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ABSTRACT 

Assessing the historic and future impacts of land-use and land-cover change (LULCC) on 

climate requires spatially and temporally explicit data sets on LULCC spanning several decades 

to centuries, because climate change is a long-term problem. Though remote sensing data 

provides a globally consistent picture of land cover, these data are only available from the past 

four decades. Therefore, existing LULCC reconstructions are modeled estimates that combine 

remote sensing data with relatively coarser-resolution inventory statistics that covers longer 

historical period. The uncertainties in modeling assumptions, and limited availability and 

inconsistencies across inventory datasets among other reasons introduce uncertainties in LULCC 

reconstructions. These uncertainties not only limit our ability to model future LULCC, but also 

translate as uncertainties in both historic and future environmental assessments. 

The objectives of my PhD work are as follows: (1) systematically investigate the causes 

of uncertainties in existing historical LULCC datasets, (2) test the sensitivity of LULCC 

quantification uncertainty in estimating CO2 emissions from LULCC (historic and future) using a 

process-based land-surface model, the Integrated Science Assessment Model (ISAM), (3) 

compare the relative uncertainties from various drivers (e.g. LULCC datasets, model processes 

e.g. nitrogen cycle, environmental factors such as climate) in estimating historic and future 

LULCC emissions, and (4) explore statistical techniques to model future LULCC that takes into 

account the uncertainties in quantifying the spatial and temporal patterns of LULCC, and (5) as a 

case-study, identify a key regional hotspot of historic LULCC quantification uncertainty (here, 

India), and reduce uncertainty through improved understanding of the dynamics and drivers of 

land change in the case-study region. I address the above goals by integrating land-surface 

modeling (ISAM), remote sensing and GIS, data collected through ground transects, and 

geospatial data on socioeconomics.  

ISAM simulations show that the estimated net global emissions from LULCC (mean and 

range) across three different historical LULCC reconstructions are 1.88 (1.7 to 2.21) GtC/yr for 

the 1980‘s, 1.66 (1.48 to 1.83) GtC/yr for the 1990‘s, and 1.44 (1.22 to 1.65) for the 2000‘s. The 

estimates are higher than other published estimates that range from 0.80 to 1.5 GtC/yr for the 
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1990‘s and 1.1 GtC/yr for the 2000‘s. These results are higher than other published estimates 

because they include the effects of nitrogen limitation on regrowth of forests following wood 

harvest and agricultural abandonment. The estimated LULUC emissions for the tropics are 

0.79±0.25 for the 1980‘s, 0.78±0.29 for the 1990‘s and 0.71±0.33 GtC/yr for the 2000‘s, and for 

the non-tropics regions are 1.08±0.52, 0.90±0.19 and 0.69±0.12 GtC/yr for the three decades. 

The model results indicate that failing to account for the nitrogen cycle underestimates LULCC 

emissions by about 40% globally (0.66 GtC/yr), 10% in the tropics (0.07 GtC/yr) and 70% in the 

non-tropics (0.59 GtC/yr). If LULCC emissions are higher than assessed, it means fossil fuel 

emissions would have to be even lower to meet the same mitigation target. 

Extending ISAM simulations to the 21
st
 century resulted in two key insights. First, 

nitrogen limitation of CO2 uptake is substantial and sensitive to nitrogen inputs. In ISAM, 

excluding nitrogen limitation underestimated global total LULUC emissions by 34-52 PgC (~21-

29%) during the 20
th

 century and by 128-187 PgC (90-150%) during the 21
st
 century. The 

difference increases with time because nitrogen limitation will progressively down-regulate the 

magnitude of CO2 fertilization effect on regrowing forests, due to decreasing supply of plant-

usable mineral nitrogen. Second, historically, the indirect effects of anthropogenic activity 

through environmental changes in land experiencing LULCC (indirect emissions) are small 

compared to direct effects of anthropogenic LULCC activity (direct emissions). As a result, 

including or excluding indirect emissions had a minor influence on the estimated total LULUC 

emissions historically. In contrast, the indirect LULCC emissions for the 21
st
 century are a much 

larger source to the atmosphere, in simulations with nitrogen limitation. This is because of the 

gradual weakening of the photosynthetic response to elevated (CO2) caused by nitrogen 

limitation. Therefore, what fluxes are including in LULCC emissions across different models is a 

crucial source of uncertainty in future LULCC emissions estimates.  

A detailed investigation of the sensitivity of different global-scale LULCC modeling 

techniques show that land use allocation approaches based solely on previous land use history 

(but disregarding the impact of driving factor), or those based on mechanistically fitting models 

for the spatial processes of land use change do not reproduce well long-term historical land use 

patterns. With an example application to the terrestrial carbon cycle, I show that such 

inaccuracies in land use allocation can translate into significant implications for global 



iv 
 

environmental assessments. In contrast to previous approaches, I present a statistical land use 

downscaling model and show that the model can reproduce the broad spatial features of the past 

100 years of evolution of cropland and pastureland patterns. Therefore, the modeling approach 

and its evaluation provide an example that can be useful to the land use, Integrated Assessment, 

and the Earth system modeling communities.  
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CHAPTER 1 

Introduction 

1.1 Overall Objectives and Content 

Human activities have transformed natural ecosystems into managed areas in almost 

every part of the world. At present, nearly 40% of the Earth‘s ice-free land surface is used for 

agricultural activities, all of which had previously been covered by natural vegetation. Such 

large-scale changes in land cover affect regional and global climate through biogeophysical and 

biogeochemical pathways. 

Assessing the historic and future impacts of land-use and land-cover change (LULCC) on 

climate requires spatially and temporally explicit data sets on LULCC spanning several decades 

to centuries, because climate change is a long-term problem. Though remote sensing data 

provides a globally consistent picture of land cover, these data are only available from the past 

four decades. Therefore, existing LULCC reconstructions are modeled estimates that combine 

remote sensing data with relatively coarser-resolution inventory statistics that covers longer 

historical period. The uncertainties in modeling assumptions, and limited availability and 

inconsistencies across inventory datasets among other reasons introduce uncertainties in LULCC 

reconstructions. These uncertainties not only limit our ability to model future LULCC, but also 

translate as uncertainties in both historic and future environmental assessments. For example, 

quantifying CO2 emissions from historical LULCC is the major source of uncertainty in the 

global carbon budget. Therefore, a systematic understanding of the sources of uncertainties in 

existing LULCC datasets is crucial to: (1) better assess the utility of a dataset (or its subset) to 

particular scientific application, (2) draw better-informed conclusions when used as an input for 

environmental assessments, and (3) to further reduce uncertainty in quantifying LULCC through 

iterative process.  

Motivated by the above reasons, the goal of this study is to: (1) systematically investigate 

the causes of uncertainties in existing historical LULCC datasets, (2) test the sensitivity of 

LULCC quantification uncertainty in estimating CO2 emissions from LULCC (historic and 

future) using a process-based land-surface model, the Integrated Science Assessment Model 
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(ISAM), (3) compare the relative uncertainties from various drivers (e.g. LULCC datasets, model 

processes e.g. nitrogen cycle, environmental factors such as climate) in estimating historic and 

future LULCC emissions, and (4) explore statistical techniques to model future LULCC that 

takes into account the uncertainties in quantifying the spatial and temporal patterns of LULCC, 

and (5) as a case-study, identify a key regional hotspot of historic LULCC quantification 

uncertainty (here, India), and reduce uncertainty through improved understanding of the 

dynamics and drivers of land change in the case-study region. I address the above goals by 

integrating land-surface modeling, remote sensing and GIS, data collected through ground 

transects, and geospatial data on socioeconomics.  

Broadly, the contents of this dissertation can be sub-divided into three parts. In the first 

part consisting of Chapters 2—4, I used existing global land use datasets (historic and future) to 

understand and quantify the sources of uncertainty among them (Chapter 2), and how these 

uncertainties translate as uncertainties in modeling CO2 emissions from land-use and land-cover 

change (Chapters 3, 4). Having developed an understanding of the overall data and model 

uncertainties in these chapters, in the second part (Chapters 5) we (with collaborators) developed 

statistical models to predict the spatial patterns of land-use change. This is the first study to 

demonstrate the ability of a land change model to reproduce the past 100 years of evolution of 

spatial changes in agriculture at global scale. The model is currently being applied for predicting 

the future spatial land use patterns within the Integrated Assessment Modeling (IAM) group at 

NCAR, and in other multi-model comparison projects such as LUC4C. In the third part (Chapter 

6), I take a more spatially detailed, but regional perspective to understand the dynamics and 

drivers of spatial patterns of LULCC in India. I presented each of these chapters as self-

contained units, containing individual abstract, introduction, methods, results, discussion, and 

conclusions. Specific contents and objectives of individual chapters are as follows: 

1. Chapter 2: Comparison of three different historical land use datasets (cropland, 

pastureland, wood harvest, and urban land) and developing algorithms to translate them 

into changes in land cover, consistent with the land surface representation of ISAM.  

2. Chapter 3: Applying the three LULCC reconstruction developed in Chapter 2 within 

ISAM to examine the uncertainties in modeling CO2 emissions due to uncertainties in 
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quantifying historical LULCC. Here, we not only explore LULCC data uncertainty, but 

also uncertainties in modeling key terrestrial processes, including the nitrogen cycle.  

3. Chapter 4: I extend the work of Chapter 2 to estimate LULCC (consistent with land 

surface representation in ISAM) between 2005-2100 under various Representative 

Concentration Pathways (RCPs) of the IPCC CMIP5. Then by extending Chapter 3, I 

drive ISAM with these future LULUC datasets to quantify uncertainties in future CO2 

emissions from LULCC resulting from (1) differences in scenarios, (2) different LULCC 

activities represented in the model, and the sensitivity to the method of representation, (3) 

key structural and parameter uncertainty in model, including the representation of a 

nitrogen cycle, (4) uncertainties in modeling environmental factors (especially climate), 

and (5) different terminologies of what ―LULCC emission‖ implies. 

4. Chapter 5: I present the description and historical evaluation of the development of a 

spatial model of agricultural land use change at global scale. This analysis extends the 

work presented in Chapters 2 and 3, by evaluating the sensitivity of different land use 

reconstruction methodologies to estimating CO2 emissions from LULCC.  

5. Chapter 6: Here, I take a regional focus to improve our understanding of LULCC in 

India. There are two motivations to focus on India. First, India is a region where the 

average human pressure on land resources much exceeds the global average. The 

pressure is expected to further intensify in the future, thus being a global hotspot of land 

change. Second, from analysis presented in Chapter 2, we find that uncertainties in 

historical (late 20
th

 century) LULCC in India are much greater than other regions in 

South Asia. Therefore, there remains a potential to improve our understanding of 

historical LULCC in India (thereby reducing uncertainties).  

 

In this chapter, I present estimates of various land-cover conversions in India at national 

scale between 1985 and 2005, based on a wall-to-wall analysis of high-resolution Landsat 

imageries. Using high-resolution biophysical and socioeconomic datasets combined with 

statistical models, I also investigated the drivers of key land-cover conversions in India. This 

understanding is essential to model LULCC at higher resolution (typically 1km lat/long) required 

for regional environmental assessments and land use planning. Current global datasets (as 

presented in Chapter 2) typically available at ~10km lat/long or coarser resolution do not 
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adequately capture the heterogeneity and fragmentation of India‘s landscapes. Note that drivers 

of LULCC vary with resolution due to scale dependencies.  

Finally, in Chapter 7, I provided an overall summary, and the future direction of research 

presented in this dissertation. 

Chapters 2-5 have already been published in peer-reviewed journals (see table in next 

page). Chapter 6 is currently under review for Regional Environmental Change.  

Note on Supplementary/Appendix: For brevity, no supplementary/appendix material has 

been included with the dissertation. The supplementary text/figure/table numbers cited in each 

chapter corresponds to the online supplementary material (open-access) of the journal 

publication of respective chapters (see next table for chapter-wise journal publication). 
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CHAPTER 2 

Three distinct global estimates of historical land-cover change and land-use 

conversions over a period of 200 years 

 2.1 Abstract 

Earth‘s land cover has been extensively transformed over time due to both human 

activities and natural causes. Previous global studies have focused on developing spatial and 

temporal patterns of dominant human land-use activities (e.g. cropland, pastureland, urban land, 

wood harvest). Process-based modeling studies adopt different strategies to estimate the changes 

in land cover by using these land-use data sets in combination with a potential vegetation map, 

and subsequently use this information for impact assessments. However, due to unaccounted 

changes in land cover (resulting from both indirect anthropogenic and natural causes), 

heterogeneity in land-use/cover (LUC) conversions among grid cells, even for the same land-use 

activity, and uncertainty associated with potential vegetation mapping and historical estimates of 

human land-use result in land cover estimates that are substantially different compared to results 

acquired from remote sensing observations. Here we present a method to implicitly account for 

the differences arising from these uncertainties in order to provide historical estimates of land 

cover that are consistent with satellite estimates for recent years. Due to uncertainty in historical 

agricultural land use, we use three widely accepted global estimates of cropland and pastureland 

in combination with common wood harvest and urban land data sets to generate three distinct 

estimates of historical land-cover change and underlying LUC conversions. Hence, these distinct 

historical reconstructions offer a wide range of plausible regional estimates of uncertainty and 

the extent to which different ecosystems have undergone changes. The annual land cover maps 

and LUC conversion maps are reported at 0.5°×0.5° resolution and describe the area of 28 land 

cover types and respective underlying land-use transitions. The reconstructed data sets are 

relevant for studies addressing the impact of land-cover change on biogeophysics, 

biogeochemistry, water cycle, and global climate. 
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2.2 Introduction 

Human activities have transformed natural ecosystems into managed areas in almost 

every part of the world (Foley et al., 2005; 2011). At present, nearly 40% of the Earth‘s ice-free 

land surface is being used for agricultural activities, all of which had previously been covered by 

natural vegetation (Ramankutty et al., 2008; Ellis et al., 2010). Such large-scale changes in land 

cover affect regional and global climate through biogeophysical (Bonan et al., 1992; Pielke et al. 

2002; 2011; Feddema et al. 2005; Brovkin et al., 2006; Bala et al. 2007; Pitman et al. 2009, 

2011; Findell et al., 2009) and biogeochemical (Jain and Yang 2005; Canadell et al. 2007; Bonan 

2008; Jain et al. 2009; Pongratz et al., 2009; Shevliakova et al. 2009; Houghton et al., 2012) 

pathways. 

Assessing the historical impacts of land-use/cover change (LUCC) at global scale (e.g. 

biogeophysical, biogeochemical, and climate effects) requires spatially and temporally explicit 

data sets on land cover and land-use/cover (LUC) conversions (replacement of one land cover 

type by another) spanning several hundred years. Though remote sensing data provides a 

globally consistent picture of land cover, these data are only available from the past four decades 

(Houghton et al. 2012). Hence, several studies (e.g. Ramankutty and Foley, 1999; Klein 

Goldewijk, 2001; Klein Goldewijk et al., 2006; Hurtt et al., 2006; 2011; Olofsson and Hickler, 

2008; Pongratz et al., 2008; Klein Goldewijk et al., 2010; Klein Goldewijk et al., 2011;) have 

adopted different approaches in order to reconstruct spatially explicit data sets of dominant land-

use activities (e.g. cropland, pastureland, urban land, wood harvest) covering several centuries. 

Typically, process-based modeling studies combine one or more of these land-use data sets with 

a map of potential vegetation (representing primary land cover in the absence of human 

activities) to estimate the changes in land cover. The method adopted to replace potential 

vegetation varies from simple proportional clearing (e.g. Jain and Yang, 2005; Pitman et al., 

2009) to a rule-based approach based on several logical assumptions and prioritizations that best 

describe the trends associated with historical LUCC (e.g. Hurtt et al., 2006; 2011). 

Hurtt et al. (2006) developed a Global Land-use Model (GLM) to provide historical 

estimates of LUCC and LUC conversions due to expansion of cropland and pastureland, shifting 

cultivation and wood harvest at 1° spatial resolution. An updated version of GLM framework has 

recently been used in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment 
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Report (AR5) to provide estimates of LUCC and LUC conversions among five simple classes 

(cropland, pastureland, urban land, primary land, and secondary land) at 0.5°×0.5° resolution 

annually from 1500 to 2100 (AD) (Hurtt et al., 2011). This includes historical input data 

covering the period 15002005 and data for the four Representative Concentration Pathways 

(RCP) scenarios (Moss et al., 2010) for the future (20052100). The LUCC and LUC conversion 

estimates are usually translated to the specific land cover classes suitable for use in a process-

based model and subsequently used for impact assessments (e.g. Lawrence et al., 2012). Jain and 

Yang (2005) used a much simpler technique of superimposing the historical cropland data (based 

on Ramankutty and Foley 1999) on a 0.5°×0.5° potential vegetation map (with each grid cell 

occupied by one potential vegetation) to estimate the changes in land cover. Similar but varying 

methods for superimposing a common cropland and pastureland were adopted by each of the 

seven climate models that participated in an inter-comparison study aimed at understanding the 

historical impact of land-cover change (Pitman et al., 2009). These estimates have been used as 

inputs to terrestrial carbon models, dynamic vegetation models, and earth system models to 

assess the impacts of LUCC (e.g. Shevliakova et al., 2009; Yang et al., 2010; Lawrence et al., 

2012) on biogeophysics and/or biogeochemistry. However, most of these previous studies have 

not considered land-cover change arising due to indirect anthropogenic (e.g. climate driven land-

cover change) or natural disturbances like fires, blowdowns, and insect outbreaks. Several local- 

to national-scale studies have demonstrated their importance and ecological significance (e.g. 

Giglio et al., 2010; van der Werf et al., 2010; also see Lambin et al., 2003 and Foley et al., 2003). 

For example, according to Forest Resources Assessment (FAO 2006), 104 million hectares of 

forest on average were reported to be significantly affected each year by forest fire, pests (insects 

and disease), or climatic events such as drought, wind, snow, ice, and floods, with many 

countries missing this crucial information. In addition to differences arising from unaccounted 

land-cover change (indirect anthropogenic and natural causes), significant uncertainties could 

also arise due to heterogeneity associated with LUCC at temporal and spatial scales which 

cannot be captured using a rule-based approach of converting vegetation generalized at a 

regional or global scale. As a result, the global land cover estimated by most of the previous 

studies does not match estimates based on remote sensing data, a valuable tool in detecting 

several types of land-cover changes and land-cover modifications (subtle changes in land cover) 

that are difficult to map using other methods. For example, a comparison of forest area in 2005 
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from Hurtt et al. (2011) (estimated by combining information on primary and secondary land 

with a basemap which classifies each grid cell as either forest or non-forest based on potential 

vegetation biomass, as provided by Hurtt et al. 2006) and 500 m resolution Moderate Resolution 

Imaging Spectroradiometer (MODIS) Collection 5 land cover data (Friedl et al. 2010) following 

International Geosphere-Biosphere Programme (IGBP) classification scheme (Loveland and 

Belward 1997) indicates pronounced differences in magnitude and spatial distribution (Figures 

2.1(a) and (b)). Globally, Hurtt et al. (2011) estimated forest area was about 8 × 10
6
 km

2
 higher 

than the MODIS estimated value of 31.5 × 10
6
 km

2
 in 2005. Similarly, other studies also 

overestimated the global forest extent for the recent past at similar magnitudes (refer to Sect. 

2.5). It is essential to reconcile such differences in estimates, especially in the context of studies 

addressing the biogeophysical impacts of land-cover change. 

The objective of this study is to build upon and extend the approaches of previous studies 

in order to provide estimates of historical land-cover change (and underlying LUC conversions) 

that are consistent with satellite observations. We use a rule-based approach to assign priorities 

for converting land cover due to various human land-use activities. Multiple years of satellite 

data sets are used to quantify the differences in estimates that may be arising due to unaccounted 

land-cover change and heterogeneity associated with LUCC that cannot be captured using simple 

rules for clearing vegetation. These differences are used to constrain and accordingly adjust the 

priorities for changing land cover, thereby producing land cover maps consistent with satellite 

observations for recent years. The work presented here takes into account land-cover change due 

to four major land-use activities: 1) cropland expansion and abandonment, 2) pastureland 

expansion and abandonment, 3) urbanization, and 4) regrowth due to wood harvest. Due to 

uncertainties associated with historical agricultural land-use, we have used three global historical 

data sets of cropland and pastureland (refer step 1 in Sect. 2.3) in combination with a common 

data set for historical wood harvest and urban land, to produce three distinct estimates. The core 

products we generated were annual maps (at 0.5°×0.5° resolution) of land cover and LUC 

conversions starting from the pre-industrial year of 1765 until 2010 or before (based on the 

ending time of the three cropland and pastureland data sets). The annual land cover data sets are 

reported as area fractions of 28 land cover types (Table 2.1) for each 0.5°×0.5° grid cell and the 

annual LUC conversion maps are reported as the area converted for each of the 92 unique 

conversions possible (refer supplementary Table S1) among the 28 land cover types. The results 
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are compared with other recently published model results and data-based studies. Finally, the 

sources of uncertainties in the present study are discussed. 

2.3 Methods 

The method used to characterize historical land-cover change can be described in five 

steps: 1) Historical land-use change data sets are processed to suit this study; 2) Land cover map 

for the year 1765 are generated by combining potential vegetation map, cropland, pastureland, 

and urban land map for that year; 3) Land-cover change and LUC conversions starting with the 

1765 land cover map are estimated using a rule-based approach for prioritizing LUC conversion 

for each of the four land-use activities; 4) Estimates from the previous step are compared with 

satellite data. Priorities are accordingly adjusted to correct for the differences; 5) Grassland, 

pastureland, and cropland estimates are separated into C3/C4 photosynthetic pathways. 

Step 1: processing of historical land-use change data sets 

The three different data sets on cropland and pastureland are based on: 1) HYDE 3.1 

(Historical Database of the Global Environment) (Klein Goldewijk et al., 2011), 2) New 

pastureland estimates and updated cropland estimates based on Ramankutty and Foley (1999) 

(N. Ramankutty, personal communication, 2011), and 3) Regional estimates based on Houghton 

(2008). These three agricultural land-use data sets are henceforth referred to as HYDE, RF, and 

HH data, respectively. The urban land data set is from Klein Goldewijk et al. (2010). Historical 

wood harvest data are based on annual wood harvesting rates from Hurtt et al. (2011). RF and 

HH data are at an annual time scale. The decadal time resolution HYDE data was linearly 

interpolated to yield annual maps. All these data sets except HH data are gridded data sets at 

0.5°×0.5° or finer resolution. Finer resolution data were aggregated to 0.5°×0.5° resolution. The 

HH data set provides the annual rate of deforestation/reforestation due to cropland, pastureland, 

wood harvest and shifting cultivation for ten regions (defined in Houghton et al., 1983) covering 

the entire globe, rather than by geographic details. HH regional data sets for cropland and 

pastureland resulting from deforestation were converted to gridded estimates using the LUC 

conversion estimates derived based on RF data. Additional details on the method used to 

spatialize HH data, details and processing of other data sets are available in supplementary text. 

The three land-cover change and LUC conversion estimates generated from this study 
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(henceforth referred to as ISAM-HYDE, ISAM-RF and ISAM-HH) based on three agricultural 

data sets (HYDE, RF, and HH) utilized the same wood harvest and urban land data. ISAM-

HYDE, ISAM-RF, and ISAM-HH estimates extend to the year 2010, 2007 and 2005, 

respectively. 

Step 2: land cover map of 1765 

A land cover map for the year 1765 was generated as a reference map to track land-cover 

change and LUC conversions. We started with the global map of potential vegetation derived at 

5 min spatial resolution by Ramankutty and Foley (1999). Fourteen of the 15 vegetation classes 

present in the potential vegetation map directly correspond to the potential land cover types used 

in this study (Table 2.1). The land cover classification used in this study is chosen to be 

consistent with the land cover types required for the Integrated Science Assessment Model 

(ISAM) (Jain and Yang, 2005; Yang et al., 2009; Yang et al., 2010) for which we originally 

produced these data sets. Mixed forest (which is not part of our land cover classification) from 

the potential vegetation map was reclassified into any one of the seven forest types by searching 

for dominant (greater than 70% of the area considered) forest type within a 4°×4° resolution 

window around the grid cell. The window size was increased until the requirements for dominant 

forest type were satisfied. Savanna (usually defined as tropical grasslands) present outside 

tropical regions was reclassified to other herbaceous types, using the method adopted for 

reclassifying mixed forest. Ramankutty and Foley (1999) assigned single potential vegetation to 

each 5 min grid cell from 1km DISCover satellite-based global land cover data (Loveland and 

Belward, 1997) even in grid cells where anthropogenic land cover was absent. In such grid cells, 

we used MODIS data (Friedl et al., 2010) for the year 2005 classified under IGBP classification 

scheme to reassign the grid cell area (currently occupied by either 100% forest or non-forest) to 

fractional area of forest and non-forest. The forest and non-forest types were determined using a 

combination of MODIS land cover data (Friedl et al., 2010) and the method adopted to reclassify 

mixed forest. This reduced the total area of forest in the potential vegetation map from 55.2 × 10
6
 

km
2
 to about 48.6 × 10

6
 km

2
. An additional land cover class (water-covered areas) map was 

derived at 5 min resolution using MODIS land cover data (Friedl et al., 2010) for the year 2005, 

and was included in the potential vegetation map by proportional adjustment of potential 

vegetation areas. 
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Next, we aggregate the 5 min resolution potential vegetation map to 0.5°×0.5° resolution 

to yield the fractional areas of 15 land cover types within each grid cell. Hence, each grid cell in 

our potential vegetation map can be occupied by more than one type of natural vegetation. We 

assume water-covered areas to be constant for every year. 

Finally, we derive the land cover map for the year 1765 by including the 1765 cropland 

and pastureland maps from RF and the urban land map (Klein Goldewijk et al., 2010); the 

0.5°×0.5° resolution potential vegetation map is generated by simple proportional adjustments to 

the area of potential vegetation presents within each grid cell. The map was used as a starting 

point to produce all three estimates of land-cover change and LUC conversions. We also assume 

all forest in the 1765 land cover map as primary forest. At this stage, we do not distinguish 

between C3/C4 types for grassland, pastureland, and cropland. Classification to C3/C4 pathways is 

accomplished in the final step. 

Step 3: estimating historical LUCC and LUC conversions 

To derive the LUCC and LUC conversion estimates, we define a set of rules to 

characterize each of the four land-use activities. These rules impose a logical sequence and 

priority order in which land cover is modified. Based on these rules, a priority factor is assigned 

to each land cover type within each grid cell, corresponding to each of the four land-use 

activities (Figure 2.2). The priority factor for a land cover type indicates the probability of that 

vegetation being altered due to that particular land-use activity. The priority factor for an 

individual land cover type within each grid cell varies from 0 to 1.0, and the sum of priority 

factors for all land cover types corresponding to each land-use activity sums up to 1.0. 

The rules that determine the priority factors for a land-use activity depend on the 

magnitude of that land-use activity for that year, the land cover map from the previous year, and 

the potential vegetation map. For example, for an increase in cropland area between two 

consecutive years in a grid cell, a priority factor is assigned to each land cover type (except for 

water, pastureland and urban land for which priority factor is assumed to be 0), which is 

proportional to the total area of natural vegetation in that grid cell. The increase in cropland area 

is accounted by converting each land cover type to cropland based on its designated priority 

factor. In the case of cropland abandonment (characterized by decrease in cropland area with 
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time), the abandoned land reverts back to the potential vegetation level present in that grid cell. 

In such cases, the potential vegetation map was used to determine the priority factors. Usually, 

grasses and other herbaceous land cover types are faster colonizers than forests (Arora and Boer, 

2006). They invade the abandoned land initially, while woody vegetation grows later. However, 

the rationale here is that a one-year time gap is sufficient for woody vegetation to reappear. This 

method provides a simple representation of successions. LUCC treatment due to urbanization is 

similar to that described for cropland, with the exception that in case of decrease in urban land 

area with time, the decreased area is reverted to grasses (i.e. priority factor for grasses was 

assigned as 1.0), irrespective of the potential vegetations present within that grid cell. For wood 

harvest, preference is given to primary forests over secondary forests. Priority factors were 

assigned proportional to the area of each of the seven primary forests within that grid cell. In 

cases where total primary forest was insufficient to account for wood harvest, clearing was done 

from secondary forests following a similar approach. For an expansion of pastureland, clearing 

of grassland is preferred (Houghton, 1999). In cases where grassland is insufficient, we followed 

the method adopted for increase in cropland area. In case of decrease in pastureland area, the 

abandoned area was reverted back to grassland. 

There are a few exceptions to these rules. In cases where cropland is abandoned and 

pastureland/urban land concurrently increase with time, a part of the abandoned area was 

considered a source for pastureland/urban land. The fraction of abandoned cropland area used as 

a source of pastureland/urban land is determined by the likelihood that the other vegetations 

present in the grid cell are sources for the growth in pastureland/urban land. For example, a grid 

cell dominated by forest is more likely to have a higher fraction of abandoned cropland area to 

be used as a source of pastureland than a grid cell dominated by grassland. Similar treatment 

exists for decrease in pastureland area accompanied by increase in cropland/urban land, in which 

a part of cleared pastureland area is considered a source for cropland/urban land. It should be 

noted that in case of succession, forest returns as secondary forest (vegetation numbers 16 to 22 

in Table 2.1), whereas we have not differentiated herbaceous land cover types as 

primary/secondary. Because the data sets for four land-use activities considered in this study 

come from more than one source, certain cases exist where the desired conversations, as 

determined by the assigned prioritization factor, could not be carried out for all four land-use 

activities. In such cases, we assign the following order of preference to modify land cover: urban 
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land, cropland, wood harvest, and pastureland. This order of preference was chosen considering 

the uncertainties in magnitude, spatial distribution, and definitions associated with each land-use 

activity. Hence, the cropland and pastureland areas in ISAM-RF, ISAM-HYDE, and ISAM-HH 

will be slightly less compared to the original RF, HYDE, and HH data sets in certain grid cells. 

The land cover map of 1765 derived from step 2 (step 2 in Sect. 2.3) is used as the initial 

condition from which we move forward in time, modifying land cover by superimposing the 

year-to-year land-use activities following the method described above. 

Step 4: Calibration using satellite data 

Historically, substantial land-cover changes have occurred due to climate feedbacks 

(Parry et al., 2007) and through natural disturbances like forest fires (Giglio et al., 2010; van der 

Werf et al., 2010), blowdowns, and insect outbreaks (Foley et al., 2003; Lambin et al., 2003). 

Due to the unavailability of information on the magnitude and spatial extent to which these 

effects have altered land cover historically at a multi-centennial time scale, their impacts on land 

cover have been excluded from the rule-based approach for estimating historical land-cover 

change. Additionally, the rule-based approach is a simplified representation of general trends 

associated with historical land-cover change due to human land-use activities, which is subject to 

variations at the regional and grid cell levels. Due to the factors discussed above, there exist 

differences between satellite observations and estimates from the rule-based approach (Step 3; 

Sect. 2.3). For example, the total forest area estimated using rule-based approach (Figure 2.3(a)) 

differs from satellite estimates (Figure 2.1(a)) for certain grid cells. Our estimated forest area 

varies from 36.7 to 39.4 × 10
6
 km

2
 among the three estimates, compared to 30.7 × 10

6
 km

2
 (after 

changing to the land mask used in this study) estimated using MODIS land cover data (Friedl et 

al., 2010) classified under IGBP classification scheme. We implicitly account for these 

differences by calibrating with satellite data. 

We first classify the 28 land cover classes into two broad categories: forest and non-

forest. Medium resolution satellite data captures forest extent/type with high accuracy compared 

to other herbaceous types (Jung et al., 2006; Friedl et al., 2010). The basic aim is to reconcile 

these in a way that will make the magnitude and spatial patterns of present-day forest estimates 

as close as possible to satellite estimates. 
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We compare estimated forest area for the year 2005 with estimates from 500 m resolution 

MODIS land cover data (Friedl et al., 2010) for the year 2005 classified under IGBP land 

classification scheme, aggregated at 0.5°x0.5° resolution. An overestimation of forest area in a 

grid cell indicates that higher priority factor should be assigned to forest land cover types for 

clearing than previously assumed. Similarly, an underestimation of forest area in a grid cell 

indicates a lesser priority factor should be assigned to forest land cover types for clearing. To 

modify the priority factor for each land cover type in a grid cell for a particular year, we 

determine a ―correction factor‖ using a combination of information from the potential vegetation 

map, the land cover map for the year 2005, the land cover map of the historical year for which 

the priority factor is to be adjusted, and the magnitude of underestimation/overestimation of 

forest area estimated in comparison to satellite data. The correction factor for each land cover 

type is chosen such that the estimated area of forest matches with satellite data when the 

correction factor is multiplied by the priority factor estimated in step 3. The value of the 

correction factor is > 1 for land cover types with increased priority and < 1 for land cover types 

with decreased priority. An additional constraint is imposed so that the sum of the correction 

factor multiplied by priority factor for all land cover types, corresponding to each land-use 

activity, add up to 1.0, a basic criteria described in step 3 (step 3 in Sect. 2.3). For the grid cells 

where land-use data indicates the absence of anthropogenic land cover types, a simple linear 

interpolation is used to adjust the area of natural vegetations between the starting and ending 

reference years, in order to make the present-day estimates consistent with satellite data. A 

similar approach was applied to grid cells where the magnitude of historical land-use was small 

and correction factor alone is insufficient for effecting the changes needed to match satellite 

estimates. The changes effected through linear interpolation are reflected in annual land cover 

maps, but are not recorded as LUC conversions. Hence, our estimates of LUC conversions are 

only attributable to the four direct human land-use activities. To avoid underestimation of forest 

area from satellite data, which may result due to the exclusion of regrowing forest, we also use 

four additional years of MODIS land cover data (Friedl et al., 2010) covering the period 2001-

2004 to estimate the ‗correction factor‘. This method results in a close match between MODIS 

forest distribution (Figure 2.1(a)) and our estimated forest distribution (Figure 2.3(b)). 
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Step 5: Separation of grassland, pastureland, and cropland to C3/C4 types 

We only classify grassland, pastureland, and cropland to C3/C4 types in annual land cover 

maps, not annual LUC conversion maps. To separate the grassland and pastureland area fractions 

into C3 and C4 types, we followed the modified approach of Still et al. (2003). If there is at least 

one month in a year when temperature is above crossover temperature (the temperature at which 

the C3 quantum yield equals C4 quantum yield) and rainfall is concurrently above 25 mm, it is 

assumed that the C4 grass fraction is equal to the number of months where C4 photosynthesis is 

favored relative to the number of growing season months with a temperature greater than 5°C. 

Mathematically, 

C4 fraction = (number of months with Tair > crossover temperature and rain > 25mm) / 

(number of months with Tair > 5°C) 

We use the monthly air temperature (Tair) and precipitation data at 0.5°×0.5° resolution 

based on CRU TS 3.0 (updated based on Mitchell and Jones, 2005), covering the period 

19012006; a 10-year moving average was calculated for both variables, to avoid sudden 

fluctuations. For the years 1765 to 1900, average monthly precipitation and temperature values 

from 1901 to 1910 were used. For the period 20072010, the same values were assigned as for 

the year 2006. For each year, we calculated the crossover temperature following Collatz, Berry 

and Clark (1998), based on global CO2 concentration values from 1765 to 2010 (Meinshausen et 

al. 2011). The calculated crossover temperature varies from 18.2°C in 1765 to 24.1°C in 2010. 

The C4 fraction generated for the period 17652010 was combined with annual pastureland and 

grassland estimates from step 4 (step 4 in Sect. 2.3), to separate them into C3 and C4 fractions. 

To separate the annual croplands into C3 and C4 fractions, we use the estimates of 

harvested areas of 175 different crops across the world at 5 min by 5 min spatial resolution for 

the year 2000 (Monfreda, Ramankutty and Foley 2008). C3 and C4 designations were assigned to 

each crop type based on known pathway characterizations. A map indicating the fractional 

coverage of C4 croplands was generated at 0.5°×0.5° resolution. In grid cells where there were 

no crops present, 100% of the grid cell was assigned to C3 croplands. This map was used to 

separate annual historical cropland estimates into C3 and C4 types. 
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2.4 Results 

Comparison of cropland and pastureland estimates among 3 data sets 

Comparison of global cropland statistics of RF and HYDE data averaged over the period 

2001-2005 shows similar levels of cropland area, varying from 14.3 to 15.3 × 10
6
 km

2
, with 

HYDE estimates being 8% higher than RF estimates (Table 2.2). However, this global picture 

varies regionally. The most pronounced differences are found in Pacific Developed region and 

China, where the cropland areas estimated by HYDE data are 70% and 23% higher than RF data, 

respectively. The major differences between the two data sets result from the fact that these data 

sets adopted different methods (Refer supplementary text) and agricultural inventory data sets. 

While HYDE inventory data was based on FAO (2008), RF estimates relied more on national-

level census statistics, along with FAO estimates for recent years (Ramankutty et al., 2008). 

Houghton‘s estimates of both global and regional croplands are lower than RF and HYDE 

estimates. This is because he considers only croplands that were created or abandoned on lands 

originally covered by forests. 

While global cropland statistics estimated based on RF and HYDE data match reasonably 

well with each other, pastureland statistics globally show substantial disagreement, with even 

more regional disagreement. This is because the global pastureland area estimated by the census 

report used in RF itself is significantly lower than FAO (2008) estimates of pastureland used in 

HYDE data. Globally, HYDE data estimates of pastureland are 26% higher than the RF 

estimated value of 26.3 × 10
6
 km

2
 average over the period 20012005. Major disagreement is 

found over ‗North Africa and the Middle East‘ where pasture area estimates for HYDE are 83% 

higher than RF for 2005. While the percentage difference is highest for ‗North Africa and the 

Middle East‘, a large difference in pastureland area is found in the Pacific Developed region and 

China, where the estimated pastureland area averages from 2001 to 2005 for HYDE are 1.5 × 10
6
 

km
2
 (~53%) and 1.7 × 10

6
 km

2
 (~43%) higher than RF data, respectively. HH data estimates of 

pastureland are zero for all regions except Latin America, because Houghton (2008) assumes that 

all pastures are derived from grasslands, with the exception of Latin America, where significant 

clearance of forest area for pastureland has taken place due to extensive cattle ranching (Lambin 

and Giest, 2003). 
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Land-cover change estimates during 17652005 

The 28 land cover classes have been combined into a broader category for the purpose of 

analysis (Table 2.3), and the values are presented in the text as range among three estimates 

(ISAM-HYDE, ISAM-RF and ISAM-HH). Globally, the total area of forest has decreased from 

45.5 × 10
6
 km

2
 (~36% of the total land area) to about 2930 million km

2
 during this period, a 

one-third decrease. Of this, human land-use activities have contributed to a net decrease in forest 

area of about 6.58.4 million km
2
 (Table 2.4), while the rest is attributed to indirect 

anthropogenic and natural causes. Total deforestation amounts to 14.514.7 million km
2
, and 

forest regrowth ranges between 6 and 8 million km
2
. Forest area in North America shrunk by 

33.5 million km
2
 (~35%40%) and Tropical Africa shrunk by 2.32.6 million km

2
 

(~43%49%) (Table 2.4). Total forest area in Europe decreased by 44%52% from its initial 

value of 2.5 × 10
6
 km

2
. Estimates of forest area in China and South and South-East Asia (SSEA) 

regions show the largest difference among the three estimates. Forest area in China and SSEA 

decreased by 40%52% and 47%66%, respectively. Such large differences in these regions are 

mainly due to uncertainty in estimates of cropland (see Ramankutty et al. 2008; Liu and Tian 

2010). North America, the former USSR and Tropical Africa show a large amount of net forest 

loss attributed to indirect anthropogenic and natural causes. Total forest regrowth due to human 

land-use activities is about 68 million km
2
. During 2005, roughly 24%28% of the total forests 

present are secondary forests (Figure 2.4 and Table 2.3). North America contains about 26% of 

global secondary forest whereas the former USSR contains 17-23% of global secondary forest 

(Figure 2.5). ISAM-RF estimates show higher secondary forest in all regions due to more 

abandonment of croplands present in RF data compared to HYDE data. 

Global area of savannas shrunk by 5.47.1 million km
2
 (i.e. 38%50%) and shrublands 

decreased by 6.88.9 million km
2
 (i.e. 40%53%) (Table 2.3). The area of grassland and 

pastureland combined increased by about 19.724 million km
2
 (i.e. 83%101%). However, 

regional comparisons show more disagreement than global estimates of change (Figure 2.5). For 

a single time snap during 2005, ISAM-HYDE estimates show 57% less shrubland area in the 

Pacific Developed region compared to ISAM-RF estimates. Except for North America, ISAM-

RF shows more cropland expansion in regions that were originally shrublands, compared to 
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ISAM-HYDE. The area of grassland in ISAM-RF is higher than ISAM-HYDE for all regions 

because of lower pastureland estimates by RF data compared to HYDE data. As we have 

considered only deforestation and reforestation statistics due to agricultural activities from HH 

data, they have been excluded in the discussion relating to comparison of herbaceous land cover 

types. 

LUC conversions during 17652005 

Globally 6.66.8 million km
2
 of forest loss (~45% of human-caused forest loss) has 

occurred due to cropland expansion, whereas only 2.72.9 million km
2
 was due to pastureland 

expansion (Supplementary Table S1). SSEA contributes to 25%30% (1.62.1 million km
2
) of 

forest loss occurring due to conversion to cropland, followed by North America (1.11.5 million 

km
2
; 16%23%). Although the cropland estimates for Latin America by RF, HYDE, and HH are 

in close range of 1.41.6 × 10
6
 km

2
 for the early 2000s (Table 2.2), their pathways of expansion 

are very different. ISAM-HYDE estimates only 0.65 × 10
6
 km

2
 of forest loss in Latin America 

due to cropland expansion, whereas ISAM-RF shows almost double the forest loss estimated by 

ISAM-HYDE (Supplementary Table S2). Because HH data was spatialized using ISAM-RF 

estimates, the trend exhibited by ISAM-HH cannot be considered independent from ISAM-RF 

estimates. Roughly 47%58% (~7.49.6 million km
2
) of cropland expansion has occurred due to 

conversion of non-forested land (Supplementary Table S1). 

