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ABSTRACT 

 

RAD51 protein plays an important role in homologous genetic recombination (HR), an essential 

DNA metabolic process used by cells to faithfully repair the most deleterious forms of DNA 

damage and maintain genomic integrity. RAD51 along with its bacterial counterpart RecA, 

bacteriophage UvsX and archaeal RadA have been subjected to genetic and biochemical scrutiny 

resulting in a plentitude of mechanistic and functional information on formation, regulation and 

activities of these recombinases. An important disconnect between these two lines of investigation 

still exists because the recombinase functions of RAD51 are highly regulated through mediator 

proteins like the BRCA2 recombination mediator, and a host of post translational modifications, 

namely phosphorylation. The mechanism and biochemical implications of these regulatory 

processes have not been satisfactorily evaluated in-vitro.  

 

This work characterizes the interaction between RAD51 and the BRCA2 recombination mediator 

protein using computational methods to generate homology models for this interaction which are 

validated through experimental data. Using the knowledge gained from our structural model for 

the RAD51 recombinase, I developed a novel strategy to understand several key mechanisms for 

the regulation of RAD51 by phosphorylation. RAD51 is phosphorylated by the cABL tyrosine 

kinase. The mechanistic and functional significance of this event is largely disputed.  Using 

biochemical and single molecule assays reconstituting major activities of RAD51, I have 

successfully dissected the biochemical mechanism of regulation of RAD51 by the c-Abl kinase. 

The results of this work strongly correlate with observations made in previous cell based analysis. 
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CHAPTER 1: INTRODUCTION 

Double stranded DNA (dsDNA) is the carrier of genetic information throughout life. The genomic 

DNA in all living organisms is constantly subjected to change. Most of these changes are 

mechanisms evolved to protect the integrity of the DNA or aid in its function as a repository of 

information storage. However, certain types of modifications are detrimental to the integrity of the 

genome. These sources of ‘DNA Damage’ range from external factors such as ultraviolet light 

(UV), Ionizing radiation (IR), environmental pollutants such as heavy metals as well as chemical 

substances that are intentionally created to damage DNA (e.g. chemotherapeutic agents), to 

internal biological processes like DNA hydrolysis, oxidative stress and enzymatic DNA damage 

due to replication errors and other sources (Hoeijmakers 2009; Lindahl, 1993). It is essential that 

mechanisms be available to the organisms to be able to correct for these aberrations. The various 

types of DNA damage include base modifications, abasic sites, inter-strand cross links (ICL’s), 

Single Strand Breaks (SSB’s) and DNA Double Strand Breaks (DSB’s) (Hoeijmakers 2009; Iyama 

and Wilson Iii, 2013; Lindahl, 1993) (Figure 1.1). Coupled with environmental factors, DNA 

damaging agents can lead to ~105 lesions per day (Ciccia and Elledge, 2010; Hoeijmakers 2009). 

This can cause critical mutations in the genome which manifest in the form of cancers, multiple 

inherited disorders, ageing and even cell death (Kanaar et al., 1998).  

 

Figure 1.1 DNA damage and repair responses. DNA repair pathways (top) and examples of corresponding DNA damage 

(bottom). The detailed molecular mechanisms for the repair responses are provided in text. APTX, aprataxin; BER, base excision 

repair; DSBR, DNA double strand break repair; HR, homologous recombination; MGMT, O6-methylguanine-DNA 

methyltransferase; MMR, mismatch repair; NER, nucleotide excision repair; NHEJ, nonhomologous end joining; PNKP, 

polynucleotide kinase 3-phosphatase; SSBR, DNA single strand break repair; SSBs, DNA single strand breaks; TC-NER, 

transcription-coupled NER; TDP1, tyrosyl-DNA phosphodiesterase 1; G-Me, O6-Methylguanine; TˆT, thymine dimer; I, inosine; 

U, uracil; Go, 8-oxoguanine. Reproduced with permission from Iyama T & Wilson Iii DM (2013), DNA repair 12(8):620-636. 

Copyright Elsevier B.V. 
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The mechanisms that preserve the genomic integrity of the cell are collectively referred to as the 

‘DNA repair’ pathways. These pathways, each, focusing on particular type of DNA damage, along 

with cellular checkpoint mechanisms that coordinate replication, transcription, chromatin 

remodeling and generating genetic diversity ensure the maintenance of genomic integrity inside 

the cell (Hoeijmakers 2009).  

 

The choice of DNA repair pathway is largely dependent on the type of DNA damage, 

however the state of the cell cycle is also an important factor in selection of appropriate pathway 

as all pathways are tightly regulated and are active during different stages of the cell cycle. Base 

Excision Repair (BER) is generally the pathway of choice for DNA damage that does not severely 

affect the helical structure of the DNA. Such damage occurs through base modifications, 

alkylation, deamination, depurination as well as certain single strand breaks (Figure 1.1) (Krokan 

and Bjørås, 2013; Wallace, 2014). During BER, the damaged base is first excised, followed by 

end processing, gap filling and finally ligation which restores the DNA (Krokan and Bjørås, 2013). 

