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ABSTRACT 

Pericytes are mural cells that are located on the outer surface of blood capillaries where 

they attach to endothelial cells and regulate vascular function, including dilation and 

angiogenesis. Recent studies suggest that pericytes in skeletal muscle may contribute to myofiber 

repair in response to injury. However, the pericyte response to exercise remains largely 

unexplored. PURPOSE: The purpose of this study was to evaluate pericyte quantity and gene 

expression in skeletal muscle following electrical stimulation, a method that can be used to 

simulate resistance exercise in mice. METHODS: Adult wild-type mice were subjected to an 

electrical stimulation protocol that results in 20 eccentric and 20 concentric contractions during a 

single session or (n=5; n=4 sham). A separate cohort of mixed-sex mice were subjected to 

electrical stimulation twice weekly for 4 weeks (n=4; n=4 sham) and 9 weeks (n=3; n=3 sham). 

At the end of each study, gastrocnemius-soleus complexes were dissected 24h following the final 

bout of stimulation. Pericyte quantity was assessed by multiplex flow cytometry in all samples. 

NG2
+
CD45

-
CD31

-
 and CD146

+
CD45

-
CD31

-
 pericytes were isolated following the acute study 

and gene expression was evaluated using high throughput qPCR. RESULTS: Acute electrical 

stimulation resulted in a non-significant trend for an increase in total pericyte content in skeletal 

muscle and a significant increase in the percentage of NG2
+
CD45

-
CD31

-
 pericytes expressing 

the mesenchymal stem/stromal cell (MSC) marker CD140A. Isolation of pericytes based on 

CD146 revealed a population of cells highly engaged in the synthesis of factors necessary for 

myogenesis, satellite cell activation, and extracellular matrix remodeling post-acute stimulation. 

Finally, a pericyte to MSC transition was also observed with 4 weeks of stimulation, but no 

changes in overall pericyte quantity were noted at 4 or 9 weeks. CONCLUSION: This study 

provides evidence that resistance exercise promotes a pericyte to MSC transition, an event that 

may be necessary for pericytes to engage in skeletal muscle repair and adaptation. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

A) Pericytes 

 Pericytes are mural cells that are located on the outer surface of blood capillaries where 

they attach to endothelial cells. Pericytes are embedded into the capillary basal lamina and are 

fibroblast-like in their appearance as they wrap themselves around endothelial cells (Mills, 2013; 

Kostallari, 2015). A diagram of a pericyte and an endothelial cell is illustrated in Figure 1. Due 

to the plasticity of pericytes, these cells can express various markers in different tissues and at 

multiple stages of development (Mills, 2013). For these reasons, there is no single identifying 

marker for pericytes, although they typically express neuroglial 2 proteoglycan (NG2), CD146 

and CD140B (Ozerdem, 2001; Armulik, 2011). Pericytes have high levels of α-smooth muscle 

actin and myosin, which suggests that they are able to regulate blood vessel contractility and 

blood flow (Mills, 2013).  

Pericytes may also serve as multipotent stem cells that can differentiate into 

chondrocytes, adipocytes, osteoblasts, granulocytes and phagocytes (Hirschi, 1996; Mills, 2013). 

Although it is unclear if pericytes fulfill the definition of a multipotent stem cell with capacity 

for self-renewal and clonal expansion, studies suggest the ability for the pericyte to become 

myogenic and/or engage in skeletal muscle repair (Dellavalle, 2007). Two subpopulations of 

pericytes have been characterized in mouse skeletal muscle based on the expression of the 

proteoglycan NG2 and nestin, an intermediate filament protein expressed in dividing cells. 

Whereas Type 2 pericytes express nestin (Nestin
+
NG2

+
) and exhibit myogenic potential 

(Birbrair, 2013), Type 1 pericytes do not express nestin (Nestin
-
NG2

+
) and promote fibrogenesis 

and adipogenesis in response to injury. Type 2 pericyte involvement in myogenesis appears to 
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provide the canonical basis for pericyte-mediated repair. However, approximately 17% of Type 1 

pericytes express CD140 (also PDGFRα) (Birbrair, 2013), suggesting potential for this fraction 

to exhibit a mesenchymal stem/stromal cell (MSC) phenotype with capacity to secrete 

regenerative paracrine factors necessary for healing. Investigators have suggested that pericytes 

can detach from capillaries and transition to a stromal cell with capacity to repair tissue post-

injury (Caplan, 2008; Crisan, 2008), yet the essential experiments necessary to address this 

hypothesis have not been performed.  

 

 

Figure 1: A) A diagram of a blood vessel enwrapped by a pericyte. B) A cross-section of a 

blood vessel demonstrating the interaction between the basement membrane, endothelial cell and 

a pericyte (Mills, 2013). 
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B) Resistance Training in Rodents 

Skeletal muscle is highly plastic and possesses high capacity to adapt to stresses applied 

as result of exercise. Exercise-induced adaptation that occurs following resistance exercise 

includes structural and biochemical changes that promote protection against damage and 

increased strength in humans (Ogasawara, 2013; Damas, 2015).  

There are a number of benefits to using an animal model to study muscle growth 

following resistance exercise, such as a tight experimental control, a more homogenous sample 

population and whole-tissue analysis. In addition, the mouse genome can be modified, providing 

a molecular tool necessary to dissect the biological basis for exercise-induced adaptation. Models 

of muscle hypertrophy in rodents include: 1) involuntary weighed exercise, 2) compensatory 

overload, and 3) electrical stimulation models. Involuntary weighted exercise typically involves 

the attachment of a weighted belt to a rodent and forcing exercise through electrical shock or 

food deprivation. The greatest advantage of this technique is the direct similarity to human 

exercise protocols. This model is problematic as it is involuntary and the necessary “motivators” 

cause stress, resulting in hormonal fluctuations, thereby impacting results. Compensatory 

overload models focus on inactivation of synergist muscles, thereby rendering the functional 

muscle to “compensate” for this loss and inducing muscle hypertrophy. Inactivation of synergist 

muscles is typically attained through severing of a tendon, otherwise known as tenotomy. A 

complete removal of synergist muscles (synergist ablation) and denervation of synergist muscles 

are alternate methods to achieve compensatory overload. Chronic overload can lead to extensive 

muscle growth, providing an efficient model that allows for a better understanding of the 

hypertrophic mechanism. However, the patterns of neural activation are distinct compared to 
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traditional resistance exercise and overload can result in extensive damage and inflammation. 

Thus, this model does not appropriately mimic resistance exercise (Lowe, 2002).  

Electrical stimulation is a relatively new model involving the placement of rodents under 

anesthesia and applying electrical stimuli to the muscle of interest, thereby eliciting muscle 

contraction. Electrical stimulation was introduced as a novel model for the induction of 

hypertrophy by Wong and Booth in 1988 and was subsequently replicated by others (Wong, 

1988; Baar, 1999; McBride, 2003; McBride, 2006). The advantages of this model include: 

independence from animal motivation and cooperation, availability of a contralateral control 

muscle, the ability to create and implement specific exercise protocols, maximal activation of 

motor units and the ability to quantify the muscle torque during the exercise bout (Lowe, 2002). 

The downside of this model is the repeated exposure to anesthesia, which may introduce some 

confounding variables to the results. An illustration of the electrical stimulation is shown in 

Figure 2. 

 

 

Figure 2: Electrical stimulation of the sciatic nerve as a method to mimic resistance 

exercise in rodents 
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C) Electrical Stimulation  

 Wong & Booth (1988) were the first group to use electrical stimulation to mimic 

resistance exercise in rodents (Wong, 1988). Their model consisted of electrical stimulation of 

hindlimbs to contract against a weighed pulley bar for 16 weeks. This protocol resulted in 

increased gastrocnemius muscle weight and protein content (Wong, 1988).  Baar and Esser 

(1999) used surgical implantation to insert stainless steel electrode wires around the sciatic 

nerve, then run the wires subcutaneously to the base of the neck, where they were secured and 

received the electrical stimulation from a stimulation apparatus (Baar, 1999). This protocol 

resulted in increased extensor digitorum longus (EDL) and tibialis anterior (TA) muscle weight 

in response to 6 weeks of training (Baar, 1999). Over the past decade, there has been an effort to 

develop a less intrusive electrical stimulation model for rodents. Low intensity, high volume 

electrical stimulation demonstrated capacity to increased muscle mass in the medial 

gastrocnemius, although it did not increase the myofibrillar protein content in rats (Adams, 

2003). Two studies by McBride et al. (2003, 2006) demonstrated increases in TA muscle mass 

and contractile force over a period of 4 weeks (2x/week). Recent work by Ambrosio et al. (2012) 

and Distefano et al. (2013) utilized surface electrodes to elicit skeletal muscle contractions. 

Moderate intensity, high volume electrical stimulation applied over 4 weeks produced a large 

increase in CD31
+
 vessels (a marker of skeletal muscle vascularity) and an increase in force 

production in dystrophic mice without any change in muscle mass? (Ambrosio, 2012). Similar 

results were obtained by a different group using the same exercise protocol in dystrophic mice. 

Stimulation resulted in increased vascularization and force output, without an increase in muscle 

CSA, which was attributed to neural adaptation (Distefano, 2013).  Moderate intensity electrical 

stimulation applied over 6 exercise sessions resulted in increases in muscle weight and 
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myofibrillar protein content, without a change in muscle cross sectional area (CSA) in rats 

(Tsutaki, 2013). Thus, results among the different studies suggest the potential for electrical 

stimulation to allow for adaptation, but capacity to induce muscle growth appears to be 

dependent on the muscle group evaluated and the protocol parameters (inclusion of weighted 

pulley bar, intensity of stimulus). 