About 49%62% of forest loss due to human land use in Latin America occurred due to 

conversion to pastureland, compared to 29%36% caused due to cropland expansion (from 

Supplementary Table S2 and Table 2.4). Globally, 28.531.8 million km
2
 of non-forested land 

was used for pastureland expansion, the majority of which consisted of grasslands. It is 

interesting to note that though the areas of cropland and pastureland estimated by RF are about 1 

× 10
6
 km

2
 and 6.7 × 10

6
 km

2
 lower than HYDE estimates, respectively, for the period 

20012005 (Table 2.2), ISAM-RF estimates show substantially more clearing (and regrowth) of 

forested and non-forested land compared to ISAM-HYDE (Supplementary Table S2 and S4). 

This is because HYDE data show a consistently increasing trend in cropland and pastureland 

area over time, compared to RF data which show substantially more abandonment (and thus 

more regrowth of natural vegetation), leading to more gross conversions by ISAM-RF. ISAM-
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RF and ISAM-HH estimates show ~42% contribution of total secondary forest regrowth due to 

cropland abandonment, whereas ISAM-HYDE show a contribution of only about 23%. 

Implications of partitioning to C3/C4 type 

A significant amount of land in North America and Europe estimated as C4 grasslands in 

1765 was classified as C3 grasslands for present-day conditions when changes in CO2 

concentration were taken into account in the simplified method of Still et al., (2003) (Refer to 

supplementary Figure S1). About 10% of the grassland and 22.4% of pastureland from ISAM-

HYDE was classified as C4-type for 2010 (Table 2.3). Combining the same grassland and 

pastureland estimates for 2010 from ISAM-HYDE with the C4 fraction map for the year 1765 

resulted in 18.4% and 32% classified as C4-type, respectively. Both ISAM-HYDE and ISAM-RF 

estimates show about 23% of the total cropland area as C4-type throughout the historical period. 

2.5 Comparison with other studies 

We compared our estimates of forest for the year 1990 with other studies (Table 2.5). The 

year 1990 was chosen for comparison because it is the farthest year from present for which many 

gridded estimates were available that would facilitate regional comparisons. All the previous 

modeling (Klein Goldewijk, 2001; Hurtt et al., 2006; Yang et al., 2010; Hurtt et al., 2011) studies 

show good agreement with one another, even regionally. However, global total forest area 

estimates from ISAM-HYDE, ISAM-RF, and ISAM-HH are about 10 × 10
6
 km

2
 less than 

previous studies. Major disagreements occur in North America and the former USSR, where our 

estimates of forest area are reduced by 3.3 and 4.7 million km
2
, respectively. Because our forest 

estimates are a reflection of estimates from satellite-based land cover data, the differences in 

estimates arising in these regions can be attributed to unaccounted land-cover change, assuming 

the rule-based approach accurately captures land-cover change occurring due to all major land-

use activities. 

We compared our estimates with FAO forest statistics for 1990 (FAO, 2010). Due to 

difference between the definition of forest used in FAO (see FAO, 2001; 2006; 2010) and this 

study, we performed a ‗test case‘ wherein we repeated the entire calculations using a potential 

vegetation map derived from MODIS land cover data from the year 2005 (Friedl et al., 2010) 

classified under the University of Maryland (UMD) classification scheme (Hansen et al., 2000). 
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Land cover classification in the UMD scheme is favorable for making direct comparisons with 

FAO estimates. In this case, the estimates seem to agree reasonably well with FAO statistics, 

with ISAM-HYDE estimates being at the high end for Tropical Africa and Pacific Developed 

regions. Similar trends were observed when MODIS-estimated forest area (UMD classification 

scheme) for the year 2005 was directly compared with FAO forest estimates for the same year 

(FAO, 2010). 

2.6 Discussion and conclusions 

This study focused on characterizing historical land-cover change and LUC conversions 

using annual maps of cropland, pastureland, wood harvest, and urban land as inputs. Due to 

uncertainties associated with estimates of historical land-use activities, three different data sets 

on agricultural extent were used to derive three different estimates, consistently using the same 

rule-based method of prioritizing and converting vegetation. Information from remote sensing 

data was used to constrain and modify the rule-based method to implicitly account for land-cover 

changes due to indirect anthropogenic or natural causes. The differences among the three 

estimates produced in this study can be largely explained by the spatial and temporal differences 

in estimates of cropland and pastureland areas among the three data sets. Therefore these data 

sets offer a wide range of plausible regional estimates of uncertainty and the extent to which 

different ecosystems have undergone changes historically. 

The data sets produced in this study have several associated limitations. Since the annual 

cropland and pastureland maps reveal only the net changes in area, we could not calculate the 

effect of shifting cultivation in this study. Hurtt et al. (2006) performed a sensitivity test by 

assuming a standard land abandonment rate of 6.7% yr
-1

 due to shifting cultivation in the tropics, 

and showed that excluding shifting cultivation could lead to underestimation of secondary land 

created by agriculture. However, we chose not to include shifting cultivation in our study due to 

high uncertainty in the magnitude and spatial patterns (Hurtt et al., 2006) historically associated 

with shifting cultivation. In addition, our assumption that all forest on the land cover map for 

1765 (starting year of analysis) was primary forest potentially underestimates the secondary 

forest area created due to wood harvest and cropland abandonment before 1765. The validity of 

this assumption is well established due to the fact that the aim of this study is to characterize 

land-cover change after the pre-industrial era. 
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There are three major sources of uncertainty. First, the potential vegetation map produced 

from satellite data is assumed to accurately represent the land cover that would have existed at 

present if human activities have been non-existent. Hence, the usage of potential vegetation map 

to represent pre-industrial land cover assumes that changes in environmental conditions have not 

changed the land cover. The second source of uncertainty arises from the rule-based approach to 

prioritize land-cover change used in this method; this is a simple representation of historical 

trends associated with various land-use activities that are not fully understood, and difficult to 

generalize at a global or regional scale. As shown, the rule-based approach leads to a land cover 

map that differs substantially compared to satellite estimates for recent years. However, we 

attribute the differences to unaccounted land-cover change and grid-cell level variations in land-

use trends assumed in our rule-based approach. This difference is subsequently used to revise the 

rules at the grid-cell level to produce estimates close to satellite observations. Hence, the 

estimates provided here are largely dependent on the simplified representation of converting land 

cover assumed in this study. However, we have not performed a systematic sensitivity analysis 

of the different assumptions made to modify land cover. The third source of uncertainty arises 

due to land-use data sets used as inputs. Estimates of historical gridded wood harvest data were 

based on several assumptions, which are subject to uncertainty (Hurtt et al., 2006). As shown in 

this study and in other previous studies (Klein Goldewijk and Ramankutty, 2004; Jain and Yang, 

2005), spatial and temporal patterns of historical cropland and pastureland have significant 

uncertainties. This is reflected in the distribution of non-forested land cover types as estimated 

using three agricultural data sets (Figure 2.5). As a result, only the total non-forested land as a 

single broad category matches with satellite estimates. The individual forest area, however, does 

seem to agree reasonably well between the three estimates, primarily due to the calibration 

carried out in step 4 (Sect. 2.3). Constraining each land cover type (especially herbaceous types) 

to be close to satellite estimates is impossible, as the cropland and pastureland estimates 

prescribed based on input data sets need to remain unaltered. In addition, medium/coarse-

resolution satellite data have less accuracy in classifying herbaceous land cover types than trees 

or barren land (Friedl et al., 2010). 

Several regional and national-level reconstructions using finer resolution census data 

have revealed significant differences in estimates of cropland and pastureland compared to older 

versions of RF and HYDE global data sets. For example, Li et al. (2010) found that RF data 
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overestimated cropland area in China by a factor of 21 for the year 1700 and 1.6 for 1990 when 

compared with the cropland data of Northeast China (Ye and Fang., 2011) reconstructed based 

on combining calibrated historical data from multiple sources. Similarly, they found significant 

differences in the spatial distribution of cropland in HYDE data for the 18th and 19th century. 

Historical reconstructions over Amazonia (Leite et al., 2011) using municipal-level census data 

with higher level of details also show considerable difference in spatial patterns and magnitude 

compared to RF data. The range of uncertainties in regional estimates is expected to have 

narrowed in most recent RF and HYDE data used in this study, but significant differences still 

exist. Because the three estimates produced in this study are directly dependent on these global 

land-use data sets, our global data sets should also be used with caution while drawing inferences 

from regional-level analysis. Since no single agricultural land-use data set used here can be 

pointed out as better as or worse than another, it is recommended to use all three estimates 

alongside one another to gain a better picture of the range of uncertainties. 

The biggest source of uncertainty in the global C budget remains emissions due to 

LUCC, (Canadell, 2002) and these are estimated to be in the order of ± 0.5 GtC y
-1

 (Houghton, 

2005; Houghton et al., 2012). Several multi-model comparison experiments have been performed 

to determine the uncertainty of LUCC in the global carbon budget (e.g. McGuire et al., 2001; 

Pitman et al., 2009; Reick et al., 2010). The LUCC uncertainty experiments involve using a 

common land-use data set (e.g. HYDE or RF) in each of the models and comparing the land-use 

fluxes. However, due to differences in the structure of each model, the method adopted to 

implement the common land-use data differs significantly between each model (e.g. see Pitman 

et al., 2009). As a result, it is impossible to attribute the estimated uncertainty to model-related 

uncertainty and uncertainties arising due to differences in the method of implementing land-use 

data between different models. However, driving the same model with multiple LUCC data sets 

derived consistently using same method, as discussed here, opens a new avenue for studying 

LUCC data-related uncertainty by eliminating the model-related uncertainty. 

Certainly, indirect anthropogenic and natural effects have been dominant factors in 

historical land-cover change and have been poorly documented at a global scale (Lambin et al., 

2003). Additionally, land-cover modifications like agricultural intensification have been thought 

to have a widespread impact on climate through altered surface attributes and changes in 
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biogeochemical cycles. Recent advances in remote sensing observations have provided a more 

accurate and globally consistent picture of more subtle changes in land cover (e.g. changes in 

tree height, vegetation biomass, and vegetation structure), in addition to capturing land-cover 

changes. Because globally consistent remote sensing observations are available only for the past 

four decades, we need to rely on other methods of reconstructing large time-scale changes in 

land cover. Monitoring all forms of land-cover change extensively and consistently at a global 

scale for the pre-satellite era, even at medium/coarse spatial and temporal resolution, was 

impractical. Hence, several assumptions need to be made to account for its impact on LUCC. 

Future research is required on monitoring long-term changes in all forms of land-cover change 

and land-cover modifications at higher spatial and temporal resolutions through remote sensing 

observations. Further, tracking LUC conversions rather than net changes in land cover can help 

facilitate better understanding of trends and fate of LUCC and its implications. 

As pointed out by Pitman et al. (2009), implementing a common LUCC data set among 

different models is impossible. As a result, implementing the land cover maps and LUC 

conversion estimates presented here in different models may be subject to different 

approximations depending on the complexity and parameters associated with each model. 

However, we have chosen land cover classifications such that the data can be implemented in 

models without introducing much uncertainty. Preliminary results of regional and global carbon 

emissions for the last three decades, estimated by implementing these three sets of data in the 

ISAM, have already been used in the IPCC AR5. A detailed assessment of the range of 

biogeophysical and biogeochemical impacts produced by these three estimates is in progress 

using a coupled ISAM-CESM framework. We believe that the data sets presented here will be 

useful to modelers interested in studying the effects of historical LUCC on biogeophysics, 

biogeochemistry and hydrological cycle, as well as in general to the global change community 

interested in studying the impacts of historical LUCC. Digital versions of these data sets can be 

downloaded from the webpage (http://www.atmos.illinois.edu/~meiyapp2/datasets.htm). 
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2.7 Tables 

Table 2.1 Land cover classifications used in this study 

No. Land cover type Symbol 

1* Tropical evergreen broadleaf forest TrpEBF 

2* Tropical deciduous broadleaf forest TrpDBF 

3* Temperate evergreen broadleaf forest TmpEB

F 4* Temperate evergreen needleleaf forest TmpEN

F 5* Temperate deciduous broadleaf forest TmpDB

F 6* Boreal evergreen needleleaf forest BorENF 

7* Boreal deciduous needleleaf forest BorDNF 

8* Savanna Savanna 

9* C3 grassland/steppe C3grass 

10* C4 grassland/steppe C4grass 

11* Dense shrubland Densesh

rub 12* Open shrubland Openshr

ub 13* Tundra Tundra 

14* Desert Desert 

15* Polar desert/rock/ice PdRI 

16 Secondary tropical evergreen broadleaf 

forest 

SecTrpE

BF 17 Secondary tropical deciduous broadleaf 

forest 

SecTrp

DBF 18 Secondary temperate evergreen broadleaf 

forest 

SecTmp

EBF 19 Secondary temperate evergreen needleleaf 

forest 

SecTmp

ENF 20 Secondary temperate deciduous broadleaf 

forest 

SecTmp

DBF 21 Secondary boreal evergreen needleleaf 

forest 

SecBorE

NF 22 Secondary boreal deciduous needleleaf 

forest 

SecBor

DNF 23* Water/Rivers Water 

24 C3 cropland C3crop 

25 C4 cropland C4crop 

26 C3 pastureland C3past 

27 C4 pastureland C4past 

28 Urban land Urban 

Note: * Natural land cover classes used in this study. Except for water/rivers (No. 23), all 

other natural land cover classes were directly derived from the potential vegetation map of 

Ramankutty and Foley (1999). Note that C3 and C4 grasslands (Nos. 9 and 10) are considered to 

be a single land cover class in the potential vegetation map and during the initial stages of 

calculation. Partitioning to C3 and C4 types is carried out in the last step (step 5; Sect. 2.3). 
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Table 2.2 Regional areas of cropland and pastureland averaged for the period 20012005 

estimated directly from RF (Updated estimates based on Ramankutty and Foley, 1999), HYDE 

(Klein Goldewijk et al., 2011) and HH (Houghton, 2008) data sets across 9 regions covering the 

world. The 9 regions are based on Houghton et al. (1983). Units are in million km
2
. All values 

are rounded to one decimal place. 

 

Regions 
Cropland Pastureland 

RF HYDE HH Range RF HYDE HH Range 

North 

America 
2.1 2.3 1.9 1.9 – 2.3 2.4 2.5 0.0 0.0 – 2.5 

Latin 

America 
1.6 1.5 1.4 1.4 – 1.6 4.8 5.4 2.8 2.8 – 5.4 

Europe 1.2 1.2 0.1 0.1 – 1.2 0.6 0.7 0.0 0.0 – 0.7 

North Africa 

and Middle 

East 

0.8 0.9 0.3 0.3 – 0.9 1.8 3.0 0.0 0.0 – 3.0 

Tropical 

Africa 
2.0 2.0 1.9 1.9 – 2.0 7.0 8.0 0.0 0.0 – 8.0 

Former 

USSR 
2.0 2.2 0.4 0.4 – 2.2 3.3 3.6 0.0 0.0 – 3.6 

China 1.3 1.6 0.7 0.7 – 1.6 3.5 5.2 0.0 0.0 – 5.2 

South & 

South-East 

Asia 

3.0 2.9 1.5 1.5 – 3.0 0.3 0.4 0.0 0.0 – 0.4 

Pacific 

Developed 

Region 

0.4 0.6 0.2 0.2 – 0.6 2.6 4.1 0.0 0.0 – 4.1 

World 14.3 15.3 7.6 7.6 – 15.3 26.3 33.0 2.8 
2.8 – 

33.0 
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Table 2.3 Global area of various land cover types for 4 time slices based on ISAM-RF, ISAM-HYDE, and ISAM-HH estimates. 

‗Primary forest‘ includes TrpEBF, TrpDBF, TmpEBF, TmpENF, TmpDBF, BorENF, and BorDNF. ‗Secondary forest‘ includes 

SecTrpEBF, SecTrpDBF, SecTmpEBF, SecTmpENF, SecTmpDBF, SecBorENF, and SecBorDNF. Shrublands are a combination of 

Denseshrub and Openshrub. ‗Others‘ category includes Tundra, Desert, and PdRI. The estimates of cropland and pastureland area are 

slightly lower than the original estimates (Table 2.1) due to a difference in land mask used and other minor adjustments made in step 3 

(Sect. 2.3) for consistency purposes (Unit: million km
2
) 

 

Land cover 1765 1900 2000 2005 

Type 

RF/HYDE

/HH 

 

RF HYDE HH RF HYDE HH RF HYDE HH 

Primary Forest 45.4 34.9 34.8 33.5 22.1 22.5 20.8 21.7 22.2 20.

3 Secondary Forest 0.0 2.9 2.9 3.1 7.9 7.0 7.5 8.3 7.2 7.8 

C3 Cropland 2.9 5.9 6.2 4.2 10.0 11.4 5.5 10.0 11.6 5.6 

C4 Cropland 0.6 1.7 1.8 1.2 2.9 3.4 1.5 2.9 3.4 1.5 

C3 Pastureland 3.0 9.1 9.1 3.3 18.0 24.4 4.2 18.0 24.6 4.3 

C4 Pastureland 1.2 3.0 3.6 1.7 5.9 7.7 2.6 5.5 7.3 2.6 

C3 Grasslands 14.6 15.6 15.4 20.2 16.5 13.8 26.0 17.2 14.1 26.

4 C4 Grasslands 4.9 4.1 3.7 5.8 2.7 1.8 4.5 2.7 1.7 4.2 

Savannas 14.2 13.0 12.5 14.2 9.1 7.2 14.2 8.8 7.1 14.

2 Shrublands 16.9 14.1 14.6 16.8 10.1 8.0 16.8 10.1 8.0 16.

8 Others 26.1 25.7 25.4 26.1 24.4 22.5 26.1 24.4 22.5 26.

1 Urban Land 0.0 < 0.1 < 0.1 < 0.1 0.4 0.4 0.4 0.5 0.5 0.5 
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Table 2.4 Area of forest cleared and forest regrown during the period 17652005 across 9 regions covering the world, based on 

ISAM-RF, ISAM-HYDE, and ISAM-HH estimates. Total deforested and forest regrowth estimates are based on four land-use 

activities only. However, changes in forest area effected due to calibration with satellite data (step 4; Sect. 2.3) are reflected in year 

2005 forest estimates (Unit: million km
2
) 

 

Regions 
Forest area 

in 1765 

Total deforested area Total forest regrowth 
Estimated 

forest area in 

2005 
ISAM-

RF 

ISAM-

HYDE 

ISA

M-

HH 

ISAM-

RF 

ISAM-

HYDE 

ISAM-

HH 

North 

America 
9.6 3.3 3.5 3.3 2.4 2.0 2.2 5.86.2 

Latin 

America 
10.5 3.1 2.4 4.5 1.0 0.6 1.2 8.48.8 

Europe 2.5 2.0 1.6 1.3 1.5 1.0 1. 1 1.21.4 

North Africa 

and 

Middle 

East 

0.2 0.1 0.1 0.1 < 0.1 < 0.1 < 0.1 ~0.1 

Tropical 

Africa 
5.3 1.2 1.2 0.9 0.4 0.3 0.5 2.73.0 

Former 

USSR 
8.1 1.4 1.8 0.9 0.8 1.1 0.7 5.96.0 

China 2.3 1.1 1.1 0.7 0.8 0.3 0.7 1.11.4 

South & 

South-

East Asia 

5.8 2.0 2.1 2.4 0.7 0.4 1.2 2.03.1 

Pacific 

Develope

d Region 

1.2 0.4 0.4 0.4 0.3 0.2 0.3 ~1.1 

World 45.5 14.7 14.4 14.5 8.0 6.0 8.0 28.330.0 
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Table 2.5 Comparison of regional forest area estimated in this study with other published studies 

for the year 1990. The results from this study are provided as a range of forest area estimated 

from ISAM-RF, ISAM-HYDE, and ISAM-HH. An additional ‗test case‘ was performed 

(following UMD land classification scheme) to facilitate direct comparisons with FAO estimates 

(Unit: million km
2
) 

 

Regions 

Yang et 

al. 

(2010) 

Klein 

Goldew

ijk 

(2001) 

Hurtt et 

al. 

(2006) 

IPCC 

AR5
a)

 

 

This 

stud

y 

Test case 

FAO
b)

 

This study 

(UMD 

scheme) 

North America 9.5 8.7 9.3 9.3 5.8-

6.0 

5.1 4.1-4.5 

Latin America 9.0 9.2 9.0 8.6 7.4-

8.3 

10.2 9.8-10.1 

Europe 2.1 2.2 1.6 1.5 1.3-

1.4 

1.7 1.5 

North Africa 

and Middle 

East 

0.1 < 0.1 < 0.1 < 0.1 < 

0.1 

0.1 0.4 

Tropical Africa 4.3 3.3 4.4 4.0 2.8-

3.15 

6.9 7.0-9.8 

Former USSR 11.0 11.9 9.7 10.0 5.9-

6.0 

8.1 6.3- 6.5 

China 1.0 1.3 2.5 2.0 1.2-

1.35 

1.7 1.8- 2.0 

South & South-

East Asia 
4.1 3.3 3.3 3.4 

3.1-

3.2 
3.6 3.3- 3.4 

Pacific 

Developed 

Region 

1.2 1.4 1.1 1.1 1.1 2.2 2.4- 3.7 

World 42.3 41.5 40.9 39.9 29.0

-

30.1 

39.6 37.2-41.3 

Note: a) Based on Hurtt et al. (2011), b) from Global Forest Resource Assessment (FRA) 2010 
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2.8 Figures 

Figure 2.1 Global distribution of forest area during 2005 based on (a) 500 m resolution MODIS 

Land Cover Data Set (Friedl et al., 2010) following IGBP land classification scheme aggregated 

to 0.5°×0.5° resolution and (b) estimates by Hurtt et al. (2011). (Unit: % per grid cell area) 
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Figure 2.2 Schematic showing the process involved in step 3 to estimate LUCC and LUC 

conversions. Step 4 involves modification of priority factors estimated from step 3 using forest 

area estimated from MODIS land cover data (Friedl et al., 2010). ‗i‘ denotes year, which 

increases from 1765 to 2005/2007/2010 (ISAM-HH/ISAM-RF/ISAM-HYDE) in annual time 

steps. The priority factors shown here are just an example, and they vary for each land cover type 

from year to year between each grid cell. 
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Figure 2.3 Estimated global forest area for the year 2005 based on ISAM-RF, (a) Without calibration (b) after calibration using 

MODIS land cover data (Friedl et al., 2010). (Unit: % per grid cell area) 
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Figure 2.4 Estimated (a) primary and (b) secondary forest area for the year 2005 based on ISAM-RF. (Unit: % per grid cell area) 
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Figure 2.5 Regional comparisons of various natural land cover types during 2005 based on 

ISAM-RF, ISAM-HYDE, and ISAM-RF. ‗Primary forest‘ includes TrpEBF, TrpDBF, TmpEBF, 

TmpENF, TmpDBF, BorENF, and BorDNF. ‗Secondary forest‘ includes SecTrpEBF, 

SecTrpDBF, SecTmpEBF, SecTmpENF, SecTmpDBF, SecBorENF, and SecBorDNF. 

Shrublands are a combination of Denseshrub and Openshrub. Grasslands are a combination of 

C3grass and C4grass. ‗Others‘ category includes Tundra, Desert and PdRI. (Unit: million km
2
) 
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CHAPTER 3 

CO2 emissions from land use change affected more by nitrogen cycle, than by 

the choice of land cover data 

3.1 Abstract 

The high uncertainty in land-based CO2 fluxes estimates is thought to be mainly due to 

uncertainty in quantifying historical changes between forests, croplands and grassland, but also 

due to different processes included in calculation methods. Inclusion of a nitrogen cycle in 

models is fairly recent and strongly affects carbon fluxes. In this study, for the first time, we use 

a model with C and N dynamics with three distinct historical reconstructions of land-use and 

land-use change (LULUC) to quantify LULUC emissions and uncertainty that includes the 

integrated effects of not only climate and CO2, but also nitrogen. The modeled global average 

emissions including N dynamics for the 1980‘s, 1990‘s and 2000 to 2005 were 1.8±0.2, 1.7±0.2, 

and 1.4±0.2 GtC/yr respectively (mean and range across LULUC data sets). The tropical 

emissions were 0.8±0.2, 0.8±0.2 and 0.7±0.3GtC/yr, and the non-tropics were 1.1±0.5, 0.9±0.2 

and 0.7±0.1 GtC/yr. Between the 1980s and the 2000s, the HYDE data set indicated a decrease 

in emissions in the tropics (30%) and non-tropics (50%); RF showed little change in the tropics 

and a 34% decline in the non-tropics; Houghton showed little change in either region. Compared 

to previous studies that did not include N dynamics, modeled net LULUC emissions were higher, 

particularly in the non-tropics. In the model, N limitation reduces regrowth rates of vegetation in 

temperate areas resulting in higher net emissions. Our results indicate that exclusion of N 

dynamics leads to an underestimation of LULUC emissions by around 70% in the non-tropics, 

10% in the tropics and 40% globally in the 1990‘s. The differences due to inclusion/exclusion of 

the N cycle of 0.1 GtC/yr in the tropics, 0.6 GtC/yr in the non-tropics and 0.7 GtC/yr globally 

(mean across land cover data sets) in the 1990‘s were greater than differences due to the land 

cover data in the non-tropics and globally (0.2 GtC/yr). While land cover information is 

improving with satellite and inventory data, this study indicates the importance of accounting for 

different processes, in particular the N cycle.  

3.2 Introduction 
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 Land-use and land-use change (LULUC) refers to carbon (C) fluxes from the land due 

to human activity: that resulting from the use or management of land within one type of land 

cover (e.g., forest management for wood harvest) and changes in land-cover type (e.g. 

deforestation, afforestation, conversion of grasslands to pastureland). In total, LULUC was 

responsible for ~11% of all anthropogenic CO2 emissions (7.8±0.4 GtC/yr fossil fuel; 1.0±0.5 

GtC/yr LULUC) in the decade 2000 to 2009 (le Quéré et al., 2012).  

 The land and the ocean each take up about 30% of all anthropogenic C emissions 

(Denman et al., 2007; Le Quéré et al., 2011). The land takes up C from the atmosphere due to 

natural processes, affected by environmental change such as CO2 and N fertilization effects, and 

climate change (e.g. longer growing seasons in northern extra-tropical forests) (Denman et al., 

2007). The atmospheric measurements of [CO2] combined with O2: N ratios suggest that the land 

is currently acting as a net sink of CO2 despite large-scale tropical deforestation (Denman et al., 

2007; Raupach, 2011). Both the IPCC (Denman et al., 2007) and the Global Carbon Project (Le 

Quéré et al., 2012) calculate land sink due to the natural response of ecosystems to 

environmental change as the residual from other better-constrained flux terms and LULUC 

emissions calculated by models (2.5±0.8 GtC/yr, le Quéré et al., 2012). Thus this term is often 

known as the ―residual terrestrial flux‖. Uncertainties in LULUC emissions propagate into 

uncertainties in the residual terrestrial uptake calculations, making these two terms the most 

uncertain in the C budget (Denman et al., 2007; Le Quéré et al., 2012).  

 Estimates of the flux of C from LULUC vary widely between different model estimates 

(Houghton et al., 2012). According to the most recent IPCC assessment (Denman et al., 2007), C 

emissions due to LULUC for the 1990‘s had a range of 0.5 - 2.7 GtC/yr, with a median value of 

1.6 GtC/yr based on two results: the Houghton (2003) book-keeping model and FAO (2005) 

data, and the tropical satellite study of DeFries et al. (2002) also using the Houghton book-

keeping model. With improvements in data on land cover change and biomass, and better 

understanding, information and modeling of different land processes, the mean estimate has been 

revised downwards and the range across results is reduced despite the much larger number of 

modeled estimates now published. A recent inter-comparison study of many published estimates 

reported a mean, standard deviation and range across 13 process-based vegetation models and 

book-keeping models of 1.1 ± 0.2 GtC/yr (full range 0.75 - 1.50 GtC/yr) for the 1990‘s 
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(Houghton et al., 2012). The authors of the inter-comparison used the limited amount of 

literature assessing uncertainty in LULUC emission estimates, along with expert judgment to 

suggest an uncertainty of ± 0.5 GtC/yr.  

 It is widely acknowledged that a key uncertainty in LULUC emissions stems from 

uncertainties in estimating historical changes in areal coverage between forests, croplands and 

grassland, though the uncertainties have significantly narrowed with time mainly due to 

improved data from satellites and inventories (Houghton, 2010; Hurtt et al., 2011; Klein 

Goldewijk and Ramankutty, 2004; Lepers et al., 2005; Ramankutty et al., 2007; Verburg et al., 

2011). Further uncertainty stems from incomplete understanding of all the processes affecting 

the net flux of C from LULUC, different approaches adopted to calculate emissions, and data 

related uncertainties. Several previous inter-comparison studies (e.g. Houghton et al., 2012; Ito et 

al., 2008; Ramankutty et al., 2007) have evaluated the overall range of uncertainty associated 

with estimates of net flux of C resulting from LULUC. However, complex linkages between the 

various contributing factors have made it difficult to quantify and attribute the resulting 

uncertainties to each of its sources. 

In an earlier study, Jain and Yang (2005) quantified the uncertainties resulting from 

using two different but commonly used land-use change data sets (RF - Ramankutty and Foley, 

1999; and Houghton and Hackler, 2001) to drive the C cycle component of a land-surface model, 

the Integrated Science Assessment Model (ISAM) for the time period 1765 – 1990. Differences 

in the rates of changes in cropland area between the two data sets contributed significantly to 

uncertainty in estimated C fluxes, and argued that further refinement of land use data sets using 

ground and satellite-based measurements was required. The Jain and Yang (2005) study was 

useful in explaining and quantifying the uncertainty due to LULUC on C flux as a part of wider 

studies on estimating LULUC related uncertainties (Piao et al., 2008; Ramankutty et al., 2007; 

Ricciuto et al., 2008). 

 In recent years, several LULUC data sets have been updated. Improvements have 

primarily taken place on three aspects: Using historical inventory data with higher level of spatial 

detail; integrating multiple and advanced high-resolution satellite estimates; an improved 

methodology to downscale inventory data to grid cell level. Three of the most commonly used 

data sets were harmonized using a globally consistent methodology by Meiyappan and Jain 
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(2012): (1) and (3) The HYDE spatially explicit data set (Klein Goldewijk et al., 2010, 2011) 

which is the basis of the Hurtt et al. (2011) data set supplied for Earth System Models being used 

in the upcoming IPCC Fifth Assessment Report; (2) The spatially explicit RF data set 

(Ramankutty and Foley, 1999), updated to include pasture conversions (Ramankutty et al., 

2008); and (3) The Houghton data set (Houghton and Hackler, 2001) updated with FAO (2005) 

forest area data (Houghton, 2008, the version that was used by Meiyappan and Jain, 2012) and 

more recently with FAO (2010) data which substantially revised down deforestation rates for the 

1990‘s 

 The effects of inclusion of different processes in calculating LULUC fluxes have been 

explored with various process-based global vegetation models. Several studies have shown that 

emissions from LULUC activities are different when considering the fertilization effects of 

changing [CO2] on ecosystem C balance (Churkina et al., 2008; Pongratz et al., 2009, Arora and 

Boer, 2010). Most process models now include the effects of climate and CO2 on vegetation, but 

few include the effects of nitrogen (N).  

 N is a limiting nutrient for plant growth in mid- and high-latitude regions (Vitousek and 

Howarth, 1991). In tropical regions, N is not considered a limiting nutrient, because the warmer 

and wetter tropical climate enhances N mineralization in soils (Vitousek and Howarth, 1991) and 

biological N fixation is high (Yang et al., 2009). The N cycle is rapidly changing due to human 

activity (Canfield et al., 2010; Galloway et al., 2004, 2008). Enhanced N in the atmosphere can 

act as a pollutant or have a fertilization effect on plants (Reay et al., 2008). Climate, CO2 and N 

all interact to alter plant growth (Jain et al., 2009) and decomposition, thus affecting both the C 

lost when vegetation is removed, and the rate of C accumulation in regrowing vegetation and 

soils (Mathers et al., 2006).  

 A recent modeling study by Zaehle et al. (2011) indicates that anthropogenic N inputs 

account for about a fifth of the C sequestered by terrestrial ecosystem between 1996 and 2005. 

Churkina et al. (2008) estimated a C uptake of 0.75 - 2.21 GtC/yr during the 1990‘s by re-

growing forest in response to enhanced N deposition. The wide ranges in their study arise from 

assumptions made about proportions and age of re-growing forests. However neither study 

included the effects of LULUC.  
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 Yang et al. (2010) modeled for the first time the effect of including a fully coupled N 

cycle (in ISAM) on global LULUC. ISAM results indicated that the contribution of N deposition 

to C uptake was about 0.13 GtC/yr in regrowing secondary forests, and 0.31 GtC/yr in all 

ecosystem types. Consideration of full N dynamics limited C uptake due to N limitation in 

regrowing forests in northern temperate regions in particular. The study was very sensitive to 

land transitions in tropical regions. While N is not a limiting nutrient in primary tropical forests, 

the results suggested strong N limitation in the secondary forests of tropical regions, because 

land use change activities (harvesting, burning) remove large amounts of N from the system. N 

removal due to LULUC constrained the fertilizing effects of N deposition and atmospheric CO2 

in some regions, but less in others depending on climatic conditions emphasizing the need to 

consider the interactive effects of all three drivers (climate, CO2, N) on net LULUC flux. 

 In this paper, we build upon our previous studies to provide revised estimates of C 

emissions from historical LULUC looking for the first time at the effects of N under different 

LULUC scenarios. This study presents several crucial updates on multiple fronts, in particular: 

(1) We use a fully coupled Carbon-Nitrogen (C-N) cycle component of the ISAM (Yang et al., 

2009), very few of the current generation of global vegetation models include a N cycle 

component, and only ISAM has been applied specifically to estimate LULUC emissions (2) The 

study incorporates the impact of N limitation and N deposition on the C sink associated with 

secondary forest regrowth including the effects of wood harvest activities (Yang et al., 2010), (3) 

The estimates have been extended until the year 2010 where possible, and (4) We use three 

historical reconstruction of LULUC (Meiyappan and Jain, 2012; data available from 

http://www.atmos.illinois.edu/~meiyapp2/datasets.htm) based on new and updated data sets 

(Klein Goldewijk et al., 2011; updated estimates based on Ramankutty and Foley (1999) and 

Ramankutty et al. (2008); and, Houghton, 2008). In addition, all the three reconstructed data sets 

include the effects of urban land expansion (Klein Goldewijk et al., 2010) and wood harvest 

(Hurtt et al., 2011).  

3.3 Materials and methods  

Overview of the ISAM C-N model 
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 The C-N cycle component of the Integrated Science Assessment Model (ISAM) is used 

to assess the C emissions from LULUC. The structure, parameterization, and performance of 

ISAM has been previously discussed in detail (Jain and Yang, 2005; Jain et al., 2009; Yang et 

al., 2009). Here, we provide an overview. The model calculates C and N fluxes between 

vegetation and the atmosphere, above and below ground litter, and soil organic matter 

compartments of the terrestrial biosphere at 0.5
o
x0.5

o
 spatial resolution. The modeled C cycle 

accounts for important feedback processes, including impact of increasing atmospheric [CO2] on 

NPP; impact of temperature and precipitation changes on photosynthesis, autotrophic and 

heterotrophic respiration; and the effect of N deposition on C uptake by plants. The modeled N 

cycle accounts for major processes as described in Yang et al. (2009). In addition, the model 

accounts for both symbiotic and non-symbiotic biological N fixation. The performance of ISAM 

and its N cycle has been extensively calibrated and evaluated using field measurements (Jain et 

al., 2005; Yang et al., 2009).  

 Each 0.5
o
x0.5

o
 grid cell contains at least one of the eighteen land-cover types (Yang et 

al., 2010), of which ten are forest land-cover types and the other three cropland, pastureland and 

urban land. ISAM accounts for five climatic types of primary forest (tropical evergreen, tropical 

deciduous, temperate evergreen, temperate deciduous and boreal) and their corresponding 

―secondary forests‖. The model accounts separately for forest regrowth following agricultural 

abandonment and wood harvest, and this is what we refer to as ―secondary forest‖ (Yang et al., 

2010).  

 The land conversions in the model are carried out based on the method described in 

Meiyappan and Jain (2012). We start with a map of potential natural vegetation at 0.5
o
 x 0.5

o
 

resolution, which is indicative of the land cover that would have existed if human activities were 

absent. We then advance in time (starting from 1765 to 2010), by superimposing the year-to-year 

cropland, pastureland, wood harvest and urban land maps in the same order of preference. We 

define rules, specific to each land disturbance activity (cropland, pastureland, wood harvest and 

urban land), for replacing natural vegetation. In general, following cropland and pastureland 

expansion, the natural vegetations present in a grid cell are removed proportional to its area and 

demand for cropland/pastureland. Upon abandonment (reduction in cropland/pastureland area 

between two consecutive years), the land recovers back to the dominant potential natural 
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vegetation in the grid cell. Wood is preferentially harvested from primary forest, and secondary 

(regrowing) forest is used when the extent of primary forest is less than the demand. Urban land 

expansion usually occurs at the expense of cropland abandonment and in other cases from 

natural vegetations. The resulting land cover maps for the period 2000 - 2005 are compared with 

remote sensing based land cover maps (500m resolution MODIS data - Friedl et al., 2010) 

spanning the same period. Discrepancies in forest area between satellite data and model 

estimates are used to accordingly adjust the land-disturbance activity specific rules to increase 

(or decrease) the proportions at which forest was cleared (or regrown) historically following 

expansion (or abandonment) of agricultural activity, such that rerunning the model with adjusted 

rules results in land cover maps whose forest distribution closely agrees with remote sensing 

observations for recent years. Thus, the three reconstructions start with a common potential 

natural vegetation map and end with a map whose forest distribution are consistent with satellite 

estimates, but the pathway they follow between the starting and ending point is constrained by 

the land-use data sets used. 

 Emissions of C due to LULUC are calculated as described in Jain and Yang (2005). In 

brief, upon removal of natural vegetation from a grid cell, a specified fraction of vegetation 

biomass is transferred to litter reservoirs, effectively representing plant material left on the 

ground following deforestation activities (Yang et al., 2009). The remaining vegetation materials 

are either burned to clear the land for agriculture, which releases C and N (in gaseous and/or 

mineral form) contained in the burned plant material; or is transferred as C and N to wood and/or 

fuel product reservoirs and subsequently released at three different rates depending on the 

assigned product categories.  

LULUC data 

 The three historical land-cover data reconstructions (ISAM-HYDE, ISAM-RF and 

ISAM-HH) were based on cropland and pastureland area change in the three updated historical 

land use change data sets: (1) HYDE 3.1 (Historical Database of the Global Environment) (Klein 

Goldewijk et al., 2011), (2) RF (Ramankutty and Foley,1999) including new pastureland 

estimates and updated cropland estimates based on and Ramankutty et al. (2008), and (3) 

Houghton and Hackler (2001) deforestation estimates updated in Houghton (2008) with revised 

deforestation rates from FAO (2005) respectively. The HYDE and RF data sets are both based on 
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FAOSTAT agricultural statistics including data on change in agricultural land area (FAO, 2009) 

which is available from 1960, making assumptions on the change in other land cover (e.g. forest) 

to meet agricultural demand. The Houghton (2008) data set is based primarily on FAO Forest 

Resource Assessment area change and biomass data (FAO, 2005) making assumptions about 

change in other land cover (e.g., croplands, pasture) to account for forest area change, supported 

by FAOSTAT data. A variety of other historical information is used to estimate land use 

transitions prior to the availability of FAO data in each data set. A common spatially explicit 

data set for wood harvest based on FAO data (Hurtt et al., 2011) and urban land extent (Klein 

Goldewijk et al., 2010) was applied to all three reconstructions. ISAM-HYDE, ISAM-RF and 

ISAM-HH estimates start from the year 1765 and extend until 2010, 2007 and 2005 respectively. 

All three reconstructions start with a common land-cover map during 1765 and follow different 

pathways as determined by the land-use data sets to attain forest area distributions close to 

satellite estimates of forests for recent years. The sum of non-forested land-cover types 

(herbaceous vegetation, cropland, pastureland and urban land) matches satellite estimates. 

However, there are discrepancies between the land-use data sets and satellite estimates in the 

extent of individual herbaceous land-cover types. 

Model Simulations Performed 

 The ISAM was initialized with an atmospheric [CO2] of 278 ppmv, representative of 

approximate conditions in the starting year (1765 AD) of the model simulation, to allow 

vegetation and soil C pools to reach an initial steady state. During the time period of 1765 - 

2010, net C exchanges between atmosphere and terrestrial ecosystems are calculated based on 

observed changes in climate (updated estimates based on Mitchell and Jones, 2005), atmospheric 

[CO2] (Meinshausen et al., 2010), wet and dry atmospheric N deposition rates (Galloway et al., 

2000), and three distinct historical reconstructions of LULUC as harmonized in Meiyappan and 

Jain (2012).  

