughput: impact of ordering

Concurrent Active Messages. In this section, we analyze the impact of whether

executing AMs concurrently or not within MPI runtime. In our experiment, we have a num-

ber of origins issuing AMs to a same target. When there is no concurrency in the AMs by

default, and all AMs are forwarded to the target and executed on target side. However, when

the user turns on AM concurrency, each origin can take advantage of the fact that the window

data is shared across processes within one node and each of them can compute directly at

the origin process side. Figure 6.11 illustrates the performance through concurrency of AMs

on an 16-core system. Without concurrency, when number of processes is 16, the aggregated

throughput achieved by the AMs can be more than 9X worse than with concurrency enabled.

Impact of Ordering. In this section, we measure the impact of ordering between

AMs within MPI runtime. In our experiment, we issue multiple AMs within a single epoch

alternating between ones that requires a large temporary buffer and ones that need a

small temporary buffer. When the user requires strict ordering among all AMs, the MPI

implementation must finish all previous AMs before issuing the next AM. If an AM is

blocked waiting for more memory space than what the MPI internal buffer can offer (thus

requiring the support from the user buffer), all future AMs will also be blocked even though

111

they may fit into the MPI internal buffers. When the user release such ordering among

AMs, runtime is free to issue later small AMs early, while waiting for the larger user buffer

to be available for previous large AMs. Figure 6.10 illustrates the performance comparison

by such lack of ordering. Removing strict ordering requirements can provide close to 25%

performance improvement. On architectures such as Blue Gene machine, where multiple

routes exist between the origin process and target process, the ability to issue AMs out of

order can allow the MPI implementation to use multiple paths for operations between two

processes, therefore brings further improving performance.

0"

50000"

100000"

150000"

200000"

250000"

1" 3" 5" 7" 9" 11" 13" 15"

�	
�

��
	�
��
���
�

�

���

�
�

����
��

�
�

"concurrent"AMs"
"non3concurrent"AMs"
ideal"scaling"

Figure 6.11: Throughput: Impact of concurrency

6.5.2 Graph 500 Benchmark

Graph 500 [11] is a relatively new benchmark used to test data-intensiveness of the system.

It performs a breadth-first search (BFS) and its performance metric is Traversed Edges Per

Second (TEPS). The MPI one-sided implementation of Graph 500 performs a large number

of 8-byte MPI ACCUMULATE operations among all the processes during FENCE epochs. A

straightforward optimization improvement in the application is to combine a certain num-

ber of MPI ACCUMULATE operations into a large MPI ACCUMULATE operation with derived

datatypes. Such optimization reduces the large number of small communication transactions

112

 0

 20

 40

 60

 80

 100

 120

 140

 160

128 256 512

T
E

P
S

 (
x
1
0
0
0
)

Number of processes

Default-g500
DDT-g500
AM-g500

(a) Small problem size (215 vertices)

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

128 256 512

T
E

P
S

 (
x
1
0
0
0
)

Number of processes

Default-g500
DDT-g500
AM-g500

(b) Large problem size (220 vertices)

Figure 6.12: Graph 500 comparative performance results

towards each target process. Such an improvement can simply be implemented using MPI

derived-datatypes to send coalesced data resulting from the local accumulation of the data

for each target in each FENCE epoch. However, the derived datatypes approach must follow

the non-overlapping constraint required by the MPI-3 specification for target datatypes in

MPI ACCUMULATE operations. By using AM, however, which uses user-defined functions in

MPIX AM, the above constraint from derived datatypes can be completely avoided. Before

issuing out operations to each target at the end of the epoch, the AM approach combines

the locally accumulated data into large sparse arrays. This computation, which occurs once

for each target in each FENCE epoch, is less computation intensive compared to the non-

overlapping constraint checking that the derived datatype approach requires for each local

accumulation.

In Figure 6.12, we illustrate the evaluation results of TEPS to compare the default one-

sided implementation (Default-g500) with a derived-datatype-based implementation (DDT-

g500) and our AM-based implementation (AM-g500). The tests are performed for 215 vertices

and 220 vertices respectively over 128, 256 and 512 processes.

In Figure 6.12a, both DDT-g500 approach and AM-g500 approach perform better than

Default-g500 approach, and AM-g500 approach performs even better than DDT-g500 ap-

proach. The same trend is observed in Figure 6.12b over 128 and 256 processes. However,

113

AM-g500 approach performs worse than DDT-g500 approach over 512 processes in Figure

6.12b. The case where AM-g500 approaches performs worse compared to DDT-g500 and

Default-g500 is a consequence of several general behaviors of the MPI one-sided implemen-

tation happened in Graph 500 benchmark. For both DDT-g500 and AM-g500 approaches,

the job size variations create a trade-off between the size of communication towards each

target and the total number of targets each process talk with. The larger the problem size,

the larger the number of target processes but the smaller the message sizes to each process.

Consequently, the coalescing effect tends to be slowed down when the job size increases to

larger scale. A conclusion can be reached where the overhead of each coalescing approach

will not be offset enough by the communication overhead saved by coalescing the messages.

The important observation, however, is that at a fixed scale, Graph 500 benchmarks remains

scalable with respect to the number of processes until a peak is achieved, and after that TEPS

enter a phase of performance down. The numbers of processes shown on Figure 6.12 happen

to be in the range of performance drop for 215 vertices and 220 vertices. We confirm that 128

is the optimal job size for 220 vertices for our test environment when job sizes are changed

by a factor of 2. Therefore, no matter what implementation to run, an informed user is less

likely to execute Graph 500 benchmark over job sizes where the AM-g500 approach performs

worse.

6.6 Conclusion

In this chapter, we presented a design and implementation of a framework: MPI-

interoperable generalized Active Messages. We first analyzed usage restrictions and perfor-

mance disadvantages of one naive design: extending existing MPI ACCUMULATE-like opera-

tions to support user-defined functions, those limitations includes data layouts, data access,

and memory inefficiency issues. Based on the analysis, we proposed a new design for MPI-

interoperable AMs, including various strategies to handle AMs within MPI runtime includ-

114

ing message streaming, buffer management, operation registration, correctness semantics,

to provide a more flexible and general usage model. We evaluate the MPI-AM framework

via a comprehensive microbenchmarks and Graph 500 kernel benchmark to demonstrate

the performance impact of message streaming, message buffering management and different

semantic choices.

115

CHAPTER 7

Optimization Strategies

for MPI-Interoperable Active Messages

In Chapter 6, we proposed an MPI-interoperable Active Messages framework, which allows

MPI-based applications to incrementally utilizing AM capabilities and avoid being rewritten.

While we presented a baseline implementation of how AMs work with the existing MPI

infrastructure in Chapter 6, it had several performance disadvantages. For instance, the

semantics of the MPI-AM framework allows users to provide buffers on target to stage AM

incoming data, and such buffer could be used by multiple different processes issuing AMs

on a particular same target process. Because such user buffers are shared among all other

processes, significant performance overhead was introduced in the synchronization phase,

especially on large-scale machines. Furthermore, for a highly irregular application where the

amount of data involved in each AM is quite variable, the previous baseline implementation

can lead to a significant amount of additional unnecessary data being transferred, resulting

in additional performance overhead.

In this chapter, we identify those performance disadvantages through a thorough anal-

ysis of the behavior of the MPI-AM infrastructure. Our analysis shows significant stalls

and idleness during MPI RMA synchronization, which is increased as system size grows.

Our analysis also shows that a significant amount of unnecessary data is transmitted for in

highly irregular applications. To address all those limitations, we propose three optimization

116

strategies to improve the performance. The first strategy is an implicit optimization which

can avoid additional internal synchronization and improve performance. The second and

third strategies are more explicit methods. The second strategy uses an MPI hint to learn

additional application information from user in order to further reduce synchronization over-

heads in certain application scenarios. The third strategy proposes a new “vector-based”

AM interface which allows highly irregular applications to be able to better describe their

irregular data layout and reduce the amount of data transferred in the application.

In this chapter, in addition to the detailed description of these optimization techniques,

we also present a reference implementation and a thorough performance analysis of the

optimization strategies on a 4096-core InfiniBand cluster. Our evaluation demonstrates a

significant performance advantage from the optimization techniques.

7.1 Performance Shortcomings of MPI-Interoperable

Active Messages

In this section, we analyze the performance limitations in the previous base implementation

of MPI-interoperable AM framework. Based on this analysis, we propose three optimization

strategies in Section 7.2.

7.1.1 Synchronization Stalls in Data Buffering

As described in Section 6.4.4, the semantics of MPI-AM framework require that it is user’s

responsibility to guarantee that there are enough temporary buffers provided on current

window window to handle the input / output data corresponding to the AM can be accom-

modated at the target. However, the MPI implementation can provide additional internal

buffers to improve performance if such buffers are available.

System internal buffers can be managed in multiple methods. For example, a large amount

of memory can be shared among all processes. In such method, each origin process must

117

coordinate with the target to reserve portion of the buffer before it can issue an AM. An-

other possible method is to statically divide the buffer among the origin processes, so each

origin process acquire exclusive access to its private system buffer. The advantage of this

approach is that since the buffer associated with each origin is exclusive buffer, no additional

synchronization is required between origin and target in order to use that internal buffer.

The shortcoming, however, is that such static partitioning method reduces the amount of

buffer available to each origin. Other design choices also exist where one target could choose

to dynamically manage the amount of exclusive buffer space available to each origin process

at runtime. In our implementation, we have not investigated all possible design choices.

Instead, we choose the second method: statically partitioning the internal system buffer so

that each origin process has exclusive access to a part of the buffer.

No matter which design is selected for the internal system buffer management, we note that

those system buffers are limited. When each AM is large, or when a large number of AMs

are issued out, the system buffer will eventually be used up, and the MPI implementation

has to use the user-provided buffer. Given the shared nature of those user buffers, however,

each origin must perform a “handshake” synchronization with the target process in order to

reserve some user buffer before it can issue its AM.

The overall handshake protocol is shown in Figure 7.1. In this scenario, considering an

AM that has a large amount of AM segments. The first few segments that can fit into the

system internal buffers are issued out immediately. Once those system buffers are exhausted,

however, the origin needs to send a handshake message in order to reserve space in the shared

user buffer before it can issue the next AM segment, thus it needs to idly wait for buffer

space at the target to become available. Depending on which fraction of time the origin

spends for waiting, the performance of the MPI-AM can be substantially impacted. Issuing

multiple nonblocking operations does not address this issue, since the origin process issue

send only as much data as it knows the target can handle with.