D) Pericyte Response to Exercise 

Resistance exercise, particularly exercise that includes an eccentric component, can result 

in skeletal muscle damage. Mechanical strain can directly damage the sarcolemma, disrupt the 

myofibrillar protein structure within sarcomeres, and degrade proteins necessary for excitation-

contraction (E-C) coupling. Together, these disruptions result in a transient, yet significant 

decrease in force production (Morgan, 2001). Acute damage can initiate a complex series of 

events that allow for myofiber repair and muscle adaptation. Satellite cells (Pax7
+
), the primary 

myogenic stem cell for muscle (located between the basal lamina and the sarcolemma), are 

essential for myofiber repair and regeneration in response to mechanical load-induced injury 

(McCarthy 2011; Relaix, 2012). Despite the fact that the satellite cell appears to be the only cell 

type in muscle necessary for repair, the essential factors in the niche necessary for satellite cell 

activation and differentiation post-exercise remain to be revealed. In addition, the extent to 

which satellite cells contribute to long-term myofiber hypertrophy post-exercise is also not clear 

(Fry 2014).  

Vascular-associated stem/stromal cells (side population cells, pericytes, mesenchymal 

progenitors and fibro/adipogenic progenitors) also reside in skeletal muscle and recent studies 

suggest the ability for these cells to regulate satellite cell proliferation following eccentric 

exercise (Valero, 2012; Boppart, 2013; Zou, 2015). Previous work in our laboratory focused on a 
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non-myogenic, mesenchymal progenitor cell population (Sca-1
+
CD45

-
) that was observed to 

accumulate in skeletal muscle in response to an acute bout of eccentric exercise (Valero, 2012). 

The proportion of Sca-1
+
CD45

-
 cells increased from 4.3% to 9.4% in wild-type mice at 24h post-

exercise. PCR and flow cytometry experiments characterized the cells as negative for Pax7 

expression and positive for several pericyte markers (NG2, CD146, PDGFRβ), suggesting 

heterogeneity of the cell population isolated from muscle (Valero, 2012; Boppart, 2013). The 

Sca-1
+
CD45

-
 cells that appear in mouse muscle are primed to secrete an array of growth factors 

and cytokines, such as IL-6, IGF-1, VEGF, HGF and EGF (Hunstman, 2013; De Lisio, 2014), 

factors that together may provide the basis for increases in satellite cell quantity, new fiber 

growth, and vascular growth following an acute bout of eccentric exercise (Valero, 2012; 

Huntsman, 2013). Additionally, Sca-1
+
CD45

-
 stromal capacity may be responsible for increases 

in myofiber growth and muscle strength following repeated bouts of eccentric exercise (Zou, 

2015).  

Despite compelling data to suggest a role for vascular-associated stem/stromal cells in 

skeletal muscle repair and adaptation post-exercise, identification of the precise subpopulation 

responsible for such changes remains elusive due to a lack of unique cell surface markers 

necessary for detection and isolation. Regardless of the known confounding variable of cell 

heterogeneity, investigators can use a cell sorting strategy of positive selection for NG2 and 

CD146 and exclusion of hematopoietic (CD45) and endothelial (CD31) cell markers to isolate a 

relatively pure pericyte population from muscle (Kostallari, 2015). In addition, CD140A is 

commonly used to identify mesenchymal stem/stromal or fibroadipogenic progenitors (FAPs) 

(Joe, 2010; Heredia, 2013). Using these identification strategies, two recent studies demonstrated 

that pericyte quantity did not change in the acute time course following either isolated concentric 
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or eccentric contractions (De Lisio 2015) and NG2
+
 pericyte quantity decreased following 12 

weeks of concentric or eccentric training (Farup 2015) in humans. In addition, an increase in 

proliferating CD140A
+
 and CD90

+
 cells was observed in the latter study, suggesting expansion 

of the MSC population, either as the result of proliferation or a pericyte to MSC transition. 

Unfortunately, these assessments were based on histological measurements and co-staining for 

different cell surface markers was limited by extensive background staining. In addition, no 

information was provided regarding the impact of exercise on pericyte function (gene 

expression). Thus, the purpose of this project was to thoroughly examine the pericyte response to 

acute and repeated bouts of resistance exercise in mouse skeletal muscle using multiplex flow 

cytometry and qPCR methodology. 
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E) Aims and Hypotheses  

The response of vascular-associated stem/stromal cells, such as pericytes, to resistance 

exercise has not been thoroughly studied. Based on the information provided above, we set out to 

address the following specific aims:  

1. To determine the extent to which pericyte quantity, cell surface marker expression, 

and gene expression is altered in response to an acute bout of electrical stimulation. 

a. Hypothesis 1: NG2
+
CD45

-
CD31

-
 and CD146

+
CD45

-
CD31

- 
pericyte quantity 

will decrease in mouse skeletal muscle following an acute bout of electrical 

stimulation.  

b. Hypothesis 2: CD140A expression will increase in NG2
+
CD45

-
CD31

-
 and 

CD146
+
CD45

-
CD31

- 
pericytes to reflect transition to an MSC phenotype 

following an acute bout of electrical stimulation.  

c. Hypothesis 3: NG2
+
CD45

-
CD31

-
 and CD146

+
CD45

-
CD31

- 
pericyte gene 

expression will be significantly altered following an acute bout of electrical 

stimulation.  

2. To determine the extent to which pericyte quantity and cell surface marker expression 

is altered in response to repeated bouts of electrical stimulation. 

a. Hypothesis 1: NG2
+
CD45

-
CD31

-
 and CD146

+
CD45

-
CD31

- 
pericyte quantity 

will decrease in mouse skeletal muscle following repeated electrical 

stimulation.  

b. Hypothesis 2: CD140A expression will increase in NG2
+
CD45

-
CD31

-
 and 

CD146
+
CD45

-
CD31

- 
pericytes following repeated electrical stimulation. 
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CHAPTER II 

METHODOLOGY 

A) Animals 

Protocols for animal use were approved by the Institutional Animal Care and Use 

Committee of the University of Illinois at Urbana-Champaign. Animal experiments in this study 

were conducted in accordance with the policy statement of the American College of Sports 

Medicine. 10 week-old male and female C57BL/6J mice were purchased for all of the 

experiments. All mice were housed in a temperature-controlled animal room maintained on a 

12:12 light-dark cycle at the University of Illinois. Mice were fed standard laboratory chow and 

water ad libitum. 

B) Electrical Stimulation 

C57BL/6J mice were randomly assigned to an electrically stimulated group or a sham 

operation group. All mice were anesthetized with isoflurane (2-3% isoflurane, 0.9L/min oxygen). 

Both legs were shaved and aseptically prepared. The mouse foot was placed in a miniature metal 

foot plate attached to the shaft of a servomotor (model 300 B-LR, Aurora Scientific, Aurora, ON, 

Canada). The foot was placed so that it was perpendicular to the tibia. Two platinum electrodes 

were inserted through the skin on either side of the sciatic nerve. A stimulator and stimulus unit 

activated the sciatic nerve via the platinum electrodes to induce a contraction of the hindlimb 

crural muscles. The optimal voltage was determined by delivering 100 Hz pulses of 0.1 ms 

duration and measuring the peak twitch force of each contraction. We tested a range of voltages 

(50-200Hz) and settled on 100 Hz as this voltage elicited a high peak twitch force that was not 

further elevated by higher voltages. Additionally, Distefano et al. (2013) demonstrated muscular 
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strength increase with a relatively low voltage (50 Hz) in dystrophic mice; therefore we did not 

increase our voltage above 100 Hz.  As Distefano et al. (2013) was not able to elicit muscle 

hypertrophy with this model, we decided to increase the voltage in order to demonstrate muscle 

growth.  The posterior crural muscles performed 20 eccentric and 20 concentric contractions 

using the optimal voltage at 100 Hz. During stimulation, the posterior crural muscles were 

stretched from 19° of ankle plantarflexion to 19° of ankle dorsiflexion. Every 5 contractions 

were separated by 10 second rest periods and the entire protocol lasted 17-21 minutes. The 

stimulation protocol consisted of 8 sets (4 eccentric and 4 concentric sets). Corona et al. have 

demonstrated that this electrical stimulation protocol can cause muscle inflammation in mice 

(Corona, 2010). For this reason, sedentary sham control mice were anesthetized and subjected to 

electrode insertion, but the muscles were not stimulated. 

C) Tissue Collection and Preservation 

Twenty-four hours after the final training session, all mice were euthanized via carbon 

dioxide asphyxiation. Gastrocnemius-soleus muscles were rapidly dissected and were either 

frozen in liquid nitrogen-cooled isopentane for immunohistochemistry studies or placed in a 1X 

PBS + penicillin/streptomycin solution for extraction of mononuclear cells.    
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D) Extraction and Isolation of Vascular-Associated Stem/Stromal Cells 

Gastrocnemius-soleus complexes were harvested 24h after the last bout electrical 

stimulation. The left hindlimb muscle from each mouse was used for mononuclear cell isolation 

and the right hindlimb muscle was used for immunohistochemistry. Muscles were mechanically 

disrupted with scissors and then digested in a warm bath (37
◦
C) in a solution of DNAse 

(Worthington) and Collagenase (Worthington), both diluted at 1:70 in phosphate-buffered saline 

(PBS). Every 15 minutes the solution was pipetted through a smaller pipette (25ml, 10ml, 5ml, 

1ml) for a total digestion time of 1 hour. After enzymatic digestion of the muscle tissue, filtered 

samples were incubated at 4°C with antimouse CD16/CD32 (1 µg per 106 cells) (eBioscience, 

San Diego, CA) for 10 minutes to block nonspecific Fc-mediated interactions. Cells were 

incubated with a cocktail of monoclonal antibodies NG2-FITC (EMD Millipore, Billerica, MA), 

CD45-APC (BD Bioscience, San Jose, CA), CD31-APC (BD Bioscience, San Jose, CA), 

CD140a-Pacific Blue (BD Bioscience, San Jose, CA), CD146-PE (Biolegend, San Diego, CA), 

diluted in 2% fetal bovine serum in PBS. Flow cytometry analysis was performed using a BD 

LSRFORTESSA X-20 System located at the Digital Computer Laboratory (Urbana, IL). 