Nucleotide Excision Repair (NER) is responsible for removal of bulky DNA lesions that 

destabilize the duplex DNA caused by UV radiation and other mutagens. The NER pathway can 

be triggered through Global Genome NER (GG-NER) which can occur anywhere in the genome 

and is generally activated by UV damage or Transcription Coupled NER (TC-NER) which is 

activated by RNA polymerase stalled at a lesion during transcription (Schärer, 2013). It involves 

removal of a small tract of DNA ~13 bases long (Kisker et al., 2013) followed by a polymerase 

that fills in the gap repairing the DNA (Schärer, 2013). Errors made by the replication machinery 

lead to mismatched bases and are repaired by the Mismatch Repair (MMR) pathway where the 

mismatched bases are detected, excised and the gap filled in (Honda et al., 2014; Kolodner, 1996). 

Double strand breaks (DSB’s) are the most deleterious forms of DNA damage which can lead to 

severe loss of genetic information. These are discussed further. 

 

Sources of Double Strand Breaks 

DNA damage due to Double Strand Breaks (DSB’s) is less frequent compared to other forms of 

lesions but comprise the most deleterious and cytotoxic forms of DNA damage (Mehta and Haber, 

2014) and repairing these forms of damage are of the utmost priority for the cell. This type of 

damage involves the simultaneous breakdown of the phosphodiester backbones of both strands of 
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DNA. Agents that cause DSB’s include certain anticancer agents (clastogens) and Ionizing 

Radiation (IR). Chemotherapeutic agents include methyl methanosulfonate (MMS) and 

temozolomide which alkylate DNA. Agents like Mitomycin C and Cisplatin induce DNA 

crosslinks while compounds such as Bleomycin mimic radiation damage. Inhibitors such as 

etoposide trap topoisomerases inducing DSB’s. (Mehta and Haber, 2014). Ionizing Radiation (IR) 

produces reactive oxygen species which attach the sugar phosphate backbone and in high doses 

can cause breaks in complementary strands of DNA leading to DSB’s (Hoeijmakers 2009).  

 

In addition to these exogenous agents, DNA is very vulnerable to the formation of DSB’s 

during the natural replicative cycle of the cell. Unusual DNA structures or collisions with 

transcription machinery lead to stalled replication forks which can cause DBS’s (Aguilera and 

Gaillard, 2014). Programmed DSB’s are initiated by the cell in several instances which lead to 

genetic diversity during meiosis (Keeney, 2008; Lam and Keeney, 2015) as well as generation of 

antibody diversity by V(D)J recombination (Soulas-Sprauel et al., 2007).  

 

Repair of DNA Double Strand Breaks 

There are two main pathways that the cell uses to repair DSB’s, Non Homologous End Joining 

(NHEJ) and Homologous Recombination (HR) (Kass and Jasin, 2010). NHEJ involves the limited 

modification of broken DNA ends followed by their ligation (Mehta and Haber, 2014). Alternative 

NHEJ (alt-NJEJ) pathways are executed when canonical NHEJ is unavailable with the propensity 

to create mutations, because joints often harbor local deletions with relatively long stretches of 

microhomology, itself often called MMEJ (Chiruvella et al., 2013). In higher eukaryotes, NHEJ 

activities are active through all stages of the cell cycle but are generally limited to the G1 stage 

where key components of the HR pathway are blocked (Aylon et al., 2004; Ira et al., 2004). It is 

defined as the Joining of two DSB ends by direct ligation (Chiruvella et al., 2013). Since this 

process need not result in accurate repair of the DNA, it is recognized as being error prone or an 

unfaithful mechanism of Double Strand Break Repair (DSBR). Briefly, NHEJ involves the binding 

of the DSB ends by the Ku protein complex which activate a slew of NHEJ associated proteins 

through the DNA Protein Kinase (DNA-PK) through association. The ends are then ligated by the 

DNA Ligase IV and any gaps filled in by the DNA polymerase X (PolX) (Chiruvella et al., 2013) 

(Figure 1.2).   



