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ABSTRACT

Magnetic resonance spectroscopic imaging (MRSI) is a powerful technique

that offers us the ability to non-invasively image chemical distributions within

the human body. However, due to its inherently poor trade-off between imag-

ing speed, resolution, and signal-to-noise ratio (SNR), MRSI has remained

impractical for many research and clinical applications.

A large body of work has been done to improve this trade-off. Recently

new subspace-based imaging methods have also been proposed as a means

of dramatically accelerating MRSI. By taking advantage of the properties

of a partially separable (PS) signal model, subspace-based methods offer in-

creased flexibility in acquisition as well as image reconstruction, and thereby

allow high-resolution, high-SNR MRSI images to be obtained in a fraction of

the time required by standard techniques.

An important ingredient common to all subspace-based imaging methods

is the estimation of the subspace structure of the high-dimensional image

function. However, accurate subspace estimation in the presence of noise

and inhomogeneity in the main magnetic field is challenging. To this end we

propose a novel method for subspace estimation which utilizes a regularized-

reconstruction approach to correct for the effects of field inhomogeneity and

noise.

Carefully designed numerical simulations and experimental studies have

been performed to evaluate the performance of the proposed method in a

variety of experimental conditions. Results from these data show that the

proposed method is able to obtain an accurate subspace estimation, either

in terms of a projection error metric or by inspecting the residual after pro-

jecting the fully sampled data onto the estimated subspaces. Additionally,

in vivo MRSI data was acquired to illustrate that the subspace estimated by

the proposed method leads to high-quality spatiospectral reconstructions.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Shortly after the first observation of nuclear magnetic resonance (NMR) in

1946 [1–3], NMR spectroscopy (NMRS) was developed and has since become

an essential tool for chemical analysis due to the NMR signal’s inherent

dependence on both the chemical composition and molecular structure of

the sample. The more recent technique of magnetic resonance spectroscopic

imaging (MRSI) introduced by Lauterbur in 1975 [4] and pioneered in the

early 1980s [5–8] uses spatial encoding methods to resolve the NMR signal

into the signal contributions produced by localized regions of the sample.

Because of its ability to estimate in vivo chemical distributions without the

use of chemical tracers or ionizing radiation, MRSI has greatly influenced the

biological fields. Studies in the field of neurology, for example, use MRSI to

estimate the relative concentrations and distributions of brain metabolites,

and attempt to correlate these measurements with various cancers [9–11]

and neurological diseases such as Alzheimer’s disease and multiple sclerosis

[12, 13].

Unfortunately despite nearly four decades of development, current MRSI

techniques are still far from reaching their potential. The inherently low in-

tensity of the NMR signal creates a poor trade-off between imaging speed,

resolution, and signal-to-noise-ratio (SNR), which has limited the utility of

MRSI in many applications. Recently, new subspace-based methods for

MRSI have been developed which provide dramatically better trade-offs and

may pave the way toward fast, high SNR, and high-resolution MRSI [14–17].

A key aspect of these methods is the estimation of the spectral subspace of

the MRSI spatiospectral distribution from data with low spatial resolution

(limited spatial encodings). The goal of this thesis is to provide and analyze
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a novel method for this estimation.

1.2 Main Results

• We formally define the MRSI subspace estimation problem in the frame-

work of subspace-based imaging and propose a novel method for sub-

space estimation from a set of low-resolution, high-SNR data. A key

challenge in this problem is the correction for inhomogeneities in the

main magnetic field (B0) of the magnetic resonance imaging (MRI)

scanner. To this end we utilize regularization-based reconstruction

methods to remove the effects of B0 field inhomogeneities from the

data prior to subspace estimation. We also introduce a metric for

subspace estimation error and compare several different regularization

terms based their abilities to provide reduced estimation errors.

• We test our method using both simulated and experimentally acquired

data. A numerical phantom was generated using quantum mechani-

cal simulations of brain metabolite spectra and used to create simu-

lated data sets with varying levels of noise, resolution, and B0 field

inhomogeneity. Experimental data was acquired from a physical phan-

tom containing brain metabolites at close to in vivo concentrations

as well as a healthy human subject (with internal review board ap-

proval). Subspace estimation results using these data were confirmed

the simulation-based results.

• We introduce novel methods for the selection of important parameters

in our subspace estimation algorithm:

1. We propose a method for the selection of the parameter associated

with our weighted ℓ2 difference regularization term from knowl-

edge of the noise variance. Simulated data from our numerical

phantom were used to show that the subspace estimation error

obtained using this parameter is close to the minimum possible

error obtained using this weighted ℓ2 regularization method.

2. Motivated by results in randommatrix theory, we propose a method

for the selection of the subspace dimension (or model order). Re-
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sults from data generated from our numerical phantom showed

that increasing the model order past the value produced by our

method yielded little reduction in subspace estimation error.

1.3 Organization of the Thesis

This thesis is organized as follows:

Chapter 2 presents a review of the background material and concepts uti-

lized in this thesis. In particular this chapter describes the generation and

localization of the NMR signal as pertaining to MRSI. The challenges and

standard approaches toward MRSI are also described.

Chapter 3 describes subspace-based MRSI and its applications. The math-

ematical concepts utilized by current subspace-based MRSI techniques as well

as by this work are described in detail.

Chapter 4 defines the subspace estimation problem in the framework of

subspace-based imaging and describes the theory behind our proposed method.

The formulation of our regularized reconstruction schemes and our algorithms

for solving them are described in detail. We also introduce and describe our

methods for regularization parameter and model order selection.

Chapter 5 describes the analysis of our method through simulated and ex-

perimental results. Detailed descriptions of our simulations and experiments

are described along with discussions of the results of our analyses.

Chapter 6 summarizes the conclusions of this study and briefly discusses

future lines of research.

Lastly, the appendices provide derivations and algorithms mentioned in

the body of the text.
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CHAPTER 2

BACKGROUND

2.1 Magnetic Resonance Imaging

2.1.1 Signal Generation and Measurement

The fundamental property of matter responsible for the NMR signal is spin.

Particles with non-zero spin (or spins) have an intrinsic magnetic dipole

moment µ with constant magnitude. In the absence of an external magnetic

field the effect of the nuclear spins is negligible. However, when external

magnetic fields are applied, coherent interactions of the nuclear spins with

the fields result in observable effects. For a static, z-directed magnetic field

B0 = B0ẑ, the energy of the interaction between a nuclear spin and the

external field is given by

E = −µzB0, (2.1)

where µz is the value of the z-component of µ. An important result from

quantum mechanics is that µz can only take on quantized values (nuclear

spin states), and therefore the values of E are also quantized. For half-

spin nuclei the allowed values of µz are ±−γh/2 where −γ := γ/2π, γ is a

nucleus dependent physical constant called the gyromagnetic ratio and h

is Plank’s constant. This “splitting” of nuclear energy levels due to the

effect of the applied field (known as Zeeman splitting) is essential for the

generation of the NMR signal. The effect leads to a difference (governed

by the Boltzmann distribution) between the equilibrium numbers of nuclear

spins with µz aligned parallel (µz = +−γh/2) and anti-parallel (µz = −−γh/2)

to the applied field. The difference in the number of parallel and anti-parallel
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spins can be approximated as [18]

∆N± ≈ Ns
−γhB0

2KTs
, (2.2)

where Ns is the number of nuclear spins, K is the Boltzmann constant, and

Ts is temperature of the spin system. This difference in equilibrium spin

state populations leads to the generation of a macroscopic magnetic moment

density called the bulk magnetization field (M = M0
z ẑ), the magnitude of

which can be calculated as

M0
z =

∆N±

∆V

γ~

2
= ρs

−γ2h2B0

4KTs
, (2.3)

where ∆V is the differential sample volume and ρs :=
Ns

∆V
is the spin popu-

lation density.

The first step of a MRI experiment is the establishment of M0
z and is

achieved by placing the sample inside the scanner which supplies a strong,

uniform, static magnetic field B0. The second step is apply a time-varying

magnetic field (B1), which is usually in the form of a radio frequency (RF)

pulse called an excitation pulse. The effect of external magnetic fields on the

time evolution of M is governed by a phenomenological equation called the

Bloch equation

dM

dt
= γM ×B −

Mxx̂+Myŷ

T2
−

(Mz −M0
z )ẑ

T1
. (2.4)

In this equation B = B0ẑ +B1, and Mx, My, and Mz represent the compo-

nents of M along the different spatial axes. T2 and T1 are relaxation con-

stants specifying how rapidly the transverse component (Mxy :=Mxx̂+Myŷ)

and longitudinal component (Mz) return to equilibrium (M =M0
z ẑ).

When the excitation pulse ends, there will be a transverse component

which according to Eq. 2.4 will freely precess about the z-axis at the resonant

frequency of the spin population

f0 = −γB0, (2.5)

which is known as the Larmor frequency. The temporal variation of M is

measured using a receiver coil and the signal induced in the coil is called a
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free induction decay (FID). For time-harmonic signals at frequency f , the

induced voltage in the coil (V ) is governed by the following equation (see

Appendix A.1)

V = −2πf

∫

Vsample

M ·Brdv, (2.6)

where Br is referred to as the sensitivity profile and corresponds to the mag-

netic field that would be induced in the sample when unit current is applied

to the receiver coil. Modern MRI scanners utilize quadrature detection [18]

so the actual signal s(t) recorded by the scanner can be written as

s(t) ∝ 2πf0

∫

Vsample

Mxy(x)Br,xy(x)e
−t/T2(x)e−i2π−γ∆B0(x)tdx, (2.7)

where Mxy :=Mx + iMy, Br,xy := Br,x + iBr,y and ∆B0(x) is inhomogeneity

in the main magnetic field at a given location x. Note that we have also

assumed that T2 is much larger than 1/f0.