Fluorescence-activated cell sorting was performed using an iCyt Reflection System located at 

Carle Hospital (Urbana, IL). CD146
+
CD45

-
CD31

-
 and NG2

+
CD45

-
CD31

-
 cells were collected in 

tubes with RLT buffer and frozen at -80°C for gene expression. For both flow cytometry and 

FACS experiments, negative and single-stained controls were used to establish gates and 

perform compensation. 
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E) Gene Expression 

RNA isolation and cDNA synthesis. RNA was extracted from cell lysates using RNeasy 

Micro Kit (Qiagen), following the manufacturer’s instruction. Quantity and quality of isolated 

RNA was assessed in duplicate on a Take-3 application plate using a Synergy H1 Hybrid Multi-

Mode Microplate Reader (BioTek, Winooski, VT). Starting RNA concentration of at least 15ng 

was used to perform reverse transcription via the High Capacity cDNA Reverse Transcription 

Kit (Life Technologies, Grand Island, NY) per manufacturer’s instructions.  

cDNA preamplification and quantitative PCR. Preamplification of cDNA was completed 

using TaqMan PreAmp Master Mix Kit (Life Technologies). The primer pool was composed of 

inventoried Taqman primers, which were diluted in Tris-EDTA buffer to a final concentration of 

0.2x. In a thin-walled 0.2mL PCR tube, PreAmp reagent was mixed with the primer pool and 

sample cDNA. Each reaction was amplified for 14 cycles using a thermo-cycler (ABI Geneamp 

9700, Life Technologies). Samples were diluted in 450-900 μL of diethylpyrocarbonate (DEPC) 

RNase-free water. qPCR was performed using the 7900HT Fast Real-Time PCR System with 

Taqman Universal PCR Master Mix (Applied Biosystems, Grand Island, NY). All genes were 

normalized to hypoxanthine guanine phosphoibosyl transferase (HPRT) or glyceraldahyde-3- 

phosphate dehydrogenase (GAPDH), and expressed relative to corresponding control condition.  

Gene expression data is presented using the ΔΔCT method with cycle threshold (Ct) replicate 

values within 0.5 Ct units. Inventoried Taqman primers were purchased from Applied 

Biosystems. Primer information and gene expression assay ID numbers used in this study are 

provided in the appendix: experimental protocols. 
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F) Immunohistochemistry  

Muscle complexes were cut at the midline along the axial plane. The distal end was 

embedded in an optimum cutting temperature compound (Tissue-Tek; Fischer Scientific). Three 

transverse cryosections per sample (10-µm nonserial sections, each separated by a minimum of 

40 µm) were cut for each histological assessment using a CM3050S cryostat (Lecia, Wezlar, 

Germany). Sections were placed on microscope slides (Superfrost; Fischer Scientific, Hanover 

Park, IL) and stored at -80°C before staining. Sections were stained with antibodies against 

mouse IgG2b monoclonal anti-type 1 MHC (clone BA-D5, 1:20), mouse IgG1 monoclonal anti-

type 2a MHC (clone SC-71, 1:50), mouse IgM monoclonal anti-type 2b MHC (clone BF-F3, 

1:50) and mouse IgM monoclonal anti-type 2x MHC (clone 6H1, 1:20) to determine the fiber-

type specific cross sectional area (CSA).  

Briefly, slides were dried and fixed in acetone for 10 minutes followed by several washes 

in 1X PBS. Sections were then blocked with serum for 1 hour and incubated with 1:10 dilution 

of goat antimouse monovalent Fab fragments (AffiniPure Fab Fragment Goat Anti-Mouse IgG 

(H+L); Jackson Immuno-Research Laboratories, Inc., West Grove, PA). After blocking, sections 

were incubated in the primary antibodies for 1 hour at room temperature (Fiber-Type Specific 

staining, IgG). After several washes with 1X PBS (Fiber-Type Specific staining), sections were 

incubated in the appropriate secondary antibodies for 1 hour at room temperature. IgG antibody 

was applied to tissue sections at 4°C overnight. Sections were washed with 1X PBS (Fiber-Type 

Specific staining) and with 1% BSA/stained with 4´,6-diamidino-2-phenylindole (DAPI, 

1:20,000; Sigma-Aldrich, St. Louis, MO) (IgG) before mounting with Vectashield (Vector 

Laboratories). 
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G) Immunohistochemistry Quantification 

To assess myofiber CSA, Adobe Photoshop was used to quantitate images acquired with 

a Zeiss AxioCam digital camera. Briefly, co-stained images of dystrophin and type-specific fiber 

types were acquired at 10X magnification from each sample, then imported into Adobe 

Photoshop (CS5 Extended) where up to 400 fibers per sample were manually circled using the 

magnetic lasso tool, which grabs the positively stained pixels and decreases subjectivity and 

interassessment error. The CSA for each fiber was recorded in a measurement log. The results 

for each sample were then averaged. 

H) Statistical Analysis 

All averaged data are presented as means ±SEM. To determine significance, comparisons 

between groups were evaluated by either T-test (acute and chronic electrical stimulation flow 

cytometry) or two-way ANOVA followed by the LSD post-hoc tests when significant 

interactions were detected (acute electrical stimulation gene expression). Data was considered 

significant at p≤0.05. All calculations were performed with GraphPad Prism statistical software 

(6.0; GraphPad Software, San Diego, CA). 
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I) List of Materials 

Material Company Product # 
Anti-Mouse CD16/CD32 eBioscience 14-0161-81 

Anti-Dystrophin  abcam Ab15277 

APC Rat Anti-Mouse CD45 BD 559864 

APC Rat Anti-Mouse CD31 BD 551262 

PE anti-mouse CD146 Antibody 
BD 134703 

BV421 Rat Anti-Mouse CD140A BD 562774 

Anti-NG2, Alexa Fluor®488 Conjugate Antibody Millipore AB5320A4 

Dispase Worthington LS02104 

Collagenase Worthington LS004174 

Mouse IgM anti-type 2b MHC Developmental Studies 

Hybridoma Bank 

BF-F3 

Mouse IgG1 anti-type 2a MHC Developmental Studies 

Hybridoma Bank 

SC-71 

Mouse IgG2b anti-type I MHC Developmental Studies 

Hybridoma Bank 

BA-D5 

Mouse IgM anti-type 2x MHC antibody Developmental Studies 

Hybridoma Bank 

6H1 

Goat anti-Mouse IgG2b Secondary Antibody, Alexa Fluor® 

350 conjugate 

Life Technologies A-21140 

AMCA AffiniPure Goat Anti-Mouse IgM, µ Chain Specific Jackson 

ImmunoResearch 

115-155-075 

Alexa Fluor® 488 AffiniPure Goat Anti-Mouse IgM, µ 

Chain Specific 

Jackson 

ImmunoResearch 

115-545-075 

Alexa Fluor® 488 AffiniPure Goat Anti-Mouse IgG, Fcγ 

Subclass 1 Specific 

Jackson 

ImmunoResearch 

115-545-205 

High Capacity cDNA Reverse Transcription Kit Life Technologies 4368814 

Taqman Universal PCR Master Mix Applied Biosystems 4304437 
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J) Experimental Design 

1) Acute Electrical Stimulation (Flow Cytometry) 

The purpose of this experiment was to determine the extent to which an acute bout of 

electrical stimulation can alter pericyte quantity and cell surface marker expression. Seventeen 

week-old C57BL/6 WT mice (n=5, all males) were subjected to bilateral electrical stimulation. 

Age-matched sham mice (n=4) received the same amount of anesthesia and bilateral electrode 

insertion, without application of electrical stimulation. Due to shipment delays of digestion 

enzymes necessary for cell isolation, this cohort of mice is older than 10 week-old animals used 

in other experiments. Muscles were collected 24h post-intervention. 

2) Acute Electrical Stimulation (Gene Expression) 

The purpose of this experiment was to determine the extent to which an acute bout of 

electrical stimulation can alter pericytes gene expression. Ten week-old male and female 

C57BL/6 WT mice (n=4; 2 males and 2 females) were subjected to bilateral electrical 

stimulation. Age-matched shams (n=4; 2 males and 2 females) received the same amount of 

anesthesia and bilateral electrode insertion, without application of electrical stimulation. Muscles 

were collected 24h post-intervention.  