4 
 

 

 

Figure 1.2 General steps of Non Homologous DNA end joining (NHEJ). The lightning arrow indicates ionizing radiation (IR), 

a reactive oxygen species (ROS), or an enzymatic cause of a DSB. Ku binding to the DNA ends at a double-strand breaks (DSBs) 

improves binding by nuclease, DNA polymerase, and ligase components. Note that Ku is thought to change conformation upon 

binding to the DNA end, as depicted by its shape change from a sphere to a rectangle. Flexibility in the loading of these enzymatic 

components, the option to load repeatedly (iteratively), and independent processing of the two DNA ends all permit mechanistic 

flexibility for the NHEJ process. This mechanistic flexibility is essential to permit NHEJ to handle a very diverse array of DSB end 

configurations and to join them. In addition to the overall mechanistic flexibility, each component exhibits enzymatic flexibility 

and multifunctionality, as discussed in the text. The figure shows that there are many alternative intermediates in the joining process 

(middle). These intermediates are reflected in a diverse DNA sequences at the junction of the joining process (bottom). Reproduced 

from, Lieber MR (2010) Annual review of biochemistry 79:181-211, Copyright Annual Reviews. 
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Accurate repair of DSB’s is reliant on the set of homology-directed DNA repair pathways 

that result in the faithful restoration of the damaged DNA to its original state without the loss of 

any sequence information. DNA repair through Homologous Recombination (HR) requires a 

second homologous DNA (donor sequence), from the homologous chromosome or the sister 

chromatid, as a template for the lost DNA sequence. If the donor sequence is similar to the region 

surrounding the DSB, the repair is accurate and the DNA sequence is restored to that preceding 

the DNA damage (Moynahan and Jasin, 2010). 

 

Figure. 1.3 Pathways of DNA DSB repair. Double-strand breaks (DSBs) are efficiently repaired in mammalian cells by 

homologous recombination (HR) and non-homologous end joining (NHEJ). HR initiates with end resection, which produces a 3′ 

single-stranded end that can invade a homologous template to initiate repair. Alternative HR pathways can ensue from the 

displacement loop (D-loop) intermediate: synthesis-dependent strand annealing (SDSA) and DSB repair (DSBR). In SDSA, the 

newly synthesized strand is displaced to anneal to the other DNA end, resulting in a non-crossover outcome with no change to the 

template DNA. In DSBR, the second DNA end is ‘captured’ by the D-loop to form a double Holliday junction, which in principle 

can result in a non-crossover (cleavage at black or grey arrowheads) or a crossover (cleavage at black arrowheads on one side and 

grey arrowheads) outcome. NHEJ involves the joining of non-homologous DNA ends. It can be imprecise and lead to deletions 

and other mutations through numerous end-processing steps (not shown). Single-strand annealing takes place when end resection 

occurs at sequence repeats (arrowheads) to provide complementary single strands that anneal, giving rise to a product with a single 

copy of the repeat and a deletion of intervening sequences. Reproduced with permission from, Moynahan ME & Jasin M (2010) 

Nature reviews. Molecular cell biology 11(3):196-207, Copyright Macmillan Publishers Limited. 
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 The central step in homologous recombination involves the formation of a nucleoprotein 

filament which invades the homologous DNA template searching for homology ending in the 

forming a D-Loop intermediate. This intermediate is then funneled into different pathways which 

lead to the repair of the damaged DNA (Figure 1.3) (Moynahan and Jasin, 2010). Like all DNA 

repair pathways, DSBR is initiated by a DNA damage sensing mechanism which involves the 

immediate recruitment of the MRN (MRE11-RAD50-NBS1) complex, which binds dsDNA ends. 

This leads to the activation of the ATM (ataxia-telangiectasia mutated) and ATR (ATM- and Rad3-

Related) kinases (Lee and Paull, 2007; Maréchal and Zou, 2013), while simultaneously initiating 

DNA resection (generation of 3` ssDNA ends) through the exonuclease activity of the MRE11 

protein (Symington, 2014). The resection process is then handed to the CtIP/EXO1/BLM or 

BLM/DNA2/RPA complex (Nimonkar et al., 2011), which generate ssDNA ends that are bound 

by the ssDNA binding protein RPA. The ATM/ATR kinases activated here in turn activates 

phosphorylates a number of proteins involved in cell cycle checkpoint control, apoptotic responses 

and DNA repair. Phosphorylation of these substrates by ATM initiates cell-cycle arrest at G1/S, 

intra-S and G2/M checkpoints and promotes DNA repair (Lee and Paull, 2007). The active 

intermediate for the strand invasion step is the RAD51-ssDNA nucleoprotein filament. This 

filament is formed by displacement of the RPA coated ssDNA by the BRCA2 protein which binds 

RAD51 through its BRC repeats (Carreira et al., 2009; Shahid et al., 2014) and helps nucleoprotein 

filament assembly along with several other mediator proteins (Suwaki et al., 2011; Zelensky et al., 

2014a) which stabilize the RAD51 filaments. The active nucleoprotein filament then invades the 

homologous DNA template forming a Displacement Loop (D-Loop) intermediate (Figure 1.3). 