The term Mxy(x)Br,xy(x) and proportionality constants are usually com-

bined and referred to as the spin density. Denoting the spin density as ρ(x)

the Eq. (2.7) can be written as

s(t) =

∫

Vsample

ρ(x)e−t/T2(x)e−i2π−γ∆B0(x)tdx. (2.8)

2.1.2 Spatial Encoding

MRI attempts to resolve the measured signal s(t) into contributions from

each spatial location, however the signal described by Eq. (2.8) provides no

means for doing this. Standard MRI methods encode the signal location by

applying linear gradient fields of the form B(x) = (G · x) ẑ. Neglecting ∆B0

and T2 for the simplicity, the measured signal in the presence of an applied

gradient field is

s(t) ∝ 2πf0

∫

Vsample

ρ(x)e−i2π−γ
∫ t

0
G(τ)dτ ·xdx. (2.9)
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Defining k as

k = −γ

∫ t

0

G(τ)dτ , (2.10)

the encoded signal can be written as

s(k) =

∫

Vsample

ρ(x)e−i2πk·xdx, (2.11)

and we see that the signal as a function of the spatial encoding variable k is

related to ρ(x) by the Fourier transform. Therefore ρ(x) can be reconstructed

from a discrete set of samples of {s(km)}
M
m=1 via the application of an inverse

Fourier transform.1

2.1.3 Field Inhomogeneity Estimation

In many applications it is important to be able to estimate ∆B0(x). The

basic principle behind most estimation schemes (referred to as field mapping

schemes) is to acquire two data sets (s1 and s2) and to make the delay between

the excitation and data acquisition differ between the data sets by a time τ .

In practice, the time spent acquiring the signal from a single excitation is

much smaller than T2 or 1/∆f0, where ∆f0 := −γ∆B0. Therefore, denoting

the time between the excitation pulse and the acquisition of s1 as TE (referred

to as the echo time), the reconstructions from s1 and s2 can be written as

ρ1(x) = ρ(x)e−TE/T2(x)e−i2π∆f0(x)TE (2.12)

and

ρ2(x) = ρ(x)e−(TE+τ)/T2(x)e−i2π∆f0(x)(TE+τ), (2.13)

1In practice, most current MRI applications measure the signal using multiple receiver
coils and by incorporation of the sensitivity profiles into the reconstruction scheme can
reconstruct ρ(x) free of sensitivity profile weighting.

7



respectively. ∆f0 can thus be computed from the phase difference ∆φ be-

tween ρ1 and ρ2 according to

∆f0(x) =
∆φ(x)

2πτ
. (2.14)

2.2 Magnetic Resonance Spectroscopic Imaging

2.2.1 Chemical Shift

Like MRI, MRSI is concerned with the localization of the NMR signal; the

difference between the two methods is that MRSI attempts to localize the

signal over space as well as spin population. For example, the goal of a typical

MRSI experiment could be to determine the spatial concentration distribu-

tions of various molecules within a sample. In this case, the 1H nuclei in

the different molecules could be could be considered different spin popula-

tions. These populations could also be divided even further, for instance, the
1H nuclei in different chemical groups within the same type of molecule are

generally considered different spin populations.

In all practical samples, the resonant frequencies of spins in different chem-

ical environments will be shifted from f0. This frequency shift δf is known

as the chemical shift and can be modeled as

δf = −−γB0σ, (2.15)

where σ is called the shielding constant, and can take on positive or negative

values, typically on the order of 10−6. The chemical shift results from the in-

teraction between the nuclear spin and surrounding electrons. As illustrated

in Fig. 2.1, electron current density distributions perturb the magnetic field

“seen” by the nuclear spin, effectively “shielding” it from the applied B0 field

and thereby causing a shift in the resonant frequency. The amount of shield-

ing is proportional to the applied B0 field as described by Eq. (2.15) [19].

Mathematically, the dependence of the measured signal on δf can be mod-
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Figure 2.1: Illustration of the chemical shielding effect. In diamagnetic ma-
terials, the presence of the applied field B0 induces currents in ground-state
electron distributions (blue) resulting in the creation of an opposing mag-
netic field Be which “shields” the nucleus (red) and results in a shift in its
resonant frequency.

eled through the introduction of a frequency dependence in Eq. (2.8), i.e.,

s(t) =

∫

Vsample

∫ ∞

−∞

ρ(x, f)e−t/T2(x,f)ei2πfte−i2π−γ∆B0(x)tdfdx. (2.16)

The goal of MRSI is to resolve the contributions to s(t) spatially and spec-

trally. This is achieved by performing spectral encoding during the data ac-

quisition period in addition to spatial encoding provided by gradient fields.

After performing the integration over frequency, the spatially and spectrally

encoded signal can be written as

s(k, t) =

∫

Vsample

ρ(x, t)e−i2πk·xe−i2πt∆f0(x)dx, (2.17)

where ρ(x, t) is the defined as

ρ(x, t) =

∫ ∞

−∞

ρ(x, f)e−t/T2(x,f)ei2πftdf. (2.18)

With this formulation MRSI attempts to reconstruct ρ̄(x, f), the Fourier

counter part of ρ(x, t). This is typically referred to to as the spatiospectral

spin density distribution.
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2.2.2 Major Challenges

The major challenges in MRSI are a result of the inherent insensitivity of the

NMR phenomenon. The reason for this insensitivity is that signal strength

is proportional to the equilibrium spin state population difference (∆N±)

which is very small, typically on the order of parts-per-million (ppm). For

example, consider a spin population at room temperature (293 K) placed in

a field of 3 T (the field strength of many modern MRI scanners). According

to Eq. (2.2), in a population of a million spins, ∆N± would only be about

35. The reason that MRSI is possible is that the number of spins in a sample

tends to be very large. Consider the chemical N-acetylaspartate (NAA), a

brain metabolite often observed in in vivo 1H MRSI of the human brain.

The methyl group of NAA gives rise to a prominently observed spectral

peak in ρ(x, f), and the typical in vivo concentration of NAA is roughly

10 mmol/L [20]. Therefore, in a typical 1 mm3 volume at body temperature

(310 K) there are approximately 20× 1015 nuclear spins associated with the

spectral peak and the ∆N± is approximately 70× 1010.

The result of this insensitivity is to create a very poor trade off between

acquisition speed, SNR, and resolution. For a given acquisition time, higher

resolution results in lower SNR. Successive measurements can be averaged

together to increase the SNR; however, this requires increased scan time.

Moreover, the trade-off is sub-linear. SNR increases proportionally to the

square-root of the number of averages while the imaging time is directly

proportional to the number of averages.

An additional challenge faced by in vivo 1HMRSI, is the presence of signals

from water and lipids. The concentrations of water and lipids are three to four

orders of magnitude larger than those of the chemicals of interest (e.g. brain

metabolites and neurotransmitters) as shown if Fig. 2.2. Separating these

“nuisance” signals from the signals of interest is a considerable challenge,

and considerable effort has been done to address this problem [16,21–26].

2.2.3 Chemical Shift Imaging

The most common acquisition scheme for MRSI is chemical shift imaging

(CSI). Proposed by Brown, et. al. in the early 1980s [5], CSI performs

spatial encoding using pulsed gradient waveforms between excitation and

10



Figure 2.2: An in vivo 1H MRSI voxel spectrum showing the overshad-
owing effect the nuisance signals have on brain metabolites such as N-
acetylaspartate (NAA), creatine (Cr), choline (Cho). The cut-out shows
a blown up portion of the spectrum after the water and lipid signals have
been removed and reveals the presence of the metabolite signals.

data acquisition (or readout). This type of spatial encoding is called phase

encoding. Figure 2.3 shows several different types of two-dimensional (2D)

CSI pulse sequences, and Fig. 2.4 illustrates the sampling trajectory in (k,t)-

space. Spectral encoding is achieved solely through temporal sampling of the

FID signal, and the timing of the gradient pulses is kept the same for each

excitation to ensure that the same spectral encodings are acquired for each

spatial encoding.

By acquiring spatial encodings {km}
M
m=1 and spectral encodings {tn}

N
n=1

that satisfy the Nyquist requirements of the imaging object ρ(x, f), accurate

reconstructions ˆ̄ρ(x, f) can be computed from the data samples s(km, tn)

using the discrete Fourier transform (DFT)

ˆ̄ρ(x, f) =
N
∑

n=1

M
∑

m=1

s (km, tn) e
i2π(km·x+tnf). (2.19)

Because only one spatial encoding is acquired for each excitation, acquiring

the needed number of spatial encodings for high resolution reconstructions

is very time consuming. In practice CSI can only be used to acquire data

with limited k-space coverage, and DFT reconstructions of CSI data often

suffer from Gibbs ringing artifacts. In order to achieve reconstructions with

both high spectral and spatial resolution, more advance data acquisition and

image reconstruction schemes are needed.
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Figure 2.3: Several different CSI pulse sequences. (a) An FID CSI sequence.
(b) A spin echo (SE) CSI sequence. (c) A point resolved spectroscopy
(PRESS) sequence. Unlike the sequences in (a) and (b), which excite a z-
slice volume of the sample, the PRESS sequence can select a localized cubic
volume of the sample and therefore offers better signal localization.
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k

t

δt

Figure 2.4: Sampling trajectory of a CSI sequence. In each repetition a line
of samples (blue) is acquired along time for a single k-space location (i.e.,
one row). The spectral bandwidth of CSI sequences is equal to the reciprocal
of the readout dwell time, δt. Note, in this figure all of the spatial encoding
dimensions have been collapsed onto the k-axis.

2.2.4 Echo-Planar Spectroscopic Imaging

Echo-planar based spectroscopic imaging (EPSI) is a popular type of scheme

for accelerated MRSI. EPSI uses oscillating gradient waveforms to acquire

multiple spatial and spectral encodings during the readout period of each

excitation (Fig. 2.5). Spatial encoding is achieved by sampling in the presence

of the applied gradient waveforms (known as frequency encoding), and the

spectral encoding is determined by the time between oscillations which is

called the echo-spacing. Additional spectral encoding bandwidth is often

achieved by varying the time between excitation and the beginning of the

oscillating wave forms; these time-shift based encodings are referred to as

echo-shifts.

While many types of (k, t)-space trajectories are possible, one of the most

popular is Cartesian EPSI, proposed by Posse in the mid 1990s [27]. In

this method only one spatial dimension is encoded using frequency encoding.

Because both spatial and spectral encoding is performed in each excitation,

the needed number of excitations is dramatically less than CSI. For exam-

ple, consider a 2D experiment where the time between repeated excitations

(known as the repetition time or TR) is 2 seconds and the number of needed

spatial encodings along the x and y dimensions (Mx and My respectively)

are both 32. The CSI experiment will require MxMy excitations or approx-

imately 34 minutes to acquire all of the needed encodings while the EPSI

experiment will require only My excitations or approximately 1 minute.
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The drawback of EPSI is that the required readout bandwidth is greatly

increased. This leads to an increase in measurement noise (proportional

to the square-root of the bandwidth [28, 29]) and therefore decreased SNR.

