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Abstract 

Speed harmonization, known as Variable Speed Limit (VSL), is implemented through a 

number of Changeable Message Signs (CMSs) spaced out over a stretch of highway. The CMSs 

display advisory speeds that may change over time and space to regulate travel speed and arrival 

time to a highway bottleneck and consequently reduce congestion impacts. Usually speed 

harmonization studies determine optimal dynamic advisory speeds to minimize travel time and 

delay. Delay and travel time can be further minimized if optimal location and number of CMSs 

are determined as well. Determining dynamic advisory speeds depends on the number and 

locations of CMSs; thus these variables have to be optimized simultaneously. This study is the 

first study which simultaneously optimized 1) dynamic advisory speeds, 2) number of CMSs, 

and 3) location of the CMSs to minimize total travel time and a penalty function for the number 

of CMSs. This problem is important as it reduces maintenance and installation costs of CMSs 

and enhances effectiveness of speed harmonization to reduce congestion impacts such as delay. 

Solving this problem is challenging because it is a large scale Mixed Integer Nonlinear Program 

(MINLP). 

Determining traffic speed and extend of queue is critical to develop a speed 

harmonization scheme to mitigate congestion. Past studies have used first order model or second 

order model as a constraint in the optimization program to determine speed and extend of queue. 

This study compared the first order model and the second order model versus field data and 

showed that the second order model was better in estimating average queue length and maximum 

queue length.   

To use the second order mode, it is necessary to calibrate the model parameters, which 

are relaxation time (τ) and anticipation coefficient (ϑ). This study calibrated the parameters using 

work zone field data to minimize error in speed and queue length estimates. The calibration is a 

complex process since there might be many local optimal points returning parameter values that 

are not physically justifiable. To overcome this issue, this study proposed a new calibration 

procedure. The methodology detected the behavior of the second order model in the τ- ϑ space 

and determined a search direction and its boundaries to avoid stopping at local minima. 

  Although the second order model returned acceptable average and maximum queue 

lengths, it returned slower queue propagation pattern and faster queue dissipation pattern than 
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field data. Thus the two- ϑ model was proposed to more maturely reflect asymmetric queue 

propagation and dissipation. The modification considered two different anticipation coefficients 

for queue propagation (ϑp) and queue shrinkage (ϑs). The two- ϑ model was calibrated using 

field data and results showed that the ratio of  
ϑs

ϑp
 ranges from 1.86 to 2.6 and both of them are 

greater than single ϑ. 

The solutions for the optimization program mainly tackled integrality. One source of 

integrality is piecewise speed-density models. Previous studies have used single-regime (single 

piece) models, but these models are not generally sufficient to describe congested conditions. 

Thus this study included the piecewise models as constraints to enhance accuracy of traffic state 

prediction in congested conditions. A continuous transformation approach was proposed to 

eliminate relevant integer variables. The methodology was used to optimize speed harmonization 

for a 12.5-mile roadway and a 50-min analysis duration where locations of the CMSs were 

given. For this problem, the methodology eliminated 30,000 binary variables and solved the 

problem in 23 minutes when the program included roughly 158,000 variables and 186,000 

constraints. The results showed that WZSH can reduce delay by 15.7% and maximum queue 

length by 37.5% compared to the no speed harmonization condition.  

Another source of integrality is binary variables to determine location and number of 

CMSs. To solve the problem, three solution methods were proposed: 1) Greedy algorithm, 2) 

Augmented-Cut and Branch (AC&B) method, and 3) Approximate Decomposition method. The 

three solution methods were compared using a benchmark problem and results showed that the 

three methods return very close objective function values (within 1%), but the Approximate 

Decomposition method requires less computational resources. In particular, the Approximate 

Decomposition method reduced the number of WZSH solution by factors of 14.1 and 6.6 

compared with Greedy Algorithm and AC&B method, respectively.  
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Chapter 1 Introduction  

Speed harmonization, known as Variable Speed Limit (VSL), is implemented through a 

number of Changeable Message Signs (CMSs) spaced out over a stretch of highway. The CMSs 

display advisory speeds that may change over time and space to regulate travel speed and 

improve traffic operation and safety. The Federal Highway Administration (FHWA) introduced 

the Active Traffic and Demand Management (ATDM) strategies to manage traffic congestion. 

According to FHWA, “ATDM is the dynamic management, control, and influence of travel 

demand, traffic demand, and traffic flow of transportation facilities.” (Federal Highway 

Administration, 2012). An example of the ATDM strategies is speed harmonization which is the 

focus area of this study. 

Speed harmonization can improve traffic operation by increasing capacity or reducing the 

shockwave propagation rate.  Capacity may be increased when speed harmonization reduces 

speed difference between vehicles and creates smooth flow. Example of this effect can be 

observed in Zackor (1972), and Macdonald (2008) in which capacity was increased by 5% to 

10%. The shockwave propagation rate may be reduced when speed harmonization reduces traffic 

speed and consequently arrival rate at appropriate time and location upstream of a bottleneck. 

This could shorten the congestion duration and decrease travel time and delay. Examples of this 

application are reflected in Berton et al. (2002), and Hegyi et al. (2005) in which total travel time 

was reduced by 12% and 20%, respectively.   

Speed harmonization can improve safety by displaying a reduced speed limit based on 

restricted geometric conditions (e.g., a tunnel), or inclement weather conditions. Also, a speed 

harmonization system can lower speed of vehicles joining a queue to reduce the likelihood of 

rear-end collisions. Application of speed harmonization in Germany resulted in 30% reduction in 

personal injury crashes. Another application of speed harmonization in Netherland reduced 

collision by 16% (Federal Highway Administration, 2012). 

Although successful implementations of this strategy have been reported in the literature, 

there are some implementations (Lyles et al. 2004, Park and Yadlapati 2002) that resulted in 

insignificant improvement in traffic operation and safety, and this demands developing more 

efficient speed harmonization strategies.    
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In the past studies, the number and location of CMSs were not optimally designed for 

dynamic speed harmonization. These studies determined signs locations arbitrarily (Hegyi et al. 

2005, Ghods et al. 2007, Berton et al. 2002), located the signs next to loop detectors (Allaby et 

al. 2007), or placed the signs next to on-ramps (Su et al. 2011). None of these approaches 

necessarily optimize a speed harmonization system to improve traffic operation. Determining 

optimal location and number of CMSs is important because of the following reasons: 

1-It can further improve traffic operation by minimizing travel time or delay.  As it will 

be shown in Chapter 6, there are locations that do not have significant influence on reducing 

traffic delay. Also there are locations that have some influence but significantly below the 

optimal level. Possible factors that may lead to the different influences could be distance 

between a CMS and the bottleneck, as well as different capacities of the roadway segments. As a 

result, it is important to develop a methodology which considers different factors to find optimal 

CMS locations. 

2- It can avoid installing too many signs and can reduce installation and maintenance 

costs of the signs.  

3- It can improve traffic safety by harmonizing speed.  In particular, the number of signs 

could determine the number of speed changes along the roadway. Eliminating unnecessary speed 

changes can help to provide smoother speed profile along the roadway and would be more 

desirable for safety.  

Thus, the main objective of this study is to develop and solve a mathematical program, 

called Work zone Speed Harmonizer (WZSH), to simultaneously find optimal advisory speeds, 

number of CMSs, and spacing values between the CMSs for work zones. This study is the first 

study which determines location and number of CMSs when advisory speeds can change over 

time and space.  

 Solving the problem is challenging, because it is a large-scale Mixed Integer Nonlinear 

Program (MINLP). Nonlinearity comes from speed-density relationships and a second order 

hydrodynamic model (Payne model).  Also the program includes integer variables to determine 

the location of the CMSs. In addition, inclusion of piecewise speed-density models in the 

program required integer variables. Consequently, this study developed methodologies that 

tackled challenges coming from integer variables and could be applicable for large scale 

problems.  
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The contributions of the study are outlined below. More detailed on the contributions are 

discussed in Chapter 7: 

 The study developed a new methodology to calibrate relaxation time (τ) and 

anticipation coefficient (ϑ) in the second order model for work zone traffic 

conditions. The methodology detected the behavior of the second order model in 

the τ- ϑ space and determined a search direction and its boundaries to avoid 

stopping at local minima. 

 The study proposed the two- ϑ model, which is a modification to the second order 

model, suggesting two different anticipation coefficients for queue propagation 

(ϑp) and queue shrinkage (ϑs). The modification was proposed because the 

second order model returned slower queue propagation pattern and faster queue 

dissipation pattern. The two- ϑ model was compared with the second order model 

using field data and results showed that the two- ϑ model better replicated the 

queue propagation and dissipation patterns.  

  A continuous transformation approach was proposed to eliminate binary 

variables due to inclusion of piecewise speed-density relationships in the 

optimization program. Thus instead of solving a mixed integer nonlinear program, 

which is very challenging to solve for a large scale problem, one can solve the 

corresponding nonlinear program and significantly reduce computational 

difficulties. 

 The Approximate Decomposition method was proposed to determine optimal 

location and number of CMSs and dynamic advisory speeds. The Approximated 

Decomposition method was compared with Greedy Algorithm and Augmented-

Cut and Branch method and results showed that the three methods return very 

close objective function values but the Approximate Decomposition method 

requires less computational resources.  

This study includes 7 chapters. Chapter 1 introduced and presented the objective of the 

study. Chapter 2 reviewed related studies. Chapter 3 presented the formulation of the problem. 

One of the formulated constraints is the second order model which has not been calibrated for 

work zones.  A calibration methodology was proposed in Chapter 4 for work zones. This chapter 
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further proposed a new second order model to improve queue propagation and dissipation 

patterns.  Chapter 5 solved the WZ-Speed Harmonizer when speed-density relationships are 

piecewise which could be linear or nonlinear. Chapter 6 proposed algorithms to determine 

optimal locations of signs. Chapter 7 presented conclusions and recommendations.  
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Chapter 2 Literature review 

In this chapter, first articles on speed harmonization are reviewed. Then the models that are used 

to estimate traffic state in bottlenecks and then methods of capacity estimation for work zones 

are presented.  At the end, conclusions are provided on how the past studies determined number 

and locations of changeable message signs and what issues should be addressed in the current 

study.  

 Speed harmonization 

This section divides speed harmonization studies into work zone and non-work zone studies and 

then further divides them into field studies and simulation studies. At the end of this section, the 

effect of speed harmonization on traffic operation will be discussed.  

2.1.1   Field studies for speed harmonization in work zones  

A variable speed limit control scheme was developed and tested in a 2.5-mile work zone 

near Wakota Bridge on I-494 by Kwon et al. (2007). Three variables speed limit signs were 

placed in the work zones as shown in Figure 2-1. Speed and volume data were collected by radar 

sensors. “The system is designed to lower the speed of the upstream traffic approaching the work 

zone bottleneck to the same level as the downstream flow.” The results showed about 30% 

reduction in 1-min maximum speed (i.e. maximum speed data aggregated over 1-min intervals), 

and 7% increase in total throughput.  

 

Figure 2-1: Work zone sketch and location of speed limit signs in Kwon et al. (2007) 
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McMurtry et al. (2008) tested two VSL signs over a six-mile section of a work zone in 

Utah. Two VSL signs were used and one sign was installed in advance of the work zone and the 

other sign was placed inside the work zone. The exact spacing between the signs was not 

reported. Speed data were collected to compare impacts of VSL control with the base condition. 

In the base condition, a static speed limit of 65 mph was posted in the field, while in the VSL 

control conditions the speed limit was 55 mph for daytime and 65 mph for nighttime. The results 

showed that in daytime, speed variation was reduced at the beginning of the work activity area; 

and in nighttime the average speed was reduced at the same location. 

Lyles et al. (2004) evaluated VSL on I-96 in Michigan where “permanent and transient” 

work activities occurred within an 18-mile work zone. The number of VSL signs was not 

indicated in the study, but the spacing varied between “a few hundred yards to approximately 1 

mile”. It was mentioned that due to communication problems between the signs the spacing had 

to be shorter than the original plan. The displayed speed limit was equal to 85th percentile speed 

at the next downstream location. Effects of VSL on speed distribution and travel time were 

assessed, and it was found that VSL control had “minor effects” on 85th percentile speed and 

speed variance in the work zone and it increased average speed by 1 to 3 mph. 

 

2.1.2 Simulation studies for speed harmonization in work zones 

Lin et al. (2008) developed two real-time algorithms to apply variable speed limit control. 

The first one tries to keep the arrival rate under a specific threshold by reducing traffic speed. 

This would allow vehicles in the transition area to have enough gaps to merge into the work 

zone.  The second algorithm finds speed limits such that the queue length” in the advance of 

work zone” does not exceed a threshold. The algorithms inputs are speed and flow data and it is 

assumed that they can be collected using sensors. The algorithms were applied to 2-to-1 (i.e. One 

of the two lanes is open in the work zone) , 3-to-1 and 3-to-2 work zones, simulated in CORSIM. 

The study used five VSL signs, but the spacing between the signs were not reported. The results 

showed that under “normal traffic condition” the algorithm increased throughput, but the paper 

did not provide more details on the amount of improvement.  

Three control logics to regulate traffic speed were presented by Park and Yadlapati 

(2002). Both Logic 1 and 2, reduce the difference between average speed of vehicles in the 

merge area and the average speed of the arriving volume on freeway. In particular, Logic1 
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computed the average speed of vehicles in the merge area during a given interval and assigned 

the value to the upstream VSL sign for the next interval. On the other hand, Logic 2 gradually 

reduced the speed of arriving traffic using two VSL signs. The first VSL sign shows a speed 

limit, 10 mph higher than the average speed of the merge area, while the second VSL sign 

displays the average speed of the merge area. Logic 3 used a safety measure, called Minimum 

Safe Distance Equation (MSDE) to control the traffic speed. A decrease in a value of MSDE is 

not desirable for traffic safety. Thus Logic 3 reduced (increased) displayed speed limit when 

MSDE decreased (increased). The study used two VSL signs to control speed in the work zone 

and located them 2950 ft and 980 ft upstream of the transition taper. All three logics were tested 

using VISSIM and it turned out that simple application of a static speed limit sign of 45 mph is 

better than the other logics.   

   

2.1.3 Field studies for speed harmonization in non-work zone bottlenecks  

Bertini et al. (2006) evaluated the effect of a variable speed limit system on an 18-km 

German autobahn. Ten CMSs installed with varying spacing values which were not reported. 

Also the logic for installation of CMS was not discussed. The signs showed a variables speed 

limit between 60 km/hr to 120 km/hr with increment of 20. The purpose of the speed 

harmonization was to keep a continuous flow with a speed between 30 km/hr and 40 km/hr when 

there is a queue in the field. When there was a “stable” condition speed of 80, 100, or 120 km/hr 

were displayed. When there was an “unstable” condition, the displayed speed was 60 km/hr. The 

study claimed that there is a strong correlation between traffic speed and displayed speed limit 

indicating that variable speed limit had some influence on traffic; this was concluded based on 

the observation of 1-min traffic speed data that changed based on the displayed variable speed 

limit; however there was no computation for correlation coefficient or other statistical measures. 

The study mentioned that “even with the reduction of speed limits, shockwaves propagating a 

distance of 18 km were observed”.  

Chang et al. (2011) implemented and evaluated a variable speed limit system on a 4.5 

mile segment of MD-100. The system had two VSL signs with a spacing of 1.1 miles. The 

distance between the downstream CMS and the bottleneck was 1.9 miles. The purpose of speed 

harmonization was to create a smooth speed profile between a segment with free flow speed and 

the segment with congestion. The field data during one hour of peak period showed that there is 
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a 25% reduction in travel time. Also total throughput increased by 230 vehicles (the segment had 

two lanes) during one hour of a peak period.  

M25 Controlled Motorways program was evaluated by the Highway Agency (currently 

known as Highways England) in 2004. The program implemented variable speed limit on a 4-

lane highway between Junctions 10 and 15 in London. The program displays speed limits of 50 

mph or 60 mph depending on the traffic volume thresholds and no more details on the thresholds 

were reported. The dynamic speed signs were placed every 1km.  Field data showed the system 

resulted in 6% reduction in “stop-start” condition, 3% reduction in occurring flow break down, 

and 10% reduction in injury accident.  

Bham et al. (2008) evaluated a variable speed limit system over a 38-mile section of a 

highway. The highway was divided into 6 segments and one CMS was deployed on each 

segment. The spacing between the CMSs ranged from 6.13 miles to 8.8 miles. The system 

displayed a speed limit less than 60 mph if based on 30-sec data average occupancy is more than 

7% for a lane, average lane volume is more than 10 vehicles, and average speed is less than 60 

mph. In this case, the displayed speed is equal to traffic speed in the congested segment rounded 

up to the nearest multiple of 5 mph. The study only evaluated the effect of variable speed limit 

only for 4 segments (out of 6). Standard deviation of speed during each 30-min interval was 

computed and tabulated for before and after deployment. The authors stated that “speed 

homogeneity can be inferred from the results of the table. Increase in speed homogeneity may 

cause reduction in traffic crashes which is a positive outcome of the VSL system.“ As a result, it 

was concluded that the variable speed limit could improve safety. 

2.1.4 Simulation studies for speed harmonization in non-work zone bottlenecks  

Alessandri et al. (1999) developed an optimized control approach to design variable 

speed limit. A closed loop control approach was designed such that the current traffic state is 

estimated using Kalman filtering approach. Speed dynamics was predicted using METANET 

model. The Powell’s optimization method was used to determine optimal solution. The method 

determines a search direction and corresponding step by solving an optimization sub-problem. 

The method was implemented on a 5-km hypothetical freeway where signs located every 1 km. 

It was shown that the variable speed limit reduced throughput from 6711671 vehicles to 6672573 

for analysis duration of 3000 seconds.    
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 Yang et al. (2013) developed an optimized VSL method and evaluated in a simulation 

model. A Kalman filtering method was developed to estimate traffic speed using simulation data. 

An optimization program was solved to determine variable speed limits. Two VSL signs were 

used because there were two locations caused congestion. Each sign was placed about 800 ft 

upstream of the congestion location. The results showed that the system resulted in 17.4% travel 

time reduction and 42.4% reduction in number of stops. The objective function minimized the 

speed variance.   

 A VSL control model was develop by Hegyi et al. (2005) for highways. The objective 

function was to minimize the total time spent in the network. A 12-km stretch of highway was 

divided into 1-km segments. Speed and density of each segment was updated using the 

METANET model. Speed limit signs were located in six consecutive segments with a spacing of 

1 km. The advisory speed limit upstream of bottleneck was determined to minimize the total time 

spent in the network. The algorithm was implemented for a benchmark problem resulting in 20% 

reduction in total travel time.  

Allaby et al. (2007) used PARAMICS to evaluate a decision tree based algorithm for 

speed harmonization on freeways to provide safer deceleration for vehicles joining queue and to 

increase traffic speed in bottleneck by reducing stop-and-go conditions. Thirteen VSL signs were 

installed next to loop detectors with a spacing of 500 m to 600 m.The following figure shows the 

original algorithm. The thresholds were selected based on engineering judgment.  

Based on the algorithm if occupancy is less than or equal to 15%, the speed limit will be 

the normal speed limit. If occupancy is more than 15%  and volume is less than 1600 vphpl, the 

speed limit will be equal to the average traffic speed. To evaluate this algorithm a safety measure 

called crash potential measure was calculated based on three variables 1) coefficients of variation 

of speed, 2) the spatial variation of speed, and 3) the covariance of volume. The algorithm was 

implemented for peak, near-peak and off-peak traffic conditions and resulted in up to 39% 

reduction in crash potential measure at the expense of up to 23% increase in travel time. It was 

shown that the excessive travel time can be reduced from 23% to 13% if the occupancy threshold 

of 20% and volume threshold of 1800 vphpl are used.  
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Figure 2-2: Decision tree algorithm for variable speed limit (Allaby et al. 2007) 

 

Ghods et al (2007) proposed an integrated ramp metering and variable speed limit control 

using fuzzy logic. The if-conditions were based on speed, flow and queue occupancy rates on the 

main line and the then-statements were the rate of metering and the displayed speed limit. The 

membership functions were tuned using genetic algorithm and the algorithm was implemented to 

minimize the total time spent in the network. The METANET model was used to find the travel 

speeds. The algorithm was tested in a benchmark problem for a 6 km freeway section. Three 

VSL signs were used with 1km spacing upstream of an on-ramp and resulted in about 6.5% 

reduction in total travel time.   

In another study, Ghods and Rahimi-Kian (2008) proposed a game theory approach to 

design coordinated ramp metering and variable speed limit. Speed limit signs were considered as 

players having the same interest. The problem was broken into subproblems, each of which was 

finding the speed limit for each sign as a player of the game. The results were simulated using 

METANET model for a 10 km freeway section, with two onramps, and two VSL signs. Both 

VSL signs were installed upstream of the first ramp with a spacing of 1 km. It was found out that 

total travel time was reduced by 16%. In addition, the speed limit can be determined fast enough 

for real time application and better results compared with no control scenario.  

Piao and McDonald (2008) evaluated safety impacts of variable speed limit on freeways 

using micro simulation. The results showed that variable speed limit reduced the percentage of 
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short headways by an unspecified amount. This study assumed that all vehicles are equipped 

with in-vehicle speed limit display.   

 Kamel et al (2008) designed an integrated ramp metering and variable speed limit 

control.  The shockwave propagation and traffic speed were estimated by solving the 

conservation equation. The conservation equation for on and off ramps was solved using flatness 

method. The flatness method is an approach to solve differential equations. Using the flatness 

method, inputs and state variables in the differential equations can be converted to algebraic 

equations with no partial differential equations. How to solve the equations and the effect of the 

integrated system were illustrated through an example and the results showed that the integrated 

system is superior than the “ramp metering-only’ system. In particular, the maximum number of 

vehicles in queue was reduced from 300 to 200.  

Lu et al (2010) minimized total time spent in the system using Variable Speed Limit 

system combined with ramp metering. Assuming a given ramp metering set-up speed limits were 

determined using Model Predictive Control and METANET model was modified for a general 

speed-density curve. The algorithm was evaluated in a simulation model for a 2.7 mile segment 

of I80 EB, in California. Two CMSs were used. One was located about 500-600 meters upstream 

of the bottleneck. The exact spacing between two signs was not reported. For 5 hours of analysis 

the VSL system reduced total travel time from 14000 hr to 5300 hr.  

Wang (2011) developed a macroscopic model to predict speed dynamics in traffic control 

problems. The model is a combination of the second order speed-density model and a car 

following model. When vehicle speed is less than the speed limit, traffic speed is derived from 

the second order model and when it is above the speed limit drivers slowdown in response to the 

speed limit and their speed in the next time step is estimated using the car following model based 

on the difference between the current speed and the speed limit. The developed model was 

compared with METANET and VISSIM models for a hypothetical 5-lane unidirectional freeway 

with 5 VSL signs and a spacing of 500 meter. Under different hypothetical speed limits, traffic 

speed was estimated using the three models. VISSIM estimates were considered as the base and 

it was concluded that the developed model better represented VISSIM data than the METNET 

model. No goodness of fit measure was reported for this conclusion.    

Su et al (2011) proposed a combined ramp metering and VSL control scheme for 

weaving sections. The VSL control strategy keeps the occupancy at the critical level for the 
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discharge section by displaying the critical speed as speed limit. For this purpose, a VSL sign 

was suggested to be installed at 500 m to 700 m upstream of the bottleneck to provide an 

appropriate acceleration distance.  On the other hand speed limit gradually decreases when 

vehicles reach the back of queue. The ramp metering control strategy minimizes delay and 

maximizes travel distance. The Aimsun simulation model for a 6-lane freeway with 7 on-ramps 

and 7 off-ramps showed that the system improves the system performance when deriver 

compliance is beyond 30%.  

Lu et al (2011) developed a combined ramp metering and VSL control strategy. First the 

ramp metering rate was determined by minimizing travel time and maximizing mainline flow. 

Then VSL strategy was designed such that it creates a discharge point before the bottleneck. 

Within queue speed limit was equal to the critical speed and free flow speed gradually decreased 

to the critical speed at the back of queue. The paper compared the combined strategy with status 

quo, ramp metering only, and VSL-only for a 10-km freeway modeled in Aimsun. It was found 

out that the VSL-only and VSL combined with ramp metering significantly reduced delay, but 

specific numbers were not discussed in the paper.  

Kwon et al (2012) designed a VSL strategy to avoid sudden deceleration. The beginning 

of the control zone was determined when speed is less than 55 mph for the current interval and 

deceleration rate is less than or equal to 1500 mile/hr, for three consecutive intervals. These 

thresholds were determined by observing 20 incidents during a 3-month period and it turned out 

that half of them happened when downstream speed is less than 55 mph and deceleration rate is 

less than or equal to 1500 mile/hr.  The displayed speed limit was determined based on the 

distance between the signs and deceleration rate of the traffic. The system status was updated 

every 30 sec. VISSIM simulation results showed that the system reduces sudden deceleration 

with relatively small increase in travel time. The authors discussed that the minimum spacing 

between the CMSs should be selected such that it provides a comfortable acceleration or 

deceleration rate. No more discussions were provided on how the number of signs and 

corresponding spacing values were selected in this study.  

Hadiuzzaman and Oiu (2012) incorporated capacity drop in cell transmission model to 

design a VSL strategy for a lane drop. Model Predictive Control was used to determine the speed 

limits and it was evaluated for an 11-km urban freeway in Canada. Two VSL signs were used. 

One sign (critical VSL) is placed 200-250 meter upstream of the bottleneck and the second sign 
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was placed two cells upstream of the bottleneck. The cell lengths were 800 meter, thus the 

spacing between the second CMS and the bottleneck was 1.6 km. It was stated that the second 

sign was considered for “keeping the queue length smaller that might grow from the critical 

VSL.  The purpose is to avoid blocking of the upstream on-ramp”. The results showed using one 

sign could improve flow up to 7.1% while using two signs improved flow up to 6.9%. 

Zhang et al. (2015) determined optimal location and number of CMSs using Genetic 

Algorithm. It was assumed that the speed limit for a specific sign is fixed and does not change 

over time. Cell transmission model was used to model traffic dynamics. A numerical example 

was solved for a 9-km freeway section for two purposes. The first purpose was to reduce a 

smoothness factor which was defined as the difference between the densities of two consecutive 

cells. It was assumed that maximum number of signs is 8. The program determined 6 signs with 

spacing values ranged from 631 m to 2922 m. The “smoothness measure” was reduced by 87%. 

The second purpose was to reduce environmental impact, in particular “total human emission 

exposure”. For this purpose, the optimization determined two signs. The most downstream sign 

was located 4160 ft away from the bottleneck and the spacing between the two sign was 4840 ft. 

The program could reduce total human emission exposure by 25%. 

 Effect of speed harmonization on traffic operation 

Two issues are discussed in this section: 1) effect of speed harmonization on capacity 2) 

effect of speed harmonization on shockwave propagation  

1) Effect of speed harmonization on capacity: Field studies demonstrated both significant and 

insignificant effects of speed harmonization on capacity. An early field study conducted by 

Zackor (1972) showed that variable speed limit increased capacity by 5-10% in a German 

Autobahns. Later, Macdonald (2008) reported 7% capacity increase in an England motorway.  

On the other hand, Papageorgiou et al. (2008) and Smulders (1990) reported insignificant 

effect of speed harmonization on capacity for European motorways. The mixed effect of 

speed harmonization on “maximum flow prior to breakdown” (i.e. capacity) was observed by 

Kianfar et al. (2012) for 8 highway work zones. The study reported 5% to 9% increase for 3 

locations, no effect for one location, and 2% to 7% reduction for 4 locations.  

2) Effect of speed harmonization on shockwave propagation: Speed harmonization can reduce 

shockwave propagation by reducing traffic speed and consequently arrival rate. In this 

approach, which will be used in the current study, traffic speed is determined as the 
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minimum of two values: a) speed which is read from a speed-density relationship b) advisory 

speed (Hegyi 2005). This approach was evaluated in benchmark problems resulting 12% to 

20% reduction in travel time when there is queue due to a capacity drop in a bottleneck. 

(Berton et al. 2002, Hegyi et al. 2005).   

Based on the discussion above, effects of a speed harmonization system and its design on 

capacity and fundamental diagram should be further understood and supported using field data 

Papageorgiou et al. (2008).  

 Traffic state estimation  

Traffic dynamics models are used to describe spatial and temporal changes of speed, 

density, and flow rate. Two types of model are introduced in this section: 1) LWR (Lighthill and 

Whitham 1955, Richards 1956) model, and 2) Second order continuum model. At the end of this 

section, conceptually the two models are compared. Numerical comparisons using field data will 

be provided in Chapter 4.  

2.3.1 LWR (first order) model  

Lighthill and Whitham (1955), and Richards (1956) showed that the solution of 

conservation law for traffic flow leads to definition of shockwave which is defined as the 

discontinuity between traffic states. Using this model, one can compute shockwave speed to 

predict location of shockwave along the roadway and then estimate extend of congestion. 

Shockwave speed Usw can be computed as: 

Usw =
∆q

∆k
 

2-1 

Where ∆q  is the difference between flow rates at the two sides of the discontinuity. 

Similarly, ∆k is the difference between densities at the two sides of the discontinuity.  