Two separate model runs are carried out to calculate the contribution of LULUC to the 

terrestrial C fluxes (Table 3.1). In the first model run (A1), atmospheric [CO2], climate and N 

deposition rates are varied with time based on prescribed values and the LULUC is assumed to 

be zero over time. In the second model run (A2), atmospheric [CO2], climate, N deposition rates 

and LULUC are varied with time. The second model run (A2) was performed for each of the 
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three historical LULUC reconstruction used in this study. The emissions due to LULUC are 

estimated by subtracting C fluxes calculated in first model run (A1) from the second model run 

(A2). With this approach we captured the interactive effects of CO2, Climate and N limitation on 

LULUC emissions.  

We carried out two additional model runs (B1 and B2) to study the impact of excluding 

the interactive effects of N limitation on LULUC emissions (Table 3.1). Both experiments B1 

and B2 are similar to A1 and A2 respectively, but they did not include the effects of N limitation. 

Land is always assumed to have sufficient N for plant growth. Subtracting carbon fluxes 

calculated in experiment B1 from that of B2 provides an estimate of LULUC emissions that only 

includes the interactive effects of CO2 and climate. This (B2-B1) model experiment is analogous 

to the majority of other model approaches to calculating the LULUC flux in models that include 

only climate and CO2 effects (e.g. McGuire et al, 2001; Pongratz et al., 2009; Piao et al., 2009; 

van Minnen et al., 2009, Arora et al. 2010 non-interactive runs; Stocker et al. 2011). The 

difference between the two sets of experiments (A2 – A1) and (B2 – B1) is an indicator of the 

effect of additionally considering N cycle effects and its interactions with CO2 and climate on 

LULUC fluxes. We did not look at the effects of N on LULUC alone (ie excluding climate and 

CO2 effects) as the paper attempts the best quantification of LULUC including all possible 

drivers and processes, and to assess the possible uncertainty in LULUC estimates by failing to 

account for N effects.  

1) LULUC flux including N effect = A2 (Δ climate, CO2, N, LULUC) – A1 (Δ climate, CO2, N) 

2) LULUC flux excluding N effect = B2 (Δ climate, CO2, LULUC) – B1 (Δ climate, CO2) 

3) Effect of N on LULUC flux = (B2 – B1) – (A2 – A1) 

3.4 Results  

Global net LULUC emissions based on different land cover reconstructions 

Large inter-annual variations in global net C emissions from LULUC are observed in 

the model runs based on each of the three data sets, for the period 1900 - 2010 (Figure 3.1). 

These variations are mainly induced by the effects of inter-annual variations in climate on 

LULUC fluxes. In particular, soil respiration, decomposition of slash and litter, and NPP in 
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growing vegetation are affected by changes in temperature and precipitation in both the runs 

subject to LULUC (A2 and B2) and those not (A1 and B1) (e.g. McGuire et al., 2001; Jain and 

Yang, 2005). Since the natural vegetation responds to climate drivers the same way in B1 and 

B2, the flux shown here (B2-B1) here reflects the combined effect of LULUC and climate 

variability (in addition to CO2 and N) on the land affected by LULUC only. 

From 1900 to 2005, the global cumulative net emissions from LULUC were 178, 160 and 

163 GtC for ISAM-HYDE, ISAM-RF and ISAM-HH respectively. The ISAM-HYDE estimated 

global total C emissions for the time period 1900 - 2010 were 180 GtC. (All data in this section 

are from model runs including the N dynamics unless otherwise stated). All three estimated 

emission trajectories show substantially different trends over the period 1900 to 1960, although 

all have a mean value of ~1.5 GtC/yr (Figure 3.1). The net emissions based on all three data sets 

peaked in the 1950‘s, with ISAM-HH reaching its peak slightly later than the other two data sets. 

This result from rapid deforestation due to expansion of agriculture in the tropics around the 

early 1950‘s followed by a rapid reduction in the rates of deforestation around the late 1950‘s 

and early 1960‘s, with less of a reduction based on ISAM-HH data. Emissions estimates based 

on ISAM-HH data are very different from those based on ISAM-RF and ISAM-HYDE in the 

1960‘s. Emissions over the last three decades then follow similar trends based on all three data 

sets; an increase from 1970 to 1990 and a decline since 1990. 

The mean decadal net emissions based on ISAM-HYDE data are higher during the 

1980‘s and lower during the 1990‘s and 2000‘s compared to other two data sets, which show 

similar emissions during the 1980‘s and 1990‘s (Table 3.2). Thus the decline in emissions from 

the 1980‘s to the 2000‘s is much more pronounced in ISAM-HYDE. The reasons can be found 

looking at the rate of conversion of land types in the underlying harmonized data sets (Figure 

3.2). ISAM-HYDE shows a sharp decrease in the expansion rates of both cropland and 

pastureland between 1980 and 2005 (Figure 3.2a-d), and a sharp decrease in deforested area 

(Figure 3.2e) which is offset to a lesser extent each decade by a declining expansion of the area 

of secondary forest regrowth (Figure 3.2f) (partly reforestation on abandoned agricultural land 

and partly conversion of ―natural‖ forests to secondary regrowth forests after wood harvest). In 

contrast, ISAM-RF and ISAM-HH data show an increase in conversion to cropland (Figure 3.2a, 

b) and a decrease in conversion of forests to pastures (Figure 3.2c). Both ISAM-RF and ISAM-
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HH show an increase in the expansion rate of secondary forest regrowth from the 1980‘s to the 

2000‘s partly offsetting the loss of primary forest area (Figure 3.2e, f).  

Emissions based on ISAM-HH data become higher than the other two estimates in 2000 

to 2005 (Figure 3.1 and Table 3.2) because the conversion of forests to croplands and pastures 

(Figure 3.2a, c), and hence the overall area of deforestation (Figure 3.2e) are higher. 

Regional differences in LULUC emissions 

There are substantial differences in regional estimates of LULUC emissions between the 

model results based on the different data sets (Table 3.2). Except for Tropical America, Eurasia 

and China, there is no consistent trend exhibited among the three estimates. These three regions 

show a generally decreasing trend between the 1980‘s to the end of the data set for all three data-

sets, with the decline being much more pronounced in ISAM-HYDE than in ISAM-RF and 

ISAM-HH.  

Land-use change emissions based on ISAM-HYDE have decreased substantially over the 

last three decades for the tropics (30% decline) and non-tropics (50%). In contrast, the estimated 

emissions based on ISAM-RF show very little change in the tropics and a smaller decrease in the 

non-tropics (30%) between 2000 to 2005 compared to both the 1980‘s and 1990‘s, which were 

very similar. ISAM-HH shows very little change in the tropics, and a small increase from the 

1980‘s to the 1990‘s then a similar decline again to the 2000‘s (2000 to 2005 average) in the 

non-tropics.  

Over the last three decades, net emission estimates based on ISAM-HH data are higher 

for tropical regions and lower for non-tropical regions compared to net emission estimates based 

on other two data sets (Table 3.2). This is because ISAM-HH data shows much higher 

deforestation rates for agricultural land in tropical regions (especially in Tropical America) 

(Figure 3.2a, c, e). In non-tropical regions, the ISAM-HH data set (based on forest statistics) has 

lower conversion of forests to croplands than the other two datasets, and assumes no clearing of 

forests for pastureland (forest clearing would have been assumed converted to cropland or 

secondary forests). The other two data sets (based on agricultural statistics), derived based on a 

rule-based approach to clear vegetation, have a fraction of pastureland expansion at the expense 

of forests (Meiyappan and Jain, 2012) (Figure 3.2c). Houghton (2008) (which forms the basis for 
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ISAM-HH) assumes that the expansion of pasture area in North America, China and Pacific 

Developed regions occurred in the 1950‘s, and therefore has negligible impact on C emissions 

for recent years. On the other hand, ISAM-HYDE and ISAM-RF indicate that in the non-tropics 

forest area was converted to pastures over the last three decades (Figure 3.2c).  

In the non-tropics, forest regrowth area is generally higher in ISAM-HYDE and ISAM-

RF than in ISAM-HH across all three periods (Figure 3.2f). Forest regrowth would be expected 

to have increased the C stocks in secondary forest ecosystems (Jain et al., 2009; Reay et al., 

2008; Shevliakova et al., 2009; Yang et al., 2010; Churkina et al., 2008) partially offsetting the 

higher emissions from forest to pasture/cropland conversion we see in ISAM-HYDE and ISAM-

RF than in ISAM-HH in the non-tropics. However, the net non-tropical emissions of ISAM-

HYDE and ISAM-RF remain higher than ISAM-HH. Part of the reason for this is that the 

regrowth is limited in the model due to N availability, and therefore the CO2 fertilization effect is 

constrained.  

Effects of including the N cycle 

Including the N cycle in the model resulted in higher net emissions compared to the 

model runs without the interactive N cycle (Table 3.3, numbers in brackets are runs without the 

N-cycle). These results indicate that failing to account for the effects of N dynamics may lead to 

an underestimate in LULUC emissions by around 40% globally across all three data sets. The 

effects were more pronounced in non-tropical regions, where simulations without the N cycle 

were lower by 61 to 76% across all three data sets, while in the tropics emissions were lower 

only by 7 to 9%.  

3.5 Discussion 

Comparison with Other Studies 

Our mean estimate of global net LULUC emission with N dynamics and wood harvest of 

1.68 GtC/yr (range across results 1.48 to 1.83 GtC/yr) for the 1990‘s is the highest compared to 

the other published estimates as shown in Table 3.3 (excluding Denman et al., 2007 which is a 

synthesis based on old estimates). Breaking it down regionally, where other published estimates 

were available for comparison, our net emissions are similar in the tropics (mean 0.78 GtC/yr) 
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but much higher in the non-tropics (0.90 GtC/yr). While other published results find that tropical 

emissions are higher than non-tropical emissions, our estimates based on two data sets (ISAM-

RF and ISAM-HYDE) with N dynamics show the opposite trend, i.e. higher LULUC net 

emissions for non-tropics than tropics. Our modeling results indicate that without considering the 

N dynamics effect, the estimated non-tropical LULUC emissions for ISAM-RF, ISAM-HYDE 

and ISAM-HH cases are underestimated by 0.66, 0.58 and 0.53 GtC/yr respectively for the 

1990‘s, emphasizing the importance of including N dynamics in estimating LULUC emissions. 

The range of non-tropical emission estimates when N dynamics is excluded in our study (0.17 - 

0.43 GtC/yr) are not only well within the range of values of other published studies, but also 

lower than estimates for the tropics.   

N is usually not considered as a limiting nutrient in the tropical regions, because warmer 

and wetter tropical climate enhance N mineralization in soils, and biological N fixation is high. 

Therefore, it is not surprising that ISAM estimated tropical emission with (0.56 – 1.13 GtC/yr) 

and without (0.51 - 1.04 GtC/yr) N dynamics are approximately the same as eachother (Table 

3.3), and are well within other model estimated range of values (0.0 - 1.44 Gt/C).  

It is interesting to note that Houghton‘s own book-keeping model estimates (Houghton, 

2010) are the highest for the tropics and the lowest for the non-tropics as compared to other 

model estimates (Table 3.3). This is, unsurprisingly, similar to the results we found using the 

ISAM-HH data set compared to the other data sets within our modeling study, as it is driven by 

the underlying data assumptions in the Houghton data set based on FAO FRA forest data (FAO, 

2005). The FAO data indicate a net loss of total forest area in the tropics, and vice-versa in the 

non-tropics (Houghton, 2010) for the last three decades. In contrast, other data sets (HYDE or 

RF) used by other modeling studies indicate a decrease in forest area for both tropics and non-

tropics (This cannot be directly interpreted from the data in Figure 3.2 as some of the area of 

primary deforestation goes to secondary forests after harvesting and some does not, likewise only 

a portion of secondary forest regrowth happens on deforested land, some happens on agricultural 

land, so the numbers cannot be directly summed to get net change in forest area). Note that the 

latest FAO FRA (FAO, 2010) substantially revised down deforestation rates in the tropics.  

The land cover data may not be the full reasons for discrepancies. Houghton (2010) is 

even higher than our ISAM-HH results in the tropics and even lower in the non-tropics. Thus, it 
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might also be partly due to the differences in the modeling framework used by Houghton (2010) 

and other studies shown in Table 3.3. Houghton (2010) estimates are based on book-keeping 

model that tracks areas of land conversions and calculates subsequent changes in C pools using 

standard growth and decay curves derived from actual field inventory data from the literature 

that are unchanging over the calculation period (representing either recent or historic climate and 

environmental conditions) and averaged over a large region or vegetation type. Most other 

modeling studies, with the exceptions of satellite based tropical region estimates of DeFries et al. 

(2002) and Achard et al. (2004), model soil and vegetation processes and how they are affected 

by climate, atmospheric CO2, and, in this study, N drivers that vary spatially and possibly 

temporally. A sensitivity analysis based on process-based model and book-keeping model 

approaches suggests that book-keeping model estimated LULUC emissions were about 40% 

higher than the process based modeling approach, due primarily to higher soil carbon emissions 

assumed to be 25% soil carbon loss following land use change (Reick et al., 2010).  

Most process based studies, including this study, use historical transient CO2 and climate 

as an external driving force and run the model with and without land use and derive the LULUC 

emissions as the difference (e.g. McGuire et al., 2001; Pongratz et al., 2009 ―LULUC+CO2‖; van 

Minnen et al., 2009; Piao et al., 2009; Stocker et al., 2011). Shevliakova et al. (2009) ran with 

present climate and CO2 in the both the with- and without-LULUC simulations.   

The LULUC past emissions not only affect the ―managed‖ vegetation that is subject to 

LULUC, but also the ―natural‖ or ―primary‖ vegetation. This has been referred to as the 

―feedback flux‘ (Strassman et al., 2008) or the ―coupling flux‖ (Pongratz et al., 2009). The 

feedback flux on natural vegetation is typically to be considered part of the ―residual terrestrial 

flux‖ as it is an indirect effect of human activity and not considered as part of net LULUC 

emissions. In the case above where LULUC emission are derived by the difference between the 

no-LULUC case and with-LULUC cases, the effects of past LULUC emissions on the natural 

vegetation are factored out, only the past LULUC effects on the vegetation that is subject to 

LULUC is included. However some coupled climate-carbon cycle model studies such as Arora 

and Boer (2010) include the effects of LULUC emissions on natural vegetation which is why 

their flux of 0.25 - 0.84 GtC/yr in the 1990‘s based on different data sets are much lower than 

other estimates, including our own. When they apply the same approach as we use here, their 
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estimated emissions based on RF data increase from 0.71 GtC/yr (their Fig 3.10a, thin orange 

line) to 1.06 GtC/yr (their Fig 3.10a, thick orange line) (pers. comm. data supplied by Arora for 

analysis). The interactive effects of LULUC on atmospheric [CO2] merit further investigation, 

but are beyond the scope of this study.  

Our modeled LULUC emissions for the 2000‘s vary between 1.2 - 1.7 GtC/yr (Table 

3.2), consistent with, but at the high end of most recent estimated range across a number of 

published studies of 0.4 - 1.8 GtC/yr (Houghton et al., 2012).  

Uncertainty in LULUC Emissions Estimates 

Our modeled estimates give an indication of uncertainty in LULUC emissions due to the 

choice of data set. Estimated ranges across the three data sets for 1980‘s, 1990‘s and 2000‘s 

respectively were ±0.26 GtC/yr, ±0.18 GtC/yr and ±0.21 GtC/yr. The estimated uncertainty due 

to data set variability is much lower than other uncertainty estimates (see below) partly reflecting 

more accurate and revised land-use data sets applied in a globally consistent methodology to 

produce historical LULUC estimates (Meiyappan and Jain, 2012) but also as it does not account 

for uncertainty in other data, the model approach or implementation.  

Our results further indicate a large uncertainty due to the missing process of the N cycle 

in other estimates. Failure to account for the N cycle may underestimate net C flux due to 

LULUC by 0.1 GtC/yr in the tropics, 0.6 GtC/yr in the non-tropics and 0.7 GtC/yr globally 

(mean across land cover data sets).  

A recent meta-analysis study by a range of experts for the Global Carbon Project 

(Houghton et al., 2012), estimates the total errors resulting from data related uncertainty and 

incomplete understanding of all the process to be in the order of about ±0.5 GtC/yr based on 

expert judgment, drawing on the range across many published model studies, and studies that 

specifically looked at uncertainty due to data or modeling approaches. Previous publications for 

the Houghton book-keeping model approach gave an uncertainty estimate of ±0.7 GtC/yr 

(Houghton, 2010), that have since been revised down to ±0.5 GtC/yr (Houghton pers comm). 

The most recent IPCC estimated uncertainty of ±1.1 GtC/yr for 1990‘s (Denman et al. 2007) can 

now be considered too high. The higher end based on Houghton (2003) was revised downwards 

due to the reduction in the deforestation estimates for tropical regions in subsequent FAO FRA 
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(FAO 2005, 2010) brought about by integration of satellite-based estimates (e.g. Nepstad et al., 

2009; Hansen et al., 2009). The lower end of the range was based on DeFries et al. (2002) is an 

underestimate, as it is based on satellite measurements for three tropical regions, and does not 

account for legacy emissions deforestation rates prior to the period of analysis (1980‘s and 

1990‘s) (Ramankutty et al., 2007). 

Differences in Land Processes Included 

In our study, secondary forest regrowth only occurs as a result of wood harvest and 

agricultural abandonment on land that was originally covered by forests (i.e. a reduction of 

agricultural area in a grid cell will regrow forest). In some countries or regions, for example 

North America Europe, Japan, China and India (Kenji, 2000; Merker et al., 2004; FAO, 2005; 

FAO, 2010), there are active programs of afforestation and reforestation. These may not be 

captured by the data sets of change in agricultural and pasture areas, particularly if the forests are 

established on previously grassland areas, or if they shift agriculture to grassland areas so the 

agricultural area does not decline. Hence, our study may be underestimating the forest area in 

some regions and hence the C uptake by the afforested land. 

This study does not include the effects of fire suppression and woody encroachment, 

which are suggested to contribute to regional C sink (e.g. in the USA, see Pacala et al., 2001). 

This is because the effects of these processes have not yet been well defined due to lack of 

comprehensive data (Denman et al., 2007).  

C emissions due to the common practice of shifting cultivation in the tropics (clearing 

forest often by fire for agriculture then abandoning to regrowth after a number of years) are 

estimated to have a significant impact on historical LULUC emissions (Hurtt et al., 2006, 2011). 

This creates a mosaic of cropped fields often with trees and fallows intermixed with secondary 

and mature forests and cause some loss of ecosystem C (Houghton and Hackler, 2006). We did 

not specifically model the effects of shifting cultivation due to huge uncertainties in magnitude 

and spatial distribution, and as some of these effects would be captured in the data sets of 

changing forest or agricultural area we already used (Hurtt et al., 2006, 2011).  

Natural disturbances such as fire, pests, disease, drought, wind, snow, ice, and floods 

affect 104 Mha of forest on average each year (FAO, 2006), with local- to national-scale 
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ecological significance (e.g. Giglio et al., 2010; van der Werf et al., 2010; also see Lambin et al., 

2003 and Foley et al., 2003). Our study has not considered emissions due natural disturbances 

because it is not human induced LULUC, and in any case it is typically assumed that disturbance 

is followed by regrowth and the net effects are minimal (unless the land is subsequently 

converted to agricultural land). 

A key missing processes is the decomposition of soil C following drainage of tropical 

peatlands (Ballhorn et al., 2009). According to Hooijer et al. (2010), draining and burning of 

peatlands in Southeast Asia are thought to add another 0.3 GtC yr
−1

 to land-use emissions.  

Summary and implications of results for climate modeling and climate policy 

Emissions of CO2 from LULUC constitute a significant portion of global emissions, and 

therefore strongly affect global climate. Modeling them correctly has implications for global 

climate policy. The estimated cumulative LULUC emissions over the period 1900 - 2010 based 

on ISAM-HYDE data are ~180 GtC, which are ~33% of total C emissions (345 GtC from 

burning fossil fuels - Friedlingstein et al., 2010). The contribution of LULUC to global 

anthropogenic C emissions (land-use plus fossil fuel) in 1990‘s and 2000‘s were ~18 - 22% and 

14 - 17% respectively (using fossil fuel emissions as in Le Quéré et al., 2012) for our modeled 

results across three underlying data sets and including the N cycle.  

Our estimated net global emissions from LULUC (mean and range) across three data sets 

are 1.88 (1.7 to 2.21) GtC/yr for the 1980‘s, 1.66 (1.48 to 1.83) GtC/yr for the 1990‘s, and 1.44 

(1.22 to 1.65) for the 2000‘s (Table 3.2). Our estimates are higher than other published estimates 

that range from 0.80 to 1.5 GtC/yr for the 1990‘s (Table 3.3: Achard et al., 2004; Arora and 

Boer, 2010; DeFries et al., 2002; Houghton, 2010; Piao et al., 2009; Pongratz et al., 2009; 

Stocker et al., 2011; Strassmann et al., 2008; Shevliakova et al., 2009; Van Minnen et al., 2009; 

Yang et al., 2010; Kato et al., 2012) and 1.1 GtC/yr for the 2000‘s (Houghton et al., 2012, 

Friedlingstein et al., 2010). If LULUC emissions are higher than assessed, it means fossil fuel 

emissions would have to be even lower to meet the same mitigation target. 

Our results are higher than other published estimates because they include the effects of 

N limitation on regrowth of forests following wood harvest and agricultural abandonment. This 

effect is particularly noticeable in the cooler non-tropics where N removal through harvest or 
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burning is not compensated by N deposition or N mineralization. The estimated LULUC 

emissions for the tropics are 0.79±0.25 for the 1980‘s, 0.78±0.29 for the 1990‘s and 0.71±0.33 

GtC/yr for the 2000‘s, and for the non-tropics regions are 1.08±0.52, 0.90±0.19 and 0.69±0.12 

GtC/yr for the three decades (Table 3.2). Not only are our results much higher in the non-tropics 

than other results (Table 3.3), but for two of the data sets they are higher in the non-tropics than 

in the tropics. This is because the estimated non-tropical LULUC emissions with N dynamics 

considered are 0.53 - 0.66 GtC/yr higher than without N dynamics for the 1990‘s in the non-

tropics and 0.62 - 0.72 GtC/yr higher globally. Without considering the N cycle, our model 

results of 0.85 - 1.2 GtC/yr globally, 0.51 - 1.04 GtC/yr in the tropics and 0.17 - 0.43 GtC/yr in 

the non-tropics in the 1990‘s across the three data sets are similar to other published studies 

(Table 3.3). Our model results indicate that failing to account for the N cycle underestimates by 

about 40% globally (0.66 GtC/yr), 10% in the tropics (0.07 GtC/yr) and 70% in the non-tropics 

(0.59 GtC/yr).  

Many inventory studies in both managed and natural forests find higher sinks than in the 

past and attribute this to the effects of changing climate and [CO2] (Luyssaert et al., 2008; Lewis 

et al., 2009; Phillips et al., 2008; Pan et al., 2011). Our results are not in conflict with this. 

Climate and CO2 still enhance uptake in northern re-growth forests, but the effects are limited 

when N removal due to LULUC is considered. Since the total net flux of CO2 between the land 

and atmosphere is known from atmospheric measurements, higher emissions from land under 

LULUC in fact imply a greater sink in land not experiencing LULUC and are therefore 

consistent with inventories finding greater sinks in unmanaged forests. The total net flux the 

atmosphere ―sees‖ from the land is the same; in that sense our results do not imply different 

climate impacts. But our results do have implications for modeling of anthropogenic versus 

natural land fluxes (both natural and anthropogenic sources and sinks are underestimated without 

the N cycle), and thus for climate policy around estimating human-induced emissions and 

mitigation potential on the land. 

We evaluate the uncertainties in LULUC emissions estimates resulting from uncertainties 

in determining land-cover change using three historical LULUC reconstructions based on our 

best estaitmes of LULUC that include not only climate and CO2 but also N. Over the period 1900 

- 1970, our model results for the global LULUC emissions based on three different LULUC 
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reconstructions exhibit substantially different trends (Figure 3.1). The global total emissions are 

very similar thereafter, with emissions increasing until about 1990 and then declining. 

Uncertainty in LULUC emissions due to the underlying data set constitutes about ±0.2 GtC/yr 

over the period 1980 to 2009.  

While the three LULUC estimates show reasonably good agreement at the global scale, 

there are significant disagreements between them at the regional scale (Table 3.2). Regional 

discrepancies in location of CO2 emissions are irrelevant to the global climate impacts of CO2 as 

it is well mixed gas in the atmosphere. However they indicate a much larger uncertainty still 

exists in underlying land cover data than is implied by looking at global decadal averages and 

this uncertainty may affect the overall amount of global LULUC emissions and thus climate. The 

regional differences also have implications for national-level greenhouse gas reporting and 

accounting under the UNFCCC and Kyoto Protocol, and for assessing future LULUC mitigation 

potential. Therefore, the results presented here suggest that the uncertainty in regional LULUC 

data need to be reduced in order to improve climate change projections. 

Regional differences in forest cover will affect regional climate through biophysical 

properties such as albedo, surface roughness, heat transfer and water recycling: for example 

afforestation in mid to high-latitudes reduces albedo and has a warming affect that runs counter 

to the cooling effect of CO2 uptake (e.g. Brovkin et al., 2006; Findell et al., 2007; Kvalevag et 

al., 2010; Pitman et al., 2009; Pongratz et al., 2010). However, assessing the implications of 

regional data differences on biophysical climate effects is beyond the scope of this study.  

Ongoing improvements in satellite data and interpretation for measuring not only changes 

in land cover, but also land management (e.g shifting cultivation selective logging) and biomass 

density will be critical in reducing uncertainties. Reconciling and improving data sets produced 

from different sources (e.g. FAO forest assessment and FAO agricultural assessments), to 

provide more information about land-use transitions is also expected to further reduce 

uncertainties.  
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3.6 Tables 

Table 3.1 Design of the Simulation Experiments. Tick mark () indicates the environmental 

factor was varied with time. Cross mark () indicates the environmental factor was held constant 

at initial value. Inclusion of N deposition is irrelevant when N dynamics is inactive in the model. 

 

Experiment CO2 Climate N 

Deposition 

LCLUC N 

Dynamics 

A1     Active 

A2     Active 

B1   -  Inactive 

B2   -  Inactive 
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Table 3.2 Regional breakdown of decadal mean net LULUC emissions (GtC/yr) for the 1980‘s, 1990‘s and 2000‘s based on ISAM-

HYDE, ISAM-RF, and ISAM-HH data sets.  

1
Average for the period 2000-2009 

2
Average for the period 2000-2007 

3
Average for the period 2000-2005 

 

 

 

 

Region/Global 

1980‘s 1990‘s 2000‘s 

ISAM-

HYDE 

ISAM-

RF 

ISAM-

HH 

Mean & 

Range 

 

ISAM-

HYDE 

ISAM-

RF 

ISAM-

HH 

Mean & 

Range 

 

ISAM-

HYDE
1 

ISAM-

RF2 

ISAM-

HH3 

Mean & 

Range 

 

Tropical 

America 
0.26 0.33 0.59 0.39±0.17 0.20 0.34 0.64 0.39±0.22 0.14 0.24 0.46 

0.28±0.16 

Tropical Africa 0.01 -0.03 0.11 0.04±0.07 0.04 -0.03 0.11 0.04±0.07 0.03 -0.04 0.09 0.03±0.06 

Tropical Asia 0.34 0.35 0.40 0.37±0.03 0.31 0.34 0.38 0.34±0.03 0.25 0.43 0.53 0.41±0.14 

Tropics Total 0.61 0.65 1.11 0.79±0.25 0.56 0.65 1.13 0.78±0.29 0.43 0.63 1.08 0.71±0.33 

             

North America 0.30 0.28 0.19 0.25±0.06 0.27 0.28 0.21 0.25±0.03 0.25 0.23 0.28 0.25±0.03 

Eurasia 0.71 0.60 0.29 0.53±0.21 0.47 0.62 0.34 0.48±0.14 0.39 0.46 0.22 0.36±0.12 

China 0.59 0.15 0.08 0.27±0.26 0.19 0.14 0.07 0.13±0.06 0.12 0.09 0.06 0.09±0.03 

Oceania 0.00 0.03 0.02 0.02±0.01 0.00 0.05 0.08 0.04±0.04 0.02 -0.08 0.01 -0.02±0.5 

Non-Tropics 

Total 
1.61 1.06 0.56 1.08±0.52 0.92 1.09 0.70 0.90±0.19 0.80 0.69 0.57 0.69±0.12 

             

Global 2.21 1.70 1.72 1.88±0.26 1.48 1.74 1.83 1.68±0.18 1.22 1.33 1.65 1.40±0.21 
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Table 3.3 Comparison of ISAM estimated LULUC emissions for 1990‘s with other model and 

data studies. The decade 1990 - 1999 was chosen for comparison, as most of the estimates in 

literature covered this time period. Estimates that do not account for N dynamics are provided in 

brackets. 

Study LULUC Data Tropics Non-Tropics Global 

This Study: ISAM-RF 0.65  

(0.59) 

1.09  

(0.43) 

1.74  

(1.02) 

 ISAM-HYDE 0.56  

(0.51) 

0.92  

(0.34) 

1.48  

(0.85) 

 ISAM-HH 1.13  

(1.04) 

0.70 

(0.17) 

1.83  

(1.21) 

 Range 0.56 – 1.13 

(0.51 – 1.04) 

0.70 – 1.09 

(0.17 – 0.43) 

1.48 – 1.83 

(0.85 – 1.21) 

Other studies:     

Strassmann et al. (2008) HYDE (1.02)  (1.08) 

van Minnen et al. (2009)
 
 HYDE (0.70) (0.60) (1.3) 

Arora and Boer (2010)
1
 RF   1.06 

Piao et al. (2011)
 
 HYDE (0.74) (0.48) (1.22) 

Yang et al. (2010) HYDE/RF   1.44 

(1.03) 

Houghton (2010)
 
 Houghton  (1.44) (0.06) (1.50) 

Pongratz et al. (2009)
 2 

 Pongratz 
 

  (1.30) 

Shevliakova et al. (2009)
 
 RF+HYDE 

pastures 

  (1.31) 

Shevliakova et al. (2009)
 
 HYDE   (1.07) 

Kato et al. (2012)
 
 Hurtt (HYDE)   (1.00 -1.28) 

Stocker et al. (2011)    (0.93) 

DeFries et al. (2002)
 3

 AVHRR (0.50-1.50)   

Achard et al. (2004)
4
 Landsat 0.60 -1.10   

Denman et al. (2007) 

range
5 

   (0.50 – 2.70) 

Houghton et al. (2012) 

range
6 

   (0.75 – 1.50) 

Other Studies Range
7
  (0.50-1.44) (0.06 -0.48) (0.80 – 1.50)

 
 

 

1
This result is based on the data underlying the thick orange line figure 3.10a of Arora and Boer 

(2010), data supplied by Arora (pers comm). Their study represents the approach most similar to 

ours for calculating the LULUC flux (see text for details). 
2
 Underlying data set described in Pongratz et al. (2008) is based on RF cropland and RF pasture 

with rates of pasture changes from HYDE. Pastureland was preferential allocated on natural 

grassland. 
 



67 
 

Table 3.3 (Cont.) 

 

 
3
Calculated using the Houghton and Hackler (2003) book-keeping in combination of AVHHR 

satellite data for LULUC. 
4
Calculated using the biomass and biomass change of tropical forest estimates of FAO (FAO, 

1997) and Landsat data for Land-Cover Change. These estimates may have implicitly accounted 

for the N dynamics effect.  
5
Denman et al. (2007) is not an estimate in itself, but is a synthesis range across two estimates 

including uncertainty, DeFries et al. (2002) and Houghton (2003), that has since been updated 

and revised downwards (Houghton, 2010). 
6
Houghton et al. (2012) give the mean and standard deviation across thirteen different model 

estimates of LULUC as 1.12 ± 0.25 GtC/yr, full range as 0.75 - 1.50 GtC/yr. Their estimate of 

uncertainty in mean LULUC emissions is about ± 0.5 GtC/yr,  
7
The range values given here are based on the published studies included in this table and do not 

account for the ranges in Denman et al. (2007) and Houghton et al. (2012) as these are 

themselves ranges across other published estimates. The estimates of Denman et al. (2007) are 

now out of date for the reasons discussed in footnote 5.  
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3.7 Figures 

Figure 3.1 ISAM estimated global land-use emissions for the period 1900-2010 (GtC/yr) based 

on ISAM-HYDE, ISAM-RF and ISAM-HH data sets. Estimates based on ISAM-RF and ISAM-

HH estimates extend until year 2007 and 2005 respectively. 
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Figure 3.2 Average rate of conversions in the tropics and non-tropics from (a) forest to crop, (b) 

herbaceous to crop, (c) forest to pastureland, (d) herbaceous to pasturelands, and (e) deforested 

(includes forest area loss due to wood harvest) and (f) reforested areas due to expansion and 

abandonment of cropland, pastureland and wood harvest decadally. 
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  Figure 3.2 (cont.) 
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CHAPTER 4 

Increased influence of nitrogen limitation on CO2 emissions from future land 

use and land-use change 

4.1 Abstract 

In the latest projections of future greenhouse gas emissions for the Intergovernmental 

Panel on Climate Change (IPCC), few Earth System Models included the effect of nitrogen 

limitation, a key process limiting forest regrowth. Few included forest management (wood 

harvest). We estimate the impacts of nitrogen limitation on the CO2 emissions from land use and 

land-use change (LULUC), including wood harvest, for the period 1900-2100. We use a land-

surface model that includes a fully coupled carbon and nitrogen cycle, and accounts for forest 

regrowth processes following agricultural abandonment and wood harvest. Future projections are 

based on the four Representation Concentration Pathways used in the IPCC Fifth Assessment 

Report, and we account for uncertainty in future climate for each scenario based on ensembles of 

climate model outputs. Results show that excluding nitrogen limitation will underestimate global 

LULUC emissions by 34-52 PgC (20-30%) during the 20
th

 century (range across three different 

historical LULUC reconstructions) and by 128-187 PgC (90-150%) during the 21
st
 century 

(range across the four IPCC scenarios). The full range for estimated LULUC emissions during 

the 21
st
 century including climate model uncertainty is 91 to 227 PgC (with nitrogen limitation 

included). The underestimation increases with time because: (1) Projected annual wood harvest 

rates from forests summed over the 21
st
 century are 380-1080% higher compared to those of the 

20
th

 century, resulting in more regrowing secondary forests, (2) Nitrogen limitation reduces the 

CO2 fertilization effect on net primary production of regrowing secondary forests following 

wood harvest and agricultural abandonment, and (3) Nitrogen limitation effect is aggravated by 

the gradual loss of soil nitrogen from LULUC disturbance. Our study implies that: (1) Nitrogen 

limitation of CO2 uptake is substantial and sensitive to nitrogen inputs, (2) If LULUC emissions 

are larger than previously estimated in studies without nitrogen limitation, then meeting the same 

climate mitigation target would require an equivalent additional reduction of fossil fuel 

emissions, (3) The effectiveness of land-based mitigation strategies will critically depend on the 

interactions between nutrient limitations and secondary forests resulting from LULUC, and (4) It 
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is important for terrestrial biosphere models to consider nitrogen constraint in estimates of the 

strength of future land carbon uptake. 

4.2 Introduction 

The term ―land-use change‖ typically refers to conversion of one land cover type to 

another, such as clearing forest to grow crops. In contrast, ―land use‖ refers to management 

without changing the land cover, such as wood harvest and agricultural management (e.g. 

cropping practices, irrigation). CO2 emissions from land use and land-use change (LULUC) 

represents the ‗net effect‘ of CO2 sources (emissions from deforestation, logging and other direct 

human activities), and CO2 sinks (as vegetation regrows following land disturbance). LULUC 

emissions are estimated as 0.9±0.5 PgC/yr (1 PgC = 10
15

 gC) to the atmosphere, for the decade 

2004-2013 (Le Quéré et al., 2015). On a relative scale, LULUC emissions are ~10% of the CO2 

emissions from fossil fuel combustion and cement manufacture (8.9±0.4 PgC/yr), for the same 

decade (Boden et al., 2013).  

To balance the carbon budget, total anthropogenic CO2 emissions (fossil fuels + LULUC) 

should equal the sum of CO2 accumulated in the atmosphere, the oceanic sink, and the remaining 

CO2 exchanged between the atmosphere and terrestrial biosphere. We have a good quantitative 

understanding and constrained estimates of fossil fuel emissions, atmospheric growth rates, and 

the oceanic sink. From these better-constrained fluxes, and modeled estimates of LULUC 

emissions, the remaining terrestrial biosphere flux is inferred as a residual sink of 2.9±0.8 PgC/yr 

for the decade 2004-2013, thereby offsetting roughly one-quarter of the total anthropogenic 

carbon emissions (Le Quéré et al., 2015). The uncertainty in estimating the residual terrestrial 

sink is mainly attributable to uncertainties in estimating LULUC emissions (Ballantyne et al., 

2015; Houghton et al., 2012). The residual terrestrial sink indicates an increased net carbon 

accumulation by the terrestrial ecosystems which are sensitive to changing environmental 

controls (e.g. climate, CO2 fertilization, nitrogen deposition) (Ballantyne et al., 2015; Ciais et al., 

2013; Le Quéré et al., 2015; Schimel et al., 2015; Shevliakova et al., 2013). Thus, the terrestrial 

biosphere provides a subsidy to human activities by net absorption of atmospheric CO2, slowing 

down the rate of climate change significantly. An understanding of how this subsidy may change 

in the future, in response to changing environmental controls, is essential to understanding the 

magnitude of the climate change problem. Constraining the future residual terrestrial sink hinges 



81 
 

on our estimates of sources and sinks from LULUC with narrow enough uncertainty bounds. The 

uncertainties arise not only due to the range of possibilities on how the future world might evolve 

with respect to LULUC and its environmental controls, but also in our understanding of various 

processes that affect the LULUC fluxes. 

In a recent article, we studied the role of LULUC emissions on the carbon budget for the 

period 1765-2010. The study used a terrestrial ecosystem component of a land surface model, the 

Integrated Science Assessment Model (ISAM) that includes a fully coupled carbon-nitrogen 

cycle and detailed representation of secondary forest dynamics to account for forest regrowth 

processes following agricultural abandonment and wood harvest. We showed that failing to 

account for nitrogen dynamics, a key process limiting forest regrowth, underestimated LULUC 

emissions by ~70% in the non-tropics, ~10% in the tropics, and ~40% globally during 1990s 

compared to simulations that included the nitrogen dynamics. The study conveyed two key 

messages: (1) nitrogen limitation will significantly reduce the effect of carbon sinks on 

regrowing secondary forests (see Pongratz, 2013), and (2) historically, more secondary forests 

have resulted from wood harvest than from agricultural abandonment, underscoring the 

importance of forest management in estimating LULUC emissions (also see Yang et al. (2010); 

Ciais et al. (2013)).  

The 21
st
 century scenarios based on the Coupled Model Intercomparison Project phase 5 

(CMIP5) project a 380-1080% rise in global forest wood harvest rates (area harvested each year 

summed over the century) compared to those of the 20
th

 century (Table 4.1), due to rapid 

increase in demand for bioenergy and wood products (Hurtt et al., 2011). Therefore, the effect of 

nitrogen limitation on the rates of carbon sink on regrowing secondary forests could be much 

greater in the future compared to the historical period, having significant implications for the 

effectiveness of land-based mitigation policies. Accounting for both nitrogen limitation and 

forest management are beyond the current capabilities of many global climate models involved 

in CMIP5 (Ciais et al., 2013), thus giving them the tendency to be too optimistic in simulating 

future carbon sinks (Walker et al., 2015; Wårlind et al., 2014; Wieder et al., 2015a). 

Accordingly, the overall aim of this study is to understand how future LULUC emissions are 

influenced by the interactions among LULUC, nitrogen limitation, and anthropogenic 

environmental changes (CO2 fertilization, climate change, and nitrogen deposition that reduce 



82 
 

the nitrogen limitation effect). We place specific emphasis on land management. The overall aim 

can be split into three parts. 

First, we study the magnitude of LULUC emissions (with nitrogen limitation effect) 

attributable to ―land use‖ (management) as compared to ―land-use change‖, and how the 

magnitude is influenced by anthropogenic environmental changes. To quantify this effect, first 

we study the relative contribution of the direct effects of human LULUC activities versus the 

indirect effects of anthropogenic activity via environmental changes (climate, CO2, and nitrogen 

deposition) to total LULUC emissions (see methods; for significance, see Houghton (2013a)). 

We then breakdown these contributions into its two component activities: ―land use‖ and ―land-

use change‖. The land use activities considered include wood harvested from forests and 

subsequent regrowth processes. The land-use change activities include clearing of natural 

ecosystems for expansion of cropland and pastureland and forest regrowth following agricultural 

abandonment.  

Second, we study the impact of nitrogen limitation on the 21
st
 century LULUC fluxes. 

For this purpose, all LULUC fluxes estimated for the above objective are also simulated without 

the effect of nitrogen limitation. We quantify the impacts of nitrogen limitation by comparing the 

LULUC fluxes simulated between with and without nitrogen limitation case. We assess the 

future impacts of nitrogen limitation on LULUC fluxes relative to that of 20
th

 century.  

Third, we carry out a comprehensive assessment of the uncertainties in estimates of 

future LULUC emissions due to the different mitigation scenarios of the IPCC Fifth Assessment 

Report (IPCC, 2013), and uncertainties in climate projections underlying each scenario. This is 

important given that significant uncertainties in simulating future terrestrial carbon fluxes among 

Earth System Models are attributable to differences in simulated climate (Ciais et al., 2013). The 

uncertainties in projected climate (see Figure S1, S2) reflect uncertainties in emissions scenarios, 

model initializations, and gaps in process understanding (Knutti and Sedláček, 2012). Using one 

terrestrial ecosystem model, but consistently driven by different climate model projections 

enables us to study how much of total uncertainty in future LULUC emissions are attributable to 

differences in climate projections alone. Our future climate uncertainty analysis builds on 

historical uncertainties in quantifying the spatial and temporal patterns of historical LULUC 

(methods).  
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4.3 Materials and methods 

We use a data-modeling approach to study the three objectives discussed above. This 

section briefly describes: the land surface model used to simulate LULUC fluxes, model forcing 

data, and model simulations performed.  