Hence, in practice the acceleration in acquisition is reduced due to the need

to acquire multiple averages. In addition to decreased SNR, the increased

duty cycle of the gradient waveforms can lead to field drift, which combined

with non-idealities in the gradient waveforms can result in reconstruction

artifacts if left unaccounted for.

RF

Gx

Gy

Gz

ADC

TE/2 TE/2 + δt

TR

Figure 2.5: (a) A SE Cartesian EPSI sequence. Unlike a CSI sequence,
oscillating gradient waveforms are played out during the FID period. The
number of kx encodings equals the number of samples acquired during the
flat-top of each Gx oscillation and ky encodings are achieved through pulsed
Gy gradients (phase encoding) prior to the readout period. The time between
oscillations and the number of different values of δt determine the spectral
bandwidth. (b) Sampling trajectory of a Cartesian EPSI sequence for a
single ky encode and two echo-shifts. In each excitation period a zig-zag line
of samples (blue and red dots) is acquired. The spectral bandwidth of the
data is determined by the time between successive “V”s in the trajectory
and the number of echo-shifts. In this figure the color of the samples is used
to distinguish different echo-shifts.
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CHAPTER 3

SUBSPACE-BASED MRSI

3.1 Signal Model

As described in Chapter 2, standard MRSI techniques provide a poor trade-

off between speed, SNR, and resolution. While the development of more ad-

vanced acquisition schemes such as EPSI has helped to improved this trade-

off [30–32], these schemes have yet to provide the improvements needed to

make MRSI truly practical for a wide variety of scenarios. As such signif-

icant work has be done on the development of more advanced reconstruc-

tion schemes. In particular, through parsimonious modeling of the NMR

signal, many reconstruction algorithms have been developed which are ca-

pable of providing accurate reconstructions from limited or sparsely-sampled

data [14, 15, 33–41]. The common characteristic of this class of methods is

a reduction in the degrees of freedom of the image function, ρ̄(x, f), either

through explicit or implicit constraints. This thesis is concerned with a class

of subspace-based MRSI methods which use advanced acquisition and re-

construction techniques designed around a partially separable (PS) signal

model.

3.1.1 Partial Separability

Subspace-based MRSI methods model the spatiospectral spin density distri-

bution ρ̄(x, f) as a partially separable function, i.e.,

ρ̄(x, f) =
L
∑

l=1

ul(x)v̄l(f), (3.1)
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or equivalently as

ρ(x, t) =
L
∑

l=1

ul(x)vl(t), (3.2)

where {vl(t)}
L
l=1 (the Fourier counter parts of {v̄l(f)}

L
l=1) represent a set of

square integrable temporal basis functions, {ul(x)}
L
l=1 represent the corre-

sponding spatial coefficients, and L is the model order (or separation rank)

which is typically a small number [42–45]. The PS model was first proposed

by Liang in [42] and offers several useful properties that make it particularly

useful for accelerated imaging. First, as with other model-based reconstruc-

tion schemes, the PS model provides a reduction in degrees of freedom of

the signal which enables accurate reconstruction from sparsely sampled data

(this statement will be discussed more thoroughly in Section 3.1.2). Second,

the separation of spatial and spectral subspaces of ρ increases the flexibility

in the design of acquisition schemes. Third, and perhaps most importantly,

the model is highly parsimonious; it can be shown that if L is made large

enough, any square integrable ρ(x, t) can be approximated by Eq. (3.2) to

any desired accuracy.

3.1.2 Mathematical Preliminaries of Subspace-Based Imaging

In this section we provide various definitions and theorems that will be uti-

lized in this thesis. We present the definitions of a linear vector spaces,

subspaces, norms, and inner products, and then illustrate how these are used

in this thesis, concluding with a discussion of some mathematical properties

of the PS model.

Much of the definitions in this section are very general and deal with defini-

tions and operations on abstract algebraic sets. An important set operation

is the Cartesian product.

Definition 1 (Cartesian Product): The Cartesian product × is an operation

on two sets X and Y that returns the set of ordered pairs of elements from

each set, i.e., X × Y = {(x,y) : x ∈ X ,y ∈ Y}.

Equipped with the definition of the Cartesian product we now provide the

definitions of linear vector spaces and subspaces, the estimation of which is
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the topic of this thesis.

Definition 2 (Linear Vector Space (LVS)): A LVS is a set X and a scalar

field 1 F equipped with an addition operation + : X ×X → X and a multipli-

cation operation · : F×X → X . The addition operator must be commutative

and associative, and the multiplication operator must be associative and dis-

tributive. X must also include the additive identity element 0, and F must

include the multiplicative identity element 1.

Definition 3 (Subspace): Let X be a LVS and S ⊂ X . If S is also a LVS,

then we say that S is a subspace.

The next several definitions are important concepts needed for working

with and describing LVSs.

Definition 4 (Linear Combination): A vector x in a LVS X with scalar

field F is a linear combination of the vectors {xm}
M
m=1 ⊂ X if there exist

scalars {αm}
M
m=1 ⊂ F such that x =

∑M
m=1 αmxm.

Definition 5 (Span): The span of a set S in a LVS, denoted span {S}, is

the set of all possible linear combinations of the vectors in S.

Definition 6 (Linear Dependence): A vector x in an LVS X is linear depen-

dent with respect to a set S ⊂ X if x can be written as a linear combination

of the vectors in S. If x is not linearly dependent of S,then x is said to be

linearly independent of S.

Definition 7 (Hamel Basis): A Hamel basis of an LVS X is any set of

mutually linearly independent vectors S such that span {S} = X . In this

thesis, we will refer to a Hamel basis simply as a basis. The vectors in S are

referred to as the basis vectors.

An important result is that every LVS has a Hamel basis and that the number

of vectors in every Hamel bases of an LVS is the same [46].

Definition 8 (Dimension): The dimension of an LVS X is the number of

vectors in any of its bases.

1In general the field of an LVS can be any type of field, however this thesis will only
be concerned with LVSs defined over scalar fields.
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With the above definitions, it is now clear that ρ(x, t) is function which

maps the Cartesian product of the spatial dimensions and the temporal di-

mension to a complex number, i.e., for a 2D image with spatial support

X ⊂ R
2 and t ∈ T ⊂ R≥0, ρ(x, t) : X ×T → C. Furthermore, from Eq. (3.2)

we see that for any xm, the temporal function ρ(xm, t) ∈ span {vl(t)}l=1.

From this observation it is clear that V := span {vl(t)}l=1 ⊂ T is the L-

dimensional temporal subspace of ρ(x, t). As will be discussed in Chapter 4,

the goal of this thesis is the estimation of V .

We now introduce the concept of a norm, which plays an important role

in our understanding of the PS model as well as the formulation of the

reconstruction methods proposed in this work.

Definition 9 (Norm): A norm is a functional ‖ · ‖ defined on a vector

space X that maps the space to R≥0 and satisfies the following properties: (i)

‖x‖ > 0 unless x = 0, (ii) for α ∈ F , ‖αx‖ = |α|‖x‖, (iii) for x,y ∈ X ,

‖x+ y‖ ≤ ‖x‖+ ‖y‖.

The most commonly known norm is the Euclidean norm, or ℓ2 norm, defined

on C
n and defined as

‖x‖2 :=

(

n
∑

i=1

|xi|
2

)1/2

, (3.3)

where xi is the ith element of x. If instead of Rn we focus on the space of

square integrable functions then we have the L2 norm

‖f(t)‖2 :=

(∫

|f(t)|2dt

)1/2

. (3.4)

Two other important norms utilized in this work are the Frobenius norm

and the nuclear norm. These norms are defined for LVSs where each vector

is a matrix, i.e., an element in C
M×N . The Frobenius norm, ‖ · ‖F , is a

straightforward generalization of the Euclidean norm, namely

‖X‖F =

(

N
∑

n=1

M
∑

m=1

|Xm,n|
2

)1/2

, (3.5)

whereXm,n is the element ofX in themth row and nth column. The definition

of the nuclear norm, ‖ · ‖∗ is less straightforward. Before defining it we first
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must define the rank of a matrix and present a theorem.

Definition 10 (Rank): The rank of a matrix is the number of linearly in-

dependent rows or columns that it contains.

Theorem 1 (SVD Theorem): Any rank L matrix X ∈ C
M×N can be de-

composed as

X =
L
∑

l=1

σlulv
H
l ,

where {σl}
L
l=1 are all real with σ1 ≥ σ2 ≥ . . . ≥ σL > 0, and uH

i uj = vH
i vj =

δi,j. Here H denotes the complex-conjugate transpose operation (·)T and δi,j

is the Kronecker delta. The values {σl}
L
l=1 are called the singular values of

matrix X, and the vectors {ul}
L
l=1 and {vl}

L
l=1 are called the left and right

singular vectors respectively.

With the definition of the singular values of a matrix at hand we now give

the definition of the nuclear norm, which is

‖X‖∗ :=
L
∑

l=1

σl, (3.6)

where {σl}
L
l=1 are the singular values of X.

An important property of norms is that they are convex.

Definition 11 (Convexity): A mapping f(x) from a LVS X onto C is said

to be convex if f (λx+ (1− λ)y) ≤ λf(x) + (1 − λ)f(y), ∀x,y ∈ X . The

mapping is said to be strictly convex if the previous inequality is strict for all

x 6= y.

Convexity plays an important role in the reconstruction methods proposed

in Chapter 4, which involve the minimization of norms. An important fact

about convex functions is that if a local minimizer of a convex function exists,

then that minimizer achieves the global minimum of the function, further-

more if the function is strictly convex, then the global minimizer is unique.

One of the major problems with computing minima is determining whether

the computed minimum is a local minimum or global minimum; however,

since the functionals that we seek to minimize are linear combinations of
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convex functionals (which are easily shown to also be convex), we are freed

of this problem.

In order to develop a quantitative metric for determining the error of a

subspace estimate we make use of the concept of a projection.

Definition 12 (Projection Operator): A projection operator is an idempo-

tent linear transform mapping a LVS onto itself.