In the traffic control problems finite difference form of the conservation law is used to 

numerically approximate extend of congestion. Assume that the roadway is divided into sections 

with length of L miles, and time interval duration is Δt sec. It is intended to determine the state of 

the system for the section i at the beginning of time interval t+1. It is also assumed that the state 

of the system in the previous time interval is known. The following three equations are used to 

determine average speed (Vi,t+1), density per lane (Di,t+1) and exit flow rate per lane (Fi,t+1) for 

the section i in the beginning of time interval t+1 (Papageorgiu et al. 1989). If  λi denotes the 

number of open lanes for section I, then  
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1) Conservation law 

 

Di,t+1 ∗λi ∗ L=Di,t ∗ L ∗λi + (Fi+1,t ∗λi+1 − Fi,t ∗λi) ∗Δt                     2-2 

It should be noted that the section i+1 is at the upstream of section i.   

2) Updating exit flow rate    

Fi,t+1= α̅̅̅ ∗ Q(min{Di,t+1, Dcr}) + (1 − α̅̅̅) ∗ Q(Di−1,t+1) 2-3 

α̅̅̅= {
α                   if Di−1,t+1 < Dcr
1 −α           if Di−1,t+1 ≥ Dcr

 
 

Where Q(Di−1,t+1) is the flow rate corresponding to Di−1,t+1, and Dcr is the critical 

density ( i.e., density at the maximum flow rate). The model parameter is α which in theory is 

equal to 1; in practice values that are, less than but, close to 1 have been obtained based on 

calibration using field data (Papageorgiu et al. 1989, Kwon et al. 2007). The section i-1 is at the 

downstream of the section i.  

3) The relationship between the traffic parameters 

            Fi,t+1 = Di,t+1 ∗ Vi,t+1                        2-4 

There are some drawbacks in using the first order model. As discussed by Papageorgiou 

(1998), the first order models, in general, cannot reflect capacity drop due to lane drop, and ramp 

metering effect to increase mainline flow rate. Also the first order model assumes that speed 

change occurs instantaneously and as a result there is no shock structure. To overcome these 

drawbacks second order model was proposed to more realistically describe asymmetric 

acceleration and deceleration process. A comparison between first and second order models will 

be presented in Chapter 4 using work zone field data.  

2.3.2 Second order continuum models 

The second order models could be in the form of a flow dynamics (Lighthill and 

Whitham 1955) equation or a speed dynamics equation (Payne, 1971). The speed dynamics form 

has been frequently used in traffic control problems.  

In order to update the state of system, one can use the Equations 2-2 , 2-4 and the 

following equation which is known as the (extended) Payne model: (Papageorgiu et al. 1989, 

Breton et al. 2004, Ghods et al. 2007).   
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Vi,t+1 = Vi,t +
Δt

L
Vi,t(Vi+1,t − Vi,t) +

Δt

τ
(V(Di,t)−Vi,t) −

Δt∗ϑ

τ∗L
(
Di−1,t−Di,t

Di,t+κ
)   2-5 

Where V(Di,t) is the speed at density of Di,t and is computed from speed-density relationship. 

The model includes 5 parameters: L, Δt, τ, ϑ, and κ. L and Δt are usually determined 

before model calibration. The parameters L and Δt should be determined such that it follows the 

following rule (Papageorgiu, 1998); otherwise the simulation would not be numerically stable.  

L

Δt
≥ Vmax = Maximum traffic speed  2-6 

 On the other hand, L and Δt should not be very large as they cause some inaccuracy in 

estimating the locations of back of queue. Table 2-1 shows that except the early study in 1976, 

values of 
L

Δt
  fall between 144 

𝐤𝐦

𝐡
 and 180 

𝐤𝐦

𝐡
 (90 mph and 112.5 mph).  

The other three parameters calibrated using field data are: 

1) The relaxation time (τ) which is the time that a vehicle react to speed changes and 

expected to be in order of 1-1.8 seconds (Revised Traffic Flow Monograph, Revised 

Chapter 5). However the calibrated parameters are larger than recommended values. As 

shown in Table 2-1, the range is from 8 seconds to 72 seconds.  

 

Table 2-1: Calibrated parameters for Second order models 

Study 𝐋 (𝐦𝐞𝐭𝐞𝐫) 𝐓 (𝐒𝐞𝐜) 𝛕 (𝐒𝐞𝐜) 
𝐋

𝐓
 (
𝐤𝐦

𝐡
) 𝛝 (

𝐊𝐦𝟐

𝐡
) 

Grewal and Payne (1976) 
0.8 

(0.5 mile) 
4.5 8 640 

3.84 

(1.5 
mile2

hr
) 

Cremer and Papageorgiou (1981) 500-550 10 36 180 21.6 

Papageorgiou et al (1990) 110-130 2.5 72 158.4 28 

Papageorgiou et al (1990) ≈500 10 36 180 35 

Kotsialos et al (2002) 400-800 10 18 144 60 

 

2) The anticipation coefficient (ϑ) which shows how drivers adjust their speed with respect to 

density changes at the downstream section. Payne (1971) suggested: 

                 ϑ = −
V′

2
> 0  2-7 
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Where V′ is the derivative of speed-density relationship with respect to density; however in 

the traffic control problems, the anticipation coefficient is treated to be constant, and it ranges 

from 3.84 
Km2

h
 to 60 

Km2

h
 as shown in Table 2-1.  

3) The fine-tuning parameter (κ) which was not present in the original Payne model (1971). 

Later it was added by Papageorgiu et al. (1981) to avoid unreasonable speed changes when 

Di,t in the denominator of the last term is very small.  

The fine tuning parameter is not the only extension of the original Payne model. 

Papageorgiu (1998) suggested to add the following constraint to avoid negative speed values 

or very low speed values that are not expected.  

  Vi,t+1 = max {Vi,t +
Δt

L
Vi,t(Vi+1,t − Vi,t) +

Δt

τ
(V(Di,t)−Vi,t) −

Δt∗ϑ

τ∗L
(
Di−1,t−Di,t

Di,t+κ
) , Vmin} 

In addition, terms were added to take into account the disturbance due to presence of on ramps, 

off ramps, and lane drops (Papageorgiu et al., 1998).  

2.3.3 Discussion: The first order models versus the second order models 

The first order models, especially in the form of Cell Transmission Model, have been 

widely used in different traffic control or modelling problems because of simplicity and low 

computational cost; however this happened at the expense of some simplifications which could 

be important for some applications. Papageorgiou (1998) discussed applications of first order 

and second order models for traffic control problems and he stated that the first order models, in 

general, cannot reflect capacity drop due to lane drop and ramp metering effect to increase 

mainline flow rate.  

On the other hand, there are some discussions that the second order models may reflect 

some unrealistic features. In particular, Daganzo (1995) pointed out that the second order models 

may return negative speeds or flows when vehicles reach the end of queue.  Then Papageorgiou 

(1998) proposed a practical solution which restricts flow by zero, and later Aw-Rascel (2000) 

and Zhang (1998) proposed new second order models that inherently do not produce negative 

speeds and flows. The second order models can potentially reflect more realistic traffic features 

and have been used in traffic control problems, but these models need to be calibrated using field 

data, and in fact there are limited studies for model calibration.     
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  Both the first order models and the second order models have been used in many 

traffic control problems. One may select a model based on the purpose of the control problems. 

For instance, in large scale problems, CTM may be used because of simplicity. However, one 

may use other traffic models if accuracy in estimating shockwave speed is important.  

 Work zone capacity  

Researchers did not use a unique definition to estimate work zone capacity. The 

following definitions have been used in previous literature: 

 “The discharge flow when there is a continuous flow of traffic.” (Benekohal et al., 2004) 

 “The traffic flow rate just before a sharp speed drop followed by a sustained period of 

low vehicle speed and fluctuating traffic flow rate.” (Jiang, 1999) 

 “The mean queue discharge flow rate from the bottleneck that was located at the end of 

the transition area.” (Al-Kaisy et al., 2000) 

 “95th percentile value of all 5-min within-a-queue” flow rate (Dixon et al., 1996). 

 “The average volume of the ten highest volumes immediately before and after queuing 

conditions” (Maze et al., 2000) 

Some of these definitions (Al-Kaisy et al., 2000 and Maze et al., 2000) are based on the 

mean traffic flow rate whereas there are definitions  based on the maximum observed values 

(Dixon et al., 1996). Some definitions return queue discharge rate (Dixon et al., 1996 and Al-

Kaisy et al., 2000) while there are definitions (Jiang, 1999 and Maze et al., 2000) based on  flow 

rates that can be processed before and after flow breakdown. 

2.4.1 Factors affecting capacity of work zones 

Traffic, geometric, construction and environmental characteristics of a work zone may 

affect its capacity. Researchers tried to quantify the effects of these parameters. This section 

recaps the main points of recent studies.  

Dixon et al. (1996) investigated 24 short-term work zones located in urban and rural 

freeways. Data were collected from different types of work zones including 2-to-1 lane, 3-to-1 

lane, 3-to-2 lane, and crossover for a freeway with two lanes in each direction. Five-minute 

traffic data, including number of vehicles, distribution of vehicles across lanes, percentage of 

heavy vehicles, and average speed of vehicles were recorded. Authors defined capacity for the 

end transition area as “95th percentile value of all 5-min within-a-queue observations” and 
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reported it in passenger car per hour per lane (pcphpl) by using PCE factors proposed in HCM 94 

(PCE for trucks on level terrain was 1.5). Analyses showed that behavior of drivers in queue 

conditions were the same during day and night. Variations in capacity for the work activity area 

were larger than the end-transition area. In rural work zones, mean capacity for the work activity 

area was smaller than the end-transition area. There was no significant difference between these 

values for urban work zones. Mean capacity of the transition area for rural work zones (1454 

pcphpl) was less than urban work zones (1743pcphpl).  

In the research conducted by Jiang (1999), traffic volume, speed and vehicle type were 

collected from four work zones that experienced the queue conditions. Using traffic counters 

with road tubes, traffic data were recorded at five-minute intervals for “high-traffic-volume” and 

at one-hour intervals for “low-traffic-volume”. These devices were located before the transition 

area, in the transition area, and close to the work activity area. Free-flow traffic, merging traffic, 

and work zone traffic were extracted from the raw data. The work zone capacity was defined as 

“the traffic flow rate just before a sharp speed drop followed by a sustained period of low vehicle 

speed and fluctuating traffic flow rate.” To detect the capacity, time series diagrams for speed 

and flow rate were plotted in one graph. Based on the capacity definition, Jiang determined the 

capacities of these sites as well as the queue discharge rates. The capacities of these sites were 

not statistically different from each other. The mean queue-discharge rate was statistically lower 

than the capacity. The results were reported in pcphpl, using PCE factors suggested by HCM 

1994. (PCE for trucks on level terrain was 1.5). 

In order to analyze a work zone located on an interstate highway, Maze et al. (2000) used 

15-minute traffic data including volume, speed, and density. In order to compute the queue 

discharge flow rate, the queue length was recorded in each minute using delineators that were 

placed at the side of the road. The queue length was reported to the nearest 0.05 mile. Time 

series diagram for the speed and flow rate data indicated that there was no significant difference 

in flow rate just before and after queuing conditions. So “the average of the ten highest volumes 

immediately before and after queuing conditions” was considered as the maximum capacity of 

lane closure. Data showed that capacity of a work zone located in a rural highway varied from 

1400 pcphpl to 1600 pcphpl. 

Al-Kaisy and Zahou (2000) studied two long-term work zones located on either side of a 

six-lane freeway. One lane was closed due to construction in each work zone, and both work 
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zones had a lane drop of 3-to-2. Lane closures were located at the median and shoulder lane in 

the downgrade and upgrade direction, respectively. Al-Kaisy et al. defined work zone capacity as 

“the mean queue discharge flow rate from the bottleneck that was located at the end of the 

transition area”. Detectors collected space-mean-speed and occupancy within 20-sec intervals. 

By aggregation of these data, queue discharge flow rate during each 15-min interval was 

obtained. The capacity was found to vary between 1750 and 2150 vphpl and the mean capacity 

was equal to 1943 vphpl. Due to the lack of information about the vehicle type and the 

percentage of heavy vehicles, the capacity values were not been reported in pcphpl. The work 

zone capacity during peak hours (2117 vphpl) was statistically greater than those during off-peak 

hours (1955 vphpl). In addition, variation of work zone capacity during peak-hours was less than 

during the remaining hours. Variation of weekend capacity was small. The mean work zone 

capacity for weekend was less than that for weekdays. However, it was mentioned that adverse 

weather conditions existed during the weekend. 

Al-Kaisy and Hall (2000) used 5-min traffic volume data recorded by video from two 

sites to investigate the effect of darkness on work zone capacity. One of these work zones was 

800m in length with right-side lane closure, one lane open during construction, and insignificant 

grade. The other site was 500m long and lane-closures were placed at both the right and the left 

side of the roadway where the work zone was located. The middle lane was open for traffic 

during construction.  There was also an upgrade and a down grade section. Ideal lane width, 

sufficient light during night, presence of an off-ramp at the downstream of the work zones and 

presence of queue at PM peak hours were the conditions in both sites. Data were recorded during 

the PM peak hours in weekdays. Capacity reduction due to the darkness for the first and second 

site was equal to 7.5% and 3.25%, respectively. It should be noted that the capacities were 

converted from vphpl to pcphpl by using PCE factors proposed by HCM 1997 (PCE for trucks 

on level terrain was 1.5).  

In order to investigate the effect of driver familiarity, Al-Kaisy et al. (2001) selected two 

long-term work zones located in each direction of an eight-lane freeway. Two of these lanes 

were closed in each direction due to construction activity. It should be noted that these sites were 

located over a bridge. The grades of this bridge in upgrade and downgrade sections were equal to 

3% and the length of each section was equal to 1 km. Volume, vehicle type and queue presence 

were recorded at 15-min intervals by detectors in spring season. Other information such as 
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incidence occurrence, weather conditions and work activity was also recorded. Data were 

classified into three groups: a.m. peak and p.m. peak for weekdays and weekend data. Capacity 

values were statistically different for these groups.  A population factor of one was assigned to 

a.m. peak hour traffic. Based on this assumption, population factors of 0.93 and 0.84 were 

suggested for p.m. peak and weekend, respectively.  

2.4.2 Capacity estimation 

Benekohal et al. (2004) analyzed 11 work zones located in interstate highways with two 

lanes in each direction, but one lane was closed. Three sites were short-term work zones and 

eight were long-term work zones.  Four types of data called as general, geometric, traffic and 

construction data were collected. Location of work zone, type of traffic (inbound or outbound), 

weather conditions, police presence and flagger presence belong to the general data. Geometric 

data consisted of lane width, total number of lanes in each direction, number of open lanes, 

presence of ramps close to work zone, length of lane closure, position of closed lane, and length 

of work activity area. The following work activity information was collected: type of work 

activity, number of workers present, number and size of construction equipment, proximity of 

work activity to the travel lane in use, and traffic control devices used were recorded. Traffic 

data included the headway and speed of each vehicle in the work zone, volume of traffic, and 

queue length. Data related to general conditions, geometry, work activity and how they varied 

during the data collection period were recorded by field observation. In most of the sites, in order 

to collect the traffic data, two markers apart from each other with an approximate distance of 

around 250 ft were used. A camera recorded the traffic stream between these markers. In three 

sites due to heavy traffic stream, markers could not be installed, so two observers for speed data 

and one observer for queue data (i.e. presence of queue and length of the queue) were used. Data 

collection period varied from 2 to 4 hours. Vehicle type, time at each marker, and whether a 

vehicle was in platoon or not was obtained from time coded videotapes. The accuracy of the 

reading of travel time was within 1/30 second. In order to measure headway of a particular 

vehicle, the time at which the front bumper of the vehicle passed the more visible marker was 

recorded. The corresponding time difference between two successive vehicles gives the headway 

of the following vehicle. The distance between two markers was measured and the actual 

distance between the two markers that vehicles traveled was computed considering the angle 

between camcorder and the markers. 
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Benekohal et al. (2004) defined capacity as “the discharge flow when there is a 

continuous flow of traffic.” In order to have continuous flow of traffic, platooning vehicles 

which had a spacing less than or equal to 250 ft or headway less than 4 seconds were considered. 

Queuing condition was observed in three sites. For these sites, the top 15-min intervals were 

selected to measure the headways whereas for the others, the top 5-min intervals were used. For 

each site, service capacity was computed as the reciprocal of the average headway. It should be 

noted that the average speed of platooning vehicles in these periods was very close to the average 

speed of all vehicles including non-platooning and platooning. 

A speed-flow relation was developed based on the field data. The free flow regime was 

assumed to be horizontal line. HCM 2000 Equation was modified for the transition regime and 

exponential regression model was fit to the congestion data. Knowing the operating speed of 

traffic, one can use the speed-flow relation to estimate the capacity under the prevailing 

conditions. A model was suggested to estimate operating speed when there is no field data. The 

model finds the operation speed based on the speed reducing effect of non-ideal conditions such 

as lane width, lateral clearance and work intensity. The suggested capacities varied between 

1600 pcphpl and 2200 pcphpl when free flow speed ranged from 40 mph to 65 mph, 

respectively.  

In another study, Benekohal et al. (2010) used more comprehensive field data than the 

previous study (Benekohal et al. 2004) to develop speed-flow relationships. This study used data 

for free flow, transition and congested regimes; while the previous study used field data only for 

congested regime. Also, this study computes capacity based on field data, while the previous 

study relied on the intersection of congested regime and transition regimes to estimate capacity.  

The study proposed the following three sets of speed-flow relationships for work zones: 

1) speed limit =55 mph 2) speed limit=45 mph, and 3) speed limit= 45 mph with flagger. The 

ideal capacities are 1800 pcphpl for speed limit of 55 mph, 1600 pcphpl for speed limit of 45 

mph, and 1400 pcphpl for speed limit of 45 mph and flagger. These capacity values may be 

reduced if there are factors reducing free flow speed. These factors could be non-ideal lane or 

shoulder widths, presence of work activity or speed control techniques.  The study developed an 

equation to estimate free flow speed as a function of these factors.  

 Ramezani et al. (2010) developed a methodology to measure capacity using field data. 

The methodology can be applied when demand is less than, but close to capacity, or when 
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demand is higher than capacity. The methodology finds the flow rate corresponding to average 

headway of in-platoon vehicles as the potential capacity. The potential capacity may be observed 

when all vehicles are in a large platoon. However mostly there are inter-platoon gap between 

vehicles reducing the observed flow rate at capacity level. Thus the potential capacity is 

multiplied by a platooning factor, which is less than 1, to take into account the presence of inter-

platoon gaps.  The study suggested platooning factor of 1 for queuing conditions, 0.95 for long 

term work zones and non-queuing conditions, and 0.85 for short term work zones and non-

queuing conditions.  

Sarasua et al. (2004) conducted a study on 22 short-term work zones in South Carolina’s 

interstate highways. All sites had 12-foot lane width and similar taper length. In this study, two 

video cameras were used to record the traffic volume and vehicle type. These cameras covered 

“taper and lane closure transition”. Speed was measured by radar gun. When the vehicle speeds 

were greater than 35 mph, the speed data were aggregated over 5-min intervals. When vehicle 

speeds were below 35 mph, the speed data were aggregated over 1-min intervals. At the same 

time interval, queue length was recorded in feet. Based on 1-hr data, a linear speed-density 

relationship was developed with R-square of 0.93. Therefore, the following Greenshields-type 

model was suggested to represent the variation of flow with respect to speed. 

q = −2.05 s2  +  109.7 s   

Where, q is the flow rate in pcphpl and s is the traffic speed in mph. From this model, a value of 

1,467 pcphpl was determined as the capacity of 2-to-1 work zones.  

Al-Kaisy et al. (2003) analyzed long-term work zones located in six freeways. Based on 

the collected field data the following model was proposed: 

C=Cb *fHV *fd *fw *fs *fr *fl *fi  

where Cb is the base capacity (2000 pcphpl) and C is the work zone capacity (vphpl).  Other 

adjustment factors and their recommended values are as follows: 

FHV= Adjustment factor for heavy vehicles which is computed from the relevant formula 

proposed by HCM 2000. PCE for trucks and buses was suggested as 2.4 for level terrain and 3.0 

for 3% upgrade with 1-km length. Linear interpolation was suggested for 1-km long grades 

which fall between level terrain and +3%. For other grades with similar lengths, an adjustment 

proportional to the values proposed by HCM 2000 was suggested.  
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fd= Adjustment factor due to driver population (1 for weekday peak-hours,0.93 for weekday off-

peak hours and 0.84 for weekends) 

fw= Adjustment factor for work activity (1.00 if there is no work activity at site; otherwise, 0.93 

is used) 

fs= Adjustment factor for the side of lane closure (1.00 if there is right-side closure, 0.94 if there 

is left-side closure) 

fr=Adjustment factor for rain (1.00 if there is no rain, 0.95 for  light to moderate rain, 0.90 for 

heavy rain)  

fl=Adjustment factor the effect of the Lighting conditions (1 for daytime and 0.96 for night with 

good Lighting conditions)     

fi=Interactive effects (1.03 for left-side lane closure during weekday off-peak hours, 1.08 for 

weekends when work activity is present, 1.02 for left-side closures during weekends, 1.05 for 

rain during weekends, 1.00 for all other conditions) 

To investigate the factors affecting work zone capacity, Venugopal and Tarko (2001) 

collected data from a long-term work zone with heavy work activity. This work zone was located 

on a four-lane rural freeway. There was a left-side lane closure in one direction and a right-side 

lane closure in the other direction of the freeway. The investigated factors were rain, wind, heavy 

vehicles, the location of lane closure (shoulder or median) police presence and “Indiana Late 

Merge System (ILMS)”. ILMS is a new control device “to improve the use of traffic lanes on 

work zone approaches”. Speed, volume and vehicle type were aggregated over 20-min intervals. 

To detect capacity conditions, time-series diagram for speed and flow rate was plotted. A sharp 

drop in speed with a considerable period of low speed indicated capacity conditions. Capacity 

values varied in a wide range.  The mean capacity value was equal to 1320 veh/hr. Analysis of 

Covariance (ANCOVA) indicated that ILMS, weather conditions (rainy or sunny), heavy 

vehicles and presence of police were the only effective variables on the work zone capacity at 

5% significance level. The highest wind speed recorded during data collection period was equal 

to 24 km/hr which was not very strong. Based on these results, a multiplicative model is 

presented as below:  

C=Co *fM *fR *fH *fp  

Where: 

C= Work zone capacity under existing conditions, 
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Co = Work zone capacity under ideal conditions (no ILMS, absence of police, no truck and no 

rain), 

Mf 
Adjustment factor for presence of ILMS, 

Rf 
Adjustment factor for rainy weather, 

Pf 
Adjustment factor for police presence, 

Hf 
Adjustment factor for heavy vehicles 

Following the calibration of the model, a value of 1440 veh/hr was obtained for Co and a 

value of 1.4 was reported for EH (PCE value for heavy vehicles) on level terrain. The values of 

fM, fR and fP were equal to 0.94, 0.91 and 0.86, respectively.  

Kim et al. (2001) developed a new model to estimate capacity for short-term work zones. 

To reach this point, 12 sites were selected. All sites were located on eight-lane freeways. The 

following factors were enumerated as the parameters which may affect the work zone capacity: 

number of closed lanes and open lanes, location of lane closure (shoulder or median), percentage 

of heavy vehicles, familiarity of drivers with the work zone, presence of on-ramp near the work 

zone, lateral clearance, length and grade of the work zone, severity of work activity (low, 

medium, and heavy), the length of time that work zone exists (short-term or long-term), weather 

conditions, and work time (night or day time).  

Traffic data were collected after p.m. and a.m. peak hours, so it was assumed that drivers 

were not familiar with the sites. To record volume data, a video camera was installed after the 

end-transition area. A laser speed gun was used to collect speed data at 1-min intervals. Queues 

were observed only at upstream of work zones. Vehicles were classified into passenger cars and 

heavy trucks. In addition to the traffic data, characteristics of work zones were also recorded. 

These characteristics zone and the corresponding capacity values for each work are shown in the 

next section. Intensity of work activity for each site was indicated with regard to the type of 

construction, number of workers and size of equipment. Based on the results of the correlation 

matrix between the factors, which may affect the capacity of work zones, the following model 

was proposed to estimate work zone capacity: 

CAPACITY =  1857 −  168.1NUMCL −  37.0LOCCL −  9.0HV  

                      +  92.7LD −  34.3WL −  106.1WIH  −  2.3WG ∗ HV    (Adjusted R
2  =  0.98)  
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Where: 

CAPACITY = Work zone capacity in vphpl, 

NUMCL = “Number of lane closures,” 

LOCCL = “Dummy variable for the location of lane closure (in the case of right-side lane-closure, 

LOCCL = 1; otherwise, LOCCL =0),” 

HV = “Proportion of heavy vehicles,” 

LD = “Lateral distance to the open travel lane,” 

WL =”Work zone length,” 

WIH =” Dummy variable for heavy work activity (for heavy work activity, WIH=1; otherwise, 

WIH=0),”  

WG ∗ HV = Work zone grade*proportion of heavy vehicles. 

The results indicated that CAPACITY had a high correlation with NUMCL, WIH, and 

WG ∗ HV.   

Karim and Adeli (2003) proposed a model to estimate work zone capacity by using radial 

basis function neural network (RBFNN). The model was established based on the following 

factors: number of lanes, number of open lanes, work zone configuration, work zone length, lane 

width, percentage of trucks, grade, work zone speed, work intensity, darkness and presence of 

ramp 1500 ft before the transition area or 500 ft after the work zone. In this model, work 

intensity was determined with regard to the size of equipment, the number of equipment and 

workers, the amount of dust and noise generated and the distance of the work area to the traveled 

lane. To obtain data for the training of the model, authors used the capacity values proposed by 

ODOT for work zones with various characteristics, but before applying them, those data were 

modified with regard to the HCM 2000 guidelines and engineering judgment of the authors. 

After that, the model was trained by using 40 examples of work zone capacity. To evaluate the 

accuracy of the model, nine samples were taken from the North Carolina studies, 12 samples 

from Indiana studies, and six samples from Maryland studies. However, there was no 

information for the value of some parameters that affect work zone capacity. Hence, Karim and 

Adeli assumed a value for the missing information. Comparison of the estimated values with the 

observed values indicated that the model had a large error in some cases. In all cases with large 

error, percentage of trucks was high (19-32%). Two possible sources were mentioned for these 

errors. Firstly, the model can only simulate the effect of trucks on grades but authors mentioned 
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that trucks had another effect on the capacity of work zones, too. This effect is mean speed 

reduction due to the presence of trucks which can happen even in level terrain. There was not 

any information in the training data for this effect. Secondly, there was not any information for 

grades higher than 25%. A root mean square of 165 (veh/hr) was reported for the model. 

Adeli and Jiang (2003) proposed a neuro-fuzzy logic model to estimate work zone 

capacity. It was assumed that the following parameters affect work zone capacity: percentage of 

trucks, grade, number of lanes, number of closed lanes, lane width, work zone configuration, 

work intensity, length of work zone, work zone speed, interchange effects, work zone location 

(urban or rural), work zone duration (short term or long term), work time (day or night), work 

day (weekday or weekend), weather conditions, pavement conditions (dry, wet, or icy), and 

driver population. 

They used 168 datasets for testing, checking, and training the model. These datasets were 

collected from North Carolina, Texas, California, Indiana, Maryland, Ohio, and from Toronto, 

Canada. There was no information available for some of the variables. Some values were 

assumed for these variables. To evaluate the proposed model, estimated values versus observed 

values were plotted on one chart. The chart did not show any outliers. An outlier was defined as 

“any point with an error value 50% larger than the mean error for all the data points.” A lower 

root mean square was reported for the neuro-fuzzy model compared to the models by Krammes 

et al. and Kim et al (2001). 

 Conclusions 

This section presents conclusions for determining number and location of CMSs for 

speed harmonization as well as the traffic state models 

2.5.1 Determining number and location of CMSs for speed harmonization 

Review of past studies showed that the studies can be divided into three categories: 

Category 1) Studies (Hegyi et al. 2005, Ghods et al. (2007), Berton et al. 2002) that 

provided no discussions on how to select the number and locations of the CMSs and arbitrarily 

assumed that CMSs are located with a uniform spacing.  

Category 2) Studies that provided some recommendations on choosing locations of 

CMSs, but the discussions may not necessarily improve or optimize traffic operation. The 

recommendations are: 
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 Kwon et al. (2012) recommended that spacing between two consecutive speed limit signs 

(di) should be at least equal to   

di =
SLi
2 − SLi+1

2

2a
 

Where SLi and SLi+1 are advisory speed limits displayed by two consecutive signs and a is 

the average deceleration rate. No more discussion was provided on the number and location 

of the CMSs used in that study. 

 Allaby et al. (2007) assumed that speed limit signs are installed next to loop detectors. 

This resulted in 13 signs with spacing of 500-600 meter for an 8-km section of a highway 

 Su et al. (2011) assumed that VSL signs will be used where on-ramps merge the 

mainline. Thus 7 signs were used for a 10-km stretch of a highway. 

Category 3) This category includes only one study conducted by Zhang et al. (2015) who 

developed an optimization program to determine the optimal location and number of CMSs. 

However, they assumed that variable speed limit does not change over time while there are many 

studies ((Hegyi et al. 2005, Ghods et al. (2007), Berton et al. 2002, Kwon et al. (2012)), that 

considered advisory speed as a decision variable that can change over time and space for queuing 

and non-queuing conditions. This assumption will over simplify the problem, and reduce the 

capability of speed harmonization. .  

The categories above indicate that there is a need to develop an optimization program, 

like WZSH, to simultaneously determine number and location of CMSs and dynamic advisory 

speeds.  