118

receive in
user buffer�

ORIGIN � TARGET�

request for user buffer�

acknowledgement�

waiting
time �

receive in
system buffer�

receive in
system buffer�

return output data

in system buffer�

reserve user
buffer�

AM handler on
system buffer is

done �

AM�

segment 1 �

segment 2 �

segment 3 �

Figure 7.1: Handshake operation for reserving user buffers

7.1.2 Inefficiency in Data Transmission

A common characteristic of several irregular applications is that the amount of data re-

turned by an AM is often data-dependent. For instance, in bioinformatics genome assembly

applications such as Kiki, where an input DNA query is searched on remote datasets, the

amount of data returned depends on how many DNA matches the AM handler can find in

the remote dataset. Such information, unfortunately, cannot be predicted easily. Therefore,

the semantic of MPI-interoperable AMs in such kind of applications requires the application

to allocate a large local output buffer and issuing AMs that return data into this buffer.

Such a model has two obvious shortcomings. First, the amount of buffer allocated for

output data can potentially be very large. Second, with the semantic of MPIX AM, the AM

handler cannot specify a different amount of output data size for each of those segments; thus,

the amount of data returned to the origin process is equal to the total size of buffer space

119

allocated. It is obvious that such situation can be very wasteful in irregular applications

where the amount of data returned can vary dramatically among AM segments.

7.2 Optimization Strategies

Based on the performance limitations described in Section 7.1, we present three optimization

strategies for MPI-interoperable AM framework, which can improve data buffering manage-

ment and efficiency in data transmission of MPI-AM.

7.2.1 Efficient Data Buffering Schemes

In this section, we describe two optimization strategies which can improve the efficiency of

buffering management in MPI-AM framework.

Autodetected Exclusive User Buffers. The first optimization technique utilizes

the application synchronization to reduce the internal synchronization required for reserving

user buffers on target side. As specified in MPI-3, MPI RMA (or AM) operations can

be issued only within an MPI RMA epoch, either in Passive Target mode or in Active

Target mode. In Passive Target mode, origin process first issues an MPI WIN LOCK

to target process, followed by multiple AMs, and then finishes the current epoch by

calling MPI WIN UNLOCK. Such an epoch can be initiated in either MPI LOCK SHARED or

MPI LOCK EXCLUSIVE mode. If an origin process acquires an “exclusive” lock at the target

window, no other origin process can acquire either “exclusive” or “shared” lock at the

same target on the same window. If an origin process acquires a “shared” lock at a target

window, other origin processes can get a “shared” lock on the same target and on the same

window concurrently.

Our optimization strategy takes advantage of this model by making MPI runtime internally

keep track of the lock acquisition states of each window. Thus, if an origin has acquired

120

an “exclusive” lock at a target window, it should be the only process that can access the

target window and the attached user buffers. In such scenario, we need to send only one

synchronization message right after MPI WIN LOCK call to get buffer information about the

target user buffers. For all subsequent AM operations, no more synchronization messages are

required. Note that this optimization is transparent to the user but is an implicit method.

Here we need to handle a corner case with respect to detachment of user buffers.

MPI-based applications are allowed to attach / detach arbitrary number of user buffers

to / from a window dynamically. Before they detach a user buffer, however, they should

ensure that there is no AMs that are currently executing within the user buffer. Thus, an

example such as the one shown in Figure 7.2 is a valid program. Note that in the program,

the amount of user buffer space attached to the window has changed while process is in the

exclusive lock epoch. That is, the AMs issued from lines 9–11 have access to both user buf 1

and user buf 2, which are attached to the target window. With appropriate synchronization,

however, the target can detach user buf 1, leaving the later AMs on lines 20–21 with access

only to user buf 2. In such situations, our optimization of querying for the available user

buffer space just once at the beginning of the passive epoch would not be correct. To address

this scenario properly, we need to re-synchronize the user buffer information after every

synchronization call like MPI WIN FLUSH. Such re-synchronization, however, can result in

performance overhead in situation where the user buffer was not detached at the target.

Unfortunately, the MPI implementation cannot detect such situation automatically. To

tackle this issue, we allow users to pass a MPI hint to the MPI implementation at window

creation phase using MPI info key am buf interleave am detach. The default value of true

indicates that the user can interleave AM operations with MPIX AM WIN BUFFER DETACH

operations, thus requiring additional synchronization as mentioned above. By setting this

value to false, however, the user ensures that MPIX AM WIN BUFFER DETACH operations

will be never interleaved with any AM operations, thus requiring no other synchronization.

In such cases, the additional synchronization operation in MPI WIN FLUSH can be avoided.

121

1 . . .
2 i f (myrank == 0)
3 {
4 /∗ Ba r r i e r to en su r e tha t b u f f e r s a r e a t t a ched ∗/
5 M P I B a r r i e r (MPI COMM WORLD) ;
6
7 MPI Win lock (MPI LOCK EXCLUSIVE , 1 , 0 , win) ;
8
9 /∗ AMs shou ld have a c c e s s to both u s e r b u f f e r s ∗/
10 MPIX Am (. . .) ;
11 MPIX Am (. . .) ;
12 MPIX Am (. . .) ;
13
14 MPI Win f lush (1 , win) ;
15
16 /∗ Ba r r i e r to i n fo rm tha t f l u s h has completed ∗/
17 M P I B a r r i e r (MPI COMM WORLD) ;
18 M P I B a r r i e r (MPI COMM WORLD) ;
19
20 /∗ AMs shou ld have a c c e s s to one u s e r b u f f e r ∗/
21 MPIX Am (. . .) ;
22 MPIX Am (. . .) ;
23
24 MPI Win unlock (1 , win) ;
25 }
26 e l s e i f (myrank == 1)
27 {
28 M P I X A m w i n b u f f e r a t t a c h (u s e r b u f 1 , 100 , win) ;
29 M P I X A m w i n b u f f e r a t t a c h (u s e r b u f 2 , 200 , win) ;
30
31 /∗ Ba r r i e r to en su r e tha t b u f f e r s a r e a t t a ched ∗/
32 M P I B a r r i e r (MPI COMM WORLD) ;
33
34 /∗ Ba r r i e r to i n fo rm tha t f l u s h has completed ∗/
35 M P I B a r r i e r (MPI COMM WORLD) ;
36
37 /∗ detach u s e r b u f f e r ∗/
38 MPIX Am win buf fe r detach (u s e r b u f 1 , win) ;
39 M P I B a r r i e r (MPI COMM WORLD) ;
40 }
41 . . .

Figure 7.2: Example of attaching / detaching of AM buffers

122

User-Defined Exclusive User Buffers. The second optimization we introduce is

for situations where the MPI implementation cannot automatically detect exclusive user

buffer access, such as with shared locks or in MPI Active Target synchronization mode. In

some cases, the application can algorithmically decide the maximum size of target buffer

that would be used by other origin processes and thus can decide the amount of target

buffer available to a given origin process. In such cases, if the application can pass this

information to the MPI implementation as an MPI info hint during window creation,

the MPI implementation can use this information to potentially reduce synchronization

overhead.

In our approach, we use a target-specific MPI info key (am user buf <rank>); the info

value specifies the size of the user buffer space on that target that is guaranteed to be

available (in bytes). We emphasize that this value specifies only the guaranteed buffer space

and therefore is conservative. More user buffer space might be dynamically available to

the MPI application, which it can query for, using handshake protocol between origin and

target. For AMs that fit in the “exclusive user buffer” space, however, no further handshake

synchronization is needed.

7.2.2 Improving Efficiency in Data Transmission

As described in Section 7.1.2, with previously proposed MPIX AM, the AM handler cannot

specify a different amount of output data size for each segment in that AM. Thus, a fixed

amount of output data, which equals to the maximum AM output size, is returned to the

origin process when AM is completed. In this section, we propose effective strategies to

improve the efficiency of data transmission in such situation.

Vector-Based Interface. We first propose a new function for vector-based AMs, called

MPIX AMV, and an associated AM handler prototype, called MPIX AMV USER FUNCTION,

123

MPIX AMV USER FUNCTION (i n p u t a d d r , i n p u t s e g m e n t c o u n t ,

i n p u t s e g m e n t d a t a t y p e , p e r s i s t e n t a d d r ,

p e r s i s t e n t c o u n t , p e r s i s t e n t d a t a t y p e ,

o u t p u t a d d r , o u t p u t s e g m e n t c o u n t ,

o u t p u t s e g m e n t d a t a t y p e , num segments ,

s e g m e n t o f f s e t , o u t p u t s e g m e n t c o u n t s [])

IN i n p u t a d d r a d d r e s s o f i n p u t b u f f e r (c h o i c e)

IN i n p u t s e g m e n t c o u n t number o f e n t r i e s i n each segment

i n i n p u t b u f f e r (non−n e g a t i v e i n t e g e r)

IN i n p u t s e g m e n t d a t a t y p e d a t a t y p e o f each e n t r y i n i n p u t

b u f f e r (h a n d l e)

INOUT p e r s i s t e n t a d d r a d d r e s s o f p e r s i s t e n t b u f f e r (c h o i c e)

INOUT p e r s i s t e n t c o u n t number o f e n t r i e s i n p e r s i s t e n t b u f f e r

(non−n e g a t i v e i n t e g e r)

INOUT p e r s i s t e n t d a t a t y p e d a t a t y p e o f each e n t r y i n p e r s i s t e n t

b u f f e r (h a n d l e)

OUT o u t p u t a d d r a d d r e s s o f output b u f f e r (c h o i c e)

OUT o u t p u t s e g m e n t c o u n t maximum number o f e n t r i e s i n each

segment i n output b u f f e r (non−n e g a t i v e

i n t e g e r)

OUT o u t p u t s e g m e n t d a t a t y p e d a t a t y p e o f each e n t r y i n output

b u f f e r (h a n d l e)

IN num segments number o f segments i n i n p u t and

output b u f f e r s (non−n e g a t i v e i n t e g e r)

IN s e g m e n t o f f s e t c u r r e n t segment o f f s e t i n i n p u t and

output b u f f e r s (non−n e g a t i v e i n t e g e r)

OUT o u t p u t s e g m e n t c o u n t s [] a c t u a l c o u n t s o f e n t r i e s i n each

segment i n output b u f f e r (non−n e g a t i v e

i n t e g e r a r r a y)

Figure 7.3: Prototype of vector-based AM user-defined function

124

as illustrated in Figure 7.3 and Figure 7.4. Those functions are “vector” versions of the

original MPIX AM USER FUNCTION and MPIX AM functions proposed in Section 6.4.3.

There is one new vector argument, output segment counts, is added to these new APIs.

This argument is an integer array with length of num segments, each entry indicates

the count of elements in the corresponding output segment. For the AM handler, the

MPI runtime allocates the output segment counts array beforehand and passes to the han-

dler, but how much data is actually generated needs to be filled by the handler function itself.

Output Data Layout. One design choice associated with those vector-based AMs

is how much buffer space has to be allocated for the origin output buffer and how data

should be laid out in this buffer. Since the amount of data that will be generated within the

AM is unknown, the user cannot know the required buffer space required. Thus, we still

allocate the origin output buffer to be large enough which can fit the maximum data size

returned by the current AM handler.