3) Repeated Electrical Stimulation 

The purpose of this experiment was to determine the extent to which repeated bouts of 

electrical stimulation can alter pericyte quantity and cell surface marker expression. Ten week-

old C57BL/6 WT mice were electrically stimulated twice weekly for 4 weeks (n=8; 4 males and 

4 females) or 9 weeks (n=6; 3 males and 3 females). For the 4 week study, age-matched shams 

(n=4; 2 males and 2 females) received the same amount of anesthesia and bilateral electrode 
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insertion, without application of electrical stimulation. The 9 week study is a report of 

preliminary data collected to verify our model. Two age-matched shams were included. For both 

training studies, muscles were collected 24h post-intervention. One muscle was used for 

assessment of histology and the other muscle was used for assessment of cell quantity and cell 

surface marker expression by flow cytometry.  
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CHAPTER III 

RESULTS 

A) Flow Cytometry Analysis of the Skeletal Muscle Response to Acute Electrical 

Stimulation 

 

Figure 3 illustrates the gating of various mononuclear cell populations in skeletal muscle 

following an acute bout of electrical stimulation. Two subpopulations were noted for CD146
+
 

cells, including one population that exhibited low expression and another that exhibited high 

expression (Figure 3F). The total percentage of NG2
+
, CD146

+
, Lin

+
 (CD45 and CD31), and 

CD140A
+
 mononuclear cells did not change in skeletal muscle 24h following a single bout of 

electrical stimulation (Figures 4A-D).   

Upon exclusion of the Lin
+
 fraction, a non-significant trend toward an increase in NG2

+
 

(p=0.1238) and CD146
+
 (p=0.0658) pericytes was observed following stimulation compared to 

sham controls (Figures 4E-F). Exclusion of the Lin
+
 fraction did not significantly alter the 

relative percentage of NG2
+
 or CD146

+
 cells, as the percentage remained steady in the sham 

groups at ~5% for NG2
+
 cells and 50-56% for CD146

+
 cells. CD140A is a common 

mesenchymal stem/stromal cell marker (MSC) and we used it to test our hypothesis of pericyte 

to MSC transition. Interestingly, the percentage of NG2
+
Lin

-
 cells expressing CD140A increased 

in response to stimulation (p<0.01 vs. sham; 22% to 48 %) (Figure 5A). Nearly 80% of the 

CD146
+
Lin

-
 fraction expressed CD140A in the sham group, suggesting alignment of this 

pericyte fraction with MSCs. Despite the baseline elevation, a strong trend toward an increase in 

CD140A expression was still noted in the CD146
+
Lin

-
 fraction post-exercise (p=0.0550 vs. 

sham) (Figure 5B). CD146 expression was observed in only ~10% of the NG2
+
Lin

-
 fraction and 

did not significantly increase 24h post-stimulation (Figure 5C). 
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Figure 3 Flow cytometry gating. Population of interest (A) and elimination of doublets (B), 

NG2
+
 FMO (C) and a representative image of the NG2

+
 population in an electrically-stimulated 

mouse (D), CD146
+
 FMO (E) and a representative image of the CD146

+
 population in an 

electrically-stimulated mouse (F), CD45
+
CD31

+ 
FMO (G) and a representative image of the 

CD45
+
CD31

+
 population in an electrically-stimulated mouse (H), CD140A

+
 FMO (I) and a 

representative image of the CD140A
+
 population in an electrically-stimulated mouse (J). 
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Figure 4 Flow cytometry analysis of mononuclear cells in skeletal muscle following an acute 

bout of electrical stimulation. Nine 17 week-old mice were subjected to a single bout of 

electrical stimulation. Gastrocnemius-soleus complexes were harvested and processed 24h post-

exercise. NG2
+
(A), CD146

+
(B), CD45

+
CD31

+
(C), CD140A

+
(D), NG2

+
CD45

-
CD31

-
(E), and 

CD146
+
CD45

-
CD31

-
(F) response to acute electrical stimulation. Values are mean ±  SEM. n = 4-

5 muscles/group.  
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Figure 5 Evaluation of cell surface marker expression in skeletal muscle pericytes following 

an acute bout of electrical stimulation. Mice were subjected to a single bout of electrical 

stimulation and gastrocnemius-soleus complexes were harvested and processed at 24h. CD140A
+
 

percentage out of NG2
+
CD45

-
CD31

-
 pericytes (A), CD140A

+
 percentage out of CD146

+
CD45

-

CD31
-
 pericytes (B) and CD146

+
 percentage out of NG2

+
CD45

-
CD31

-
 pericytes (C). Values are 

mean ±  SEM. n = 4-5 muscles/group; **p<0.01 vs. sham. 
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B) Gene Expression of Skeletal Muscle Pericytes in Response to Acute Electrical 

Stimulation 

We initially isolated NG2
+
CD45

-
CD31

-
 pericytes from skeletal muscle following an 

acute bout of electrical stimulation. Although cells were viable and high quality RNA was 

obtained, CT values were very high. Therefore, the CD146
+
CD45

-
CD31

-
 pericyte population was 

evaluated given its high abundance in skeletal muscle. High throughput qPCR included 

assessment of genes involved in myogenesis (Figure 6), myofiber repair (Figure 7), nerve 

repair/neurogenesis (Figure 8), extracellular matrix (ECM) remodeling (Figure 9), and 

inflammation (Figure 10).   

Whereas MyoD relative mRNA expression was not significantly altered (Figures 6A-B), 

Myf5 relative mRNA expression was significantly increased in response to acute electrical 

stimulation (p<0.05 vs. sham) (Figure 6C), and this increase was only evident in female mice 

(p<0.01 vs. female sham) (Figure 6D). 

 Leukemia inhibitory factor (Lif) relative mRNA expression was significantly increased in 

response to electrical stimulation (p<0.05 vs. sham) (Figure 7A), whereas hepatocyte growth 

factor (Hgf) relative mRNA expression was not statistically significant in the combined sex 

analysis (Figure 7B). Non-significant trends toward an increase in Lif and Hgf gene expression 

were noted only in females (Lif: p=0.0860 vs. female sham, Hgf: 0.0790 vs. female sham) 

(Figure 7B and 7D). Insulin-like growth factor (Igf-1) was significantly elevated in response to 

exercise (p<0.01 vs. sham). Non-significant trends toward an increase in Igf-1 expression was 

noted in both male (p=0.0748) and female (p=0.0635) mice (Figures 7E-F). Vascular endothelial 

growth factor (Vegfa) relative mRNA expression was not changed in response to electrical 

stimulation (Figures 7G-H). 
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 Brain-derived neurotrophic factor (Bdnf), nerve growth factor (Ngf), and neurotrophin-3 

(Ntf3) gene expression was not altered in response to an acute bout of electrical stimulation 

(Figures 8A-F). Fibronectin type III domain-containing protein 5 (Fndc5) gene expression 

trended towards an increase in the exercised group compared to sham, and a trend for increase 

was observed in females (p=0.0614 vs. female sham) (Figures 8G-H).  

 TIMP metallopeptidase inhibitor 2 (Timp2) and matrix metalloproteinase 9 (Mmp9) gene 

expression was not significantly altered in response to electrical stimulation (Figures 9C-D, G-

H). Timp1 was significantly upregulated in response to exercise (p<0.05 vs. sham) and a 

significant increase was observed in males (p<0.05 vs. male sham) (Figures 9A-B). Mmp2 and 

Mmp14 was significantly increased in response to an acute bout of electrical stimulation (p<0.01 

vs. sham) (Figures 9C-D, I-J). 
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Figure 6 CD146
+
CD45

-
CD31

-
 Pericyte myogenic factor gene expression following an acute 

bout of electrical stimulation. Eight 10 week-old mice were subjected to a single bout of 

electrical stimulation. Gastrocnemius-soleus complexes were harvested and processed 24h post 

electrical stimulation. Combined (A) and sex-specific (B) MyoD relative mRNA expression, 

combined (C) and sex-specific (D) Myf5 relative mRNA expression in response to acute 

electrical stimulation. Values are mean ±  SEM. n = 2(B,D) and n=4(A,C) muscles/group; 

*p<0.05 vs. sham; **p<0.01 vs. sham. 
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Figure 7 CD146
+
CD45

-
CD31

-
 Pericyte growth factor gene expression following an acute 

bout of electrical stimulation. Eight 10 week-old mice were subjected to a single bout of 

electrical stimulation. Gastrocnemius-soleus complexes were harvested and processed 24h post 

electrical stimulation. Combined (A) and sex-specific (B) Lif relative mRNA expression, 

combined (C) and sex-specific (D) Hgf relative mRNA expression, combined (E) and sex-

specific (F) Igf1 relative mRNA expression, combined (G) and sex-specific (H) Vegfa relative 

mRNA expression in response to acute electrical stimulation. Values are mean ±  SEM. n = 

2(B,D,F,H) and n=4(A,C,E,G) muscles/group; *p<0.05 vs. sham; **p<0.01 vs. sham. 
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Figure 8 CD146
+
CD45

-
CD31

-
 Pericyte neurotrophic factor gene expression following an 

acute bout of electrical stimulation. Eight 10 week-old mice were subjected to a single bout of 

electrical stimulation. Gastrocnemius-soleus complexes were harvested and processed 24h post 

electrical stimulation. Combined (A) and sex-specific (B) Bdnf relative mRNA expression, 

combined (C) and sex-specific (D) Ngf relative mRNA expression, combined (E) and sex-

specific (F) Ntf3 relative mRNA expression, combined (G) and sex-specific (H) Fndc5 relative 

mRNA expression in response to acute electrical stimulation. Values are mean ±  SEM. n = 

2(B,D,F,H) and n=4(A,C,E,G) muscles/group; **p<0.01 vs. sham. 
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Figure 9 CD146
+
CD45