Model details 

We use a terrestrial ecosystem component of a land surface model, Integrated Science 

Assessment Model (ISAM) to assess the impacts of LULUC on terrestrial carbon fluxes. The 

terrestrial component of ISAM simulates carbon and nitrogen fluxes between the vegetation and 

the atmosphere (net land-to-atmosphere flux), above and below ground litter, and soil organic 

matter at 0.5
o
x0.5

o
 spatial resolution (Jain and Yang, 2005). ISAM includes detailed 

representation of nitrogen dynamics (Yang et al., 2009) and secondary forest dynamics (Yang et 

al., 2010). The carbon cycle feedbacks modeled includes the influence of: (1) increasing 

atmospheric (CO2) on Net Primary Productivity (NPP), (2) temperature and precipitation 

changes on photosynthesis, autotrophic and heterotrophic respiration, and (3) nitrogen deposition 

on carbon uptake by plants. The modeled nitrogen cycle accounts for major processes such as 

denitrification, mineralization, immobilization, nitrification, leaching, symbiotic, and non-

symbiotic biological nitrogen fixation. Our water cycle is based on the LINKAGES model 

(Hanson et al., 2004; Pastor and Post, 1985). The model operates at two time steps. The 

vegetation carbon including NPP, litter production, and nitrogen demand by plants are calculated 

annually. Decomposition of soil and litter, and nitrogen cycle are calculated weekly. The 

structure, parameterization, and evaluation of nitrogen cycle in ISAM are detailed in Yang et al. 

(2009). Jain et al. (2009) show that the model can simulate the response on historical terrestrial 

carbon fluxes due to nitrogen limitation, LULUC, and changes in (CO2), climate change, and 

nitrogen deposition. ISAM and its extended versions have continually been evaluated and 

improved using both field observations and model inter-comparison activities (El-Masri et al., 

2013; Huntzinger et al., 2012; Ito et al., 2008; Tian et al., 2015; Walker et al., 2014). Results 

from ISAM have been a part of the global carbon budget (Le Quéré et al., 2015), and several 

IPCC Assessment Reports, including the most recent Fifth Assessment Report (Ciais et al., 

2013).  
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Each 0.5
o
x0.5

o 
lat/lon grid cell in ISAM is occupied by one or more of the 18 land cover 

types (Yang et al., 2010) that include 5 types of primary forests classified by ecozone, and their 

corresponding ―secondary forests‖, 5 types of non-forested vegetation (e.g. grassland, savanna, 

shrubland), bareland, cropland, and pastureland. The model separately accounts for forest 

regrowth following agricultural abandonment and wood harvest, here termed as ―secondary 

forest‖.  

Net land-to-atmosphere carbon flux calculation in ISAM 

Here, we provide an overview of the calculation of the Net Ecosystem Exchange (NEE), 

the carbon exchanged between the ecosystem and the atmosphere. In the ―simulations 

performed‖ section, we describe how NEE calculated with different experimental setup is 

combined to estimate LULUC fluxes. Our terminology of carbon fluxes follows Chapin et al. 

(2006). 

Following LULUC, the vegetation biomass is released as carbon to the atmosphere as 

three components in the ISAM. 

           (1) Loss of soil organic carbon due to oxidation of organic matter when native soils are 

cleared for agriculture. We assume 25% of soil organic carbon stored in the top meter of the soil 

is lost to the atmosphere upon clearing (Es), with most loss occurring within the first year of 

clearing soils. The 25% loss is the average estimate across observational studies (Table 3 of 

Houghton and Goodale, 2004), and consistent with the assumption of Houghton‘s bookkeeping 

model (Houghton, 2010). We also test the sensitivity of our results to this model parameter. 

(2) Part of biomass is shed as litter that enters the soils and decays on-site. As a result of 

decomposition, there is a heterotrophic respiration (HR) that includes losses by herbivory and the 

decomposition of organic debris by soil biota. 

(3) Part of vegetation biomass enters the wood and fuel product pools and decays at rates 

dependent on the product pool type following McGuire et al. (2001). Ep is the emissions from 

product pools that collectively represents 1 year (agriculture and agriculture products), 10 year 

(paper and paper products), and 100 year (lumber and long-lived products) product pools. The 

fraction of vegetation biomass that goes into the three product pools depends on the LULUC 

activity and region, following Houghton and Hackler (2001). The three decay pools represent the 



85 
 

woody material removed from the site. In reality, the harvest from agriculture and forestry may 

be transported to locations far off from the harvested grid cell and allowed to decay. However, 

due to lack of such global datasets, we assume the product pool decays at the grid cells of origin. 

We calculate the NEE carbon flux following LULUC as  

NEE = HR – NPP + Ep + Es                                                                                               Eq. (1)  

In Eq. (1), positive values for NEE represent flux to the atmosphere. NPP is the carbon 

accumulated in vegetation (carbon fixed through photosynthesis minus autotrophic respiration). 

In the case of LULUC, NPP accounts for the carbon accumulated from forest regrowth following 

agricultural abandonment and wood harvest. The model down regulates NPP depending on the 

magnitude of simulated nitrogen limitation (nitrogen demand minus supply) (see Yang et al. 

(2009) for equations). All the right hand side terms of Eq. (1) are influenced by both LULUC, 

natural (nitrogen limitation) and anthropogenic environmental changes (CO2 fertilization, climate 

change, and nitrogen deposition that partly offsets nitrogen limitation effects).  

To highlight, NEE following LULUC (Eq. 1) includes three components: emissions 

following disturbance, legacy fluxes (delayed carbon fluxes from soil and product pool decays), 

and carbon fluxes induced by anthropogenic environmental changes. Legacy fluxes include both 

source (decay) and sink terms (regrowth of secondary forests following agricultural 

abandonment and wood harvest in previous years) and they cause an imbalance between NPP 

and HR (Pongratz et al., 2014).  

Model forcing data 

Overview 

The basis of our study is driving data and climate model output from the Coupled Model 

Intercomparison Project Phase 5 (CMIP5) for future scenarios of land-use change and fossil fuel 

emissions. The CMIP5 is coordinated by the World Climate Research Programme in support of 

IPCC Fifth Assessment Report (Taylor et al., 2012). The IPCC CMIP5 analysis features four 

Representation Concentration Pathways (RCPs) for the future (>2005 AD) derived from 

Integrated Assessment Models (IAMs); each describing a possible pathway of future greenhouse 

gas concentration depending on human behavior including energy use, land use and mitigation 
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policy. No single pathway is more likely than another. The products for each RCP include 

gridded estimates of LULUC, and atmospheric emissions and concentrations of GHGs for the 

future that are harmonized to transition smoothly from historical estimates/observations. 

Coordinated experiments, carried out by more than 20 modeling group from around the world 

used these data products for conducting a range of climate modeling experiments that included 

projecting future climate change. The RCPs have been extensively described in literature (Moss 

et al., 2010; van Vuuren et al., 2011). We provide a summary of the RCPs with emphasis on its 

LULUC characteristics in supplementary text S1. 

Atmospheric forcing data 

ISAM requires forcing data on climate, atmospheric (CO2), and nitrogen deposition. Data 

for atmospheric (CO2) is as per CMIP5 experiments (Meinshausen et al., 2011) (see Figure S3 

for how the atmospheric (CO2) varies with time for the RCPs). Gridded estimates of airborne 

nitrogen deposition are from Lamarque et al. (2011) (see supplementary text S2 and Figure S4 

for further details). We account for changes in two climate variables: temperature and 

precipitation. We do not explicitly simulate the effects of radiation on carbon fluxes. Climate 

data for the historical period is from CRU TS3.21 (Harris et al., 2014). To account for the 

climate uncertainties for the RCPs (2006-2100), we use monthly climate projections from a suite 

of 43 climate models from the CMIP5 multi-model ensemble database (Table S1). All climate 

data are at 0.5°x0.5° lat/lon and interpolated to weekly time steps within the model. Additional 

details on climate data processing are available in supplementary text S3. 

LULUC data 

We prescribed LULUC data from the land-use harmonization (LUH) database used for 

CMIP5 (Hurtt et al. (2011); http://luh.umd.edu/). The data covers the period 1500-2100 annually 

and at 0.5°x0.5° lat/lon resolution. The historical LULUC in the Hurtt data is based on the 

HYDE 3.1 reconstruction for cropland and pastureland transitions (Klein Goldewijk et al., 2011), 

and wood harvest from Food and Agriculture Organization (FAO). Specifically, we include three 

types of wood harvest from LUH database that are provided as fractional area of each grid cell: 

wood harvest from primary forested land (variable code in LUH: gfsh3), mature secondary 

forested land (gfsh1), and young secondary forested land (gfsh2). Hurtt et al. (2011) estimated 

http://luh.umd.edu/
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wood harvest area by combining two other estimates: (1) biomass extracted from wood harvest, 

and (2) model-based estimates of historical above-ground carbon stocks and forest extent. 

The future aggregate (for larger world regions) land demands (cropland, pastureland, and 

wood harvest) in the Hurtt data are based on the four RCPs derived from IAMs. The 

―harmonization‖ in the Hurtt data downscales the aggregate regional land demands to individual 

grid cells within the region, while simultaneously ensuring that the downscaled maps are 

spatially consistent with the historical reconstruction. 

We use a map of potential natural vegetation and a rule-based approach (Meiyappan and 

Jain, 2012) to transform the prescribed LULUC information into estimates of annual land cover 

areas (and underlying land conversions) for each grid cell, consistent with the land cover types of 

ISAM, similar to the approach taken in other land models (Lawrence et al., 2012; Pitman et al., 

2009). The rules are specific to each LULUC activity, and are broadly consistent with our 

understanding of historical LULUC dynamics. The rules are generalizations of regional case 

studies of LULUC drivers, and have been calibrated using remote-sensing observations. 

Supplementary text S4 gives further details on the LULUC implementation in the model. The 

LULUC characteristics for the study period (1900-2100), historically and for each future RCP, 

are shown in Figure 4.1 and Table 4.1, and summarized in the supplementary text S1. 

Simulations Performed 

We initialized ISAM with an atmospheric (CO2) of 278 ppmv, representative of 

approximate conditions in the starting year (1765 AD – pre-industrial conditions) of the model 

simulation, to allow vegetation and soil carbon pools to reach an initial steady state. 

The basic approach to calculate LULUC emissions (ELULUC in Eq. 2) is by comparing the 

NEE (Eq. 1) calculated between two simulations, one with LULUC (NEE_LULUC in Eq. 3) and 

the other without LULUC (NEE_noLULUC in Eq. 4).  

ELULUC = NEE_LULUC – NEE_noLULUC                                                                      Eq. (2) 

where, 

NEE_LULUC = HR_LULUC – NPP_LULUC + Ep _LULUC + Es _LULUC              Eq. (3) 

NEE_noLULUC = HR_noLULUC – NPP_noLULUC                                                      Eq. (4)                                                 
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In Eq. (4), NEE_noLULUC represents the effects of environmental changes on potential 

natural vegetation. The Ep and Es terms do not appear in Eq. (4), because they are zero when 

there is no LULUC. The LULUC emissions (Eq. 2) are influenced directly by humans through 

LULUC (Eq. (3); hereafter referred as ―direct emissions‖ from LULUC), and indirectly by 

human-induced environmental changes on lands undergoing LULUC through Eq. (3, 4) 

(―indirect emissions‖ from LULUC). In this paper, the total of direct and indirect emissions is 

referred to as ―total emissions‖ from LULUC. The definition has been widely adopted for over a 

decade (McGuire et al., 2001; Pongratz et al., 2014). All the three emissions (i.e. direct, indirect, 

and total emissions) are net fluxes and they include both source and sink terms.  

We carried out a series of with and without LULUC simulations (Table 4.2) for the time 

period 1765-2100. Table 4.3 summarizes how the results from the simulations listed in Table 4.2 

were combined to estimate Eq. (2) that represents different LULUC flux components, and is 

further explained in text S5.  

In principle, the effects of nitrogen limitation on terrestrial ecosystems are a natural 

response of the system to human-induced environmental change and hence can be counted as 

indirect effects of human activity along with climate and (CO2) change. However, in our 

simulations, we kept nitrogen limitation separate from other environmental effects because our 

study aims to understand the interactive effects of including nitrogen cycle on LULUC fluxes. 

Accounting for uncertainties in future climate projections and LULUC reconstructions 

 We carried out the simulations (Table 4.2) and associated calculations (Table 4.3) 

separately for each RCP using corresponding forcing data for LULUC and environmental 

drivers. Specifically, to account for uncertainties in climate projections within each RCP, we 

repeated simulations Ref_1, Ref_2, A1, A2, B1 and B2 by varying the climate data listed in 

Table S1, but keeping the data for other drivers (CO2, nitrogen deposition, and LULUC) same 

across the simulations. We carried out simulations C1, C2, D1 and D2 once for each RCP, as 

they are independent of climate change. The climate-induced uncertainty in simulating total 

LULUC emissions is purely from indirect effects of human activity on emissions mediated 

through environmental change, because by design, direct effects of human LULUC activities on 
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emissions are independent of environmental changes. The simulations cover the period 1765-

2100, and we present results for 1900-2100. 

There are significant uncertainties in quantifying historical LULUC, resulting from 

differences in inventory datasets (Meiyappan and Jain, 2012) and reconstruction methodologies 

(Klein Goldewijk and Verburg, 2013). The HYDE reconstruction for cropland and pastureland 

used in CMIP5 is just one realization of what could have happened in the past. In an earlier study 

(Jain et al., 2013) we forced ISAM with three LULUC reconstructions to estimate an array 

(uncertainty range) of ―total LULUC emissions‖ for the 20
th

 century (including cropland and 

pastureland transitions from HYDE, Ramankutty (2012), and FAO (2006); all using common 

data for wood harvest based on Hurtt et al. (2011)). Here, we used those estimates for 

comparison with our future estimates. New to this study is separately calculating direct and 

indirect LULUC emissions and separating emissions by LULUC activity (i.e. land-use change 

and wood harvest) for the three historical LULUC reconstructions (from simulations analogous 

to Tables 4.2 & 4.3). 

4.4 Results 

Historical simulations: Overview 

We first present comparison of two key modeled estimates from our historical 

simulations with observationally derived global estimates: (1) model simulated above-ground 

vegetation (tree foliage + woody biomass) carbon in forests vs. FAO-based gridded estimates, 

and (2) our model simulated NPP vs. NPP modeled from MODIS derived radiation absorption 

by plants. These comparisons are broadly intended to evaluate how well the historical 

simulations can reproduce the current conditions. While evaluating the model performance over 

the historical period is no guarantee of good performance over the 21
st
 century, it does add 

confidence in the model‘s suitability for assessing impacts of the interactions between LULUC 

and environmental change on terrestrial carbon fluxes. While comparison of two model 

simulated variables is not indicative of overall model performance, the two variables compared 

here are critical to modeling LULUC emissions. For example, our modeled emissions from wood 

harvest depend on how well we simulate above-ground vegetation carbon in forests. Similarly, as 

our NPP is regulated by modeled nitrogen demand and supply specific to land cover type (Yang 



90 
 

et al., 2009), an overall agreement in NPP compared to an independent estimate adds confidence 

in our modeled nitrogen cycle, and its applicability to scientific questions addressed in this paper. 

Following this comparison, we present LULUC emission estimates for the 20
th

 century. We 

highlight model uncertainty in the discussion section. 

Model evaluation 

Globally, our model simulated above-ground vegetation carbon in forests of 268 PgC 

(year 2000) compares to 234 PgC estimated from FAO-based gridded statistics (Kindermann et 

al., 2008; note the study does not provide uncertainty estimates). A zonal (Figure 4.2) and spatial 

comparison (Figure S5) indicates that our simulated above-ground carbon in forests is higher in 

tropics and northern non-tropics, and lower in southern non-tropics. The reasons underlying the 

systematic latitudinal bias between the two estimates could stem from both data and model 

sources (e.g. bias from methods used to fill missing country data in FAO and gridding procedure; 

bias in our model forcing data and errors in model parameter and structure), and includes 

differences in definition of forest (FAO forest definition of percent cover >10% and height > 5m 

(Annex 2 of FAO (2005, 2010)) vs. our model definition of percent cover >60% and height >2m 

based on the IGBP land classification scheme (Loveland and Belward, 1997)).  

Next, we compared our model simulated NPP across six land cover types averaged 

globally over a 5 year period (2001-2005) with that from modeled NPP from MODIS derived 

radiation absorption by plants (Zhao and Running, 2010; Zhao et al., 2005; Running et al., 2004). 

Note that we are comparing two modeled estimates with inherent errors and uncertainties 

(Cleveland et al., 2015). Nonetheless, results show that our model simulated NPP across all land 

cover types fall within the standard deviation range from radiation-based estimates (Figure 4.3).  

Carbon fluxes from LULUC during the 20
th

 century (with nitrogen limitation effect)  

Globally, the total LULUC emissions averaged across the three LULUC reconstructions 

were 163 PgC (range: 156-174 PgC) cumulated over the 20
th

 century (Table 4.4) (all numbers 

discussed include nitrogen limitation effect, unless explicitly noted). The total LULUC emissions 

are about 58-65% of fossil fuel emissions, and 37-40% of total carbon emissions over the 20
th

 

century (266 PgC from fossil fuel combustion and cement production - Boden et al. (2013)). 

Most of the historical total LULUC emissions were direct emissions (Table 4.4; Figures 4.4a, 
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4.5a). The indirect emissions averaged across the three reconstructions were close to zero (-22 to 

21 PgC), because of partly offsetting environmental effects. For example, enhanced carbon sinks 

in regrowing forests under increasing (CO2), also leads to higher emissions when harvested.  

Regionally, the non-tropics accounted for about two-thirds (52-71%) of cumulative 20
th

 

century total LULUC emissions (Table 4.4; Figure 4.4). The total LULUC emissions from non-

tropics are greater than the tropics mainly because: (1) nitrogen limitation in the non-tropics 

reduced the carbon uptake rates on regrowing secondary forests (Figures 4.4k, 4.5g; compare 

with and without nitrogen limitation cases), and (2) historically, two-thirds of global secondary 

forest area following wood harvest is from the non-tropics (Table 4.1).  

Splitting the total LULUC emissions based on LULUC activity, 60-65% of the total 

global LULUC emissions are from land-use change, and the rest 35-40% is from wood harvest 

(55-72 PgC) (Figure 4.4a). Breaking down regionally, wood harvest accounted for 11-22% of 

total LULUC emissions in the tropics (Figure 4.4f), and 50-57% in the non-tropics (Figure 4.4k).  

Future simulations: Overview 

First, using RCP8.5 as example, we describe how the key mechanisms in our model 

impact nitrogen limitation over time (the mechanisms qualitatively apply to all RCPs). Next, we 

present the overall effects of these mechanisms on the 21
st
 century LULUC fluxes compared to 

that of 20
th

 century. For this purpose, we use the mean emissions value of the three LULUC 

reconstructions for the 20
th

 century. Third, we isolate the effect of nitrogen cycle on LULUC 

emissions by comparing results between with and without nitrogen cases. Finally, we quantify 

the uncertainties in LULUC emissions resulting from uncertainty in projections of climate 

change. 

Model response to nitrogen limitation 

Nitrogen limitation exists if there is not enough mineral nitrogen available for plant 

growth and litter decomposition. The difference between nitrogen demand and supply is the 

magnitude of nitrogen limitation. Results (Figure 4.6) show that the total carbon uptake (NPP) by 

secondary forests increases with time (in both with and without nitrogen cases) due to both CO2 

fertilization effect on regrowing forests, and increase in the area of regrowing forests (following 



92 
 

wood harvest and agricultural abandonment). However, the carbon uptake in secondary forests is 

significantly lower when nitrogen limitation is included especially in the non-tropics. The tropics 

have relatively less nitrogen limitation, because warmer and wetter climate enhances nitrogen 

mineralization in soils. Furthermore, the difference in carbon uptake rates between with and 

without nitrogen limitation simulations increases over time reflecting the progressively 

increasing nitrogen limitation effect on CO2 fertilization (note that the area of secondary forests 

is the same in both with and without nitrogen simulations). Our modeled response is consistent 

with ground-based studies that generally indicate that younger regrowing secondary forests 

require more nitrogen to support new production under increasing (CO2) (Davidson et al., 2004; 

Finzi et al., 2006, 2007; Herbert et al., 2003; Hungate et al., 2003; Lebauer and Treseder, 2008; 

Luo et al., 2004, 2006; Oren et al., 2001; Murty et al., 2002; Reich et al., 2006).  

Next, we describe how key nitrogen variables in our model vary with increasing nitrogen 

limitation. First, biological nitrogen fixation in both primary and secondary forests increases over 

time, with the increase being greater in secondary forests (Figure 4.7a, b). We model nitrogen 

fixation as a function of evapotranspiration (see discussion section for limitations of this 

approach). Therefore, tropical forests fix more nitrogen than non-tropical forests in our model, 

consistent with spatial observations (Cleveland et al., 1999). Second, increasing nitrogen 

demands from CO2 fertilization causes both primary and secondary forests to uptake more 

nitrogen per unit area with time (Figure 4.7e, f), thus reducing ecosystem nitrogen losses (Figure 

4.6). Third, with increasing nitrogen limitation, the nitrogen-use efficiency (NPP per unit 

nitrogen uptake; qualitatively similar to Carbon: Nitrogen ratio of vegetation) increases with 

time, especially in the secondary forests of the nitrogen limited non-tropics (Figure 4.6b-h).  

Increasing anthropogenic nitrogen deposition (external forcing to our model) provides an 

additional nitrogen input to terrestrial ecosystems (Figure 4.7i). However, its effect on enhancing 

regrowth sinks (or reducing LULUC emissions) depends on how much of the nitrogen deposition 

occurs on regrowing forests. There are three major sources of nitrogen losses attributable to 

LULUC (inferred by comparing ―with‖ and ―without‖ nitrogen limitation simulations). (1) 

Anaerobic respiration by denitrifying bacteria (soil decomposition) increases with time due to 

increases in litterfall (leaf litter + dead wood) from LULUC (Figure 4.7j). (2) Leaching as soil 

nitrate dissolves in rainwater and excess water percolates through soil (Figure 4.7k). Leaching is 
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higher in the tropics because of more rainfall, and relatively more soil nitrogen compared to the 

non-tropics. Both denitrification and leaching depends on our simulated soil nitrate content and 

soil moisture. (3) Removal of nitrogen from soils and vegetation from LULUC disturbance 

including slash burning and decay from product pools (Figure 4.7l) as also documented in earlier 

studies (Davidson et al., 2007; Herbert et al., 2003; Mathers et al., 2006; Schipper et al., 2007).  

In summary, our model simulations suggest that large areas of secondary forests will not 

respond to CO2 fertilization as strongly as they would when adequate nitrogen was available to 

meet the plant demands. In the with-nitrogen cycle simulation, our model responds to increasing 

nitrogen limitation by increasing nitrogen fixation, reducing nitrogen losses, and increasing 

nitrogen-use efficiency. LULUC activities result in a gradual loss of nitrogen from the system, 

thus increasing the nitrogen limitation. In the following section, we explore the overall effects of 

these mechanisms on the simulated future LULUC emissions. 

Carbon fluxes from LULUC during the 21
st
 century (with nitrogen limitation effect) 

Both globally and regionally, the total LULUC emissions estimated across the four RCPs 

are smaller or comparable to 20
th

 century mean estimates (Table 4.4). Globally, the direct 

LULUC emissions due to human activity estimated across the RCPs are a smaller source to the 

atmosphere by 40-80% compared to 20
th

 century estimates (Table 4.4; Figures 4.4, 4.5 and S6). 

In contrast, the indirect LULUC emissions due to human environmental change are a much 

larger source to the atmosphere for the RCPs (55 to 77 PgC from Table 4.4) compared to 20
th

 

century (-20 to 20 PgC), making the total LULUC emissions much larger than when considering 

direct emissions alone. In this section, we further explore direct LULUC emissions. Interactions 

between nitrogen limitation and other environmental factors explain indirect LULUC emissions. 

We discuss indirect emissions in the next section.  

In general, across all the RCPs, the net deforestation rates are significantly lower 

compared to the 20
th

 century (Table 4.1; Figure 4.1) resulting in smaller direct emissions (Figure 

4.4). Further, large amount of cropland and pastureland expansion that occurred in the 20
th

 

century, are being abandoned in the future (RCP 4.5 and RCP6.0) due to land protection policies 

(Figure 4.1; Table 4.1). Specifically, forest expansion in RCP4.5 is due to carbon taxation 

policies that encourage protection of forests (text S1). The higher emissions in the 20
th

 century 



94 
 

from land clearing are partly offset in the future under RCP4.5 and RCP6.0 because of carbon 

accumulation in forests regrowing on abandoned land. This resulted in negative direct emissions 

from land-use change (sinks) for RCP4.5 globally (Figure 4.4c), and for both RCP4.5 and 

RCP6.0 in the tropics (Figure 4.4h, i).  

In contrast to land-use change, direct emissions from wood harvest are equal to or larger 

than the 20
th

 century estimates across all the RCPs (excluding one outlier RCP6.0 elaborated in 

discussion section), especially in the non-tropics (Figure 4.4). This is because the RCPs project a 

380-1080% global rise in wood harvest rates compared to 20
th

 century due to rapid increase in 

demand for bioenergy and wood products (Table 4.1). The higher wood harvest results in more 

regrowing forests that become increasingly nitrogen limited due to the mechanisms explained in 

previous section (excluding (CO2) down-regulation that is an indirect effect). Thus emissions 

become much greater compared to slower and smaller sinks in regrowth plus temporary sinks in 

product pools. As a result, the wood harvest contribution to direct LULUC emissions increase in 

the future, especially in the already nitrogen limited non-tropics (Table 4.4; Figure 4.4). The 

higher rates of wood harvest also result in higher direct (and total) LULUC emissions in the non-

tropics than in the tropics during the 21
st
 century (Figure 4.5; Table 4.4).  

Interestingly, despite large net forest regrowth in the non-tropics under RCP4.5 (Table 

4.1), its direct LULUC emissions (Table 4.4) are higher than or comparable to RCP2.6 and 

RCP8.5, both of which show a loss of forest area (Table 4.1). This is because the direct 

emissions from wood harvest are higher in RCP4.5 (Figure 4.4m) where afforestation provides 

additional forest biomass to meet the prescribed wood harvest demands.  

For both the tropics and non-tropics, the uncertainties in estimating direct emissions for 

the 20
th

 century based on the three LULUC reconstructions (range from Table 4.4) is ~50% 

greater than the scenario-based uncertainty for the 21
st
 century (maximum difference across the 

four RCPs from Table 4.4), indicating that historical LULUC reconstructions are more uncertain 

regionally than the likely future LULUC outcomes. 

Impacts of including nitrogen cycle on LULUC fluxes  

All the aforementioned estimates include the effect of nitrogen limitation. To understand 

the impact of nitrogen cycle, we simulated LULUC fluxes without nitrogen limitation effect i.e. 
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by assuming sufficient nitrogen is available for plant growth and litter decomposition. We 

quantify the impacts of nitrogen limitation by comparing the LULUC fluxes estimated between 

with and without nitrogen limitation case. 

There are two key results. First, inclusion of nitrogen limitation increases the total 

LULUC emissions by 128-187 PgC globally for the 21
st
 century, roughly 3-5 times larger 

compared to the increase for 20
th

 century (Table 4.4; Figure 4.5). This increase is predominantly 

attributable to two of the component fluxes (Figure 4.4): direct emissions from wood harvest in 

the non-tropics, and indirect emissions from LULUC in both the tropics and non-tropics.  

As described before, when we consider nitrogen dynamics, most of the regrowing forests 

become increasingly nitrogen limited. This restricts the rate of regrowth after harvest resulting in 

larger total emissions from wood harvest under nitrogen limited conditions, particularly in the 

non-tropics. When nitrogen dynamics were not considered, direct emissions from wood harvest 

were smaller, and total LULCC emissions were a sink under two mitigation scenarios (RCP4.5 

and RCP6.0; see text S6 for elaboration) globally, and for all scenarios in the non-tropics (Table 

4.4).  

Most of the difference in indirect emissions between with and without nitrogen cases can 

be explained by the interactions between the nitrogen cycle and carbon cycle impacts on areas 

undergoing land-use change (Figure 4.4b-e). Without nitrogen limitation, the higher emissions 

from deforestation in a CO2-fertilized world (due to higher carbon stocks) are partly 

compensated by stronger regrowth sinks (from CO2-fertilization) on forests regrowing on 

abandoned land. However, when we include nitrogen limitation, the sinks on forests regrowing 

on abandoned land are weakened due to CO2 down-regulation effect, especially in the nitrogen 

limited non-tropics where the net indirect flux shifts from a sink to a source (Figure 4.4l-0). This 

effect is also reflected in Figure 4.5, where the difference in indirect emissions between with and 

without nitrogen limitation case increases with time for the non-tropics. Under increasing (CO2), 

plants need more nitrogen to support production. The insufficient availability of nitrogen limits 

the CO2 fertilization effect on plant growth in our model (Figure 4.6; also see Norby et al., 2010; 

Wieder et al., 2015a). In the tropics, inclusion of nitrogen shifts the indirect flux due to land-use 

change from a source to a slightly bigger source for RCP2.6, RCP4.5 and RCP6.0 (Figure 4.4g-

i).  
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While the above mechanisms apply for land experiencing wood harvest, the indirect 

wood harvest emissions are small whether nitrogen limitation is considered or not, because 

weaker sinks from CO2 fertilization also result in lower emissions in the subsequent harvest 

cycle (except when wood harvest expands to new areas). This is despite our modeling 

assumption that wood is preferentially harvested from primary forests or mature secondary 

forests across most regions (consistent with the assumption made in producing the wood harvest 

data - Hurtt et al. 2011). In our model, regrowing secondary forests requires roughly 30 (tropics) 

to 40 (non-tropics) years to attain 80% maturity, and about 90 (tropics) to 150 (non-tropics) years 

to attain full maturity (Figure 4.8; Text S7). The high wood harvest rates projected for the future 

(Figure 4.1; Table 4.1) result in harvesting young regrowing secondary forests (as primary or 

mature secondary forests reduce following LULUC) that have not accumulated sufficient 

biomass (especially in grid cells with high wood harvest rates; see Figure S7). 

Another key result of our simulations is that the total LULUC emissions from the non-

tropics are greater than the tropics for 1900-2100 when nitrogen limitation is considered (Figures 

4.4, 5, Table 4.4). In the simulations without nitrogen limitation, the LULUC emissions for the 

tropics were greater than the non-tropics, after 1940s (Figure 4.5). This result is consistent with 

majority of modeling studies that only include the interactive effects of CO2 and climate in their 

calculations of total LULUC emissions (Jain et al., 2013).  

It is worth noting that there are other important interactions that determine indirect 

emissions in our modeled results (Figure 4.4). For example, converting forests to agriculture 

increases indirect emissions in the methodological set up of the model experiments, i.e. 

comparing a hypothetical no-LULUC case with a representative with-LULUC case. This is 

because the hypothetical forest that exists in the no-LULCC case has greater sinks from CO2 

fertilization than the sinks in non-forests in the with-LULCC case. This capacity for an 

additional sink is lost due to deforestation; its magnitude depends on both deforested area and the 

strength of CO2 fertilization (Pongratz et al., 2009; Strassman et al., 2008). Indirect emissions are 

increasingly affected by climate change in the future, for example, a warmer climate projected 

for the future (Figures S1, S2) increases indirect emissions due to enhanced soil decomposition 

(Rh) and forest decline in some regions. Concurrently, higher decomposition also releases plant 
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usable mineral nitrogen from soils that enhances carbon uptake in regrowing forests during 

initial stages (McGuire et al., 2007).  

Climate induced uncertainties in simulating carbon fluxes from LULUC (with nitrogen limitation 

effects) 

A key source of uncertainty in projecting future LULUC emissions is that due to the 

indirect human-induced effects via climate change. Here we evaluate the combined uncertainty 

from two climate variables: temperature and precipitation.  

The range of uncertainties in the 21
st
 century cumulative total LULUC emissions, across 

all the four RCPs driven by different CMIP5 climate model projections are: 91-227 PgC 

(globally), 21-96 PgC (tropics), and 51-126 PgC (non-tropics) (Table 4.5). Globally, for all RCPs 

the estimated range of total LULUC emissions due to climate uncertainty are roughly 50% of the 

mean value (Figure 4.5, Table 4.5), and are larger than the scenario-based difference of 54 PgC 

(estimated from Table 4.4 as the maximum difference in the mean estimates of total LULUC 

emissions across the RCPs). In some cases, the climate induced uncertainties in indirect LULUC 

emissions (Table 4.5; max-min range) are larger than its mean estimates (Table 4.4), making 

even the sign of indirect emissions uncertain (Figure 4.5h, i). The uncertainty tends to increase 

with time in the higher emission scenarios (Figure 4.5), reflecting the progressively increasing 

model spread in CMIP5 projected climate (Knutti and Sedláček, 2012). RCP6.0 has the smallest 

uncertainty range across all RCPs, partly because only 24 climate model projections were 

available for RCP6.0 when we carried out the simulations (Table S1).  

Most of the uncertainty results from including wood harvest, because its spatial extent is 

much larger compared to land-use change (Figure 4.1; Table 4.1). The uncertainties in simulated 

indirect (and total) LULUC emissions are greater over the non-tropics than the tropics (Table 

4.5) mainly because of large uncertainties in projected temperature over the temperate zones of 

the northern hemisphere (Figures S1, S2) where most of the non-tropical wood harvest occurs 

(Figure 4.9, S7).  

4.5 Discussion 

Comparison with previous studies 
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Previous studies that have examined the future LULUC fluxes using CMIP5 data differ 

from the LULUC flux estimates presented here on multiple aspects: LULUC activities included 

(e.g. wood harvest) and their implementation in the model; model processes considered (e.g. 

nitrogen, secondary forest dynamics); and the type of model itself. A direct one-to-one 

comparison is confounded by these multiple source of differences. Therefore, our approach is to 

compile the available estimates and identify the causes of difference from our study. 

Wood harvest 

Hurtt et al. (2011) provides wood harvest, as biomass extracted from each grid cell. They 

also provide ―wood harvest area‖ in each grid cell, estimated as the sum of primary, mature 

secondary, and young secondary forest area required to meet the biomass demand from wood 

harvest. Therefore, the biomass extracted and the wood harvest area was meant to be consistent 

with each other. In this study, we implemented ―wood harvest area‖ data in ISAM (―LULUC 

data‖ in Section 4.3) to calculate biomass extracted (Table 4.6) and LULUC emissions. The 20
th

 

century biomass harvested from forest simulated by the ISAM compares well with Hurtt data, 

because the available forest area (and average forest biomass per grid area) was adequate to meet 

the historical demands. However, for all four RCPs, our model estimated forest biomass from 

wood harvest is much lower compared to Hurtt data, due to two reasons. 

First, the forest harvest rates for the RCPs (especially RCP6.0 with highest wood harvest 

area; Table 4.1) were higher than the contemporary (circa 2005) forest area (and biomass as 

evaluated in Figure 4.2) in ISAM (Figure 4.9). Specifically, RCP 6.0 shows high wood harvest 

rates for the Himalayas and China (Figure S7) that seem inconsistent with the contemporary 

forest area estimated from satellites (Figure 4.9; see Figure S8 for MODIS derived land cover 

map). Therefore, the modeled forest area could not fully meet the prescribed wood harvest 

demands. The forest definition in ISAM is consistent with the IGBP land-classification scheme, 

and its contemporary forest estimates have been calibrated using the most recent version of 

MODIS land-cover data (Meiyappan and Jain, 2012). In the year 2005, the MODIS estimated 

global forest area (~30 million km
2
) was 25% less than the ~40 million km

2
 estimated by Hurtt et 

al. (2011).  
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Second, following wood harvest, regrowing forests require about 90 (non-tropics) to 150 

(tropics) years to attain full maturity (Figure 4.8; text S7). Therefore, lower contemporary forest 

areas in ISAM compared to Hurtt data implies that we had to use more secondary regrowing 

forests with lower biomass to meet the future harvest area demands, when enough primary 

forests or mature secondary forests were not available in the grid cell. Hypothetically, even if our 

harvest area had equaled Hurtt data, a higher fraction of the total harvested area in our model 

would be from secondary regrowing forests with lower biomass compared to Hurtt estimates. 

Most of the discrepancy in forest area stems from the non-tropics (Table 3 of Meiyappan and 

Jain (2012)), where additionally, the biomass harvested from forests are also higher in Hurtt data 

than in our model (Table 4.6).  

A part of the discrepancy in forest area between our study and Hurtt et al. is attributable 

to difference in the definition of forest. Hurtt et al. count savannas as forest (using a different tree 

density threshold to identify forests), but in ISAM, savannas are classified as herbaceous 

(Meiyappan and Jain, 2012). This difference in definition implies that we did not use savannas 

for wood harvest, and our estimate of deforestation (Table 4.1 and Figure 4.1) does not include 

savannas converted to cropland and pastureland. Multiple definitions for savannas exist (Scholes 

and Archer, 1997). In our model, even counting savannas (as per MODIS-IGBP land cover) 

within forests will not make much of a difference outside the tropics (Figure 4.9). Clearly a lack 

of consensus on how different land-cover types are defined is a source of uncertainty in LULUC 

emission estimates.  

Historical LULUC emissions 

The historical ‗total‘ LULUC emissions simulated by ISAM have been compared 

previously (see Jain et al., 2013; Ciais et al., 2013). For the historical period, we limit discussion 

to LULUC fluxes that require elaboration. 

The direct LULUC emissions estimated without nitrogen limitation are most comparable 

to estimates from Houghton‘s bookkeeping model (Houghton, 2003, 2008), in terms of 

definition. Strikingly, our estimated non-tropical emissions for 20
th

 century (63 PgC from Table 

4.4 based on average of three reconstructions) are 57% higher than Houghton‘s estimate of 40 

PgC (data from Figure 1b of Richter and Houghton (2011)). Most of the difference is explained 



100 
 

by the underlying LULUC datasets. Two of our three LULUC reconstructions (based on 

Ramankutty (2012) and HYDE agricultural datasets; see Meiyappan and Jain, 2012) show more 

net forest loss in the non-tropics compared to the third dataset (based on FRA forest data; FAO 

(2006)) also used in Houghton‘s model. Our estimates using FRA data for the non-tropics (41 

PgC from Table 4.4 range) compares with Houghton‘s bookkeeping estimate.  

Future LULUC emissions 

A comparison of our future LULUC emissions with other published estimates is shown in 

Table 4.7. Some climate models participating in CMIP5 did not simulate LULUC emissions for 

the future, but instead were driven using CO2 emissions from LULUC estimated by the IAMs 

which produced the RCPs. These estimates include both wood harvest and land-use change. The 

definition and methodology of calculating LULUC emissions differed among the IAMs (van 

Vuuren et al., 2011; Pongratz et al., 2014). Our total (and direct) LULUC emissions estimated 

without nitrogen limitation (including wood harvest) are either much smaller emissions or even 

sinks compared with the IAM estimates. Our total (and direct) LULUC emissions estimated with 

nitrogen limitation are larger than IAM estimates.  

The LUCID-CMIP5 project, using five Earth System Models estimated the range of total 

LULUC emissions for two RCPs. None of the models account for nitrogen limitation, they vary 

significantly in their carbon-cycle representations, and only one model (MPI-ESM-LR) included 

wood harvest. The authors acknowledge that their LULUC emissions from MPI-ESM-LR are 

overestimated due to high initial carbon stocks. Excluding MPI-ESM-LR, the range is 24-70 PgC 

(RCP2.6) and 30-67 PgC (RCP8.5). For comparison, our estimated global total LULUC 

emissions excluding wood harvest and nitrogen limitation, but including climate uncertainties are 

(cumulated over the 21
st
 century): 14-43 PgC (RCP2.6) and 5-44 PgC (RCP8.5) (Figure 4.4c, e).  

Kato et al. (2013) using a terrestrial carbon cycle model, estimated total LULUC 

emissions for the 21
st
 century. Their estimates do not account for nitrogen limitation, wood 

harvest, and changes in future climate (static climate corresponding to current conditions are 

used). Kato et al. estimates are larger compared to our estimates without wood harvest and 

nitrogen limitation (Table 4.7).  
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Using a coupled climate model, Lawrence et al. (2012) reported LULUC emissions from 

one single with-LULUC simulation, without a reference no-LULUC simulation. Therefore, their 

LULUC emission estimates include only instantaneous and legacy fluxes from LULUC. Fluxes 

from regrowth sinks and decomposition of on-site resides are not counted towards LULUC flux 

(Pongratz et al., 2014). Their model includes nitrogen cycle, the effect of wood harvested from 

both forest and non-forest trees, in addition to cropland and pastureland transitions. Their 

estimates are the larger compared to all published studies and our estimates that include nitrogen 

limitation and wood harvest across all the scenarios. A large part of their LULUC emissions 

results from including wood harvest (their Figure 4.8a, c). 

Stocker et al. (2014) using a dynamic global vegetation model reported both total and 

direct LULUC emissions that include nitrogen cycle, wood harvest, and cropland and 

pastureland transitions. They accounted for carbon and nitrogen pools between primary and 

secondary land separately. However, they do not explicitly model secondary forest regrowth 

dynamics i.e. the process formulations and model parameters are identical between primary and 

secondary land. Notably, Stocker et al. used one climate model output (corresponding to model 

32 in Table S1) to estimate indirect LULUC emissions (total minus direct emissions) which are 

smaller compared to our mean estimates (Table 4.4). However, our multi-model climate 

sensitivity analysis indicate that the choice of climate data used to force a model can result in 

substantially different indirect emissions (difference of up to 88PgC globally; Table 4.5).  