2.5.2 Traffic state models  

Using a proper model to estimate traffic state is important to develop an effective and 

reliable speed harmonization system. Review of past studies showed that there are two issues 

that are needed to be addressed in this study 1) there is no study that compared LWR model 

versus second order model for work zones, and 2) there is no study which calibrated the second 

order model for work zones. These issues will be addressed in this study and the model that 

better represent field data will be incorporated in the optimization program. 
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Chapter 3 Formulation  

The formulation is explained for a 2-to-1 work zone (i.e. out of the two lanes only one 

lane is open to traffic) as shown in Figure 3-1. Traffic moves from right to left, and the 

bottleneck location is assumed to be at Work Space (WS); thus speed harmonization is 

implemented within the WS as well as upstream of the WS. The roadway is divided into sections 

of fixed length L, and, for the purpose of formulation, it is assumed that each section is equipped 

with a Changeable Message Sign (CMS) at its upstream boundary. The CMSs display advisory 

speeds with the following characteristics: 

 Advisory speeds for a given CMS may change at the end of each cycle, where a 

cycle is a user-defined time interval during which displayed advisory speed does not change. 

The magnitude of the advisory speed for each interval is determined by solving the 

optimization program.  

 There are two types of CMSs: 1) critical and 2) non-critical. If a CMS is critical, 

its displayed advisory speed can be different from the advisory speed for the immediate 

upstream CMS. Consequently, if a CMS is non-critical, its advisory speed will be always the 

same as that for the immediate upstream CMS. The number and locations of the critical 

CMSs are determined by solving the optimization program.  

 Assumptions 
The formulation is presented for typical 2-to-1 highway work zones. The following 

assumptions are made: 

Assumption 1: Traffic state in the work zone at the beginning of the analysis period is known.  

Assumption 2: “Base” speed-flow curves for all the sections are available. “Base” refers to the 

condition with no speed harmonization.   

Assumption 3: The roadway and time are discretized, and L and  ∆t  denote the section length 

and the time interval duration, respectively. Figure 3-1, shows discretized roadway sections 

numbered from the downstream to the upstream. The time interval, ∆t, is assumed to be equal to 

the cycle length (Berton et al. ,2002). Cycle length is defined as the duration that displayed 

advisory speed is fixed and does not change. At the end of each cycle, advisory speed may or 

may not change. The program includes constraints to control the amount of speed change from 

one cycle to another.  
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Assumption 4: Traffic stream speed fully complies with displayed advisory speeds. 

Assumption 5: Average speed of vehicles for a section with steady state condition is computed 

as the minimum of two values: 1) advisory speed, and 2) the speed computed from speed-density 

relationship, Berton et al. (2002). 

The rest of this section illustrates definitions, objective function, and constraints.  

 

 

Figure 3-1: Discretized Network for the Benchmark Problem 

 Definitions  

3.2.1 Decision variables 

xi : A binary variable which is defined for Section i to determine the locations of the critical 

signs. It is 1 when a critical CMS is installed in Section i; otherwise it is zero.  

ASi,t: Advisory speed that is displayed by a CMS at the upstream boundary of the Section i 

during the time Interval t.  

3.2.2 State variables  

Vi,t: Average travel speed (mph) for the Section i at the beginning of Interval t. 

Di,t: Density (veh/mi/ln) for the Section i at the beginning of Interval t. 

Fi,t: Flow rate (vphpl) exiting from the Section i at the beginning of Interval t. 

V(Di,t): Speed corresponding to density Di,t computed from speed-density relationship for the 

Section i at the beginning of time Interval t. Average travel speed, Vi,t, may be different from 

V(Di,t) because the “second order” speed dynamics model is used to keep track of traffic 

evolution.  

Ui,t: Steady state speed for the Section i at the beginning of time Interval t. Based on Assumption 

5, it is the minimum of two values: 1) ASi,t, and 2) V(Di,t). 

TTT: Total travel time (veh-hr) during the analysis period. 

3.2.3 Parameters 

Ni: Total number of sections. 

Nt: Total number of time intervals in the study period. 
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∆t: Time interval duration for updating the state of traffic. 

L: Section length. 

λi: Number of open lanes for Section i.  

τ: Relaxation parameter in the “second order” hydrodynamics model.  

ϑ: Anticipation parameter in the “second order” hydrodynamics model.  

φ: Coefficient for the effect of lane drop in the “second order” hydrodynamics model. 

Dcri: Critical density of the section i (pc/mi/ln). 

∆t: Maximum change in advisory speeds displayed by a given CMS for two consecutive time 

intervals. This is considered as maximum temporal changes.   

∆s: Maximum change in advisory speeds displayed by two consecutive CMSs during a given 

time interval. This is considered as maximum spatial changes.   

MaxASi: Maximum advisory speed that may be displayed in the Section i. 

MinASi: Minimum advisory speed that may be displayed in the Section i. 

m: minimum number of sections between two critical CMSs. 

3.2.4 Sets 

I: Set of indices for all sections. Each member of this set is denoted by i.  

I∗: Set of indices for sections with critical CMSs. This is a subset of set I.  

T: Set of indices for all time intervals. Each member of this set is denoted by t. 

 Objective function formulation  
The objective function is to minimize the total travel time plus a penalty function for the 

number of signs.  

Min((∑ ∑ Di,t ∗λi ∗ L ∗ ∆tti ) + P(n)) 3-1 

The first term is the total travel time and is the same as the objective function used in 

(Berton et al. 2002, Carslon et al. 2011). The second term is the penalty for the number of critical 

CMSs; where, n is the number of critical signs and P(n) is the penalty function for number of 

signs. The penalty function is a user-defined function and depends on the strategies to install the 

signs. This study uses the following linear penalty function 

 P(n) = p ∗ n 

Where, p is the marginal “cost” for installation of one sign. The marginal “cost”, p, is defined as 

the average free flow travel time for the entire control zone. (Control zone is defined from the 



32 

 

very upstream section till the end of the work zone). This means that an extra sign is placed if the 

resulting reduction in travel time is at least equal to the average free flow travel time. The 

average free flow travel time was selected because it is independent of volume and available 

capacity. Alternatively one could use average (or a portion of) travel time in base condition but is 

a function of volume or capacity in the base condition and can change from one day to another 

day.  

 Constraints formulation  
There are three sets of constraints: 

1) Traffic evolution constraints 

2) Safety constraints 

3) Other constraints 

Each set is formulated as below. 

3.4.1 Traffic evolution constraints 

The purpose of these constraints is to find average travel speed, exit flow, and average 

density for a given section at the beginning of the time interval t+1, assuming that all these 

variables are known at the beginning of interval t.   

Constraint 1) Traffic density is estimated using the conservation law: 

Di,t+1 ∗ L=Di,t ∗ L + (Fi+1,t ∗λi+1 − Fi,t ∗λi) ∗ ∆t                          ∀i ∈ I, ∀t ∈ T 3-2 

Constraint 2) Speed dynamics is determined using the “second order” hydrodynamics 

model proposed by Payne. This model may return negative speed or flow. To overcome this 

issue, Papageorgiou (1998) suggested that negative flow rates should be adjusted by zero. An 

implication of this adjustment is that minimum speed should be zero to avoid negative speeds 

and flow rates. As a result the following model is used: 

 Vi,t+1 = Max {0, Vi,t +
∆t

L
Vi,t(Vi+1,t − Vi,t) +

∆t

τ
(Ui,t−Vi,t) −

∆t∗ϑ

τ∗L
(
Di−1,t−Di,t

Di,t+κ
)}  ∀i ∈ I, ∀t ∈ T 3-3 

 Also, Papageorgiou et al. (1990) suggested the additional term 
−φT(λi−λi−1)∗Di,t−1∗Vi,t−1

2

L∗Dcri∗λi
 be 

included to take into account lane changing disturbance that may occur due to lane drop. It is 

assumed that this disturbance only occurs within half a mile upstream of the lane drop.  
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Constraint 3) Constraints 3 finds the steady state speed, Ui,t, as the minimum of the 

advisory speed and the speed computed from the speed-density relationship.  

Ui,t+1 = min{ V(Di,t+1), ASi,t+1}                                         ∀i ∈ I, ∀t ∈ T 3-4 

V(Di,t+1) that appears in Constraints 3 could be a piecewise function. How to formulate 

piecewise speed-density relationships is discussed in (12). 

Constraint 4) Exit flow rate is defined as:  

Fi,t+1 = Di,t+1 ∗ Vi,t+1                                                           ∀i ∈ I, ∀t ∈ T 3-5 

3.4.2 Safety constraints 

Constraint 5) According to definition of a critical CMS, when advisory speeds of two 

consecutive sections are different (ASi+1,t ≠  ASi,t) a critical CMS has to be placed for section i.  

This is imposed by Constraint 5 when xi is 1. In addition, the constraint controls the spatial 

changes in advisory speeds. When the sign is critical, the difference between advisory speeds 

that are displayed by two consecutive CMSs during a given time interval is restricted by ∆s. This 

is to avoid a drastic speed reduction between two sections and its potential safety consequences. 

There is no restriction in increasing the advisory speed to let traffic recover as soon as possible, 

thus the bound for the speed limit increase is MaxASi which is the maximum advisory speed.  

−MaxASixi ≤ (ASi+1,t − ASi,t) ≤ ∆sxi                              ∀i ∈ I, ∀t ∈ T   3-6 

∆s is chosen to be 5 mph in this study.  

Constraint 6) This constraint restricts advisory speed fluctuations by ∆t for a given 

CMS. Both Constraints 5 and 6 control advisory speed changes, but in different ways. Constraint 

5 controls spatial speed reduction for a given time interval, while the Constraint 6 is to control 

temporal changes for a given sign.  

|ASi,t+1 − ASi,t|≤ ∆t                                                               ∀i ∈ I
∗, ∀t ∈ T 3-7 

∆t is chosen to be 5 mph for this study.  

Constraint 7) The advisory speeds shall not exceed the static speed limits established 

based on work zone and freeway design standards. Thus the static speed limit is considered to be 

the maximum advisory speed (MaxASi) for each section. The MaxASi may change over sections 

since mostly work zone speed limit is lower than speed limits for basic freeway sections.   

ASi,t ≤ MaxASi                                                                      ∀i ∈ I
∗, ∀t ∈ T    3-8 
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Constraint 8) This constraint establishes the minimum advisory speed to be MinASi for 

each section. One may use this constraint to avoid very low travel speeds that potentially may be 

imposed by the advisory speeds. In this study, MinASi is set to be 20 mph for all the sections. 

MinASi ≤ ASi,t                                                                       ∀i ∈ I
∗, ∀t ∈ T     3-9 

3.4.3 Other constraints  

Constraint 9) The following constraint is added to declare the number of the critical 

signs. 

∑ xii∈I = n                                                                          3-10 

Constraint 10) This constraint establishes the minimum spacing between the signs to be 

“mL” assuming the sections length is L.  

∑ xi
m+j−1
i=j ≤ 1                                                                j∈{1, ... ,( Ni-m+1)} 3-11 

The formulated problem is a Mixed Integer Nonlinear Program. The integrality comes 

from the binary variable xi which determines the CMSs locations. The nonlinearity mainly 

comes from Constraints 2, 3, and 4.  
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Chapter 4 Calibration of second order hydrodynamic model for work zones 

There are few studies to calibrate the second order hydrodynamic models and they are 

mostly based on freeway field data and there is no study based on work zone data. Specific study 

for work zones is needed because traffic operation in work zones is different from that in 

freeways. In particular, capacity and speed are, in general, lower and drivers are more cautious. 

Thus this section calibrates the second order model using work zone field data.  

 Field data  

Data were collected from a 2-to-1 work zone (i.e. one of the two lanes is open in the work 

zone) on an interstate highway 39 NB. The left lane was closed due to construction activity on a 

bridge. Speed limit in the work zone was 45 mph and a flagger was present at the beginning of 

the bridge showing “Slow down” paddle.  

Traffic stream was videotaped and its setup is shown in Figure 4-1a. The camera was 

placed around 200ft-250 ft away from the flagger location where the location of the front of 

queue was anticipated to be. The camera captured the time that each vehicle passed two markers 

and the following data were obtained for each vehicle: 1) time headway 2) speed and 3) vehicle 

type (passenger car or heavy vehicle). Location of back of queue was recorded at the end of 

every minute by an observer.  

The headway accuracy is 1/30th of a second; the speed accuracy is 1 mph, and the queue 

length accuracy is 120 ft.  

The reduced data were aggregated over 1 min intervals and the resulting flow rate and 

average speed are shown in Figure 4-2.  The queue length at the end of each minute is also 

displayed in Figure 4-3. Trucks were converted to passenger cars assuming Passenger Car 

Equivalency factor is 1.5. This is the PCE value that the HCM 2010 suggests for basic freeway 

sections. The truck percentages for one-minute intervals range from 0 to 62% with average of 

28%.  

Forty eight minutes of data, shown in Figures 2 and 3 are used to calibrate the second 

order model. Data includes pre-break down, break down and post break down conditions. In the 

pre-break down condition (minutes 1 to 13), speed varies from 26 mph to 38 mph which overall 

is less than the posted speed limit of 45 mph. The reason is the presence of flagger showing 

“Slow Down” paddle; as a result vehicles reduced speed in response to flagger. During minute 
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14, a loading truck parked on the right shoulder, next to the flagger location and some work 

activity occurred close to travel lane until minute 37. During this time speed varied between 9 

mph and 21 mph and queue propagated roughly 45,000? ft upstream of the flagger location. 

During minute 37 the loading truck left the location and departure speed increased and became 

more than 25 mph. As a result queue shrank faster and ultimately at minute 43 the queue 

completely dissipated. In the post break down condition (minutes 44 to 48) speed is roughly 

between 28 mph and 48 mph.   

Number of vehicles arriving back of the queue was approximated for each minute using 

the data collected from field and the following equation  

At+1 = Dt+1 + Qt+1 − Qt                                                      ∀t ∈ T 4-1 

Where, 

At+1: Number of vehicle arriving back of the queue during the minute t+1  

Dt+1: Number of vehicles departing queue during the minute t+1 

Qt+1: Number of vehicles in the queue at the end of the minute t+1, which is computed as 

Qt+1 = QLt+1 ∗ Kt+1                                                             ∀t ∈ T 4-2 

Where,  

QLt+1: Queue length at the end of minute t+1 recorded by the observer  

Kt+1: Density for the minute t+1 computed as the flow rate divided by the average speed for 

minute t+1 

The computed arrival rates are shown in Figure 4-4.  
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Figure 4-1: a) One lane section of the work zone b) Discretized roadway 

 

 

Figure 4-2: One-minute speed and flow rate data 
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Figure 4-3: Queue length at the end of each minute 

 

 

Figure 4-4: Arrival rate approximated based on field data 

 Network set up 

The roadway is discretized as shown in Figure 4-1b. The sections 0 and N are allocated to 

impose the boundary conditions and the length of the network between these two sections is 1 

mile and includes two parts. Part 1 is 1000 ft long and represents the sections that are influenced 

by a flagger. In particular, drivers in this part are able to see the flagger and reduce speed in 

response to flagger. As a result, the fundamental relationship (in form of speed-flow curve), 

developed by Benekohal et al. (2010), for a work zone with speed limit of 45 mph and a flagger 

is used. This relationship is shown in Figure 4-5 . This relationship is developed based on the 

data collected from this work zone and other work zones with similar conditions. Details on how 

to develop the relationship are explained by Benekohal et al. (2010). Part 2 is 4280 ft long and it 

is assumed that driving behavior is not influenced by the flagger. For this part, the curve with 
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speed limit of 45 mph and no flagger is used (see Figure 4-6). The free flow speed is assumed to 

be 5 mph above the speed limit. More details on how this curve was developed was explained by 

Benekohal et al. (2010).  

In this study, the roadway is discretized using different section length of L ranging from 

50 ft to 450 ft. Parts 1 and 2 may or may not be divisible to some of these section lengths. If they 

are divisible, then all section lengths are equal to L. If Part 1 is not divisible, the length of 

Section 0 is L + mod (1000, L) and the length of the other sections will be equal to L. Similarly, 

if Part 2 is not divisible, the length of the Section N will be L + mod (5280, L) and the length of 

the other sections in Part 2 will be equal to L.   

 

 

Figure 4-5: Speed-flow curve for part 1: speed limit of 45 mph and flagger 
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Figure 4-6: Speed-flow curve for part 2: speed limit of 45 mph 

 Formulation 

Variables, parameters and sets are defined in chapter 3. The equations are formulated in 

this section.  

Eq. 1) Traffic density is estimated using the conservation law: 

Di,t+1 ∗ L=Di,t ∗ L + (Fi+1,t ∗λi+1 − Fi,t ∗λi) ∗ ∆t                 ∀i ∈ I, ∀t ∈ T 4-3 

Eq. 2) Speed dynamics is determined based on the Payne model (Payne 1971) which is a 

“second order” hydrodynamics model. As suggested by Papageorgiou (1998), the computed 

speed should be capped by zero since there might be possibilities that the Payne model computes 

a negative speed.  

Vi,t+1 = Max {0, Vi,t +
∆t

L
Vi,t(Vi+1,t − Vi,t) +

∆t

τ
(V(Di,t)−Vi,t) −

∆t ∗ ϑ

τ ∗ L
(
Di−1,t − Di,t

Di,t
)}     ∀i ∈ I, ∀t ∈ T 

4-4 

Eq. 3: The speed-flow curves are converted to speed-density relationships as follow. 

More details on conversion can be found in Chapter 5.  

V(Di,t) =

{
  
 

  
 

42.81

1 + 0.0031 ∗ Di,t
                             if Di,t ≤ 13.26 

62.85

1 + 0.01863 ∗ Di,t
             if 13.26 ≤ Di,t ≤ Dcr = 41.18 

(
Di,t
250

)

1
−0.532

                       if Dcr ≤ Di,t

                     ∀i ∈ I1, ∀t ∈ T 
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V(Di,t)  =

{
 
 

 
 

50

1+0.004∗Di,t
                                              if Di,t ≤ 13.26 

53.54

1+0.00865∗Di,t
             if 13.26 ≤ Di,t ≤ Dcr = 36.04 

(
Di,t

250
)

1

−0.505                                                    if Dcr ≤ Di,t

                     ∀i ∈ I2, ∀t ∈ T  

4-6 

 

Eq. 4) Exit flow rate is defined as:  

Fi,t+1 = Di,t+1 ∗ Vi,t+1                                                                                  ∀i ∈ I, ∀t ∈ T 4-7 

 Calibration method 

The parameters are found such that the second order model returns queue length and 

speed estimates that are similar to field data. The calibration methodology that will be proposed 

in this section has two phases. Phase 1) Search Trajectory Recognition (STR), and 2) Local 

Search (LS). The Phase 1 determines a search direction and a search boundary that are used for 

Local Search in Phase 2. To determine the search direction, the study looks at goodness of fit 

measures for only speed data to recognize how the quality of fit changes in certain search 

directions, and to find a search direction that facilitates finding the parameters. Also, the study 

determines boundaries of the search area that most likely includes the appropriate parameters. 

Then in Phase 2, a local search is performed to fit both queue length and speed data.   

4.4.1 Phase 1: Search Trajectory Recognition (STR) 

This Phase has two stages:  

Stage 1) Direction Recognition  

Stage 2) Boundary Recognition  

4.4.1.1 Stage 1: Direction recognition  

The quality of fit is evaluated for the following directions: 

Direction 1) τ is fixed and ϑ changes 

Direction 2) ϑ is fixed and τ changes 

Direction 3) both ϑ and τ change, but R =
τ

ϑ
 is fixed 

Our experiment is designed such that enough evidences are found to understand how 

average and standard deviation of error in speed estimates change for each direction. The 

direction evaluation will be performed over a range of τ and ϑ shown in the Table 4-1. The 
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ranges of the parameters are determined based on the reported values in the literature. The 

reported values for the anticipation coefficient range from 1.5 
mile2

hr
  (Payne 1976) to 23.4 

mile2

hr
 

(Kotsialos et al. (2002)). This range is extended slightly in this study and the anticipation 

coefficients are between 0.5 
mile2

hr
 and 25 

mile2

hr
with increment of 2.5 (except the first increment 

which is 2.0). The minimum relaxation time value reported in calibration studies is 1.8 sec. 

(Traffic Flow theory Monograph, Revised Chapter 5, 2002). Thus the relaxation time ranges 

from 2 seconds to 98 seconds with increment of 4 seconds. The results did not show that these 

ranges should be extended. 

This study does not examine all the possible pairs. It only selects the pairs that represent 

R(=
τ

ϑ
) values of 2, 4, 10, and 20 (

hr2

3600 mile2
) as highlighted in Table 4-1. The values of R for the 

cells with the same color are either equal or very close. It should be noted that the value of 
τ

ϑ
 may 

not be identical for all pairs of the same color since the ranges of ϑ and τ have been discretized. 

The cells with R values of 2, 4, 10, and 20 are in red, yellow, green, and blue, respectively.  

The computations were performed for L=150 ft and ∆t =1.5 seconds. These selections of 

L and ∆t  will not cause instability in the computations since the ratio of 
L

∆t
 is 68 mph which is 

more than the maximum speed of 50 mph that is possible in the computations. Using Equations 

4-1 to 4-4, speed, density and flow rate were computed for each ∆t -second interval and each 

section. The speed values for the section 1 were aggregated over 1-minute intervals and 

compared with 1-min average speed computed based on field data. The error em for each minute 

is defined as 

em =
V1,m−Vf,m

∑m
                                            m ∈ {1,… ,48}                                   4-8 

Where,  

m: Minute index. 

V1,m: Average Speed for section 1 and minute m computed based on the second order model. 

Vf,m: Average Speed for minute m computed based on field data.  

Each highlighted cell of the Table 4-1 displays average error and standard deviation of 

error (inside the parenthesis). A negative (positive) average error value means that the model 

underestimates (overestimates) speed. The next section discusses the observed trends. 
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Table 4-1: Average error (standard deviation) of speed estimates for different directions 

 

Anticipation coefficient, ϑ, in 
mile2

hr
 

 Relaxation 

time (τ) in 
sec 

  0.5 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 

2 
-0.71 

(5.4) 
                    

6 
8.04 
(9.5) 

-8.41 
(5.1) 

                  

10 
8.35 

(9.9) 

-4.4 

(6.2) 

-9.53 

(6.6) 
                

14       
-9.6 

(6.7) 
              

18         
-9.68 
(6.9) 

            

22     
-9.4 

(6.6) 
                

26   
4.04 

(9.4) 
      

-10.1 

(7.3) 
          

30       
-11.1 
(6.4) 

    
-9.95 
(7.2) 

        

34               
-9.9 

(7.2) 
      

38                 
-9.84 

(7.1) 
    

42         
-11.5 
(6.9) 

            

46                   
-10.1 

(7.4) 
  

50   
13.5 

(7.1) 

-0.991 

(11.7) 
    

-12.3 

(7.6) 
        

-10 

(7.3) 

54                       

58                       

62             
-12.4 

(7.6) 
        

66                       

70               
-12.7 

(7.9) 
      

74       
-3.15 

(12.1) 
              

78                       

82                 
-12.7 

(7.9) 
    

86                       

90                   
-12.9 

(8) 
  

94                       

98     
13.7 
(7.2) 

  
-4.35 
(11.9) 

          
-12.9 
(8) 

 

4.4.1.1.1 Observed trends for direction recognition stage 

Trends for Direction 1 (τ is fixed and ϑ changes): As shown in Table 4-1overall, the 

model overestimates average speed for low values of ϑ and the amount of overestimation reduces 

as ϑ increases. To demonstrate this trend, Figure 4-7 a and b show the estimated speeds when τ 

Color 
code 

R=2 

R=4 

R=10 

R=20 
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is equal to 50 sec and ϑchanges as highlighted in Table 4-1. When ϑ  is equal to 2.5, the ratio of 
ϑ

τ
 

is not large enough to create speed reductions due to density change imposed by boundary 

conditions; thus speed did not drop sufficiently to match field data and it is above 30 mph. When 

ϑ  is increased from 2.5 to 5, the model becomes more sensitive to density change and average 

error in speed becomes -0.99 mph which is very low; however speed considerably fluctuates as 

shown in Figure 4-7a and standard deviation of error in speed estimates is 11.7 mph which is 

high. In this case, the model overestimates speed for 26 time intervals and underestimates speed 

for 22 intervals, while error in speed ranges from -16.9 mph to 29 mph.  

When ϑ  is further increased from 5 to 12.5 and then to 25, the speed is underestimated. 

This is because 
ϑ

τ
 is large and as a result, the model is oversensitive to density changes. This 

trend implies that probably a ϑ  between 2.5 and 12.5 will return admissible match between 

model estimates and field data.  

Trends for Direction 2 (ϑ  is fixed and τ changes): In Table 4-1, the model overestimates 

speed as τ increases. To demonstrate the trend, Figure 4-8 a and b display speed estimates when 

ϑ is equal to 2.5 and τ varies as highlighted in Table 4-1. When τ is equal to 6 sec, the speed is 

underestimated for all intervals. This is because the ratio of 
ϑ

τ
 is large and the model is too 

sensitive to density increases. If τ is increased from 6 sec to 10 sec, this sensitivity becomes 

less and for some intervals, especially after minute 40, the model can show a trend closer to field 

data. When τ is further increased to 26 sec, the model overestimates average speed by 4.04 

mph. For τ value of 50 sec., the model overestimates average speed by 13.5 mph.  
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Part a 

 

Part b 

Figure 4-7: Direction 1 evaluation: Speed estimates for ϑ values of a) 2.5 and 5 and b) 12.5 and 25 

 

The observed trend implies that appropriate values of τ are between 10 and 26 when  ϑ 

is 2.5.  Thus one may find an appropriate value of τ by applying search methods, such as 

bisection method, when ϑ is fixed and τ varies from 10 to 26; however this direction is less 

preferable than direction 1 because changingτ, affects two terms that may have interaction: 1) 

density gradient term (
T∗ϑ

L∗τ
(
Di−1,t−Di,t

Di,t+κ
)) and 2) relaxation term(

T

τ
(V(Di,t)−Vi,t)). Alternatively in 

direction one, only ϑ changes and influences the gradient term. Moreover, fixing ϑ and 

changingτ, may return a relaxation time that is not physically justifiable. In particular, 

relaxation time is a function of drivers’ reaction time and cannot take any large values. To avoid 
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large τ values, it is better to use direction 1 since τ can be set up to a value that is physically 

justifiable and then the search algorithm finds the corresponding value of ϑ.  

 

                             

Part b 

 

                            

Part b 

Figure 4-8: Direction 2 evaluation: Speed estimates for τ values of a) 6 and 10, and b) 26, and 50 

 

Trends for Direction 3 (Both ϑ and τ change, but R =
τ

ϑ
 is fixed): In Table 4-1 for τ 

values of greater than or equal to 10 seconds, the estimates are mainly characterized by a value 

of R.  

For R value of 2, the model underestimates speed. Figure 4-9a shows speed estimates 

when R is equal to 2 for two pairs of (τ = 10, ϑ = 5) and (τ = 50, ϑ = 25). Although there is a 
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considerable difference between τ values in the pairs, there is no significant difference between 

the estimates. 

For R value of 4, the model underestimates speed for most of τ values, especially τ

 values of greater than 10 seconds. As shown in Figure 4-9b, the model underestimates speed 

when τ is equal to 22 and 50; However for τ value of 6 the model estimates are close to field 

data with average error of -0.71. The trend observed for R values of 2 and 4 suggests the 

hypothesis that for a given R, the model is not considerably sensitive to changes in τ values. 

The next stage, Boundary Recognition, will closely explore this hypothesis and determine the τ 

values beyond which the model is not sensitive toτ.  

For R value of 10, although the model sometimes (e.g. τ = 6) overestimates and 

sometime (e.g. τ = 74) underestimates speed, all these estimates are characterized by high speed 

fluctuations and high standard deviation of error as shown in Figure 4-10b.  

For R value of 20, the model overestimates speed. Figure 4-10c shows the estimates when R≈20 

for different pairs of (ϑ = 0.5, τ = 10) and (ϑ = 5, τ = 98). Both pairs overestimate speed. This 

might be because R is relatively large in the density gradient term and cannot reproduce speed 

drop and queuing conditions.  

The observations show that changing ϑ and τ values in the direction 3, may not 

considerably influence the goodness of fit. For instance, R = 2 and R = 4 mostly underestimate 

speed, and R = 10 overestimates speed. Thus the search direction 3, is not good because it can 

reproduce similar trends. However this information is not useless and can determine boundaries 

of the search. For instance in this case, probably the proper value of R is between 4 and 10. Thus, 

the search boundaries can be determined based on R values in Stage 2.  

 Another important observation is that there might be different pairs which can return 

similar goodness of fit measures. These pairs may have either an unrealistically large relaxation 

time or a justifiable relaxation time. For instance, for τ=10 and ϑ=5, the average error is -9.53 

and for τ=38 and ϑ=20 the average error is -9.84. This could be considered as an indication that 

there might be different pairs which return similar and/or acceptable goodness of fit measures; 

however because of non-convexity and perhaps presence of many local minima, an optimization 

algorithm may converge to a pair which has an unreasonable value of relaxation time. This 

suggests that search or optimization algorithms should be performed over a direction which does 
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not have many local minima or maxima. The examination of different directions showed that 

using direction 1 would reduce the likelihood of stopping at local minima.   