Projections operators have very useful properties. To see why, we first intro-

duce the definition of an inner product and a special type of LVS called a

Hilbert space.

Definition 13 (Inner Product): An inner product is a mapping from the

Cartesian product of a LVS X with itself to its scalar field and which has

several important properties. Denoting the inner product of (x,y) ∈ X × X

as 〈x,y〉 these properties are: (i) 〈x+z,y〉 = 〈x,y〉+ 〈z,y〉, (ii) 〈αx,y〉 =

α〈x,y〉, (iii) 〈x,y〉 = 〈y,x〉, where the bar indicates the complex conjugate,

(iv) 〈x,x〉 > 0, ∀x 6= 0.

Two vectors are said to be orthogonal if their inner product is zero.

A normed LVS equipped with a inner product that is complete (contains

the limits of all of its Cauchy sequences) is called a Hilbert space. When

working with Hilbert spaces we have the following theorem which motivates

the formulation of our subspace estimation error metric (described more in

Chapter 5).

Theorem 2 If V is a closed subspace in a Hilbert space H, then the projec-

tion operator P{·} with range {P} = V is unique, and

P{x} = argmin
y∈V

‖x− y‖,

where in this case ‖ · ‖ denotes the induced norm defined as

‖x‖ := (〈x,x〉)1/2 .

We conclude this section with a more thorough discussion of the math-

ematical properties of the PS model. In the beginning of this chapter we

claimed that the PS model was parsimonious. This claim was based on the

following theorem [42].
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Theorem 3 Let X1 and X2 be two measure spaces. Let H be the set of square

integrable functions defined on X1 ×X2, i.e., H = L2 (X1 ×X2), then the set

of all the functions in the form of
∑

l=1 ul(x1)vl(x2) ∀ ul(x1) ∈ L2(X1)

and vl(x2) ∈ L2(X2) is dense in H. Thus, for any f(x1,x2) ∈ H, and

appropriately defined ul(·) and vl(·)

∥

∥

∥

∥

∥

f(x1,x2)− lim
L→∞

L
∑

l=1

ul(x1)vl(x2)

∥

∥

∥

∥

∥

2

= 0.

This theorem shows that if we restrict ρ(x, t) to be a square integrable func-

tion2 then by allowing L to be arbitrarily large, we can use the PS model to

approximate ρ(x, t) to any desired precision.

Another important property of the PS model is that the measured signal is

low rank. More specifically it can be shown that the Casorati matrix formed

from arranging samples {(xm, tn)}
M,N
m,n=1 into a matrix

C (ρ) =













ρ (k1, t1) ρ (k1, t2) · · · ρ (k1, tN)

ρ (k2, t1) ρ (k2, t2) · · · ρ (k2, tN)
...

...
. . .

...

ρ (kM , t1) ρ (kM , t2) · · · ρ (kM , tN)













(3.7)

will have a rank of at most L [42]. This is an incredibly useful property since

it implies that the true measured image has at most L(M + N) degrees of

freedom and can therefore be reconstructed from sparsely sampled data.

3.2 Applications of Subspace Imaging in MRSI

We now briefly discuss two applications of subspace-based imaging in MRSI,

namely the recently introduced SPICE framework for accelerated, high-resolution

MRSI [14,15,17] and the union-of-subspaces method for 1H MRSI [16]. The

underlying theme in these methods is that they utilize the separation of the

spatial and temporal subspaces provided by the PS model and perform re-

constructions using a two-step procedure with explicit subspace constraints.

2This is a reasonable assumption in MRSI since ρ(x, t) represents the signal from a
physical object. More specifically, according to the development in Chapter 2, ρ(x, t) will
be square-integrable since it will have finite spatial support, and be exponentially bounded
in time (as a result of T2 decay).

21



3.2.1 The SPICE Imaging Framework

Spectroscopic imaging by exploiting spatiospectral correlation (SPICE) is a

method (or more accurately, a framework) for performing accelerated MRSI.

The acceleration provided by the method comes from a careful combination

of accelerated acquisition schemes like EPSI with advanced reconstruction

algorithms.

The low rank property of the PS model means that accurate reconstruc-

tions of ρ(x, t) may be estimated from sparsely sampled or noisy data,

thereby allowing for significant reductions in acquisition time. Due to the

inherently low SNR of MRSI data, however, care must be taken as to how the

data is sampled and reconstructed. For instance, given a fully sampled but

noisy data set {s (km, tn)}
M,N
m,n=1, and assuming the model order L is known,

a denoised reconstruction could be obtained from the following procedure:

1. Arrange the data into a Casorati matrix Cs as

C (s) =













s (k1, t1) s (k1, t2) · · · s (k1, tN)

s (k2, t1) s (k2, t2) · · · s (k2, tN)
...

...
. . .

...

s (kM , t1) s (kM , t2) · · · s (kM , tN)













, (3.8)

and compute the denoised Casorati matrix as the solution to

Ĉ = arg min
rank{C}=L

‖C(s)−C‖F . (3.9)

Ĉ is referred to as the rank-L truncation of C(s) and can be computed

using the SVD of C(s) as

Ĉ =
L
∑

l=1

σlulv
H
l , (3.10)

where σl, ul, and vl refer to the lth singular values and vectors of

C(s) [44].

2. Use the inverse DFT to compute ρ(x, t) from the values of Ĉ.

While computationally tractable and simple, this method yields inaccurate

results in the presence of very strong noise [15]. Moreover, it provides no
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means of handling sparsely sampled or under-sampled data, and thus cannot

provide the level of acceleration desired.

The SPICE framework utilizes an explicit subspace approach enabled by

the separation of the spatial and temporal subspaces provided by the PS

model. This separation enables SPICE to accurately reconstruction ρ(x, t)

from data acquired in the form of two data sets,3 one with limited k-space

coverage (low resolution) but dense temporal sampling and one with ex-

tended k-space coverage but sparse temporal sampling (see Fig. 3.1). These

two data sets will hereafter be referred to as D1 and D2 respectively. The

reconstruction is then performed in two steps:

1. Temporal basis vectors {vl(t)}
L
l=1 for the temporal subspace V are es-

timated using the samples from D1.

2. The spatial coefficients {ul(x)}
L
l=1 are estimated as the solution to

the following optimization problem (referred to as a regularized least-

squares problem).

Û = argmin
U

‖s2 −F2{UV̂ }‖22 + λR(U , V̂ ), (3.11)

where s2 is a vector of the samples from D2, F2{·} is the encoding

operator for D2, V̂ is a matrix with rows made from the estimated

basis vectors sampled onto the temporal grid of D2, R(·, ·) is a regu-

larization functional designed to incorporate prior information into the

reconstruction, and λ is a positive real number controlling the data

consistency of the reconstruction, ‖s2 − F2{Û V̂ }‖2. The reconstruc-

tion of ρ(x, t) is then computed from a rearrangement of the elements

of Û V̂ . ρ̄(x, f) is easily obtained through a Fourier transform over t.

This two-step method has important advantages. For one, it is consider-

ably more computationally tractable than a joint estimation of Û and V̂ and

can easily handle sparsely sampled data through a modification of F2. More

importantly, however, the validity of the PS model ensures the accuracy of

Û and V̂ given the acquisition strategies for D1 and D2. While D1 does

not contain enough spatial encodings to yield accurate high-resolution re-

constructions, it does contain enough spectral encodings to yield an accurate

3In practice, these data sets do not necessarily need to be acquired separately.
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estimation of V̂ . The reverse is true for D2 which, while limited in its spectral

encodings, will have enough spatial encodings to produce a high-resolution

estimate of Û . Furthermore, the incorporation of prior information into the

estimations (such as knowledge of tissue boundaries provided by anatomical

reference images) through R, combined with the reduction in the number of

degrees of freedom provided by the explicit subspace constraint makes step

2 an over-determined problem. As such, the SNR of D2 can be very low and

still provide accurate reconstructions, thereby enabling further acceleration.

In Chapter 5 we show results demonstrating the gains in speed and reso-

lution provided by subspace-base imaging methods such as SPICE.

k

t

Figure 3.1: An example SPICE (k, t)-space sampling trajectory. Two sets
of data are acquired, one with dense temporal sampling but limited k-space
coverage (denoted by D1 and shown in blue), and one with sparse temporal
sampling but extended k-space coverage (denoted by D2 and shown in red).

3.2.2 Union-of-Subspaces Based Nuisance Signal Removal

As discussed in Chapter 2, the presence of “nuisance” water and lipid sig-

nals in 1H MRSI presents a significant challenge. The nuisance signals can

be 1000 to 10000 times stronger than the chemical signals of interest, i.e.,

metabolites and neurotransmitters. As such the ability to separate or remove

these nuisance signals from the data is of paramount importance to MRSI.

Significant work has been done on this problem [21–26], and more recently a

union-of-subspaces (UoS) method has been introduced for removing nuisance

signals from data sets in the form D1 and D2 [16]. The method models ρ(x, t)
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as

ρ (x, t) =WM (x)

PM
∑

p=1

uM,p (x) vM,p (t)+

WW (x)

PW
∑

p=1

uW,p (x) vW,p (t)+

WL (x)

PL
∑

p=1

uL,p (x) vL,p (t) ,

(3.12)

whereWM(x),WW (x),WL(x) represent the spatial supports of the (metabolic)

chemicals of interest, water signals, and lipid signals, and {uM,p(x)}
PM

p=1,

{uW,p(x)}
PW

p=1, {uL,p(x)}
PL

p=1 and {vM,p(t)}
PM

p=1, {vW,p(t)}
PW

p=1, {vL,p(t)}
PL

p=1 rep-

resent the respective spatial coefficients and temporal basis functions for

these signals. The removal is achieved by first estimating the water and lipid

signals and then removing their contributions to the data.

The estimation of nuisance signals is performed in a similar fashion as

prescribed in the SPICE framework:

1. Estimate the temporal basis vectors for each signal from D1.

2. Estimate the spatial coefficients through the solution of a regularized

least-squares problem, namely

Û = argmin
U

‖s2 −F2{WUV̂ }‖22 + λR(U , V̂ ), (3.13)

where U = (UM ,UW ,UL), V̂ =
(

V̂ T
M , V̂

T
W , V̂

T
L

)T

, and W is the sup-

port operator W = diag {WM ,WW ,WL}, with WM , WW , WL cor-

responding to WM(x), WW (x), WL(x).