Wang et al. (2015) using an Earth System Model reported total LULUC emissions for 

RCP4.5 and 8.5. In addition to a nitrogen cycle, they also included phosphorous limitation, and 

wood harvested from both forests and non-forests. Their estimates are lower compared to both 

our total (and direct) emissions and other studies that include nitrogen limitation and wood 

harvest. 

To summarize, we find that global estimates of LULUC emissions cumulated for 21
st
 

century are highly uncertain varying by ~300 PgC (range: -36 to 266 PgC) across published 

studies (estimates including nitrogen cycle when available). RCP4.5 has the widest range of 

results varying by ~200 PgC, varying from sink to a source (Table 4.7). Three studies (ours, 

Stocker and Wang) that included nitrogen limitation, wood harvest, and regrowth sinks also 

show widest range of estimates for RCP4.5. There are multiple reasons that could explain these 
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differences, with one possible reason being difference in implementing afforestation data across 

models (Di Vittorio et al., 2014).  

Model uncertainties 

 The multi-model comparison presented above characterizes uncertainties across 

different models. However, an important source of uncertainty is model parameterization i.e. a 

single model can produce different LULUC emission estimates by varying model parameters 

within their uncertainty range (Exbrayat et al., 2013). During model development (e.g. Yang et 

al., 2009), we have evaluated and calibrated key model parameters based on available 

observations. However, limited observations also make some of the model parameters highly 

uncertain. By perturbing two key model parameters as an example, we highlight the impacts of 

parameter uncertainties on our emission estimates.   

First, we test the sensitivity of our assumption that 25% of organic carbon stored in the 

top meter of the soil is released to the atmosphere when native soils are cleared for cultivation 

(section 4.3). While numerable meta-analysis (Don et al., 2011; Guo and Gifford, 2002; Murty et 

al., 2002; Post and Kwon, 2000) broadly report 25-30% loss on an average across all ecosystems, 

soil types, management practices, and decomposition processes, the variability about the average 

is large (range: 15-50% from Table 3 of Houghton and Goodale (2004)). We estimated total 

LULUC emissions (with nitrogen limitation) assuming 22.5% and 32.5% loss roughly 

corresponding to the 25
th

 and 75
th

 percentile across the observational range. Results show that 

our global mean estimates (Table 4.4) could vary by a maximum of -6% (25
th

 %ile) to +18% 

(75
th

 %ile) across the RCPs (Table S2).  

Second, we model biological nitrogen fixation as a function (linear regression) of 

evapotranspiration, specific to biome type (based on Schimel et al. (1996)). Nitrogen fixation is 

the largest source of nitrogen input to terrestrial ecosystems; however, its magnitude is also 

highly uncertain (overall range of 40-290 TgNyr
-1

 with estimates being revised downwards; see 

Cleveland et al. (1999); Wang and Houlton (2009); Vitousek et al. (2013); Sullivan et al. 

(2014)). By perturbing the regression parameters across all biomes by ±50% (our maximum 

assumed standard error), the mean estimates for global total LULUC emissions across RCPs 

(Table 4.4) vary by -6.4% (+50% perturbation) to +7.3% (-50% perturbation) (Table S3).  
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The high uncertainty in nitrogen fixation not only reflects limited measurements, but also 

gaps in mechanistic understanding of nitrogen fixation (Thomas et al., 2015). Consequently, 

parameters are just one source of uncertainty in our model. Incomplete understanding on various 

processes including nitrogen fixation cause structural uncertainties in model. For example, the 

relationship between nitrogen fixation and evapotranspiration is not from mechanistic 

understanding, but broadly captures the spatial observation that higher rates of nitrogen fixation 

are from humid settings with relatively high evapotranspiration (Cleveland et al., 1999). Further, 

nitrogen fixation can occur via free-living bacteria or symbiotic relationships (Batterman et al., 

2013; Houlton et al., 2008; Vitousek et al., 2013). Therefore, harvesting of nitrogen-fixing trees 

may have different consequences for regrowth patterns than evapotranspiration would imply. 

Nonetheless, most land models to date estimate nitrogen fixation solely as a function of 

evapotranspiration or NPP (e.g. Hayes et al., 2011; Oleson et al., 2013; Wania et al., 2012; 

Zaehle and Friend, 2010); while, both NPP and evapotranspiration based approach have 

shortcomings, the NPP based approach contradicts empirical knowledge (Wieder et al., 2015b). 

Few land models have moved towards a more mechanistic representation of nitrogen fixation 

that echoes empirical understanding (Gerber et al., 2010; Wang et al., 2010). Implementing new 

approaches in models requires substantial efforts on observational data synthesis to parameterize 

and evaluate model improvements (Wieder et al., 2015b).  

In summary, both parameter and structural uncertainty across all land models including 

ours extend beyond those discussed above (e.g. Jones et al., 2013; Todd-Brown et al., 2014). 

Consequently, these modeling uncertainties impose limits on the accuracy of simulated terrestrial 

processes. 

Caveats 

In this study, secondary forests result only from agricultural abandonment and wood 

harvest. This is because we infer secondary forests from changes in cropland, pastureland and 

wood harvest areas (Hurtt et al., 2011; Meiyappan and Jain, 2012). Several countries across the 

world create more forests through massive reforestation and afforestation efforts that add to the 

land carbon sink (Fang et al., 2014; FAO, 2010). We account for carbon sinks from conversion 

of crops and pastures to secondary forests on lands that were historically forested (reforestation) 

and non-forested (afforestation). However, we do not account for afforestation on land that is not 
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cropland or pastureland as secondary-to-secondary land conversion information is unavailable 

(Hurtt et al., 2011). During 2000-05, Houghton (2013b) estimated that afforestation in the tropics 

had contributed to ~1% of the region‘s total gross sinks. Globally, the share might increase in the 

future, as countries increase their land carbon storage through management practices as modeled 

in IAM scenarios and even pledged under the United Nations Framework Convention on Climate 

Change (UNEP, 2013).  

This study does not include wood harvested from non-forest tree types and savannas, 

which Hurtt et al. (2011) count as forest. This is because ISAM classifies these types as 

herbaceous (Yang et al., 2010). Herbaceous land-cover types have lesser capacity to store carbon 

than forests. Our analysis of Hurtt et al. (2011) data indicates that accounting for non-forest 

wood harvest would have increased our gross carbon source from wood harvest by 10-37% 

during the 21
st
 century (Table 4.6). A part of this biomass harvested would be compensated 

through regrowth sinks thus making a minor difference to our estimated total LULUC emissions.  

We infer land-use changes in the model using net changes in cropland and pastureland 

areas between consecutive years within each grid cell (Hurtt et al., 2011; Meiyappan and Jain, 

2012). This is because existing land use reconstructions (including HYDE used in Hurtt data) 

draw upon (sub-) national land use statistics at annual time steps that are the net changes. In 

reality, it is the gross changes (all area gains and losses) that determine the LULUC fluxes. For 

example, land use statistics collected at administrative level (e.g. state or country level data 

typically used in historical reconstructions) can indicate zero change in cropland area between 

two years, but it does not imply that cropland area has remained unchanged in every grid within 

the administrative region. Similarly, within a grid cell, different sub-grid areas can undergo land 

cover change (gross changes) in rotation (e.g. crop to forest, forest to grass, and grass to crop), 

but at the grid cell level the net change in land cover areas could fully or partly cancel out (Fuchs 

et al., 2014). However, these sub-grid changes would still affect the carbon fluxes and land 

carbon storage over time. In such cases, we might be underestimating the total LULUC 

emissions. Currently, there is no consensus on how a given LULUC data be implemented within 

a model (Brovkin et al., 2013; Pitman et al., 2009; Wilkenskjeld et al., 2014). Our interpretation 

of net changes in land-use area within grid cells is consistent with the economic rationale in 
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spatial land-use allocation modules of IAMs that humans tend to lower the cost associated with 

relocating land areas (Meiyappan et al., 2014; Verburg and Overmars, 2009).  

Several other LULUC activities such as shifting cultivation, agricultural management, 

fire management, land degradation, peatlands, erosion, and woody encroachment have not been 

included in this study. These factors together could be significant in the global carbon budget, 

but estimates for some of these factors are highly uncertain even for recent past (Houghton et al., 

2012). From 2000-05, Houghton (2013b) estimated that direct emissions from shifting 

cultivation (0.082 PgC/yr) accounted for ~7% of total direct emissions in the tropics. Gross 

sources from shifting cultivation are much larger (~27% of the total gross sources), but regrowth 

sinks on fallows balances most of the gross sources. 

We represent cropland as a ‗generic‘ category in our model. Therefore, we do not 

explicitly simulate the management effects of bioenergy crops/plantations on LULUC emissions. 

The treatment of bioenergy across the four independent IAM groups that produced the four RCPs 

is different (test S1). For example, bioenergy is included in wood harvest in RCP8.5, whereas 

bioenergy is included in cropland in RCP2.6. The ‗land-use change‘ effects of implementing 

bioenergy within croplands (as opposed to its land use/management effects) are however 

captured by Hurtt et al. (2011) data that drive our land-surface model, and hence by our LULUC 

emission estimates. For example, Hurtt estimates for RCP2.6 shows the largest increase in 

cropland area due to bioenergy (Figure 4.1), mostly at the expense of forests (Table 4.1). 

The study does not account for two key model processes. First is the co-limitation of 

phosphorus with nitrogen, especially in the moist tropics (Vitousek et al., 2010). Only recently 

have models started to include phosphorus dynamics (Goll et al., 2012; Yang et al., 2013; Zhang 

et al., 2013), and only Zhang et al. (2013) represent LULUC. Second are the impacts of LULUC 

on climate realized through biogeophysical pathways (Mahmood et al., 2013). Brovkin et al. 

(2013), Kumar et al. (2013), and Lawrence et al. (2012) have examined the biogeophysical 

impacts of LULUC for the RCPs.  

Summary and implications of results for climate modeling and climate policy 

Our analysis offers insight into complex interactions among CO2 emissions from 

LULUC, environmental changes, and nitrogen limitation effect on the regrowth sinks. Table 4.8 
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summarizes our model estimated uncertainty across different drivers. There are four key 

conclusions from our modeling study.  

First, nitrogen limitation of CO2 uptake is substantial and sensitive to nitrogen inputs. In 

our model, excluding nitrogen limitation underestimated global total LULUC emissions by 34-52 

PgC (~21-29%) during the 20
th

 century and by 128-187 PgC (90-150%) during the 21
st
 century 

(Table 4.8). The difference increases with time because nitrogen limitation will progressively 

down-regulate the magnitude of CO2 fertilization effect on regrowing forests, due to decreasing 

supply of plant-usable mineral nitrogen. Further, regrowing forests become increasingly nitrogen 

limited due to LULUC-related nitrogen losses from the system. Without large amounts of 

nitrogen input to the system, the regrowing forests are likely to be nitrogen limited. To meet the 

same mitigation target despite larger total LULUC emissions would require an equivalent greater 

reduction of fossil fuel emissions.  

Second, including nitrogen limitation changes the region with the highest total LULUC 

emissions from the tropics to the non-tropics. The tropics had higher emissions in our 

simulations without nitrogen limitation, and also earlier studies that considered only the 

interactive effects of CO2 and climate. Total LULUC emissions from the non-tropics are greater 

when the nitrogen cycle is included mainly because the carbon uptake capacity of secondary 

forests following LULUC is limited by nitrogen deficiency.  

Third, historically, the indirect effects of anthropogenic activity through environmental 

changes in land experiencing LULUC (indirect emissions) are small compared to direct effects 

of anthropogenic LULUC activity (direct emissions). As a result, including or excluding indirect 

emissions had a minor influence on the estimated total LULUC emissions historically. In 

contrast, the indirect LULUC emissions for the 21
st
 century are a much larger source to the 

atmosphere, in simulations with nitrogen limitation (Table 4.4). This is because of the gradual 

weakening of the photosynthetic response to elevated (CO2) caused by nitrogen limitation.  

In this study, we separately accounted for the effects of nitrogen limitation in both direct 

and indirect LULUC emissions. In principle, the nitrogen limitation effects are also an indirect 

effect of anthropogenic activity due to environmental change impacts on natural plant processes, 

hence can be fully counted within indirect emissions (i.e. exclude the effect of nitrogen limitation 
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from direct emissions, and add it to indirect emissions). Following such an accounting procedure 

will further increase the indirect LULUC emissions for the 21
st
 century (123-162 PgC; calculated 

from Table 4.4 as the difference between total LULUC emissions estimated with nitrogen 

limitation and direct LULUC emissions estimated without nitrogen limitation), and will 

dominate over direct emissions (-39–31 PgC; Table 4.4 without nitrogen limitation case). By 

either method, our results indicate that treatment of environmental factors can substantially 

influence the estimated total LULUC emissions for the future (see Houghton (2013a) for an 

associated discussion).  

Fourth, the choice of climate model projection used to force a land model can 

substantially impact the estimated indirect (and total) LULUC emissions (Table 4.8). The climate 

induced uncertainty ranges are larger than the mean estimates of global indirect LULUC 

emissions cumulated over the 21
st
 century for three RCP scenarios. Further, the indirect LULUC 

emission estimated for the non-tropics are affected more by climate uncertainties than for the 

tropics, because larger areas under LULUC (especially wood harvest) in the non-tropics coincide 

spatially with regions where climate uncertainties are high.  

While interpreting our results, the limitations highlighted earlier should be kept in mind. 

Notably, using one land-surface model is potentially a limiting factor because it does not 

represent a broad range of model physics response, especially given that there are significant 

uncertainties in modeling both nitrogen and carbon cycles (Houghton et al., 2012; Friedlingstein 

and Prentice, 2010), LULUC activities considered (Houghton et al., 2012), and even the method 

of implementing a given LULUC dataset across biosphere models (Brovkin et al., 2013; Pitman 

et al., 2009). Conversely, using a single land-surface model is more appropriate for our analysis 

because we can consistently isolate the effects on LULUC emissions due to different LULUC 

activities, LULUC flux definitions, historical LULUC forcings, and future climate forcings. The 

above effects cannot be consistently isolated using multi-model comparisons because model-

based differences (e.g. different land cover representations) make attribution difficult. 

In summary, Hurtt et al. (2011) show that excluding wood harvest alone can 

underestimate secondary land by 57% on an average for RCPs, and so the associated carbon 

source. Even if land management is represented, excluding nitrogen limitation will overestimate 

the carbon sinks on land recovering from LULUC, thereby underestimating total LULUC 
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emissions. It is the total LULUC emissions that the atmosphere sees which can be mitigated by 

reversing or avoiding any LULUC activity. Notwithstanding the aforementioned caveats, our 

study implies that the effectiveness of land-based mitigation strategies would critically depend 

on the interactions between nutrient limitations and secondary forests resulting from LULUC. 

Therefore, it is important for terrestrial biosphere models to consider nitrogen limitation in 

estimates of the strength of the future land carbon sink, especially on regrowing forests. 
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4.6 Tables 

Table 4.1 Net change in forest area estimated by the Integrated Science Assessment Model (net forest loss including afforestation, and 

forest regrowth following cropland and pastureland abandonment; negative values indicate a net loss in forest area) and the annual 

forest harvested areas summed over a hundred year period (from Hurtt et al. 2011). The historical estimates are averages of the three 

LULUC reconstructions described in Jain et al. (2013). The data for the 21
st
 century correspond to the four Representative 

Concentration Pathways (RCPs). All units in million km
2
/century.  

 

 

 

 

 

Region 

Net change in forest area  
Cumulative wood harvest area from forests (Hurtt et al., 

2011) 

20
th

 

century 
21

st
 century 

20
th

 

century 
21

st
 century 

Historica

l 
RCP 2.6 

RCP 

4.5 
RCP 6.0 RCP 8.5 Historical RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5 

Global -4.6 -2.6 2.3 -0.5 -2.1 16 76 87 188 137 

Tropics -2.2 -1.1 0.9 -0.2 -1.0 6 45 60 98 72 

Non-

Tropics 
-2.4 -1.5 1.4 -0.3 -1.1 10 31 27 90 65 
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Table 4.2 Design of the simulations. Tick mark () indicates the variable was varied with time. 

Cross mark () indicates the variable was held static at initial (assumed zero for nitrogen 

deposition and LULUC) value. Inclusion of nitrogen deposition is irrelevant when nitrogen 

dynamics is inactive in the model, and is indicated by a hifen (-). 

 

Simulation CO2 Climate Nitrogen 

Deposition 

Land-Use 

Change 

Wood 

Harvest 

Nitrogen 

Dynamics 

Ref_1      Active 

A1      Active 

B1      Active 

C1      Active 

D1      Active 

Ref_2   -   Inactive 

A2   -   Inactive 

B2   -   Inactive 

C2   -   Inactive 

D2   -   Inactive 
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Table 4.3 Summary of how the different simulations mentioned in Table 4.2 were combined to 

estimate land use and land-use change (LULUC) fluxes with varying environmental factors, 

LULUC activities, and nitrogen dynamics. Total LULUC emissions are the sum of direct and 

indirect LULUC emissions. Land-use change is abbreviated as ‗LUC‘ and wood harvest as 

‗WH‘.  

LULUC flux 

estimated 

Effects Included 

Calculation Method LULUC 

activities 

Changing 

environmental 

factors 

Nitrogen 

Dynamics 

Total emissions 

with nitrogen 

limitation 

LUC+WH CO2 + nitrogen 

deposition + 

climate 

Active 

A1 – Ref1 

LUC B1 – Ref1 

WH (A1 – B1) 

Total emissions 

without nitrogen 

limitation 

LUC+WH 

CO2 + climate Inactive
a
 

A2 – Ref2 

LUC B2 – Ref2 

WH (A2 – B2) 

Direct emissions 

with nitrogen 

limitation 

LUC+WH 

None Active 

C1 

LUC D1 

WH (C1 – D1) 

Direct emissions 

without nitrogen 

limitation 

LUC+WH 

None Inactive
a
 

C2 

LUC D2 

WH (C2 – D2) 

Indirect emissions 

with nitrogen 

limitation 

LUC+WH CO2 + nitrogen 

deposition + 

climate 

Active 

(A1 – Ref1) – C1 

LUC (B1 – Ref1) – D1 

WH (A1 – B1) – (C1 – D1) 

Indirect emissions 

without nitrogen 

limitation 

LUC+WH 

CO2 + climate Inactive
a
 

(A2 – Ref2) – C2 

LUC (B2 – Ref2) – D2 

WH (A2 – B2) – (C2 – D2) 
a
 Inclusion of nitrogen deposition is irrelevant for ―without‖ nitrogen limitation case. 
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Table 4.4 Direct, indirect, and total emissions from land use and land-use change (LULUC). The estimates for the 20
th

 century are 

based on the three LULUC reconstructions. The estimates for the 21
st
 century are based on the four Representative Concentration 

Pathways (RCPs). Two sets of estimates are shown, one with and the other without the effect of nitrogen limitation. For each RCP, an 

array of LULUC fluxes were estimated, using outputs from a suite of climate model projections from the CMIP5 multi-model 

ensemble database (Table S1). The estimates shown for the RCPs are the mean across the array of estimates. Positive values indicate a 

land to atmosphere flux. Units are in PgC/century. 

 

 

 

 

 

 

 

 

 

 

 

 

Land-use affected 

ecosystem exchange 

With Nitrogen Limitation Effect Without Nitrogen Limitation Effect 

20
th

 century 21
st
 century 20

th
 century 21

st
 century 

Mean (& range) 

RC

P 

2.6 

RCP 

4.5 

RCP 

6.0 

RCP 

8.5 
Mean (& range) 

RCP 

2.6 

RCP 

4.5 

RCP 

6.0 

RCP 

8.5 

Global 

Direct LULUC emissions  +167 (135 to 

186) 
+81 +68 +35 +96 +123 (93 to 142) +14 -39 -31 +31 

Indirect LULUC 

emissions 
-4 (-22 to 21) +56 +55 +77 +71 0 (-18 to 29) -5  -25 +6 -13  

Total LULUC emissions +163 (156 to 

174) 

+13

7 
+123 +112 +167  

+123 (122 to 

124) 
+9  -64 -25 +18 

Tropics 

Direct LULUC emissions  +61 (43 to 85) +22 -2 +5  +25 +60 (43 to 84) +15 -17 -3 +33  

Indirect LULUC 

emissions 
-1 (-9 to 8) +29 +31  +37 +40 0 (-8 to 18) +8  0 +8 +11 

Total LULUC emissions +60 (51 to 76) +51  +29  +42  +65  +60 (35 to 76) +23  -17 +5  +44  

Non-Tropics 

Direct LULUC emissions  +106 (80 to 143) +59 +70 +30 +71  +63 (41 to 89) -1 -22 -28 -2 

Indirect LULUC 

emissions 
-3 (-20 to 25) +27 +24 +40 +31 0 (-10 to 11) -13  -25  -2 -24 

Total LULUC emissions +103 (82 to 123) +86 +94  +70  +102  +63 (48 to 87) -14 -47 -30 -26 
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Table 4.5 Climate projections induced uncertainties in simulating total (direct + indirect) LULUC emissions for the 21
st
 century. The 

numbers shown for total LULUC emissions are the maximum range of estimates obtained by forcing the Integrated Science 

Assessment Model (ISAM) with multiple climate model outputs (Table S1). The ―(Max – Min) value‖ is calculated as the difference 

between the maximum and minimum value from the estimated range. The mean estimates are provided in Table 4.4. Positive values 

for emissions indicate a land to atmosphere flux. The estimates provided here include the effect of nitrogen limitation. Units are in 

PgC/century.  

 

 

 

 

 

 

 

 

 

 

Region 

Range of cumulative total LULUC 

emissions  
(Max – Min) value 

RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5 
RCP 

2.6 

RCP 

4.5 

RCP 

6.0 

RCP 

8.5 

Global  116–

180 
 107–165  91–150  139–227 64 60 59 88 

Tropics 33–72  21–50  32–59  48–96 39 29 27 48 

Non-

Tropics 
 67–119  74–126  51–99  77–146 52 52 48 69 
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Table 4.6 Comparison of biomass harvested from forests between Hurtt et al. (2011) and this study. The numbers provided within 

brackets are estimates of biomass harvested from non-forested tree types which we do not account for. The range of estimates 

provided for the historical period (corresponding to this study) is obtained using the three different LULUC reconstructions. The range 

of estimates provided for the RCPs, are based on estimates with and without the effects of nitrogen limitation. Lower end values are 

generally the estimates that include the effect of nitrogen limitation. Both the estimates with and without the effect of nitrogen 

limitation for the RCPs are mean estimates obtained by driving the Integrated Science Assessment Model (ISAM) using multiple 

climate model projections (Table S1). Units are in PgC/century.  

 

 

 

 

 

 

 Hurtt et al. (2011) This study 

Region 

20
th

 

century 
21

st
 century 

20
th

 

century 

21
st
 century 

Historical RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5 Historical RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5 

Global 70 

(3) 

144 

(22) 

165 

(17) 

150 

(35) 

182 

(68) 

69–76 

 

88–93 

 

113–116 

 

69–77 

 

143–146 

 

Tropics 18 

(2) 

38 

(18) 

54 

(14) 

53 

(22) 

61 

(30) 

11–13 

 

28–33 

 

33–37 

 

37–41 

 

57–62 

 

Non-

Tropics 

52 

(1) 

106 

(4) 

111 

(3) 

97 

(13) 

121 

(38) 

56–65 

 

56–65 

 

77–83 

 

29–41 

 

82–90 
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Table 4.7 Global comparison of our model estimated cumulative (2001-2100) LULUC fluxes with previous studies (PgC/yr).  

Reference RCP2.6 RCP4.5 RCP6.0 RCP8.5 Notes 
Nitrogen 

cycle 

Wood 

harvest 

This study 

Data from Table 4.4 
14 -39 -31 31 Direct emissions 

x  
9  -64 -25 18 Total emissions 

Data from Figure 4.4 25 -46 4 31 Total emissions x x 

Data from Table 4.4 
81 68 35 96 Direct emissions 

  
137 123 112 167 Total emissions 

Other studies   

IAMs that produced the 

RCPs 
68 30 6 60 

Data from http://cmip-

pcmdi.llnl.gov/cmip5/forcing.ht

ml 

x  

Brovkin et al. (2013): 

LUCID-CMIP5 

24 to 180 - - 30 to 210 

Range from five Earth System 

Models (one model included 

wood harvest) 

x 
See 

notes  

24 to 70 - - 30 to 67 Range excluding MPI-ESM-LR x x 

Boysen et al. (2014): 

LUCID-CMIP5 (extension 

to Brovkin et al.) 

- - - 

34 to 218 
Range from four Earth System 

Models (one model included 

wood harvest) 

Range excluding MPI-ESM-LR 

x 
See 

notes 

34 to 57 x x 

Kato et al. (2013) 118 -36 16 82 Data from their Figure 7 x x 

Lawrence et al. (2012) 185 158 191 266 Data from their Figure 8a   

Stocker et al. (2014) 
91 

111 

30 

33 

91 

103 

127 

157 

Direct emissions 

Total emissions 
  

Wang et al. (2015) - -16 - 61 

They provide estimates for 

2006-2100 to which we added 

estimates for 2001-2005 based 

on the same model provided in 

Zhang et al. (2013). 

  

Range 24 to 185 -36 to 158 6 to 191 30 to 266  Range across ―Other studies‖ - - 
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Table 4.8 Summary of relative uncertainties in estimated ‗total LULUC emissions‘ due to: (1) uncertainty in climate projections 

underlying future scenarios (‗Climate‘), (2) including nitrogen cycle (‗Nitrogen cycle‘), and (3) including wood harvest (‗LULUC 

activities‘) under both with and without nitrogen limitation cases (‗N lim‘ and ‗No N lim‘ respectively). The ranges shown are 

minimum and maximum values of uncertainty estimated across the three historical reconstructions (for the 20
th

 century), and across 

the four RCP scenarios (for the 21
st
 century). We estimate the uncertainty for each LULUC history and RCP as follows. For ‗Climate‘, 

the uncertainty values correspond to ‗(Max-Min) value‘ column in Table 4.5. For ‗Nitrogen cycle‘, we calculated the difference in 

LULUC emission estimates between with and without nitrogen limitation case (from Table 4.4). For ‗LULUC activities‘, we extracted 

the values corresponding to ‗wood harvest‘ from figure 4.4 (brown bars). Units are in PgC/century. 

 

Region Climate Nitrogen 

cycle 

LULUC 

activities 

(N lim) 

LULUC 

activities 

(No N lim) 

20
th

 century 

Global - 34 to 52 55 to 64 -20 to 40 

Tropics - 0 to 16 8 to 11 8 to 10 

Non-Tropics - 34 to 53 47 to 56 -28 to 30 

21
st
 century 

Global 59 to 88 128 to 187 38 to 125 -29 to 11 

Tropics 27 to 48 21 to 46 13 to 41 -8 to 11 

Non-Tropics 48 to 69 100 to 141 17 to 84 -28 to 0 
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4.7 Figures 

Figure 4.1 Annual rates of change in cropland and pastureland, annual wood harvest area from forests and annual net deforestation 

rates (net forest area loss including afforestation, and forest regrowth following cropland and pastureland abandonment; negative 

values indicate net forest loss) for 1900-2100. Figure legends are shown in panel (a). All units are in million ha/yr (1 ha = 0.01 km
2
). 
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Figure 4.2 Zonal breakdown of above-ground carbon in forests (year 2000) based on: (1) our historical model simulations (averaged 

across estimates obtained using three LULUC datasets; including both primary and secondary forests), and (2) global gridded 

estimates based on FAO statistics (Kindermann et al., 2008). Darker grey shades in the background indicate larger forest area fraction 

along the latitude based on FAO statistics.  
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Figure 4.3 NPP estimated for different land cover types averaged globally over the period 2001-2005. The results are compared 

between (1) our historical model simulations, and (2) radiation-based modeled estimates of NPP derived from MODIS (Zhao and 

Running, 2010). The error bars indicate the standard deviation across the 5-year annual estimates. Our model-based error bars also 

encompass differences induced by LULUC datasets.  
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Figure 4.4 Break-down of LULUC emission fluxes attributable to land-use change (green bars), and forest wood harvest (brown 

bars). The fluxes shown are direct, indirect, and total (direct + indirect) emissions. Two sets of estimates are shown, one with and the 

other without the effect of nitrogen limitation. The first three bars in each panel are estimates that include the effect of nitrogen 

limitation (‗With N lim‘ - see panel ‗a‘), and the other three bars are estimates without nitrogen limitation effect (‗No N lim‘). The 

historical estimates are averages of the three LULUC reconstructions. For each RCP, an array of LULUC fluxes were estimated, using 

outputs from a suite of climate model projections from the CMIP5 multi-model ensemble database (Table S1). The estimates shown 

for the RCPs are the mean across the array of estimates. Positive values indicate a land to atmosphere flux. Units are in PgC/century.  
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Figure 4.5 Estimates of direct, indirect and total (direct + indirect) emissions from LULUC averaged over each decade. The dark lines 

indicate the estimates that include the effect of nitrogen limitation. The grey lines are estimates obtained without nitrogen limitation 

effect. The historical estimates are averages based on the three LULUC reconstructions. For each RCP, an array of LULUC fluxes 

were estimated using outputs from a suite of climate model projections from the CMIP5 multi-model ensemble database (Table S1). 

The lines represent the mean across the array of estimates (for both with and without nitrogen limitation effect). The error bars 

indicate the uncertainty range in simulated indirect LULUC emissions (for with nitrogen limitation case) that results due to 

uncertainties in projecting future climate. Uncertainties in simulating indirect LULUC emissions will also introduce uncertainties in 

estimates of total LULUC emissions. For clarity, uncertainty estimates for total LULUC emissions are not shown, instead provided in 

Table 4.5. Units are in PgC/yr. The figure legends are shown in panel (d). See Figure S6 for figures corresponding to RCP2.6 and 

RCP6.0.  
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Figure 4.5 (Cont.) 
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Figure 4.6 Net Primary Productivity (NPP) of secondary forests simulated by ISAM corresponding to RCP8.5. Results are compared 

between with and without nitrogen limitation case. The historical estimates are based on HYDE LULUC reconstruction. The future 

estimates shown are mean across the array of estimates obtained by driving ISAM with different climate model projections (for both 

with and without nitrogen limitation effect).  
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Figure 4.7 Model simulated response to key nitrogen variables illustrated using RCP8.5 simulations (with transient environmental 

factors) as example. First and second column figures correspond to tropics and the non-tropics respectively, and show the fluxes 

averaged over primary (unmanaged) and secondary forests (resulting from LULUC). Third column figures show fluxes by region, and 

includes all land cover types. Panel (a-i, l) is from simulations that include LULUC effect. Panel (j-k) is obtained by differencing 

fluxes obtained between ―with‖ and ―without‖ LULUC simulations. (a, b) Biological Nitrogen Fixation which a source of nitrogen to 

terrestrial ecosystems. (g, h) Nitrogen-Use Efficiency defined as the Net Primary Productivity (NPP; panels c-d) per unit uptake of 

nitrogen by plants (panels e-f). (i) Anthropogenic nitrogen deposition (NHx +Noy) over land areas (source of nitrogen to both managed 

and unmanaged land). (j) Denitrification loss attributable to LULUC. (k) Nitrogen leaching loss attributable to LULUC. (k) Nitrogen 

loss from LULUC disturbance (product pool decays, slash burning and removals).  
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Figure 4.7 (Cont.) 

 

 



126 
 

 

Figure 4.8 Two site-specific simulations (tropical and non-tropical forest site) showing our modeled response to the rate of vegetation 

carbon accumulation followed wood harvest. The ―steady state‖ indicates the time taken to attain full maturity under ideal conditions 

(environmental factors unchanged from current site-specific conditions and no LULUC disturbance following wood harvest). An 

explanation of this figure is provided in text S7.  
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Figure 4.9 Zonal breakdown of prescribed forest harvest area for the four RCPs cumulated over the 21
st
 century (data based on Hurtt 

et al. (2011)). For comparison, the contemporary (2005 AD) forest areas (and savannas) based on MODIS satellite data (Friedl et al., 

2010) are shown. Units are in million km
2
.  
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CHAPTER 5 

Spatial modeling of agricultural land use change at global scale 

 5.1 Abstract 

Long-term modeling of agricultural land use is central in global scale assessments of 

climate change, food security, biodiversity, and climate adaptation and mitigation policies. We 

present a global-scale dynamic land use allocation model and show that it can reproduce the 

broad spatial features of the past 100 years of evolution of cropland and pastureland patterns. 

The modeling approach integrates economic theory, observed land use history, and data on both 

socioeconomic and biophysical determinants of land use change, and estimates relationships 

using long-term historical data, thereby making it suitable for long-term projections. The 

underlying economic motivation is maximization of expected profits by landowners within each 

grid cell. The model predicts fractional land use for cropland and pastureland within each grid 

cell based on socioeconomic and biophysical driving factors that change with time. The model 

explicitly incorporates the following key features: (1) land use competition, (2) spatial 

heterogeneity in the nature of driving factors across geographic regions, (3) spatial heterogeneity 

in the relative importance of driving factors and previous land use patterns in determining land 

use allocation, and (4) spatial and temporal autocorrelation in land use patterns.  

We show that land use allocation approaches based solely on previous land use history 

(but disregarding the impact of driving factors), or those based on mechanistically fitting models 

for the spatial processes of land use change do not reproduce well long-term historical land use 

patterns. With an example application to the terrestrial carbon cycle, we show that such 

inaccuracies in land use allocation can translate into significant implications for global 

environmental assessments. The modeling approach and its evaluation provide an example that 

can be useful to the land use, Integrated Assessment, and the Earth system modeling 

communities. 

 

5.2 Introduction 

Changes in land use are driven by non-linear interactions between socioeconomic 

conditions (e.g. population, technology, and economy), biophysical characteristics of the land 
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(e.g. soil, topography, and climate), and land use history (Lambin et al., 2001, 2003). The spatial 

heterogeneity in driving factors has led to spatially distinct land use patterns. Land use change 

models exploit techniques to understand the spatial relationship between historical changes in 

land use and its driving factors (or proxies for them). Such models are also used to project spatial 

changes in land use based on scenarios of changes in its drivers. The importance of land use 

change models is evident from the wide range of existing modeling approaches and applications 

(see reviews by NRC, 2014; Heistermann et al., 2006; Verburg et al., 2004; Parker et al., 2003; 

Agarwal et al., 2002; Irwin and Geoghegan, 2001; Briassoulis, 2000; U.S. EPA, 2000). However, 

most land use change models are designed for local to regional scale studies (typically sub-

national to national level); global-scale modeling approaches are scarce (Rounsevell and Arneth, 

2011; Heistermann et al., 2006). 

Global-scale land use modeling is challenging compared to smaller-scale approaches for 

three main reasons. First, the set of driving factors and their spatial characteristics of change are 

diverse across the globe, and models need to represent this variability (van Asselen and Verburg, 

2012). Second, the various factors that affect land use decisions operate at different spatial 

scales. For example, landowners make decisions at local scale, whereas factors like governance, 

institutions, and enforcement of property rights operate at much larger scales. Ideally, global-

scale models should incorporate the effects of driving factors at multiple scales (Rounsevell et 

al., 2014; Heistermann et al., 2006). However, an integrated understanding of how the multi-

scale drivers combine to cause land use change is far from complete (Lambin et al., 2001; 

Meyfroidt, 2012). Third, spatially and temporally consistent data for many important driving 

factors (e.g. market influence) are not readily available at a global scale and at the required 

spatial resolution (Verburg et al., 2011, 2013). 

Despite these challenges, there are three reasons for modeling land use at a global scale. 

First, several key drivers of land use (e.g. climate) and their impacts on land use have no regional 

demarcations and substantial feedback exists between them (Rounsevell et al., 2014). Addressing 

the feedback between land use and socioecological systems requires a globally consistent 

framework. Second, regions across the world are interconnected through global markets and 

trade that can shift supply responses to demands for land across geopolitical regions (Meyfroidt 

et al., 2013). Modeling such complex interactions among economies demands a global scale 

approach. Third, the aggregate consequences of land use at the global scale have significant 
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consequences for climate change (Pielke et al., 2011), global biogeochemical cycles (Jain et al., 

2013), water resources (Bennett et al., 2001) and biodiversity (Phalan et al., 2011), making 

global land use modeling a useful component of analyses of these issues. 

These reasons have motivated global scale assessments using Integrated Assessment 

Models (IAMs) that seek to treat the interactions between land and other socioecological systems 

in a fully coupled manner (Sarofim and Rielly, 2011). In IAMs, socioeconomic models are 

coupled with biophysical models (process-based vegetation models and/or climate models) to 

translate socioeconomic scenarios into changes in land cover and its impacts on environmental 

variables of interest (van Vuuren et al., 2012). IAMs typically disaggregate the world into 14-24 

regions (van Vuuren et al., 2011), and land use decisions are made at this regional scale. Some 

IAMs have spatially explicit biophysical components, and in these cases land use information on 

geographic grids at a much higher spatial resolution is required (typically 0.5° x 0.5° lat/lon). To 

provide this information, spatial land use allocation approaches are employed to downscale 

aggregate land demands for large world regions to individual grid cells. Examples of such global 

scale land use allocation approaches can be found in the Global Forest Model (Rokityanskiy et 

al., 2007), IMAGE (Bouwman et al., 2006), MagPie (Lotze-Campen et al., 2010), KLUM 

(Ronneberger et al., 2005, 2009), MIT-IGSM (Reilly et al., 2012; Wang, 2008), GLOBIO3 

(Alkemade et al., 2009), GLOBIOM (Havlik et al., 2011), Nexus land use model (Souty et al., 

2012, 2013), and the Global Land use Model (GLM) (Hurtt et al., 2011). 

In this article, we develop a new global land use allocation model specifically to 

downscale agricultural (cropland and pastureland) land use from large world regions to the grid 

cell level. Agricultural land use merits special attention because it is associated with the majority 

of land use-related environmental consequences (Green et al., 2005), currently occupying ~40% 

of Earth‘s land area (Foley et al., 2005). There are two novel features of our approach that 

distinguish it from previous approaches.  

First, our model predicts fractional land use within each grid cell (continuous field 

approach) driven by time-varying socioeconomic and biophysical factors. In contrast, most 

existing models do one or the other but not both. For example, many downscaling methods 

represent land use in each grid cell (0.5° x 0.5° lat/lon or coarser) by the dominant land cover 

category (e.g. MagPie, IMAGE, GLOBIOM, and the Nexus land use model). This simplified 

representation in land cover underestimates land cover heterogeneity and is a major source of 
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uncertainty in impact assessments (Verburg et al., 2013). Some recent efforts (e.g. Letourneau et 

al., 2012; Schaldach et al., 2011) have addressed this problem by increasing spatial resolution, 

for example using 5-minute grid cells that represent dominant land cover types. While such 

approaches are an improvement, they are also much more computationally intensive and do not 

escape the problem that for many variables representing land use drivers, high resolution data at 

the global scale are unavailable (Verburg et al., 2013). In other approaches (e.g., GLOBIO3 and 

GLM) land cover is represented as fractional units within each grid cell (again 0.5° x 0.5° 

lat/lon), but the approach to allocation is overly simplified, proportionally allocating land use 

projections for aggregate regions to grid cells as closely as possible to existing land use patterns. 

Such an approach does not account for the effect of changes over time in land use drivers, which 

can lead to land use projections that are inconsistent with those drivers (as will be shown later).  

Second, we carry out the first global scale evaluation of a spatial land use allocation 

model over a long historical period (>100 years), reproducing the broad spatial features of the 

long-term evolution of agricultural land use patterns. Evaluation of global-scale spatial land use 

models is important because they are used to generate scenarios for 50-100 years into the future, 

for example to explore issues related to greenhouse gas emissions and mitigation possibilities 

(Moss et al., 2010; Kindermann et al., 2008), climate change impacts on ecosystems (MEA, 

2005; UNEP, 2012), biodiversity (TEEB, 2010; Pereira et al., 2010), or adaptation options 

involving land use (OECD, 2012; Phalan et al., 2011). While evaluation of model performance 

over the past 100 years is no guarantee of good performance over the next 100 years, 

demonstrating the ability of a model to reproduce long-term historical patterns increases 

confidence in its suitability for application to long-term scenarios of future change. The model 

evaluation presented here could serve as an example for how evaluation of other downscaling 

methodologies could be carried out (O‘Neill and Verburg, 2012; Hibbard et al., 2010). 

 

5.3 Methods and data 

Overview of the approach 

Our land use allocation model simulates the spatial and temporal development of 

cropland and pastureland at a spatial resolution of 0.5° x 0.5° lat/lon and at an annual time-step. 
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The model operates at two different spatial levels. On the regional level, the aggregate regional 

demand for cropland and pastureland is provided as input to the model. The model then allocates 

this demand to individual grid cells within that region. We use a constrained optimization 

technique to allocate a fraction of each grid cell to cropland and pastureland while meeting the 

aggregate regional demand for each type of land. The optimization technique selects the most 

profitable land to grow crops and pasture based on (1) the suitability of each grid cell for crop or 

pasture production, determined by a set of 46 biophysical and socioeconomic factors (Table 5.1), 

(2) historical land use patterns (temporal autocorrelation) and (3) the land use predicted for 

neighboring grid cells (spatial autocorrelation).  