 

 

 

Part a 

 

Part b 

 

Figure 4-9: Direction 3 evaluation: Speed estimates for R values of a) 2 , and b) 4 
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Part a 

 

Part b 

Figure 4-10: Direction 3 evaluation: Speed estimates for R values of a) 10, and b) 20 
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 Direction 1 ( i.e.τ is fixed and ϑ changes) is chosen for search direction. This is because 
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drivers. Moreover, it seems that increasing the value of ϑ can reduce speed in the queue 

and increase the propagation rate; as a result this direction will help to avoid trapping in 

local minima. 
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(in this case 10) the model overestimates speed, and below some R values (in this case 4) 

the model underestimates speed in the queue.  

The Figure 4-11 shows the schematics of search direction and boundaries. The next 

section will determine the boundaries of the search area. 

 

 

 

  

 

 

 

 

Figure 4-11: Schematic representation of search direction 

4.4.1.2 Stage 2: Boundary recognition: 

The values of τ and R are determined as below: 

 The lower bound of the τ is 2 second which is around the reaction time of a driver. 

Upper limit of τ is the maximum amount of time that a section needs to reach to a 

steady state condition. This could happen when maximum number of vehicles that are 

present in a section and depart a stopped queue with a headway of 2 seconds (saturation 

flow rate of 1800 pcphpl). Thus  

Upper limit of τ = the number of vehicles in stopped queue* 2 sec 

The number of vehicles in stopped queue is computed as the section length divided by 20 

ft which is the spacing between vehicles in stopped queue. Thus, the upper limit can be 

simply computed as: 

Upper limit of τ = section length in ft/10 

Based on the equation above, the upper limit of τ is 15 sec for section length of 150 ft.  

 R should be limited between 4 and 10. Beyond 10, the model overestimates speed and 

below 4, the model underestimates speed.  

One can use a local search algorithm at this point to match both speed and queue length 

data. Alternatively, the study explores the model to further limit the search area. Figure 4-12a 

and Figure 4-12b show the average error and standard deviation of error in speed estimates for 

𝑅1 

τ 

ϑ 

𝑅2 

Admissible range 
for τ 
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the search area detected above. The study further limits search area to R values that return an 

average error between -2.5 mph and 2.5 mph. In addition, the upper part of the search range for 

τ is limited by τ of 9 second because beyond this relaxation time either the change in average 

error in speed is not significant (e.g. R=8) or the average error is larger than ±2.5 (e.g. R=4). The 

box in Figure 4-12a indicates the search area which will be used to fit queue length data. Figure 

4-12b shows the variation of standard deviation. For the selected range of τ , the variation in 

standard deviation is not significant thus this stage does not further shrink the box indicated 

based on average error.  

 

 

 

Figure 4-12:  Average error (Part a) and standard deviation (Part b) for L=150 ft, and 
L

∆t
= 68 mph 

 

Establishing the box in Figure 4-12a  is based on the assumption that beyond relaxation 

time of 9 sec the queue length estimate are not sensitive to τ values. The validity of this 

assumption will be explored once the parameters are calibrated in Phase 2. We will compare the 

fitted queue length for τ values inside and outside the box to explore the validity of the 

assumption. This will determine if there are significant changes in queue length estimates when 

τ values outside the box are used. 

4.4.2 Phase 2: Local search 

For each value of τ, the search is performed to find ϑ values with accuracy of 0.1 

returning an average discrepancy of less than 120 ft for the average queue length. This error is 

the same as the accuracy of queue lengths measured in the field. In the computations, a section is 

declared to be in full queuing condition when the speed drops below 20 mph this is indicated 
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based on the field data in which speed varies between 9.1 mph and 21.7 mph when camera 

captured queued vehicles (see Figure 4-2 from minute 13 to minute 36).  

The search results showed that for τ values of less than 7 seconds there is not a good fit. 

In particular, when average error in speed is between ±2.5 mph, the error in average queue length 

is more than 120 ft. As shown in Figure 4-13a, when τ = 2 sec and ϑ = 0.5 (R=4) the queue 

length is overestimated while speed estimates are close to field data with average error of -1.13 

(See Figure 4-13b). To reduce the amount of queue length overestimation, one can reduce the 

value of ϑ.  If ϑ is reduced to 1/3 (R=6) (See Figure 4-14), still queue is overestimated while the 

average error in speed becomes 3.72 mph which is more than 2.5 mph. If ϑ is further reduced, 

the average error in speed becomes much higher than 2.5 mph; thus there is not a pair of τ and 

ϑ that returns good fit. There is a similar condition for other values of τ less than 7 seconds.  

 

                                       Part a                                                                                      Part b  

Figure 4-13: Results for τ=2 sec and ϑ =0.5: a) Queue length b) Speed 

 

                                              Part a                                                                            Part b 

Figure 4-14: Results for τ=2 sec and ϑ =1/3 a) Queue length b) Speed 
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For τ values of 7 seconds or higher, local search could find ϑs returning acceptable 

average error values. Figure 4-15 displays queue length and speed estimates for τ =7 sec and ϑ 

= 0.92 returning average error values of -0.096 mph and -18.7 ft for speed and queue length, 

respectively. Increasing (decreasing) ϑ will increase (reduce) queue length. For example as 

shown in Figure 4-16a , if ϑ  is reduced from 0.92 to 0.85, the average queue length will be 

reduced from 2037 ft to 944 ft which is corresponding to 54% of queue length reduction. If ϑ  is 

increased from 0.92 to 1, queue length will be overestimated as displayed in Figure 4-16 b; the 

rate of propagation is more similar to that in the field, but the rate of shrinkage is not fast enough 

to replicate queue shrinkage in the field. As a result, back of queue reaches the very upstream 

section and queue covers the whole roadway (5280 ft) for 15 minutes. This observation suggests 

modifying the second order model to have two different ϑ values: one for propagations and the 

other one for shrinkage. The ϑ value for shrinkage should be larger than that for propagation to 

trigger queue shrinkage earlier and avoid overestimation in queue length. Modifying the model 

using two ϑ values will be investigated later in this chapter.  

 

 

                                            Part a                                                                              Part b  

Figure 4-15: Results for τ=7 sec and ϑ = 0.92  a) Queue length b) Speed 
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                                         Part a                                                                               Part b 

Figure 4-16: Queue length for τ=7 sec and a) ϑ = 0.85,  b) ϑ =1   

 

The parameters were found only for relaxation time values of 7, 8 and 9 seconds as 

indicated by the box shown in Figure 4-12a. The values of the parameters are reported in Table 

4-2. The relaxation time value did not have significant influence on the shape of queue length. 

Figure 4-17 shows the fitted queue lengths for the relaxation times of 7 and 9 that are low and 

high ends indicated by the box. The estimated queue lengths are close with maximum 

discrepancy of 300 ft and average discrepancy of 77 ft.  

The local search was performed for the τ values inside the box assuming that τ values 

greater than 9 seconds do not substantially change the quality of fit for queue length. This 

assumption is checked by comparing quality of fit for τ = 15 seconds, which is outside the box, 

versus τ values of 7 and 9 seconds, which are inside the box. For τ  = 15 seconds, the ϑ value 

of 2.16 returns acceptable average error values of -2.43 mph for speed and -68 ft for queue 

length. As shown in Figure 4-17, when τ is 15 seconds, the propagation starts earlier than when 

τ is 7 or 9. This causes queue length to be slightly longer before minute 26 when τ is 15 

seconds. After minute 26, the estimated queue lengths are comparable for the selected τ values. 

These comparisons, along with the trends in Figure 4-12, show that τ values greater than 9 

seconds would not influence the quality of queue length estimates and one may eliminate those 

values from the search area.   
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Figure 4-17: Fitted queue length for different values of relaxation time (τ ) 

 

 

Table 4-2: Goodness of fit measures for the calibrated parameters when L=150 ft and 
L

∆t
=68 mph 

L (ft_) ∆t (sec) τ (sec) ϑ 

Average 

error in 

speed (mph) 

Standard deviation 

of error in speed 

(mph) 

Average error 

in queue length 

(ft) 

150 1.5 

7 0.92 -0.096 8.19 -18.7 

8 1.02 -0.693 8.31 111.3 

  

9 

1.14 -1.52 8.05 -86.5 

  1.13 -1.41 8.15 102.2 
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result, the search area is limited to R values between 4 and 10 that return an average error 

between -2.5 mph and +2.5 mph. Also, the trend shows that after some τ value, average error 

and standard deviation values are not sensitive to the relaxation time. This threshold for τ varies 
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based on section length as shown in Table 4-3. Thus, the search area is further limited to τ 

values less than these thresholds. 

 

  

                                     Part a                                                                                    Part b 

Figure 4-18: Average speed for different R values: a) Section length = 50 ft, b) Section length = 450 ft 

 

Table 4-3: Upper end of relaxation time (τ ) for different values of section lengths 

Section length (ft) Upper end of search range for 𝛕  (sec) 

50 5 

100 7 

150 9 

300 11 

450 13 

 

The search was performed to find the parameters. Similar to L=150, there was not good 

fit when τ is less than 7 seconds because either the average error in speed was more than 2.5 

mph or average error in queue length was more than 120 ft.  This means that there is not a good 

fit for section lengths of 50 ft and 100 ft. Beyond the numerical results, conceptually one can 

argue that section lengths of 50 ft and 100 ft are not as good as the longer section lengths. A 

section length should be long enough to encompass at least one vehicle at each time interval; 

otherwise density fluctuates between zero and a high number and this could be a cause of 

instability in the results. For instance, section length of 50ft is corresponding to density of 105.6 

veh/mi/ln =(5280/50) and may be an acceptable choice when density in the queue is greater 
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than105 veh/mi/ln; however the computed density in the front of queue varies between  40 and 

93 pc/mi/ln as shown in Figure 4-19. Section length of 150 ft is corresponding to density of 35.2 

pc/mi/ln which is lower than density values in the queue. As a result, selection of 150 ft or higher 

for the section length can include at least one vehicle in the section when there is queue in the 

field. Section lengths of 300 ft and 450 ft could be more preferable since they are corresponding 

to density values of 17.6 pc/mi/ln and 11.7 pc/mi/ln and can include one vehicle in the section 

when traffic is in undersaturated conditions.  

  

 

Figure 4-19: Speed data collected from field and computed densities 

 

 The calibrated parameters are shown in Figure 4-20 for sections lengths of 150 ft to 

450 ft.  There is an increasing trend between anticipation coefficient and relaxation time. The 

anticipation coefficient varies between 0.92 and 2.31, and for a given relaxation time, the 

anticipation coefficient increases as section length increases.  
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Figure 4-20: Calibrated parameters for different section lengths 

 Sensitivity analysis for 
𝐋

∆𝐭
  

Sensitivity analysis was also performed for 
L

∆t
 of 60, 68, 80, and 90 mph. Figure 4-21 

shows the trend between the calibrated parameters for L=150 ft and L=450 ft. The value of 

anticipation coefficient increases as 
L

∆t
 increases and there is a linear trend between ϑ and τ. A 

linear regression is developed with the general form of: 

ϑ = a + bτ  4-9 

Where, a and b are the regression coefficients.  

For L=150, lines were fitted for each 
L

∆t
 and the R-square values and coefficients are 

reported in The R-square values for all 
L

∆t
s are greater than 0.95. Figure 4-21b suggests that the 

data points for 
L

∆t
 of 80 and 90 may be combined. For the combined data, the linear regression 

results in R-square of 0.96. Estimation error was computed for the combined data as the 

difference between the estimated ϑ and the actual ϑ found from the calibration. The average 

error is equal to zero and error ranges from -0.050 to 0.084.  
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                                                    Part a                                                                               Part b 

Figure 4-21: Calibrated parameters for different values of 
L

∆t
 a) L = 150 ft, b) L = 450 ft 

 

Similar analysis was conducted for other section lengths and Table 4-4 shows the 

coefficients. The R-square values are 0.96 or higher indicating a good fit. The p-values shows 

that intercepts (parameter a) are significant for the combined data sets. For the other data sets, the 

p-values for intercept are 0.08 or higher, but the study does not make a conclusion that the 

intercepts are insignificant since the number of data points vary between 3 and 9 which are low. 

Thus the intercepts are kept in the model for all the data sets. The p-values for the slope 

(parameter b) is 0.013 or lower meaning that the slope is significant and should be kept in the 

model.  

Table 4-4: Regression results for L=150 and different 
L

∆t
s 

𝐋

∆𝐭
 60 68 80 90 80, 90 combined 

a (intercept) 0.028 0.156 -0.346 -0.346 -0.358 

b 0.092 0.108 0.185 0.185 0.188 

R-square 0.99 0.99 0.96 0.99 0.96 
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Table 4-5: Regression results for different section lengths and  
L

∆t
s 

𝐋 (ft) 150 300 450 

Data sets 1 2 3 4 5 6 7 

𝐋

∆𝐭
 (mph) 60 68 

80, and 90 

combined 60 

68, 80, and 90 

combined 60 

68, 80, and 90 

combined  

a (intercept) 0.028 0.156 -0.358 -0.056 -0.292 -0.126 -0.248 

b  0.092 0.108 0.188 0.130 0.193 0.157 0.200 

R-square 0.99 0.99 0.96 0.99 0.99 0.99 0.99 

P-value for a  0.313 0.102 <0.0001 0.148 <0.0001 0.084 <0.0001 

P-value for b 0.013 0.004 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Number of 

data points 3 4 20 5 35 9 53 

. 

 Behavior of the second order model in the 𝛕- 𝛝 space 

The calibration methodology was implemented for different values of section lengths and 

time increments and in all these trials the second order model showed similar behavior in the τ-

 ϑ space. Figure 4-22 summarizes the findings. It was found out that the ratio of 
τ

ϑ
 has the main 

influence on the speed discrepancies and results showed that 
τ

ϑ
≥  10 overestimates speed and  

τ

ϑ
≤ 4 underestimates speed. In addition, it was shown that beyond some threshold, shown in 

Table 4-3 for different section length, the relaxation time does not have a significant influence on 

the speed estimates.  As a result, as shown in  Figure 4-22, the search area was limited to that 

portion of the τ- ϑ space that is likely to return acceptable discrepancy.   
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Figure 4-22: Behavior of the second order model in the τ- ϑ space 

 Guidelines to select second order model parameter 

Based on the results of data fitting and physical meaning of the parameters, the following 

guidelines are proposed to determine the parameters of the second order model for work zones.  

1) Set up: 

L

∆t
 =Free flow speed + θ 4-10 

It is recommended θ to be 10 mph. The results showed that the θ can go up to 40 mph 

and even it can be half of a free flow speed but a higher value of θ may not be desirable 

as it causes smaller ∆t and more computations.  If 
L

∆t
 is less than free flow speed, 

instability in the results may occur.  

2) The study recommends using section lengths (L) of 300 ft and 450 ft . Section lengths of 

50 ft and 100 ft are not recommended because they did not return good results and 

section length of 150 will increase computations by factor 4 and 9 with respect to section 

lengths of 300 ft and 450 ft, respectively.   

3) Find ∆𝐭 =L/( Free flow speed + 𝛉) and round it down to the nearest multiple of 0.5 sec.  

4) The admissible range of τ for L>=150 ft is determined by τmin and τmax as below 

 τmin =max{∆t, 7 sec, 0.0225* section length (ft)} 

𝜏

𝜗
= 10 𝜏

𝜗
= 4 

𝜏 
(sec.) 

𝜗 (
𝑚𝑖𝑙𝑒2

ℎ𝑟
) 

                             Search area 

                                      𝜏 has insignificant  influence 

                               Very large and not justifiable 𝜏  

Speed underestimation 
Search  
direction  

Speed overestimation 
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These lower limits are set up based on the following logic: 

 τ has to be greater than ∆t ,time interval length ; otherwise the resulting speed would be 

unstable and will not converge to the steady state speed.  

 Based on the field data, the fits are good when τ is equal to or greater than 7 seconds. 

 A macroscopic interpretation of relaxation time is the time required for a platoon of 

vehicle to react. A lower bound for the macroscopic representation, is the time required 

for half of the vehicles in the section to react. Assuming median reaction time of 0.9 

seconds that was proposed for surprised drivers (Johansson and Rumar 1971) the lower 

bound is: 

0.9 sec*max number of vehicles with 20 ft spacing/2, 

Which can be simplified as  

0.0225* section length (ft) 

τmax,  the maximum relaxation time, is the τ value beyond which speed does not 

significantly depend on relaxation time (See Figure 4-12 and Figure 4-18) and are 

suggested as follows.  

 

τmax = {
τ = 9 sec    for L = 150 ft
τ = 11 sec for L = 300 ft
τ = 13 sec for L = 450 ft

  
4-11 

5) Select ϑ based on the linear regression Equation 4-9 with coefficients in Table 4-5.  

 Modification of second order model 

Two modifications are explored to enhance the second order model: 

Modification 1: Add a fine tuning parameter to the denominator 

Modification 2: Propose two different anticipation coefficients: one for queue propagation and 

one for queue shrinkage 

4.9.1 Modification 1: Add a fine tuning parameter to the denominator 

When queue propagates and the density of the arriving volume is low the density gradient 

term, 
Di−1,t−Di,t

Di,t
, may become so large and result in unreasonable speed drops. To avoid this 

condition, Cremer and Papageorgiou (1981) proposed a fine tuning parameter, κ, to be added to 

the denominator. The Table 4-6 shows different values of κ selected for past studies. The values 

range from 13 to 40 veh/km/ln (33 to 65 veh/mi/ln).  



63 

 

 

Table 4-6: Fine tuning parameters proposed in the past studies 

Year 

𝛋 

veh/km/ln 

Roadway 

information 

Type of 

volume 

Volume 

(vph) 

variation 

over time 

Volume (vph) 

Variation 

over space 

Lan

e 

Volume 

(vphpl) 

Cremer and 

Papageorgiou 

(1981) 20 2650 m, no ramp min-flow rate 1000-3500 _ 2 500-1750 

Papageorgiou 

et al. (1990) 40 

roughly 1000 m, 

with one off-ramp 

and one on-ramp 

hourly 

volume _ 5300-6500 3 1766-2166 

Papageorgiou 

et al. (1990) 

13 

 

6 km, 6 off ramp, 5 

on ramp 

 

hourly 

volume 

 

_ data set I:1500-4450 2--3 750-1483 

_ 

data set II & III:2350-

5850 2--3 1175-1950 

 

According to Papageorgiou et al. (1990) any reasonable value of this parameter can be 

practically compensated by adjusting the anticipation coefficient. This is examined for κ of 35 

veh/mi/ln (20 veh/km/ln) and 65 veh/mi/ln (40 veh/km/ln) using the work zone data. This 

examination is conducted for relaxation time of 9 seconds, section length of 300 ft , and 
L

∆t
 of 80 

mph. For  κ of 35, the calibrated ϑ is 2.77 and for κ of 65 the calibrated ϑ is 3.78. As shown in 

Figure 4-23, the estimated speeds and queue lengths for these pairs are similar. Average error 

values for queue length are 56 ft and -80 ft for κ values of 35 and 65, respectively. Average 

error values for speed are 2.03 mph and 1.82 mph for κ values of 35 and 65, respectively. The 

maximum queue length happens at the minutes of 37 and 38 for κ values of 35 and 65, 

respectively.  As a result, the two different fine tuning parameters did not show a significant 

improvement in the queue length data. Thus the study uses κ of 35 because this parameter is 

mainly used to adjust densities in undersaturated conditions and the amount of adjustment will 

not be more than the critical density which is equal to 35 pc/mi/ln for our work zone. 

Furthermore, κ of 35 was used by Cremer and Papageorgiou (1981) for a roadway similar to 

our work zone. For that roadway, there are no ramps and minute-volume ranges from 500 vphpl 

to 1750 vphpl; in our work zone there are no ramps and minute-volume ranges from 240 vphpl to 

1450 vphpl.  
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Part a 

 

Part b 

Figure 4-23: Estimated a) speed and b) queue lengths for two different fine tuning parameters 

4.9.2 Modification 2: Propose two anticipation coefficients 

Although the fit based on the Payne model and the modified version of that return 

admissible average speed error and average queue length error, there is a significant delay in start 

of queue propagation and there is a sudden queue shrinkage (See Figure 4-23). This suggests 

using two ϑ values: one for propagation (ϑp) and the other one for queue shrinkage (ϑs). In the 

modified model, called Two- ϑ model, the anticipation coefficient is defined as 
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ϑi,t = {
ϑp        if    Di,t ≤ Di−1,t
ϑs       if    Di,t > Di−1,t

  
4-12 

This section explores the effect of two ϑ values when L=450, L/∆t =80 mph, τ=11 sec, 

and kappa=35.  Admissible ϑ values return an absolute average error of less than 2.5 mph and 

less than 120 ft for speeds and queue lengths, respectively. Initial exploration showed that there 

could be multiple admissible pairs of ϑs. For instance, the two pairs of (ϑp=6.75, ϑs =14) and 

(ϑp=6.5, ϑs =13) can return good estimates as shown in Figure 4-24. In addition, using 2 ϑ 

values improved the propagation and shrinkage rates of queue length compared with estimates 

based on modified Payne model.  

Also for these pairs, the ϑs is greater than ϑp and this can be justified as the denominator 

of the density gradient term (
∆t∗ϑ

τ∗L
(
Di−1,t−Di,t

Di,t+ κ 
)) is larger when queue shrinks from the front than 

when queue propagates. When queue shrinks the denominator Di,t is equal to density in queue 

and when queue propagates it is equal to density of arriving vehicles which is less than density of 

queued vehicles. As a result, ϑs should be greater than ϑp to compensate the effect of larger 

denominator and to model more realistic queue propagation and shrinkage rate.  

A program was written to determine the pairs that potentially can return an average discrepancy 

of less than 120 ft for queue length and 2.5 mph for speed. The outcomes of this program are the 

pairs the potentially can return admissible fit and they will be later filtered based on other 

criteria. The search interval for ϑpwas from 3 to 8.5 and the search interval for ϑs was from 6 to 

25. The program found several potential pairs as shown in Figure 4-25 for relaxation times of 7, 

9, 11, and 13.  
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Part a 

 

Part b 

Figure 4-24: Estimated a) speeds and b) queue lengths using Two- ϑ model 

 

    The range of ϑp when τ = 7 sec is from 4.5 to 7.75 and this range moves to the right as 

τ  increases. Similarly, the range of ϑs when τ = 7 is from 9 to 15.25 and this range moves 

upward as τ increases.  

To determine the difference between these potential pairs, the acceleration rate (or 

deceleration rate when it is negative) was computed as below 

ai,t =
(Vi,t − Vi,t−1)

∆t
∗ 5280/36002   

This is the acceleration/deceleration rate for a representative vehicle that is in section i, in 

the beginning of time intervals t and t-1. There is always such a vehicle since ∆t and L were 
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chosen such that vehicles spend more than one time interval in a given section. The ai,t for a 

typical passenger car should be between -20 ft/sec2 and 16 ft/sec2. The number of 

computations that return an acceleration/deceleration rate outside this range was counted and 

divided by the total number of computations, 7500. The resulting percentages are shown in 

Figure 4-26. For each relaxation time, the percentage of over accelerations becomes higher as ϑp 

increases. This is because a highier ϑp menases there is highier speed change with respect to a 

given density change. Thus it is more likely to have more over accelerations for larger 

parameters.  The study selects parameters that return less than 1% of over accelerations. And 

these parameters are shown in Figure 4-27. The ratio of 
ϑs

ϑp
 ranges from 1.86 to 2.63.  

 

  

Figure 4-25: Potential admissible pairs of ϑ   
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Figure 4-26: Percentage of computations with very high acceleration or deceleration rates  

 

 

Figure 4-27: Admissible ϑ pairs after filtering based on acceleration and deceleration computations 

 

A regression line is fitted to admissible pairs with the following form:  

ϑs = a + bϑp 

Where, a and b are the regression coefficients.  

The domain of ϑp that was used in regression is indicted in Table 4-7 for different values of 

relaxation time.  
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Table 4-7: Domain of ϑp for different values of relaxation time 

Relaxation time (sec) 7 9 11 13 

Domain of ϑp 4.5 ≤  ϑp ≤ 5.5 5.5 ≤  ϑp ≤ 6.25 6.5 ≤  ϑp ≤ 7 7.25 ≤  ϑp ≤ 7.75 

 

Table 4-8 shows the results of regression. The R-square value of 0.905 indicates that a 

line can sufficiently be used to estimate ϑs. The P-values are less than 0.001 implying that both 

slope and intercept are required to be included in the model.   

 

Table 4-8: Regression results for ϑs versus ϑp 

Number of 

data points 

Parameter values P-values  R-square 

a B a b 

88 -6.05 3.12 <0.001 <0.001 0.905 

 Comparison with first order model  

Daganzo (1995a) formulated the finite difference form of the first order model for a 

general form of a density-flow curve. Based on his study, Equation 2 is reformulated as below 

for the first order model.  

Vi,t+1 = Min{R(Di−1,t), S(Di,t) }                                                                          ∀i ∈ I, ∀t ∈ T 4-13 

Where, 

R(Di−1,t): The flow rate that can be received by the downstream section. 

S(Di,t): The flow rate that can be sent out based on the number of the cars present. 

The schematic definition of R(Di,t) and S(Di,t) are shown in Figure 4-28.  

 
 

 

 

 

 

Figure 4-28: Schematic definition of R(Di,t) and S(Di,t) 
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The first order model does not have any parameters to calibrate. For the same boundary 

conditions, L=300 ft and 
L

∆t
= 80 mph, the queue length and speed were estimated. Based on the 

results shown in Figure 4-29, the queue length was overestimated with average error of 2744 ft. 

Average error in speed is -1.51 mph with standard deviation of the 7.6 mph.  

 

      

Figure 4-29: Queue length and speed estimated using first order model 

The source of discrepancy is investigated by comparison of density, speed, and flow rate 

estimates versus field data. Figure 4-30 displays density estimates based on the first order model 

versus field data. The figure shows that during queue conditions in the field (minute 13 to minute 

43), the average discrepancy for density is 0.42 pc/mile/ln. The average discrepancy during 

queue condition estimated by the first order model (minute 16 to minute 40) is 0.17 pc/mile/ln. 

Thus density computations cannot be the source of the discrepancy in queue conditions.  
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Figure 4-30: Estimated density using first order model versus field data 

 

Figure 4-31 displays speed estimates using first order model versus field data. Average 

speed when there was a queue in the field (minute 13 to minute 43) is 1.13 mph. The average 

discrepancy for speed when the first order model estimated a queue length (minute 16 to minute 

40) is -1.11 mph. The average discrepancy values are low, but as shown in Figure 4-31Figure 

4-32, speed is constantly underestimated from minute 23 to minute 37 with average 

underestimation of 3.7 mph ranging from 1.4 mph to 6.73 mph. This underestimation is 

magnified by the corresponding density and causes flow rate underestimation as displayed in 

Figure 4-31. The average flow rate underestimation for minute 23 to minute 37 is 221 pcphpl. 

This discrepancy value is close to average speed discrepancy (i.e. 3.7 mph) multiplied by the 

average density (65.2 pc/ln/) during these minutes.  

 

Figure 4-31: Estimated speed and flow rate using first order model versus field data 
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In order to determine the cause of speed underestimation, field data used to develop 

speed-flow relationship and corresponding speed-density relationship were plotted in Figure 

4-32.  Figure 4-32a shows speed and flow data collected from three locations: I39-NB (AM), 

I80-EB (AM and PM), and I80-WB (AM and PM). A power function was fitted to all the field 

data repressing a speed-flow relationship for a typical site with flagger and speed limit of 45 

mph. The curve slightly modified as explained in Section 5.3 to connect the jam density of 250 

pc/mi/ln to the capacity of 1400 pcphpl and speed at capacity of 34 mph determined by field 

data. The modified curve yields the capacity and the speed at capacity determined from field data 

and overall is close to regression curve. Figure 4-32b shows the corresponding speed-density 

data and relationship. Overall speed-flow and speed-density relationships describe whole 

collected data, but for I39-NB the speed-density relationship returns slower speeds than field 

data for a given density. One may argue that to evaluate the first order model, the speed-flow 

relationship or the speed-density relationship should be developed using only I39-NB data 

because queue length data were collected from I39-NB. In addition, one may argue that similar 

to second order model that has parameters to calibrate and improve the estimates, parameters 

should be calibrated for the first order model to improve the estimates. In order to address these 

concerns, the next section evaluates estimated queue length using the first order model under 

different cases to improve queue length estimates. 
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Part a 

 

Part b 

Figure 4-32: Congested data and relationships a) speed versus flow b) speed versus density 

4.10.1 Modifications of speed-density relationships  

4.10.1.1 Case 1) Regression using only I39-NB data  

Only I39-NB data collected during queuing conditions are used to develop a regression 

power function for queuing condition. Nonlinear regression returned the following relationship: 

Flow = 297.6 ∗ speed0.4587   4-14 
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Speed = (
density

297.6
)

1

(0.4587−1)
= (

density

297.6
)

1

(−0.5413)
  

4-15 

Both relationships are shown in Figure 4-33 and Figure 4-34.  

 

  

Figure 4-33: Speed versus flow for I39-NB data 

 

 

Figure 4-34: Speed versus density for I39-NB data 
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The regression function does not cover the whole domain of density for congested 

condition. Extrapolation of the regression function does not return a reasonable jam density or 

the capacity and the speed at the capacity determined using field data; as a result, a power 

function is used to connect the regression function to the capacity of 1400 pcphpl and the speed 

of 34 mph. Another power function is used to connect the regression function to the jam density 

of 250 and the speed of 1 mph.  