-
CD31

-
 Pericyte extracellular matrix marker gene expression 

following an acute bout of electrical stimulation. Eight 10 week-old were subjected to a single 

bout of electrical stimulation. Gastrocnemius-soleus complexes were harvested and processed 

24h post electrical stimulation. Combined (A) and sex-specific (B) Timp1 relative mRNA 

expression, combined (C) and sex-specific (D) Timp2 relative mRNA expression, combined (E) 

and sex-specific (F) Mmp2 relative mRNA expression, combined (G) and sex-specific (H) 

Mmp9 relative mRNA expression, combined (I) and sex-specific (J) Mmp14 relative mRNA 

expression in response to acute electrical stimulation. Values are mean ±  SEM. n = 2(B,D,F,H,J) 

and n=4(A,C,E,G,I) muscles/group; *p<0.05 vs. sham; **p<0.01 vs. sham. 
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Figure 10 CD146
+
CD45

-
CD31

- 
Pericyte cytokine gene expression following an acute bout of 

electrical stimulation. Eight 10 week-old mice were subjected to a single bout of electrical 

stimulation. Gastrocnemius-soleus complexes were harvested and processed 24h post electrical 

stimulation. Combined (A) and sex-specific (B) Tnf relative mRNA expression, combined (C) 

and sex-specific (D) IL6 relative mRNA expression, combined (E) and sex-specific (F) IL10 

relative mRNA expression, combined (G) and sex-specific (H) Tgfb relative mRNA expression, 

combined (I) and sex-specific (J) GM-CSF relative mRNA expression in response to acute 

electrical stimulation. Values are mean ±  SEM. n = 2(B,D,F,H,J) and n=4(A,C,E,G,I) 

muscles/group. 
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Figure 11 CD146
+
CD45

-
CD31

-
 Pericyte mononuclear cell gene expression following an 

acute bout of electrical stimulation. Eight 10 week-old mice were subjected to a single bout of 

electrical stimulation. Gastrocnemius-soleus complexes were harvested and processed 24h post 

electrical stimulation. Combined (A) and sex-specific (B) NES relative mRNA expression, 

combined (C) and sex-specific (D) CD140A relative mRNA expression, combined (E) and sex-

specific (F) CD140B relative mRNA expression, combined (G) and sex-specific (H) Lepr 

relative mRNA expression, combined (I) and sex-specific (J) Ptprc relative mRNA expression in 

response to acute electrical stimulation. Values are mean ±  SEM. n = 2(B,D,F,H,J) and 

n=4(A,C,E,G,I) muscles/group; *p<0.05 vs. sham. 
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Both tumor necrosis factor alpha (Tnf) and interleukin 6 (IL-6) demonstrated a trend for 

increase with electrical stimulation, but were not significant (Figures 10A-D). IL-10 also 

demonstrated a male-driven trend for increase in response to electrical stimulation, but it was not 

significant (Figures 10E-F).  Transforming growth factor beta (Tgfb) gene expression was not 

altered and granulocyte macrophage colony-stimulating factor (GM-CSF) gene expression 

trended towards a female-driven increase in the electrical stimulation group (Figures 10G-J).  

Lastly, we were interested in examining stem/stromal marker gene expression following 

electrical stimulation. Both nestin (NE) and beta-type platelet-derived growth factor receptor 

(CD140B) gene expression was not altered in response to electrical stimulation (Figures 11A-B, 

E-F). CD140A and leptin receptor (Lepr) remained unchanged compared to the sham group 

(Figures 11C-D, G-H). Interestingly, protein tyrosine phosphatase receptor type, C (Ptprc, also 

known as CD45) relative mRNA expression was significantly increased in response to acute 

electrical stimulation (p<0.05 vs. sham) (Figures 11I-J).  

C) Skeletal Muscle Response to Chronic Electrical Stimulation 

 

The chronic electrical stimulation study consisted of two cohorts: 8 mice exercised for 4 

weeks and 6 mice exercised for 9 weeks (Figure 12A). One of the goals with this experiment was 

to determine the validity of our electrical stimulation model by examining the muscular strength 

and muscular growth responses to chronic training. Body weights were not significantly changed 

in response to chronic electrical stimulation (Figure 12B-C). We observed a higher average 

muscle weight in males in response to 4 weeks of electrical stimulation (sex main effect 

p<0.0001) (Figure 12D), but this sex difference was not present at 9 weeks (Figure 12E).  
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Our electrical stimulation model system allowed us to record the torque achieved during 

each contraction. As eccentric contractions produce higher force compared to concentric 

contractions, we decided to record the torque of the first and last eccentric contractions. Peak 

torque generated during first eccentric contraction reflects capacity for force generation and 

strength, whereas peak torque generated during the last contraction provides information 

regarding fatigue resistance. While peak torque of the first contraction was elevated in the males 

compared to females (sex main effect, p=0.0016), no increase was observed as a result of 

repeated electrical stimulation (e-stim main effect p=0.1202) (Figure 13A). In addition, no 

increase in peak force was observed during the first contraction after 9 weeks of electrical 

stimulation (Figure 13B). In contrast, peak torque of the last contraction significantly increased 

after 4 weeks of exercise in both males and females (e-stim main effect p=0.0003) (Figure 13C) 

and the elevation in peak torque during the last bout of contraction was also observed after 9 

weeks of electrical stimulation (e-stim main effect p=0.0173) (Figure 13D).  

Fiber type-specific changes in CSA were evaluated by standard immunohistochemistry 

methods. The CSA of type 2a, type 2b and type 2x fibers did not change compared to sham after 

chronic electrical stimulation (Figures 14A-B). Next, we decided to examine the fiber size 

distribution of these fibers, but only type 2b fibers underwent significant changes in response to 

9 weeks of electrical stimulation (Figures 14C-H). Large (2000-3000) type 2b fibers increased 

(p<0.05 vs. sham) in size, but the largest (3000+) type 2b fibers decreased (p<0.01 vs. sham) 

after 9 weeks of repeated stimulation.  
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Figure 12 Body weights and muscle weights in response to 4 and 9 weeks of electrical 

stimulation. Eight 10 week-old mice were subjected to 4 weeks of electrical stimulation twice 

weekly and six 10 week-old mice were subjected to 9 weeks of electrical stimulation twice 

weekly. Gastrocnemius-soleus complexes were harvested and processed 24h after the last 

electrical stimulation bout. Experimental design (A), body weight progression at 4 weeks  (B) 

and 9 weeks (C), muscle weights after training at 4 weeks (D) and 9 weeks (E). Values are mean 

±  SEM. n = 2 (9 week shams) and n = 4 (4 week shams/e-stim, 9 week e-stim) muscles/group; 

#p<0.05 sex main effect. 
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Figure 13 Peak torque for the first and last contractions in response to 4 and 9 weeks of 

electrical stimulation. Eight mice were subjected to 4 weeks of electrical stimulation twice 

weekly and six mice were subjected to 9 weeks of electrical stimulation twice weekly. Peak 

torque for the first eccentric contraction at 4 weeks (A) and 9 weeks (B), peak torque for the last 

eccentric contraction at 4 weeks (C) and 9 weeks (D) before training and after training. Values 

are mean ±  SEM. n = 7(A,C) and n=2-4(B,D) per group; ≠p<0.05 e-stim main effect, #p<0.05 

sex main effect. 
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Figure 14 Muscle fiber type-specific size and distribution in response to 4 and 9 weeks of 

electrical stimulation. Eight 10 week-old mice were subjected to 4 weeks of electrical 

stimulation twice weekly and six 10 week-old mice were subjected to 9 weeks of electrical 

stimulation twice weekly. Gastrocnemius-soleus complexes were harvested and processed 24h 

after the last electrical stimulation bout. Fiber-type specific cross-sectional area at 4 weeks (A) 

and 9 weeks (B), Type 2a fiber size distribution at 4 weeks (C) and 9 weeks (D), Type 2b fiber 

size distribution at 4 weeks (E) and 9 weeks (F), Type 2x fiber size distribution at 4 weeks (G) 

and 9 weeks (H). Values are mean ±  SEM. n = 4 (A,C,E,G), n = 2 (shams for B,D,F,H) 

muscles/group; *p<0.05 vs. 2000-3000 sham; **p<0.01 vs. 3000+ sham. 
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D) Flow Cytometry Analysis of the Skeletal Muscle Response to Repeated Electrical 

Stimulation. 

Multiplex flow cytometry was used to examine pericyte quantity and cell surface 

phenotype in skeletal muscle following 4 weeks of repeated electrical stimulation. We assessed 

the percentage of NG2
+
 (Figure 15A), CD146

+
 (Figure 15B), CD45

+
CD31

+
 (Figure 15C) and 

CD140A
+
 (Figure 15D) cells following stimulation compared to shams. Electrical stimulation 

training did not significantly alter the percentage of these cells at 4 weeks. No changes in NG2
+
 

or NG2
+
Lin

-
 cells were noted (Figures 15E-F). However, similar to the results from our acute 

study, expression of CD140A was increased in the NG2
+
CD45

-
CD31

-
 pericyte fraction (p<0.05 

vs. sham) (Figure 16A). The expression of CD140A did not change in the CD146+CD45-CD31- 

fraction with stimulation (Figure 16B). Lastly, expression of CD146 was not altered in 

NG2
+
CD45

-
CD31

-
 pericytes after repeated electrical stimulation (Figure 16C). 
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Figure 15 Flow cytometry analysis of the cell response to 4 and 9 weeks of electrical 

stimulation. Eight 10 week-old mice were subjected to 4 weeks of electrical stimulation twice 

weekly and six 10 week-old mice were subjected to 9 weeks of electrical stimulation twice 

weekly. Gastrocnemius-soleus complexes were harvested and processed 24h after the last 

electrical stimulation bout. NG2
+
(A), CD146+(B), CD45

+
CD31

+
(C), CD140A

+
(D), NG2

+
CD45

-

CD31
-
(E), and CD146

+
CD45

-
CD31

-
(F) response to electrical stimulation training. Values are 

mean ±  SEM. n = 2 (9 week shams) and n = 4 (4 week e-stim/shams and 9 week e-stim) 

muscles/group; §p<0.01 time main effect. 