Regarding to the data layout of the origin output buffer, however, the most intuitive

approach would be to put the entire output data in a contiguous segment of the output

buffer. While it is a convenient API for the user to use, such a data layout has several

performance limitations, especially with respect to out-of-order execution of AM segments,

as shown in Figure 7.5. For instance, suppose the AM has four segments. As shown in

Figure 7.5(a), if the latter two segments in the AM are got executed and returnd earlier,

the origin process cannot know at where it needs to place those output data, since it does

not know how much output will be returned by the first two segments. In such cases, the

MPI implementation has to either buffer those out-of-order data or put data in the user

buffer and reorder it once all of the data is returned back. Both strategies are expensive

and bring performance overhead. On the other hand, to prevent such complexity, users can

impose strict ordering among AMs to prevent out-of-order execution, but that will sacrifice

the concurrency of out-of-order AMs and the performance improvement.

125

MPIX AMV(o r i g i n i n p u t a d d r , o r i g i n i n p u t s e g m e n t c o u n t ,

o r i g i n i n p u t s e g m e n t d a t a t y p e , o r i g i n o u t p u t a d d r ,

o r i g i n o u t p u t s e g m e n t c o u n t , o r i g i n o u t p u t s e g m e n t d a t a t y p e ,

num segments , t a r g e t r a n k , t a r g e t i n p u t s e g m e n t d a t a t y p e ,

t a r g e t p e r s i s t e n t d i s p , t a r g e t p e r s i s t e n t c o u n t ,

t a r g e t p e r s i s t e n t d a t a t y p e , t a r g e t o u t p u t s e g m e n t d a t a t y p e ,

op , win , o u t p u t s e g m e n t c o u n t s [])

IN o r i g i n i n p u t a d d r i n i t i a l a d d r e s s o f o r i g i n

i n p u t b u f f e r (c h o i c e)

IN o r i g i n i n p u t s e g m e n t c o u n t number o f e n t r i e s i n each segment

i n o r i g i n i n p u t b u f f e r (i n t e g e r)

IN o r i g i n i n p u t s e g m e n t d a t a t y p e d a t a t y p e o f each e n t r y i n o r i g i n

i n p u t b u f f e r (h a n d l e)

OUT o r i g i n o u t p u t a d d r i n i t i a l a d d r e s s o f o r i g i n output

b u f f e r (c h o i c e)

IN o r i g i n o u t p u t s e g m e n t c o u n t maximum number o f e n t r i e s i n each

segment i n o r i g i n output b u f f e r

(i n t e g e r)

IN o r i g i n o u t p u t s e g m e n t d a t a t y p e d a t a t y p e o f each e n t r y i n o r i g i n

output b u f f e r (h a n d l e)

IN num segments number o f segments i n o r i g i n i n p u t

and output b u f f e r s (i n t e g e r)

IN t a r g e t r a n k rank o f t a r g e t p r o c e s s (i n t e g e r)

IN t a r g e t i n p u t s e g m e n t d a t a t y p e d a t a t y p e o f each e n t r y i n t a r g e t

i n p u t b u f f e r (h a n d l e)

IN t a r g e t p e r s i s t e n t d i s p window o f f s e t to t a r g e t p e r s i s t e n t

b u f f e r (i n t e g e r)

IN t a r g e t p e r s i s t e n t c o u n t number o f e n t r i e s i n t a r g e t

p e r s i s t e n t b u f f e r (i n t e g e r)

IN t a r g e t p e r s i s t e n t d a t a t y p e d a t a t y p e o f each e n t r y i n t a r g e t

p e r s i s t e n t b u f f e r (h a n d l e)

IN t a r g e t o u t p u t s e g m e n t d a t a t y p e d a t a t y p e o f each e n t r y i n t a r g e t

output b u f f e r (h a n d l e)

IN op use r−d e f i n e d o p e r a t i o n f o r th e AMs

(h a n d l e)

IN win window o b j e c t used f o r communicat ion

(h a n d l e)

OUT o u t p u t s e g m e n t c o u n t s [] a c t u a l c o u n t s o f e n t r i e s i n each

segment i n o r i g i n output b u f f e r

(non n e g a t i v e i n t e g e r a r r a y)

Figure 7.4: Prototype of vector-based AM trigger routine

126

segment #1 segment #2 segment #3

TARGET

ORIGIN

segment #4

(a) Contiguous output data layout

segment #3 segment #4 segment #1 segment #2

AM

pipeline unit #1 pipeline unit #2

segment #1 segment #2 segment #3

pack

unpack

segment #4

pack

unpack

TARGET

ORIGIN

pipeline unit #1 pipeline unit #2

segment #1 segment #2 segment #3 segment #4

(b) Non-contiguous output data layout

AM

Figure 7.5: Different strategies of origin output data layout

An alternative model is that, the output data is not placed in a contiguous buffer, but

each segment is put at a fixed offset calculated based on the maximum output size that

each segment can generate, like what is illustrated in Figure 7.5(b). Such model may be

slightly more inconvenient for user to use, however, the performance improvement of this

approach is much higher. In particular, since the location of output data in each segment is

predetermined, no additional buffering or reordering process is required. Data can be put

at the correct location as soon as it arrives on the origin side. For our framework, we chose

this approach.

Data Packing vs. Data Transmission. In MPIX AMV, because each segment

127

may return an uneven amount of data, the output data can be noncontiguous in memory

both at the target side within the AM handler and at the origin side after data is returned.

Therefore, the MPI implementation at the target side needs to consolidate this data into

a temporary packing buffer in order to transfer it to the origin process, which in turn will

unpack the data onto the origin output buffer. In contrast, with MPIX AM, due to the

fact that the amount of data generated is predetermined, the communication is often from

contiguous memory to contiguous memory.

The difference between the packing strategy in MPIX AMV and the complete data move-

ment strategy in MPIX AM can be significant, in favor of MPIX AMV, when the amount of

actual data generated is much less than the maximum buffer size. In such cases, packing and

unpacking a small amount of data can be significantly faster than communicating a large

amount of unnecessary data. However, as the amount of data generated by the AM handler

increases as percentage of the maximum buffer size, this difference will reduce, and the pack-

ing overhead starts to dominate in the performance. To address this issue, in our framework,

we internally maintains a system-specific threshold to decide when to pack data and when

to give up packing but just transmit the entire output data. When the amount of output

data is below this threshold, we pack and transmit the packed data. When the output data

is above this threshold, we transmit all the data but give up packing optimization, therefore

the transmitted data includes garbage data in the buffer that was not generated by the AM

handler.

We emphasize that, in both strategies, the entire count array of the output lengths is also

transferred to the origin process. Thus the total data transmitted will be slightly more than

what MPIX AM transmits when the handler generates the maximum amount of data. In such

situation, MPIX AM would be a better choice.

128

7.3 Experimental Evaluation

In this section, we present our evaluation using a 310-node system, with each compute node

consisting of 16 cores. Totally there are 4,960 cores. The nodes are connected with Intel /

QLogic QDR InfiniBand. Our implementation is based on MPICH (3.1b1). We implement

two kinds of AM operations. The first one is a remote search operation, where the origin

issues AMs with DNA sequences to search for matched DNA sequences in a remote dataset

and return matches to the origin process. This is the most common operation used in genome

assembly applications such as Kiki and SWAP [1]. Each segment consists of 20 characters (1

sequence) as input and 20 to 200 characters (1 to 10 sequences) as output (experiments in

Section 7.3.1 return 1 sequence per segment, and experiments in Section 7.3.2 return multiple

sequences per segment). The second operation is a remote computation of the summation

of absolute values of two arrays. In this test, each segment contains 100 integers as input

and 100 integers as output. All experiments use an internal system buffer of 8 KB per peer

process. In experiments other than those shown in Figures 7.6 and Figure 7.9, each process

attaches 32 MB of user buffer.

In Section 7.3.1, we compare the performance of the first two optimization approaches. We

use Excl-Lock-Opt-Impl for autodetected exclusive user buffers and Win-Opt-Impl for user-

hinted exclusive user buffers, and we compare both of them with a base implementation that

does not take advantage of either optimization (Base-Impl). In Section 7.3.2, we compare

the performance of MPIX AM with vector-based AM, MPIX AMV.

7.3.1 Effect of Exclusive User Buffers

In this section, we focus on four effects: communication latency, operation throughput,

scalability performance, and network contention.

Communication Latency. In Figure 7.6, we present the latency of a single AM

129

0	

200	

400	

600	

800	

1000	

1200	

1400	

100	
 300	
 500	
 700	
 900	
 1100	
 1300	
 1500	
 1700	
 1900	

la
te

nc
y

(u
s)

number of segments in AM operation

(a) Remote search, latency of one AM operation

 base-­‐impl	

 excl-­‐lock-­‐opt-­‐impl	

 win-­‐opt-­‐impl	

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

100	
 300	
 500	
 700	
 900	
 1100	
 1300	
 1500	
 1700	
 1900	

la
te

nc
y

(u
s)

number of segments in AM operation

(b) Remote search, latency of synchronization

 base-­‐impl	

 excl-­‐lock-­‐opt-­‐impl	

 win-­‐opt-­‐impl	

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

100	
 300	
 500	
 700	
 900	
 1100	
 1300	
 1500	
 1700	
 1900	

la
te

nc
y

(u
s)

number of segments in AM operation

(c) Absolute value, latency of one AM operation

 base-­‐impl	

 excl-­‐lock-­‐opt-­‐impl	

 win-­‐opt-­‐impl	

0	

100	

200	

300	

400	

500	

600	

100	
 300	
 500	
 700	
 900	
 1100	
 1300	
 1500	
 1700	
 1900	

la
te

nc
y

(u
s)

number of segments in AM operation

(d) Absolute value, latency of synchronization

 base-­‐impl	

 excl-­‐lock-­‐opt-­‐impl	

 win-­‐opt-­‐impl	

0	

500	

1000	

1500	

2000	

2500	

3000	

100	
 300	
 500	
 700	
 900	
 1100	
 1300	
 1500	
 1700	
 1900	

la
te

nc
y

(u
s)

number of segments in AM operation
(e) Remote search, latency of two AM operations and

one flush

 excl-­‐lock-­‐opt-­‐impl	
 with	
 MPI_Info	

 excl-­‐lock-­‐opt-­‐impl	
 without	
 MPI_Info	

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

100	
 300	
 500	
 700	
 900	
 1100	
 1300	
 1500	
 1700	
 1900	

la
te

nc
y

(u
s)

number of segments in AM operation

(f) Remote search, latency of synchronization

 excl-­‐lock-­‐opt-­‐impl	
 with	
 MPI_Info	

 excl-­‐lock-­‐opt-­‐impl	
 without	
 MPI_Info	

Figure 7.6: Communication latency

130

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

18000	

1	
 10	
 100	
 1000	
 10000	
 100000	
 1000000	

th
ro

ug
hp

ut
 (o

ps
 /

s)

number of operations

 base-­‐impl	

 excl-­‐lock-­‐opt-­‐impl	

 win-­‐opt-­‐impl	

Figure 7.7: Operation throughput for remote search

with a remote search operation. There are two processes in this experiment: the origin

process issues one AM operation to the target during the RMA epoch. We vary the message

size by increasing the number of segments in the AM. We can see in Figure 7.6(a) that

Excl-Lock-Opt-Impl optimization reduces the latency by around 10% compared with the

Base-Impl and that Win-Opt-Impl optimization can further reduce latency by another 10%.