3. Compute the nuisance signal removed D1 and D2 data as ŝ2 = s2 −

F2{Cns} and ŝ1 = s1 − F1{Cns}, respectively; where Cns is the nui-

sance signal contribution Cns := WW ÛW V̂W +WLÛLV̂L, and F1{·}

is the encoding operator for D1.
4

The UoS model was shown to provide significantly improved nuisance signal

removal compared with existing approaches [16].

4In practice, and an additional step to account for the discrepancy between the data
from D1 and D2 is performed prior to the removal from s1.
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CHAPTER 4

SUBSPACE ESTIMATION

4.1 The Subspace Estimation Problem

One key problem in the applications of the subspace-based MRSI applications

like the SPICE framework introduced in Chapter 3 is to accurately estimate

the low-dimensional temporal (or spectral) subspace, i.e., V = span {vl(t)}
L
l=1

(or V̄ = span {v̄l(t)}
L
l=1), from D1 corrupted by field inhomogeneity and noise.

With the subspace determined, the image reconstruction problem reduces to

a linear fitting problem with significantly fewer degrees-of-freedom, making

high-resolution reconstruction with high SNR possible. However, this prob-

lem is challenging because typically only a limited number k-space encodings

are available in D1 due to time and SNR constraints.

The aim of this thesis is to further addresses the problem of subspace

estimation from limited data (within the SPICE framework). In particular,

assuming the availability of a high-resolution B0 field inhomogeneity map

(easily obtained from accompanying anatomical scans) in addition to the

MRSI data, we propose a regularized reconstruction formulation to remove

the field inhomogeneity effects in D1. A singular value decomposition scheme

is then applied to the field inhomogeneity corrected D1 to extract a set of

temporal basis functions spanning the estimated subspace. In the following

sections we describe our proposed method for estimating {vl(t)}
L
l=1.

Based on the formulation of Eq. (2.17) in Chapter 2, we propose the fol-

lowing model for the measured (k, t)-space data {s(km, tn)}
M,N
m=1,n=1 obtained

in an MRSI experiment,

ŝ (km, tn) = s (km, tn) + η(k, t)

=

∫

ρ (x, tn) e
−i2π−γ∆B0(x)tne−i2πkm·xdx+ η(km, tn).

(4.1)
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Here η represents the noise in the measured data and is well modeled by

complex white Gaussian noise. Combining this with the PS model in Eq. (3.2)

used by SPICE, we can express ŝ(km, tn) as

ŝ (km, tn) =
L
∑

l=1

∫

ul(x)vl(tn)e
−i2π−γ∆B0(x)tne−i2πkm·xdx+ η(km, tn). (4.2)

As described in Chapter 3, the SPICE framework defines the imaging problem

as recovering vl(t) (subspace estimation) from a data set with limited k-space

coverage but dense temporal sampling (D1) and reconstructing ul(x) (spatial

coefficient estimation) from a second data set with extended k-space coverage

but sparse temporal sampling (D2) [14]. In this thesis, we focus solely on the

first problem.

Considering that for most MRSI experiments, the dimension (L) of the

subspace can be determined based on prior knowledge of the number of spec-

tral components [44] and/or an empirical analysis of the given data, in the

following discussion, we assume L is known (the issue of estimating L will

be revisited at the end of this chapter and again in the subsequent chapter).

Given L, in the ideal case of negligible field inhomogeneity (∆B0 (x) ≈ 0)

and noise, Eq. (4.2) can be simplified into

s (km, tn) =
L
∑

l=1

ūl (km) vl (tn) , (4.3)

where ūl (k) is the Fourier transform of ul (x). Thus, provided M,N > L,

determination of a set of {vl(tn)}
L,N
l,n=1 can be easily done by computing the

SVD ofC (s), the Casorati matrix formed from the data in D1 (see Eq. (3.8)),

selecting the L dominant right singular vectors, and taking their complex

conjugate. This is due to the fact that C (s) has a rank upper-bounded

by L (implied by Eq. (4.3)) and its row space is spanned by {vl}
L
l=1 where

vl := (vl(t1), vl(t2), . . . ,vl(tN))
T [42, 43].

However, ∆B0 and η are usually not negligible in practice. In this case, as

indicated by Eq. (4.2), ∆B0 introduces significant spatiotemporal coupling,

invalidating the PS model for the measured (k, t)-space signal unless a very

high model order is used. Therefore, a key to accurately determining the un-

derlying low-dimensional subspace lies in removing the effects of ∆B0 on the

given data, which is particularly challenging because of the limited k-space
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coverage for D1. We propose to solve this problem using regularization-based

field inhomogeneity corrected reconstruction which is described in Section

4.2.

4.2 Regularization-Based Field Inhomogeneity

Corrected Reconstruction

First, we represent ρ(x, tn) and ∆B0(x) as follows:

ρ(x, tn) =
P
∑

p=1

ρ (xp, tn)φ(x− xp) (4.4)

and

∆B0(x) =
P
∑

p=1

∆B0 (xp)ψ(x− xp), (4.5)

where φ(·) and ψ(·) are voxel basis functions with the former chosen as a

delta function and the latter as a unit boxcar function, and {x1,x2, . . . ,xP}

represent the set of voxel locations at which ∆B0(x) is given. These two

choices of basis functions are widely used for image reconstruction because

they yield accurate approximation with a large enough P . Moreover, they

lead to the following simplified discretized imaging equation,

ŝ(km, tn) =
P
∑

p=1

ρ (xp, tn) e
−i2π−γ∆B0(xp)tne−i2πkm·xp + η(km, tn), (4.6)

which yields a matrix-vector multiplication form as

ŝ = GBρ+ η, (4.7)

where ŝ contains all the measured data ŝ(km, tn), ρ contains all the voxel

values ρ (xp, tn), η is the noise vector, B is a diagonal matrix containing the

∆B0 phase terms from Eq. (4.6), and G is the Fourier encoding operator.

When km all lie on a Cartesian grid (as in standard CSI acquisitions), G can

be decomposed as G = ΩF, where Ω is a grid sampling operator and F is

the DFT operator.
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Because of the limited k-space data available in D1 (i.e.,M ≪ P ), Eq. (4.7)

is a highly under-determined system. Thus, we propose to solve the prob-

lem by incorporating a priori information about ρ through a regularized

reconstruction formulation:

ρ̂ = argmin
ρ

‖ GBρ− ŝ ‖22 +λR(ρ), (4.8)

where ‖ · ‖22 measures data consistency, R(·) represents the regularization

functional, and λ is the regularization parameter.

4.2.1 Minimum Norm Least-Squares

It is useful to consider the case where no a priori information is used, i.e.,

λR(·) = 0. While not ideal, situations may arise in practice where no a priori

information could be obtained about ρ(x, t); it could also be the case that

a reconstruction free from the bias introduced by R(·) is desired. However,

because the operator G will in general be surjective, a solution to Eq. (4.8)

always exists but is not always unique. We therefore need a way to choose

between multiple solutions.1 One straightforward and popular choice is to

select the solution which has the smallest ℓ2 norm. This solution is known as

the minimum norm, or minimum norm least-squares solution. Unfortunately,

this method’s performance can be sensitive the level of field inhomogeneity

[47], especially with very limited k-space data.

4.2.2 Weighted ℓ2 Regularization

Accordingly, one good choice of R(·) is the weighted ℓ2 regularization func-

tional [47], which enables incorporation of high-resolution information (miss-

ing in limited k-space data) obtained from auxiliary anatomical scans. More

specifically, let

R(ρ) =
P
∑

p=1

Ndir
∑

r=1

wp,r

∣

∣dT
p,rρ
∣

∣

2
, (4.9)

1The addition of the regularization term can be thought of as a way to make this choice
based on a priori information. Good regularization terms make Eq. (4.8) a strictly convex
problem by penalizing solutions with undesirable characteristics.
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where dT
p,r denotes the operator for computing the finite difference at the

pth voxel along the rth direction and wp,r denotes a predetermined positive

weight computed from the reference images. In particular, we compute the

weights as described in [47,48], setting the values to be small where edges are

expected and large elsewhere. When the weights are selected in this fashion

the effect of R(ρ) is to trade data consistency for the preferred high-resolution

edge structure of the reference images.

4.2.3 Nuclear Norm Regularization

Another choice of R(·) is the following nuclear norm penalty denoted as

R(ρ) = ‖C(ρ)‖∗, (4.10)

where C(·) denotes an operation that arranges ρ into a Casorati matrix.

This choice is motivated by the fact that the PS model implies C(ρ) is low

rank and also by the fact that the nuclear norm penalty has been shown to

be an effective surrogate for encouraging low-rankness [49, 50].

4.3 Algorithm Considerations

The minimum norm solution is given by

ρ̂ = (GB)† = B
H
G

H ŝ, (4.11)

where † stands for the Moore-Penrose pseudo inverse. In practice, this solu-

tion is computed by multiplying the zero-filled DFT reconstruction of ŝ (i.e.,

G
H ŝ) by the conjugate of e−i2π−γ∆B0(xp)tn . Because of this, the minimum

norm solution is sometimes referred to as the conjugate phase reconstruc-

tion [47].

Substituting Eq. (4.9) into Eq. (4.8) yields a least-squares problem with a

unique solution given by

ρ̂ =
(

B
H
G

H
GB+ λDT

WD
)−1

B
H
G

H ŝ, (4.12)

where D denotes the row matrix of finite difference operators and W denotes
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a diagonal matrix of the weights. We compute the solution using a linear

conjugate gradient (CG) algorithm.

Integrating Eq. (4.10) into Eq. (4.8) and introducing an auxiliary variable

A = C(ρ), we reformulate the problem as

ρ̂, Â = argmin
ρ,A

‖ GBρ− ŝ ‖22 +λ‖A‖∗

s.t. A = C(ρ).
(4.13)

We then solve the problem in Eq. (4.13) using the alternating direction

method of multipliers (ADMM) [51,52]. A detailed description of this efficient

algorithm is given in Appendix A.2 along with a hybrid method combining

both weighted ℓ2 and nuclear norm regularization functionals for potential

further improvement.