Thus speed-density relationship will be in the form of Equation 4-16. The first two sub-

functions are the same as those in Equation 4-5 when density is below capacity. The three power 

sub-functions are used when density is greater than the critical density of 41.18 pc/mi/ln. The 

regression function was limited to the density values between 59 and 92 which are very close to 

the minimum (=59.4) and maximum (=91.1) values of density computed based on field data. 

 

 

V(Di,t) =

{
 
 
 
 
 
 

 
 
 
 
 
 

42.81

1 + 0.0031 ∗ Di,t
                                           if Di,t ≤ 13.26 

62.85

1 + 0.01863 ∗ Di,t
             if 13.26 ≤ Di,t ≤ Dcr = 41.18 

(
Di,t

437.17
)

1
−0.6699

                       if Dcr = 41.18 ≤ Di,t ≤ 59

(
Di,t
297.6

)

1
−0.541

                                             if 59 ≤ Di,t ≤ 92

(
Di,t
250

)

1
−0.461

                                             if 92 ≤ Di,t ≤ 250

                     ∀i ∈ I1, ∀t ∈ T 

 

4-16 

For the updated speed-density relationship, the first order model estimates queue length 

as shown in Figure 4-35. This shows that back of queue has rapid increase and decrease and this 

trend is not similar to the queue propagation and dissipation for field data.  
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Figure 4-35: Estimated queue length using first order model for Case 1 

 

To investigate the reason for this trend, the study explores average speed computed for 

each minute and each section  shown in Figure 4-36. Each column represents a minute during 

queuing condition which starts from minute 16 and ends at minute 35. Each row represents a 

section. The Row 1 is the most downstream section. If average speed drops below 20 mph, it is 

assumed that the section is in queuing condition. The threshold of 20 mph is the same as the 

threshold used for the second order model. The cells in queuing conditions are highlighted in red. 

One of the reasons to have fluctuation in back of queue could be due to threshold of 20 used to 

declare queuing condition. For example in minute 29, there are two sections (the Sections 1 and 

2) under queuing condition while speeds of the Sections 3 to 18 are below 30 mph and one may 

consider these sections under queuing condition because corresponding speeds are below the 

critical speed. Thus in the next section, the threshold to declare queuing condition will be 

modified.  
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Figure 4-36: Spatiotemporal distribution of estimated average speed the Case 1 

4.10.1.2 Case 2) Modifying queuing thresholds 

Based on the discussion above, the speed threshold to declare queuing condition is 

modified. A given section is in queuing condition if the corresponding speed is below the critical 

speed. The Sections 1 to 4 have a speed-density relationships corresponding to flagger presence 

and its critical speed is 34 mph. The other sections have a speed-density relationship 

corresponding to no flagger presence with the critical speed of 41 mph. Thus instead of using a 

single threshold of 20 mph for all sections, two thresholds are used: 34 mph for the Sections 1 to 

4 and 41 mph for the Sections 5 to 24. The spatiotemporal distribution of estimated speed is 

shown in Figure 4-37  for the new thresholds. The cells under queuing condition are highlighted 

in red for the Sections 1 to 4 and in orange for the Sections 5 to 24. This figure shows that the 

sections between back of queue and front of queue are under queuing conditions, thus the 

distance back of queue reached represents the queue length. The corresponding queue length is 

displayed in Figure 4-38 showing a more realistic queue propagation and dissipation pattern than 

Figure 4-35 for the Case 1. The average estimated queue length for the Case 2 is 2178 ft which is 

123 ft longer than 2055 ft which is the average queue length for the field data. The maximum 

queue length for the Case 2 was overestimated by 1787 ft compared with field data. Although the 

estimated average queue length is close to the field data, the maximum queue length is 

considerably longer than field data. The next sections will modify values of some parameters to 

improve the estimated maximum queue length.    
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Figure 4-37: Spatiotemporal schematic of estimated average speed using first order model for Case 2 

 

 

Figure 4-38: Estimated queue length using first order model for Case 2 

 

4.10.1.3 Case 3) Modifying free flow speed 

There are two free flow speed values that potentially could be modified. 1) Free flow 

speed for flagger presence ( The Sections 1 to 4) and 2) Free flow speed for no flagger presence ( 

The Sections 5 to 24). The study does not change free flow speed of 42.8 mph for flagger 

presence because it was estimated based on field data. For no flagger presence, there was no field 

data to determine the free flow speed and the study has been using a free flow speed based on 

prevailing conditions. The study will modify this free flow speed to improve the queue length 

estimates. The posted speed limit for the Sections 5 to 24 was 45 mph. The free flow speed is 

usually several miles per hour greater than the posted speed limit. So far, the free flow speed of 

50 mph has been used in the speed-density relationship for Sections 5 to 24. In this section, free 
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flow speed is increased from 50 mph to 52 mph. Increasing free flow speed from 50 mph to 52 

mph returned average queue length of 1878 ft which is 177 ft shorter than the average queue 

length of 2055 ft for the field data. The maximum estimated queue length is 5700 ft which is 

1187 ft longer than the maximum queue length in the field. The estimated maximum queue 

length is closer to field data than the estimated value based on free flow speed of 50 mph in Case 

2. This means increasing free flow speed from 50 mph to 52 mph improved estimated maximum 

queue length; however the average queue length is underestimated by 177 ft. Thus, further 

increase of free flow speed may reduce maximum queue length, but it can considerably reduce 

average queue length which is not desirable. In addition further increase of free flow speed may 

not describe the prevailing conditions because speed monitoring display was present in the field 

and some drivers reduced speed in response to speed monitoring display; as a result it is not 

likely to have average speed of drivers to be greater than posted speed limit plus 7 mph.  

 

 

Figure 4-39: Estimated queue length using first order model for Case 3 

4.10.1.4 Case 4) Modifying jam density  

To determine effect of jam density on the estimated queue length, the jam density was 

changed from 250 pc/mi/ln to 200 pc/mi/ln. The queue length corresponding to jam density of 

200 pc/mi/ln is shown in Figure 4-40. The effect of changing jam density on queue length was 

relatively minor compared with the Case 3. The estimated average queue length is 1868 ft which 

is only 10 ft shorter than the estimated average queue length for the Case 3. The estimated 
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maximum queue length is 5700 ft which is equal to that in the Case 3. Thus in this case reducing 

jam density to 200 pc/mi/ln did not significantly influence the results. Jam density values below 

200 pc/mi/ln is not evaluated because 200 pc/mi/ln is corresponding to spacing of 26.4 ft. 

between passenger cars including 19 ft for a car length and 7.4 ft for buffer length in stopped 

queue, and it is not likely to have an average buffer length of greater than 7.4 ft in a stopped 

queue. On the other hand, jam density values greater than 250 pc/mi/ln is not evaluated because 

they are corresponding to average spacing of shorter than 21 ft and average buffer length of 

shorter than 2 ft. These short average buffer lengths between passenger cars are not likely to 

observe.     

 

Figure 4-40: Estimated queue length using first order model for Case 4 

 

4.10.1.5 Conclusions  

First order model in the Case 3 returned better results than other cases. In particular it 

underestimated average queue length by 177 ft which is corresponding to 8.6% error, and it 

overestimated maximum queue length by 1187 ft which is corresponding to 26.3% error. The 

standard deviation of error in queue length estimates was 955 ft which is corresponding to 

coefficient of variation of 46.5%. 

The second order model returned better average and maximum queue lengths than the 

first order model, but a larger coefficient of variation. The discrepancy between the second order 

model estimates and the field data depended on the values of τ and ϑ. For example for τ =11 and 
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ϑ =1.80, the second order model underestimated average queue length by 100.5 ft which is 

corresponding to 4.9% error. The maximum queue length was overestimated by 309 ft which is 

corresponding to 6.8% error. The standard deviation of error was 1734.7 ft which is 

corresponding to coefficient of variation of 84.4%.  

The Two- ϑ model retuned better average queue length, maximum queue length, and 

coefficients of variation than the first order model and the second order model. The amount of 

discrepancy between estimates and field data depended on parameter values of τ, ϑp, and ϑs. For 

example for τ=11, ϑp=6.5, ϑs=13, average error in the queue length was 32 ft which is 

corresponding to 1.56% error. The maximum queue length was overestimated by 318 ft which is 

corresponding to 7.1% error. The standard deviation of error is 614.3 ft which is corresponding 

to coefficient of variation of 29.9%.  

Thus based on the numerical comparisons, it can be concluded that the Two- ϑ model is 

better than the first order model and the second order model. One may use the Two- ϑ model 

when the rate of queue shrinkage and dissipation are significantly different. Consequently, one 

may use the second order model when the rates of dissipation and shrinkage are similar. In 

addition, in optimization programs using the second order model can significantly reduce 

computational complexity compared with the Two- ϑ model which practically has a 

discontinuous function for ϑ. Thus this study uses the second order model to reduce 

computational complexities in the optimization program. The next section will use findings of 

this chapter to determine the second order parameters for the optimization program.  

 Finding parameters of the second order model for the optimization program  

The second order model was calibrated using field data for section lengths up to 450 ft and 

time increments up to 5.11 seconds. These section lengths and time increments are short and 

result in large number of constraints and variables requiring huge computational resources to 

solve the optimization problems. To reduce the computational complexities, the study will use a 

longer section length of 0.25 miles. This section length is still shorter than the section lengths of 

0.31 miles (0.5 km) and 0.625 miles (1 km) used by Carlson et al. (2010) and Hegyi et al. (2005). 

The section lengths of 0.25 miles would result in more accuracy in determining location of the 

critical CMSs than longer section lengths. The only remaining issue is that field data is not 

sufficient to calibrate the second order model for section length of 0.25 miles because extend of 
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congestion was limited (less than a mile). To overcome this issue, the study creates simulated 

data using the Two-ϑ model and uses the simulated data as a base to calibrate the second order 

model. More details of the methodology is presented in the next section. .   

4.11.1 Methodology 

In this section, the roadway is similar to that introduced in section 4.2, but the section 

with speed limit of 45 mph and no flagger is extended to have the total length of 2 miles. The 

reason for extension is that there should be enough space for a queue length of 1 mile or longer 

and this will allow evaluating several sections under queuing conditions.  

The methodology has two parts:  

Part 1) For a given boundary and initial condition, the queue length is found using section length 

of 450 ft for which the Two-ϑ model has been calibrated.  

Part 2) For the same boundary and initial condition, the second order model is calibrated for the 

section length of 0.25 miles to compute similar queue length estimated in part 1. It should be 

noted that for the section length of 0.25 miles, the second order model has only one ϑ and the 

Two-ϑ model is not used because incorporating the Two-ϑ model in the optimization requires 

integer variables, and this increases problem complexity.  

 

4.11.1.1 Part 1) Queue length for the short section length 

For computational purposes, the study selects the section length of 0.1 miles which is 

slightly larger than 450 ft for which the Two-ϑ model has been calibrated. Thus the parameters 

can be selected based on the guideline developed for section lengths of 450 ft. The logic to select 

the parameters is as follow: 

 Based on the guideline to select relaxation time in Section 4.8, the admissible range for 

relaxation time is between 10 seconds and 13 seconds. The selected value is 11 seconds 

since it is a middle value in the range and the study has already calibrated the Two-ϑ 

model for this value of the relaxation time. 

 Based on the results of calibration for the Two-ϑ model, I select 6.5 
mile2

hr
  for ϑp , and 

12.75 
mile2

hr
 for and ϑs.  These values are among the calibrated values for reaction time of 

11 seconds, and they are less likely to overestimate acceleration or deceleration rates.  



83 

 

 The value of ∆t was selected to be 4.5 seconds because it returns 
L

∆t
 of 80 mph for which 

the Two-ϑ model is calibrated.  

 Kappa is selected to be 35 pc/mi/ln which is the same value used in the Two-ϑ model.  

Using these parameters, the queue length is estimated when arriving volume is 1200 

pc/hr, and after 1 min from the beginning of the analysis, capacity drops to 900 pc/hr for 15 

minutes. This capacity drop resulted in maximum queue length of 5573 ft and average queue 

length of 3594 ft, in the simulated data. The next section will find the parameters that estimates 

this queue pattern.  

4.11.1.2 Part 2) Calibration for the long section length 

The second order model is calibrated when only one ϑ is used. The Two-ϑ model is not 

used because it will require integer variables in the optimization problem causing significant 

computational effort. The study selects the parameters using the following logic: 

 Based on the guideline in 4.8, relaxation time can be selected proportional to the section 

length; thus the relaxation time of 11 is multiplied by 2.5 (the ratio between the section 

lengths of 0.25 miles and 0.1 miles) to find the relaxation time. The resulting value will 

be 27.5 seconds, and it is rounded to 28 seconds.  

 The ∆t of 10 seconds is selected since it is a round number and is appropriate for 

practical purposes. In addition, it returns 
L

∆t
 of 90 mph which is close to 80 mph, the 

corresponding ratio for section length of 0.1 mile.  

 The same kappa value of 35 is used. 

The ϑ value is selected such that it returns the closest queue length trend to that estimated 

for the section length of 0.1 miles. The Figure 4-41 shows how queue length changes for 

different values of ϑ. The ϑ values of 17 and 18 underestimate average queue length by 285 ft 

and 93 ft, respectively. The ϑ values of 19 and 20 overestimate average queue length by 130 ft 

and 429 ft, respectively. The ϑ values of 18 and 19 return lower error values for average queue 

length. Between these two values, the study uses ϑ value of 18 because it creates less 

discrepancy in maximum queue length and congestion duration.  

Thus, the values of the second order model parameters used for this study are reported in Table 

4-9. 
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Figure 4-41: queue length estimated for sections lengths of 0.1 miles and 0.25 miles using different ϑ (nu) values 

 

 
Table 4-9: Second order parameter values used in the optimization program 

Parameter L (miles) ∆t (sec. ) τ (sec. ) 
ϑ(
Mile2

hr
) 

κ (veh/minle/ln) 

Value 0.25 10 28 18 35 
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Chapter 5 A continuous transformation method to optimize speed harmonization with 

piecewise speed-density relationship  

The past optimization studies on speed harmonization (Kang et al 2004, Berton et al 

2002, Kotsialos et al 1999) mostly used one-regime speed-density relationships such as 

Greenshields-type models or exponential models, which would reduce problem complexity and 

help solving optimization programs. However as it will be discussed later, one regime model 

may not be sufficient to describe traffic flow at oversaturated conditions. As a result, the 

expected performance improvements due to speed harmonization may not be observed if a 

single-regime model is used.  In addition, recent traffic stream models, (e.g. the relationships 

proposed in Highway Capacity Manual 2010) are not supporting a single-regime speed-density 

model, rather they are piecewise and nonlinear. However, inclusion of a piecewise and nonlinear 

model in an optimization program causes more computational complexities. In particular, 

incorporation of piecewise models in optimization programs usually requires integer variables 

that would cause high level of complexity. The computational issue becomes more pronounced 

when integer variables are combined with nonlinear constraints, which could be the case for 

speed harmonization with nonlinear speed-density models. In this case, the problem becomes a 

Mixed Integer Nonlinear Program (MINLP), which is difficult to solve especially for large-scale 

problems. As a result, a methodology is needed to reduce computational difficulties when 

piecewise nonlinear speed-density relationship is incorporated in the optimization program.  

Thus, the objective of this chapter is to develop and solve a mathematical program, called 

WZ-Speed Harmonizer (WZSH), to optimize speed harmonization with piecewise speed-density 

relationships. The study shows that the WZSH can be equivalently formulated as a Nonlinear 

Program (NLP) when piecewise speed-density functions have certain mathematical properties. 

These properties may not exist in the traffic stream models that are developed so far, but as 

shown later, one can approximate these models with some functions which satisfy the desired 

properties. Formulation of the approximate functions to eliminate the integer variables and to 

considerably reduce the problem complexity is discussed in the following sections.   

 Motivation:  Issues with one-regime traffic stream models 

One-regime traffic stream models are simple and easy to be formulated in optimization 

programs; however they may not be sufficient to model congested conditions. Alternatively, 
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multi-regime models (i.e. piecewise models) have been developed to more accurately describe 

congested traffic conditions. Early examples of multi-regime relationships are Edie’s (1961) and 

Dick’s (1966) speed-density models that are composed of two equations for uncongested and 

congested conditions. HCM also proposed different versions of piecewise speed-flow 

relationship from 1985 to 2010. These curves are widely used in practice to analyze level of 

service in US freeways and highways. 

To highlight the insufficiency of one-regime models for congested conditions, the next 

section compares an HCM 2010 speed-flow relationship with single-regime models, which have 

been used in optimization programs for speed harmonization, as discussed in the next section. 

This comparison will show how single regime models can significantly cause discrepancy for 

congested condition although they can return acceptable estimates for uncongested conditions. 

This sets up the motivation to develop an efficient and fast methodology to solve optimization 

program with multi-regime models in this chapter.  

5.1.1 Approximation of multi-regime models using one-regime models 

 Exponential equations, defined in Equation 5-1, have been used as a single regime 

fundamental diagram in speed harmonization studies (Berton et al 2002, Carlson et al 2010).  

V(D) = Vfexp (
−1

a
(
D

Dcr
)a)   5-1 

Where,  

D: Road density (pc/mi/ln), 

V(D): Speed (mph) corresponding to density D, 

Vf: Free flow speed (mph), 

Dcr: Critical density (i.e. density at capacity), and 

a: Parameter of the equation. 

This section will show that using Exponential equation for a freeway may cause 

significant inaccuracy in the congested conditions. The parameters of the exponential models are 

computed such that they return the same free flow speed, capacity and critical density as an 

HCM 2010 speed-flow relationship returns. As an example, we choose HCM 2010 speed-flow 

relationship when free flow speed is 65 mph. The corresponding capacity and critical density are 
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2350 pcphpl and 45 pc/mi/ln, respectively. Based on the definition, Vf is equal to 65 mph which 

is the free flow speed; Dcr is equal to 45 pc/mile/ln which is the critical density; the parameter a 

is computed such that the Exponential model returns a capacity of 2350 pcphpl. Capacity is 

computed as: 

Capacity = Dcr ∗ V(Dcr)  

Based on Equation 5-1, V(Dcr) will be equal to Vfexp (
−1

a
). As a result: 

Capacity = Dcr ∗ Vfexp (
−1

a
)   

a =
−1

ln (
Capacity

Dcr∗Vf
)
  

Based on the equation above, the value of parameter “a” will be 4.569. 

Figure 5-1a shows the speed-flow curves for the HCM 2010 model and the Exponential 

model. It demonstrates a good match when traffic is in undersaturated conditions. The HCM 

2010 relationship does not have oversaturated part and overall behavior of the Exponential 

approximation does not reveal counterintuitive trend; however, the speed-density curves, in 

Figure 5-1b, show that the Exponential approximation results in a low estimate of (practical) jam 

density. If jam density is practically defined as density when speed is 1 mph, then the 

exponential approximation roughly returns jam density of 90 pc/mi/ln, which is corresponding to 

the spacing of 58 ft. This is considerably higher than 25 ft which could be considered as the 

spacing between passenger cars in stopped queue. The very low density for speed of 1 mph is an 

indication that the rate of speed reduction is very high in oversaturated condition. Thus 

exponential equation 5-1 may not be a good choice for some of freeways.  
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Figure 5-1: HCM 2010 fundamental relationships approximated by exponential Equation a) speed-flow 
relationships b) speed-density relationships 

 

Another model that is used in speed harmonization studies is Greenshields model in 

which jam density is two times as big as the critical density in the curve. For HCM 2010 speed-

flow relationships the critical density is 45 pc/mi/ln, thus the jam density is 90 pc/mi/ln which is 

a very low estimate. Similar the exponential curve this jam density is corresponding to spacing of 

58 ft that is large for sopped queues. 

 As a result, one regime models may not be sufficient to describe all traffic conditions. 

For those cases that one-regime models are not sufficient, piecewise speed-density models 

should be included in traffic control problems; however piecewise models usually requires 

integer variables to be included in the optimization program, and this causes longer solution time 

and requires more computational resources; thus a methodology needs to be developed to solve 

the optimization programs with low computational costs.   

 Formulation of piecewise speed-density functions  

In the formulation presented in Chapter3, there is no assumption whether the speed-

density function is one-regime or multi-regime (piecewise). In this section the formulation is 

developed for the piecewise model. 

5.2.1 MINLP formulation 

Assume that the general form of a piecewise continues speed-density function is 

expressed with a finite number, K, of sub-functions as: 

Part b Part a 
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V(D) =∑Rk(D)

K

k=1

 I[Dk−1,Dk](D) 
5-2 

Where, 

Rk(D)’s are twice differentiable, and continuous functions of density and can be nonlinear. For 

the sake of simplicity, time and section indexes for density (D) are not shown.  

Dk−1 and Dk determine the density boundaries for the kth regime. In particular, D0 = 0, and 

DK = Djam(i.e. jam density) .  

I[Dk−1,Dk](D)s are indicator functions that return 1 when Dϵ[Dk−1, Dk] ; otherwise it is zero. 

A piecewise function can be modelled as a set of disjunctive constraints. A common 

approach to formulate disjunctive constraints is Big-M method which could be implemented as   

Dk−1 − (1 − xk)M ≤ D < Dk + (1 − xk)M                   ∀k ∈ {1, . . , K} 5-3 

Rk(D) − (1 − xk)M ≤ V(D) < Rk(D) + (1 − xk)M         ∀k ∈ {1, . . , K} 5-4 

∑ xk
K
k=1 = 1  5-5 

 

Where,  

xk: Binary variables determined as  

xk = {
1      if Dk−1 ≤ D < Dk
0                     otherwise

 

 

M: is a sufficiently big number. It could take different values for different constraints, but for 

simplicity it is assumed to be a fixed number.  

The inequality 5-3 determines the traffic regime based on the value of density and 

constraints 5-4 find the corresponding value of speed. The formulation above can be more 

simplified as one may combine constraint 5-5 with other constraints and eliminate one integer 

variable, say xK. As a result, the piecewise function formulation includes K-1 integer variables 

for a single section and a single time interval using. Assuming that the analysis period is divided 

into Nt time intervals and the roadway is divided into  Ns sections, the number of integer 

variables would be (K-1)* Nt*Ns. As will be discussed later, this number could be a large 

number for practical problems and solving the corresponding problems would be typically time 
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consuming and difficult. Thus, an alternative approach which results in less computational 

efforts is favorable especially for large scale problems or real time applications.  

5.2.2 From MINLP to NLP 

Two alternative approaches could be considered to simplify the problem solution. 

1) One approach is to approximate the piecewise nonlinear function with a piecewise 

linear function. Generally, this approach may be useful when it transforms the MINLP 

into a Mixed Integer Linear Program (MILP); however in this problem, it does not 

eliminate nonlinearity that exists in Constraints 2 and 4; thus the formulated speed 

harmonization problem is still MINLP. Moreover, it is likely that number of integer 

variables in MILP is higher than that in MINLP. In particular, one may use more linear 

sub-functions to capture the nonlinearity in the original sub-functions, and this requires 

more integer variables which may not be desirable to be included in the program.   

2) Another approach is to transform the MINLP to an NLP. The transformation 

eliminates the integer variables, and continues methods can be applied to solve the 

problem. This could be potentially a decent approach especially when the transformation 

is exact or incurs low approximation error. More insight on the properties of formulation 

will be given in next sections.  

5.2.3 NLP formulation  

Exact formulation: The section shows that the pricewise function formulated in 5-2 can 

be exactly formulated as an NLP when the sub-functions satisfy these properties:  

Property 1:  

min
D≤Dk

{ Rk(D), Rk+1(D)} = Rk(D)                ∀k ∈ {1,… , K − 1}                  5-6 

Property 2: 

min
Dk≤D

{ Rk(D), Rk+1(D)} = Rk+1(D)           ∀k ∈ {1,… , K − 1}         
      5-7 

The following preposition illustrates that a piecewise speed-density relationship can be 

formulated as the minimum of the Rk(. )’s when the properties above are satisfied.  
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Preposition: For the continuous piecewise function defined in Equation 5-2 and satisfies the 

Properties 1 and 2:  

V(D) = min
k
{ Rk(D)}    

5-8 

Proof: Properties 1 and 2 compare two adjacent sub-functions and can be used to expand the 

comparison of the sub-function, Rk(D), versus all other sub-functions. In particular, the 

condition D ≤ Dk implies D ≤ Dk ≤ Dk+1 and one can conclude from 5-6 that Rk(D) ≤

Rk+1(D) ≤ Rk+2(D). This can be generalized as: 

for D ≤ Dk : min
k≤j≤K

{ Rj(D)} = Rk(D)     
5-9 

Similarly from 5-7, it can be concluded that Rk(D) ≤ Rk−1(D) ≤ Rk−2(D) when Dk−2 ≤

Dk−1 ≤ D. This can be generalized as:  

for Dk−1 ≤ D: min
1≤j≤k

{ Rj(D)} = Rk(D)     
5-10 

Combining 5-9 and 5-10: 

for Dk−1 ≤ D ≤ Dk : min
1≤j≤K

{ Rj(D)} = Rk(D)  
5-11 

Since Equation 5-11 holds for all the regimes, the proof is complete.  

The min operator is a nonlinear function, thus the piecewise function was equivalently 

formulated as an NLP, which can be solved by appropriate nonlinear solvers. Hence the 

following sets of constraints (Equations 5-12 to 5-14) can be appended to the Constraint 3 to 

formulate piecewise speed-density functions.  

V1
′(Di,t+1) = R1(Di,t+1)                                                  ∀i ∈ I, ∀t ∈ T 

5-12 

Vk
′(Di,t+1) = min{ Rk(Di,t+1), Vk−1

′ (Di,t+1)}     ∀ k ∈ {2, 3, … , K}, ∀i ∈ I, ∀t ∈ T  
5-13 

V(Di,t+1) = VK
′ (Di,t+1)                                                ∀i ∈ I, ∀t ∈ T  

5-14 
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Approximate formulation: When the Properties 1 and 2 are not satisfied for a speed-

density relationship, the relationship can be approximated by functions that possess the 

Properties. The question is if such an approximation exists and what is the form of that 

approximation. This sections shows that a homographic approximation always exists when the 

corresponding flow-density model is concave and continues.    

Proposition: Consider a flow-density curve (see Figure 5-2) that is approximated by a continues 

and piecewise linear function L(D) 

Such that    

L(D) = ∑ (αk +βkD) ∗ Ik(D)
K′

k=1   
      5-15 

Where, 

Ik(D) is the indicator function to determine the sub-function, similarly defined in 5-2 

and αk’s and βk’s are constants with the following relationships satisfying concavity of L(D): 

αk < αk+1 

βk+1 < βk 

Then the corresponding speed-density relationship holds the properties 1 and 2.  

 

 

 

 

 

 

 

Figure 5-2: Piecewise smooth flow-density relationship (solid curve) approximated by piecewise linear 
function (dashed lines) 

 

Proof. The corresponding speed-density relationship is composed of homographic functions of 

the following form: 

V(D) =∑(
αk

D
+βk) ∗ Ik(D)

K

k=1

 

Flow 

Density  
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Since the piecewise linear approximation is continuous and βk+1 < βk,  

Lk ≤ Lk+1       when D ≤ Dk 

 

And consequently  

Rk =
Lk
D
≤
Lk+1
D

= Rk+1    when D ≤ Dk 

As a result, min
D≤Dk

{ Rk(D), Rk+1(D)} = Rk(D), which expresses the Property 1.  

Similarly, one can verify that the Property 2 holds for the approximation. Since the piecewise 

linear approximation is continuous and βk+1 <βk,  

Lk ≥ Lk+1       when Dk ≤ D 

Then  

Rk =
Lk
D
≥
Lk+1
D

= Rk+1    when Dk ≤ D 

As a result, min
Dk≤D

{ Rk(D), Rk+1(D)} = Rk+1(D), which expresses the Property 2.  

5.2.4 Practical consideration 

There is a trade-off between the accuracy of homographic approximation and resulting 

computational effort. To achieve the desirable accuracy one may use more homographic sub-

functions, but these results in more constraints, and more nonlinear function evaluations. If 

computational complexity matters, the study recommends other forms of approximation, such as 

power function, be used, especially for the oversaturated conditions to reduce the number of sub-

functions. The next section illustrates approximation process for HCM 2010 speed-flow 

relationships and work zone speed-flow relationships developed by Benekohal and Ramezani 

(2013). 

 Speed-density relationship approximation 

This section of the paper illustrates examples for the approximation process. The 

following two sets of relationships are approximated: 

1) The HCM 2010 relationships for basic freeway sections, and  

2) Work zone relationships developed by Benekohal et al. (12).  

These sets describe the relationships between speed and flow, but the WZSH formulation 

uses the speed-density relationship. Thus, first the speed-flow relationships are approximated 
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using a few simple functions. Then, the corresponding speed-density relationships are obtained 

which are used in the WZSH formulation, while they maintain the Properties 1 and 2. It should 

be noted that the HCM 2010 relationships  which is for non-work zone sections of a freeway is 

included here because speed harmonization may be applied over a long stretch of a freeway that 

may include  both work zone and non-work zone sections of a freeway.   

5.3.1 Approximation for HCM 2010 relationships 

In HCM 2010, there are 5 Sets of speed-flow curves each representing a free flow speed 

on basic section of a freeway (the range is from 75 mph to 55 mph).  Here, detailed explanations 

are provided when the free flow speed is 75 mph.  A similar approach will be applied for other 

free flow speeds, and will be presented in this section. Then one can convert the speed-flow 

relationship into speed-density relationship and incorporate in the WZSH.  