The invaded strand is then extended at the 3`-OH end with the help of the RAD54 protein and 

DNA polymerases (Li and Heyer, 2009; Murakami and Trakselis, 2014). At this stage the D-Loop 

can be disassembled by structure selective helicases in which the complementary strand anneals 

with the single-stranded tail of the other end of the DSB. After fill-in synthesis and ligation, this 

pathway generates non-crossover products and is referred to as synthesis-dependent strand 

annealing (SDSA) (Prakash et al., 2009) (Figure 1.4).  
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Figure 1.4 Series of events following formation of D-Loops in Double Strand Break Repair. Once formed, the complex of 

RAD51 and single-stranded DNA searches for a homologous sequence in double-stranded DNA and then promotes invasion of the 

single-stranded DNA into donor double-stranded DNA to form a joint molecule with a displaced strand (D loop). RAD54 displaces 

RAD51 from double-stranded DNA in vitro, uncovering the 3′ end of paired intermediates to allow initiation of DNA synthesis. 

DNA polymerase δ extends the 3′ end from the broken chromosome using the donor strand as a template and replacing nucleotides 

lost by end resection. To resolve the intermediate by synthesis-dependent strand annealing, the invading strand that has been 

extended by DNA synthesis is displaced (strand displacement) and anneals to complementary sequences exposed by 5′–3′ resection 

of the other side of the break forming non-crossover products exclusively (strand annealing). In addition to preventing initiation of 

inappropriate recombination events by disrupting RAD51 nucleoprotein filaments, the FBH1 DNA helicase can disrupt D loop 

intermediates to promote non-crossover. The FBH1 and RTEL1 helicases also dissociate D loop intermediates to facilitate 

synthesis-dependent strand annealing. In the canonical DNA double-strand break repair model, the other end of the break interacts 

with the displaced strand of the strand invasion intermediate (second end capture) and the 3′ end primes DNA synthesis, forming a 

double Holliday junction (dHJ) intermediate (double Holliday junction formation). The dHJ intermediates can be dissolved or 

resolved to yield separate intact duplex molecules. Alternatively, the extended D loop structure could be cleaved by the MUS81-

EME1 nuclease prior to formation of a mature dHJ intermediate (early D loop cleavage). MUS81-EME1 exhibits higher activity 

toward D loop and nicked Holliday junction intermediates than intact Holliday junctions and could promote crossovers by cleaving 

the strand invasion intermediate directly. Dissolution of dHJ intermediates requires the combined activity of the BLM helicase, 

which drives migration of the constrained Holliday junctions, and the TOPIIIα-RMI1/2 complex, which decatenates the interlinked 

strands between the two Holliday junctions eventually leading to non-crossover products. On the other hand, resolution through 

nucleolytic cleavage of the Holliday junctions can yield crossover (cutting inner strands of one Holliday junction and outer strands 

of the other) or non-crossover (cutting both junctions in the same plane) products. Adapted with permission from, Mazon G, 

Mimitou EP, & Symington LS (2010) SnapShot: Homologous recombination in DNA double-strand break repair. Cell 142(4):646, 

646 e641. Copyright Elsevier Inc. 
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An alternative mechanism involves formation of joint-molecules such as single or double 

Holliday Junctions (HJ’s) which can either be dissolved by the BTR, (BLM-TOPIIIα-RMI1-

RMI2) complex leading to a non-crossover event (Bizard and Hickson, 2014), or be resolved by 

the structure-selective nucleases, such as MUS81-EME1, SLX1-SLX4, and GEN1 proteins which 

can produce crossover or non-crossover products (Wyatt and West, 2014) (Figure 1.4). 

 

Homologous Recombination in DNA Replication 

In addition to faithfully repairing damaged DNA, the cell has to ensure the faithful and complete 

replication of the chromosomes to maintain genomic integrity during cell division. Replication 

forks are susceptible to stalling or collapse when the replication machinery encounters secondary 

structure in DNA, DNA bound proteins or DNA lesions. Several chemicals like hydroxyurea and 

aphidicolin inhibit replication leading to stalled or collapsed replication forks.  