 



38 
 

C D 1 4 0 A +  o u t o f  N G 2 + C D 4 5 -C D 3 1 -

P
e

r
c

e
n

ta
g

e
 o

u
t 

o
f 

N
G

2
+

C
D

4
5

-C
D

3
1

 (
%

)

4
 w

e
e
k
s

9
 w

e
e
k
s

0

1 0

2 0

3 0

4 0

*

 C D 1 4 0 A +  o u t  o f  C D 1 4 6 + C D 4 5 -C D 3 1 -

P
e

r
c

e
n

ta
g

e
 o

u
t 

o
f 

C
D

1
4

6
+

C
D

4
5

-C
D

3
1

- 
(%

)

4
 w

e
e
k
s

9
 w

e
e
k
s

0

2 0

4 0

6 0

8 0

S h am

E -S tim

§

C D 1 4 6 +  o u t o f  N G 2 + C D 4 5 -C D 3 1 -

P
e

r
c

e
n

ta
g

e
 o

u
t 

o
f 

N
G

2
+

C
D

4
5

-C
D

3
1

 (
%

)

4
 W

e
e
k
s

9
 W

e
e
k
s

0

1 0

2 0

3 0

4 0

A B

C

 

Figure 16 Flow cytometry analysis of the mononuclear cell content out of pericytes to 4 and 

9 weeks of electrical stimulation. Eight 10 week-old mice were subjected to 4 weeks of 

electrical stimulation twice weekly and six 10 week-old mice were subjected to 9 weeks of 

electrical stimulation twice weekly. Gastrocnemius-soleus complexes were harvested and 

processed 24h after the last electrical stimulation bout. CD140A
+
 percentage out of NG2

+
CD45

-

CD31
-
 pericytes (A), CD140A

+
 percentage out of CD146

+
CD45

-
CD31

-
 pericytes (B) and 

CD146
+
 percentage out of NG2

+
CD45

-
CD31

-
 pericytes (C) in response to electrical stimulation 

training. Values are mean ±  SEM. n = 2 (9 week shams) and n = 4 (4 week e-stim/shams and 9 

week e-stim) muscles/group; *p<0.05 vs. 4 week sham; §p<0.01 time main effect. 
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CHAPTER IV 

DISCUSSION 

Establishing a Resistance Exercise Model in Rodents 

 

 It is well established that chronic muscle contractions such as those induced by resistance 

exercise lead to beneficial adaptive responses in human skeletal muscle, such as myofiber 

hypertrophy and increased strength (Ogasawara, 2013; Damas, 2015). Resistance training using 

animal models is advantageous as it allows for tight experimental controls and whole-tissue 

analysis, which is harder to accomplish using human models. The application of resistance 

exercise in an animal model, specifically rodents, is highly problematic due to the inability of 

these models to properly engage in exercise in a manner similar to humans. Compared to other 

options (voluntary exercise, compensatory overload) electrical stimulation appears to provide the 

best option to mimic resistance exercise in humans, as it allows for implementation of specific 

exercise protocols and maximal activation of motor units independent of animal motivation 

(Lowe, 2002).  

The results of eccentric-only electrical stimulation experiments demonstrate significant 

improvement in strength, likely due to neural adaptation (Ambrosio, 2012; Distefano, 2013). 

However, not all demonstrate an increase in muscle hypertrophy (Ambrosio, 2012; Distefano, 

2013; Tsutaki, 2013).  In the current study, our goal was to develop an electrical stimulation 

training protocol that would allow for both improvements in muscle strength and growth. 

Specifically, we sought to increase hypertrophy in the gastrocnemius-soleus muscle, the large 

muscle group that provides a large yield of stem cells via FACS. Our exact protocol included 8 

alternating eccentric/concentric sets of 5 repetitions with a 10-second rest period between the 

sets (repeated twice weekly for the training studies). This protocol was designed with the hope 
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that inclusion of concentric contractions would prevent damage and improve capacity for 

growth. The results from our study suggested significant improvements in fatigue resistance, yet 

no increase in muscle mass (absolute or relative to body weight) or fiber-type specific changes in 

the mean myofiber CSA, including type 1 fibers that were minimally represented in our samples. 

Distribution by size also did not reveal any significant impact of training on myofiber 

hypertrophy. We suspect that lack of inclusion of a pulley system necessary to increase 

resistance to muscle force may be necessary to improve capacity for growth (Wong, 1988; Baar, 

1999; McBride, 2003; McBride; 2006). In addition, it is possible that our protocol stimulated 

growth to a greater extent in other muscles, such as the TA, but other muscles were not 

evaluated. Therefore, optimization of the current electrical stimulation protocol will be necessary 

prior to conduction of experiments that will determine a role for the pericyte in resistance 

exercise-mediated muscle growth. 

Pericyte to Mesenchymal Stem/Stromal Cell Transition 

 

Caplan (2008) and Crisan (2008) both noted co-expression of CD90 and CD140A in 

pericytes and MSCs, an observation that led to a speculation of a link or phenotype switch 

amount the two subpopulations in skeletal muscle. A recent study conducted by Farup et al. 

demonstrated that NG2
+
 and ALP

+
 pericytes are significantly decreased in human skeletal 

muscle following 12 weeks of isolated concentric or eccentric contractions, as assessed in tissue 

sections using traditional immunofluorescence (Farup, 2015). The authors hypothesized that the 

decrease was due to a pericyte to MSC transition. 

Thus, the current study was designed to assess not only pericyte quantity, but also the 

potential for pericytes to upregulate the MSC marker, CD140A, in the short time period 

following an acute bout of resistance exercise.  The total percentage of NG2
+
 and NG2

+
Lin

-
 cells 
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in skeletal muscle was similar, ~5%, suggesting that hematopoietic and endothelial cells are not 

highly represented in the NG2
+
 fraction. Similarly, the total percentage of CD146

+
 and 

CD146
+
Lin

-
 cells in skeletal muscle were approximately the same, ~50-60%. The fact that the 

CD146
+
 fraction was substantially larger (10X larger) than the NG2

+
 fraction, as well as the lack 

of CD146 expression in NG2
+
Lin

-
 cells (~10%) suggests that CD146

+
 cells isolated from muscle 

may include cell types other than pericytes. Our representative flow cytometry plots demonstrate 

the potential for two populations of CD146
+
 cells to be present in muscle, one that expresses 

CD146 to a higher extent than the other. It will be of interest to separate and characterize these 

fractions in the future to determine if differences exist between cell surface marker expression 

and phenotype. Although the total percentage of NG2
+
 and CD146

+
 pericytes (with and without 

Lin exclusion) was not significantly altered with acute electrical stimulation, the expression of 

CD140A was increased in both. Taken together, these data suggest that an acute bout of 

electrical stimulation does not stimulate the expansion of the pericyte population, but rather 

increases the potential for NG2
+
 and CD146

+
 pericytes to transition to an MSC phenotype. The 

lack of CD146 expression in the NG2 fraction also suggests that NG2
+
 cells do not transition to 

CD146
+
 cells post-stimulation.    

The percentage of NG2
+
 and CD146

+
 pericytes in skeletal muscle did not change as a 

result of 4 or 9 weeks of repeated electrical stimulation, suggesting contraction does not appear 

to be a significant stimulus for pericyte expansion. However, CD140A remained elevated in the 

NG2
+
Lin

-
 fraction following 4 weeks of simulation. Only 30% of the fraction expressed 

CD140A at 4 weeks compared to 50% following an acute bout, and no change was observed by 

9 weeks. These results suggest that adaptation may prevent the increase in CD140A expression 

with electrical stimulation. Unexpectedly, a significant drop in the CD146
+
, CD146

+
Lin

-
, Lin

+
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and CD140A
+
 fractions was observed in the sham group at 9 weeks compared to 4 weeks, with 

no change observed in the stimulation group. The drop may represent an age-related phenomena, 

as mice were 5 weeks older (19 weeks of age vs. 14 weeks). 

Previous work by Miller et al. (1995) demonstrated a significant decrease in pericyte 

quantity during a transition into adulthood, attributed to brain maturation and capillary 

quiescence compared to higher pericyte activity during development. However, since the 

CD146
+
 fraction was predominantly affected compared to the NG2

+
 fraction, it is possible that 

cells other than pericytes are transitioning to another cell type not examined in this study. Given 

the low number of samples evaluated at the 9 week time period (n=2-4 per group) in this 

preliminary study, it will be important to repeat these assessments in a follow up study. 