A primary intended application of this model is as one component of a larger modeling 

framework that includes a global, regionally resolved economic model that generates scenarios 

of future demand for land at the regional level, similar to the approach taken in other IAMs or 

land use models as discussed above. However, the main aim of this paper is to present and 

evaluate our model in a historical simulation against 20
th

 century gridded data of cropland and 

pastureland. Ideally, the model should be evaluated against observational data. However, purely 

observational data for global, spatially resolved land use data do not exist. Rather, existing 

gridded land use reconstructions are modeled estimates that draw on national and sub-national 

data to the extent possible (see Appendix B). For practical purposes, we assume existing land use 

reconstructions represent the ―truth‖ for the purpose of our model calibration and evaluation. In 

this respect, we face the same limitations as all global, spatially resolved models of land use, 

which typically use such reconstructions as maps representing current land use as a basis for 

future projections (e.g., Hurtt et al., 2011). However, it must be kept in mind that such 

reconstructions are estimates, and that estimates can and do differ from one another based on 

different uses of the underlying data and methods for estimation of gridded outcomes.  

We break down the overall approach discussed above into three components for 

explanatory purpose. First, we formulate a land use allocation model based on profit 

maximization using mathematical programming methods for constrained optimization with 

respect to spatial and temporal distribution of land use types. Second, we derive an estimation 

procedure for the unknown parameters in the land use allocation model. The estimation 

procedure accounts for the heterogeneous nature and importance of driving factors across 
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geographic regions. Finally, we evaluate the land use allocation model and estimation procedure 

using a historical global cropland and pastureland dataset.  

The land use allocation model 

 

Theoretical framework 

The economic motivation for the land use allocation model is maximization of expected 

profit by hypothesized landowners within each grid cell (Lubowski et al., 2008). This motivation 

is consistent with the structure of most IAMs at the regional scale, which generally assume some 

form of optimization for economic sectors (e.g. profit maximization, cost minimization) that 

generate aggregate demand for land. We formulate the land use allocation model as a dynamic 

profit maximization function that consists of two components: a static profit maximization 

function and a dynamic adjustment cost model. The static profit maximization function 

maximizes the achievable profit within each grid cell by selecting the most productive land for 

growing crops and pastures. The dynamic adjustment cost model accounts for the adjustment 

cost associated with changes in land use patterns over time (Golub et al., 2008). For example, 

expanding cropland into unmanaged ecosystems would entail some cost to clear unmanaged land 

and build roads and other infrastructure. This adjustment cost tends to create inertia in land use 

patterns over time.  

For ease of understanding, we introduce the model component-wise. The components are 

then eventually combined to form the final land use allocation model. In this description of the 

theoretical basis of the model, we differentiate two broad categories of land: managed and 

unmanaged. Managed land is the sum of cropland and pastureland, and we define all other land 

types as unmanaged. Because our focus is on cropland and pastureland, all equations we describe 

in this (and the next) section refer to managed land area. We account for unmanaged land later in 

the estimation procedure. 

The static profit function for each grid cell  is expressed as: 

 
   




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In Eq. (1), tY
lg

 represents the area to be estimated of land use type ''l  (=1 for cropland, 

and 2 for pastureland) in grid cell '' g  at time step ''t . tP
lg

denotes the price per unit area for 

commodities produced by land use activity ''l  and tW
lg

represents the cost per unit area for 

producing those commodities. The linear term   ttt YWP
lglglg

  represents the ‗net profit‘ for each 

grid cell, which can be thought of as a measure of land suitability for land use activity ‗l‘. The 

second term  2
lglg
tYR represents the non-linear cost associated with decreasing returns to 

scale; i.e. output increases less than proportionately to an increase in inputs (land use area) and 

the rate of increase in output decreases progressively with additional inputs. The non-linear cost 

term is included because land profitability is assumed to vary within each grid cell, and the most 

profitable land is used first. Therefore, in the long run, the profitability of each additional hectare 

of land brought under production within a grid cell declines (Gouel and Hertel, 2006).  0lg R
 

is a productivity/returns constant and is a function of land use type ''l  and location '' g . 

Eq. (1) is considered a ‗static‘ profit function because all variables are based on the 

current time step ''t  with no reference to history. Eq. (1) can be simplified as a quadratic function 

(see Appendix A.1 for detailed steps): 
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 
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In Eq. (2), 
lg

lg
2

1

R
d   is a constant for decreasing returns to scale and tS

lg
(suitability) 

equals the net price term tt WP
lglg

 . Eq. (2) is subject to two constraints:  

0
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t GAY                                                                                                                 (4) 

Eq. (3) avoids negative allocations. Eq. (4) implies the total of cropland and pastureland 

area allocated within each grid cell '' g
 
should not exceed the grid cell area gGA . 
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We formulate a dynamic adjustment cost model for each grid cell  as follows:  

 
 





2

1

2

lglglg

lg l

tt

Y

YYQMinimize
t

                                                                                         (5) 

Eq. (5) is also constrained by Eqs. (3)-(4). Eq. (5) represents a constrained least-squares 

optimization that tends to minimize the adjustment cost by minimizing the changes in land use 

allocation between the current and a previous time step  ttt  . Criteria for selecting the value 

of t are explained in a subsequent sub-section.  0lg Q is a constant that indicates the 

adjustment cost per unit area and is a function of land use type ''l  and location . In Eq. (5) we 

assume an exponent of 2 because: (1) our land use allocation method is based on quadratic 

programming, and (2) our model parameter estimation involves differentiating the quadratic 

program, which results in linear equations that are convenient to solve.  

We combine Eq. (2) and Eq. (5), to write the overall objective function as a minimization 

problem for each grid cell : 

 lg

2 2
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
                                       (6)   

For convenience we have divided Eq. (6) by a constant that equals the square of grid cell 

area. The minimization problem is unaffected by this modification. Later, it will become evident 

that treating variables as fractions instead of areas is convenient in the parameter estimation 

procedure. 

Our aim is to allocate the aggregate land demand among the grid cells within a given 

region such that the total profits are maximized. Therefore, we stack the individual grid cell level 

optimizations (Eq. (6)) over the aggregate region and write in matrix notation: 

Minimize
Y t{ }

Y t -Y t( )
¢
A Y t -Y t( ) + Y t - DSt( )

¢
Y t - DSt( )                                           (7) 

In Eq. (7), primes denote the matrix transpose operator. tY is a column vector of size 

'2 1'N   with elements 
g

t
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, where '' N represents 

the total number of grid cells within the aggregate region. Therefore, elements in vector tY  are 

'' g
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normalized by the grid cell area and will therefore range from zero to one. Similarly tY , d , and 

tS are vectors of 
g

t

GA

Y
lg  , 

lgd
, and 

g

t

GA

S
lg respectively. The term D is a diagonal matrix of size 

'2 2 'N N given by  

2 2N Nd  D I  

where I  is an identity matrix. The term A represents a constant diagonal matrix. 

.  

The matrix A can be usefully interpreted as representing the balance between the 

importance of adjustment costs and of land suitability in determining land allocation across grid 

cells. Eq. (7) can be regarded as a balance between a dynamic (time-series aspect) and a static 

(cross-sectional aspect) term. The dynamic term is implicitly minimizing adjustment costs by 

trying to keep land use similar to the historical (already existing) land use patterns, whereas the 

static term selects the most suitable land to maximize the net profit regardless of history. The 

balance between the static and dynamic term is determined by the values of the matrix A . In 

extreme cases, when lgR  is zero, no explicit account is taken of the relative suitability of land 

across grid cells and outcomes are determined entirely by land use history; when lgQ  is zero, no 

account is taken of past land use patterns and outcomes are determined entirely by suitability 

across grid cells. 

We simplify the matrix A  by assuming the diagonal elements are equal (i.e. 
lg

lg

R

Q
 is same 

for all ''l  and '' g ). Hence IA a , where ''a  is a positive scalar 















lg

lg

R

Q
 and I  is an identity 

matrix of size '2 2 'N N . Substantively, this implies that while adjustment costs and land 
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suitability can vary across grid cells, their relative importance to land allocation decisions is held 

fixed across grid cells within a given region. This is not an unreasonable assumption and a minor 

concession given its practical benefits: it is both unrealistic and undesirable to estimate 
lg

lg

R

Q
 for 

each ''l  and '' g . It is unrealistic because the number of unknown parameters will increase with 

the number of grid cells resulting in the incidental parameters problem (see Lancaster, 2000). It 

is undesirable because the historical data for land use and its driving factors available to 

constrain the model is limited by both availability and grid level accuracy (see section 2.6 and 

the appendix information cited therein).   

Eq. (7) is quadratic in the tY vector and is subject to two grid cell area constraints (Eqs. 

(8)-(9)) that are the vector forms of Eqs. (3)-(4) respectively.  

Y t ³0                                                                                                                          (8) 

   2 1 2 1 1,t t

g gY Y g N                                                                                           (9)                                                                                  

GAgY
t

2g-1 =Regionalareademandfor cropland
g=1

N

å
                                                        

(10)

 

2

1

Regionalarea demand for pastureland
N

t

g g

g

GA Y



                                                     

(11) 

Eq. (7) is also subject to regional scale constraints (Eqs. (10)-(11)) that ensure that 

aggregate regional demand for each land use activity is equal to the total grid cell allocations of 

that land use activity within that region. Therefore, Eq. (7) is a quadratic program. Competition 

between land use types is accounted for in Eq. (7) because the profits within each grid cell are 

maximized by simultaneously weighing both the cropland and pastureland benefits. The first 

term (adjustment cost) in Eq. (7) accounts for temporal autocorrelation in land use datasets. In 

the following section, we update Eq. (7) to account for spatial autocorrelation.  

 

Accounting for spatial autocorrelation 

Land use area in a grid cell tends to be more similar to the values at surrounding grid 

cells than to those farther away, a feature known as spatial autocorrelation (Overmars et al., 

2003). When spatial autocorrelation is not accounted for, we violate a key assumption in 

statistical analysis that the residuals are independent and identically distributed (Dormann et al., 
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2007). We account for spatial autocorrelation by introducing a spatial weight matrix with the 

neighborhood size and weighting scheme selected based on trial and error (Augustin et al., 

1996). We chose the neighborhood region to be the surrounding eight grid cells (first-order 

Moore‘s neighborhood) all with equal weight.  

The land use allocation model (Eq. (7)) with a spatial weights matrix B  for spatial 

autocorrelation is: 

Minimize
Y t{ }

Y t -Y t( )
¢
A+B( ) Y t -Y t( ) + Y t - DSt( )

¢
Y t -DSt( )                                   (12) 

The B  matrix is proportional to a W  matrix of spatial weights that is assumed to be 

symmetric and have zeros along its main diagonal. Note the A matrix is diagonal. We represent 

the spatial weights in W  matrix by a constant scalar ''b  that can be positive (if positively 

correlated), negative (negatively correlated), or zero (uncorrelated). We assume zero spatial 

autocorrelation between the two land use activities for a practical benefit: the resulting matrix 

structure allows us to use specialized techniques to perform matrix inversions quickly that are 

required for estimating model parameters (described in a subsequent sub-section), which 

otherwise is computationally expensive. We provide some examples in Appendix A.2 to help 

illustrate the structure of matrices A  and B . For grid cells lying along political boundaries, 

slight deviations in averaging could arise due to edge effects. 

Eq. (12) is our final land use allocation model and is subject to two grid level constraints 

(Eqs. (8)-(9)) and two regional constrains (Eqs. (10)-(11)). There are four unknown components 

in Eq. (12) that need to be estimated from historical data: the potential land suitability vector
tS , 

the scalar constants ''a and ''b , and the constant vector for decreasing returns ''d . For 

consistency, we estimate all the unknown parameters simultaneously using the following 

procedure.  

 

Estimation method for unknown parameters 

Consistent estimates for the parameters in Eq. (12) can be obtained with historical data 

for land use and its driving factors by treating Eq. (12) as a least-squares problem that combines 

first-order autoregressive stochastic processes (for first-order spatial autocorrelation and dynamic 

adjustment costs) and a logit function (with explanatory factors) for the term 
tS . A restriction on 
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the error process for each grid cell insures that the sum of tY  elements for each grid cell 
















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t
g

g

t
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Y
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Y
ei

21
..  is bounded between zero and one, or they may take a value of zero or one. 

 

Logit function  

We assume tS
 
(dependent variable) to be a function of a matrix Xgtof potential driving 

factors (exogenous explanatory variables; see table 5.1) that is specific to grid cell '' g and time '' t

. The matrixXg0
(i.e. for t=0) refers to potential driving factors that are time-stationary (e.g. soil 

and terrain conditions). We model the relationship between the dependent and explanatory 

variables as a binomial logistic regression (see Lesschen et al. (2005) for regression approaches 

used in spatial land use models). For each grid cell '' g and time '' t , the logit functions for 

cropland )1( l  and pastureland )2( l  are given by Eqs. (13)-(14). 

0
1

1

1 gt

t

gS
e
 




X                                                                                                          (13) 

0

0
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e
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e

 

 








X

X

                                                                                                       

(14) 

In Eqs. (13)-(14),   is a constant coefficient and
 
  is a vector of coefficients with a 

component for each explanatory variable. 0 and  need to be estimated. The sum of Eqs. (13)-

(14) implies the index of land suitability summed for cropland and pastureland for each grid cell 

equals one (recall that these equations apply only to managed land). Therefore, Eqs. (13)-(14) 

can be interpreted to partition the total land use area in grid cell '' g  as proportions of cropland 

and pastureland.  

 

Error process 

Formally, the unconstrained version of the minimization problem in Eq. (12) implies a set 

of first-order necessary conditions. Therefore, we differentiate Eq. (12) and equate to zero: 

A+B( ) Y t -Y t( ) + Y t - DSt( )
¢
=0Û Y t = I+A+B( )

-1
DSt + I+A+B( )

-1
A+B( )Y t  (15) 
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In Eq. (15), I  is an identity matrix. Let   1 BAIΨ ,  BAΨΩ  , and t
lg
 denote 

random variables, each with a mean zero that satisfy 0
21

 t
g

t
g

 . Non-linear regression 

equations associated with Eq. (15) are 

0 2 1,
1 2 1,2 1 2 1 2 1,2 1 1 1β β

1 1

1
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1 k t

N N
t t t

g g k k g k k g
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                                             (16)
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 
X

X
Ω                                                      (17) 

However in the above formulation, estimation of the ''d
 
parameters (which, as noted 

above, reflect returns to scale) for each grid cell is inconsistent because of incidental parameter 

bias (Lancaster, 2000). For consistency, we treat the ''d parameters as random effects. For 

random effects, a logit function that differentiates managed (crop + pasture) from unmanaged 

land (e.g. forests, grasslands, and bare land that occupy rest of the grid cell area) is a natural 

specification that builds on a nested logit structure.  

The ''d
 
parameter corresponding to managed land fraction is: 

0 0

1

1 g
gd

e
 




X                                                                                                            (18) 

In Eq. (18), 0 is a constant coefficient and
 
 is a vector of coefficients to be estimated 

for the set of explanatory variables specified by Xg0
. 

Substituting Eq. (18) into Eqs. (16)-(17) gives Eqs. (19)-(20) respectively. 

0 2 1,0 0 2 1,
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1 1

1 1
ε

1 1k k t

N N
t t t

g g k g k k g

k k

Y Y
e e 
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(20) 

An important remark is that   and   are not identified in Eqs. (19)-(20) unless 

Xg0 ¹Xgt
for some 't' . We therefore specify the explanatory variables that are time-stationary 

(factors such as soil and terrain conditions) within Xg0
and the transient explanatory variables 

(e.g. climate and socioeconomics) within
gtX .  
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In Eqs. (19)-(20), for each grid cell ''g the logit function for the ''d  parameter accounts 

for the fraction of managed land area, whereas the logits for ''
1
t
g

S  and ''
2
t

g
S  further splits the 

managed land fraction into proportions of cropland and pastureland respectively. 

A third equation in this system applies to unmanaged land fractions, which are the 

random effects: 

1- Y1g

t +Y2g

t( )=
e

g 0 + ¢Xg,0g

1+e
g 0 + ¢Xg,0g

+hg                                                                                  (21) 

Eq. (21) implies that we can deduce the unmanaged land fraction using Eqs. (19)-(20). 

This is implied from the assumption built into the model‘s error process such that the sum of 

managed and unmanaged land fractions adds up to one for each grid cell. Therefore, Eq. (21) is 

redundant and dropped from the estimation.  

In general for a spatial-weights matrix W , a large number of grid cells implies the 

components of both  ,Ψ a b and  ,Ω a b are high-order rational polynomials in powers of 

parameters ''a and ''b . These are derived from the functions      11,  WIΨ baba , and 

    WIΨΩ bababa  ,, , which are applied to form a stacked system of regression equations 

where '' tS and ''d
 

parameters are logit functions of a vector of explanatory variables as 

discussed above. Eq. (19)-(20) can be combined as: 

       0, γ β , εt t t t

tY a b S a b Y   D X X Ω                                                     (22) 

 

In Eq. (22),  0 2 2D X I N Nd  
   where I  is an identity matrix.  

 

Least-square estimation 

The least-squares problem for the nonlinear regression to estimate the parameters '' 0 , 

'' , '' 0 , '' , ''a , and ''b  is obtained by minimizing 
t in Eq. (22).  

 
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The summation over ''t in Eq. (23) implies multiple years of data can be used to estimate 

parameters. There are no grid level or regional demand constraints imposed on Eq. (23). The 

only constraint imposed on Eq. (23) is that a>0.  

Solving for estimates of '' 0 , '' , '' 0 , '' , ''a , and ''b  using Eq. (23) can be difficult 

when there are many grid cells, due to the numerical costs of inverting a large matrix to compute 

 ba,Ψ for each iteration in the estimation procedure. Therefore, we use specialized techniques 

to invert the matrix efficiently, the details of which are spelled out in Appendix A.3 with 

examples.  

 

Accounting for spatial heterogeneity in driving factors 

The set of driving factors and their relative importance (i.e. values of ''  and ''  for a 

given explanatory variable) often differ between geographic regions. Further, the strength of 

temporal and spatial autocorrelation (i.e. ''a and ''b  parameters) may vary between geographic 

regions. To account for this spatial heterogeneity, we disaggregate the world into into 127 

distinct sub-regions (Figure 5.1) based on administrative boundaries (see Appendix C for 

methods and rationale) and solve Eq. (23) separately for each sub-region. Though we had earlier 

assumed that ''a

 

and ''b  parameters do not vary across grid cells within a region, estimating Eq. 

(23) for the 127 sub-regions imply ''a

 

and ''b  parameters can vary across sub-regions.  

 

Selecting lag-year  t  associated with the dynamic adjustment cost term 

There are two main considerations for selecting a value for t : 

1. In general, the value of tt YY  should not be negligible relative to the value tY

 

for most grid 

cells. If such were the case, the least-square optimization (Eq. (23)) would tend to be biased 

towards the dynamic adjustment cost term  0lg R . An exception applies to grid cells that are 

completely unsuitable for both cropland and pastureland where Ylg

t =Ylg

t =0  for any ''t . Typically, 

for global land use change datasets at 0.5° x 0.5° lat/lon, the grid cell level net changes in land 

use fractions between consecutive years is less than 10
-3 

for both cropland and pastureland when 

averaged globally over the 20
th

 century (excluding grid cells unsuitable for agriculture and 
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computed based on the land use change data). Therefore, a lag on the order of one year  1tt  

is not an appropriate choice.  

2. Our specification of random errors in Eqs. (19)-(20) imply that they are uncorrelated with the 

explanatory variables. For this assumption to be valid, the value of the lag should be sufficiently 

large. 

Based on experimentation, we found a lag of 10 years  10tt  satisfies the above 

requirements and also roughly matches the temporal autocorrelation present in the historical land 

use change dataset. 

 

Explanatory variables and land use change data 

We include a total of 46 variables as potential explanatory variables (or proxies for them) 

in our regression analysis (table 5.1). These variables are restricted to those expected to 

determine the spatial (as opposed to aggregate) determinants of land use patterns and they 

broadly align with our existing knowledge of land use dynamics (Lambin et al., 2001, 2003). At 

the global scale, the factors listed in table 5.1 are adequate to describe the major spatial patterns 

of agricultural land use (Ramankutty et al., 2002). However, this list is not exhaustive. For 

example, policies that would influence spatial land use patterns within a region are likely 

relevant but are not explicitly included here. Rather, their effect (present in historical land use 

patterns) would be captured only implicitly through proxy variables. In cases like this we also 

rely on the fact that such factors are incorporated at least at the level of aggregate regions in 

scenarios generated by IAMs.  

We synthesize the information for the 46 explanatory variables from a wide range of 

sources (table 5.2). The data for each of the explanatory variables was either available for the 

time period 1900-2005 (annually) at a spatial resolution of 0.5° x 0.5° lat/lon, or was available 

for shorter time periods and/or coarser resolutions and we extended/refined it to a common time 

period and resolution. The rationale for selecting these variables and methodologies applied to 

extend/refine the raw data are detailed in Appendix D.  

Historical reconstructions of cropland and pastureland were obtained from Ramankutty 

(2012) (hereafter referred as RF because it is an updated version of Ramankutty and Foley 

(1999) data). The reconstruction is available yearly (1700-2007) at 0.5° x 0.5° spatial resolution; 

we utilize data for the period 1891-2005 for historical model simulation, of which ~20% subset 
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is used for model estimation as explained below. In principle, the model can be estimated and 

evaluated with any historical reconstruction available in literature. The rationale for selecting RF 

data for our study and further background information on the land use change dataset is provided 

in Appendix B.  

To estimate the parameters '' 0 , '' , '' 0 , '' , ''a , and ''b  we select 20 years of RF data 

for land use  tY
 
and its explanatory variables Xgt( )  over the 1895-2005 period; i.e. about 20% 

of the available (annual) data. In selecting particular years to use in estimating parameters, we 

balance two goals: capturing recent patterns of land use from which future projections will begin, 

and capturing larger, longer-term changes in land use and explanatory variables to better support 

use of the model in long-term future projections. We therefore choose two 10-year sets of data. 

The first set, to capture longer-term changes, consists of 10 years drawn between 1905 and 1995 

at 10-year time steps (i.e. 1905, 1915 …1995). For each year, a corresponding 10-year lag data 

point  10tY is used in the estimation procedure. For example, for year 1905, the lag year data 

corresponds to 1895, and for 1995 the lag year data corresponds to 1985. The second set, to 

capture contemporary relationships, includes 10 years of data covering the period 1996-2005 at 

1-year time steps. For 1996, the lag year data corresponds to 1986, and for 2005 the lag year data 

corresponds to 1995.  

The explanatory variables (table 5.1) used in the analysis have different units and scales. 

Hence, the estimated regression coefficients (   and  vectors) are of different scale and cannot 

be directly interpreted to infer the relative importance of explanatory variables on the dependent 

variable. To address this problem, we standardize all explanatory variables covering the period 

1901-2005 before the parameter estimation and model simulation procedure. The standardization 

also prevents numerical difficulties that could arise due to scaling problems in the least-squares 

estimation (Eq. (23)). A standardized coefficient indicates how many standard deviations a 

dependent variable will change, per standard deviation increase in the explanatory variable 

(Hunter and Hamilton, 2002). For each explanatory variable associated with the vectors   and 

 , we calculate its mean and standard deviation using five years of data (2001-2005) separately 

for each of the 127 sub-region. For a given explanatory variable and grid cell, we standardize the 

variable using the z-score which is computed as the difference between the value of the variable 
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at that grid cell and its mean value for the corresponding sub-region, divided by the standard 

deviation corresponding to that sub-region. 

See Appendix E for a discussion on how we handle multicollinearity among explanatory 

variables and excess-zeros problem. Appendix A.4 provides details on the solvers used to 

implement the land use allocation model (Eq. (12)) and the least-squares optimization (Eq. (23)).  

 

Simulation procedure to evaluate the land use allocation model 

To test the land use allocation model, we compared results from model simulations for 

the historical period (1901-2005) to the historical data reconstruction (RF data) over that period. 

For this test, first we divided the world into nine regions (Figure 5.1), consistent with the regions 

used in a general equilibrium model of the global economy, the PET (Population-Environment-

Technology) model (O‘Neill et al., 2010). This regional mask will allow us to subsequently link 

the land use allocation model with the PET model for exploring future scenarios. For each year 

over the period 1901-2005, we aggregated the 0.5°x0.5° lat/lon reconstruction data for cropland 

and pastureland to these nine regions. This regionally aggregated land use information was then 

used as input to the land use allocation model (Eq. (12)) to form the annual regional-scale 

constraint on the total area demand for each land use type (through Eqs. (10)-(11)). Next, the 

land use allocation model (Eq. (12)) allocated the regionally aggregated land use information 

back to 0.5°x0.5° spatial resolution by applying time-dependent regional demand constraints and 

two local constraints (Eqs. (8)-(9)). The model-downscaled land use maps were finally compared 

to the original 0.5°x0.5° lat/lon RF data to evaluate model performance.  

The evaluation test is rigorous given that most IAMs disaggregate the world into a larger 

number of smaller regions (14-24 regions; van Vuuren et al., 2011). Figure 5.2 depicts our 

evaluation strategy, which we implement with the algorithm discussed next. This algorithm is 

repeated separately for each of the nine aggregate world regions.  

1. Form the matrices A and B  to use in Eq. (12). Each of the nine aggregate regions has 

several sub-regions (Figure 5.1) with corresponding scalar constants ''a  and ''b . Therefore, each 

grid cell in matrices A and B  is weighted based on the parameters ''a  and ''b within the sub-

region the grid cell belongs to. Matrices A and B  are static and need to be computed just once at 

the start of the model simulation. 
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2. For each grid cell '' g within the aggregate region, calculate decreasing returns constant gd  

from Eq. (18). For this calculation, spatial data on the standardized explanatory variables 0
lg

X are 

used. Note that for each sub-region within the aggregate region (Figure 5.1), values for '' 0  and 

''  corresponding to that sub-region are used. This information is used to form the D matrix in 

Eq. (12) for the aggregate region. The term gd  in Eq. (18) is independent of time-step ''t , and 

needs to be calculated only the first time. 

3. Set model reference year ' 1901't   .  

4. Use the RF spatial data for cropland and pastureland for year 1891 to form the tY
 
terms in 

Eq. (12). The size of vectors 
tY  and tY

 
in Eq. (12) is two times the total number of grid cells 

within an aggregate region. 

5. For time-step ''t , and for each grid cell '' g within the aggregate region, calculate land 

suitability tS
lg  

from Eqs. (13)-(14). For this calculation, spatial data on the standardized 

explanatory variables tX
lg

are used. For each sub-region within the aggregate region (Figure 5.1), 

values for 
0' '  and ' '  corresponding to that sub-region are used. This information is used to 

form the vector tS in Eq. (12) for the aggregate region.  

6. For time-step ''t , the land use allocation model computes tY  (from Eq. (12)) using five 

variables: (1) matrices A and B  from step 1, (2) matrix D from step 2, (3) tS  from step 5, (4) 

tY  where 10t t  , and (5) the regional total area demand for each land use type in time-step 

''t which is used as input for the regional constraints through Eqs. (10)-(11). This step, when 

carried out separately for each of the nine world regions, results in a global map of cropland and 

pastureland for ‗t‘.  

7. Increment model time-step by one year ( '1'  tt ). 

8. Repeat steps 5 to 7 until ' 2005't  . For the first ten years of model simulation 

 1901 1910t  , RF data for the period 1891-1900 are used to form the tY term. For 1911t  , 

the model predicted maps are utilized to form the tY term. 
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In summary, the land use allocation model requires three inputs: (1) maps of cropland 

and pastureland from 1891-1900 to form the lagged tY term for the first 10 years of model 

simulation (cropland and pastureland maps for the 1900 RF data are presented in Figure 5.3), (2) 

annual maps (1901-2005) of explanatory variables, and (3) the annual (1901-2005) aggregate 

demands for cropland and pastureland for each of the nine world regions. With these inputs the 

model dynamically allocates aggregate land use information at 0.5° x 0.5° spatial resolution for 

each year starting from 1901 until 2005. The dependence of our allocation model on previous 

and neighboring land use through tY and matrix B
 
respectively result in high path dependence 

of the simulated land use patterns. 

5.4 Results 

Land use allocation model simulation and historical land use patterns 

Figures 5.4-8 show the model predicted maps for cropland and pastureland from the 

model simulation at 20-year time intervals. Table 5.3 summarizes the comparison in terms of 

adjusted Kappa coefficients. Kappa coefficient is a statistical measure of inter-rater agreement, 

and range from zero to one (unit less quantities). Greater magnitude of kappa indicates better 

agreement between the simulated and the actual values (RF data). Adjusted kappa coefficient 

(Mertens et al., 2003) is same as kappa coefficient, but is intended for sub-grid mapping and 

ignores grid cells where both predicted and actual values are zero (including zero grid cells 

would inflate the kappa values without adding much information about models prediction 

abilities).  

Overall, the model predicted fractional areas for cropland and pastureland for the entire 

20
th

 century are broadly consistent with RF data (Figures 5.4-8; table 5.3). There are two points 

that stand out from the temporal trend in kappa coefficients (table 5.3). First, the land use 

patterns predicted by the model better match the RF data toward the start and end of the 

simulation period. Second, the prediction of historical pastureland patterns is consistently worse 

than that for cropland.  

The reason for the better performance at the start and end of the simulation is that the 

model begins in 1901 with the observed land use pattern and projected values deviate over time, 

so that outcomes early in the century, all else equal, are likely to be more accurate than those 

later in the century. Towards the end of model simulation, the predicted maps converge towards 
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the actual RF data because our estimated parameters are weighted more towards the 

contemporary relationships (section 2.6).  

The reason for the limited accuracy in predicting pastureland is likely because the spatial 

reconstructions of pastureland are highly uncertain, so that the explanatory factors used in our 

study have limited capacity in explaining the historical pastureland patterns. For example, the RF 

data used here estimates global pastureland area at 26.3 million km
2
 during 2005. In comparison, 

the other well-known HYDE 3.1 reconstruction (see Appendix B) estimates pastureland area at 

33.0 million km
2
 during 2005, 26% higher than RF data. Therefore, at grid-level, the relative 

uncertainties in pastureland estimates are even higher (Figure 5.9), and increase as we go further 

back in time from 2005 (Meiyappan and Jain, 2012).  

A key feature of the model is its ability to replicate the timing and magnitude of spatial 

shifts in land use patterns that occur in the RF data, even within an aggregate region. For 

example, Figure 5.10 shows the model predicted net transitions in cropland over the US for the 

period 1900-1960 (calculated as the difference between 1960 model predictions and the 1900 

reference map divided by the number of years). The model is able to reproduce the decline in 

cropland in the eastern US and subsequent expansion to the mid-western US that occurred over 

this period (Fig 5.10, compare top left and top right panels). The model is able to reproduce the 

shift in these patterns mainly because we account for the heterogeneous nature of the driving 

factors within each aggregate region and their changes over time. Similarly, we show the model 

is able to replicate the key spatial patterns of land-use change (as indicated by RF data) for other 

world regions: (1) Europe and the western portion of the Former Soviet Union (FSU) between 

1935-1960, during which period Europe experienced a gradual decline in cropland, and FSU 

experienced sharp cropland expansion associated with the opening up of ―New Lands‖ (compare 

top two left panels in Figure 5.11), (2) in the same region, but for the period 1960-2005, when 

cropland abandonment was common to both Europe and FSU (top two right panels in Figure 

5.11), and (3) widespread net cropland expansion in the tropics between 1920 and 1980 that 

resulted in significant deforestation (top two panels in Figure 5.12). Overall, results indicate that 

the general patterns of cropland expansion and abandonment are replicated well compared to RF 

data, with some exceptions (e.g. in Figure 5.12, we simulate cropland expansion in the Caribbean 

and parts of India where RF shows abandonment).  

Estimated parameters 
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The ' 'a  parameters indicate the relative importance of the dynamic adjustment cost 

model (dependence of land use allocation on the previous land use patterns) compared to the 

static profit maximization function (dependence of land use allocation on potential land 

suitability). The ' 'b parameters indicate the nature and magnitude of spatial autocorrelation in 

land use patterns.  

Three key results stand out from the estimated ' 'a  and ' 'b parameters (Figure 5.13). First, 

the values for both the parameters are spatially heterogeneous across the globe. This 

heterogeneity would be left unaccounted for if models were not parameterized at sub-global 

scales.  

Second, the ' 'b parameters are non-zero and significant for most regions across the globe 

indicating that global land use change datasets have significant spatial autocorrelation (note that 

0b  indicates no autocorrelation). Therefore, disregarding the presence of spatial 

autocorrelation from estimation procedure will result in biased parameter estimates. The negative 

values for ' 'b  across most sub-regions indicate the bias would tend to inflate the importance of 

driving factors in these regions because the estimated ' 'a parameters would be smaller compared 

to that in Figure 5.13a (smaller because when ‗b‘ is disregarded, the ‗a‘ parameter would reflect 

the net effect of the ‗a‘ and ‗b‘ parameters).  

Third, the ' 'a parameters indicate that temporal autocorrelation is strong for most regions; 

i.e., the dynamic adjustment cost term dominates land suitability in determining land allocation, 

leading to a highly path dependent process. Higher ‗a‘ values generally coincide with regions 

where extensive agriculture is found as early as 1900 (e.g. cropland in Europe, India and China 

in Figure 5.3a, and pastureland in USA, west of the Mississippi river in Figure 5.3b). The spatial 

patterns of land use in these regions reflect a long history of changes in land use in response to 

socioeconomic and biophysical factors. The model therefore tends to rely more on previous land 

use patterns to explain subsequent changes in land use patterns in these regions.  

The importance of the adjustment cost term does not imply that driving factors that 

determine land use suitability are insignificant in a dynamic allocation procedure. High path 

dependency implies inaccuracies in predicting land use allocations in one year will reduce the 

accuracy of predictions for subsequent years. As will be shown in the next section, it is this path 

dependency behavior that makes inclusion of driving factors important. If we exclude driving 
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factors from the land use allocation procedure, the inaccuracy in land use allocations for initial 

years of simulation would be negligible, but over time they would accumulate to produce land 

use maps that are substantially different from the historical reconstruction.  

 

Comparison to other models 

To evaluate the land use allocation model, we repeat the historical simulation (last sub-

section in 5.3) with two other common land use allocation approaches and compare them with 

our results. We designed both these approaches as representative of general allocation 

procedures; they do not replicate specific existing models. Full methodologies are provided in 

Appendix A.5. Here, we highlight the key features of these approaches.  

(1) Proportional downscaling approach – The aggregate land use projections are 

allocated to grid cells as closely as possible to previous year land use patterns. No account is 

taken of the impact of driving factors. Models following this general approach include 

GLOBIO3, and GLM used to downscale land use projections from the Global Change 

Assessment Model (GCAM) model corresponding to the RCP4.5 scenario of the IPCC (van 

Vuuren et al., 2011). 

(2) Constrained proportional downscaling approach – The aggregate land use 

projections are allocated to grid cells as closely as possible to previous year land use patterns, but 

the direction of change is constrained by the direction of change in a measure of land suitability. 

Land suitability is determined with regression relationships driven by explanatory variables, and 

the constraint implies that grid cells in which suitability decreases (increases) must have a 

decrease (increase) in land use (or no change). The magnitude of decrease (increase) is restricted 

to vary between the estimated land suitability and previous land use area. This approach 

mechanistically fits models to explain spatial processes in land use change and update the 

allocation maps accordingly. Models following this general approach include MIT-IGSM 

(Wang, 2008). 

Performance of previously published land use allocation approaches  

Results show that the final predicted land use map (2005) using both allocation 

approaches to downscale the aggregate land demands derived from the RF data are less accurate 

than our model (compare Figure 5.14 and 5.15 with bottom panels in Figure 5.8). The adjusted 

kappa coefficients indicate that at the end of model simulation (2005 A.D.), both the allocation 
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approaches have a 59-66% accuracy in simulating cropland patterns, compared to 87% accuracy 

by our model (table 5.3). The accuracy in simulating pastureland patterns also differ by similar 

magnitudes between our model and the other two approaches. Inaccuracies using the 

proportional downscaling approach are driven by the fact that the allocation across grid cells 

within an aggregate region is homogeneous (Figure 5.14), and does not capture major shifts in 

agricultural patterns caused by changes in the spatial patterns of driving forces (Figure 5.10 

compare mid-left panel with top-right panel; Figures 5.11 and 5.12 compare middle panels with 

top panels). This leads to severe overestimation of land use within some regions (e.g. ~40% in 

eastern US for cropland) and a corresponding underestimation in other parts of the same region 

(e.g. >50% in Great Plains) (Figure 5.10). In contrast, the constrained proportional downscaling 

approach tends to reproduce shifts in agricultural patterns in some regions, but not accurately. 

For example, the abandonment of cropland in the eastern US is reproduced to some extent 

(Figure 5.10; mid-right panel), but cropland expansion occurs not only in the Great Plains but 

also in the western US (Figure 5.10; mid-right panel) where pastureland hotspots are located 

(Figure 8d). In the case of Europe (Figure 5.11) and the tropics (Figure 5.12), we find both the 

proportional and constrained proportional downscaling approaches capture the general regions of 

cropland abandonment and expansion (in reference to RF); however, the hotspots are severely 

underestimated because the allocation across grid cells within an aggregate region is 

homogeneous. As evident from our analysis this pattern of allocation is explained by two 

reasons. First, the importance of driving factors is underrepresented in a constrained proportional 

downscaling approach for most regions, because driving factors affect the direction but not the 

magnitude of land use change. Second, the importance of driving factors in determining land use 

allocation is assumed to be homogeneous across the globe. Therefore, how we represent the role 

of driving factors within a land use allocation procedure is as important as including the driving 

factors itself.  

We note that the cropland transitions seen in the alpine tundra of the Himalayas (in both 

proportional and constrained proportional allocation approach) is an artifact of our model 

reproduction methodology (Appendix A.5). In principle, we can force the model not to allocate 

croplands in such biophysically unfavorable regions through grid cell constraints. However, we 

have not imposed such restrictions as our aim was only to elucidate the general allocation 

behavior of the both the approaches. 
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Coupled land use allocation model and historical carbon emissions 

To investigate the sensitivity of environmental impacts to alternative land use allocation 

models, we apply the historical downscaled land use data from our land use allocation model as 

input to an important type of study land use change models are used for: projecting CO2 

emissions from land use change. The accuracy of the emissions results depends on getting the 

spatial patterns of land use correct where it most matters (i.e. where the carbon consequences are 

highest). We compare the simulated emissions with those obtained using the two other land use 

allocation approaches, and with other existing land use reconstructions available in literature. 

We use a land-surface model, the Integrated Science Assessment Model (ISAM) to 

estimate net CO2 emissions from land use change at 0.5° x 0.5° lat/lon resolution annually for the 

period 1900-2005. Further background information on ISAM and the simulation protocol is 

detailed in Appendix A.6. As six separate experiments, we calculate the CO2 emissions due to 

changes in the areas of cropland and pastureland from six different land use change datasets. 

Three of the six land use change datasets are downscaled land use information: (1) from our land 

use allocation model, (2) the proportional downscaling approach, and (3) the constrained 

proportional downscaling approach. The fourth is the RF data for cropland and pastureland (the 

reference case because we prescribed the aggregate land demands in datasets (1)-(3) from RF). 

The other two datasets are independent reconstructions of historical land use change summarized 

in Meiyappan and Jain (2012): HYDE 3.1 (Klein Goldewijk et al., 2011), and Houghton 

(Houghton, 2008). The RF data used in our study is just one realization of what could have 

happened in the past (Appendix B). Therefore, estimates based on multiple reconstructions are 

particularly helpful to understand the range of uncertainties among available historical 

reconstructions of agricultural land use. Our reported net emission excludes emissions from 

indirect environmental effects (e.g. changes in climate, CO2 fertilization, and nitrogen 

deposition).  

Figure 5.16 provides a comparison of the estimated carbon emissions across the six land 

use change datasets at aggregate regional scale and cumulated over the period 1900-2005. Four 

key points are evident. First, estimates based on our land use allocation model compare well with 

that from RF data, as expected since our modeled spatial land use history also compares well 

with the RF data, and are within the uncertainty range of three reconstructions. Second, at an 

aggregate global scale, the proportional and constrained proportional downscaling approach 
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overestimate carbon emissions on average by ~0.17 PgC/yr (26%) and ~0.14 PgC/yr (23%) 

respectively, compared to RF data, even though these two approaches used the same aggregate 

regional land use change as the RF data. This overestimate is significant given that the total 

uncertainty (from agricultural land use change, other land disturbance activities, and knowledge 

gaps in process understanding and modeling) in estimating historical carbon emissions from 

land-use and land-use change is ~0.5 PgC/yr (Le Quéré et al., 2014). Third, both proportional 

and constrained proportional allocation approaches result in much higher disagreement at a 

regional scale, compared to RF data. A striking example is North America, where estimates 

based on the proportional and constrained proportional downscaling approaches are ~4.4 and 

~2.5 times higher than RF data respectively. This is a consequence of the higher inaccuracy in 

reproducing the changes in agricultural hotspots by both downscaling approaches. In the case of 

RF data and our land use allocation model, abandonment of cropland over the eastern US (Figure 

5.10; top panels) causes a larger carbon sink (hence, smaller net emissions) due to subsequent 

forest regrowth (see Figure A.1 in online supplementary). This important feature is reproduced 

only to some limited extent in the constrained proportional downscaling approach, and is 

nonexistent for the proportional downscaling approach (Figure 5.10; mid panels). A consequence 

of overestimating cropland in the eastern US is a corresponding underestimation of cropland 

expansion in other parts of the US (consequently lower carbon emissions in these regions 

compared to RF data). Therefore, at grid level the disagreement in estimated net emissions is 

much higher for proportional and constrained proportional allocation approaches compared to 

RF data (not shown). Fourth, net emission estimates based on the three existing historical 

reconstructions of agricultural land use show significant disagreement, especially at the regional 

scale. This disagreement is largely explained by the difference in agricultural inventory data used 

by these reconstructions (Jain et al., 2013; Meiyappan and Jain, 2012). No reconstruction is 

clearly better than another, as is evident from the uncertainties in net transitions estimated 

between the two reconstructions (see Figure 5.9 for pastureland, and compare the top and bottom 

panels in Figures 5.10-5.13 for cropland). Therefore, land use allocation approaches need not 

closely emulate any one reconstruction. However, despite the large uncertainty range among 

historical reconstructions, the emission estimates based on both the proportional and constrained 

proportional downscaling approaches fall outside this range for many regions. This underscores 

the importance of a reliable approach to modeling land use allocation. It is also important to 
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continuously improve the quality of historical land use data to improve models and to more 

accurately predict future land use change. 