We analyze those results by evaluating the time spent on synchronization in Figure 7.6(b).

The figure shows that Win-Opt-Impl optimization spends no time on synchronization. This

is because with the user buffers already reserved as “exclusive” at window creation time, the

origin process does not need to exchange any additional messages in order to reserve user

buffers during the RMA epoch. On the other hand, in Excl-Lock-Opt-Impl optimization,

runtime does spend some time on synchronization messages, but the time spent does not

increase with message size; in comparison, the synchronization time spent by Base-Impl

increases with message size. This is because Excl-Lock-Opt-Impl optimization needs to

send only one synchronization message right after MPI WIN LOCK in order to reserve all

the available user buffers at the target. Since Base-Impl does not utilize any hints on

exclusivity, however, it needs to wait for previous AM segments to complete execution and

reserve new buffers for the rest. We emphasize that both Base-Impl and Excl-Lock-Opt-Impl

131

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

5000	

2	
 4	
 8	
 16	
 32	
 64	
 128	
 256	
 512	
 1024	
 2048	
 4096	

ex
ec

ut
io

n
tim

e
(m

s)

number of processes

 basic-­‐impl	

 excl-­‐lock-­‐opt-­‐impl	

Figure 7.8: Scalability performance for remote search

optimization spend zero time in synchronizing with target process when the AM data is less

than 200 segments. This is because in these cases the AM data is small enough to fit into

the system buffer on the target.

Figures 7.6(c) and Figure 7.6(d) show a similar trend, but for absolute values operation.

We observe that all three implementations perform similarly when the message has small

size. As the message size grows, the two optimized implementations outperform Base-Impl.

In Figure 7.6(e), we evaluate the latency of two AM operations with one MPI WIN FLUSH

between them, running with and without any user hint to specify whether user buffers are

detached at the target during the MPI WIN FLUSH. As illustrated in the figure, the MPI

info hint allows communication latency to be improved by around 10%. We further analyze

this overhead by measuring time spent in the synchronization. As shown in Figure 7.6(f),

the synchronization time is consistently reduced by 50%. This is because the MPI info

hint allows the MPI implementation to have just one handshake instead of two handshake

operations when there is no MPI info hint provided from the user. We also analyzed results

from absolute values benchmark and it has similar performance.

Operation Throughput. In Figure 7.7, we measure the performance of operation

132

0	

200	

400	

600	

800	

1000	

1200	

1400	

2	
 4	
 8	
 16	
 32	
 64	
 128	
 256	
 512	
 1024	
 2048	
 4096	

ex
ec

ut
io

n
tim

e
(m

s)

number of processes

 basic-­‐impl	

 win-­‐opt-­‐impl	
 (15	
 MB)	

 win-­‐opt-­‐impl	
 (20	
 MB)	

Figure 7.9: Contention performance for remote search

throughput when the origin process issues 1 to 100,000 AMs during the RMA epoch.

The figure illustrates that both Excl-Lock-Opt-Impl and Win-Opt-Impl optimizations can

achieve around 25% and 30% improvement compared with Base-Impl. This is expected

because both the optimized versions have much smaller synchronization overhead. On

the other hand, in Base-Impl, the origin process has to issue at least one synchronization

message before each AM and wait for its response message before issuing that AM.

Network Contention. In Figure 7.9, we presents the benefit of Win-Opt-Impl op-

timization when we increase network contention situation. In this test, every four origins

share a target, which is not an immediate neighbor of any origin process. Each origin issues

a number of AMs to the same target. The experiment is set up such that on each origin

process, all AMs will consume at most 20 MB of the temporary buffer at the target side.

Therefore, we attach totally 80 MB of user buffer on the target.

We perform two experiments with MPI-AM framework. In the first test, we provide a

MPI hint of “20 MB” to each origin process. In this test, because all the AMs together

can consume at most 20 MB of buffer, no additional synchronization is needed by the MPI

implementation. In the second test, we provided a MPI hint of “15 MB” to each origin.

133

40	

5040	

10040	

15040	

20040	

25040	

30040	

35040	

40040	

45040	

10%	
 20%	
 30%	
 40%	
 50%	
 60%	
 70%	
 80%	
 90%	
 100%	

op
er

at
io

n
th

ro
ug

hp
ut

 (#
op

s
/ s

)

percentage of useful data per output segment

(a)	
 Remote	
 search,	
 opera;on	
 throughput

 MPIX_AM	

 MPIX_AMV	
 (1.0)	

 MPIX_AMV	
 (0.8)	

40	

5040	

10040	

15040	

20040	

25040	

10%	
 20%	
 30%	
 40%	
 50%	
 60%	
 70%	
 80%	
 90%	
 100%	

tra
ns

fe
rre

d
da

ta
 s

iz
e

pe
r A

M
 (b

yt
es

)

percentage of useful data per output segment

(b)	
 Remote	
 search,	
 transferred	
 bytes	
 per	
 AM

 MPIX_AM	

 MPIX_AMV	
 (1.0)	

 MPIX_AMV	
 (0.8)	

Figure 7.10: Operation throughput of MPIX AM and MPIX AMV

In this situation, some AMs can be triggered without having to coordinate with the target

process, but such coordination is required for the other AMs. From the evaluation results,

we can observe that with a MPI hint of “15 MB,” the performance can be improved by

20% at scale. With a MPI hint of “20 MB,” the performance can be improved by 50% at scale.

Scalability Performance. Figure 7.8 shows the benefit of Excl-Lock-Opt-Impl opti-

mization when a large amount of origin processes compete for an exclusive lock at the same

target concurrently. We run this experiment with an increasing number of processes. We

can observe that, at 4,096 processes, Excl-Lock-Opt-Impl optimization can achieve 20%

improvement in performance due to the reduced synchronization overhead.

7.3.2 Comparison between MPIX AM and MPIX AMV

In this section, we measure the throughput of the remote search operation using three dif-

ferent AM trigger interfaces: (a) MPIX AM, in which no packing / unpacking is performed

and full output segments are returned; (b) MPIX AMV (1.0), which is the vector-based AM

trigger where the MPI implementation always performs packing / unpacking and returns

packed segments; and (c) MPIX AMV (0.8), which is the vector-based AM trigger where the

MPI implementation performs packing / unpacking when the percentage of generated data

134

is less than 80%. The maximum sequences count in each output segment is 10.

Figure 7.10(a) illustrates the operation throughput achieved when the total amount of

generated output data increases from 10% to 100% of the maximum output size. When

this percentage is below 80%, MPIX AMV (0.8) and MPIX AMV (1.0) perform better than

MPIX AM because of the reduced unnecessary data transmitted between origin and target

processes. The operation throughput of vector-based AM keeps decreasing, however, as the

percentage of data generated increases. When the percentage is above 80%, there is no

advantage in those two. Furthermore, MPIX AMV (1.0), which performs packing / unpacking

of data, is around 30% worse than MPIX AM when the generated data approaches 100%.

MPIX AMV (0.8), however, switches to sending all the data when the generated data is more

than 80%, so its performance degradation is limited to 10%. The overhead of the vector-

based AM triggers comes from two reasons: (1) overhead of runtime packing / unpacking

and (2) transmitting additional counts array to the origin. To analyze those two aspects, we

plot in Figure 7.10(b) the actual data bytes transmitted between origin and target processes.

The figure shows that at 100%, both MPIX AMV (0.8) and MPIX AMV (1.0) transmit more

data than MPIX AM, and such difference coming from the additional counts array that the

vector operations need to transmit.

7.4 Conclusion

In this chapter, we analyzed the performance limitations in the generalized MPI-

interoperable AMs presented in Chapter 6, and proposed three optimization strategies: re-

ducing redundant synchronization messages automatically or through user hints and improv-

ing efficiency of data transmission. We also described a reference implementation of these

optimization strategies; and, using a comprehensive set of benchmarks, we demonstrated

significant performance improvements in various performance evaluations.

135

CHAPTER 8

Asynchronous Processing

of MPI-Interoperable Active Messages

As we introduced in Section 6.1, Active Messages are particularly suitable for data-intensive

and irregular applications with irregular communication patterns, such as graph algorithms

or bioinformatics applications. In such applications, the receiver may not know how many

messages it needs to receive or who is the origin process.Because Active Messages paradigm

does not require the receiver to post a receive to explicitly receive a message, the receiver

does not need to know the communication pattern beforehand.

Because the application at the receiver does not need to invoke a routine in order to

process the incoming active message, the parallel communication library must be prepared

to internally process the incoming message as soon as it arrives the target. The parallel

communication library can be implemented as checking for incoming messages only when

the application invokes a communication routine, which means that if the application does

not invoke a communication routine for a period of time, for example when the application

is in a long computation loop, incoming messages will not be processed during that time.

Because of this, asynchronous processing of messages is critical for the performance of Active

Messages. Asynchronous message processing can be implemented by using a separate thread

that would handle incoming messages and process the computation. Because this thread is

dedicated to receiving and processing any Active Messages, the messages can be processed

136

immediately no matter what the application is currently doing.

However, adding an additional thread introduces overhead because runtime needs mutexes

to synchronize among threads when they access the shared data structures. Such overhead

can affect not only Active Messages, but traditional two-sided and messages as well. There-

fore, it is important to design the communication library carefully in order to minimize the

impact of the additional asynchronous thread.

On modern multi-core architecture, shared-memory can be used to improve the communi-

cation performance between processes running within the same node. Many communication

libraries use shared memory for intra-node communication and use network communication

for inter-node communication [68] [69] [62] [70]. Therefore, it is critical for an implementation

of Active Messages to use shared-memory to improve performance when possible.

In this chapter, we present a design and implementation of asynchronous processing of

MPI-interoperable Active Messages. Our implementation provides asynchronous progress

for both one-sided and Active Messages with negligible overhead for two-sided and collec-

tive communications. We optimize for the intra-node communication where the sender can

directly access the target memory region via shared-memory.