After obtaining ρ̂, we estimate the temporal subspace from the right singu-

lar vectors of C (ρ̂), although more sophisticated basis selection schemes can

be used. It is worth noting that ρ̂ is not the final spatiotemporal/spatiospectral

reconstruction for SPICE and does not have high spatial resolution due to

the limited k-space coverage of D1. Nevertheless, with the effects of ∆B0

effectively removed, it suffices for the purpose of subspace estimation.

4.3.1 Regularization Parameter Selection

One remaining practical issue is the selection of the regularization parameter.

In this thesis we use different selection methods depending on whether or not

the ground truth spatiospectral distributions are known. When the ground

truth distributions are known, we introduce a subspace estimation error met-

ric (described in Chapter 5) and select λ such that this error is minimized.

When the ground truth distribution is not known (as in the case of experi-

mentally obtained data) we use the well-known discrepancy principle [53] for

λ selection in nuclear norm regularized reconstructions, and introduce a new

method for λ selection in weighted ℓ2 regularized reconstructions based on

the idea of balancing the data consistency and regularization terms.

Because the weighted ℓ2 reconstruction is linear and the distribution of η

is known, we can estimate the values of these two terms for an ideal recon-
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struction ρ̂0. The expected value of the data consistency is

E{‖ d−GBρ̂0 ‖
2
2} = E{‖ η ‖22} ≈MNσ2

η, (4.14)

(where ση is the standard deviation of η), and if we assume that the weights

are chosen to be very small on edges of the the true image, ρ, but not on

smooth regions, then we will also have

‖ WDρ ‖22≈ 0. (4.15)

Hence, the major contribution to the penalty term will be the noise in the

reconstruction ξ. We can estimate λ as the value that equates the data

consistency with the value of the regularization term, i.e.,

λ =
MNσ2

η

E{‖ WDξ ‖22}
. (4.16)

If we approximate the distribution of ξ as the distribution of the noise in the

minimum norm reconstruction (GB)†η, and if σ2
η is known, it can be shown

that

E{‖ WDξ ‖22} = σ2
η Tr

{

((GB)†)HDH
W

2
D(GB)†

}

. (4.17)

In practice we estimate (4.17) by generating a random noise vector η and

computing ‖ WD(GB)†η ‖22.

In Chapter 5 we provide simulation-based results comparing the subspace

estimation errors of reconstructions made using the λ selected via this pro-

cedure to the minimum error values.

4.3.2 Model Order Determination

In practice, the model order L can often be determined based on prior knowl-

edge of the spin system. For example in many types of samples the model

order can be viewed as the number of chemicals in the sample or the number

of different mixtures of chemicals in the sample, whichever is smaller. None

the less, when the information about the spin system is less precise, as it

often is for in vivo experiments, it is useful to have a quantitative procedure
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to analyze a given data set and determine L. In this section we formulate a

method for doing so.

Without ∆B0, C (ŝ) is equal to the sum of a rank-L matrix plus a random

matrix. In this case, random matrix theory can be used to help determine

L [54, 55]. In our case, removing the ∆B0 effects will change the noise dis-

tribution which prevents the standard results of random matrix theory from

being directly applicable. However, the effect of ∆B0 correction on the dis-

tribution of the singular values of the random matrix can be determined

empirically using a Monte-Carlo simulation. Then, the estimated singular

value distribution of the (modified) noise matrix can be used to help adjust

the value of L determined based on the available prior knowledge. More

specifically, we can first estimate the expected values of the squared singu-

lar values of a Casorati matrix formed from ∆B0 corrected i.i.d. Gaussian

noise (with variance determined from the data), denoted as E [ξ2l ] for the l
th

singular value. Next, we write the SVD of C (ρ̂) in the following partitioned

form:

C (ρ̂) =
(

U1 U2

)

(

Σ1 0

0 Σ2

)(

V H
1

V H
2

)

, (4.18)

where Σ1 = diag {σ1, σ2, . . . , σR} and Σ2 = diag
{

σR+1, σR+2, . . . , σmin{P,N}

}

,

with σ1 ≥ σ2 ≥ · · · ≥ σR ≥ · · · σmin{P,N}. We then obtain a model order

estimate L̂ by selecting a value of R such that the set of {σl}
min{P,N}
l=R+1 is most

“similar” to {E [ξ2l ]}
min{P,N}−R
l=1 , i.e.,

L̂ = arg min
R<Rmax

min{P,N}−R
∑

l=1

∣

∣

∣

∣

∣

σ2
l+R

∑min{P,N}−R
j=1 σ2

j+R

−
E [ξ2l ]

∑min{P,N}−R
j=1 E

[

ξ2j
]

∣

∣

∣

∣

∣

,

(4.19)

where Rmax < min{P,N} − 1 is the largest rank allowed. To evaluate the

performance of this estimator, we have performed further studies using sim-

ulated data which are presented in Chapter 5. Note that a similar method

was used for determining spatially varying noise levels of MRI data in [56].
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CHAPTER 5

METHODS AND RESULTS

We have evaluated the proposed method using both numerical simulations

and experimental studies. The subspace estimation accuracy was evaluated

quantitatively using simulated data (in the presence of a ground-truth) and

qualitatively using experimental data (in the absence of a ground-truth).

Furthermore, we demonstrate the method’s practical utility by using it in a

SPICE reconstruction of an in vivo data set.

5.1 Simulation Study

We used a high-resolution numerical MRSI phantom (illustrated in Fig. 5.1)

similar to the one used in [14] for our study. The phantom contained brain

metabolite spectra (N-acetylaspartate (NAA), creatine (Cr), choline (Cho),

glutamate (Glu), glutamine (Gln), and myo-inositol (mI)) obtained from

quantum mechanical simulations [57] of a spin echo sequence (TE = 30 ms,

bandwidth = 2 kHz) and incorporated realistic lineshape variation along

with in vivo metabolite concentration ratios [20]. The generated ground-

truth spatiotemporal distribution had a matrix size of 60 × 60 × 256 (with

the third dimension being the temporal axis). Rank truncation was then

performed to generate a rank-16 ground-truth (i.e., L = 16) distribution. A

reference image with a matrix size of 60 × 60 was also created for use with

the weighted ℓ2 correction method (Fig. 5.1b).

Data was generated from the rank-16 ground-truth distribution (according

to Eq. (4.7)) with varying k-space sampling grid sizes (8×8, 12×12, 16×16,

..., 32×32) and corrupted by field inhomogeneity and noise of various levels.

The field inhomogeneity was introduced through an experimentally acquired

in vivo ∆B0 map (Fig. 5.1a) which had been co-registered to the numerical
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Figure 5.1: Numerical phantom: (a) ∆B0 map and (b) anatomical image used
in simulations. (c) Ground-truth metabolite distributions of the phantom,
scaled according to their relative concentrations. The rank-increasing effect
of ∆B0 (see Section 4.1) is illustrated in (d) which shows the first 25 singular
values of the numerical phantom with and without added ∆B0. The rank 6
normalized subspace modeling errors with and without ∆B0 are also provided
for further to further illustrate this effect. Note that without ∆B0 the rank
is 16.

35



phantom. The SNR for the corrupted data was defined as

SNR =
‖ρ̄‖∞
ση

, (5.1)

where ση is the spectral noise standard deviation, ρ̄ is the spatiospectral

counterpart of ρ, and ‖ · ‖∞ denotes the ℓ∞ norm defined which is defined

for a vector x = (x1, x2, . . . , xn)
T as

‖x‖∞ := max
i

|xi| . (5.2)

This SNR definition can be interpreted as the upper bound on metabolite

peak SNR.

We performed field inhomogeneity correction using the simulated (k, t)-

space data and used the corrected data to extract different sets of temporal

bases. The accuracy of the resulting subspace estimates were quantitatively

measured using the following normalized projection error:

e (C,Pe) =
‖C − Pe{C}‖F

‖C‖F
, (5.3)

where C is the Casorati matrix formed from the fullysampled ground-truth

data and Pe{·} is the projection operator for the estimated temporal sub-

spaces. The metric measures the normalized root-squared error between the

true signal and its projection onto the estimated subspace. While other

methods exist for comparing subspaces [58, 59], this “projection error” is

more informative for our purpose since it reflects the ability of the estimated

subspace to represent the underlying signal. Figure 5.1d shows the singular

values and rank 6 projection errors of the ground-truth Casorati matrix with

and without the applied ∆B0, illustrating how the projection error is able

quantify the subspace estimation error from the spatiospectral coupling effect

of ∆B0.

5.1.1 Comparison of Field Inhomogeneity Correction
Algorithms

Figure 5.2a shows some representative results of subspace estimations from

data of various k-space coverages using the three ∆B0 correction methods
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discussed (minimum norm, nuclear norm regularized, and weighted ℓ2 norm

regularized) as well as results from estimations made without ∆B0 correction.

In each case, the projection error in Eq. (5.3) was computed using the first 16

right singular vectors. Figure 5.2b shows the corresponding results for data

corrupted with a higher level of noise and larger field inhomogeneity than for

Fig. 5.2a (more specifically, half the SNR and twice the ∆B0). As expected,

the error generally decreases as k-space coverage increases, and furthermore,

larger coverage is needed as ∆B0 gets stronger and SNR gets lower.

The projection error curves for noise-only scenarios (∆B0(x) = 0) are also

provided as “best-case” references. Comparison between the error curves of

the ∆B0 corrected reconstruction and the uncorrected reconstructions clearly

show that there is a significant improvement in subspace estimation when

field correction is utilized, and comparison with with the noise-only curves

indicates that a 16× 16 to 20× 20 sampling grid provides sufficient k-space

coverage for subspace estimation provided field correction is utilized.
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Figure 5.2: Subspace estimation errors defined in Eq. (5.3) calculated for the
16 (the true model order) dimensional subspaces estimated from uncorrected
and ∆B0 corrected data sets of various sizes simulated with (a) good/typical
conditions (SNR 12, original ∆B0) and (b) poor experimental conditions
(SNR 6, 2× original ∆B0). The estimation errors present without field in-
homogeneity are also provided for reference. The x-axis denotes data size
(k-space coverage) for each data point on the curves.