 

5.5 Discussion  

The land use allocation model 

We present a statistical model for land use allocation with an econometric interpretation 

of land suitability that is based on profit maximization (or cost minimization). The approach 

integrates economic theory, observed land use, and data on both socioeconomic and biophysical 

determinants of land use change. It is global in scope and is estimated using long-term historical 

data, thereby making it suitable for long-term projections, such as in IAMs. The method accounts 

for spatial heterogeneity in the nature of driving factors across geographic regions. The 

allocation is modified by autonomous development (previous and neighboring land use patterns, 

thereby accounting for temporal and spatial autocorrelation), competition between land use 

types, and exogenous drivers that are treated as explanatory variables. The spatial and temporal 

resolution at which the model operates is flexible.  

Given that the biophysical components in most global-scale land use models operate at a 

spatial resolution of 0.5°x0.5° lat/lon (or coarser), representing landscape heterogeneity at the 

sub-grid scale level, at least to some extent, is important. The method of fractional land use 

prediction developed here is a first step towards representing landscape heterogeneity in global 

scale land use models. Ultimately, a highly detailed representation of the composition of 

landscapes is necessary for certain environmental assessments, such as biodiversity (van Asselen 

and Verburg, 2012; 2013). Two other equally important aspects in land use allocation procedure 

are to account for the: (1) transient impacts of socioeconomic and biophysical driving factors, 

and (2) spatial heterogeneity in the relative importance between driving factors and past land use 

patterns in determining land use allocation. As demonstrated in this study, other downscaling 

approaches that disregard the first aspect, but predict fractional land use fail to reproduce the 

hotspots of historical agricultural patterns. A constrained proportional land use allocation 

approach that accounts for the first aspect, but disregards the second, also fails to reproduce the 

historical land use patterns. We also show that such downscaling approaches could have 

significant implications for global environmental assessments. Our approach is novel because we 

predict fractional land use within each grid cell and simultaneously account for the spatial 
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heterogeneity in the relative importance between past land use patterns, and driving factors that 

change with time. 

As a first step, we apply the model framework to evaluate the land use patterns for two 

generic land use types: cropland and pastureland. However, the framework is extendable to 

account for individual crop types, for instance to study the global land use implications of large-

scale biofuels (Melillo et al., 2009; Havlik et al., 2011; Hallgren et al., 2013). For our model 

evaluation, we attempt to compile a database of the most important explanatory variables 

available at the global scale (table 5.1). Though the list is incomplete, we show that these 

variables are adequate to reproduce the changes in the hotspots of historical land use change. To 

use the allocation framework within an IAM, the stationary explanatory factors (soil and terrain 

conditions) can be retained, whereas data on transient explanatory factors (e.g. climate and 

socioeconomics) should be replaced with that simulated by the IAMs. This would allow for 

studying the two-way interactions between land use and the environment (e.g. climate, 

hydrology). Further, not all transient explanatory variables used in our historical simulation are 

projected by current IAMs. An alternative is to replace the explanatory variable with other 

equivalent proxy indicators simulated by IAMs (e.g. Net Primary Productivity). In such cases, 

the parameter estimation procedure and evaluation should be repeated using the method 

discussed in section 5.3, following which the evaluated model can directly be used within IAMs 

to explore future scenarios.  

Land use competition 

Competition for land in itself does not drive land use, but is an emergent property of 

other drivers and pressures (Smith et al., 2010). Our approach accounts for land use competition 

by simultaneously optimizing the area of cropland and pastureland within each grid cell with the 

aim of maximizing the overall achievable profits. Hence, the approach prevents inconsistency 

and approximations in the allocation procedure that would otherwise arise when the spatial 

patterns for each land use type are determined independently (e.g. see Wang, 2008). 

Incorporating the effects of competition into spatial allocation models is an important feature, 

given the potential for growth in demand for agricultural land, particularly for pasture to support 

projected increase in meat intensive diets, especially in developing countries (Stehfest et al., 

2009). 

Caveats and concluding remarks 
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Expansion of cropland and pastureland is accompanied by conversion of native 

vegetation (except when one land use is converted to another). Therefore, one of the important 

factors that determine the allocation of cropland and pastureland is the type of native vegetation 

to be replaced. Each native (and managed) vegetation offers different resistance (cost) to 

conversion depending on the land use type. For example, historically most of the pastureland 

(managed grassland) has been derived from natural grasslands (with exceptions, notably Latin 

America where forests are cleared for cattle ranching). However, we chose not to include the 

type of native vegetation to be converted as a factor in determining the land use allocation 

patterns. There are three reasons for this choice.  

First, our land use allocation is carried out at 0.5°x0.5° lat/lon (~55 km x 55 km) 

resolution, consistent with most global scale land use models. A mix of native vegetation usually 

occupies such large grid areas. Therefore, the difference in the resistance offered by native 

vegetation across grid cells becomes less important compared to an approach in which land use 

data are downscaled to a much higher spatial resolution.  

Second, available global scale reconstructions of native vegetation for the 20
th

 century are 

highly uncertain, especially before the 1960s when remote-sensing observations were 

unavailable (Meiyappan and Jain, 2012). Therefore, it is undesirable to constrain and evaluate a 

land use allocation model based on highly uncertain data. 

Third, the representation of natural landscapes is fundamentally different among current 

generation biophysical models. Therefore, land cover maps produced for one model cannot be 

implemented directly within other models (Pitman et al., 2009). As a result, even in the most 

recent Coupled Model Intercomparison Project phase 5 (CMIP5) (Taylor et al., 2012), land use 

changes and the resulting changes in native vegetation are estimated sequentially. First, maps of 

land use from historical reconstructions are harmonized to connect smoothly with the land use 

maps for the future scenarios produced by the IAMs (Hurtt et al., 2011). The climate modeling 

teams combine the land use information with different techniques (e.g. Hurtt et al., 2011; 

Meiyappan and Jain, 2012; Lawrence et al., 2012; Pitman et al., 2009) to estimate changes in the 

area of native vegetation, so as to be consistent with the land surface components of their climate 

or earth system models. Therefore, our approach is consistent with current approaches.  

Despite irrigation exerting a positive influence on agricultural suitability (Lambin et al., 

2001, 2003), data limitations precluded us from including irrigation as an explanatory factor in 
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our analysis. While contemporary maps of irrigated areas are available (e.g. Portmann et al., 

2010; Thenkabail et al., 2009; Siebert et al., 2005), we could not find historical maps on 

irrigation to account for the transient impacts. In principle, the presented framework could factor 

irrigation into the analysis, provided the data are available (e.g. for exploring scenarios that vary 

assumptions about irrigation). 

We also do not explicitly account for the effect of policies on land use allocation patterns, 

despite their importance. Policy effects are explicitly accounted for in global land use or IAMs 

that would provide aggregate regional demands for land that would drive our allocation model. 

However ideally it would still be useful to reflect policies that operate at smaller spatial scales as 

well, such as land protection or national planning schemes. Globally and temporally consistent 

data on policies are not readily available for the 20
th

 century. Although we have not accounted 

for policy effects explicitly, they are implicitly reflected in historical land use outcomes and 

therefore in the effects of other explanatory variables that could be considered proxies. In 

addition, for exploring policy effects in future scenarios, such assumptions can be accounted 

through grid cell constraints. For example, we can force grid cells within protected areas to not 

allow any land use allocation.  

We predict only the net changes in land use areas within each grid cell because our model 

relies on land use reconstructions that provide only net change information. Available global 

scale reconstructions of land use (e.g. RF, HYDE, and Hurtt et al., 2011 data which use cropland 

and pastureland transitions from HYDE) are estimated based on the difference in (sub-)national 

statistics between two time steps, and therefore estimate net changes. Recent regional studies 

have shown that relying on net changes rather than gross changes (all area gains and losses) 

could lead to severe underestimation of land use change (Fuchs et al., 2014), and consequently 

have significant implications for environmental assessments, especially on the terrestrial carbon 

cycle (Wilkenskjeld et al., 2014).  

Another important limitation is that our land use allocation model does not provide any 

information on land use intensity. Since 1960, a tripling of crop production has been achieved 

mainly through intensification, with only a 14% extensification (Bruinsma, 2009). Intensification 

is expected to become even more decisive in the future in the light of growing population, 

biofuel consumption, and mandates to protect world forests (Foley et al., 2011; Tilman et al., 

2011; Phalan et al., 2011). Several global scale grid level indicators of agricultural land use 
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intensification have recently become available to foster modeling efforts (Kuemmerle et al., 

2013), although substantial data gaps, uncertainties, and conceptual challenges exist (Keys and 

McConnell, 2005; Erb et al., 2013; Kuemmerle et al., 2013; Lambin et al., 2000). If land use 

intensity is measured by yields (i.e. output per unit area of land use activity) then the product 

term Slg

t ´dg (derived from Eq. (13), Eq. (14) and Eq. (18)) itself is a measure of land use 

intensity. In principle the capital-related inputs (e.g. fertilizer, irrigation, pesticides, or 

mechanization) that increase agricultural yields can be accommodated as explanatory variables 

in the logit functions, assuming data are available. If land use intensity is measured by the 

frequency of cultivation (multiple cropping), then the total harvested area within a grid cell in a 

year could exceed the grid cell area. Our land use allocation procedure is versatile to 

accommodate such datasets (e.g. Ray et al., 2012; Portmann et al., 2010) as well. The RF data 

used in this study does not account for multiple cropping (i.e. g
t GAY 
lg

). Therefore, for 

feasibility, we have assumed the decreasing returns-to-scale is strong enough to deter full use of 

grid cell area (i.e. 1gd ; see Eq. (18)). However, this restriction when relaxed can handle data on 

multiple cropping. Detailed representation of management characteristics such as land use 

intensity is important for IAMs to better capture human-environment interactions and to further 

improve our prediction capacity.  
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In a complementary study, we will extend the analysis to examine the role of different 

explanatory factors in shaping the 20
th

 century patterns of agriculture. This will be carried out 

using two methods: (1) examining the values of the standardized ''  and ''  parameters, and (2) 

simulating the land use allocation model (last sub-section in 5.3) in the absence of historical 

changes observed for one or more explanatory variables by keeping the explanatory factors of 

interest constant at initial values, with all other factors varying with time. We will quantify the 

effects of an explanatory variable by calculating the grid cell level differences between the final 

predicted map (2005) without changes in this variable, and the map (2005) obtained by varying 

all variables (as in Figure 5.8).  

Our ability to model land use change on longer time scales is crucial for exploring policy 

alternatives, especially because adaptation and mitigation of climate change requires long-term 

commitment. Notwithstanding the aforementioned caveats, the framework presented here and the 

approach to evaluation provides an example that can be useful to the IAM, land use, and the 

Earth system modeling communities. 
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5.6 Tables 

Table 5.1 List of the 46 potential explanatory factors used in the regression analysis. The 

explanatory factors cover the time period 1901-2005 at annual resolution. The spatial resolution 

is 0.5° x 0.5° lat/lon. Each seasonally averaged explanatory factor translates into four 

explanatory variables in our analysis (one for each season: spring, summer, fall and winter). 

 

 

 

Broad Category Explanatory Factor Unit 

Climate 

Seasonally averaged temperature K 

Seasonally averaged precipitation mm/day 

Seasonally averaged Potential Evapotranspiration 

(PET) 
mm/day 

Squared seasonally averaged temperature K
2
 

Squared seasonally averaged precipitation mm
2
/day

2
 

Squared seasonally averaged PET mm
2
/day

2
 

Seasonal Temperature Humidity Index (THI) °C 

Climate Variability 

Seasonal Palmer Drought Severity Index (PDSI) (-) 

Heat wave duration index No of days 

Simple daily precipitation intensity index mm/day 

Soil Characteristics 

Rooting Conditions and Nutrient Retention 

Capacity 

(-) 

Nutrient Availability 

Oxygen Availability 

Chemical Composition (indicates toxicities, salinity 

and sodicity) 

Workability (indicates texture, clay mineralogy and 

soil bulk-density) 

Terrain 

Characteristics 
Elevation, Altitude and Slope Combined 

Socioeconomic 

Built-up/urban land area 
Fraction of grid 

area (m
2
/m

2
) 

Urban population density 
Inhabitants/km

2
 

Rural population density 

Rate of change in rural population density 
Inhabitants/km

2
/yr 

Rate of change in urban population density 

Market Influence Index 
International 

dollars/person 
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Table 5.2 Data sources used to derive the explanatory variables for model evaluation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Category Data Variable Description/Units 
Spatial 

Characteristics 

Period of 

Availability 
Source 

Climate 

Temperature (Ta) 

o
C 

0.5 degrees 

(lat/lon) 

1901-2012 

(monthly) 

Harris et al. 

(2013) 

Daily Average 

Maximum Temperature 

(Tmax) 

Potential 

Evapotranspiration  Millimeters 

Precipitation 

Wet Day Frequency days 

Palmer Drought Severity 

Index (PDSI) 
No units 

2.5 degrees
a
 

(lat/lon) 

1870-2010 

(monthly) 

Dai et al. 

(2011a,b) 

Soil 

Constraints 

Rooting Conditions and 

Nutrient Retention 

Capacity  

Categorical Data 

classified into 7 

gradient classes of 

land suitability for 

agriculture 
5 minutes

b
 

(lat/lon) 
Constant with time 

Fischer et 

al. (2012) 

Nutrient Availability  

Oxygen Availability 

Chemical Composition 

(indicates toxicities, 

Salinity and Sodicity) 

Workability (indicates 

texture, clay mineralogy 

and soil bulk-density) 

Terrain 

Constraints 

Elevation, Slope and 

Inclination Combined  

Categorical Data 

classified into 9 

gradient classes 

Socioeconomic 

Factors 

Urban/built-up land % of grid cell area 
5 minutes

b
 

(lat/lon) 

10,000 BC – 2005 

AD 

(decadal)
c
 

Goldewijk 

et al. 

(2010) 

Urban Population 
Inhabitants/km

2
 

Rural Population 
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Table 5.2 (Cont.) 

 

 

 

 

a 
Was linearly interpolated to 0.5°x0.5° spatial resolution. 

b
 We aggregated the data to 0.5°x0.5° spatial resolution by area-weighed averaging. 

c 
We calculated annual estimates by linear interpolation of decadal data.  

d
 Missing values for countries were gap filled using nearest values. 

 

 

 

 

 

 

 

 

 

 

Gross Domestic Product 

(GDP) per capita 

Constant 1990 

international (Geary-

Khamis) 

dollars/person 

National level 

1 AD-2010 

(annually between 

1800-2010)
d
 

Bolt and 

Van Zanden 

(2013) 

Market Accessibility No units 
1 km
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Table 5.3 The adjusted kappa coefficient estimated by comparing the model allocated land use maps from the historical simulation 

(last sub-section in 5.3) with RF data for different years. The values are given for cropland and pastureland (brackets).  

 

  

Year 

Land use 

allocation model 

developed in this 

study 

Proportional 

downscaling 

approach 

Mechanistic 

downscaling 

approach 

1920 0.90 (0.81) 0.73 (0.76) 0.76 (0.72) 

1940 0.88 (0.81) 0.71 (0.73) 0.73 (0.69) 

1960 0.85 (0.80) 0.63 (0.60) 0.69 (0.60) 

1980 0.82 (0.80) 0.61 (0.53) 0.64 (0.58) 

2005 0.87 (0.83) 0.59 (0.58) 0.66 (0.61) 
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5.7 Figures 

Figure 5.1 The nine aggregate world regions used in this study (indicated by different colors). Of these, three are individual countries 

(US, China, and India) and the other six are aggregated regions. The spatial data for annual cropland and pastureland from historical 

reconstruction (RF data), were aggregated to these nine regions and used as regional demand constraint to the land use allocation 

model. The partitioning of the globe into 127 sub-regions is also shown.  
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Figure 5.2 Schematic representation of the flow of model evaluation experiment. 
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Figure 5.3 The cropland and pastureland maps (RF data) for the year 1900 used to form the lagged land use term in the land use 

allocation model. Units are in percentage of land area within each grid cell. 
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Figure 5.4 Model predicted map for cropland and pastureland (top panels) after 20 years of model simulation (i.e. 1920 A.D.). The RF 

data for 1920 (bottom panels) is shown for comparison purpose. Units are in percentage of land area within each grid cell.  
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Figure 5.5 Same as Figure 5.4, but for the year 1940. 
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Figure 5.6 Same as Figure 5.4, but for the year 1960. 
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Figure 5.7 Same as Figure 5.4, but for the year 1980. 
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Figure 5.8 Same as Figure 5.4, but for the year 2005. 
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Figure 5.9 Comparison of annual net transitions (1900-2005) for pastureland between two 

widely used spatial reconstructions: (a) HYDE 3.1 database (Klein Goldewijk et al., 2011), and 

(b) RF data used in our historical simulation. Net transitions for 1900-2005 are calculated as the 

difference between 2005 map and the 1900 map divided by the number of years. Positive values 

indicate a net pastureland expansion over the period 1900-2005, and vice-versa for negative 

values. Units are in km
2
 yr

-1
.  
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Figure 5.10 Net transitions for cropland over the US, averaged over the period 1900-1960 based on: our land use allocation model 

(top-left), RF data (top-right), proportional downscaling approach (mid-left), constrained proportional downscaling approach (mid-

right), and HYDE 3.1 data (bottom). Net transitions are calculated as explained in Figure 5.9 captions. Units are in km
2
 yr

-1
.  
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Figure 5.10 (Cont.) 

 

 

 

 



187 
 

Figure 5.11 Net transitions for cropland as in Figure 5.10, but shown for the European region. Net transitions shown are averaged for 

the period 1935-1960 (left panels) and 1960-2005 (right panels). Units are in km
2
 yr

-1
. 
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Figure 5.11 (Cont.) 
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Figure 5.12 Net transitions for cropland as in Figure 5.10, but shown for the tropics and rest of 

southern latitudes. Net transitions shown are averaged for the period 1920-1980. Units are in km
2
 

yr
-1

. 
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Figure 5.13 Estimated ‗a‘ and ‗b‘ parameters for each of the 127 sub-regions. The data for both 

the plots has been independently sorted in ascending order for visualization purpose. The 

parameters are unit less.  
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Figure 5.14 Cropland and pastureland maps predicted using proportional downscaling approach at the end of model simulation (2005 

A.D). Units are in percentage of land area within each grid cell. 
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Figure 5.15 Cropland and pastureland maps predicted using constrained proportional downscaling approach at the end of model 

simulation (2005 A.D). Units are in percentage of land area within each grid cell. 
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Figure 5.16 Estimated carbon emissions from changes in the cropland and pastureland areas calculated using six different land use 

change datasets. The data presented are aggregated to regional scales and cumulated over the period 1900-2005. The nine regions 

shown here are consistent with Jain et al. (2013) and different from the nine aggregate regions used in our model evaluation. The black 

dots represent the estimates averaged over the three historical reconstructions of land use (RF, HYDE 3.1 and Houghton), and the 

uncertainty bars indicate the maximum range across the three reconstructions. Units are in PgC (1 PgC = 10
15

 gC).  
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CHAPTER 6 

Dynamics and determinants of land change in India: linking remote sensing to 

village socioeconomics 

6.1 Abstract 

 The pressure on India‘s land resources for food, feed, and fuel far exceeds the global 

average. Despite, there are no national scale high-resolution remote-sensing estimates of land 

change in contemporary India. Here, we present national level estimates of land-cover 

conversions in India for 1985-1995-2005 (decadal), based on a wall-to-wall analysis of Landsat 

imageries. Further, we investigated the drivers of land-cover conversions that are most important 

at national scale be estimating spatial models between land-cover conversions and high-

resolution spatial data on biophysical and socioeconomic factors. Our driver analysis is specific 

to land change process, and we estimated models at both national level and for sub-national 

hotspots. 

Our results indicate massive conversions between cropland and fallow land between 1985 

and 2005 indicating the low resilience of cropland in India. Our driver analysis at national scale 

indicates the high dependency of crop-fallow systems on monsoon and post-monsoon climate, 

labor migration, and access to market and irrigation facilities. These results emphasize the 

critical need to extension and better management of common-pool resources (e.g. irrigation in 

rain-fed areas) and critical support services to reduce under-utilized land.  

We also find that India has experienced increased forest loss with time. Major drivers of 

forest loss at national scale between 1985 and 2005 were manufacturing of wooden 

furniture‘s/timber products, cattle/dairy/leather products (due to over-grazing), and 

manufacturing of wooden agricultural implements, mining/quarrying activities, and industrial 

development. We also find that colder and wetter regions and regions without electricity were 

also positively associated with forest loss, indicating over extraction of domestic fuel wood and 

building materials. Our analysis underscores the crucial need for forest policies to adopt a 

bottom-up approach by involving local communities and village panchayats to effectively 

implement afforestation programs, e.g. by planting tree species that benefit the local community.  



206 
 

6.2 Introduction 

India occupies ~2.4% of the world‘s land area, but supports more than a sixth of the 

world‘s human and livestock population (Census of India 2011; Livestock Census, 2012). Over 

the last decade, India added 181.5 million people (Census of India 2011), roughly the population 

of Brazil. This high population to land ratio, coupled with socioeconomic development (Hubacek 

et al., 2007; World Bank Group, 2015; United Nations, 2014), has placed tremendous pressure 

on India‘s land resources for food, feed, and fuel, causing extensive environmental degradation 

(Table 6.1). 

The pressure on India‘s land resources is expected to further intensify in the future, in the 

light of growing population and economy (World Bank Group, 2015; United Nations, 2014, 

2015), and climate change (Lobell et al., 2008, 2012; Aggarwal, 2008; Auffhammer et al., 2012; 

Singh et al., 2002; O‘Brien et al., 2004; World Bank, 2015). Therefore, a key challenge for land 

use planning in India is to maximize both food and livelihood security, and simultaneously 

minimize environmental degradation from land-use and land-cover change (LULCC). Land is 

closely tied to both food and livelihood security as over half of India‘s population is dependent 

on agriculture and allied sectors for livelihood (Census of India 2011). The vulnerability of 

Indian agriculture to climate change and climate variability can also impact the quality and 

sustainable use of land, considering one-fourth of India‘s population lives in poverty (Singh et 

al., 2002; O‘Brien et al., 2004; World Bank, 2015). On the other hand, India being one of the ten 

most forest-rich nations of the world, has received increasing attention under the REDD+ 

mechanism to protect its forests to help mitigate climate change, preserve its rich biodiversity, 

and support ecosystem services (Agarwal et al., 2011; Ravindranath et al., 2012). For similar 

reasons, India‘s national forest policy aims to increase its forest cover from the existing ~21% of 

its total geographical area to a minimum of 33% (MoEF, 1988; Joshi et al., 2011). Addressing 

these competing challenges requires an understanding of the dynamics of LULCC at national 

scale. 

In this study, we quantified land-cover conversions (complete replacement of one land 

cover by another) at national scale using a wall-to-wall analysis of high-resolution (~23.5m) 

Landsat-MSS/TM imageries at decadal time intervals (1985-95-05). Landsat imageries are 

crucial to capture the changes within the highly heterogeneous and fragmented landscapes of 
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cropland and forest typical of India (Figure S1; Reddy et al., 2013; Jain et al., 2013; Roy et al., 

2015; Banger al., 2013; Gilbert, 2012; Ravindranath et al., 2014; Puyravaud et al., 2010; Pandit 

et al., 2007). We further investigated the causes of land-cover conversions that are most 

significant at national scale, by estimating spatial models between land-cover conversions and 

hypothesized socioeconomic and biophysical factors. We augment our statistical analysis 

through synthesis of 102 case studies that incorporates field knowledge (e.g. social surveys, local 

expertise) on the causes of LULCC. Importantly, our study covers the period of economic 

liberalization in India (1991 onwards) following which the pressure on land resources 

intensified. 

Our analysis advances existing satellite-based assessments of LULCC in India on three 

aspects. First, this is the first study to quantify land-cover conversions at national scale. We used 

consistent data and method to map LULCC over time thereby minimizing errors in change 

detection (see methods). Our maps have an overall accuracy of 95%, thus proving only accurate 

and reliable information on LULCC. Earlier high-resolution land cover mapping activities at 

national scale was mostly one-time effort (Roy et al., 2015)–hence, unavailable at regular time 

intervals; their project-specific thematic classification, and varying data quality make 

compilation of consistent time-series imageries difficult. Notably, India monitors forest cover 

and trees outside forest bi-annually (FSI, 2013), but not forest conversions. The land cover 

replaced or preceded by forest has varying environmental impacts (Don et al., 2011; Mahmood et 

al., 2014). India also maps wasteland periodically (NRSC, 2011), but not wasteland conversions. 

The sources of wasteland and how reclaimed wastelands are used is crucial to plan and evaluate 

development efforts. 

Second, we tracked conversions among 11 land classes that include fallow land (Table 

S2). As land is scarce in India, understanding the dynamics of under-utilized land (conversions 

between cropland and non-productive uses, specifically fallow land and wasteland) is vital to 

land use planning. Identifying fallow land requires analysis of satellite imageries over multiple 

seasons and years. We are unaware of any high-resolution global or national remote sensing 

product (e.g. Chen et al., 2015; Roy et al., 2015) that differentiates between cropland and fallow 

land.  
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Third, to investigate the causes of LULCC, we compiled the most detailed (~630,000 

villages; Figure S2) national level spatial database on over 200 socioeconomic variables for two 

census years (1991 and 2001). Earlier national level studies for India (Roy et al., 2015) were 

limited to land cover mapping, hindered by limited and coarse spatial data on socioeconomics at 

national scale. For example, the best spatial data on population is at sub-district level (~5500 

political units) (CIESIN, 2005), and other common variables at either district (~600 units) or 

state level from scattered sources. Our new socioeconomic data is commensurate with Landsat, 

and provides a 100-fold and 1000-fold improvement in spatial detail compared to sub-district 

and district data respectively. 

We focused on three broad LULCC: 1. under-utilization of cropland area, 2. deforestation 

and forest degradation, and 3. increase in forest area. Our focus on these three LULCC is 

supported by two reasons: 1. as discussed above, they are central to land use planning, and 2. our 

analysis indicates they are both widespread and most significant at national scale, collectively 

accounting for 55-60% of all area conversions during both decades.  

6.3 Methods and data 

Here, we describe our methods briefly. See supplementary text for further details. 

Data  

Table S11 summarizes key datasets used with references. Our village-level spatial data 

on socioeconomics is new to this study. We highlight socioeconomic and LULUC data, both of 

which are central to our analysis.   

Our socioeconomic database spans over 200 variables at the highest level of spatial 

disaggregation (~630,000 villages and towns) from two consecutive censuses (1991 and 2001). 

We created the spatial database by combining tabular information from the Indian census (each 

household is surveyed and aggregated to village/town level) with seamless village and town level 

administrative boundaries of India prepared as a part of this study, sourced from Survey of India 

toposheets. Apart from high spatial detail (Figure S2), our data provides important village-

specific information undecipherable at coarser spatial level. For example, we included village-

specific primary occupation(s) which reflect the base of the socio-economic culture prevalent in 
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rural parts of India. Our analysis can therefore offer key insights on the effects of rural livelihood 

on LULCC. We also observe high granularity in some socioeconomic variables that can get 

masked at coarser resolution (Figure S28).  

We have a dedicated article describing the methodology and validation of the LULCC 

database, with basic land cover area statistics (Roy et al., 2015). This study presents detailed land 

conversion analysis of the LULCC database. The data was prepared using Landsat-MSS/TM 

imageries, supplemented by IRS 1C-LISS II, and Resourcesat 1-LISS III images. Our data has 

~23.5m resolution, with features mapped at 1:50,000 scale. We interpreted the satellite data 

using on-screen visual interpretation technique for two decades (1985-1995-2005). Manual 

interpretation of detailed Landsat images is time-consuming. Therefore, studies with large spatial 

coverage, typically interpret Landsat images on sampling basis, representative of the study 

region (e.g. Gibbs et al., 2010). In contrast, our analysis is a wall-to-wall mapping effort at 

national scale. Our data has been extensively validated with over 12600 field points, and has an 

overall accuracy of 95% (class accuracy between 87% and 100%).  

To minimize errors in land change detection between 2005 and 1995, we overlaid 1995 

Landsat imagery over 2005 map and traced boundaries where land change had occurred, leaving 

unchanged boundaries unmodified. In this way, we minimized human-errors that could have 

otherwise occurred if both 2005 and 1995 maps were visually-interpreted independently and land 

change were inferred by differencing the two maps. We followed similar approach to detect land 

change between 1985 and 1995, using 1995 map as reference.  

Analysis 

We report LULCC estimates at national (Tables S2-S5) and state level (Table S12; 

Dataset S1), and by agro-ecological zones (AEZs) (Dataset S2) considering their policy 

relevance to forest and agriculture (see text S2 for rationale). AEZs are regions delineated by 

similar climatic and soil conditions. We estimated statistical models specific to land-cover 

conversion, at both national level and for regional hotspots (identified by AEZs). In Indian 

context, AEZs are the optimal units for macro-level land use planning and efficient transfer of 

technology, as India‘s economy is highly dependent on agriculture and allied sectors (including 

forestry). 
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Statistical estimation  

Our statistical analysis between land-cover conversions patterns (dependent variable) and 

their concomitant socioeconomic and biophysical factor (or their proxies; independent variable) 

is carried out at 1km x 1km resolution and for each decade separately. The 1km resolution was 

mainly a tradeoff between the 23.5m LULCC data, and relatively coarser socioeconomic data 

(~2km x 2 km per village on average). To minimize loss of information, while aggregating the 

23.5m LULUC data, we calculated the fraction of 1km grid-cell undergoing land-cover 

conversion, as opposed to pixel representation. 

 Our statistical modeling technique draws on our recent work (Meiyappan et al., 

2014), and is common to land change modeling studies (text S2). We model the relationship 

between dependent and independent variables as a ―fractional‖ binomial logit model. The model 

allows for fractional outcomes in dependent variables, consistent with our LULCC data 

aggregation technique. As our independent variables have different units and scale, we 

standardized all continuous variables using Z-score prior to estimation. We use a state of the art 

method, the elastic-net penalty to account for multicollinearity across independent variables. We 

used bootstrap resampling with 500 replicates, where we resampled the observations (grid-cells) 

and we fitted a new model to the data. The bootstrap, in addition to providing confidence 

intervals, also accounts for spatial autocorrelation typical to gridded LULCC datasets.   

Synthesis of case studies  

Our synthesis provides a bottom-up analysis on the causes of LULCC in India. We 

performed a systematic literature search on ISI Web of Science and Google Scholar for studies 

on LULCC covering India and our study period. We additionally included key (sub-) national 

reports, not indexed in either literature database. In total, we reviewed 643 articles, of which we 

discarded 177 as irrelevant (38 of which discussed drivers of LULCC processes not a focus of 

our study). Of the remaining 466 articles, over three-fourth focused only on land change 

detection, highlighting the relatively less attention on understanding the causes of change. The 

102 articles in our synthesis provide information on the causes of land change typically by 

combining one or more of: household surveys, field transects, and regional/local expertise of 

authors. Often, studies also included remote-sensing component. The studies are summarized in 
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Table S7-10, and the study locations are visualized in Figure S29. Our hypothesized 

socioeconomic and biophysical factors for statistical estimation were grounded using synthesis 

literature. 

6.4 Results  

Under-utilization of Cropland Area 

We find massive shifts between cropland and fallow land during both decades (Figure 

6.1). About 35% (1985-95) and 46% (1995-05) of all areas that underwent land-cover conversion 

in India resulted from changes between cropland and fallow land, indicating the low resilience of 

cropland in India. Furthermore, India has consistently reclaimed ~10% of existing wasteland to 

cropland during each decade. These development efforts are however void considering the much 

larger amount of cropland being fallowed concurrently.  

A spatial disaggregation (Figure 6.2) indicates that over 70% of shifts from cropland to 

fallow land and vice-versa are confined to five Agro-Ecological Zones (AEZs): the Western 

Plain, Kachchh, and part of Kathiawar Peninsula (AEZ2), and the semi-arid zones (AEZ4, 5, 6, 

and 8). These five zones also enclose over 90% of wasteland reclaimed during both decades, 

indicating reorganization between cropland and under-utilized land within each AEZ. The 

confinement of under-utilization of cropland to specific zones indicates efficient alignment of 

future development efforts is logistically feasible. 

Causal analysis at national scale (Figures 6.3a, S4a) indicates monsoon and post-

monsoon climate is important in determining under-utilization of cropland, echoing previous 

studies (e.g. Lobell et al., 2008; Kumar et al., 2004; Guiteras, 2009; Mall et al., 2006). Perhaps 

most importantly, our study indicates changing labor dynamics is an emerging factor in under-

utilization of cropland. Post-liberalization (1991 onwards), we observe wide-spread reduction in 

main agricultural laborers (especially male) and male marginal cultivators (Figure S5), primarily 

driven by urbanization and better income opportunities (relatively less strenuous and more stable 

non-agricultural jobs). During 1995-05, we find areas converted from cropland to under-utilized 

land had substantially lower male main agricultural labor (AEZ 2) and male marginal cultivators 

(semi-arid hotspots) compared to counter-factual (buffer villages) (Figure S6b). We also find 

positive association between under-utilization of cropland and proportion of main female 
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cultivators, indicating imperfect labor market (i.e. male cultivators are more efficient in resource 

conservation).  

Factors prominent in explaining under-utilization of cropland (Figures 6.3a, S4a, S6-S9), 

often were also prominent in explaining vice-versa conversion (i.e. land reclamation), but with 

opposite sign (Figures 6.3b, S4b, S10-S12). Our results broadly indicate that market accessibility 

(market frequency, proximity to town), knowledge to reclaim land (proportion of literate 

population, educational facilities, access to information), and ability of invest (income, credit 

societies) are crucial to reducing under-utilization of cropland. 

We find varying regional dynamics with respect to average farm size. In AEZ2 larger 

plots are prone to under-utilization because resources (capital, agricultural labor, and irrigation) 

are a limiting factor to fuller utilization of land area (Figure S6). The massive reclamation of 

under-utilized land to cropland in AEZ2 (1995-05) is primarily from improvements in tube well 

and well irrigation leading to diversification to water-intensive cash crops (e.g. cotton; see 

Figures S12-S14) in small areas converting some lands fallow. In semi-arid hotspots, we find 

smaller plots are prone to under-utilization because of low technical efficiency (smaller plots are 

uneconomical to mechanize) (Figures S7-S9). These zones show positive association between 

under-utilization of cropland and lack of irrigation infrastructure, lack of male cultivators, and 

soil degradation and salinization indicating poor land management (small plots are generally 

more intensive used).  

Deforestation and Forest Degradation  

During 1985-95, India lost ~3.5% (~27150 km
2
) of the existing forest area in 1985 

(~764100 km
2
), and the rate increased to ~3.8% during 1995-05 (~28350 km

2
 loss of ~745100 

km
2
 forest in 1995) (Figure 6.1). Cropland was the major source of forest conversion during both 

decades, contributing to over 47% of forest loss in 1985-95, and 41% during 1995-05. The 

relative area of forest lost to shrubland increased from ~29% in 1985-95 to ~32% in 1995-05. 

About 7% of forest loss during both decades is attributable to commercial plantations. These 

trends are in stark contrast with the 1988 National Forest Policy that regards forest as a national 

asset, and imposed strict rules to protect them (MoEF, 1988; Joshi et al., 2011). 
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A regional breakdown (Figure 6.2) indicates that forest loss is widespread across India, 

and the hotspots change over time. For example, in AEZ19 that enclose the Western Ghats 

(biodiversity hotspot), 6.8% of the regions forest area in 1985 was converted to other land use by 

1995 (35% each to shrubland and plantation, and 23% to cropland). In subsequent decade, the 

region‘s forest area loss declined by half. In AEZ5, 4.9% of the regions forest area (in 1985) was 

converted to other land use by 1995, and the rate increased to 7.9% in subsequent decade. 

Nonetheless, Eastern Plateau and Eastern Ghats (AEZ12), Central Highlands (AEZ10), and 

Western Himalayas (AEZ14) emerged as persistent hotspots for both decades. About 59% 

(1985-95) and 56% (1995-05) of the total forest area diverted to cropland were confined to 

AEZ5, 10, 12, and 17. About 84% (1985-95) and 80% (1995-05) of the total forest area 

converted to shrubland were confined to AEZ4, 5, 10, 12 and 19. AEZ12 accounted for 40% 

(1985-95) and 35% (1995-05) of all forest area converted to shrubland.  

National level causal analysis (Figures 6.4a, S15) show strong spatial dependence 

between forest area loss and village occupation. Villages with following occupation were 

prominently related to forest loss, compared to counter-factual (buffer villages): wooden 

furniture‘s/timber products, cattle/dairy/leather products (due to over-grazing), manufacturing of 

wooden agricultural implements, mining/quarrying activities, and industrial development. Colder 

and wetter regions and regions without electricity were also positively associated with forest 

loss, indicating over extraction of domestic fuel wood and building materials.  

Both nationally (Figures 6.4a, S15) and across regional hotspots (Figures S16-S20) we 

find prominent positive association between forest loss and lack of irrigation, lack of agricultural 

credit societies, low income, small farms, proportion of marginal agricultural labor, and highly 

eroded agricultural soils, indicating that low agricultural productivity increases the pressure on 

adjoining forests. Most diversion of forest to cropland is encroachment, because national forest 

policy does not favor diversion of forest to non-forest, which requires prior approval from central 

government. Furthermore, we find the forest area diverted to cropland have not declined with 

time (Figure 6.1) indicating weak implementation of national forest policy. 

We find prominent negative association of forest loss with steep slope (difficult to 

access), and protected areas. While land protection reduces forest loss, 9% (1985-95) and 7.6% 

(1995-05) of total forest loss has still occurred within protected areas, and 11.2% (1985-95) and 
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8.7% (1995-05) within 5km buffer from the perimeter of protected areas (critical to maintain the 

functionality of protected landscapes), indicating level of protection is important and has 

improved over time (Figure S21).  

A regional analysis indicates that in Western Ghats (1985-95), mining activities, 

manufacturing of agricultural implements, and villages dependent on coconut and coffee 

plantations (encroachment) show positive association with forest loss (Figure S19). Across all 

hotspots in central India (AEZ5, 10, and 12), mining/quarrying activities, industrial development, 

and factors associated with low agricultural productivity (e.g. high erosion, small farms) show 

positive association to forest loss (Figures S16-S18). Other factors prominently associated to 

forest loss are wooden furniture‘s/timber extraction and cattle over-grazing (AEZ5; Figure S18); 

villages making bamboo products (AEZ12; Figure S17); villages making forest products (e.g. 

kendu leafs/beedi, leaf plates, baskets, brooms, match sticks, paper) (AEZ10; Figure S16); colder 

temperatures (extraction of firewood and building materials), wooden furniture‘s/timber, and 

making of woolen blankets (indicating sheep browsing) (AEZ14; Figure S20).  

Increase in Forest Area  

India recorded a positive trend in forest area gain over time (Figure 6.1). The gain in 

1995-05 was 24% higher than the preceding decade, compensating for the increased forest loss 

during 1995-05. Overall, India experienced a net forest loss of over 18000 km
2
 consistently 

during both decades (see text. S1). Reversion of cropland and shrubland together explain 65% 

(1985-95) and 78% (1995-05) of forest area gain. AEZ5, 10, and 12 were persistent hotspots of 

forest area gain in both decades (Figure 6.2); however, the magnitude was much smaller 

compared to forest area loss in the respective zones. The area of forest gain in AEZ10 more than 

doubled between decades, the increase mainly sourced from cropland. During 1995-05, 

substantial area of shrubland was recovered to forest in AEZ4, 5, and 12. 

We find positive association between forest area gain and following variables (similar for 

both national and hotspots; Figures 6.4b, S22-S26): low male cultivators (especially marginal) 

indicating migration, smaller farms, lack of critical support services (irrigation and capital), and 

poor soils (characterized by one or more of: degradation, salinization, shallow depth, and low 
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cation exchange capacity). These relationships indicate abandonment of marginally productive 

cropland, followed by natural regeneration of pioneer forest tree species. 

We also find positive association between forest area gain and protected areas, proportion 

of tribal population, and sacred groves. Tribes are culturally linked to forests and they are 

typically motivated by state forest department to jointly manage forest through protection, 

restoration of degraded forest, and enrichment plantations (notable exception of North-East India 

where tribes practice shifting cultivation). Sacred groves are protected by local community due 

to cultural/religious beliefs.  

Across the three regional hotspots (AEZ5, 10, and 12), forest area gains were positively 

associated with state dummies, mined-out areas, density of forestry workers, and density of 

community workers. The states identified through state dummies typically have larger amount of 

forest inundated to water bodies (irrigation projects), and forest diverted to built-up land (e.g. 

roads, industries) (Figure S27). Both state dummies and greening of mined-out areas indicate 

compensatory afforestation by respective state governments to partly compensate for forest loss. 