While it is possible to implement Active Messages on top of MPI [66], it is quite difficult

to efficiently provide asynchronous progress. The implementation would require a separate

thread that can make calls into the MPI library to receive messages and execute the han-

dler. This means that the MPI library would need to run using the MPI THREAD MULTIPLE

thread level. When an MPI library is running in the MPI THREAD MULTIPLE thread level,

the library must ensure that every MPI routine is thread-safe which requires the use of mu-

texes, and thus imposes an overhead on every communication operation. By implementing

Active Messages inside the library, it is possible to eliminate this overhead for two-sided and

collective communications.

137

8.1 Classification of Asynchronous Active Messages

with MPI Runtime

Active Messages libraries have been previously implemented on top of MPI, such as the

design and implementation described in AM++ [66] and AMMPI [67]. Those libraries are

built on top of MPI, therefore, they are widely portable, and applications can use MPI func-

tionality simultaneously, like MPI two-sided and collective communications. However, those

libraries fail to efficiently support the asynchronous processing of AMs. In order to support

asynchronous processing of AMs, those AM library needs to create an additional thread that

waits for incoming messages. The MPI library must use the MPI THREAD MULTIPLE thread

level, which runs in an “active polling” fashion and always occupies CPU even though there

is no AMs coming. On the other hand, such design imposes an additional overhead due to

the thread synchronization and mutexes used in every communication calls.

We classify the design of asynchronous Active Messages with MPI into three following

categories:

• Non-Async: asynchronous processing of AMs is completely not supported.

• Thread-Async: asynchronous processing of AMs is supported by using a thread on top

of the MPI library.

• Integrated-Async: asynchronous processing of AMs is provided internally by the MPI

implementation.

Both AMMPI and AM++ belongs to the first class: “Non-Async” by default. If the

application using AMMPI or AM++ creates a thread to wait for incoming AMs, such usage

would fall into the second class: “Thread-Async”. In this work, we propose a design that

falls into the third class: “Integrated-Async”. It can support asynchronous processing of

AMs by providing an internal thread and handle AMs in a much more efficient way.

138

8.2 Design and Implementation of Asynchronous MPI-

Interoperable Active Messages

In current MPI implementations, the MPI library invokes a progress engine to process in-

coming MPI messages, and such progress engine is invoked only when an MPI routine is

explicitly called. In order to improve performance for intra-node communication, most MPI

implementations use “active polling”, in which they do not block while they are waiting for

messages. While this strategy can improve the performance of intra-node communication,

it has the effect of using the CPU all the time, making CPU busy even when no message

is being processed. Some MPI implementations provide asynchronous progress and non-

busy-waiting for MPI messages, but these features often come with significant performance

penalty.

Traditionally, MPI implementations use a single progress engine to process both one-sided

and two-sided messages. Having a single progress engine has two shortcomings: (a) one-sided

messages and Active Messages cannot be processed immediately, but have to wait until the

target explicitly invokes an MPI routine which internally triggers the progress engine; (b)

MPI runtime cannot handle one-sided / Active Messages and traditional two-sided and

collective messages in parallel, but has to process them in a sequential manner through the

single progress engine.

In our design and implementation, we use two progress engines to process incoming mes-

sages: one asynchronous progress engine handling Active Messages and one-sided messages,

and one regular progress engine handling traditional two-sided messages and collective mes-

sages. Active Messages and one-sided messages can be processed immediately by this sep-

arate progress engine and can be processed concurrently with all other kinds of messages.

In the following sections, we describe the critical issues in designing and implementing such

asynchronous progress engine for both inter-node communication and intra-node communi-

cation.

139

8.2.1 Network Solution

We use an separate thread in the network module to wait for Active Messages and one-sided

messages coming from the inter-node communication. When an MPI process meets window

creation routine, which indicates that there will be Active Messages or one-sided messages

coming, it will internally spawn a separate thread used by the asynchronous progress engine.

This thread will be terminated in MPI FINALIZE. The thread does not wait for messages from

intra-node communication, therefore, it can block while waiting for incoming messages with

minimal performance overhead. The original progress engine is still used by the main thread

to handle two-sided and collective messages.

8.2.2 Shared Memory Solution

Due to the fact that the separate thread invokes the asynchronous progress engine in a

blocking manner, it is not a practical design for messages from intra-node communication.

We address this by proposing a strategy called “origin computation”. When the origin

process meets an active message or one-sided message targeting another process on the same

node, it directly reads the remote data via shared-memory region, performs the computations

(MPIX AM and MPI ACCUMULATE) locally and finally pushes results back to the memory on

remote process. By using “origin computation”, Active Messages and one-sided operations

can be handled asynchronously with other messages without the need of a separate thread.

To support the direct access to memory of remote process on the same mode, when window

is created at beginning, each MPI process allocates a shared memory region internally and

exchanges the shared memory address metadata among all other processes. There are two

methods defined in the MPI-3 to create an MPI RMA window and allocate a memory region,

which are listed as below. In our framework, we implemented the shared memory solution

in both of the following two methods.

• MPI ALLOC MEM + MPI WIN CREATE: the first routine can allocates a memory region

140

Network

rank	
 0	

(target)

rank	
 1	

(origin)

rank	
 2	

(origin)

Shared-­‐memory

NODE	
 0 NODE	
 1

Figure 8.1: Working scenario of asynchronous progress engine

and returns the memory address; the second routine can create an MPI RMA window

by using a memory address returned in the first routine.

• MPI WIN ALLOCATE: this routine performs memory allocation and window creation

together within one single MPI function call.

The application can enable / disable the asynchronous progress engine by using an MPI

info argument to the above window creation routines. If the asynchronous progress engine is

enabled, the MPI process would internally allocate a shared memory region for the window

for intra-node communication and spawn a separate thread for inter-node communication.

Figure 8.1 illustrates an example of how the asynchronous progress engine works inside MPI-

AM framework. In this example, both rank 0 and rank 2 issues Active Messages to rank 1.

Rank 0 is on the same node with rank 1 whereas rank 2 is on a different node. Rank 1 has

a separate internal thread to handle Active Messages from rank 2, while rank 0 performs

“origin computation” and directly accesses the shared memory region of rank 1. All Active

Messages can be performed asynchronously with other MPI messages without busy-waiting

on CPU.

141

8.2.3 Thread Safety and Process Safety

In the network solution, several data structures that are shared by the two different progress

engines are either duplicated or protected by mutexes in order to avoid data race condition.

In Active Target mode, a counter is employed to decide if all operations have already arrived

and if ending RMA synchronization can return. That counter is atomically accessed by two

threads. In Passive Target mode, both the main thread and the asynchronous thread on the

target process is possible to try to acquire the same lock. We added a mutex on the passive

lock on each process to avoid data race condition.

In the shared memory solution, the origin process performs “origin computation” and

pushes result data back to the memory on target process within the same node, so it is

possible that both the origin process and the target processes modify the same memory

location concurrently. We added inter-process mutexes upon the shared memory region on

each node to protect such data accesses.

8.3 Experimental Evaluation

In this section, we present the performance results of asynchronous MPI-AM gathered on

“Fusion” cluster at Argonne National Laboratory. Fusion has 320 nodes, each having two

Intel Xeon X5550 quad-core CPUs, and QDR InfiniBand HCAs. We implemented asyn-

chronous MPI-AM framework based on MPICH2 (1.4).

Here we present the microbenchmark results of latency, overlapping, AM interoperability,

and stencil communication. We tested the MPIX AM, MPI PUT and MPI ACCUMULATE, on

three different IPC structures: network-only, shared-memory-only, and network-and-shared-

memory. All tests are compared under the following three asynchronous execution models:

• EXT-ASYNC: MPI-AM with external asynchronous thread

• INT-ASYNC: MPI-AM with internal asynchronous thread

142

 0

 100

 200

 300

 400

 500

 600

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

L
a
te

n
c
y
 (

u
s
)

Message size (bytes)

AM(NON-ASYNC)
AM(INT-ASYNC)

AM(EXT-ASYNC)

(a) Inter-node communication

 0

 100

 200

 300

 400

 500

 600

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

L
a
te

n
c
y
 (

u
s
)

Message size (bytes)

AM(NON-ASYNC)
AM(INT-ASYNC)

AM(EXT-ASYNC)

(b) Intra-node communication

Figure 8.2: Latency of single AM operation

• NON-ASYNC: MPI-AM without asynchronous thread

EXT-ASYNC is enabled by passing an MPI info argument during window creation; INT-

ASYNC is enabled by setting the environment variable MPICH ASYNC PROGRESS in MPICH,

which would spawn a separate thread to actively poll the progress engine.

For tests in Section 8.3.1 and Section 8.3.3, all results are gathered using FENCE synchro-

nization; for tests in Section 8.3.2, all results are gathered using FENCE synchronization for

Active Target mode and exclusive LOCK-UNLOCK synchronization for Passive Target mode.

Similar results are also observed in other synchronizations.

8.3.1 Communication Latency

Figure 8.2 illustrates the performance comparison of communication latency for a single

MPIX AM operation among the different IPC models when varying message sizes. Figure 8.3

illustrates the latency for multiple MPIX AM operations among various IPC models when

message size is fixed (four bytes). We can see that INT-ASYNC and NON-ASYNC are

mostly on par, whereas EXT-ASYNC performance worse. When MPICH ASYNC PROGRESS

is enabled, MPICH works at MPI THREAD MULTIPLE level, making the progress engine be-

come a critical section, and the main thread and the external asynchronous thread must

143

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500 600 700 800 900 1000

L
a

te
n

c
y
 (

u
s
)

Number of operations

(a) IB network

AM(NON-ASYNC)
AM(INT-ASYNC)

AM(EXT-ASYNC)

(a) Inter-node communication

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700 800 900 1000

L
a

te
n

c
y
 (

u
s
)

Number of operations

(b) Shared memory

AM(NON-ASYNC)
AM(INT-ASYNC)

AM(EXT-ASYNC)

(b) Intra-node communication

Figure 8.3: Latency of multiple AM operations

compete for it. On the other hand, INT-ASYNC uses a separate progress engine that is not

shared with the main thread, therefore there is no critical section involved. The overhead of

the EXT-ASYNC thread when entering / exiting the progress engine becomes obvious when

the number of operations increases (Figure 8.3). Additionally, we observe that for shared

memory communications, INT-ASYNC performs even better than NON-ASYNC case as the

number of operations increases (Figure 8.3b), this is because it does direct memory copy

instead of copying the messages through the Nemesis [68] send queues in NON-ASYNC.

8.3.2 Overlapping Effects

To measure the performance of overlapping effects of the asynchronous progress engine in

MPI-AM, we use tests in which a certain amount of computation is being performed on the

target side while the origin side issues a lot of Active Messages. The target process does

not invoke any MPI call while it is doing the computation. Figure 8.4 demonstrates the

overlapping effects in both Passive Target and Active Target modes.

In Figure 8.4a, both EXT-ASYNC and INT-ASYNC can achieve obvious overlapping

effect while NON-ASYNC has no overlapping effect. This is because while the main thread

is doing the computation, EXT-ASYNC and INT-ASYNC are able to separately handle

communications with the asynchronous progress thread whereas NON-ASYNC can not.