Pericyte Gene Expression in Response to Acute Exercise 

 

We attempted to acquire and analyze RNA from the NG2
+
CD45

-
CD31

-
 pericyte 

population, but due to the rarity of these cells (<5% in this experiment), we were not able to 

extract enough RNA from our samples to successfully complete gene expression on this 

population. Thus, we chose to examine the CD146
+
CD45

-
CD31

-
 pericyte response to acute 

simulation. We were highly interested in examining the potential for the cells to upregulate 

myogenic regulatory factors given the potential for these cells to engage in myogenesis and 

directly contribute to fiber repair/regeneration (Dellavalle, 2007). A significant increase in Myf5 

relative mRNA expression and a trend for increase in MyoD relative mRNA expression was 

observed in female mice. We did include a primer set for myogenin in our assay. However, 

amplification was not successful in some of the samples and a conclusion regarding myogenin 

gene expression could not be made.  
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A variety of growth factors including HGF, LIF and IGF-1 stimulate satellite cell 

activation and/or differentiation (White, 1989; Miller, 2000; Munoz-Canoves, 2013). In the 

current study, growth factor gene expression was increased in CD146
+
Lin

-
 pericytes in a sex-

dependent manner, such that both HGF and LIF were increased in females and IGF-1 was 

substantial increased in males post-stimulation. These data suggest the potential for these cells to 

indirectly contribute to skeletal muscle repair via activation of satellite cells.     

Vascular-associated stem/stromal cells (Sca-1
+
CD45

-
) secrete paracrine factors necessary 

for extracellular matrix remodeling, including a wide variety of Mmp and Timp isoforms 

(Valero, 2012; De Lisio, 2014; Tokunaga, 2014). Timp1, Mmp2 and Mmp14 were significantly 

increased in response to acute stimulation, and these changes were predominant in the males. 

Thus, these cells likely contribute to the ECM remodeling event that has been observed 

following resistance training (Miller, 2005). 

Although striking changes were observed in gene expression patterns related to 

myogenesis, growth factors, and ECM remodeling, relatively few changes were observed with 

regard to inflammatory cytokine or neurotrophic factor gene expression. In addition, with the 

exception of CD45 gene expression, which was increased in response to acute stimulation, no 

significant changes were noted with respect to cell surface marker gene expression. The change 

in CD45 gene expression is worth investigating in the future since protein expression was not 

able to be assessed with flow cytometry (due to the evaluation of both CD45 and CD31 on the 

same channel). Taken together, these data suggest that acute stimulation selectively regulates 

gene expression in the pericyte for the purpose of enhancing muscle repair and simultaneously 

remodeling the tissue environment to accommodate that process.  The distinct changes in gene 

expression in females compared to males may reflect greater need for repair due to increased 
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strain-mediated damage in muscles of smaller size, or simply greater capacity for repair. We 

speculate that the increase in HGF and LIF may allow for optimal satellite cell expansion and 

repair in the females, whereas the increases in IGF-1 and ECM components may facilitate 

satellite cell differentiation and fusion with existing fibers in males. 

Conclusion 

This study provides the first evaluation of the pericyte response to a model of resistance 

exercise in mice. The results suggest that an acute bout of electrical stimulation does not increase 

pericyte quantity, but facilitates a transition to an MSC phenotype based on CD140A expression. 

In addition, results for high throughput qPCR suggest that while NG2
+
 pericytes may not 

synthesize paracrine factor to a large extent, CD146
+
 pericytes support muscle fiber repair and/or 

regeneration. Future studies will need to address CD146 heterogeneity given the relatively large 

fraction of cells expressing CD146 in muscle and the two distinct populations observed with 

flow cytometry. The extent to which these early changes in pericyte function provide the basis 

for beneficial adaptions with long-term resistance training is not clear, but our results 

demonstrate correlations with fatigue resistance following repeated bouts of electrical 

stimulation for 4 weeks.  Future studies will focus on refining our model of resistance training so 

that a role for the pericyte in hypertrophy may be addressed. 
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APPENDIX: Experimental Protocols 

A) RNA Quantification 

a. Clean Biotech before use 

i. Add 2 uL of RNase free water to each well, then blot dry and wipe down 

opposite glass cover 

b. Nucleic acid quantification set up 

i. Add 2 uL of RNase free water to first to wells in A 

ii. Close cover slowly (magnetic seal will pull down cover, do so gently as not to 

disturb samples) 

iii. Place in plate reader and open Gen5 software, and select Nucleic acid 

quantification program  

iv. Run program and validate with the blanks until image turns up green 

(acceptable CV percentage) 

c. Blot dry again 

d. Add 2 uL of sample to each well (see below) and close cover 

e. Run plate in plate reader and export data to Excel 

f. Reclaim the 2 uL of sample from well (and any on the glass cover) 

g. Blot dry with RNase free water and wipe down glass cover. 

h. Repeat process with remainder of sample 

i. For any samples with differences > 5ng/uL repeat analysis of that sample once 

done with all samples 

i. Save Excel data and email to yourself for later usage 

 

B) RNA Extraction from Lysed Cells: 

1. Add equal volume of 70% EtOH to volume of sample, and mix by inversion/pipetting 

2. Add 700μL of 70% EtOH-sample mix to spin column 

a. Centrifuge @ 10,000 RPM (≥8,000g) for 15 sec @ room temperature (RT) 

b. Discard flow through into organic waste bottle 

i. Flow through can also be saved for protein extraction by Acetone 

precipitation  

3. Add 350μL of RW1 buffer to spin column 

a. Centrifuge @ 10,000 RPM for 15 sec @ RT 

b. Discard flow through 

4. Prepare DNase Mix 

a. Add 10μL of DNase I stock to 70μL Buffer RDD – Mix by gentle inversion 

5. Add 80μL DNase I Incubation Mix into each spin column and incubate @RT for 15’ 

(pipette directly on membrane) 

6. Add 350μL of RW1 buffer to spin column 

a. Centrifuge @ 10,000 RPM for 15sec @ RT 

b. Discard flow through and collection tube 

7. Add 500mL of RPE Buffer to spin column 

a. Centrifuge @ 10,000 RPM for 15 sec @ RT 

b. Discard flow through 

8. Add 500μL of 80% EtOH to Spin Column 
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a. Centrifuge @ 10,000 RPM for 2’ @ RT 

b. Discard flow through and collection tube 

9. Put the spin column in new 2 mL collection tube 

10. Spin at full speed for 5’ with lids of spin columns open (to dry residual EtOH) 

a. Discard flow through and collection tube 

11.  Put the spin column in new capped 2 mL collection tube 

a. Pipette 14μL of RNase free water directly onto the membrane 

b. Centrifuge @ 10,000 RPM for 1’ @RT 

c. DO NOT DISCARD – This is the RNA sample! 

d. Repeat a-c with the same 14μL RNase free water (optional) 

e. Discard spin column and store collection tube in -80°C freezer 

 

C) RT-PCR 

1. Create plate outline for sample and gene organization. 

2. Thaw samples in 

fridge 

3. Calculate PCR 

Master Mix volume per gene 

(solutions in fridge) 

a. # of wells per gene = # of samples x replicates +2-4 extra 

 

 

4. PCR Master Mix quantities per gene: 

a. Volume of Primer: 0.5 uL * #of wells 

b. Vol. Master Mix: 5.0 uL * #of wells 

c. Combine Primer and Master Mix into appropriate sized eppendorf tube 

d. Repeat for each gene 

5. Add 5.5 uL of PCR Master Mix to each well for that gene 

6. Add 4.5 uL of cDNA sample to each well 

7. If possible, include negative control (Master Mix + RNase free water) for each gene 

[duplicate] to assess contamination 

a. Once completed, seal with cover and wrap in aluminum (protects fluorophores 

from light) and store in fridge until taken to Functional Genomic Center for 

analysis 

 

 

 

 

 

 

 

 

 1 well (uL) # of wells (uL)  

Taqman Primer 0.5 0.5*# 

Taqman Master Mix 5.0 5.0*# 
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D) PCR Pre-Amplification 

1. Begin thawing cDNA samples and needed primers in fridge 

2. Calculate cDNA and H2O volume to add: 

 Vol. of cDNA to equal 1-250ng per sample  

 12.5uL – cDNA vol. = RNase-free water volume  

3. Make PreAmp Master Mix in 1.5mL eppendorf tube: 

Master Mix: 

 Taqman PreAmp Mix = 25uL * # rxns  

 Pooled Primer Volume = 12.5uL * # rxns  

o Individual Primer Volume = PPV/100  

o TE Buffer = PPV – (#primers * IPV)  

 RNase-free water = Vol. uL * # rxns 

 Number of primers = # primers 

4. Add # uL cDNA sample to 200uL tubes 

5. Add appropriate vol of Master Mix to each sample for a total 50uL/sample tube 

6. Spin down tubes to remove air bubbles 

7. Place in Thermocycler and run appropriate program: 

a. User name: Yair 

b. Program name: Exp001 (see below to confirm set-up) 

c. Run program 

8. Add 950uL  of DEPC+RNase-free water to 50 uL of PreAmp solution 

9. Store in -20
o
C freezer 

 

E) PCR Analysis 

 

1. Use SDS 2.4 and obtain CT values for each sample per gene 

2. Export data as text file and copy/paste to an Excel spreadsheet 

3. Calculate fold change for each sample and gene using ΔΔCT Method 

 

δδCT Method: 