Forestry workers are employed by forest department, and are a proxy for level of protection and 

control. These workers are typically involved in forest maintenance, wildlife protection, fire 

observations, and interface with tourism, among others. Community workers include presence of 

non-governmental organization that helps with restoration efforts in collaboration with forest 

department and local communities. Restoration typically includes greening firewood, fodder, and 

planting species that benefit local communities.  

6.5 Discussion 

Evaluation of Results and Caveats  

A general understanding of the dynamics of LULCC over larger regions of India is 

limited, hindering effective national level planning and policy-making. While evidence-based 

research (e.g. social surveys) offers field-level insights, data collection is expensive and typically 

covers small regions. It is hard to generalize the dynamics of LULCC by studying few villages in 

a country of over 600,000 villages with diverse agro-ecological and socio-cultural environment. 

To this end, our analysis provides a comprehensive coverage by linking LULCC information 

from space, with rich and uniform socioeconomic data collected from each village and town in 
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the country. To evaluate and reinforce our model results, we synthesized 102 ground-level 

studies to identify accumulated effects that are statistical stronger than any individual study due 

to increased sample size and greater diversity (Table S7-S10).  

Our synthesis indicates that all three LULCC are driven by different combinations of 

multiple factors. Nonetheless, the accumulated effects show commonalities that are generally 

congruent with our statistical analysis (Figure 6.5). Under-utilization of cropland is mainly 

driven by: new income opportunities, labor shortage, and lack of infrastructure and capital. 

Reclamation of under-utilized land depends mainly on critical support services, education, and 

infrastructure. Illegal forest encroachment, domestic use, human constructions, and industrial 

exploitation are common causes of forest loss. Forest increases mainly occur through 

government efforts in harmony with local community, and with increased level of protection. 

Causal factors uncommon at national scale can be most important regionally. For 

example, all studies from North-East India report shifting cultivation as the main cause of forest 

loss (Table S9). Some factors also behave differently in individual cases. For example, studies 

stemming from same AEZ report opposing effects on how education affects under-utilization of 

cropland (Tables S7, S8). Education causes a shift to off-farm jobs, thus increasing under-

utilized land. In contrast, with education farmers perceive higher returns to investment on land, 

invest more on resource conservation, and have better access to information leading to fuller land 

utilization. Such heterogeneity is concurrent and important to recognize; in such cases, our 

statistical analysis covering the entire region helps identify the dominant effect. 

Two caveats are in order. First, as we estimated LULCC from decadal Landsat imageries, 

they capture only the decadal changes in LULCC, and can mask within-decade variations 

including intermediary land uses. Especially, inter-annual climate variability causes fluctuations 

in fallow land. However, the conversions between cropland and fallow inferred between decadal 

end points will reflect only the climate-effect of end point (see Text S2). We also do not capture 

land fallowed as a part of multiple cropping system used to restore and maintain soil fertility. 

Excluding cropland-fallow system, other land-cover conversions (e.g. forest to cropland) tend to 

be unidirectional at decadal time scale, due to high cost of land reversion (Gibbs et al., 2010; 

Pandey and Seto, 2015).  



217 
 

Second, both forest degradation and regrowth are gradual and cause subtle modifications 

to land cover. However, our data detects changes only when the magnitude of modification is 

large enough to cause shift from one land cover category to another. The resulting bias is likely 

minimal because: (1) persistent modification of forest would likely manifest as a change in land 

cover within a decade, and (2) our statistical estimation weighs each observation (grid cell) by 

the magnitude of land change; thus, small changes have less influence in our model. 

Implications for Land Use Planning  

India is amongst the world‘s fastest growing economy and population. Therefore, India 

needs to produce more food, and also protect its land resources. An optimal pathway to this 

challenge is to increase the area under forest, built-up land, and pastureland, and decrease the 

area under under-utilized land and cropland. Built-up land will increase with economic 

development (e.g. infrastructure for ―Make in India‖ national program). Pastureland should 

increase to: (1) reduce animal pressure on forest, (2) meet increased diary demands with 

increasing disposable income and population, and (3) reduce protein deficiency. Under-utilized 

land should reduce to produce more food, and for afforestation (on wasteland). Currently, about 

46% of India‘s land area is cropland (net area sown), of which only ~40% is cropped over once a 

year (DES, 2015). For comparison, China‘s net area sown is ~43% lower compared to India, but 

their total grain production is more than double of India (Nath et al., 2015), despite lower bio-

physical potential. India therefore has higher potential to produce more food on existing 

cropland. Further, marginal cropland that increases soil erosion should be diverted for 

afforestation and development, while retaining fertile cropland. In comparison, our analysis 

shows that India is currently following a sub-optimal pathway (see Table S12 for state-wise 

summary).  

Both public and private investments (e.g. through Integrated Wasteland Development 

Program) have resulted in consistent reclamation of wasteland to cropland. Concurrently, 

farmers have fallowed much larger areas of cropland, representing an undesired tradeoff to 

wasteland reclamation. Numerable social surveys have shown that Indian farmers invest more on 

protecting fertile cropland (Shiferaw et al., 2006; Maikjuri et al., 1997; Wani et al., 2011; 

Kuppannan and Devarajulu, 2009; Nüsser et al., 2012) than restoring degraded land. Therefore, 
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better orientation of investment portfolios with farmer‘s attitude can effectively help reduce 

under-utilized land.  

Our results also emphasize the critical need to extension and better management of 

common-pool resources (e.g. irrigation in rain-fed areas) and critical support services to reduce 

under-utilized land. This will likely deter distress out-migration of farmers, and suppress a 

potential positive feedback because higher non-farm income will reduce the incentive to invest 

(capital and labor) on soil-water conservation furthering land degradation and migration. 

Land fragmentation is an emerging challenge to reducing under-utilization of cropland in 

semi-arid zones of India. Small farms have low technical efficiency, and have increased risk of 

soil degradation (see Table S13 for AEZ-wise analysis). The problem is likely compounded in 

the future with increasing population, and further sub-division of households with two expected 

outcomes: (1) smaller land holdings will make farming increasingly uneconomical, and (2) 

increasing urban wage rates (economic development) will pull small and marginal farmers as 

urban laborers. Both outcomes are undesirable to reduce under-utilized land. There are two 

potential avenues to make agriculture a more economically viable exercise for farmers. First, 

India‘s land ceiling act of 1976 limits the maximum size of land holding that an 

individual/family can own to 4 ha to help reduce inequality in land ownership. However, the 

limit needs update to suit the current situation. Second, the 4 ha limit need not necessarily be a 

consolidated holding. Therefore, effective strategies to consolidate farmer‘s fragmented holdings 

as an operational unit will ensure higher productivity and economic returns.  

Forestry in India should balance three needs: subsistence (fuel wood, forest produce, 

etc.), commerce (industry, mining, timber, paper etc.), and environmental protection. While there 

are no clear priorities assigned by Indian government to balance these needs, our analysis 

indicates that forest protection (viz. national forest policy) is likely subordinate to commerce. 

Land use planning should carefully evaluate the tradeoffs between the value of goods produced 

through exploiting forest land, and the long-term benefits of protecting forest ecosystems.  

Currently, the livelihoods of ~173,000 villages in India are tightly linked to forests 

(Nayak et al., 2012). In the absence of other alternatives, the economic dependence of village 

communities on forests has increased forest depletion across many regions. The ongoing and 
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future planned privatization of afforestation programs in India tends to maximize corporate 

profits, with no space for community involvement. Our analysis underscores the crucial need for 

forest policies to adopt a bottom-up approach by involving local communities and village 

panchayats to effectively implement afforestation programs, e.g. by planting tree species that 

benefit the local community. There already exist best practices on forest management tested at 

community level in India (e.g. Nagendra, 2009; Kumar, 2015; Liser, 2000; Bhattacharya et al., 

2010). However, these models need to be up-scaled, ingrained as policy, and integrated with 

implementation system through capacity building and technology upgrades. Decentralization 

coupled with policies aimed at increasing non-forest income would further reduce the pressure 

on forests. 
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6.6 Tables 

Table 6.1 Comparison by numbers: The role of land-use and land-cover change (LULCC) on 

key environmental problems compared between World and India for present/past period. See 

Table S1 for details. 

 

Environmental 

Problem 

Role of LULCC 

World India 

Human land use 55% of land area 83% of land area 

Climate change 20-24% of GHG emissions 25-30% of GHG emissions 

Biodiversity loss 14% of species richness 22% of species richness 

Land degradation 8-41% of land area ~57% of land area 

Water use for agriculture 70% of withdrawal 91% of withdrawal 

Nutrient excess in crops 

(Water pollution) 

56% of nitrogen; 

48% of phosphorous 

74% of nitrogen; 

71% of phosphorous 
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6.7 Figures 

Figure 6.1 Gains, losses, and net changes in land use and land cover areas at aggregate national 

scale for the two decades (km
2
/decade): 1985-95 and 1995-05. ―Water bodies‖ include water 

bodies, aqua culture and permanent wetlands. ―Others‖ include Salt Pan, Snow and Ice. Data 

from this figure is provided in Table S3-S5.  
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Figure 6.2 Spatial breakdown of the three major land-cover conversions: conversions between cropland and under-utilized land 

(UTL), forest gain, and forest loss. The size of circles is proportional to the magnitude of change within each 0.5º x 0.5º lat/long grid 

cells. The inset bar plot show the percent contribution by region to the national total (shown besides bar; units in x1000 km
2
/decade 

and rounded to nearest integer). The regions are based on Agro-Ecological Zones (AEZs) of India (Table S6). See Figure S3 for a 

more detailed breakdown by AEZ.  
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Figure 6.3 Factors most prominent in explaining: (a) conversion of cropland to under-utilized land at national scale (1995-05), and (b) 

vice-versa conversion i.e. conversion of under-utilized land to cropland at national scale (1995-05). The plots show the standardized 

regression coefficients of the ten most important variables (largest absolute mean estimates across coefficients) estimated using the 

spatial land change model (see methods). Results from bootstrap resampling with 500 replicates: central red line show mean estimate; 

error bars (blue) show 5% to 95% confidence interval; whiskers show 25% to 75% confidence interval. See Figure S4 for national-

scale estimates corresponding to 1985-95.   
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Figure 6.4 Similar to Figure 6.3, but for: (a) forest area loss at national scale (1995-05), and (b) forest area gain at national scale 

(1995-05). See Figure S13 for national-scale estimates corresponding to 1985-95.   
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Figure 6.5 Frequency distribution of the causal factors identified from the synthesis of 92 case 

studies. (a) Conversions from cropland to under-utilized land and vice-versa, and (b) forest area 

loss and gains.  
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Figure. 6.5 (cont.) 
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CHAPTER 7 

Summary and future work recommendations 

7.1 Summary 

In this chapter, I provide an overall summary of the research carried out in my 

dissertation.  

In Chapter 2, I characterized the historical land-use and land-cover change (LULCC) 

using annual maps of cropland, pastureland, wood harvest, and urban land as inputs. Due to 

uncertainties associated with estimates of historical land-use activities, I used three different data 

sets on agricultural extent to derive three different estimates, consistently using the same rule-

based method of prioritizing and converting vegetation. I used information from remote sensing 

data to constrain and modify the rule-based method to implicitly account for land-cover changes 

due to indirect anthropogenic or natural causes. The differences among the three estimates 

produced in this study can be largely explained by the spatial and temporal differences in 

estimates of cropland and pastureland areas among the three data sets. Therefore these data sets 

offer a wide range of plausible regional estimates of uncertainty and the extent to which different 

ecosystems have undergone changes historically. 

The biggest source of uncertainty in the global carbon budget remains emissions due to 

LULCC. Several multi-model comparison experiments have been performed to determine the 

uncertainty of LULCC in the global carbon budget. The LUCC uncertainty experiments involve 

using a common land-use data set (e.g. HYDE or RF) in each of the models and comparing the 

land-use fluxes. However, due to differences in the structure of each model, the method adopted 

to implement the common land-use data differs significantly between each model. As a result, it 

is impossible to attribute the estimated uncertainty to model-related uncertainty and uncertainties 

arising due to differences in the method of implementing land-use data between different models. 

However, driving the same model with multiple LULCC data sets derived consistently using 

same method (as presented in Chapter 2), opens a new avenue for studying LULCC data-related 

uncertainty by eliminating the model-related uncertainty, which is a focus of Chapter 3. 

In Chapter 3, I forced a land-surface model, the ISAM with the three LULCC 

reconstructions (ISAM-HYDE, ISAM_RF, and ISAM-HH) to estimate the sensitivity of 
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different LULCC datasets to simulated CO2 emissions from LULCC. The estimated cumulative 

LULUC emissions over the period 1900 - 2010 based on ISAM-HYDE data are ~180 GtC, 

which are ~33% of total carbon emissions (345 GtC from burning fossil fuels for the same 

period). The contribution of LULCC to global anthropogenic carbon emissions (land-use plus 

fossil fuel) in 1990‘s and 2000‘s were ~18 - 22% and 14 - 17% respectively (using fossil fuel 

emissions presented in the Global Carbon Budget) for our modeled results across three 

underlying data sets and including the nitrogen cycle.  

The estimated net global emissions from LULCC (mean and range) across three data sets 

are 1.88 (1.7 to 2.21) GtC/yr for the 1980‘s, 1.66 (1.48 to 1.83) GtC/yr for the 1990‘s, and 1.44 

(1.22 to 1.65) for the 2000‘s. Our estimates are higher than other published estimates that range 

from 0.80 to 1.5 GtC/yr for the 1990‘s and 1.1 GtC/yr for the 2000‘s. These results are higher 

than other published estimates because they include the effects of nitrogen limitation on 

regrowth of forests following wood harvest and agricultural abandonment. This effect is 

particularly noticeable in the cooler non-tropics where nitrogen removal through harvest or 

burning is not compensated by nitrogen deposition or nitrogen mineralization. The estimated 

LULUC emissions for the tropics are 0.79±0.25 for the 1980‘s, 0.78±0.29 for the 1990‘s and 

0.71±0.33 GtC/yr for the 2000‘s, and for the non-tropics regions are 1.08±0.52, 0.90±0.19 and 

0.69±0.12 GtC/yr for the three decades. Our model results indicate that failing to account for the 

nitrogen cycle underestimates LULCC emissions by about 40% globally (0.66 GtC/yr), 10% in 

the tropics (0.07 GtC/yr) and 70% in the non-tropics (0.59 GtC/yr). If LULCC emissions are 

higher than assessed, it means fossil fuel emissions would have to be even lower to meet the 

same mitigation target. 

In Chapter 4, I extended the work presented in Chapters 2 and 3, to investigate the 

uncertainties in estimating future CO2 emissions from LULCC driven by from various factors 

(e.g. LULCC estimates, environmental changes, and model structural and parameter 

uncertainty). The study involved sensitivity experiments by forcing a single land-surface model, 

ISAM with different forcing datasets on LULCC and environmental factors; with and without 

including nitrogen cycle; and, by varying key model parameters within their uncertainty space. 

Here, I highlight two key conclusions. First, nitrogen limitation of CO2 uptake is substantial and 

sensitive to nitrogen inputs. In our model, excluding nitrogen limitation underestimated global 

total LULUC emissions by 34-52 PgC (~21-29%) during the 20
th

 century and by 128-187 PgC 
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(90-150%) during the 21
st
 century (Table 7.8). The difference increases with time because 

nitrogen limitation will progressively down-regulate the magnitude of CO2 fertilization effect on 

regrowing forests, due to decreasing supply of plant-usable mineral nitrogen. Second, 

historically, the indirect effects of anthropogenic activity through environmental changes in land 

experiencing LULCC (indirect emissions) are small compared to direct effects of anthropogenic 

LULCC activity (direct emissions). As a result, including or excluding indirect emissions had a 

minor influence on the estimated total LULUC emissions historically. In contrast, the indirect 

LULCC emissions for the 21
st
 century are a much larger source to the atmosphere, in simulations 

with nitrogen limitation. This is because of the gradual weakening of the photosynthetic response 

to elevated (CO2) caused by nitrogen limitation. Therefore, what fluxes are including in LULCC 

emissions across different models is a crucial source of uncertainty in future LULCC emissions 

estimates.  

Using one land-surface model is potentially a limiting factor of the study because it does 

not represent a broad range of model physics response, especially given that there are significant 

uncertainties in modeling nitrogen and carbon cycles, LULCC activities considered, and even the 

method of implementing a given LULCC dataset across biosphere models. Conversely, using a 

single land-surface model is more appropriate for our analysis because we can consistently 

isolate the effects on LULCC emissions due to different LULCC activities, LULCC flux 

definitions, historical LULCC forcing, and future climate forcing. The above effects cannot be 

consistently isolated using multi-model comparisons because model-based differences (e.g. 

different land cover representations) make attribution difficult. This study underscores the crucial 

need for terrestrial biosphere models to consider nitrogen limitation in estimates of the strength 

of the future land carbon sink, especially on regrowing forests. 

In chapter 5, I present a statistical model for land use allocation with an econometric 

interpretation of land suitability that is based on profit maximization (or cost minimization). The 

approach integrates economic theory, observed land use, and data on both socioeconomic and 

biophysical determinants of land use change. It is global in scope and is estimated using long-

term historical data, thereby making it suitable for long-term projections, such as in Integrated 

Assessment Models. The method accounts for spatial heterogeneity in the nature of driving 

factors across geographic regions. The allocation is modified by autonomous development 
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(previous and neighboring land use patterns, thereby accounting for temporal and spatial 

autocorrelation), competition between land use types, and exogenous drivers that are treated as 

explanatory variables. The spatial and temporal resolution at which the model operates is 

flexible. 

An added value of the statistical model is that the model parameters can be estimated 

against any given historical LULCC reconstruction, and the estimated parameters can be used to 

predict future LULCC patterns under any given scenario. This allows for studying the sensitivity 

of different historical LULCC dataset to simulating future spatial patterns of LULCC.  

Typically, global scale land use allocation models are not evaluated in their ability to 

simulate long-term spatial patterns of historical land use change. They are developed and applied 

directly to predict future land use patterns (including GLM model used in IPCC CMIP5 and 

forthcoming CMIP6 that supply gridded LULCC datasets to participating Earth System Models). 

In contrast to previous approaches, we show that our model can reproduce the broad spatial 

features of the past 100 years of evolution of cropland and pastureland patterns. We also show 

that land use allocation approaches based solely on previous land use history (but disregarding 

the impact of driving factors e.g. GLM), or those based on mechanistically fitting models for the 

spatial processes of land use change do not reproduce well long-term historical land use patterns. 

With an example application to the terrestrial carbon cycle, we show that such inaccuracies in 

land use allocation can translate into significant implications for global environmental 

assessments. Therefore, our modeling approach and its evaluation provide an example that can 

be useful to the land use, Integrated Assessment, and the Earth system modeling communities. 

In chapter 6, I took a more-detailed (spatially), but regional perspective to understand the 

dynamics and drivers of LULCC in India. I focused on India because over 80% of India‘s land 

surface is under human disturbance, making India as hotspot of LULCC. Moreover, the global 

LULCC datasets show high discrepancy in the spatial patterns of LULCC even for contemporary 

period. Therefore, there remain opportunities to significantly improve our understanding of 

LULCC in India. For this study, I used wall-to-wall analysis of high-resolution Landsat 

imageries covering the period 1985 to 2005 to quantify land-cover conversions in India. Further, 

I investigated the drivers of land-cover conversions that are most important at national scale be 

estimating spatial models between land-cover conversions and high-resolution spatial data on 

biophysical and socioeconomic factors. The results indicated massive conversions between 
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cropland and fallow land between 1985 and 2005 indicating the low resilience of cropland in 

India. The driver analysis at national scale indicates the high dependency of crop-fallow systems 

on monsoon and post-monsoon climate, labor migration, and access to market and irrigation 

facilities. I also find that India has experienced increased forest loss with time. Major drivers of 

forest loss at national scale between 1985 and 2005 were manufacturing of wooden 

furniture‘s/timber products, cattle/dairy/leather products (due to over-grazing), and 

manufacturing of wooden agricultural implements, mining/quarrying activities, and industrial 

development. Furthermore, colder and wetter regions and regions without electricity were also 

positively associated with forest loss, indicating over extraction of domestic fuel wood and 

building materials.  

This study advances existing satellite based assessments of LULCC in India on three 

aspects. First, this is the first study to quantify land-cover conversions at national scale. Earlier 

high-resolution land cover mapping activities at national scale was mostly one-time effort-hence, 

unavailable at regular time intervals; their project-specific thematic classification, and varying 

data quality make compilation of consistent time-series imageries difficult. Second, we tracked 

conversions among 11 land classes that include fallow land. As land is scarce in India, 

understanding the dynamics of under-utilized land (conversions between cropland and non-

productive uses, specifically fallow land and wasteland) is vital to land use planning. Identifying 

fallow land requires analysis of satellite imageries over multiple seasons and years. We are 

unaware of any high-resolution global or national remote sensing product that differentiates 

between cropland and fallow land. Third, this is also the first modeling study at national scale to 

investigate the causes of LULCC. To carry out the causal analysis, we compiled the most 

detailed (~630,000 villages) national level spatial database on over 200 socioeconomic variables 

for two census years. Earlier national level studies for India were limited to land cover mapping, 

hindered by limited and coarse spatial data on socioeconomics at national scale.  

In the following two sections, I propose two specific research questions that I would like 

to specifically address after my PhD. The proposed work connects with the modeling tools and 

datasets I developed during my PhD. 
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7.2 Future Work: Research Topic 1: Spatial land use in Integrated Assessment: Impacts of 

modeling uncertainties on simulating decisions and their consequences for terrestrial 

carbon fluxes 

 

 This sub-section is based on a proposal I developed for the NCAR ASP Postdoctoral 

Fellowship. The proposed work builds on the spatial land use change model presented in Chapter 

5.  

Summary: Land-use change is both a source and consequence of climate change 

(Rounsevell et al., 2014). For example, land-use change affects climate through alterations of 

carbon, energy, and moisture fluxes to the atmosphere (Lawrence et al., 2012; Bonan, 2008). 

Conversely, agro-climatic studies suggest that cropping areas have gradually expanded to higher 

latitudes and altitudes over the last two decades due to improved thermal conditions, an 

adaptation response to climate change (Zhang et al., 2013; Kumar et al., 2012). Additionally, 

climate variability (causing droughts, heat waves, etc.) can lead to cropland losses, often 

resulting in famines in food insecure regions (Hansen et al., 2011; Rosenweig et al., 2002). 

Modeling the feedbacks between land-use change and climate change and variability is therefore 

crucial for exploring the influence of alternative socio-economic development paths on future 

greenhouse gas emissions, and climate change mitigation, impacts, and adaptation in integrated 

assessments. 

Given the central role of land use modeling in simulating decisions, current land use 

allocation approaches can lead to widely divergent outcomes even for a given scenario, 

highlighting our current uncertainty in modeling land change (e.g. Von Lampe et al., 2014; 

Schmitz et al., 2014). Moreover, the consequences of these uncertainties for both climate, and 

terrestrial processes are not well understood (Rounsevell et al., 2014; Hibbard et al., 2010). To 

underscore, both the CMIP5 and the forthcoming CMIP6 do not consider the impacts of 

uncertainties in historical land use (and their drivers) on future land use patterns (Hurtt et al., 

2011). The proposed work aims to address this important gap by systematically testing the 

implications of historical data limitations on projected land use patterns, and their consequences 

for simulated terrestrial processes and economic decisions about land use. The proposed work is 
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of broad relevance to the land use, Integrated Assessment, and the Earth system modeling 

communities. 

Background: A key priority of NCAR‘s Integrated Assessment Modeling (IAM) group 

is to address the above question by developing and applying integrated (primarily through land 

use) socio-economic (iPETS model) and biophysical models of the climate system 

(CLM/CESM). Additionally, understanding the biophysical interactions between land-use 

change and climate is a key priority for the TSS/CLM group.  

The iPETS model disaggregates the world into 9 regions and land use decisions are made 

at this regional level. However, the CLM (the land-surface component within CESM) typically 

requires land use information at 0.5ºx0.5º resolution. To provide this information, a spatial land 

use allocation approach that I developed with the IAM group (Meiyappan et al., 2014) is used to 

downscale the aggregate regional land demands (for cropland and pastureland) to individual grid 

cells within that region. The land allocation model is based on hypothetical grid cell agents that 

maximize profits based on concomitant changes in driving factors (e.g. climate change and 

climate variability, socioeconomic factors including population and market locations). The 

model estimates statistical relationships between spatial land-use patterns and its driving factors 

from historical data. The estimated relationships are then used for spatially allocating future land 

use in iPETS-CLM scenarios (Figure 7.1; note: land-use feedbacks on climate are currently not 

included).   

Proposed research and its significance: My previous work on the development of 

spatial land allocation model indicated that the choice of historical land use and climate (driver) 

data could significantly impact the estimated model relationships, potentially affecting the spatial 

land use projections. For my ASP fellowship, I propose to investigate the implications of 

uncertainty in historical land use/climate and its consequences for integrated assessments, 

including both economic decisions about land use and their consequences for terrestrial carbon 

fluxes. Specifically, the following three questions I propose to investigate will improve the 

impact and mitigation assessments in IAMs by better accounting for land-related uncertainty, 

and further help prioritize future research by identifying factors that are most important to 

determining outcomes in IAMs. 
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1. Implications of uncertainties in historical land use reconstruction for modeling 

spatial land use in IAMs: Historical land use data are important for spatial land use modeling in 

IAMs for two reasons. First, the parameters of spatial land use models are estimated based on 

historical land use data and their driving factors. Second, such reconstructions are used by IAMs 

as base maps representing current land use as a basis for future projections. Both model 

parameters and base year distributions in turn affect projected future land use. 

 However, existing land use reconstructions are not pure observations, but are 

modeled estimates that draw on national/sub-national statistics to the extent possible. These 

reconstructions have significant uncertainties due to uncertainties in both modeling (Goldewijk 

and Verburg, 2014), and inventory datasets (Meiyappan and Jain, 2012). For example, 

comparison of two well-known land use reconstructions for year 2005 show that the global 

pastureland area estimated by the HYDE reconstruction (used in CMIP5, and forthcoming 

CMIP6; Hurtt et al., 2011) is 26% higher than the 26.3 million km
2
 estimated by RF data 

(updated version of Ramankutty and Foley, 1999 data). The relative difference between the two 

reconstructions is compounded both regionally (Figure 7.2), and as we go farther back in time 

from 2005. 

 I propose to examine the impacts of using alternative land use reconstructions for 

modeling spatial land use in IAMs. For this task, I will estimate two land use allocation models 

(Esti_RF and Esti_HYDE) using the two land use reconstructions (RF and HYDE), but keeping 

the set of historical driving factors the same across both estimation. Both the land use allocation 

models will then be applied for a given iPETS scenario to project spatial land use patterns (each 

using two different base year maps of current land use from HYDE and RF resulting in four 

different spatial projections – Esti_RF-Baseyr_RF, Esti_RF-Baseyr_HYDE, Esti_HYDE-

Baseyr_RF, Esti_HYDE-Baseyr_HYDE). The difference in the future land use projections 

between Esti_RF-Baseyr_RF and Esti_HYDE-Baseyr_RF, and between Esti_RF-Baseyr_HYDE 

and Esti_HYDE-Baseyr_HYDE provides a quantitative understanding of the impacts of 

uncertainties due to historical model estimation for predicting future land use patterns. Similarly, 

the difference in the future land use projections between Esti_RF-Baseyr_RF and Esti_RF-

Baseyr_HYDE, and between Esti_HYDE-Baseyr_RF and Esti_HYDE-Baseyr_HYDE will 

isolate the effects of using different base year land use maps on projected land use patterns. The 
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same set of simulations will be extended to multiple iPETS scenarios to understand the 

implications of historical land-use uncertainties for predicting spatial land use under alternative 

land-use trajectories (e.g. cropland abandonment vs. expansion scenarios). 

 

2. Implications of uncertainties in historical climate for modeling spatial land use in 

IAMs: Similar to land use, historical gridded climate datasets are not ―pure‖ observations. They 

are obtained from ―reanalysis‖ that provides best approximation of the atmosphere using both 

observations and dynamic models (Trenberth et al., 2008). These reanalyzed products often have 

unintended trends/biases due to (but not limited to) changing mix of observations (e.g. 

introduction of new satellites), errors in bias correction methods, imperfect models, and data 

sparsity (Figure 7.3). For example, a single radiosonde observation can influence the regional 

precipitation for several 100km in reanalysis due to data sparsity (Bosilovich et al. 2011). This is 

an important source of uncertainty because precipitation can vary rapidly, especially in complex 

topographies. To give another example, two state-of-the-art reanalysis, NASA-MERRA and 

ERA-Interim systematically overestimate small and medium precipitation amounts, and 

underestimate high amounts, due to errors in convective parameterization scheme in the host 

forecast model among others (Pfeifroth et al., 2012). Therefore, the choice of reanalysis used for 

estimating the spatial land model can also affect estimated model parameters, and hence 

influence the future land use patterns. Here, I propose to run a similar set of experiments as for 

question 1 (but by keeping historical land-use data same across estimation, but varying climate 

driver datasets) to understand the sensitivity of climate history to predicted land use patterns. 

 Further, for projection studies, meteorology calculated prognostically by the 

climate model (here, CCSM; Figure 7.1) embedded with the CLM is used to drive the land 

allocation model (Figure 7.1). Therefore, for consistency in climate driver data used between 

historical model estimation and future projections, one could use the CCSM simulated climate 

history for model estimation, instead of reanalysis data. However, climate models, in general do 

not reproduce the climate history accurately, and they are far more divergent than reanalysis 

products (Figure 7.3). Here, I will also test the implications of using climate history simulated by 

CCSM (different ensembles) vs. reanalysis products for modeling future spatial land use.   
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3. Effects of spatial land use on carbon emissions and simulated economic decisions: 

There are significant gaps in our understanding of how sensitive environmental outcomes are to 

land use, especially at the regional scale (e.g. Brovkin et al., 2013; Houghton, 2013). For 

instance, the four different spatial land use projections for a given scenario (based on alternative 

historical land use as described in question 1) will imply four different future land use emissions 

pathways from CLM. The first aspect of this task is to understand how different will be the 

simulated future emission pathways, given the uncertainties in historical land use data.  

 The second aspect of this task is to understand the effects of spatial land use (and 

emissions) on mitigation assuming that the same forcing target is maintained for the scenario. 

Mitigation cost is an example of simulated economic decision affected by land use. For example, 

higher (lower) land-use emissions imply that more (less) CO2 emissions from energy would have 

to be mitigated if the same forcing target for the scenario is to be maintained. Therefore, 

uncertainty in spatial land use projections (hence, emissions) would translate as uncertainty in 

mitigation cost assessment in IAMs. The goal of this task is to understand: 1. the effects of land 

use emissions on mitigation costs, and 2. the effects of uncertainties in spatial land use 

(therefore, emissions) in simulating land use decisions in IAMs (again using mitigation cost as 

an example). For this task, given a scenario (e.g. SSP5), I would assume the iPETS scenario 

would have to meet the SSP5 forcing pathway under any circumstance. Then based on the four 

different land use emissions pathway for the scenario (as described in the above paragraph), I 

would use iPETS to estimate the mitigation cost of CO2 emissions from energy (and their 

uncertainty range) required to maintain the same forcing pathway. This task would involve me 

developing codes to link land-use emissions from CLM to the iPETS, which currently is absent 

(see Figure 7.1; currently only yields are exchanged). I am especially suited for this task, given 

my familiarity with both iPETS and CLM codes. Further, on the long-term, this linkage will be 

useful beyond the scope of this task for the NCAR IAM-CLM modeling framework to 

investigate a variety of land use related questions relevant to policy responses.  

7.3 Future Work: Research Topic 2: Estimating India’s land change from 1950 to 2011 at 

1km resolution 

 This section is a work that I am currently carrying out, and is an extension to the work 

presented in Chapter 6. Here, I briefly present the motivation and objectives of the work.  
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Motivation: In Figure 7.4, I compare the cropland patterns for year 2000 for India 

between two widely used global land use datasets (HYDE and RF; also presented in Chapter 2). 

The data show striking differences in cropland patterns even for contemporary period, 

highlighting the uncertainty over study region. The results are striking because the comparison is 

for satellite-constrained era; the uncertainties get compounded as we move backward in time (not 

shown), because the results become increasingly model dependent. Therefore, reducing 

uncertainties in the historical LULCC patterns over India is important for environmental impact 

assessment as well as land use planning.  

Objectives: The aim of this task is to reconstruct historic LULCC for India annually for 

the period 1950 to 2011 with more thematic detail (land use/cover classes) and higher spatial 

resolution (1km lat/long) compared to previous studies. The study will make better use of 

detailed and reliable historic land use/cover data sources for India compared to previous studies.  

The proposed work improves previous LULCC reconstruction efforts on multiple fronts 

(see Table 7.1 for a summary): (1) I will integrate inventory datasets at district level over the 

historic period, as opposed to state level in previous studies (roughly a 20-fold improvement in 

spatial resolution). The increased detail of historic inventory statistics will significantly improve 

the accuracy of modeled LULCC reconstruction. (2) I will integrate some of the best high-

resolution land cover imageries acquired from satellites starting from 1972. High-resolution land 

cover imageries are crucial to capture the highly heterogeneous (Figure 7.5) and fragmented 

landscapes (Figure 7.6) of India. (3) The historical land cover patterns prior to satellite era are 

constrained through hand-digitized topographic maps. This improves spatial constraint on the 

modeled LULCC patterns historically, thus increasing the accuracy. (4) Both the 1950 and 

current LULCC patterns will be validated using ground observations using stratified random 

sampling. The validation exercise will provide better assessment of uncertainty in the modeled 

product, a key component existing LULCC reconstructions (both global and over India) typically 

lack.  
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7.4 Tables 

Table 7.1 Summary of input datasets to be used in the study. 

Data 
Spatial 

Resolution 

Spatial 

Coverage 

Temporal 

Coverage/Resolution 
Remarks 

Inventory (Tabular) 

Land use statistics District level National 1950-2011 (Yearly) 

DES  

1998-2011: Digital  
http://lus.dacnet.nic.in/ 

1950-1997: This study (digitized from 

hard-copy books). 

Land use statistics 

Village level 

(~630,000 

units) 

National 
Two census years  

(1991, 2001) 

Tabular data available online 

(http://censusindia.gov.in/) 

This study ties the tabular data to 

village-level administrative boundaries. 

Urban area District level National 

Decadal corresponding to 

census years (1951, 61, 71, 

91, 2001, 11). We could 

not acquire 1981 data.  

Census of India 

Digital data: 2001 & 11 

(http://censusindia.gov.in/) 

This study digitized data from hard-

copy books for 1991 and prior.   

Remote Sensing 

Landsat MSS/TM derived 

land cover 

30m  

(1:50k scale) 
National 1985, 1995, 2005 Roy et al. (2015) 

Resourcesat-1/AWiFS 

derived land cover 

56m  

(1:250k scale) 
National 2005-2011 (Yearly) NRSA (2005) 

Landsat MSS derived land 

cover 

60m  

(1:1M scale) 

Covering 

~20% of 

India 

1972, 1982 This study 

Topographic Maps 

Survey of India land cover 

Sampled to 

30m in GIS 

(1:50k scale) 

Ganga basin 

covering 

~30% of 

India 

1975 Survey of India 

http://lus.dacnet.nic.in/
http://censusindia.gov.in/
http://censusindia.gov.in/
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Table 7.1 (Cont.) 

 
    

National Forest Map by 

Survey of India 

Sampled to 

1km in GIS 

(1:4M scale) 

National Circa 1942 

Scanned map: 

http://nla.gov.au/nla.map-vn6196447 

Digital version: This study 

US Army Maps (Series 

U502) 

Sampled to 

1km in GIS 

(1:250k scale) 

National Circa 1950 

Scanned Maps: 

http://www.lib.utexas.edu/maps/ams/in

dia/ 

Digital Version: This study 

Used as independent data for validation 

of our reconstructed maps.  

Ground data 

Field data on land cover 

selected through stratified 

random sampling 

~16000 field 

points 
National  Circa 2005 

Biodiversity Mapping Project (Roy et 

al., 2015) 

For validation of current maps. 

Auxiliary data 

District-level 

administrative boundaries 

of India 

Sampled to 

1km in GIS 

(1:250k scale) 

National 

Decadal corresponding to 

census years (1951, 61, 71, 

81, 91, 11) 

Paper Maps: Administrative Atlas of 

India 

Digital Version: This study  

District-level 

administrative boundaries 

of India 

Sampled to 

1km in GIS 

(1:250k scale) 

National 2001 Digital version: Survey of India 

Agro-Ecological Zones 

Sampled to 

1km in GIS 

(1:250k scale) 

National 

Static map representative 

of contemporary conditions 

(1950-present)  

Gajbhiye and Mandal (2000) 

http://nla.gov.au/nla.map-vn6196447
http://www.lib.utexas.edu/maps/ams/india/
http://www.lib.utexas.edu/maps/ams/india/
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Table 7.2 Key improvements in this study compared to earlier studies. The comparison applies to India for the post-1950 period. 

 

 

 

 

 

 

 

Aspect This study Tian et al. (2014) Global studies
1, 2, 3

 

Input data 

Land use statistics 

Annual district level statistics for 

1950-2011. Village level 

statistics for 1991 and 2001. 

District level statistics at decadal 

intervals and annual statistics from 

1998. Has a tendency to mask out 

within-decade variations prior 2000. 

Annual national level statistics 

only
1
, or combined with state 

level statistics collected at 

roughly decadal intervals
2
. 

Historical built-up area 

Constrained by district level 

inventory data at decadal 

intervals. 

Estimated using population as proxy. 
Estimated using population as 

proxy
3
. 

Incorporation of remote 

sensing products 

Incorporates high-to-medium 

resolution remote sensing 

imageries from 1972 onwards 

(see Table 7.1).  

Incorporates Resourcesat-1/AWiFS 

derived land cover for 2005 and 2009. 

Incorporates coarse-resolution (> 

250m) global product(s) circa 

1990s and/or 2000s. 

Incorporation of 

historical land map(s) 

Spatial patterns of forest prior to 

satellite era are constrained 

through historical forest map. 

None. None. 

Methods 

Apportioning inventory 

data to account for 

changing boundaries 

and divisions of 

districts 

Decadal apportioning of district 

data to minimize loss of spatial 

information. 

All data after 1950 are apportioned to 

1950 district boundaries resulting in ~ 

50% loss of inventory information. 

National boundaries remain 

unchanged. Like districts, states 

also undergo boundary changes 

and divisions, thus requires 

apportioning
2
. However, note the 

number of states is one order less 

than the number of districts.  
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Table 7.2 (Cont.) 

 

 

1 Klein Goldewijk et al. (2011) (based on DES statistics for 1961-present at national scale as compiled by FAO) 

2 Ramankutty and Foley (1999) (see their Appendix A11) 

3 Klein Goldewijk et al. (2010) 
* http://www.surveyofindia.gov.in/files/Criminal_Law_Amend_Act_1990_2.pdf 

 

 

 

 

Spatial allocation of 

land use/cover 

(1) All land types are allocated 

simultaneously, consistent with 

reality 

(2) Uses available time-series 

satellite imagery and historic 

maps to account for changes in 

land-use patterns over time. 

(1) Spatial allocation of each land 

type is sequential. 

(2) Assumes current land use patterns 

mimic historical patterns. 

(1) Spatial allocation of each land 

type is sequential. 

(2) Assumes current land use 

patterns mimic historical 

patterns./driver assumption (not 

realistic). 

Validation 

Both historic and current maps 

extensively validated using 

toposheets/ground observations. 

None. None. 

Output (Final Reconstruction Product) 

Spatial resolution 1 km x 1km ~10 km x 10 km ~10 km x 10 km or coarser 

National boundaries 
Consistent with official Survey of 

India maps
*
. 

Excludes disputed territories of India. Not applicable (global product). 

Thematic coverage 12 land-use/cover classes. 

5 land-use/cover classes: cropland, 

forest, wasteland, built-up & all other 

lands combined. 

Focus on land use: agriculture 

(crops and/or pastures)
1, 2

, or 

built-up land
3
. 
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7.5 Figures 

 

Figure 7.1 Current integrated modeling framework for iPETS-CLM scenarios (2005-2100) showing data exchanged between different 

model components.  
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Figure 7.2 Comparison of pastureland area for 2005. Focus on regions highlighted in red where significant differences are found. 
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Figure 7.3 Comparison of grid-level (half-deg) maximum differences in mean annual meteorological variables between three 3
rd

 

generation reanalyses datasets (CFSR, MERRA, ERA-Intermin), amongst a larger number of reanalysis datasets (as in NCAR Climate 

Data Guide), and amongst ensemble of 28 CMIP5 models. Computations are based on a data from 2000-2004 (5 year average). (a) 

Average temperature; (b) Total precipitation; and (c) Incoming short-wave radiation.  
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Figure 7.4 Difference in cropland estimated between two global ―modeled‖ datasets zoomed 

over the Indian region: HYDE3.1 (Klein Goldewijk et al. 2011) minus Ramankutty et al. (2008). 

Comparison is for the year 2000 at ~10km x 10km spatial resolution.  
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Figure 7.5 Heterogeneity of India‘s landscapes estimated using Landsat data (year 2005). For 

estimation, I used a moving window approach with 1 km x 1km cells and calculated the number 

of unique land cover types, each occupying at least 10% of the cell area.  
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Figure 7.6 Landscape heterogeneity in India‘s land cover calculated from Landsat data (30m resolution) at national scale. The figure 

shows the effect of resampling the 30m land cover data to 1km. The approximation leads to significant bias of certain land cover 

classes (e.g. water bodies) even when aggregated because the fragmented landscapes are eliminated when the data is approximated to 

coarser resolution. 
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