144

10
2

10
3

10
4

10
5

 0
0

10
3

20
3

30
3

40
3

50
3

60
3

M
e
s
s
a

g
e

 r
a

te
 (

m
s
g

/s
)

Computation duration (us)

AM(NON-ASYNC)
AM(EXT-ASYNC)
AM(INT-ASYNC)

(a) Inter-node, Passive Target

10
2

10
3

10
4

10
5

10
6

 0
0

10
3

20
3

30
3

40
3

50
3

60
3

M
e
s
s
a

g
e

 r
a

te
 (

m
s
g

/s
)

Computation duration (us)

AM(NON-ASYNC)
AM(EXT-ASYNC)
AM(INT-ASYNC)

(b) Intra-node, Passive Target

10
2

10
3

10
4

10
5

 0
0

10
3

20
3

30
3

40
3

50
3

60
3

M
e
s
s
a
g
e
 r

a
te

 (
m

s
g
/s

)

Computation duration (us)

AM(NON-ASYNC)
AM(EXT-ASYNC)
AM(INT-ASYNC)

(c) Inter-node, Active Target

10
2

10
3

10
4

10
5

10
6

 0
0

10
3

20
3

30
3

40
3

50
3

60
3

M
e
s
s
a
g
e
 r

a
te

 (
m

s
g
/s

)

Computation duration (us)

AM(NON-ASYNC)
AM(EXT-ASYNC)
AM(INT-ASYNC)

(d) Inter-node, Active Target

Figure 8.4: Overlapping effects of AM asynchronous progress engine

Figure 8.4b illustrates the overlapping effect of the shared memory processing. In EXT-

ASYNC model, the asynchronous thread is spawned on the target process to deal with all

incoming Active Messages while the main thread is doing local computation; in the INT-

ASYNC model, after the origin process acquires the lock on the target side, it can directly

perform the computation and writes the result data into the memory of the target while

the target is doing local computation. Note that there is a performance gap between EXT-

ASYNC and INT-ASYNC on both network and shared memory experiments, because of the

queuing operations needed for distributed passive lock.

Results in Figure 8.4a and Figure 8.4b shows that no overlapping effects can be achieved

in Active Target mode. Because MPI-AM is implemented based on RMA implementation

in MPICH, in which all messages are delayed issued out during the ending synchronization

145

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 100 200 300 400 500 600 700 800 900 1000

E
x
e

c
u

ti
o

n
 t

im
e

 (
u

s
)

Number of operations

AM-Only(NON-ASYNC)
AM-Only(INT-ASYNC)

AM-Only(EXT-ASYNC)
AM+PTP(NON-ASYNC)

AM+PTP(INT-ASYNC)
AM+PTP(EXT-ASYNC)

(a) Inter-node communication

 0

 500

 1000

 1500

 2000

 2500

 0 100 200 300 400 500 600 700 800 900 1000

E
x
e

c
u

ti
o

n
 t

im
e

 (
u

s
)

Number of operations

AM-Only(NON-ASYNC)
AM-Only(INT-ASYNC)

AM-Only(EXT-ASYNC)
AM+PTP(NON-ASYNC)

AM+PTP(INT-ASYNC)
AM+PTP(EXT-ASYNC)

(b) Intra-node communication

Figure 8.5: Interoperability performance

phase, target receives those messages within the ending synchronization phase, which cannot

be overlapped with the local computation within the epoch.

8.3.3 Interoperability Performance

Figure 8.5 shows the execution time when Active Messages and traditional MPI two-sided

communications happen together (AM+PTP). In this test, the origin process sends multiple

Active Messages to the target process, at the same time, there is a third process sending

multiple MPI two-sided messages to the same target process. We increase the number of

both AM and two-sided operations and measure the execution time on the origin process.

Figure 8.5a illustrates the interoperability performance on InfiniBand network. When the

two-sided communication is added, the execution time of both EXT-ASYNC and NON-

ASYNC models rises, because when it is EXT-ASYNC and NON-ASYNC, Active Messages

and two-sided messages are processed by the same thread (both are processed by asyn-

chronous thread in EXT-ASYNC and by main thread in NON-ASYNC). However, the time

of INT-ASYNC does not increase obviously, because Active Messages and two-sided mes-

sages are processed in separate threads in INT-ASYNC: the asynchronous thread processes

Active Messages and the main thread processes MPI two-sided messages. Hence, adding

two-sided communications would not affect the total execution time in INT-ASYNC.

146

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70

E
x
e
c
u
ti
o
n
 t
im

e
 (

u
s
)

Number of processes

AM(NON-ASYNC)
AM(INT-ASYNC)

AM(EXT-ASYNC)

(a) Small grid size (2×2 to 8×8)

100
3

150
3

200
3

250
3

300
3

350
3

400
3

450
3

500
3

 100 150 200 250 300 350 400

E
x
e
c
u
ti
o
n
 t
im

e
 (

u
s
)

Number of processes

AM(NON-ASYNC)
AM(INT-ASYNC)

AM(EXT-ASYNC)

(b) Large grid size (10×10 to 20×20)

Figure 8.6: Execution time of stencil kernel benchmark

Figure 8.5b illustrates the interoperability performance on shared memory. When two-

sided communication is added, the execution times in all three models are increased, due to

the fact that Active Messages and two-sided messages are handled within the same thread

for all three cases. However, because there is no extra thread existing in NON-ASYNC

and INT-ASYNC, the overhead is relatively small compared to EXT-ASYNC which has an

asynchronous thread.

8.3.4 Stencil Kernel Benchmark

In order to evaluate the scalability and the performance of the asynchronous progress on both

network and shared memory, we implemented a stencil kernel benchmark using MPIX AM

operations and FENCE synchronization. In this test, each process sends Active Messages to

neighbors at distance one. During the execution time, there are four MPI processes on every

node. For INT-ASYNC and EXT-ASYNC models, each MPI process spawns a separate

thread, therefore all eight cores on the node are being used by different threads.

Figure 8.6a demonstrates the execution time when grid size is relatively small. Both

INT-ASYNC and EXT-ASYNC performs worse than NON-ASYNC because of the overhead

of additional asynchronous threads, however INT-ASYNC has less overhead than EXT-

ASYNC. When grid is 2×2, only shared memory communication exists in the MPI runtime,

147

so INT-ASYNC performs as fast as NON-ASYNC.

Figure 8.6b illustrates the execution time when grid size is relatively large. From the

experimental results, we observe that INT-ASYNC performs nearly the same with NON-

ASYNC, and is slightly better for 10× 10 and 15× 15 grids. The reason is that when more

processes are involved in the execution, the synchronization overhead of MPI WIN FENCE

would increase a lot, which makes the advantage of NON-ASYNC become smaller. When

number of processes is increased to 400, INT-ASYNC performs better than EXT-ASYNC

as well.

8.4 Conclusion

In this chapter, we describe the design and implementation of asynchronous MPI-

interoperable Active Messages based on the MPI RMA interface. The implementation is

achieved by using multi-threading and shared memory allocation to support asynchronous

progress engine. The impact of this work are as follows: Active Messages can work interop-

erably with two-sided and collective communications while introducing a modest overhead;

a process which does shared memory communication directly performs origin computation

which can allow the asynchronous thread to wait for messages from the network without

busy-waiting; asynchronous AM is implemented inside MPI, not on top of MPI. Through

the evaluation of communication latency, overlapping effect, interoperability and stencil mi-

crobenchmarks, we demonstrated that the performance is competitive when comparing with

external asynchronous progress engine of Active Messages.

148

CHAPTER 9

Conclusion

Irregular computation has become increasingly important in recent years, and MPI is the

most prominent parallel programming model and runtime for high performance computing.

MPI was originally designed for scientific computation where computation is in regular pat-

tern, and it is still unclear if MPI is suitable to newly emerged irregular applications. The

goal of this thesis is to evaluate the suitability of MPI to irregular computation.

In this thesis, we conduct the study and research via two subtopics:

• Addressing scalability and performance limitations in massive asynchronous commu-

nication

– Task 1: Tackling scalability challenges in MPI one-sided communication

– Task 2: Adaptive issuing strategy for MPI one-sided communication

– Task 3: Scalable virtual connection objects initialization

• Integrated data and computation management

– Task 4: Generalized MPI-interoperable Active Messages framework

– Task 5: Optimizing MPI-interoperable Active Messages for different application

scenarios

– Task 6: Asynchronous processing in MPI-interoperable Active Messages

149

We conclude that MPI runtime and MPI programming model can be suitable to

support irregular computation, by proposing efficient solutions to address scalability and

performance challenges in massive asynchronous communication, and by proposing new

programming model that integrates data and computation management.

The publication related to this thesis is listed below:

• Runtime Support for Irregular Computation in MPI-Based Applications.

Xin Zhao, Pavan Balaji, William Gropp. Doctoral Symposium. IEEE/ACM Inter-

national Symposium on Cluster, Cloud and Grid Computing (CCGrid 2015).

• Nonblocking Epochs in MPI One-Sided Communication. Judicael Zounmevo,

Xin Zhao, Pavan Balaji, William Gropp, Ahmad Afsahi. IEEE/ACM International

Conference on High Performance Computing, Networking, Storage and Analysis (SC

2014). Best Paper Finalist.

• Optimization Strategies for MPI-Interoperable Active Messages. Xin Zhao,

Pavan Balaji, William Gropp, Rajeev Thakur. IEEE International Conference on

Scalable Computing and Communications (ScalCom 2013). Best Paper Award.

• MPI-Interoperable Generalized Active Messages. Xin Zhao, Pavan Balaji,

William Gropp, Rajeev Thakur. IEEE International Conference on Parallel and Dis-

tributed Systems (ICPADS 2013).

• Towards Asynchronous and MPI-Interoperable Active Messages. Xin Zhao,

Darius Buntinas, Judicael Zounmevo, James Dinan, David Goodell, Pavan Balaji,

Rajeev Thakur, Ahmad Afsahi, William Gropp. IEEE/ACM International Symposium

on Cluster, Cloud and Grid Computing (CCGrid 2013).

• Adaptive Strategy for One-Sided Communication in MPICH2. Xin Zhao.

Master thesis.

150

• Adaptive Strategy for One-Sided Communication in MPICH2. Xin Zhao,

Gopalakrishnan Santhanaraman, William Gropp. The European MPI Users’ Group

Meeting (EuroMPI 2012).

• Scalable Memory Use in MPI: A Case Study with MPICH2. David Goodell,

William Gropp, Xin Zhao, Rajeev Thakur. The European MPI Users’ Group Meeting

(EuroMPI 2011).