A. In Excel, format a replica of the PCR plate 

B. Copy/paste each CT value to appropriate cell to match plate format 

C. Average each CT value per gene per sample 

D. Copy values to new sheet and format according to gene and sample label 

E. In another sheet, copy/paste the CT values for housekeeping gene (i.e. GAPDH) per 

sample 

F. Choose a gene to analyze and copy/paste CT values 

G. Choose a reference sample with which to compare other samples  

H. Calculate ΔCT value for reference sample, and average value 

a. This value is your average reference ΔCT to compare with remaining samples 

I. Calculate ΔΔCT value by subtracting δCT from the average reference ΔCT 

a. δCT of Sample A – Average δCT of Reference Sample 

J. Determine 2^-(ΔΔCT) value per sample 
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K. Average 2^-(ΔΔCT) value  

L. Calculate standard deviation (SD) 

M. Calculate standard error mean (SEM) 

a. SD/sqrt(n) 

N. Copy/paste 2^-(ΔΔCT) value average and SEM to new sheet 

O. Create bar graphs with error bars 

 

F) Reverse Transcription of cDNA following Quantification 

1. Average concentration values of each sample and record value (2 decimal places) 

2. Average 260/280 ratio value per sample to determine purity 

3. Total RNA Assessment 

a. Choose a volume 2-4 uL away from RNA volume attained from RNA extraction 

(see protocol, generally 14 uL total) 

i. i.e. 10 uL and 12 uL for total RNA concentrations 

b. Multiple RNA concentration by the proposed volume to determine total RNA (ng) 

i. Example:  

  Sample concentration = 100 ng/uL 

  Proposed volume = 12 uL 

  Total RNA for sample = 100 ng/uL X 12 uL = 1200 ng/sample 

4. RT of cDNA calculations 

a. Determine amount of RNA (ng) to use per sample so the total volume of sample 

is 10 uL (uL sample + uL RNase free water) 

i. Between 200-500 ng RNA if possible 

b. Make up 2x RT-Master mix (per 20 uL rxn) 

5. Add 10 uL of Master mix to 10 uL of RNA sample+water into 0.2 microtube, pipetting 

up and down 2x to mix  

6. Centrifuge tubes down to eliminate air bubbles 

7. Place microtubes into thermal cycler, and program cycle as follows (with volume = 20 

uL): 

8. Run RT program 

a. Store at 4 °C short term or -20 
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G) MHC 2x and 1 Immunohistochemistry 

1. 10 m sections from cryostat were fixed immediately with –30 C acetone for total 10 

min, and stored inside –80 C freezer before staining.  

2. Wash with 1 X PBS 3 times for 5 mins. 

3. Switch to incubation with 0.5% BSA and 0.5 % Triton-X plus Fab anti-mouse IgG( 

1:10) (AffiniPure Fab Fragment Goat Anti-Mouse IgG (H+L) Jackson  #115- 007-

003) for 1hr at room temperature 

4. Wash with 3X5 min changes of PBS. 

5. Primary AB Incubation conditions. 

-Mouse IgG2b anti-type I MHC antibody (BA-D5-supernatent from Developmental 

Studies Hybridoma Bank at the University of Iowa (1:20))  

-Mouse IgM anti-type 2x MHC antibody (6H1-supernatent from Developmental 

Studies Hybridoma Bank at the University of Iowa (1:20) (28µg/µL)) 

- Rabbit anti-mouse dystrophin (Abcam ab15277, 1:100) in PBS containing 0.5 % 

BSA and 0.5 % Triton-X for 1 hr room temperature  

6. Wash with 3X5 min changes of PBS. 

7. Secondary AB Incubate conditions.: 

- Alexa 350 conjugated anti-mouse IgG2b 1:100 (Invitrogen Cat# A21140, UV-blue) 

-Alexa 488 anti-mouse IgM μ chain specific 1:100 (JacksonImmuno 115-545-075), 

- Alexa Fluor 633 goat anti rabbit (Invitrogen, 1:200) in PBS containing 0.5 % BSA 

and 0.5 % Triton-X for 1 hr room temperature. 

8. Rinse in PBS (3X5 min). 
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H) MHC 2a and 2b Immunohistochemistry 

a) 10 m sections from cryostat were fixed immediately with –30 C acetone for total 10 

min, and stored inside –80 C freezer before staining.  

b) Let sections warm at room temperature for 5 min.  

c) Wash with 1 X PBS 3 times for 5 mins. 

d) Switch to incubation with 0.5% BSA and 0.5 % Triton-X plus Fab anti-mouse IgG( 

1:10) (AffiniPure Fab Fragment Goat Anti-Mouse IgG (H+L) Jackson  #115- 007-

003) –for 1hr at room temperature 

e) Wash with 3X5 min changes of PBS. 

f) Primary AB Incubation conditions. 

g) -Mouse IgM anti-type 2b MHC antibody (BF-F3-concentrate from Developmental 

Studies Hybridoma Bank at the University of Iowa (1:50, fridge)) 

h) -Mouse IgG1 anti-type 2a MHC antibody (Sc-71-supernatent from Developmental 

Studies Hybridoma Bank at the University of Iowa (1:50, fridge) 

i) Rabbit anti-mouse dystrophin (Abcam ab15277, 1:100) in PBS containing 0.5 % 

BSA and 0.5 % Triton-X for 1 hr room temperature  

j) Wash with 3X5 min changes of PBS. 

k) Secondary AB Incubate conditions: 

l) -AMCA conjugated anti-mouse IgM u chain specific (Jackson Immunoresearch 

Cat#115-155-075, 1:100, UV-blue, Freezer box#3), 

m) -Alexa 488 conjugated anti-mouse IgG subclass 1 (Jackson Immunoresearch  

Cat#115-545-205, 1:100, green). 

n) Alexa Fluor 633 goat anti rabbit (Invitrogen, 1:200) in PBS containing 0.5 % BSA 

and 0.5 % Triton-X for 1 hr room temperature. 

o) Rinse in PBS (3X5 min). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.jacksonimmuno.com/MERCHANT2/merchant.mv?Screen=BASK&Store_Code=JI&Action=ADPR&Product_Code=115-095-205&Attributes=Yes&Quantity=1
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I) Cell Isolation for Flow Cytometry and Gene Expression 
 

Day before: Prepare solutions, antibody mixes and autoclave tools. 

Muscle Cell isolation for Flow Cytometry: 

1. Pipet 1-2 mL of PBS + P/S solution in small petri dishes to collect the harvested 

muscles. 

 

2. Sacrifice mice, record body weight and harvest the gastrocnemius. Weigh the muscle 

tissue and place muscle in the petri dish containing PBS + P/S. 

 

3. Begin warming the enzyme solution in the water bath. 

 

4. Transfer muscles to a 60mm petri dish containing 500µL per muscle of PBS + P/S.  

Mince and Digest Muscle Tissue 

5. Using autoclaved tools, mince the muscles extensively to increase surface area for 

collagenase digestion. 

 

6. Add Collagenase and DNase to the warm enzyme solution. Add ~6mL of the enzyme 

solution per muscle to the petri dish and use a 25mL pipette to transfer the minced 

muscle into a 50mL tube.  

 

7. Begin warming the inhibition medium. 

 

8. Incubate the minced muscle for 45 mins in the water bath. Every 15 mins, titrate the 

solution using a 10mL pipette, working down to 5mL and 1000 µL pipette as the tissue 

becomes more digested.  

 

9. Begin soaking 70µm and 40µm filters in a petri dish in PBS + P/S. 

 

10. Filter the digested muscle solution through the 70µm followed by a 40µm filter. Add 

an equal volume of inhibition medium to stop the digestion. 

Count Cells 

11. Collect 10µL of solution from each sample into an Eppendorf tube for cell counting. 

 

12. Centrifuge the samples for 5 mins at 450 RCF. 

 

13. Cell counting: Add 10µL of trypan blue to the cell suspension from step 11. Mix well. 

Add 10uL of the resulting solution to a hemacytometer. Blue cells are dead cells. 
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Count the center square and the 4 corner squares. Average the 5 counts. We typically 

get 1.5 x 10
6
 cells from Sed and 3 x 10

6 
from e-stim samples. 

 

Count Average * 10,000 * 2 = ___________ cells/ml  

_____ Cells /ml * total volume = _________ cells  

Resuspension volume = _________ cells / 1.5 x 10
6
  =  ________ mL 

 

14. Remove supernatant and resuspend the cell pellet in 2% FBS in PBS using the 

volumes obtained from step 13. Break any cell clumps by pipetting up and down using 

a 200 µL pipette. 

Block the Fc receptor 

15. Transfer 1 mL of solution to an Eppendorf tube. Add 5 µL of CD16/CD32 blocking 

antibody per 1 mL of cell suspension and incubate in the fridge on the rotator for 10 

mins. 

 

16.  Wash 1: Add 500µL of 2% FBS + PBS to the blocking solution and centrifuge for 5 

mins at 450 RCF. 

 

17. Wash 2: Remove supernatant and resuspend the pellet in 1mL of 2% FBS + PBS. 

Break any cell clumps by pipetting up and down using a 200 µL pipette. 

Stain the cells using Antibody Mix 

18. Add 100µL of the cell suspension to the FMO antibody mixes and 200 µL to the 

Single stain and the sample tubes. 

 

19. Incubate on ice in the rotator for 1 hour. 

 

20. Wash 1: Add 1 mL of 2% FBS + PBS to the tubes and centrifuge for 5 mins at 450 

RCF. 

 

21. Wash 2: Resuspend the pellet in 1 mL of 2% FBS + PBS and centrifuge again for 5 

mins at 450 RCF. Break any cell clumps by pipetting up and down using a 200 µL 

pipette.  

 

Transfer to sort tubes: 

22. Resuspend the pellet in 300 µL of 2% FBS + PBS and transfer to the sort tubes and 

place on ice. 

 

23. Run the samples on the flow cytometer.  