The results also reveal that our nuclear norm regularized correction pro-

vides more robust estimation over a range of k-space grid sizes and ∆B0

strengths. The ability of the nuclear norm correction scheme to provide bet-

ter estimates than the minimum norm and weighted ℓ2 schemes at smaller

data sizes is particularly desirable for accelerated MRSI experiments. Addi-

tionally, Fig. 5.3 shows that regions where ∆B0(x) varies rapidly, the nuclear
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norm correction scheme is also capable of providing better correction of the

more commonly known peak-broadening effect associated ∆B0 [47, 60–62].
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Figure 5.3: Illustration of the reduction in line shifting and broadening ef-
fects provided by the field corrected reconstructions. (a) ∆B0 map and (b)
minimum norm reconstruction energy distribution. (c) A spectrum from
minimum norm (red), weighted ℓ2 regularized (pink), and nuclear norm reg-
ularized (blue) reconstructions of simulated D1 data (8×8 encodings, 6 SNR,
2 × ∆B0) compared to the ground-truth spectrum (black). The widths in
ppm of the NAA peaks are indicated with arrows. The location of the spectra
is indicated by the red dot in (a) and (b).

In Figs. 5.2a-b and Fig. 5.3 a course-fine search over the values of λ was

performed to minimize the projection errors for each scenario. Although

this is not a viable selection strategy in practice (where the ground-truth

is unknown), this optimization was done so that a more fair comparison

between the field correction methods could be made. An added benefit of

this procedure was that it provided estimates of the minimum projection

errors which could then be used to test other λ selection schemes.
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5.1.2 Validation of Weighted ℓ2 Regularization Parameter
Selection Method

We tested our proposed weighted ℓ2 regularization parameter selection method

(described in Section 4.3.1) by comparing the projection error curves obtained

using the estimated values of λ to those obtained with the optimal values

of λ. Figures 5.4a-b show the respective curves for the same scenarios as

in Figs. 5.2a-b. The difference between projection errors obtained using the

proposed λ selection method and the minimum error estimates are negligi-

ble, indicating that the proposed selection method is a viable strategy for

subspace estimation from experimentally obtained data.
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Figure 5.4: (a) and (b) are the same as in Fig. 5.2 except that here the error
curves for the weighted ℓ2 reconstructions using the optimal are compared
with those made using the estimated (as described in the Section 4.3.1) reg-
ularization parameters. The x-axis denotes data size (k-space coverage) for
each data point on the curves.

5.1.3 Validation of Model Order Estimator

In Monte-Carlo simulations using the numerical phantom data, we generated

50 independent realizations corrupted by noise and field inhomogeneity (the

SNR was 12 and the ∆B0 in Fig. 5.1a was used). We then computed the

squared singular values of the Casorati matrices formed from the minimum

norm ∆B0 corrected data. The results of the simulation (Fig. 5.5a) show

that the variation for squared singular values is very small, which indicates

that the variance of our estimator should be small as well (a highly desirable

characteristic of any estimator).
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Figure 5.5a shows that using the proposed criterion in Eq. (4.19), we obtain

a model order estimate of 4, which is reasonable given the limited number

of spectral components in the phantom and the similarity of metabolite dis-

tribution patterns (Fig. 5.1c). The accuracy of this order estimate is further

confirmed in Fig. 5.5b where it is shown that increasing the model order past

4 yields little change in estimation error regardless of the ∆B0 correction

method used.
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Figure 5.5: (a) Monte-Carlo results for our model order determination crite-
ria from 16 × 16 simulated data corrected using the minimum norm recon-
struction method. Only the first 30 squared singular values are shown. The
dotted lines indicate the maximum and minimum squared singular values
for the corresponding Casorati matrices over all realizations. The vertical
black line identifies the estimated model order (i.e. L̂ = 4). (b) Normalized
subspace estimation errors as defined in Eq. (5.3) calculated for subspaces
of varying dimensionality estimated from 16 × 16 ∆B0 corrected simulated
data in Fig. 5.2a. The estimation error due solely to rank truncation of the
ground truth data (dash-dotted line) is provided as a reference. Notice that
increasing the model order past 4 results in little change in estimation er-
ror regardless of the field correction method used and that this behavior is
consistent with the behavior of the error due solely to rank truncation.

5.2 Experimental Study

5.2.1 Phantom Experiment

Data was acquired from a customized brain metabolite phantom to further

validate the simulation results. The phantom is a polymethylpentene cylin-

drical jar containing NaCl-doped water and ten vials with different diam-
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eters (Fig. 5.6a). The vials were filled with metabolite solutions of phys-

iologically relevant concentrations [20]. More specifically, the large vials

(group 1 in Fig. 5.6) contained approximately 20 mmol/L NAA, 15 mmol/L

Cr, 5 mmol/L choline-chloride (Cho) and 10 mmol/L mI; the medium vials

(group 2) contained approximately 10 mmol/L NAA, 10 mmol/L Cr, 5 mmol/L

Cho and 10 mmol/L mI; the small vials (group 3) contained approximately

15 mmol/L NAA, 10 mmol/L Cr, 5 mmol/L Cho and 10 mmol/L mI.
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Figure 5.6: (a) Anatomical reference image and (b) estimated ∆B0 map (in
Hz) for the experimental phantom.

The experiment was conducted on a 3T Siemens Trio scanner (Siemens

Healthcare USA) equipped with a 12-channel receiver head coil. A high-

resolution CSI data set was obtained using a customized version of a com-

mercial CSI sequence with the following parameters: TR/TE = 1000/30 ms,

FOV = 220×220 mm2, excitation area = 150×150×10 mm2, slice thickness =

10 mm, k-space grid size = 80×80 with elliptical sampling, FID length = 512,

and spectral bandwidth = 2000 Hz. WET water-suppression [24] was also

applied. The acquisition time was 1.3 hours. For reference, a gradient echo

(GRE) image was obtained (grid size = 192× 192, TR/TE = 50.0/3.58 ms),

and for ∆B0 correction, a two-point Dixon method-based field map (grid size

= 128 × 128, TR/TE1/TE2 = 600/9.84/12.3 ms) was obtained immediately

before and after the CSI sequence. The field maps were averaged together

and then fitted to a fifth-order multivariate polynomial (Fig. 5.6).

After acquisition, the HSVD algorithm [63] was applied to the data from

each coil in order to remove any residual water signal. The coil data was then

combined using an SVD-based method [64]. A gold-standard spatial-spectral

distribution was then computed from the 128 × 128 minimum norm recon-

struction of the data followed by a spatial Hamming window and temporal
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truncation to 256 time samples (for denoising).

D1 data of varying grid sizes were generated by retrospectively sampling

the coil-combined CSI data. Temporal subspaces were estimated from the

128×128 DFT and nuclear norm regularized ∆B0 corrected reconstructions.

The gold-standard distribution was then projected onto the estimated sub-

spaces for evaluation of the proposed method.

Figure 5.7 shows subspace estimation results based on the data from the

experimental phantom and provides experimental verification of the impor-

tance of ∆B0 correction for subspace estimation. Using the minimum norm

reconstruction of the 80× 80 CSI data as a gold-standard (Fig. 5.7a-b), the

figure compares projections of the gold-standard onto subspaces estimated

with nuclear norm regularized ∆B0 correction (Fig. 5.7c-e) and without any

correction (Fig. 5.7f-h). It is clear from the figure that the residual after

projection is greatly reduced when ∆B0 is utilized.
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Figure 5.7: Effect of subspace estimation error on the spatiospectral distri-
bution of the 80× 80 CSI. (a) NAA peak integral from Hamming windowed
and minimum norm ∆B0 corrected reconstruction of the 80 × 80 CSI data.
(b) Spectrum from the location indicated by the red dot in (a). (c) NAA
peak integral after a projection of the spatiospectral distribution onto the
subspace estimated from the nuclear norm regularized ∆B0 corrected recon-
struction of D1 data with 16 × 16 spatial encodings. (d) Peak integral of
the residual. (e) Projected (black) and residual (red) spectra with respect
to (b). (f-h) Corresponding results for a subspace estimated without ∆B0

correction. The model orders of the estimated subspaces were 5. The x-axes
denote chemical shift in ppm.
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Figure 5.8 illustrates the effect of D1 k-space coverage on subspace esti-

mation. Each row of the figure shows projections and residuals for D1 with

k-space sampling grid sizes of 8× 8, 16× 16, and 32× 32 respectively. As in

simulation results, the residual error becomes very small for sampling grid

sizes 16× 16 or greater.
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Figure 5.8: Effect of D1 k-space coverage. (a-c) are the same as Fig. 5.7c-e
except that the D1 data had 8×8 encodings. (d-f) are the same as Fig. 5.7c-e.
(g-i) show the results for D1 data with 32× 32 encodings. The x-axes denote
chemical shift in ppm.

Figure 5.9 illustrates the effect of model order selection. The figure shows

results from the same nuclear norm regularized reconstruction as in Figs. 5.7c-

e and Figs. 5.7d-f; however, the number of singular vectors used for the

subspace varies with each row (1, 5, 9 respectively). While the residual is

very large when only a one-dimensional subspace is used, it becomes very

small after L = 5. This is the expected behavior since there are only three

different solutions in the phantom. Moreover, these results indicate that the

method is robust with respect to an overestimated model order.

5.2.2 In Vivo Experiment

In vivo 1H MRSI data was acquired from a healthy volunteer (following

approval from the local Institutional Review Board) using the same scanner

and head coil described above. The same CSI sequence was used to obtain
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Figure 5.9: Sensitivity to model order selection. (a-c) are the same as
Fig. 5.7c-e, except that a one-dimensional subspace was used. (d-f) are
the same as Fig. 5.7c-e. (g-h) show the corresponding results with a nine-
dimensional subspace estimate. The x-axes denote chemical shift in ppm.

low-resolution data with imaging parameters: TR/TE = 1600/30 ms, FOV =

220×220 mm2, excitation area = 150×160 mm2, slice thickness = 10 mm, grid

size = 24× 24, FID length = 512, and spectral bandwidth = 2000 Hz. WET

pulses for water suppression and eight outer volume suppression bands [23]

for lipid suppression were also used. The acquisition time was 15.4 minutes.