 

 

Figure 1.5 Models of replication fork restart. a | Restart by fork remodeling. A stalled replication fork might be stabilized by the 

re-annealing of single-strand DNA (ssDNA) generated by excessive unwinding of the template, or might undergo regression and 

pairing of the newly synthesized strands to form a Holliday junction in a structure termed a ‘chicken foot’. Restart after Holliday 

junction formation may be difficult if it requires the removal and subsequent re-loading of the replication machinery. b | Holliday 

junction‑mediated fork restart. The double-stranded DNA (dsDNA) end of the Holliday junction is recombined into the template 

through strand invasion, forming a displacement loop (D‑loop). In E. coli, the D‑loop allows re-loading of the replication 

machinery. The invading strand re-anneals with the template, forming a double Holliday junction that can be removed by Holliday 

junction resolution, which leads to sister chromatid exchanges, or Holliday junction dissolution, which avoids the generation of 
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recombination products. c | Double-strand break (DSB)-mediated restart. The Holliday junction is processed into a one-ended DSB 

and fork restart is achieved through homologous recombination repair of the DSB in a mechanism analogous to break-induced 

replication. The resulting single Holliday junction would be resolved by Holliday junction resolution. The leading strand and 

leading-strand template are shown in light and dark blue, respectively, and the lagging strand and lagging-strand template are shown 

in light and dark red, respectively. Reproduced with permission from Petermann E & Helleday T (2010) Nature reviews. Molecular 

cell biology 11(10):683-687, Copyright Macmillan Publishers Limited. 

 

 

 Restarting stalled or collapsed replication forks occurs through several pathways 

(Petermann and Helleday, 2010) (Figure 1.5), most of which require processing by the DSBR 

machinery which is dependent on recombination and hence necessitates the participation of the 

RAD51 protein.  Collapsed replication forks leads to generation of single ended DSB’s which are 

processed by the end resection machinery (Franchitto and Pichierri, 2002), which helps loading of 

RAD51 onto the resected ssDNA ends. The nucleoprotein filament then invades the other 

replicating strand forming D-Loops which eventually lead to replication fork restart (Figure 1.5c). 

In addition to DSB mediated fork restart, RAD51 is also implicated in Holliday Junction mediated 

restart (Figure 1.5b) which does not require the presence of a double strand break (Petermann et 

al., 2010). 

 

The RAD51 Recombinase 

RAD51 recombinase, is the eukaryotic homolog of the Escherichia coli RecA protein. The 

yeast RAD51 gene is a member of the RAD52 epistasis group, which includes RAD50, RAD51, 

RAD52, RAD54, RAD55, and RAD57 genes (Game, 1983), which were initially identified as 

mutants defective in the repair of DNA damage caused by ionizing irradiation and were 

subsequently shown to be deficient in both genetic recombination and the repair of DNA lesions 

(Baumann et al., 1996). Homozygous deletions for the RAD5l null mutation (RAD5 -/-), in mice 

were found to be embryonically lethal (Lim and Hasty, 1996; Tsuzuki et al., 1996); suggesting an 

important role for RAD51 in cell proliferation and development. RAD51 protein was found to 

catalyze DNA strand exchange through the recombinational “D-Loop” intermediate in an ATP 

dependent manner (Baumann et al., 1996; Sung, 1994; Sung and Robberson, 1995). These 

biochemical studies cemented the role of RAD51 as a recombinase protein which enabled 

homologous recombination in the eukaryotic cell.  
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The RAD51 protein has been investigated very extensively through the years, which has 

led to a wealth of information regarding its biochemical properties. The Human RAD51 is a 339 

amino acid long, 37.5KDa protein. The structure of the RAD51 protein is highly conserved among 

eukaryotes, and the human RAD51 homolog exhibits 67% sequence identity to its yeast 

counterpart (Shinohara et al., 1993; Yoshimura et al., 1993). RAD51 has considerably slow ATP 

hydrolytic activity compared to the E. coli RecA protein (Tombline and Fishel, 2002), but binds 

ssDNA similarly, in an ATP dependent manner (Sung and Robberson, 1995) forming a right 

handed helical filament on ssDNA with a mean helical pitch of ~96Å, extending its contour length 

to 1.5 times of the B-Form DNA which corresponds to an axial rise of -18.6 bases of ssDNA per 

helical repeat of the nucleoprotein filament (Sung and Robberson, 1995) (Figure 1.6). RAD51 also 

interacts with dsDNA in a similar ATP dependent manner with a pitch of ~80Å extending its 

contour length to 1.35 times of the B-Form DNA which corresponds to an axial rise of -17.6 base 

pairs per helical repeat of the dsDNA nucleoprotein filament (Ogawa et al., 1993; Sung and 

Robberson, 1995) (Figure 1.6). Studies have shown that in an ssDNA-RAD51 nucleoprotein 

filament, each monomer binds ~3 bases with axial rise per ssDNA base extended to nearly 5 Å 

with the interconversion of sugar puckers inducing horizontal base rotation (Lee et al., 2015; 

Masuda et al., 2009; Nishinaka et al., 1998; Shibata et al., 2001). While RAD51 protein binds 

ssDNA as well as dsDNA substrates similarly, it is the ssDNA-RAD51 filament that is productive 

in strand exchange and homology search, whereas, the RAD51 filament on dsDNA is not only 

incapable of initiating pairing and strand exchange, but is in fact strongly inhibitory to these 

reactions (Sung and Robberson, 1995).  