The HCM-2010 relationship only consists of two regimes for undersaturated conditions: 

V = {

FFS                                               F < FB

FFS − a(F − FB)
2                      FB ≤ F ≤ FC

 

                        

5-16 

Where  

F : Flow rate (pcphpl), 

V: Speed (mph), 

 FFS: Free flow speed and is equal to 75 mph, 

a : Model coefficient and is equal to -0.00001107,  

FB:  Flow rate at the breakpoint, which is equal to 1000 pcphpl, and  

FC:  Flow rate at capacity, which is equal to 2400 pcphpl.  
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The approximation includes two steps. In Step 1, the transition regime (polynomial 

equation) is approximated by a line as shown in Figure 5-3. The maximum speed discrepancy 

between the approximated curve and the HCM curve could be about 5.4 mph with average error 

of -3.6 mph; however, these discrepancies will be reduced in Step 2, by increasing the break 

point for the approximated curve. Thus, the formula for the approximated curve with the new 

break point, FB
′, will be: 

V =

{
 

 
FFS                                                               F < FB

′

FFS +
VC − FFS

FC − FB
′ (F − FB

′)                      FB
′ ≤ F ≤ FC

 

5-17 

Where, 

FC and VC are capacity and speed at capacity, respectively.  

When FB
′ = FB = 1000, the approximated curve in Equation 5-17 is the same as that 

from Step 1 (shown in Figure 5-3a). Increasing FB
′ can reduce discrepancy as shown in Figure 

5-3b for a bending point of 1400 pcphpl.  Table 5-1 reports the maximum absolute error and 

average error for different values of FB
′ with increments of 100 pcphpl. Errors in the speed 

estimation were computed over the domain of the transition flow for every 5 pcphpl. The break 

point, FB
′, of 1400 pcphpl was selected since it returned the lowest maximum absolute error, 

1.94 mph. In addition, the corresponding average error is -0.5 mph which can be acceptable for 

practical purposes.  
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Part a 

 

Part b 

Figure 5-3: HCM 2010 Speed-Flow Curve Approximation for bending points a) 1000 b) 1400  
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Table 5-1: Error in Speed Estimation for Different Break Points 

𝐅𝐁
′ 

Maximum Absolute  

Error (mph) 

Average Error 

(mph) 

1000 5.41 -3.59 

1100 4.61 -2.82 

1200 3.75 -2.05 

1300 2.85 -1.27 

1400 1.94 -0.50 

1500 2.77 0.27 

1600 3.99 1.04 

 

Similar approach is applied for the other free flow speeds. Table 5-2 reports the selected 

FB values for all the free flow speeds.  

Table 5-2: Parameters for the Approximated Speed-Flow Curves for HCM 2010 Speed-Flow Relationships  

FFS 
Undersaturated part Oversaturated part  

𝐅𝐂 

(Capacity) 

𝐕𝐂 

(Speed at Capacity) 

𝐅𝐁
′ 

(Break Point) a b 

75 2400 53.3 1400 250 0.5688 

70 2400 53.3 1500 250 0.5688 

65 2350 52.2 1600 250 0.5665 

60 2300 51.1 1700 250 0.5641 

55 2250 50 1800 250 0.5617 

 

Still the HCM-2010 relationships do not have any equations for the oversaturated 

conditions. Since the purpose of this section is to illustrate the approximation process, some 

equations can be suggested for the oversaturated conditions satisfying the properties. This form 

of equation may be examined in future when the congested part of the relationship is developed. 

Benekohal et al. (12) showed that power functions can sufficiently describe congestion data from 

work zones. The general form of the power function is 

F = aVb 5-18 

 Where, a and b are the coefficients of the equation. The same form of the equation is 

used for basic freeway sections with new coefficients, which are different from those for work 

zones.  The coefficients a and b are found such that the power function connects the capacity 

point to the jam density point. It is assumed that jam density is 250 pc/mi/ln and occurs at a 
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speed of 1 mph. This jam density is corresponding to an average spacing of 21 ft. when all 

vehicles are passenger cars. This assumption will determine the parameter a to be 250. For free 

flow speed of 75 mph, the capacity is 2400 pcphpl and corresponding speed is 53.3 mph. These 

numbers will return 0.5688 for the value of b. For other free flow speeds, the capacity, the 

corresponding speed, and the resulting parameters can be obtained from Table 5-2, and  

Then the corresponding speed-density relationship is defined as below: 

V(D) =

{
  
 

  
 
FFS                                                0 ≤ D < DB

FFS − mFB
′

1 − mD
                               DB ≤ D < DC

(
D

a
)
1
1−b                                        DC ≤ D ≤ Djam

 

5-19 

Where,  

DB: Density at break point in (pc/mi/ln), 

DC: Density at capacity in (pc/mi/ln),  

Djam: Jam density in (pc/mi/ln), and 

m =
VC−FFS

FC−FB
′  . 

One can easily check that the Properties 1 and 2 are satisfied for the approximated speed-

density relationship in Equation 5-19 when density is less than jam density. Figure 5-7-a and 

Figure 5-7-b show the approximated speed-flow and speed-density curves for free flow speed of 

75 mph. 
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Part a 

 

 

Part b 

Figure 5-4: Curve Approximation a) HCM 2010 Speed-Flow Curves for Speed Limit of 75 mph, b) HCM 

2010 Speed-Density Curves for Speed Limit of 75 mph 

 Approximation for work zone speed-flow relationships  

Benekohal et al. (12) developed four-regime speed-flow relationships for work zones as 
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and 4) congestion. The two transition regimes are four-degree polynomial splines that potentially 

may create computational difficulties to compute gradient and Hessian matrices. Moreover, there 

is not always a closed form equation, which strictly defines speed versus density or speed versus 

flow for these regimes. Thus the curves are approximated with simpler functions. How to 

approximate the curves are explained for speed limits of 45 mph and 55 mph.  

 
Figure 5-5: General Form of Four-Regime Speed-Flow Relationships 

Similar to HCM-2010 curves, the following relationships are used to approximate the 

undersaturated part of the work zone speed-flow relationships: 

V(F) =

{
 
 

 
 
V0                                                         0 ≤ F < FB

V0 +
VC − V0
FC − FB

(F − FB)                      FB ≤ F < FC
 

5-20 

Where V0 denotes speed at a flow rate of zero. V0 for the curves with speed limit of 55 

mph is equal to the intercept in the original curve providing exact relationship for free flow 

regime which is a horizontal line in the original curves. However the free flow regime is an 

inclined line when speed limit is 45 mph. In this case, V0 is selected to be equal to speed at the 

break point. This choice of V0 creates some discrepancies when the traffic volume is very low, 

but it results in less discrepancy at higher traffic volumes (e.g. zero discrepancy at break point) 

which are more important for congestion management.  

Then for both speed limits, the break point is connected to the capacity point using a line 

as formulated in the second regime of Equation 5-20.  
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For the oversaturated part, a power function (See Equation 5-18) connects the point with 

jam density to the capacity point. Similar to the approximations for the HCM-2010 curves, a jam 

density of 250 pc/mi/ln with a speed of 1 mph is used for the work zone curves. Table 5-2b 

shows the coefficients of the approximated speed-flow curves for work zones, and Figure 5-7c to 

Figure 5-7f demonstrate the four-regime curve versus the approximated curve for work zones.    

Table 5-3: Parameters for the Approximated Speed-Flow Curves for Work Zone Relationships 

FFS 

Undersaturated part 

Oversaturated 

part 

K 𝐅𝐂 𝐕𝐂 𝐅𝐁 a B 

55 55.00 1614 47.0 729 250 0.4871 

45 42.74 1350 37.7 566 250 0.4681 
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Part a 

 

 

 

Part b 

 

Figure 5-6: Curve Approximation a) Work Zone Speed-Flow Curves with Speed Limit 55 mph b) Work 

Zone Speed-Density Curves with Speed Limit 55 mph 
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Part a  

 

 

Part b 

Figure 5-7: Curve Approximation a) Work Zone Speed-Flow Curves with Speed Limit 45 mph b) Work 

Zone Speed-Density Curves with Speed Limit 45 mph 
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A hypothetical benchmark problem is solved to evaluate computational costs and 

resulting improvement in traffic operation. Advisory speeds are determined for the 12.5-mile 

roadway shown in Figure 5-8. The roadway is discretized with 0.25-mile long sections. The 

roadway can be divided into 5 parts as described below. 
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Part 1) it is a 7-mile basic freeway section with speed limit of 65 mph. This section uses 

the speed-flow curve proposed by HCM 2010 for basic freeway section with free flow speed of 

65 mph. the higher intercept was not selected because it was assumed that compliance rate is 

100% when advisory speeds are displayed and this compliance rate is preserved for the static 

speed limits.  

Part 2) the length of this part is a mile and speed limit is 55 mph. In this part, information 

signs and reduced speed signs are placed due to presence of the work zone. The capacity of this 

part is 1600 pcphpl. For this part, the speed-flow relationship proposed by Ramezani et al. (2013) 

for work zones with speed limit of 55 mph and intercept of 55 mph is used. The formulation of 

this relationship and how to convert to speed-density relationship is illustrated in Section 5.4.   

Part 3) the length of this part is 3 miles, speed limit is 55 mph, and one lane is closed. 

The speed-flow curve used for this section is the same as that used for Part 2.  

Part 4) the length of this part is 1 mile and speed limit is further reduced to 45 mph. For 

this part, the speed-flow relationship (Ramezani et al. 2013) for work zones with speed limit of 

45 mph and intercept of 45 mph is used as formulated in Section 5.4. The section 2 in this part, is 

the work space (indicated by WS in the sketch) where work activity occurs. The capacity of this 

part is 1350 pcphpl; however there might be some capacity drop in this section depending on the 

presence and severity of work activity.  Part 5) the length of this part is 0.5 miles and it has the 

same characteristics as Part 1 has. These sections are considered to let vehicles exit the network 

and make sure that the boundary condition at the exit section does not influence the bottleneck 

(i.e. Work space) 

 All the speed-flow curves are approximated and transformed to speed-density 

relationships as described in Section 5.4.  

 

Figure 5-8: Work Zone Sketch for the Example Problem 
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Also, traffic is composed of only passenger cars and the traffic volume is 1200 pcph. 

When there is no work activity, capacity of the Work Space is 1350, (determined from the speed-

flow relationship) pcphpl which is higher than the traffic volume in the one-lane section. As a 

result, there is no queue in the roadway at the beginning of analysis;  capacity of work space 

drops from 1350 pcphpl to 950 pcphpl due to severe work activity that lasts for 15 minutes (from 

Interval 11 to Interval 101). The capacity drop results in a queue that reaches 1.75 miles 

upstream of the Work Space when there is no speed harmonization.  

To control the queue propagation, CMSs are placed in upstream boundary of Sections 2 

to 42. A CMS will not be placed in the first two miles of the roadway (sections 43 to 50). Five of 

the CMSs are critical and the rest of them are non-critical. The first critical CMS is installed 2 

miles upstream of the work space. The rest of the critical CMSs are located with a spacing of 2 

miles. Hence the critical CMSs are in Sections 10, 18, 26, 34, and 42. The rest of the CMSs are 

non-critical.   

As discussed in Chapter 4, the roadway is discretized by 0.25-mile long sections, and the 

∆t (i.e. the time interval to update traffic flow variables for each section) is equal to 10 seconds. 

Optimization time horizon is set to be 300 intervals (=50 min), which is roughly the time that 

queue dissipates in the Base case (i.e. when there is no speed harmonization) and section 

densities are below critical density.  

The value of second order model parameters are the same as those found in Chapter 4.  

 

Table 5-4: The second order model parameters 

Parameter τ (sec. ) ϑ (
mile2

h
) κ(pc/mile/ln) φ 

Value 27 18 35 2.2 

 

5.5.1 Problem solution 

The formulation presented in Chapter 4 assumes that the decision variables are the 

number of CMS, locations of critical CMSs, and the advisory speeds displayed by CMSs. In this 

problem, the number and locations of critical CMSs are known and the only decision variables 

are the advisory speeds. Thus the formulation needs two modifications to solve this problem. 



106 

 

One needs to fix the values of variables x10, x18, x26, x34 , x42 to 1 and the values of the rest of 

xi’s to zero, and solves the problem to find advisory speeds.  

The problem was solved using LOQO 7.00 (Vanderbei, and Shanno (1999), Vanderbei 

(1999), which is a solver for large-scale, nonconvex, and nonlinear optimizations. The solver 

reported that the program includes roughly 158K variables and 186K constraints. 

Initial values of the traffic variables, (i.e travel speed, steady state speed, density, and 

flow rate) are the same as those in Base condition; the initial values of the advisory speeds were 

set to be equal to maximum of 35 mph and steady state speed in the Base condition.  

The maximum iteration was set to be 500; the results showed that more iterations are not 

needed; as displayed in Figure 5-9 the amount of reduction in the value of objective function was 

less than 1% over the last 100 iterations (i.e from iteration 400 to 500). The problem was 

submitted in NEOS server (Czyzyk et al. (1998), Dolan (2001)) and solved in 1372 seconds (≈ 

23 minutes).  Figure 5-9 shows how the objective function and infeasibility measure change over 

iterations.   

The infeasibility measure was defined in (Vanderbei (1999)) and is explained when there 

is only one constraint the optimization program and then generalized for more constraints. Once 

the slack variable is added to an inequality constraint and it becomes equality, the amount of 

infeasibility is defined as the difference between write hand side and left hand side of the 

equality. For instance, if slack variable of w is added to the constraint b ≤ ax, the resulting 

equality becomes ax − w = b . the amount of infeasibility for this constraint is defined as ρ =

b − ax + w   and the infeasibility measure is computed as: 

Infeasibility measure =
√‖ρ‖2

√‖b‖2 + 1
 

For more than one constraint, the infeasibility measure can be interpreted as the second 

norm of the infeasibility vector divided by the second norm of the vector of constants plus one.  

Before iteration 100, there is considerable amount of infeasibility. During these iterations 

the solver tries to reduce infeasibility while it improves the objective function. The infeasibility 

is further reduced between iterations 100 and 200. After iteration 200 the infeasibility measure 

varies between 1.2 *10^-6 and 4.8*10^-6. The objective function in iteration 1 was 234.4 hr, 

which is equal to total travel time for the Base condition. After 500 iterations, the 

objective function is reduced to 227.5 hr.  
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Figure 5-9: Variation of objective functions and infeasibility measure over iterations 

 

5.5.2 Results 

LOQO determines the optimal advisory speeds that are decimal as shown in Figure 5-10. 

The advisory speeds for CMS10 and CMS18 that are closest to the bottleneck were always more 

than traffic speed to provide maximum throughput. Thus they are not shown in Figure 5-10. The 

CMS 26, CMS 34 and CMS 42 reduce traffic speed in order to decrease both arrival rate and 

queue propagation rate in the one-lane section.  These CMSs start reducing traffic speed roughly 

from the beginning of the capacity drop (interval 6) until close to Interval 150. After this interval, 

these CMSs gradually increase the advisory speeds and display values close to the static speed 

limit of 65 mph. 
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Figure 5-10: Decimal advisory speeds 

 

In real world advisory speeds are multiple of 5; thus the decimal advisory speeds are 

rounded to the nearest multiple of 5 under three scenarios: 1) round up to the nearest multiple of 

5, denoted by R5+, 2) regular rounding to the nearest multiple of 5, denoted by R, and 3) round 

down to the nearest multiple of 5, denoted by R5-. The Table 5-5 shows the resulting total travel 

time, total delay, and percentage of delay reduction.   

The total delay is computed as: 

Total delay = TTT − HVOL ∗ Nt ∗ ∆t ∗ TTSL 5-21 

Where, TTT is the total travel time. The second term in Equation 5-21 is equal to the total travel 

time under the posted speed limits. The definitions of variables in the second term are: 

HVOL : Hourly volume in pcph, 

Nt. Number of time intervals in the study period, 

∆t: Interval length in hr, and 

TTSL: Travel time through the control sections under the posted speed limits.  

The decimal advisory speeds reduce total delay by 18.3%. When advisory speeds are 

rounded to the nearest multiple of 5, speed harmonization reduces total delay by 15.7%. This is 

the closest value to the percentage of delay reduction obtained by decimal advisory speeds. If the 

advisory speeds are rounded down (R5-) the percentage of delay reduction is 8% which is 

considerably less than regular rounding scenario. If the advisory speeds are rounded up (R5+), 
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the speed harmonization deteriorates the traffic operation and increases delay by 3% compared 

with the Base condition.  

Table 5-5: Travel time and percentage of delay reduction for different forms of displayed advisory speeds 

Display advisory 

speed form 

Total travel time 

(hr) 

Total delay (hr) Total delay in 

base condition  

Percentage of 

delay reduction 

Fractional  227.5 30.8 37.7 18.3 

Round down to 

multiple of 5 (R5-) 231.4 34.7 8.0 

Round to nearest 

multiple of 5 (R) 228.5 31.8 15.7 

Round up to 

multiple of 5 (R5+) 235.5 38.8 -3.0 

 

To further investigate the effect of the three scenarios for rounding, the resulting advisory 

speeds are compared with the decimal advisory speeds for CMSs 26 and 42 that are respectively 

the most downstream and most upstream effective CMSs based on the decimal advisory speeds.  

As shown in Figure 5-11, when advisory speeds are rounded up, CMS 42 (most upstream 

CMS) display 65 mph which is equal to the static speed limit. This means that this CMS does not 

have any influence on traffic. Thus in general rounding up could practically reduce the number 

of critical CMSs. Also for other CMSs, the displayed speeds are greater than when decimal 

advisory speeds are displayed. For instance, for CMS 26, the minimum rounded-up advisory 

speed is 55 mph while the corresponding decimal value is 50.0114 mph. This could cause higher 

shockwave propagation because a greater advisory speed resulted in a higher delay. Thus in R5+ 

scenario it is possible to practically deactivate one of the critical CMSs. In addition, it may 

impose reduced speed to traffic, while this speed reduction does not help to decrease shockwave 

propagation speed. For example, in this benchmark problem, this scenario causes 3% extra delay 

compared with Based conditions.  
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                     Part a                                                                                          Part b 

Figure 5-11: Decimal advisory speeds versus rounded up advisory speeds to the nearest multiple of five a) 

CMS 42, b) CMS26 

 

When advisory speeds are rounded down, there could be extra speed reduction while 

there are no needs. This is more significant when decimal advisory speeds are changing from a 

high value to a low value or vice versa. For example in Figure 5-12, during intervals 8 to 22 both 

CMSs 26 and 42 try to gradually reduce traffic speed by 5 mph when decimal advisory speeds 

are displayed; however this change is abrupt and happens at interval 8 when advisory speeds are 

rounded down.   This means that if advisory speeds are rounded down, the traffic speed may be 

reduced earlier and in higher amount than needed. Also, during intervals 157 to 229 both CMSs 

display decimal advisory speeds that are close to static speed limit of 65 to let traffic gain speed 

and move faster. When advisory speeds are rounded down, traffic speed is kept to be 5 mph 

below speed limit while there is no queue in the field and no need for reduced traffic speed. This 

continues until interval 229 after which advisory speed of 65 is displayed.  As a result, the (R5-) 

scenario resulted in 8% delay reduction which is considerably less than 18.3% which is the 

percentage of delay reduction when the decimal advisory speeds are displayed.  

When advisory speeds are rounded to the nearest multiple of 5, the resulting advisory 

speeds are more similar to decimal values than the other two forms of rounding as shown in 

Figure 5-13. This also results in 15 % of delay reduction which is close to 18.3% delay reduction 

achieved by decimal advisory speeds. 
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                            Part a                                                                                       Part b 

Figure 5-12: Decimal advisory speeds versus rounded down advisory speeds to the nearest multiple of five 

a) CMS 42, b) CMS26 

  

                           Part a                                                                                           Part b  

Figure 5-13: Decimal advisory speeds versus rounded advisory speeds to the nearest multiple of five a) 

CMS 42, b) CMS26 

 

The rounded advisory speeds are shown in Figure 5-14 for the critical CMSs. The 

CMS26, CMS34 and CMS42 reduce traffic speed in order to decrease both arrival rate and queue 

propagation rate in the one-lane section.  In particular, roughly after 2 minutes from the 

beginning of the capacity drop (around Interval 14), these CMSs start reducing traffic speed until 

close to Interval 162. After this interval, these CMSs display the static speed limit of 65 mph.  
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Figure 5-14: Rounded advisory speeds 

 

To explore how the WZSH influences congestion propagation, Figure 5-15 display 

density (pc/mi/ln) variations for Sections 5 and 9 that are 1 mile and 2 miles away from the end 

of work space, respectively. Density at capacity is 42 pc/mi/ln, thus these sections experience 

congestion when their density exceeds 42. In the Base case queue reaches to section 9 while this 

section does not experience queuing condition when there is speed harmonization. When there is 

speed harmonization, Section 4 experiences congestion 2 minutes longer than Base conditions. 

Also duration that this section is in congested is reduced from 28 minutes to 19 minutes. 

Overall the speed harmonization reduced delay by 15.7%. Maximum queue length 

reduced from 2 miles to 1.25 miles which is corresponding to 37.5% reduction.  Congestion 

duration reduced from 47 minutes to 31 minutes which is corresponding to 33% reduction.  
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                                Part a                                                                                 Part b 

Figure 5-15: Density changes a) 1 mile  b) 2 miles from end of work space 

 Conclusions 

Optimized speed harmonization problem with piecewise speed-density functions is hard 

and time consuming to solve, because of presence of nonlinear constraints and integer variables. 

This chapter developed a continuous transformation methodology that eliminates all integer 

variables that are defined due to the piecewise functions. It was shown that the number of integer 

variables that are eliminated is proportional to 1) the number of roadway sections, 2) number of 

time intervals, and 3) number of sub-functions (in the speed-density function) minus 1.  

The methodology was used to solve speed harmonization problem for a 12-mile roadway 

and a 50-min analysis duration. For this problem, the methodology eliminated 28800 integer 

variables (there are 48 sections, 300 time intervals, and 3 sub-functions) and solved the problem 

in 23 minutes when the program includes roughly 158K variables and 186K constraints. The 

results showed that the speed harmonization can reduce delay by 15.7% and max queue length 

by 37.5%. Thus instead of solving a mixed integer nonlinear program, which is very challenging 

to solve for large scale problem, one can solve the corresponding nonlinear program and 

significantly reduce computational difficulties. The transformation methodology provides the 

opportunity to use more realistic speed-density relationships, rather than very simplified models, 

and potentially enhances the reliability of speed harmonization techniques for field 

implementation. 

The methodology relies on some mathematical properties of the sub-functions, and it 

does not depend on the shape of the objective function or other constraints; as a result, one may 
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apply the methodology for both minimization and maximization problems with different 

objective functions. It was shown that when the properties 5-6 and 5-7 do not exist in a speed-

density relationship, one can approximate the relationship using a piecewise function that 

satisfies the properties. The approximate transformation always exists when the corresponding 

density-flow relationship is concave and continuous. The approximation process was illustrated 

for some piecewise traffic stream models that have been used for practical traffic analysis.  

It should be noted that this methodology only eliminated integer variables due to 

piecewise speed-density relationships; there could be additional integer variables in the 

formulation when the number and locations of signs are decision variables. Next chapter presents 

methodologies to solve the mixed integer nonlinear program when the source of integrality is the 

location and number of signs.  
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Chapter 6 Sign location problem for optimized speed harmonization  

As explained in Chapter 5, there are two types of Changeable Message Signs (CMSs) that 

can be used for speed harmonization: Critical CMSs and non-critical CMSs. Critical CMSs can 

display an advisory speed different from the advisory speed displayed by the immediate 

upstream CMS.  Non-critical CMSs always show the advisory speed displayed by the immediate 

upstream CMS. The number of critical CMSs can influence the effectiveness of speed 

harmonization. When the number of critical CMSs is insufficient there may not be enough 

opportunity to influence traffic speed and reduce shockwave propagation speed. As a result, 

insufficient number of CMSs may cause significantly less-than-optimal delay reduction. On the 

other hand, too many signs may cause extra maintenance costs and will result in an inefficient 

design.  

Determining the number of signs and their locations are interrelated. In theory, minimum 

number of signs are used when they are installed in proper locations. As will be shown in the 

benchmark problem (Section 6.2.1.1), computations show that there are certain locations that 

CMSs are not effective at all; and there are some locations that CMSs are effective but 

significantly below the optimal level. Thus, a problem needs to be solved to determine both 

optimal number and locations of CMSs to minimize travel cost and any other costs such as 

maintenance costs. This problem is called CMS-Location Problem (CMS-LP).  

The current chapter focuses on developing solution methodologies to solve CMS-LP. 

First, a complexity analysis is performed to discuss challenges in solving the problem. Then 

three methodologies to solve the problem are proposed.  A benchmark problem is solved using 

the methodologies and the results and computational efforts are compared. At the end, 

recommendations on how to select a methodology are presented.  

 Analysis of computational complexity 

Challenges for solving CMS-LP stem from two sources: 1) size of the problem, and 2) 

presence of integer variables.  

The CMS-LP is a large scale problem. This is because the number and location of the 

CMSs should be optimized over the entire analysis period; As a result, the optimization program, 

formulated in chapter 3, includes many variables and constraints. To clarify this, Table 6-1 
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counts the number of variables and constraints where Nt and Ns denote the number of time 

intervals and the number of sections, respectively.     

The binary variable xi  determines if a sign should be placed in section i or not. This 

variable does not change over time and only changes over space. Thus the number of variable xi 

is equal to the number of sections (Ns). Another variable is advisory speed, ASi,t, that changes 

over time and space and the program includes  Ns ∗ Nt of these variables. Similarly, the variables 

density (Di,t), exit flow rate (Fi,t), steady state speed (Ui,t), speed computed from speed-flow 

curve (V(Di,t)), and speed computed from the second order model (Vi,t) change over time and 

space and the number of each variable is Ns ∗ Nt. As a result, total number of variables is 6 ∗

Ns ∗ Nt + Ns. The main factor that influences the number of variables is spatiotemporal size of 

the problem; thus this term is considered to establish a lower bound which is 6 ∗ Ns ∗ Nt.  

Constraints 1 to 8 are defined for each time interval and section, so the number of each 

constraint is proportional to Ns ∗ Nt. Constraints 5 is composed of two inequalities, thus there are 

2 ∗ Ns ∗ Nt of this constraint. Similarly, Constraint 6 is composed of to two inequalities 

((ASi,t+1 − ASi,t ≤ ∆t) and (−∆t ≤ ASi,t+1 − ASi,t)) resulting 2 ∗ Ns ∗ Nt constraints. There are 

also 2*Nt constraints for boundary conditions and 6*Ns constraints for initial conditions. The 

counting is performed over the constraint sets, as reported in Table 6-1, and the total number of 

constraints will be 10 ∗ Ns ∗ Nt + 2 ∗ Nt + 7 ∗ Ns −m+ 1. The spatiotemporal size of the 

problem is the main factor to determine the number of constraints. Hence a lower bound of 10 ∗

Ns ∗ Nt is considered for the number of constraints. It should be noted that the constraints for the 

sign of the variables are not counted in this enumeration since they are simple and will not result 

in significant computations.  

The lower bounds are computed for one-hour analysis of a 25-mile roadway. Given, an 

hour of analysis period and ∆t = 10 sec, the value of Nt will be equal to 360. If the roadway 

length is 25 miles and L = 0.25 miles, the Ns will be equal to 100. For this problem, the lower 

bound for the number of variables is 216,000 variables (=6 ∗ Ns ∗ Nt) and the lower bound for 

the number of constraints is 360,000(= 10 ∗ Ns ∗ Nt).  

Thus the problem can be considered as a large scale problem due to the large number of 

variables and constraints. The challenging aspect of solving the problem is inclusion of all these 
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variables and constraints in a single optimization program. This is because the optimal number 

and location of CMSs have to be determined for the entire analysis interval.  

Another solution challenge is presence of integer variables. As illustrated in the problem 

formulation, the problem includes integer variables xis to determine CMSs locations and they are 

combined with nonlinear constraints (e.g. Constraint 2). This problem is a Mixed Integer 

Nonlinear Program (MINLP) which is difficult to solve for a large scale problem.  

In this chapter, methodologies are developed to solve the problem and handle integrality and size 

of the problem.  

Table 6-1: Variable and constraint counts 

Variables Variable Set Number  

xi  ∀i ∈ I Ns 

ASi,t, Vi,t, Di,t, Fi,t, V(Di,t), Ui,t ∀i ∈ I, ∀t ∈ T 6 ∗ Ns ∗ Nt 

Constraints Constraints Set number 

Constraint 1) Di,t+1 ∗ L=Di,t ∗ L + (Fi+1,t ∗λi+1 − Fi,t ∗λi) ∗ ∆t        ∀i ∈ I, ∀t ∈ T Ns ∗ Nt 

Constraint 2) Vi,t+1 = Max{0, Vi,t +
∆t

L
Vi,t(Vi+1,t − Vi,t) +

∆t

τ
(Ui,t−Vi,t) −

∆t∗ϑ

τ∗L
(
Di−1,t−Di,t

Di,t+κ
)} 

∀i ∈ I, ∀t ∈ T Ns ∗ Nt 

Constraint 3) Ui,t+1 = min{ V(Di,t+1), ASi,t+1}  ∀i ∈ I, ∀t ∈ T Ns ∗ Nt 

Constraint 4) Fi,t+1 = Di,t+1 ∗ Vi,t+1  ∀i ∈ I, ∀t ∈ T Ns ∗ Nt 

Constraint 5) −MaxASixi ≤ (ASi+1,t − ASi,t) ≤ ∆sxi  ∀i ∈ I, ∀t ∈ T 2 ∗ Ns ∗ Nt 

Constraint 6)|ASi,t+1 − ASi,t|≤ ∆t            ∀i ∈ I, ∀t ∈ T 2 ∗ Ns ∗ Nt 

Constraint 7) ASi,t ≤ MaxASi  ∀i ∈ I, ∀t ∈ T Ns ∗ Nt 

Constraint 8) MinASi ≤ ASi,t  ∀i ∈ I, ∀t ∈ T Ns ∗ Nt 

Constraint 9) ∑ xii∈I = n  - 1 

Constraint 10)  ∑ xi
m+j−1
i=j ≤ 1  j∈{1,….,( Ni-m+1)} Ns-m 

Boundary Conditions)   

FN,t = arrivng volume 

D0,t = D1,t 

∀t ∈ T 2*Nt 

Initial Conditions)   

Vi,0, Di,0, Fi,0, V(Di,0), Ui,0 are given and are corresponding to arriving 

volume 

ASi,0=Static speed limit at section i 

∀i ∈ I 6*Ns 

 



118 

 

 Solution methodologies 

Three solution methods are developed such that they progressively reduce computational 

efforts. The methods are:   

1) Greedy Algorithm  

2) Augmented-Cut and Branch (AC&B)  

3) Approximate Decomposition  

The methods will be illustrated and then implemented in a benchmark problem. At the 

end, the study compares the methods and provides recommendations to use.  