151

REFERENCES

[1] J. Meng, J. Yuan, J. Cheng, Y. Wei, and S. Feng, “Small World Asynchronous Parallel
Model for Genome Assembly,” Springer Lecture Notes in Computer Science, vol. 7513,
pp. 145–155, 2012.

[2] F. Xia and R. Stevens, “Kiki: Massively Parallel Genome Assembly,” https://kbase.us/,
2012.

[3] R. Harrison, G. Fann, T. Yanai, and G. Beylkin, “Multiresolution Quantum Chemistry
in Multiwavelet Bases,” Springer Lecture Notes in Computer Science, pp. 103–110, 2003.

[4] R. J. Harrison, “MADNESS: Multiresolution ADaptive NumErical Scientific Simula-
tion,” https://code.google.com/p/m-a-d-n-e-s-s/, 2003.

[5] M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J. V. Dam,
D. Wang, J. Nieplocha, E. Apr, T. L. Windus, and W. A. deJong, “NWChem: A Com-
prehensive and Scalable Open-Source Solution for Large Scale Molecular Simulations.”
Computer Physics Communications, vol. 181, no. 9, pp. 1477–1489, 2010.

[6] Center for Exascale Simulation of Advanced Reactors, “Cesar,” https://cesar.mcs.anl.
gov/.

[7] DoE Exascale Co-Design Center for Materials in Extreme Environments, “ExMatEx,”
http://www.exmatex.org/.

[8] Message Passing Interface Forum, “MPI: A Message-Passing Interface Standard Version
3.0,” Sep. 2012, http://www.mpi-forum.org/docs/docs.html.

[9] E. L. Lusk, S. C. Pieper, and R. M. Butler, “More Scalability, Less Pain: A Simple
Programming Model and Its Implementation for Extreme Computing,” SciDAC Review,
vol. 17, pp. 30–37, 03/2010 2010.

[10] J. Dinan, S. Krishnamoorthy, D. B. Larkins, J. Nieplocha, and P. Sadayappan, “Scioto:
A Framework for Global-View Task Parallelism,” in Proceedings of the 2008 37th In-
ternational Conference on Parallel Processing, ser. ICPP ’08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 586–593.

[11] D. A. Bader, J. Berry, S. Kahan, R. Murphy, E. J. Riedy, and J. Willcock, “Graph500,”
http://www.graph500.org/.

152

https://cesar.mcs.anl.gov/
https://cesar.mcs.anl.gov/
http://www.exmatex.org/
http://www.mpi-forum.org/docs/docs.html
http://www.graph500.org/

[12] E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer, “The Top500 List,” http://
top500.org/.

[13] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, “Active Messages: A
Mechanism for Integrated Communication and Computation,” in Proceedings of ISCA,
New York, NY, USA, 1992.

[14] OpenFabrics Alliance (OFA), “ OpenFabrics Enterprise Distribution (OFED),” http:
//www.openfabrics.org/.

[15] The InfiniBand Trade Association, “InfiniBand Architecture Specification Volume 1,
Release 1.2,” 2004.

[16] Sandia National Laboratories, “Portals Network Programming Interface,” http://www.
cs.sandia.gov/Portals/.

[17] S. Derradji, T. Palfer-Sollier, J.-P. Panziera, A. Poudes, and F. Atos, “The BXI In-
terconnect Architecture,” in High-Performance Interconnects (HOTI), 2015 IEEE 23rd
Annual Symposium on, Aug 2015, pp. 18–25.

[18] Y. Ajima, S. Sumimoto, and T. Shimizu, “Tofu: A 6D Mesh/Torus Interconnect for
Exascale Computers,” Computer, vol. 42, no. 11, pp. 36–40, 2009.

[19] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson, T. Johnson,
J. Kopnick, M. Higgins, and J. Reinhard, “Cray Cascade: A scalable HPC system
based on a Dragonfly network,” in High Performance Computing, Networking, Storage
and Analysis (SC), 2012 International Conference for, Nov 2012, pp. 1–9.

[20] D. Chen, N. A. Eisley, P. Heidelberger, R. M. Senger, Y. Sugawara, S. Kumar, V. Sala-
pura, D. L. Satterfield, B. Steinmacher-Burow, and J. J. Parker, “The IBM Blue Gene/Q
Interconnection Network and Message Unit,” in Proceedings of 2011 International Con-
ference for High Performance Computing, Networking, Storage and Analysis, ser. SC
’11. New York, NY, USA: ACM, 2011, pp. 26:1–26:10.

[21] InfiniBand Trade Association, “InfiniBand Architecture Specification Release 1.2.1 An-
nex A17: RoCE v2,” https://cw.infinibandta.org/document/dl/7781/, 2014.

[22] Fujitsu Limited, “FUJITSU Supercomputer PRIMEHPC FX100 Evolution to the Next
Generation,” https://www.fujitsu.com/global/Images/primehpc-fx100-hard-en.pdf.

[23] Argonne National Laboratory, “MPICH,” https://www.mpich.org/.

[24] The Open MPI Development Team, “Open MPI,” http://www.open-mpi.org/.

[25] Ohio State University, “MVAPICH,” http://mvapich.cse.ohio-state.edu/.

[26] R. Thakur, W. Gropp, and B. Toonen, “Optimizing the Synchronization Operations in
Message Passing Interface One-Sided Communication,” International Journal of High
Performance Computing Applications, vol. 19, pp. 119–128, 2005.

153

http://top500.org/
http://top500.org/
http://www.openfabrics.org/
http://www.openfabrics.org/
http://www.cs.sandia.gov/Portals/
http://www.cs.sandia.gov/Portals/
https://cw.infinibandta.org/document/dl/7781/
https://www.fujitsu.com/global/Images/primehpc-fx100-hard-en.pdf
https://www.mpich.org/
http://www.open-mpi.org/
http://mvapich.cse.ohio-state.edu/

[27] R. Gerstenberger, M. Besta, and T. Hoefler, “Enabling Highly-Scalable Remote Memory
Access Programming with MPI-3 One Sided,” in Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and Analysis. ACM,
Nov. 2013, pp. 53:1–53:12.

[28] D. d. C. Reis, D. Belazzougui, F. C. Botelho, and N. Ziviani, “CMPH Library,” https:
//http://cmph.sourceforge.net/.

[29] F. C. Botelho, D. Belazzougui, and M. Dietzfelbinger, “Compress, Hash and Displace,”
in Proceedings of the 17th European Symposium on Algorithms, ser. ESA 2009. Springer
LNCS, 2009.

[30] R. Thakur, W. Gropp, and B. Toonen, “Optimizing the Synchronization Operations
in Message Passing Interface One-Sided Communication,” INT. J. HIGH PERFORM.
COMPUT. APPL, vol. 19, pp. 119–128, 2005.

[31] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, T. Hoefler, S. Kumar, E. Lusk,
R. Thakur, and J. L. Traeff, “MPI on Millions of Cores,” Parallel Processing Letters
(PPL), vol. 21, no. 1, pp. 45–60, Mar. 2011.

[32] M. Chaarawi and E. Gabriel, “Evaluating Sparse Data Storage Techniques for MPI
Groups and Communicators,” in Proceedings of the 8th International Conference on
Computational Science, Part I, ser. ICCS ’08. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 297–306.

[33] H. Kamal, S. M. Mirtaheri, and A. Wagner, “Scalability of Communicators and Groups
in MPI,” in Proceedings of the 19th ACM International Symposium on High Performance
Distributed Computing, ser. HPDC ’10. New York, NY, USA: ACM, 2010, pp. 264–275.

[34] J. L. Träff, “Compact and Efficient Implementation of the MPI Group Operations,”
in Proceedings of the 17th European MPI Users’ Group Meeting Conference on Re-
cent Advances in the Message Passing Interface, ser. EuroMPI’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 170–178.

[35] X. Zhao, G. Santhanaraman, and W. Gropp, “Adaptive Strategy for One-sided Com-
munication in MPICH2,” in Proceedings of the 19th European Conference on Recent
Advances in the Message Passing Interface, ser. EuroMPI’12. Berlin, Heidelberg:
Springer-Verlag, 2012, pp. 16–26.

[36] W. Jiang, J. Liu, H.-W. Jin, D. Panda, W. Gropp, and R. Thakur, “High Performance
MPI-2 One-Sided Communication over InfiniBand,” in Cluster Computing and the Grid,
2004. CCGrid 2004. IEEE International Symposium on, April 2004, pp. 531–538.

[37] J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton, D. Buntinas, W. Gropp, and
B. Toonen, “Design and Implementation of MPICH2 over InfiniBand with RDMA Sup-
port,” in Proceedings of International Parallel and Distributed Processing Symposium,
2004.

154

https://http://cmph.sourceforge.net/
https://http://cmph.sourceforge.net/

[38] G. Santhanaraman, P. Balaji, K. Gopalakrishnan, R. Thakur, W. Gropp, and D. K.
Panda, “Natively Supporting True One-Sided Communication in MPI on Multi-core
Systems with InfiniBand,” in Proceedings of the 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, ser. CCGRID ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 380–387.

[39] J. A. Zounmevo and A. Afsahi, “A Fast and Resource-Conscious MPI Message Queue
Mechanism for Large-scale Jobs,” Future Gener. Comput. Syst., vol. 30, pp. 265–290,
Jan. 2014.

[40] D. Buntinas, G. Mercier, and W. Gropp, “Implementation and Evaluation of Shared-
memory Communication and Synchronization Operations in MPICH2 Using the Neme-
sis Communication Subsystem,” Parallel Comput., vol. 33, no. 9, pp. 634–644, Sep.
2007.

[41] W. Gropp and E. L. Lusk, “Reproducible Measurements of MPI Performance Char-
acteristics,” in Proceedings of the 6th European PVM/MPI Users’ Group Meeting on
Recent Advances in Parallel Virtual Machine and Message Passing Interface. London,
UK, UK: Springer-Verlag, 1999, pp. 11–18.

[42] J. Larsson Traff, H. Ritzdorf, and R. Hempel, “The Implementation of MPI-2 One-sided
Communication for the NEC SX-5,” in Proceedings of the 2000 ACM/IEEE Conference
on Supercomputing, ser. SC ’00. Washington, DC, USA: IEEE Computer Society, 2000.

[43] Cray Research Inc, “Cray T3E C and C++ optimization guide,” 1994.

[44] J. Nieplocha and B. Carpenter, “ARMCI: A Portable Remote Memory Copy Library
for Distributed Array Libraries and Compiler Run-time Systems,” Proceedings of the
Workshop on Runtime Systems for Parallel Programming (RTSPP) of International
Parallel Processing Symposium IPPS/SPDP, Apr. 1999.

[45] GASNet, “GASNet,” http://http://gasnet.cs.berkeley.edu/.

[46] M. W. Goudreau, K. Lang, S. B. Rao, T. Suel, and T. Tsantilas, “Portable and Efficient
Parallel Computing Using the BSP Model,” IEEE Trans. Comput., vol. 48, no. 7, pp.
670–689, July 1999.