 

Attempts have also been made to describe the structures of the Human RAD51 but have so 

far been unsuccessful with only one partial structure of its core domain available (Pellegrini et al., 

2002). Since the recombinases are highly conserved across species, crystal structures of E. coli 

RecA (Chen et al., 2008) (Figure 1.7A) and the Saccharomyces cerevisiae Rad51 protein (Conway 

et al., 2004) (Figure 1.7B) have been used to describe the function of the human RAD51 homolog. 

However, due to slight differences in mechanism, filament structure as well as biochemical 

properties and regulation, information from these sources need not be entirely relevant to the 

human RAD51 recombinase. 
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A  B.  

C.  

 

 

Figure 1.6 Structure of the RAD51 nucleoprotein filament. (A) Electron micrographs of a representative RAD51 filament 

formed on ssDNA in the presence of ATP, (B) 3-Dimensional reconstruction of an ssDNA nucleoprotein filament showing a single 

monomer of RAD51. Adapted from (Galkin et al., 2005), Copyright National Academy of Sciences. (C) Electron  micrographs of 

a representative RAD51 filament formed on dsDNA in the presence of ATP. Adapted with permission from Sung P & Robberson 

DL (1995), Cell 82(3):453-461. Copyright Elsevier Inc. 
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A. B.  

Figure 1.7. Crystal Structures of the E. coli RecA and yeast Rad51 Filaments. (A) Structure of the RecA6–(ADP-AlF4-Mg)6–

(dT)18 complex. The six RecA protomers are numbered from the N-terminal RecA of the fusion protein and are coloured pink, 

brown, green, cyan, purple and magenta, respectively. Only 15 of the 18 nucleotides are ordered (red). TheDNAbackbone is traced 

by a red coil. The six ADP-AlF4-Mg molecules are coloured gold. The five individual rotation/translation axes that relate adjacent 

RecA protomers are shown as grey vertical lines. Adapted with permission from, Chen Z, Yang H, & Pavletich NP (2008), Nature 

453(7194):489-484. Copyright Nature Publishing Group. (B) The Rad51 filament found in these crystals has a helical pitch of 130 

Å and is composed of two crystallographically independent monomers (yellow and green) that alternate to form a filament with 

exact three-fold but only approximate six-fold screw symmetry. A sulfate (black spheres) mimics the binding of phosphate in the 

ATPase site, which is nestled directly at the interface between two protomers (arrow). One of the N-terminal domains that line the 

upper surface of the filament is circled. Adapted with permission from, Conway AB, et al. (2004), Nature structural & molecular 

biology 11(8):791-796. Copyright Nature Publishing Group. 

 

 

One of the most important characteristics of the RAD51 nucleoprotein filament is its ability 

to perform homology search. i.e. on invading the homologous duplex DNA, the nucleoprotein 

filament searches for regions of homology forming the heteroduplex DNA (Morrical, 2015). This 

is defined as a dsDNA product that arises from a recombination event. The strands of the 

heteroduplex formed this way can be completely complementary or can contain small regions of 
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non-complementarity. This is stabilized by Watson and Crick pairing that ensures that the 

heteroduplex remains as stable DNA once the recombination machinery dissociates from it. The 

ability to form heteroduplex DNA using strands from two different DNA molecules is central to 

the processes that control genome stability. It allows inheritance of genetic information and genetic 

diversity within the resulting populations (Amunugama et al., 2012a). During meiosis, the RAD51 

protein along with its meiotic homolog DMC1 forms heteroduplex DNA facilitating crossing-over 

and allelic exchange between homologous chromosomes; this process ensures that progeny are not 

identical clones of their parents and ensures a genetically diverse population (Lam and Keeney, 

2015). The mechanism for homology search has intrigued the field for a long time and has been a 

debated topic. How the RAD51 protein is able to find a small region of homology compared to the 

expanse of the genome is staggering. However, research using state-of-the-art single molecule 

methods are beginning to shed new light on this topic. Experiments from these studies show a 

three dimensional search strategy where the nucleoprotein filament initiates intersegmental contact 

between coiled regions of DNA (Forget and Kowalczykowski, 2012) (Figure 1.8A) while 

searching for short regions (~8 nucleotides long) of microhomology between the DNA. The 

nucleoprotein filament can undergo exchange with other regions of dsDNA bearing the same 

microhomology, but resists exchange with unrelated sequences.  