6.2.1 Method 1: Greedy Algorithm 

The Greedy Algorithm involves more enumeration and determines the solution based on 

a comprehensive investigation of the search space. The Greedy Algorithm is an iterative method 

and in each iteration, the location of one critical sign is determined in the control zone. The 

control zone is defined as the set of the sections where critical CMSs can be potentially located. 

It is assumed that the control zone includes all sections in the work zone and upstream.  

In the first iteration, the algorithm looks for the location of the first sign that would return 

the minimum value for the objective function. In particular, a sign is located in a given section 

and the optimization program is solved to determine optimal advisory speeds and the 

corresponding objective function. Then, the sign is placed in other sections and corresponding 

objective function values are obtained. The computation that yields the lowest objective function 

value is selected as the permanent location for the first sign.  

In the second iteration, the location of the second sign is found knowing the location of 

the first sign from the first iteration. The algorithm puts a sign on all possible locations and 

evaluates the corresponding objective function values. The sections that are evaluated for the 

second signs must satisfy the minimum spacing constraint (Constraint 10). At the end of the 

iteration 2, the location of the second sign that would result in the minimum objective function is 

determined.  

Similarly in other iterations, the locations of the remaining signs are found until the 

additional signs do not improve the objective function, or a stopping criterion is met. The 

algorithm is presented as below: 
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Greedy Algorithm Steps: 

Define: 

I: Set of all section indices, 

Ic: Set of section indices which are candidate for permanent installation of a CMS, 

Ip
∗ : Set of section indices which have been permanently selected for installation of a CMS, 

I∗: Set of section indices with a critical CMS to evaluate. This is the union of sections with 

permanent signs (i.e. Ip
∗ ) , and a section q ∈ Ic  that is a candidate for permanent selection, 

n: Iteration counter, 

m: Minimum number of sections between two consecutive critical CMSs, and 

P: The problem formulated in chapter 3 to find the critical CMSs locations.  

 

Step 0: Ip
∗ : = ∅ , n:=1, Ic: = I, Fmin

(0)
=total travel time in Base condition 

Step 1: ∀q ∈ Ic:  

 I∗: = Ip
∗ ∪ {q} and solve P when 

xi = {
1            if i ∈ I∗

0       Otherwise
 

Step 2: Determine section qmin
(n)

  which resulted in the minimum objective function in step 

1 and let Fmin
(n)

 be the corresponding objective function  

Step 3: Update Ip
∗ : 

Ip
∗ : = Ip

∗ ∪ {qmin
(n)

} 

Step 4: Update Ic: 

Ic: = {q|q ∈ Ic and |q − qmin| ≥ m} 

Step 5: If Fmin
(n)

− Fmin
(n−1)

 >0 then stop; otherwise n:=n+1 and go to step 1. 

 

It should be noted that the objective function formulated in chapter 3 is   

Min((∑∑Di,t ∗λi ∗ L ∗ ∆t

ti

) + P(n) 6-1 

In which the first term (∑ ∑ Di,t ∗λi ∗ L ∗ ∆tti ) is the total travel time and the second term 

(P(n)) is the penalty function for the number of signs. The study uses the following linear 

penalty function 
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 P(n) = p ∗ n 

Where,  

p is the marginal cost for installation of one sign. The marginal cost, p, is defined as the average 

free flow travel time over the entire control zone, computed as: 

Avg. free flow travel time =∑
L

SLi
i

 
6-2 

Where, 

SLi : the posted speed limit (mph) effective in section i 

This means that an extra sign is placed if the resulting reduction in travel time is at least 

equal to the average free flow travel time. The average free flow travel time was selected 

because it is independent of volume and available capacity. Alternatively one could use average 

or a portion of travel time in Base condition (i.e. when there is no speed harmonization) but it is 

a function of volume or capacity in the Base condition and can change from one day to another 

day. It should be noted the unit of the penalty and the total travel time should be in hour.  

6.2.1.1 Benchmark Problem  

A hypothetical benchmark problem is solved to illustrate the algorithm implementation 

and to evaluate its computational cost and resulting improvement in traffic operation. The 

Greedy Algorithm will be implemented for a 25.5-mile roadway shown in Figure 6-1. The 

roadway is divided into 5 parts as described below: 

Part 1) it is a 20-mile basic freeway section with speed limit of 65 mph. For this section, 

the study uses the speed-flow curve proposed by HCM 2010 for basic freeway section with free 

flow speed of 65 mph. The higher intercept was not selected because it was assumed that 

compliance rate is 100% when advisory speeds are displayed and this compliance rate is 

preserved for the static speed limits as well. The capacity of this section is 2350 pcphpl. Section 

5.4 illustrates how to formulate the corresponding speed-density relationship.  

Part 2) the length of this part is a mile and speed limit is 55 mph. In this part, information 

signs and reduced speed signs are placed due to presence of the work zone. The capacity of this 

part is 1600 pcphpl. For this part, the speed-flow relationship proposed by Benekohal et al. 

(2010) for work zones with speed limit of 55 mph and intercept of 55 mph is used. The 

formulation of this relationship and how to convert to speed-density relationship is illustrated in 

Section 5.4.   
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Figure 6-1: Roadway information for the benchmark problem 

 

Part 3) the length of this part is 3 miles; speed limit is 55 mph; and one lane is closed. 

The speed-flow relationship used for this section is the same as that for Part 2.  

Part 4) the length of this part is 1 mile and speed limit is further reduced to 45 mph. For this part, 

the speed-flow relationship (Benekohal et al. 2013) for work zones with speed limit of 45 mph 

and intercept of 45 mph is used as formulated in Section 5.4. The section 2 in this part, is the 

work space (indicated by WS in the sketch) where work activity occurs. The capacity of this part 

is 1350 pcphpl; however there might be some capacity drop in this section depending on the 

presence and severity of work activity.   

Part 5) the length of this part is 0.5 miles and its characteristics is the same as Part 1. 

These sections are considered to let vehicles exit the network and make sure that boundary 

conditions at the exit section does not influence the bottleneck (i.e. Work space) 

 In this problem, the traffic volume is 1200 pcph and is composed of only passenger cars. 

When there is no work activity, capacity of the Work Space is 1350 pcphpl which is higher than 

the traffic volume in the one-lane section. As a result, there is no queue in the roadway at the 

beginning of analysis; capacity of Work Space drops from 1350 pcphpl to 950 pcphpl due to 

severe work activity that lasts for 15 minutes. The capacity drop results in a queue that reaches 

1.75 miles upstream of the Work Space when there is no speed harmonization.  

The roadway is discretized by 0.25-mile long sections, and the ∆t (i.e. the time interval to 

update traffic flow variables for each section) is equal to 10 seconds. The optimization time 

horizon is set to be 300 intervals (=50 min), which is roughly the time that queue dissipates in 

the Base case (i.e. when there is no speed harmonization).  

The value of the second order model parameters are the same as those found in Chapter 

4.  

*SL=Speed limit 

Drawing not to scale 
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Table 6-2: The second order model parameters 

Parameter τ (sec. ) ϑ (
mile2

h
) κ(pc/mile/ln) φ 

Value 27 18 35 2.2 

 

Based on the objective function, introduced in Equation 6-1, a marginal penalty of 0.403 

hr will be considered for each critical sign. The marginal penalty is equal to the travel time for 

parts 2 to 5 under the posted speed limits. This was simply compute as: 

Avg. free flow travel time =
1

45
+
3

55
+
1

55
+
20

65
= 0.403 hr. 

6-3 

The part 1 was not included in this calculation because it is downstream of the bottleneck and is 

not in the control zone. Thus the objective function becomes 

Objective function = Total travel time + 0.403 ∗ no. of critical signs  

                                       = (∑∑Di,t ∗λi ∗ L ∗ ∆t

ti

) + 0.403 ∗ n 

6-4 

The effect of speed harmonization and sign locations on delay is evaluated as well. The 

total delay is computed as: 

Total delay = TTT − HVOL ∗ Nt ∗ ∆t ∗ TTSL 6-5 

Where, 

TTT is the total travel time which is equal to the first term (∑ ∑ Di,t ∗λi ∗ L ∗ ∆tti ) in the 

objective function.  

HVOL : Hourly volume in pcph, 

Nt. Number of time intervals in the study period, 

∆t: Interval length in hr, and 

TTSL: Travel time through the control sections under the posted speed limits.  

The second term in Equation 6-5 is equal to the total travel time under the posted speed limits. 

It is assumed that the minimum distance between the critical CMSs is 2 miles. The problem was 

submitted in NEOS server (Czyzyk et al. (1998), Dolan (2001)) and solved using LOQO 7.00, 

which is a solver for large-scale, nonconvex, and nonlinear optimizations. 
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6.2.1.1.1 Results for Greedy Algorithm  

The greedy algorithm was implemented when CMSs are evaluated every 0.5 miles. In 

other words, CMSs are placed only in sections with even indices. Figure 6-2 displays how the 

locations of critical CMSs influence the objective function in Iteration 1. Sections are numbered 

in the opposite direction of traffic (See Figure 6-1). The most downstream section in the control 

zone is the section 2, and the most upstream section considered in the Greedy Algorithm is 

Section 100. The dashed line represents the objective function value correspond to Base 

condition when there is no CMS (n=0) and the objective function is equal to total travel time. 

Overall, as the CMS is placed closer to the bottleneck, the objective function and the total travel 

time become higher. Compared with Base condition, the objective function is not improved 

when the CMS is located at section 20 or downstream. This might be due to the fact that the 

distance between the CMS and queue are relatively short for these sections and there is not 

enough opportunity for speed harmonization system to influence traffic. For this iteration, CMS 

100 is chosen since it returns the minimum objective function of Fmin
(1)

=430.65 hr. Total delay 

values with and without speed harmonization are 27.59 veh-hr and 34.18 veh-hr, respectively 

and are computed using equation 6-5. This is corresponding to 19.28%  (=
34.18−27.59

34.18
) delay 

reduction.  

For practical considerations, one may consider other locations in the neighborhood of the 

section 100 returning similar objective function values. For example in this case, sections 86 to 

100 have very similar objective function values ranging from 430.24 veh-hr to 430.89 veh-hr.  

One may consider these sections in case practical considerations, such as restricted geometric 

condition, do not allow to place a critical CMS in a particular place.  
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Figure 6-2: Greedy Algorithm results, iteration 1 

 

In all the trials for Iteration 2, two critical signs are located in the control zone. One sign 

is always in Section 100 and the other sign is moved from one section to another such that 

minimum spacing between the signs is equal to or greater than 2 miles. This means that sections 

2 to 92 are evaluated for the placement of the second CMS. Figure 6-3 shows variations of 

objective function when the location of the second critical CMS changes.  Compared with Base 

condition, all the trials improved the objective function; however compared with Iteration 1, the 

objective function was not improved considerably for some of the locations. These sections are 

sections 60 to 92 and sections 2 to 22. This might be because the Sections 60 to 92 are far for 

placement of the second sign and as a result the dominant effect of speed reduction in these 

sections is increasing the total travel time rather than reducing shockwave propagation. For the 

section 2 to 22, the second sign does not have any impact because these sections are close to the 

congested sections and there is not enough opportunity to influence traffic. The maximum 

improvement happens when the second sign is placed at Section 48 which results in the objective 

function of Fmin
(2)

=427.85 hr and delay reduction of 28.6%(=
34.18−24.4

34.18
). The stopping criterion 

does not hold because the objective function value improved in Iteration 2, (i.e.  Fmin
(2)

=427.85 < 

Fmin
(1)

=430.65) and Iteration 3 starts.  
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Figure 6-3: Greedy Algorithm results, iteration 2 

In Iteration 3, two CMSs 100 and 48 are fixed and the third one is placed in the other 

sections with spacing of 2 miles or greater. Figure 6-4 shows variations of the objective function 

value when the location of the third sign changes. There is a discontinuity in Figure 6-4 because 

sections that are located less than 2 miles upstream and downstream of the Section 48 were not 

considered in the algorithm to satisfy minimum distance of 2 miles between two consecutive 

critical CMSs.  Similar to Iteration 2, all the trials improve the objective function compared with 

Base condition; however there are few sections that improve the objective function compared 

with Iteration 2. The maximum improvement happens when the third sign is placed at section 40 

returning objective function of Fmin
(3)

=427.5 hr which is corresponding to 30.8%(=
34.18−23.64

34.18
)  

of delay reduction.  The algorithm will proceed to Iteration 4 because Fmin
(3)

=427. 5< 

Fmin
(2)

=427.85 
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Figure 6-4: Greedy Algorithm results, iteration 3 

All the trials in Iteration 4 reduce objective function compared with Base condition (See Figure 

6-5); however they did not improve the objective function compared with the Iteration 3. The 

minimum objective function in iteration 4 is Fmin
(4)

= 427.86 which is greater than Fmin
(3)

=427. 5; 

thus the algorithm stops and returns sections 40, 48, and 100 as the optimal locations for CMSs.  

 

Figure 6-5: Greedy Algorithm results, iteration 4 
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6.2.2 Method 2: Augmented-Cut and Branch (AC&B)  

The Branch and Bound Method is a well-known method to solve problems with integer 

variables and it has been further modified and improved by adding cutting planes. The cutting 

planes will be added in the form of extra constraints that restrict the feasible area to the portion 

that most likely includes the optimal and integer solution. A proper incorporation of a cutting 

plane, will cause fewer number of branching and will expedite solution process. If the cut is 

imposed in the root node of a tree the method is called Cut and Branch. Otherwise the method is 

called branch and cut.  

The method 2 is an iterative algorithm, and in each iteration, the location of one critical 

sign is determined using Cut and Branch Method. The formulation of the cut changes from one 

iteration to another. For iteration n, the cut is formulated as 

∑ xii∈I = n                                                                                                       6-6 

Where the variable xi is the binary variable which is equal to 1 if a critical CMS is placed 

in section i; otherwise it is equal to zero. This cut forces the problem to have n critical signs in 

the solution. The n-1 of these critical signs have been already determined in the n-1 previous 

iterations. In the current iteration ( i.e. Iteration n) the problem determines the location of nth 

critical CMS. To determine the location of the next critical sign (i.e. n+1st critical sign), the cut is 

augmented by one unit and becomes 

∑ xii∈I = n + 1                                                                                                        

Thus, the study called this method, Augmented-Cut and Branch (AC&B) since in each iteration 

the Cut and Branch Method is used and the cut is augmented by one unit from one iteration to 

another.  

The overall steps of the method are shown in Figure 6-6. First, define P to be the 

formulated problem in Chapter 3. In Step 1, P(n) is constructed by adding the cut 6-6 to the 

formulation. In Step 2, the solution for P(n) is obtained using Branch and Bound method to 

determine the optimal location of the nth critical CMS. In Step 3, the stopping criterion is 

checked. In this study, if the objective function increases or does not change, the algorithm will 

stop. If the stopping criterion is not met, Step 4 will place the nth critical sign in the optimal 

location found in Step 3.Then, the algorithm starts Step 1 of Iteration n+1. Details about the steps 

of the method will be presented in sections 6.2.2.3.  In the meantime, the next section will 
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discuss how branching rule and stopping criteria are adopted in the branch and cut algorithm 

(Step 2) considering the characteristics of the problem.  

6.2.2.1 Branching rule 

A heuristic approach is proposed for establishing the branching rule based on the concept 

of largest fractional value. Once the relaxed P(n) is solved, the values of the relaxed xis are 

fractional and between zero and one. It is suggested to start branching from the xi that has the 

largest value fractional value.   

Rule 1: Start branching by selecting x̃(n) which is the variable xi with the largest fractional value 

in iteration n.  

This rule tries to pick the section that is more likely to have greatest influence to obtain 

the optimal objective function. Based on Constraint 5, the value of each xi in the solution of the 

relaxed P(n) can be interpretted  as the portion of speed change that the CMS i can implement to 

obtain the optimal objective function value. In particular, if xi is zero, the CMS cannot change 

traffic speed; and if it is one, the CMS has maximum influence by implementing maximum 

speed change. Thus, a section with the maximum fractional value can be interpreted as the 

location which has the greatest influence on the objective function.  
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Figure 6-6: Steps of AC&B method 

Once the branching starts there might be several variables to select and continue 

branching. The Rule 2 indicates how to continue branching.  

Rule 2: If x̃(n)  is already evaluated, select another xi that has not been evaluated yet and 

a) is the closest (in terms of the distance) to the incumbent section , and  

b) is within a user-defined window (Fixed Window Strategy) .  The suggested window 

has  m-1 sections downstream and m-1 sections upstream of the incumbent section 

where m is the minimum number of sections between two consecutive critical CMS. .    

The Rule 2 is used to ensure that the critical CMS location, chosen in Iteration n, is better 

than the neighboring sections. The neighboring sections are selected to be m-1 sections upstream 

and m-1 sections downstream of the critical CMS because these neighboring sections will be 

eliminated in the next iteration to preserve the minimum distance between the consecutive 
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critical signs. This way, the algorithm ensures that the eliminated sections are not better than the 

critical CMS.   

The iteration will stopped when the sopping strategy discussed in the following section is 

met.  

6.2.2.2 Stopping strategy  

A heuristic procedure, called Fixed Window Strategy, is proposed to stop each iteration 

and then proceed to the next iteration or stop the algorithm. 

When an incumbent solution is the best solution compared with w sections upstream and w 

sections downstream, then the branch and bound algorithm stops in an iteration.  

When w is equal to 1, the Fixed Window Strategy is translated to the stopping criteria for 

a strictly convex problem where the global optimal solution is better than the immediate 

neighbors. . Still this strategy can be used to find a local optimal solution for a non-convex 

problem, but this may lead to a local optimal solution that results in insignificant improvement. 

Thus w should be more than 1 to reduce the likelihood of trapping in impaired local optimal 

solutions. The study suggests w to be m-1 where m is the minimum number of sections between 

two consecutive signs. This is decided with consideration of Constraint 10 (i.e. minimum spacing 

constraint) that states no critical CMSs should be placed within the upstream and downstream 

sections of a Critical CMS. For optimal performance this implies that the location of a critical 

CMS is better than m-1 sections upstream and m-1 section downstream 

6.2.2.3 Details of the AC&B Method 

Let  Pr
(n)

 be the relaxed version of the P(n) where all binary variables are converted to 

continuous variables between 0 and 1. Also assume FU be the upper bounds for the objective 

function and TTTBase be the total travel time in the Base condition. The Steps presented in 

Figure 6-6 are expanded as below:  

Step 0 : Set up FU
(0)
= TTTBase and n=1 

Step 1: Construct P(n) by adding the following cut to P: 

∑ xii∈I = n                                                                                                        

Step 2: Solve P(n) using branch and bound method 

Step 2.1: Solve Pr
(n)

 and FU
(n)
= FU

(n−1)
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Step 2.2: Branch: Based on a branching rule, select a node and solve P(n). Section 

6.2.2.1 proposed a branching rule.  

Step 2.3: Tighten the upper bound: Find the incumbent solution which is the 

solution returning the minimum objective function. Then update the upper bound as: 

FU
(n)
= min {FU

(n)
, objective function of the incumbent solution} 

Step 2.4: Fathoming: Nodes should be excluded from further branching  

1) Its objective function value is more than the FU 

2) The node is not feasible 

3) The solution for Pr
(n)

 has integer xi’s.  

Step 2.5: Stop the procedure if  

1) There is no node to evaluate 

2) Fixed Window Strategy is satisfied.  

Step 3: if FU
(n−1)

≤ FU
(n)
 , stop; otherwise fix the values of xis that are equal to 1; and 

n=n+1, and go to Step 1. 

6.2.2.4 Benchmark problem results for AC&B Method  

The benchmark solution introduced in section 6.2.1.1 is solved using AC&B Method.  

According to the algorithm, the P(1) is constructed by adding the cut ∑ xii∈I = 1 to the program 

formulated in Chapter 3. The relaxed version of the program, Pr
(1)

, is solved. The resulting 

fractional values of xi’s are scaled up by factor of 100 and shown in Figure 6-7. The value of 

x101 in Figure 6-7 is the highest; thus this section is selected to start branching. Since the section 

101 is the most upstream section, the branching is possible only for the downstream sections. 

The Figure 6-8 shows the results of feasible branches for different iterations. The gray cell 

represents the section with the maximum value among continuous xi’s; thus the cell 

corresponding to x101is gray. Objective function values decrease as the algorithm moves from 

section 101 to section 99. Thus x99=1 is an incumbent solution. Branching for 7 (=m-1) sections 

downstream of the incumbent solution will not reduce the objective function. Hence the Fixed 

Window Strategy is satisfied and the algorithm stops branching. Section 99 is selected for the 

location of the first critical CMS resulting objective function of 431.29 and delay reduction of 
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17.4% compared to Base condition (i.e. when there is no speed harmonization). The algorithm 

will proceed to the next iteration since FU
(1)
=431.29< FU

(0)
=436.83.  

For the second iteration, x99 is fixed to be 1; xi’s for Sections 92 to 98 as well as Sections 100 

and 101 are fixed to be zero to preserve the minimum distance of 2 miles for critical CMSS;  and 

the other xi’s are relaxed. The cut is augmented to determine the location of the second sign. The 

relaxed problem Pr
(2)

 is solved and fractional values of xi’s (see Figure 6-7) indicated that the 

variable x59  has the maximum value and branching starts from this variable. Branching for the 7 

sections upstream of Section 59 deteriorates the objective function and is not further continued. 

Branching for the downstream sections returns better solutions until Fixed Window Strategy is 

satisfied when x50=1. The corresponding objective function is 428.89, resulting 25.6% of delay 

reduction.  The algorithm does not stop because FU
(2)

=428.89 < FU
(1)

=431.29.    

  In the third iteration, x21 has the maximum fractional value as shown in Figure 6-7 . 

Branching for the 7 downstream sections will increase the objective function, thus the algorithm 

does not further branch for the downstream sections. The minimum objective function value of 

427.42 is achieved when x38=1. The corresponding section is selected for the location of the 

third sign and with 31.1% of delay reduction. In this iteration, the method does not evaluate 

sections 43 and upstream to maintain the minimum distance of 2 miles from CMS 50. The 

algorithm will proceed to Iteration 4 because FU
(3)

=427.42 < FU
(2)

= 428.89. 

In the fourth iteration,  x21 has again the maximum fractional value (see Figure 6-7) and 

branching starts from this section and will be continued for upstream and downstream sections. 

The minimum objective function value is achieved when x28 = 1, and it is equal to 428.08. The 

algorithm stops because FU
(4)

=428.08 < FU
(3)

 =427.42. This means that installing the fourth sign 

will not reduce the total travel time by the marginal penalty of 0.403 or more. The algorithm does 

not evaluate sections 31 and upstream to maintain the minimum distance of 2 miles from CMS 

38.  

Thus the AC&B method determined 3 signs to be installed in sections 99, 50, and 38 resulting in 

31.1% delay reduction.   
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Figure 6-7: Values of continuous xis in different iterations   
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Figure 6-8: Results of AC&B method for the benchmark problem 
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6.2.3 Method 3: Approximate Decomposition 

Method 2, Augmented Cut and Branch, sometimes require many branching and 

consequently significant computational resources. For instance, the benchmark problem was 

solved after solving 80 feasible branches which might be computationally expensive. This sets 

the motivation to develop a solution method which requires less computational resources. The 

Approximate Decomposition method is proposed to be computationally more efficient than the 

AC&B method. In Approximate Decomposition method the problem is decomposed into two 

sub-problems that are sequentially solved:  

Sub-problem 1: Speed Harmonization using Mini CMSs  

Sub-problem 2: Mini CMS Packing Problem  

The first sub-problem is a nonlinear program which determines the optimal advisory 

speeds when all sections have a sign, called Mini Changeable Message Signs (MCMSs). 

MCMSs have less speed reduction capability than a critical CMS. The next section will 

formulate the relationship between maximum speed reduction capabilities of Mini CMSs and 

critical CMSs. The second sub-problem packs mini CMSs and replaces them by a critical CMS 

such that it yields similar speed reduction effects. More details on sub-problems are explained in 

subsequent sections.  

6.2.3.1 Sub-Problem 1: Speed Harmonization using Mini CMSs 

In this sub-problem, one MCMSs is located at upstream boundary of each section. 

Assume, maximum speed reduction that can be implemented by a MCMS is denoted by ∆s
′ , 

which is less than maximum speed reduction of ∆s implemented by critical CMSs.  This section 

intends to determine the relationship between   ∆s
′  and ∆s such that final solution satisfies the 

integral constraints 10 which determine the minimum spacing between the critical signs. Then, 

one can eliminate the integral constraint and solve the problem in a continuous space.  

6.2.3.1.1 Relationship between ∆𝐬
′  and ∆𝐬 

Figure 6-9 shows a roadway with critical CMS  (part a) and with MCMS (part b) where 

traffic moves from right to left and sections are numbered from downstream to upstream. In 

Figure 6-9a, two critical CMSs are installed in Sections i and i-k and in Figure 6-9b, all the sections 

have a MCMS. It is intended to establish a relationship between ∆s and ∆s
′  such that the two 

CMS types would yield similar travel speeds between Section i and Section i-k. To do so, a 
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condition is considered that both systems display the maximum speed change.  The vehicle with 

speed of V enters Section i and the CMS i reduces the speed of the vehicle by ∆s; thus the travel 

speed between the two critical CMSs i and i-k is V − ∆s. When mini CMSs are installed, each 

MCMS reduces speed by ∆s
′ . The travel speed for the section i is V − ∆s

′
 and this travel time is 

further reduced by  ∆s
′  per section. Average speed between the two sections i and i-k can be 

approximated by the arithmetic mean of the travel speeds of in-between sections and will be 

equal to V −
1+k

2
∆s
′ . The average speed when MCMSs are installed should be equal to the 

average speed when critical CMSs are installed, so  

V −
1+k

2
∆s
′= V − ∆s  

6-7 

 With algebraic manipulation:  

∆s
′=

2

1+k
∆s  6-8 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 6-9: A Roadway with a) Critical Signs b) Mini Signs 

 

In equation 6-8, value of ∆s
′  increases as k decreases. The upper bound for ∆s

′  is achieved 

when k is equal to the minimum number of sections between two consecutive signs denoted by 

m. Thus the upper bound for ∆s
′  is: 

∆s
′≤

2

1+m
∆s  6-9 
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If a value greater than 
2

1+m
∆s is chosen for ∆s

′ , the packing process in the second sub-

problem may violate the minimum allowable distance between the two critical signs. Smaller 

values of ∆s
′  would create smoother advisory speed trajectories and would help reducing the 

number of signs. Thus the study recommends determining the number of signs and their 

locations based on a small value for ∆s
′  (e.g. 0.25 mph) and then incrementally increasing its 

value within the range indicated in relationship 6-9; one can stop the algorithm when increasing 

∆s
′  does not improve the objective function. The effect of ∆s

′  on the number and spacing between 

the signs will be explored by solving a benchmark problem in section 6.2.3.3.  

Assuming a ∆s
′  is selected within the range indicated in relationship 6-9, one can solve 

the Sub-problem 1 by the following modifications: 

 Modify the original objective function by removing the penalty term for the 

number of signs because in the sub-problem 1 the number of signs is known (i.e. 

every section has a sign) and the advisory speeds are the only decision variables.   

                       Min((∑ ∑ Di,t ∗λi ∗ L ∗ ∆tti )  6-10 

 Eliminate Constraint 10 

 Modify Constraint 5 as  

                       −MaxASi ≤ (ASi+1,t − ASi,t) ≤ ∆s
′                               ∀i ∈ I, ∀t ∈ T   6-11 

Compared with the original Constraint 5, we removed integer variables and changed the upper 

bound from ∆s to ∆s
′ .  

The advisory speeds determined by the sub-problem 1 will be used to solve the sub-problem 2.  

6.2.3.2 Sub-Problem 2: Mini CMS Packing Problem 

The purpose of this sub-problem is to pack the mini CMSs and replace each pack by only 

one critical CMS that is located at the upstream boundary of packed sections yielding similar 

travel speed (influence) on traffic. For each mini CMS i, the study defines an influence index, 

Ii,t
m, which changes over time as  

Ii,t
m = ASi+1,t

m − ASi,t
m ≤ ∆s

′   6-12 

 Where, ASi,t
m is the advisory speed displayed by MCMS i during time interval t.  
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Ii,t
m is associated with the speed drop implemented by the MCMS i. If the advisory speed 

displayed be a MCMS is equal to the one displayed by the upstream MCMS, the MCMS does 

not have any influence on traffic and Ii,t
m will be equal to zero. If the influence index is positive, 

the MCMS reduces travel speed; and if it is negative, traffic may increase speed. 