High-resolution EPSI data was also obtained with: TR/TE = 1600/30 ms,

grid size = 112×112, number of echoes = 60, readout bandwidth = 100 kHz,

echo spacing = 2700 µs, number of echo-shifts = 2 (effective echo spacing =

1350 µs, and effective number of echoes = 120). The total data acquisition

time was 24.2 minutes with four averages. Other imaging parameters such as

FOV and excitation volume were the same as those of the CSI data. A ∆B0

map with the same imaging parameters as the phantom experiment, along

with two anatomical images with T1 (TR/TE = 1000/30 ms) and T2 (TR/TE

= 1000/130 ms) contrast were also obtained for ∆B0 correction and SPICE

image reconstruction.

The fat and lipid signals were removed from the CSI and EPSI data as de-

scribed in [16]. After the removal of nuisance signals, the temporal subspace

was estimated from the weighted ℓ2 norm regularized ∆B0 corrected recon-

struction (on a 64 × 64 grid) of the CSI data. The estimated subspace was
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then used to compute the spatial coefficients from the high-resolution EPSI

data according to Eq. (3.11); a weighted ℓ2 regularization term ‖WU‖2F with

weights computed from the anatomical images was used.

To illustrate the usefulness of subspace-based MRSI we compared the

SPICE reconstruction to a typical DFT-based reconstruction from CSI data.

Figure 5.10 shows the NAA peak integrals of the minimum norm recon-

struction of the CSI data and the SPICE reconstruction of the data. The

peak integral distribution of the SPICE reconstruction contains much higher-

resolution features, in particular the ventricles are much more clearly defined

in Fig. 5.10d than they are in Fig. 5.10c. Figure 5.10e provides an example

spectrum from the SPICE reconstruction showing that the gain in spatial

resolution is made without sacrificing spectral quality. The possibility of

increased resolution without the loss of spectral quality is made possible be-

cause the SPICE reconstruction takes advantage of the PS property in both

data acquisition and reconstruction, greatly reducing the number of degrees

of freedom of the reconstruction problem. Finally, we note that the time

used to acquire both the CSI and EPSI data used in the SPICE reconstruc-

tion was 39.6 minutes. The time needed to acquire an equivalent resolution

(112× 112 gird size) CSI data set would be approximately 5.5 hours, hence

the SPICE framework provides an acceleration factor of about 8.
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Figure 5.10: SPICE reconstruction results of in vivo data. (a) Anatomical
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from the minimum norm reconstruction of the CSI data. (d) NAA peak
integral from the SPICE reconstruction. (e) Selected spectra from the SPICE
reconstruction at the location indicated by the red dot in (d). The x-axis
denotes chemical shift in ppm.
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CHAPTER 6

CONCLUSIONS

The ability of MRSI to non-invasively image chemical distributions within

an object makes it an ideal tool for studying biological systems. Unlike MRI,

which has had an incredibly powerful impact on the fields of biology and

medicine, MRSI has yet to have this level of impact due to the method’s

inherently poor trade-off between speed, resolution, and SNR.

Recently, subspace-based imaging methods for MRSI have been proposed

which enable accelerated acquisition through use of the PS model. By incor-

porating the low-rank properties guaranteed by this model into the design

of advanced data acquisition strategies and image reconstruction algorithms,

subspace-based methods, such as SPICE, provide high-SNR, high-resolution

images from sparsely sampled data.

A key ingredient in these methods, is the accurate determination of the

temporal (spectral) subspace of the image (spatiospectral distribution func-

tion) from data with limited k-space coverage. Unfortunately, the effects of

measurement noise and inhomogeneity in the magnetic field significantly in-

crease the model order needed to accurately approximate the image with the

PS model, thereby reducing the effectiveness of these methods. Motivated

by this challenge, this thesis presented a method for accurately estimating

the underlying low dimensional subspace from limited k-space coverage data

acquired in the presence of field inhomogeneity and noise. Our method con-

sists of a two-stage approach in which we first correct the data for the effects

of field inhomogeneity using a regularized reconstruction-based method and

then estimate the temporal subspace from the SVD of the corrected data.

We have compared several field correction methods and proposed novel

ways for selecting regularization parameters as well as the dimension of the

underlying subspace. Furthermore, we have demonstrated the effectiveness

of the proposed method using results from simulated and experimentally ac-

quired data. Results from the experimental data are consistent with the
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observations made from the simulation studies which demonstrated the ne-

cessity of field correction prior to subspace estimation.

A key theme of subspace-based imaging methods as well as our field cor-

rected reconstruction-based approach for subspace estimation is the utiliza-

tion of a priori information. This appears in our field corrected reconstruc-

tion schemes via the introduction of a regularization term; however, after

correction we rely on the SVD to provide our basis vector estimation. While

this basis has desirable mathematical properties (e.g., orthonormality), they

are not directly related to underlying spatiospectral distributions, which may

limit our ability to incorporate further a priori information into the spatial

coefficient estimation process. Within the SPICE framework, it is also pos-

sible to use temporal bases constructed based on the spectral distributions

of the underlying chemicals imaged. How to estimate and use these types of

physics-based basis functions in contrast to singular vector basis functions

(constructed based on mathematical properties) should be considered in fu-

ture work. These new subspace estimation methods, in combination with

the development of new and exciting acquisition schemes may lead to truly

practical MRSI which may in turn have broad impacts on the ways in which

we study biology and medicine.
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APPENDIX A

DERIVATIONS AND ALGORITHMS

A.1 Signal Measurement Equation

In this section we provide the proof of the signal measurement equation

Eq. (2.6). Letting J1 and E1 be the current density and electric field inside

of the receiver coil and E2 and J2 be the current density of the electric field

in the object due to the time-varying M , reciprocity theorem tells us that

∫

V∞

E2 · Jldv =

∫

V∞

E1 · J2dv, (A.1)

where V∞ can be taken as all of space. Since the current density due to M

equals ∇ ×M and letting the current in the coil be denoted as I1 and the

voltage induced in the coil due to M be denoted as V1 we have

I1

∫

Coil

E2 · dl =

∫

V∞

E1 · ∇ ×Mdv, (A.2)

where the first integral denotes integration over the receiver coil. Using the

vector identity

∇ · (E1 ×M ) = M · ∇ ×E1 −E1 · ∇ ×M , (A.3)

we can rewrite our previous equation as

I1V1 =

∫

V∞

M · ∇ ×E1dv −

∫

V∞

∇ · (E1 ×M ) dv. (A.4)

From Gauss’ theorem the second integral evaluates to zero since both fields

are zero at infinity. Then using Faraday’s law of induction for time-harmonic
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fields

∇×E = −i2πfB, (A.5)

we have

V1 = −i
2πf

I1

∫

Vsample

M ·B1dv, (A.6)

where the integration is performed over the sample volume.

A.2 The ADMM Algorithm

First, the augmented Lagrangian function for the problem in Eq. (4.13) can

be written as

f (ρ,A,Z) = ‖ GBρ− s ‖22

+ λ‖A‖∗ +
1

2
β‖A−C(ρ)‖2F

+ 〈Z,A−C(ρ)〉,

(A.7)

where β is a chosen penalty parameter, Z is the Lagrange multiplier, and

〈·, ·〉 denotes the matrix inner product defined as

〈A,B〉 := Tr
{

BHA
}

. (A.8)

The following alternating scheme was then used to minimize Eq. (A.7) with

respect to ρ, A, and Z:

1. For fixed Zi−1 and Ai−1, we update ρi by solving

ρi = argmin
ρ

‖ GBρ− s ‖22

+
1

2
βi−1‖Ai−1 −C(ρ)‖2F

+ 〈Zi−1,Ai−1 −C(ρ)〉

= argmin
ρ

‖ GBρ− s ‖22

+
1

2
βi−1‖C(ρ)−Ai−1 −

Zi−1

βi−1

‖2F ,

(A.9)
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which is equivalent to solving the following linear system of equations

(

B
H
G

H
GB+

1

2
βi−1

)

ρi =

B
H
G

Hs+
1

2
vec {βi−1Ai−1 +Zi−1} .

(A.10)

2. For fixed ρi and Zi−1, we update Ai by solving

Ai = argmin
A
λ‖A‖∗

+
1

2
βi−1‖A−C(ρi)‖

2
F

+ 〈Zi−1,A−C(ρi)〉

= argmin
A
λ‖A‖∗

+
1

2
βi−1‖C(ρi)−

Zi−1

βi−1

−A‖2F ,

(A.11)

which has a closed-form solution as [65]

Ai = P diag {sr} Q, (A.12)

where

sr = sign {σr}max

{

|σr| −
λ

βi−1

, 0

}

, (A.13)

and

C(ρi)−
Zi−1

βi−1

= P diag {σr} Q. (A.14)

3. For fixed ρi and Ai, we update the Lagrange multiplier according to

Zi = Zi−1 + βi−1 (Ai −C(ρi)) (A.15)

and update the penalty parameter according to

βi = αβi−1, (A.16)

where α is a predetermined penalty parameter greater than one.
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4. We repeat steps 1-3 until the following convergence criteria is met

‖ρi−ρi−1‖2
‖ρi−1‖2

< ǫ for ǫ > 0. (A.17)

In this work we solved Eq. (A.10) using a linear conjugate gradient descent

method with the same convergence criteria as for step 4 of the overall scheme.

Experimentation with the values of ǫ, β0 and α revealed that good results

and reasonable convergence rates could be met by setting ǫ = 10−5, β0 = 1

and α = 1.2. We initialized both A and Z as zero matrices. Figure A.1

shows the effect of a good choice of α on the convergence of the algorithm.
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Figure A.1: Convergence of the nuclear norm regularized reconstruction of
D1 data with (blue) and without (red) continuation of β. In the red curve,
β0 was chosen empirically for convergence. The data in the reconstruction
was the 16× 16 data with good SNR and ∆B0 generated from the numerical
phantom.

For the hybrid method combining the nuclear norm and weighted ℓ2 regu-

larization functionals, the augmented Lagrangian function is given by

f (ρ,A,Z) = ‖ GBρ− s ‖22

+
1

2
µρH

D
T
WDρ

+ λ‖A‖∗ +
1

2
β‖A−C(ρ)‖2F

+ 〈Z,A−C(ρ)〉,

(A.18)
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and in the first step, the system of equations to be solved for is instead given

by

(

B
H
G

H
GB+

1

2
µDT

WD+
1

2
βi−1

)

ρi

= B
H
G

Hs+
1

2
vec {βi−1Ai−1 +Zi−1} .

(A.19)

Although, we do not present any results for this method, it was found that

the this hybrid method did not yield significantly better results.
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