A. B.  

Figure 1.8 Mechanism of 3-Dimensional Homology Search (A). Model for RecA homology search by intersegmental contact 

sampling; for simplicity, only two simultaneous points of interaction are depicted. Adapted with permission from, Forget AL & 

Kowalczykowski SC (2012) Nature 482(7385):423-427. Copyright Macmillan Publishers Limited. (B). Model depicting a 

homology search mechanism involving rapid sampling and rejection of DNA lacking microhomology, followed by eventual capture 

of an 8-nt tract of microhomology and facilitated exchange allowing for an iterative search through sequence space. Adapted with 

permission from Qi Z, et al. (2015), Cell 160(5):856-869. Copyright Elsevier Inc. 
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Moreover, shorter tracts of microhomology are more readily exchanged with longer tracts, 

reflecting the higher stability of intermediates held together by longer tracts of Watson-Crick 

pairing which might in turn funnel the nucleoprotein filament through progressively smaller pools 

of sequences leading to the homologous target (Qi et al., 2015) (Figure 1.8B). 

Mediators in Recombination 

Due to the critical nature of the process of Homologous Recombination (HR), it is 

imperative that it be tightly regulated in the cell.  Excessive DNA rearrangements also need to be 

avoided where they would be disastrous rather than beneficial. Thus, there need to be checkpoints 

at which the reaction can either be driven forward or reversed, an important feature required to 

attain quality control (Holthausen et al., 2011). Recombination mediators are proteins that have 

evolved to ensure quality control of the process of HR. These mediators could have a positive or 

negative effect on HR (Daley et al., 2014a). Proteins like RPA act in both ways paving the way 

for nucleoprotein filament formation by removing secondary structure from resected ssDNA while 

promoting the activities of the DNA resection machinery (Symington, 2014). However, due to its 

high affinity for ssDNA, it kinetically impedes the formation of the RAD51 nucleoprotein filament 

(New et al., 1998). To facilitate the formation of the RAD51 nucleoprotein filament, the BRCA2 

protein sequesters RAD51 monomers and help loading them onto RPA coated ssDNA (Jensen et 

al., 2010; Shahid et al., 2014) (Figure 1.9).  

 

The BRCA2 tumor suppressor, mutations in which have been linked to breast and ovarian 

cancers among other oncogenic conditions (Tavtigian et al., 1996), is a 3418 amino acids long 

protein, containing DNA- and protein-binding domains, and interacts with a number of other 

proteins. The most notable of these interactions are with BRCA1 and PALB2, as deficiencies in 

these proteins manifest similarly to the BRCA2 deficiency (Chen et al., 1999). BRCA2 interacts 

with RAD51 through a set of eight BRC repeats. This interaction has been studied extensively 

(Carreira et al., 2009; Chen et al., 1998; Pellegrini et al., 2002) and has been elaborated on further 

in my research (vida infra). In addition to these mediators, there are a set of proteins in the cell 

that have detectible sequence similarities with the RAD51 protein (Lin et al., 2006; Wiese et al., 

2007). 
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Figure 1.9 RAD51 binding to BRCA2. (a) Overlay of BRCA2 dimer (yellow and cyan) and BRCA2–RAD51 (pink mesh), 

highlighting the differences in their shape. (b) Rearranged BRCA2 dimer fitted into the BRCA2–RAD51 complex. (c) As in b. 

Four RAD51 monomers (orange ribbon) are fitted into the additional density in BRCA2–RAD51 not accounted for by BRCA2 

density. (d) Four RAD51 monomers, arranged as in filaments. Reproduced with permission from, Shahid T, et al. (2014), Nature 

structural & molecular biology 21(11):962-968. Copyright Nature Publishing Group. 

 

 The best characterized of these so-called RAD51 paralogs are RAD51B, RAD51C, 

RAD51D, XRCC2, and XRCC3. These proteins mediate HR by interacting with the RAD51 

protein and aiding as well as stabilizing the nucleoprotein filament. Deficiency in any of these 

proteins results in a homologous recombination phenotype, which is nearly as severe as RAD51 

loss (Amunugama et al., 2013; Suwaki et al., 2011; Zelensky et al., 2014a). Research on these 

RAD51 paralogs is an ongoing and intense area in the DNA repair field. Proteins which act 
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antagonistically to RAD51 function are only being investigated recently. However some of these 

proteins have already been classified. The RAD54 protein which has been studied extensively in 

yeast, has been shown to stabilize yeast Rad51 filaments on ssDNA and to mediate invasion into 

the nucleosomal DNA, as well as displace Rad51 from dsDNA indicating a role for the clearance 

of Rad51 after strand invasion (Li et al., 2007; Mazin et al., 2010). However, its role in higher 

eukaryotes is not very clear and may be limited to a developmental role since mouse RAD54−/− 

embryonic stem cells are sensitive to IR but the adult RAD54−/− mice are no more IR-sensitive 

than the wild type animals, because their IR-sensitivity is rescued by the non-homologous end-

joining (NHEJ) repair pathway (Essers et al., 2000). Proteins like FBH1 and RTEL are helicases 

that are thought to have antirecombinogenic activity by their ability to dismantle RAD51 mediated 

D-Loops thereby preventing excessive recombination (Simandlova et al., 2013; Vannier et al., 

2012).    