To derive a packing criteria, Figure 6-10 shows a network with MCMSs that can have 

different influence indexes. The travel speed for a section l is computed V − ∑ Ij,t
mj=i

j=l . 

Consequently, the average travel speed can be approximated as arithmetic average of the travel 

speeds in each section as  

V̅ =
∑ (l=i
l=i−k+1 V−∑ Ij,t

mj=i
j=l )

k
  

6-13 

This can be further simplified:  

V̅ = V −
∑ (j−i+k)Ij,t

mj=i
j=i−k+1

k
  

6-14 

Similarly, for the critical CMS i, the influence index is defined as  

Ii,t = ASi,t − ASi−k,t ≤ ∆s  6-15 

Where, i and i+k are the section indices for two consecutive critical signs.  

This defines the influence index as the difference between advisory speeds displayed by two 

consecutive critical CMSs.  

The travel speed between the two consecutive critical CMSs is  

V̅ =  V − Ii,t  6-16 

The condition to pack k mini CMSs is that the amount of influence (i.e. speed reduction) 

produced by MCMSs should be equal to or less than the amount of influence (i.e. speed 

reduction) produced by critical CMSs. Thus the following condition should be satisfied: 

∑ (j−i+k)Ij,t
mj=i

j=i−k+1

k
≤ Ii,t = ∆s   

6-17 

The relationship 6-17 means that the weighted average of influence indexes of MCMSs 

should be less than or equal to maximum influence index of critical CMSs. The upstream section 

in the pack has the weight of k and the most downstream section in the pack has the weight of 1. 

This is intuitive because any speed reduction in the upstream section i will be traversed to 

downstream sections and will persist longer; thus its weight is equal to number of sections 

receiving that influence and should be larger in amount.  
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Since this relationship has to hold for all time intervals then  

max
t
(
∑ (j−i+k)Ij,t

mj=i
j=i−k+1

k
)  ≤ ∆s   

6-18 

 

 

Figure 6-10: Influence indexes for Mini CMSs for a general condition 

 

Two heuristic algorithms are presented to solve the mini CMS packing problem 

6.2.3.2.1 Heuristic algorithm 1: forward packing 

This method starts packing from the most upstream section N. We put a sign at the 

upstream boundary of section N, and keep adding sections to the corresponding pack until 

max
t
(
∑ (j−k+1)Ij,t

mj=N
j=k

N−k+1
) becomes greater than ∆s. At this moment, another critical sign is placed at 

upstream section of k and a new pack is created. The first section in the new pack will be Section 

k and consecutive sections will be added until the total influence index exceeds ∆s and this 

process will continue till all the mini CMSs are packed. The algorithm is presented as below: 

  Define ni to be the section index for the ith critical sign (i is a counter for critical signs) 

Step 0:  Put a sign at upstream boundary of section N, and let n1 = N, i=1, and k=n1 

Step 1: k := k-1 and compute max
t
(
∑ (j−k+1)Ij,t

mj=ni
j=k

ni−k+1
) 

Step 2: If  

max
t
(
∑ (j − k + 1)Ij,t

mj=ni
j=k

ni − k + 1
) ≤ ∆s 

Then k:=k-1; otherwise i=i+1 and ni = k 

Step 3: If k≠1 go to Step 1; otherwise stop. 
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6.2.3.2.2 Heuristic algorithm 2: backward packing 

The logic for the backward packing is the same as the logic for forward packing except it 

starts from very downstream section and moves in opposite direction of traffic. The algorithm is 

presented below: 

Define ni to be the section index for the ith critical sign, and let bi be the section index for 

the most downstream section in pack i.  

 

Step 0:  k=1, i=1, bi = 1 

Step 1: If k<=N then compute max
t
(
∑ (j−bi+1)Ij,t

mj=k
j=bi

k−bi+1
) 

Step 2: If k=N+1 or max
t
(
∑ (j−bi+1)Ij,t

mj=k
j=bi

k−bi+1
) > ∆s then ni = k − 1 , i=i+1, and bi = k 

Step 3: If k<=N then k:=k+1 and go to Step 1; otherwise stop. 

6.2.3.3 Benchmark problem solution 

The benchmark problem introduced in Section 6.2.1.1 is solved with different values of 

∆s
′  to explore its effect on the optimal solution. In general, one may select a ∆s

′  from the 

following range: 

0.25 ≤  ∆s
′  ≤

2

1+m
∆s  6-19 

The upper bound is established based on Eq. 6-9. The lower bound of 0.25 mph is selected 

because a ∆s
′  of less than 0.25 may not create the speed reduction that is required for speed 

harmonization.  

The effect of ∆s
′  will be evaluated for the benchmark problem when ∆s= 5 and m = 8. 

Thus the range for ∆s
′  will be  

0.25 ≤  ∆s
′  ≤ 1.11  6-20 

The problem is solved for ∆s
′  of 0.25, 0.5, 0.75, and 1. For each ∆s

′ , two different solutions based 

on Forward Packing and Backward Packing are derived. The signs locations, packs and 

corresponding influence indexes are reported in Table 6-3. For instance, when ∆s
′= 1, Forward 

Packing returns 6 signs in sections 101, 90, 67, 37, 27, and 18. The influence indexes for packs 1 

to 5 are close to 5 and there is only pack 6 that has a very low influence index because this pack 

was created at the end of the forward packing algorithm and includes the residual effects of mini 

signs.   
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According to results in Table 6-3, the value of ∆𝐬
′  has correlations with the number of signs. 

As ∆𝐬
′  reduces, the number of signs either stays the same or reduces. This is because of two 

reasons:  

 First, ∆s
′  determines maximum number of critical signs and reducing ∆s

′  could reduce the 

number of the critical signs. The maximum number of critical signs is needed when all 

mini CMSs are active and display maximum speed reduction of ∆s
′ . The following 

relationship holds between maximum number of signs, ñ, and minimum number of 

sections, kmin, between two consecutive signs.  

            ñ = ⌈
Lcontrol

kmin
⌉  6-21 

Where, Lcontrol is the length of the control zone over which critical CMSs can be 

potentially placed. 

According to Equation 6-8, the minimum number of sections, kmin, between two 

consecutive critical CMSs is computed as.   

               kmin = ⌈
2∆s

∆s
′ − 1⌉  

6-22 

 

One can deduce from Equations 6-21 and 6-22 that the number of critical signs reduces as ∆s
′  

is reduced.  

 The second reason is related to the effect of ∆s
′  on the quality of packing. When ∆s

′  is 

smaller, the packing algorithms are more efficient. In theory, the maximum unused space 

in the pack is ∆s
′ −δ where, δ is a very small number. For smaller ∆s

′ , packing is 

expected to be more efficient because maximum unused space becomes smaller; 

moreover, influence indexes are smaller and more sections can be placed in a given pack. 

This means that the number of required packs (critical signs) is expected to be lower 

since the number of sections is fixed.  

The results in Table 6-3 show that the minimum objective function was obtained when ∆𝐬
′  

= 0.25 and signs are determined by forward packing.  

6.2.3.3.1 Recommendations for choosing ∆𝐬
′  and packing algorithms 

When there are limitations for computational resources such that the parallel problem 

solution is not possible, the study recommends solving the problem using a small value for ∆s
′  
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(e.g. 0.25 mph); and then incrementally increasing its value within the range indicated in 

relationship 6-9. One can stop the algorithm when increasing ∆s
′  does not improve the objective 

function. This approach requires the problem to be solved sequentially for different values of ∆s
′  

and as a result may elongate solution time.  

When computational resources are available, one can run the problem in parallel for 

different values of ∆s
′  and choose the solution corresponding to best objective function. This 

requires exhaustive search within the range indicated in relationship 6-9. This is not expected to 

be a large range as for the benchmark problem,  ∆s
′  ranges from 0.25 mph to 1.11 mph.  

Forward packing is compared to backward packing as follow: 

1) Objective function value comparison: For ∆𝐬
′   of 0.5 and 1, the backward packing 

algorithm returned a lower objective function value; while for ∆𝐬
′  of 0.25 and 0.75, the 

forward packing returned a lower objective value. The difference between the objective 

function values (forward-backward) ranges from -1.02 veh-hr to 4.01 veh-hr 

corresponding to -0.23% to 0.92% of total travel time (436.83 veh-hr) when there is no 

speed harmonization. Thus, none of the methods consistently returns a better objective 

function value and the difference between objective function values is less than 1%.  

2) Number of packs (signs): For ∆𝐬
′   of 0.75 and 1, the forward packing computes one more 

sign than the backward packing, but for ∆𝐬
′   of 0.25 and 0.5, the two methods return the 

same number of signs. For small values of ∆s
′ , the two packing methods return similar 

number of packs possibly because the size of  items are smaller leading to less variations 

in the used space of each pack.  

3) Incomplete packs: Incomplete packs are defined as the packs that their unused space is 

equal to  1 mph or higher. This means that the incomplete packs have a used space (i.e. 

influence index in Table 6-3) of 4 or lower. The incomplete pack may be created at the 

end of packing algorithm since both forward and backward algorithms try to completely 

fill a pack before using a new pack. The backward packing method returns only one 

incomplete pack for ∆𝐬
′  of 0.5 with used space of 2.19 mph.  The forward packing method 

creates three incomplete packs for ∆s
′   of 0.5, 0.75 and 1. The corresponding used space 

ranges from 0.13 mph to 2.64 mph.  

For ∆s
′   of 0.75 and 1, the forward packing returned 1 more signs than the backward 

packing and these signs are corresponding to the incomplete packs. Overall, one sign 
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difference may not be practically the major factor to differentiate the two methods 

especially for this benchmark problem in which the two methods yield very close 

objective function values. 

Based on the comparisons above, the backward packing and forward packing methods 

retuned very close objective function values, but for two cases out of four, the backward packing 

algorithm returned one less sign than the forward packing algorithm. Thus in the case of limited 

computational resources, one may use backward packing algorithm; however if there is not such 

a limitation and there is a possibility for parallel solution, it is recommended using the two 

algorithms and find the solution with the lowest objective function. This conservative 

recommendation will increase the possibility of finding a better solution. 

Table 6-3: Results of Approximate Decomposition method 

 

Forward Packing Backward Packing 

∆𝐬
′  

Sign* 

location Pack** 

Pack 

influence 

index 

Objective*** 

function 

Sign* 

location Pack** 

Pack 

influence 

index 

Objective*** 

function 

1 

101, 

90, 

67, 

37, 

27, 

18 

P1: [91,101] 

P2: [68,90] 

P3: [38,67] 

P4: [28,37] 

P5: [19,27] 

P6: [2,18] 

P1: 4.76 

P2: 4.96 

P3: 4.94 

P4: 4.82  

P5: 4.86 

P6: 0.4 429.67 

25, 

35, 

54, 

87, 

99 

P1: [2,25] 

P2: [26,35] 

P3: [36,54] 

P4: [55,87] 

P5: [88,99] 

P1: 4.91 

P2: 4.97 

P3: 4.94 

P4: 4.85  

P5: 4.76 429.30 

0.75 

101, 

86, 

58, 

38, 

23 

P1: [87,101] 

P2: [59,86] 

P3: [39,58] 

P4: [24,38] 

P5: [2,23] 

P1: 4.75 

P2: 4.95 

P3: 4.80 

P4: 4.88  

P5: 2.64 428.30 

 

27, 

43, 

80, 

97 

P1: [2,27] 

P2: [28,43] 

P3: [44,80] 

P4: [81,97] 

P1: 4.93 

P2: 4.95 

P3: 4.88 

P4: 4.73 429.32 

0.5 

101, 

77, 

35, 

12 

P1: [78,101] 

P2: [36,77] 

P3: [13,35] 

P4: [2,12] 

P1: 4.90 

P2: 4.96 

P3: 4.95 

P4: 0.13 433.07 

31, 

53, 

86, 

101 

P1: [2,31] 

P2: [32,53] 

P3: [54,86] 

P4:[87,101] 

P1: 4.72 

P2: 4.83 

P3: 4.91 

P4: 2.19 429.06 

0.25 

101, 

53 

P1: [54,101] 

P2: [2,53] 

P1: 4.93 

P2: 4.93 427.94 

52, 

100 

P1: [2,52] 

P2: [53,101] 

P1: 4.89 

P2: 4.90 428.75 

*They are written in the order that the algorithm determines. 

**Packing algorithm applied for sections 2 to 101 that are either in the work zone or upstream (see Figure 6-1) 

*** Includes penalty for the number of signs 

 Methods comparison and recommendations  

The methods are compared in terms of 1) results including objective function, 

corresponding optimal solution, and percentage of delay reduction, and 2) number of runs which 

is an indication of requires computational resources and time to solve the problem. 
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6.3.1 Objective function values and delay  

This chapter presented three methods to solve the sign location problem: 1) Greedy 

Algorithm, 2) AC&B Method, and 3) Approximate Decomposition Method. Table 6-4 compares 

the three methods in terms of the objective function, optimal solution, and resulting percent delay 

reduction.  

The Greedy Algorithm and AC&B method returned similar results. The discrepancies in 

objective function value and delay reduction are roughly 0.08 veh-hr, and 0.25%, respectively. 

The locations of the critical signs are different by at most two sections (0.5 miles).  

The results of the Approximate Decomposition is a little less optimal than the results of AC&B 

method. The discrepancy between the objective function value and percentage of delay reduction 

is 0.52 veh-hr and 2.7%, respectively. The number of required critical CMSs returned by AC&B 

Method is more than the Approximate Decomposition Method.  

Table 6-4: Results of Approximate Decomposition method 

Method 

Optimal 

objective 

 function 

value  

% delay 

 reduction  

Optimal 

Locations 

 (section 

indexes) 

Number of problem solutions 

itr 1 itr 2 itr 3 itr 4 Total 

Greedy Algorithm  427.50 30.83 40,48,100 50 46 39 35 170 

AC&B  427.42 31.05 38,50,99 10 24 29 17 80 

Approximate 

Decomposition  427.94 28.34 53,101  _  _  _ _  12 

 

6.3.2 Number of runs  

The greedy algorithm requires the highest number of runs and the other methods reduced 

the number of runs and as a result, less computational resources are needed. The number of runs 

for AC&B method reduced by roughly a factor of 2.1 (≈
170

80
) and the number of runs for 

Approximate Decomposition method reduced by a factor of 14.1 (≈
170

12
).  

The effects of following parameters are discussed on the number of runs.  

 Number of sections (Ns): In greedy algorithm, the number of runs directly depends on 

the number of sections. For instance, for a network with 200 sections, the first iteration 

required 100 runs because the accuracy for sign placement was 2 sections (i.e. 0.5 mile).  

In AC&B method, the number of sections determines the upper bound for the number of 

runs. In general, the number of runs for the AC&B method is not equal to the upper 
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bound. For example, in the benchmark problem the number of runs for the first iteration 

is 10 while Ns is equal to 100. In the Approximate Decomposition method, the number 

of sections (Ns) does not have any influence on the number of runs.  

 Optimal number of critical signs (n): both greedy algorithm and AC&B method, are 

iterative and the number of iterations is equal to n+1. The higher number of critical signs 

requires higher number of iterations and more runs. The Approximate Decomposition 

method is not sensitive to n. This parameter, in conjunction with number of sections 

determine an upper bound for the number of required runs in Greedy algorithm and 

AC&B method, and consequently determine the required computational resources. 

Number of optimal signs multiplied by the number of sections establishes an upper 

bound for the number of runs; however this bound is not tight, especially for the AC&B 

method. This may happen because some of the sections may be eliminated from 

evaluation to preserve the minimum spacing between the critical CMSs or the AC&B 

method finds a local optimal and stops.  

 Maximum spatial change in advisory speed (∆s) : this does not have any influence on the 

number of runs for the Greedy Algorithm and AC&B method, but according to 

relationship 6-8 it linearly influences the upper bound of ∆s
′ . For the benchmark 

problem,  ∆s was selected to be 5 mph and resulted in 12 runs. This includes four runs to 

solve the first sub-problem, four runs to determine optimal objective function values for 

the forward packing method, and similarly four runs for the backward packing 

algorithm. If someone selects the ∆s of 10 mph, the maximum number of runs will be 

24.  

 The search increment for ∆s
′ : a small search increment will increase the number of runs 

for Approximate Decomposition method. The search increment for the range indicated 

in relationship 6-13 was 0.25, which results in 12 runs. If the search increment is 0.1, the 

number of required runs will be 33.  

In the next section recommendations are provided to select the solution methods 

6.3.3 Type of objective function 

The approximate decomposition method was developed for travel time minimization. In 

particular, the criterion to replace a pack of mini CMSs with a Critical CMS is that the Critical 
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CMS is able to create similar travel time values as the corresponding pack creates. This criterion 

is based on travel time because the objective function is to minimize total travel time. For AC&B 

method and Greedy Algorithm, there is no assumption about the type of objective function. Thus 

these methods may be applied for other types of objective functions.  

6.3.4 Recommendations to use the methods 

Based on the discussion provided for the comparison of the methods, it is recommended 

the Approximation Decomposition method be used for travel time or delay minimization since it 

requires less number of runs. For other objective functions, the AC&B method can be used since 

it requires less number of runs than the Greedy Algorithm.  
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Chapter 7 Conclusions and recommendations  

This chapter first presents the conclusions for the second order traffic stream model 

followed by the conclusions for the Work Zone Speed Harmonizer (WZSH). WZSH is a 

mathematical program that simultaneously determines optimal advisory speeds, location of 

critical Changeable Message Signs (CMS), and number of critical CMSs for speed 

harmonization. Then, the recommendations of the study are presented.   

 Second order traffic stream model  

To the best knowledge of the author, this is the first study that calibrated relaxation time (𝜏 ) 

and anticipation coefficient (𝜗 ) for work zone traffic conditions. The parameters were 

determined to match speed and queue length data collected from the one-lane section of a 

freeway work zone. A new calibration methodology was proposed in two stages:  

Stage 1: The methodology detected the behavior of the second order model in the 

τ- ϑ space and accordingly excluded the areas that did not include appropriate parameter 

values. It was found that the ratio of 
τ

ϑ
 has the main influence on speed discrepancy and 

results showed, for  
τ

ϑ
≥  10 (τ in sec and, ϑ in 

miles2

hr
) the model overestimates speed 

and for  
τ

ϑ
≤ 4, the model underestimates speed. In addition it was shown that beyond the 

threshold of 13 seconds, the relaxation time does not have a significant influence on 

speed estimates when section length is 450 ft. Smaller thresholds were found for shorter 

section lengths. Thus these areas were excluded from the search in Stage 2. As a result, 

the search area was limited to that portion of the τ- ϑ space that is likely to return 

acceptable discrepancy.   

Stage 2: A local search inside the area narrowed down in stage 1, was conducted 

to find parameter values that return acceptable estimates of queue length and speed. The 

lesson learned from this stage is that the search area should not be treated as a strictly 

convex area because there could be multiple answers with different relaxation time or 

anticipation coefficients values. Due to non-convexity of the area, an optimization or 

search algorithm should be selected such that avoids stopping at local minima. Also, it is 

important to select an optimization or search algorithm which returns a set of answers, 

rather than one answer, to choose more meaningful parameters. To address these issues, 
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this study examined different search directions and found that if relaxation time, ϑ, is 

fixed and the search algorithm moves along the ϑ direction, trapping in local minima can 

be avoided. In addition, if the search algorithm starts moving from different relaxation 

time values, multiple answers can be found for calibration. 

 The proposed calibration methodology was applied for section lengths up to 450 ft and 
L

∆t
 

values between 50 mph and 90 mph. The results were used to develop a guideline to select the 

parameters of the second order model. The guideline recommends section length (L) of 450 ft be 

used to reduce computations. It suggests a range for 
L

∆t
 based on the free flow speed, and a range 

for relaxation time (τ) based on both drivers’ reaction time and the section length. The 

anticipation coefficient (ϑ ) can be determined as a function of relaxation time using linear 

regression models. The linear models showed an increasing trend between relaxation time and 

anticipation coefficient, and slope and intercept values changed based on the values of L and 
L

∆t
. 

A modification was proposed to the second order model because the second order model 

returned slower queue propagation pattern and faster queue dissipation pattern than field data 

although it returned acceptable average queue length. The modification considered two different 

anticipation coefficients for queue propagation (ϑp) and queue shrinkage (ϑs). The two 

coefficients were calibrated for section length of 450 ft and 
L

∆t
 of 80 mph and results showed that 

the ratio of  
ϑs

ϑp
 ranges from 1.86 to 2.63. The reason that the ratios are greater than one is related 

to the fact that in the second order model, the acceleration rate is proportional to 
ϑs

Density in queue
 

for vehicles departing queue and deceleration rate is proportional to 
ϑp

Density for arriving vehciles
 for 

vehicles joining queue. Density in the queue is larger than the density for arriving vehicles, thus 

ϑs has to be larger than ϑp to compensate a higher denominator.  

The second order model was compared with the first order model and it was found that 

the first order model overestimated the queue length when the same speed-density relationships 

were used for both models. This happened because the second order model have calibration 

parameters of relaxation time and anticipation coefficient to improve the estimates, but the first 

order model did not have any parameter to calibrate.  In order to improve queue lengths 

estimated by the first order model, several modifications were proposed. The modifications were: 
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Case 1) developing new regression function for congested condition, Case 2) new speed 

thresholds to declare queuing conditions, Case 3) increase free flow speed, and Case 4) decrease 

jam density.  

First order model in the Case 3 returned better results than other cases. In particular, it 

underestimated average queue length by 177 ft which is corresponding to 8.6% error, and it 

overestimated maximum queue length by 1187 ft which is corresponding to 26.3% error. The 

standard deviation of error in queue length estimates was 955 ft which is corresponding to 

coefficient of variation of 46.5%. 

The second order model returned better average and maximum queue lengths than the 

first order model, but a larger coefficient of variation. The discrepancy between the second order 

model estimates and the field data depended on the values of τ and ϑ. For example for τ =11 and 

ϑ =1.80, the second order model underestimated average queue length by 100.5 ft which is 

corresponding to 4.9% error. The maximum queue length was overestimated by 309 ft which is 

corresponding to 6.8% error. The standard deviation of error was 1734.7 ft which is 

corresponding to coefficient of variation of 84.4%.  

The Two- ϑ model retuned better average queue length, maximum queue length, and 

coefficients of variation than the first order model and the second order model. The amount of 

discrepancy between estimates and field data depended on parameter values of τ, ϑp, and ϑs. For 

example for τ=11, ϑp=6.5, ϑs=13, average error in the queue length was 32 ft which is 

corresponding to 1.56% error. The maximum queue length was overestimated by 318 ft which is 

corresponding to 7.1% error. The standard deviation of error is 614.3 ft which is corresponding 

to coefficient of variation of 29.9%.  

Thus based on the numerical comparisons, it can be concluded that the two- ϑ model is 

better than the first order model and the second order model. One may use the two- ϑ model 

when the rate of queue shrinkage and dissipation are significantly different. Consequently, one 

may use the second order model when the rates of dissipation and shrinkage are similar. In 

addition, in optimization programs using the second order model can significantly reduce 

computational complexity compared with the two- ϑ model which practically has a 

discontinuous function for ϑ. Thus this study uses the second order model to reduce 

computational complexities in the optimization program. 
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 Conclusions on Work Zone Speed Harmonizer (WZSH) 

This study developed and solved WZSH which is a mathematical program that 

simultaneously determines optimal advisory speeds, location of critical Changeable Message 

Signs (CMS), and number of critical CMSs for speed harmonization. The program minimizes an 

objective that is composed of total travel time and a penalty function for the number of critical 

CMSs.  

The WZSH is a Mixed Integer Nonlinear Program (MINLP) and the main challenge to 

solve the problem is the presence of integer variables. According to source of integrality, 

solution methodologies were proposed:  

 A continuous transformation approach was proposed to eliminate binary variables due to 

inclusion of piecewise speed-density relationships in the optimization program. Thus 

instead of solving a mixed integer nonlinear program, which is very challenging to solve 

for a large scale problem, one can solve the corresponding nonlinear program and 

significantly reduce computational difficulties. In addition, the transformation 

methodology provides the opportunity to use more realistic speed-density relationships, 

rather than very simplified models, and potentially enhances the reliability of speed 

harmonization techniques for field implementation. The methodology relies on some 

mathematical properties of the sub-functions, and it does not depend on the shape of the 

objective function or other constraints; as a result, one may apply the methodology for 

both minimization and maximization problems with different objective functions. The 

methodology was used to solve speed harmonization problem for a 12.5-mile roadway 

and a 50-min analysis duration where locations of the critical CMSs were given. For this 

problem, the methodology eliminated 30,000 binary variables and solved the problem in 

23 minutes when the program includes roughly 158,000 variables and 186,000 

constraints. The results showed that the speed harmonization can reduce delay by 15.7% 

and maximum queue length by 37.5% compared to the no speed harmonization condition.  

 Three solution methods were proposed to determine number and location of critical 

CMSs. The solution methods are: 1) Greedy algorithm, 2) Augmented-Cut and Branch 

(AC&B) method, and 3) Approximate Decomposition method. The three methods were 

compared in three aspects:  
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1- Objective function value: It was shown that the difference between objective functions in 

the three methods is less than 1%. This means that the three methods returned similar 

objective functions values.  

2- Number of runs: One run is defined as the solution of WZSH when there are no integer 

decision variables. This happens when the integer variables are relaxed or when values of 

zero or one are assigned to integer variables before problem solution. The number of runs 

is important because it indicates the required computational resources to solve the 

problem.  For the benchmark problem, the greedy algorithm required 170 runs. 

Compared with the greedy algorithm, the AC&B method reduced the number of runs by 

a factor of 2.1, and the Approximate Decomposition method reduced the number of runs 

by a factor of 14.1. The AC&B method always required fewer number of runs than the 

greedy algorithm. In general, the Approximate Decomposition method required fewer 

number of runs than AC&B method. However, when the number of sections is small (e.g. 

less than 8), the AC&B method may require fewer runs; however this cannot be predicted 

before solving the problem because  the number of runs in the AC&B method depends on 

the number of optimal critical CMSs and that is not known before solving the problem. 

3- Type of objective function: The Approximate Decomposition method was developed for 

travel time minimization. For AC&B method and Greedy Algorithm, there is no 

assumption about the type of objective function. Thus these methods may be applied for 

any types of objective functions. As a result when the purpose of speed harmonization is 

to minimize travel time, it is recommended Approximate Decomposition method be used 

because it would require fewer number of runs. For other purposes, AC&B Method may 

be used.  

 Recommendations 

This section first presents recommendations for similar applications based on the lesson 

learned from the conclusions. Then recommendations to expand the study are presented.  

For similar applications the following recommendations are made: 

 In order to calibrate the second order model, the study recommends a directional search 

to avoid stopping at local minima. For the search direction, this study recommends that 

relaxation time be fixed and the search algorithm move over the anticipation coefficient 

coordinate to avoid stopping at local minima.   
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 The study recommends excluding the portions of τ- ϑ space that overestimate or 

underestimate speed. These portions can be found based on the value of 
τ

ϑ
. For starting 

values, one may use 
τ

ϑ
=4 below which speed may be underestimated and 

τ

ϑ
=10 above 

which speed may be overestimated.  

 In general, the Two- ϑ model could be more accurate than the second order model; 

however the study recommends the second order model be considered to use when the 

rates of dissipation and shrinkage are similar since calibration and using the Two- ϑ 

model may involve computational complexities.  

 For optimized speed harmonization, the study recommends using multi-regime traffic 

stream models which are more accurate than single-regime models in estimating 

congested traffic states. For this purpose, the proposed continuous transformation method 

can be used for continuous and piecewise traffic stream models to eliminate integer 

variables from the optimization program and consequently expedite the solution process.  

 To determine location and number of critical CMSs, the study recommends using 

Approximate Decomposition method when the objective of the problem is to minimize 

total travel time because it would require less computational resources than other 

methods. For other types of objective functions, the study recommends using AC&B 

method.   

For each item below, an issue and then recommended expansions to address the issue are 

discussed. 

 To calibrate the parameters of the second order model, heavy vehicles in the field data 

were converted to passenger cars using a passenger car equivalency (PCE) factor of 1.5 

proposed by Highway Capacity Manual 2010 for basic freeway section; thus 

computations assumed that traffic is composed of only passenger cars. It is recommended 

that field data be collected for different heavy vehicle percentages to study effects of 

different traffic composition on the PCE value.  

 The guideline, which was developed to determine the parameters of the second order 

model, may be used for section lengths around 450 ft or shorter, but for longer section 

lengths (e.g. 0.5 miles), appropriate field data should be collected to expand the 
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guideline. In addition, the study recommends developing a similar guideline for the 

modified second order model in which two anticipation coefficients are used.  

 The nonlinear transformation method was developed only for continuous and multi-

regime models. New methodologies should be developed to include discontinues traffic 

stream models in the optimization program.  

 This study assumes that a given CMS shows the same advisory speed for vehicles on 

different lanes. Alternatively, different advisory speeds may be assigned to vehicles on 

different lanes. To explore effectiveness of this alternative, the formulation should be 

expanded to i) consider effect of travel lane on traffic state, and ii) determine advisory 

speed for each travel lane.  
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