[47] J. M. Hill and D. B. Skillicorn, “Lessons Learned from Implementing BSP,” Future
Gener. Comput. Syst., vol. 13, no. 4-5, pp. 327–335, Mar. 1998.

[48] J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B. Rao,
T. Suel, T. Tsantilas, and R. H. Bisseling, “BSPlib: The BSP Programming Library,”
Parallel Comput., vol. 24, no. 14, pp. 1947–1980, Dec. 1998.

[49] W. D. Gropp and R. Thakur, “Revealing the Performance of MPI RMA Implementa-
tions,” 2007, pp. 272–280.

155

http://http://gasnet.cs.berkeley.edu/

[50] W. Gropp and R. Thakur, “An Evaluation of Implementation Options for MPI One-
Sided Communication,” in Recent Advances in Parallel Virtual Machine and Message
Passing Interface, ser. Lecture Notes in Computer Science, B. D. Martino, D. Kran-
zluüller, and J. Dongarra, Eds., no. LNCS 3666. Springer Verlag, Sep. 2005, 12th
European PVM/MPI User’s Group Meeting, Sorrento, Italy. pp. 415–424.

[51] R. Thakur, W. Gropp, and B. Toonen, “Minimizing Synchronization Overhead in the
Implementation of MPI One-Sided Communication,” in Recent Advances in Parallel
Virtual Machine and Message Passing Interface, ser. Lecture Notes in Computer Sci-
ence, D. Kranzlmüller, P. Kacsuk, and J. Dongarra, Eds., no. LNCS3241. Springer
Verlag, 2004, 11th European PVM/MPI User’s Group Meeting, Budapest, Hungary.
pp. 57–67.

[52] W. Jiang, J. Liu, H.-W. Jin, D. K. Panda, W. Gropp, and R. Thakur, “High Performance
MPI-2 One-Sided Communication over InfiniBand,” in Cluster Computing and the Grid,
2004. CCGrid 2004. IEEE International Symposium on, April 2004, pp. 531–538.

[53] W. Jiang, J. Liu, H.-W. Jin, D. K. Panda, D. Buntinas, R. Thakur, and W. D. Gropp,
Recent Advances in Parallel Virtual Machine and Message Passing Interface: 11th Eu-
ropean PVM/MPI Users’ Group Meeting Budapest, Hungary, September 19 - 22, 2004.
Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, ch. Efficient Im-
plementation of MPI-2 Passive One-Sided Communication on InfiniBand Clusters, pp.
68–76.

[54] G. Santhanaraman, S. Narravula, and D. K. Panda, “Designing Passive Synchronization
for MPI-2 One-Sided Communication to Maximize Overlap,” in Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International Symposium on, April 2008, pp. 1–
11.

[55] G. Santhanaraman, P. Balaji, K. Gopalakrishnan, R. Thakur, W. Gropp, and D. K.
Panda, “Natively Supporting True One-Sided Communication in MPI on Multi-core
Systems with InfiniBand,” in Proceedings of the 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, ser. CCGRID ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 380–387.

[56] J. L. Traff, W. D. Gropp, and R. Thakur, “Self-Consistent MPI Performance Guide-
lines,” IEEE Transactions on Parallel and Distributed Systems, vol. 21, no. 5, pp. 698–
709, May 2010.

[57] X. Zhao, “Adaptive Strategy for One-Sided Communication in MPICH2,” M.S. thesis,
University of Illinois at Urbana-Champaign, 7 2012.

[58] J. Barbay and G. Navarro, “Compressed Representations of Permutations, and Appli-
cations,” in 26th International Symposium on Theoretical Aspects of Computer Science,
ser. Leibniz International Proceedings in Informatics (LIPIcs), S. Albers and J.-Y. Mar-
ion, Eds., vol. 3. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2009, pp. 111–122.

156

[59] A. Woo, D. Bailey, M. Yarrow, W. Wijngaart, T. Harris, and W. Saphir, “The NAS
Parallel Benchmarks 2.0,” The Pennsylvania State University CiteSeer Archives, Tech.
Rep., Dec. 1995.

[60] “ASC Sequoia Benchmark Codes: AMG,” 2011, https://asc.llnl.gov/sequoia/
benchmarks/#amg.

[61] D. Goodell, W. Gropp, X. Zhao, and R. Thakur, “Scalable Memory Use in MPI: A Case
Study with MPICH2,” in EuroMPI, 2011, pp. 140–149.

[62] D. Bonachea, “GASNet Specification, v1.1,” University of California, Berkeley, Tech.
Rep. CSD-02-1207, October 2002.

[63] S. Kumar, G. Dozsa, G. Almasi, P. Heidelberger, D. Chen, M. E. Giampapa, M. Block-
some, A. Faraj, J. Parker, J. Ratterman, B. Smith, and C. J. Archer, “The Deep
Computing Messaging Framework: Generalized Scalable Message Passing on the Blue
Gene/P Supercomputer,” in International Conference on Supercomputing (ICS), 2008.

[64] G. Shah, J. Nieplocha, J. Mirza, C. Kim, R. Harrison, R. K. Govindaraju, K. Gildea,
P. DiNicola, and C. Bender, “Performance and Experience with LAPI - a New High-
Performance Communication Library for the IBM RS/6000 SP,” in International Par-
allel Processing Symposium, 1998.

[65] S. Kumar, A. Mamidala, D. Faraj, B. Smith, M. Blocksome, B. Cernohous, D. Miller,
J. Parker, J. Ratterman, P. Heidelberger, D. Chen, and B. Steinmacher-Burrow, “PAMI:
A Parallel Active Message Interface for the Blue Gene/Q Supercomputer,” in IEEE
International Parallel Distributed Processing Symposium (IPDPS), 2012, pp. 763–773.

[66] J. J. Willcock, T. Hoefler, N. G. Edmonds, and A. Lumsdaine, “AM++: A Generalized
Active Message Framework,” in Proceedings of PACT, 2010.

[67] D. Bonachea, “AMMPI: Active Messages over MPI – Quick Overview,” http://www.
cs.berkeley.edu/∼bonachea/ammpi/.

[68] D. Buntinas, G. Mercier, and W. Gropp, “Design and Evaluation of Nemesis, a Scalable
Low-Latency Message-Passing Communication Subsystem,” in Proceedings of the IEEE
International Symposium on Cluster Computing and the Grid (CCGrid), Washington,
DC, USA, May 2006, pp. 521–530.

[69] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sahay,
P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham,
and T. S. Woodall, “Open MPI: Goals, Concept, and Design of a Next Generation
MPI Implementation,” in Proceedings of the 11th European PVM/MPI Users’ Group
Meeting, Budapest, Hungary, September 2004, pp. 97–104.

[70] J. Nieplocha and B. Carpenter, “ARMCI: A Portable Remote Memory Copy Library for
Distributed Array Libraries and Compiler Run-time Systems,” Workshop on Runtime
Systems for Parallel Programming (RTSPP); International Parallel Processing Sympo-
sium IPPS/SPDP ’99, April 1999.

157

https://asc.llnl.gov/sequoia/benchmarks/#amg
https://asc.llnl.gov/sequoia/benchmarks/#amg
http://www.cs.berkeley.edu/~bonachea/ammpi/
http://www.cs.berkeley.edu/~bonachea/ammpi/

	List of Tables
	List of Figures
	CHAPTER 1 Introduction
	Plan of Study
	Improvements to MPI Implementations for Irregular Applications
	Improvements to MPI Standard for Data-driven Computations

	Outline of the Thesis

	CHAPTER 2 Background
	CHAPTER 3 Tackling Scalability Challengesin MPI One-Sided Infrastructure
	Overview
	Survey of RDMA Capabilities on Modern Networks
	Window Address Calculation
	Memory Protection Keys
	Remote Notification
	Summary of Network RDMA Capabilities

	State-of-the-Art of MPI Implementations and Scalability Challenges
	Implementation Choices for MPI RMA Operations
	Window Creation
	RMA Synchronization
	Data Movement Operations
	Consolidating the State-of-the-Art

	Design and Implementation of Scalable MPI One-Sided Infrastructure
	Window Creation
	RMA Synchronization
	Data Movement Operations
	Resource Management Strategies
	Making Efficient RMA Progress
	Trade-offs Between Scalability and Performance

	Experimental Evaluation
	Microbenchmarks
	Data Movement Operations
	Evaluation with Mini-apps

	Related Work
	Conclusion

	CHAPTER 4 Adaptive Issuing Strategyfor MPI One-Sided Communication
	Overview
	Adaptive Strategy Design
	LOCK-UNLOCK Synchronization
	POST-START-COMPLETE-WAIT (PSCW) Synchronization
	FENCE Synchronization
	Comparison with Existing Algorithms

	Experimental Evaluation
	Latency Impact
	Overlapping Impact
	Performance Impact in Mini-Apps

	Related Work
	Conclusion

	CHAPTER 5 Scalable Virtual Connection Initialization
	Overview
	Linear Memory Growth in Virtual Connections
	Lazy Initialization of Virtual Connections
	Experimental Evaluation
	Scalable Memory Use
	Performance Impact
	Application Impact

	Conclusion

	CHAPTER 6 Generalized MPI-InteroperableActive Messages
	Overview
	Background and Related Work
	Restrictions of Accumulate-Style Active Messages
	Data Access
	Message Segmentation and Temporary Buffers
	Lack of Concurrency
	Interoperation with Other MPI Messages

	Design and Implementation of Generalized MPI-Interoperable Active Messages Framework
	Data Streaming in Active Messages
	Data Buffering Requirements
	Generalized Interface
	Workflow of MPI-Interoperable Active Messages
	Correctness Semantics

	Experimental Evaluation
	Microbenchmarks
	Graph 500 Benchmark

	Conclusion

	CHAPTER 7 Optimization Strategiesfor MPI-Interoperable Active Messages
	Performance Shortcomings of MPI-Interoperable Active Messages
	Synchronization Stalls in Data Buffering
	Inefficiency in Data Transmission

	Optimization Strategies
	Efficient Data Buffering Schemes
	Improving Efficiency in Data Transmission

	Experimental Evaluation
	Effect of Exclusive User Buffers
	Comparison between MPIX_AM and MPIX_AMV

	Conclusion

	CHAPTER 8 Asynchronous Processingof MPI-Interoperable Active Messages
	Classification of Asynchronous Active Messages with MPI Runtime
	Design and Implementation of Asynchronous MPI-Interoperable Active Messages
	Network Solution
	Shared Memory Solution
	Thread Safety and Process Safety

	Experimental Evaluation
	Communication Latency
	Overlapping Effects
	Interoperability Performance
	Stencil Kernel Benchmark

	Conclusion

	CHAPTER 9 Conclusion
	REFERENCES