 

Perspective and Overview of my Research 

Importance of RAD51 protein was highlighted by DNA repair defects and embryonic lethality of 

murine RAD51 deletions. RAD51 along with its bacterial counterpart RecA, bacteriophage UvsX 

and archaeal RadA have been subjected to genetic and biochemical scrutiny resulting in a 

plentitude of mechanistic and functional information on formation, regulation and activities of 

these recombinases. An important disconnect between the two lines of investigation still exists 

because the recombinase functions RAD51 are highly regulated through mediator proteins like the 

BRCA2 recombination mediator, and a host of post translational modifications, namely 

phosphorylation. The mechanism and biochemical implications of these regulatory processes have 

not been satisfactorily evaluated in-vitro.  

 

Due to the lack of extensive and complete structural information available for the RAD51 

protein, it has been largely difficult to speculate and verify the mechanistic basis for the regulation 

of the RAD51 recombinase. Secondly, RAD51 is an attractive target for development of novel 

anticancer therapeutics. Of a particular value is its complex with BRCA2 tumor suppressor protein, 

whose recombination mediator activity is critical for “loading” of RAD51 onto ssDNA coated with 

ssDNA binding protein RPA. To facilitate rational design of such molecules, collaborating with 

experts in computational biology (M. Ashley Spies’ Lab, University of Iowa, MNPC), we used the 
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Saccharomyces cerevisiae Rad51 crystal structure (PDB 1SZP) as a template to build a homology 

model of Human RAD51. The model suggested previously unknown interactions between the 

RAD51 N-terminal domain and BRC4 peptide, which I was able to validate experimentally using 

biochemical assays to measure BRC4 peptide binding affinity, extension of ssDNA within RAD51 

nucleoprotein filament, and ATP hydrolysis. 

 

Using the knowledge gained from our structural model for the RAD51 recombinase, I 

developed a novel strategy to understand several key mechanisms for the regulation of RAD51 by 

phosphorylation. RAD51 is phosphorylated by the cABL tyrosine kinase at tyrosine’s 54 & 315. 

The mechanistic and functional significance of this event is largely disputed. My strategy 

employed producing RAD51 incorporating an artificial phosphomimetic (pCMF) amino acid using 

amber suppressor technology, which more accurately represents tyrosine phosphorylation on 

RAD51.  The resulting “phosphorylated” protein was analyzed using biochemical and single 

molecule assays reconstituting major activities of RAD51. Using the optimized RAD51 expression 

system, I have successfully dissected the biochemical mechanism of regulation of RAD51 by the 

c-Abl kinase. The results of my studies strongly correlate with observations made in previous cell 

based analysis which was missing until now. These studies also allowed me to propose a 

mechanism of filament nucleation and extension by the RAD51 protein. 

 

By integrating in-vivo, in-singulo and in-silico approaches, my goal is to provide a coherent 

description of how post translational modifications affect RAD51 filament formation, dynamics 

and strand exchange activities and thereby to generate insights into one of the most critical steps 

in DNA repair and to find an ‘Achilles Heel’ in RAD51 function and exploit it to develop novel 

anticancer therapies. 
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CHAPTER 2: CONTRIBUTIONS OF THE RAD51 N-TERMINAL DOMAIN TO 

BRCA2-RAD51 INTERACTION 

 

Abstract 

RAD51 DNA strand exchange protein catalyzes the central step in homologous recombination, a 

cellular process fundamentally important for accurate repair of damaged chromosomes, 

preservation of the genetic integrity, restart of collapsed replication forks and telomere 

maintenance. BRCA2 protein, a product of the breast cancer susceptibility gene, is a key 

recombination mediator which interacts with RAD51 and facilitates RAD51 nucleoprotein 

filament formation on ssDNA generated at the sites of DNA damage. An accurate atomistic level 

description of this interaction, however, is limited to a partial crystal structure of the RAD51 core 

fused to BRC4 peptide. Here, by integrating homology modeling and molecular dynamics we 

generated a structure of the full-length RAD51 in the complex with BRC4 peptide. Our model 

predicted previously unknown hydrogen bonding patterns involving the N-terminal domain of 

RAD51. These interactions guide positioning of the BRC4 peptide within a cavity between the 

core and the N-terminal domains; the peptide binding separates the two domains and restricts 

internal dynamics of RAD51 protomers. The model’s depiction of the RAD51-BRC4 complex was 

validated by free energy calculations and in vitro functional analysis of rationally designed 

mutants. All generated mutants, RAD51E42A, RAD51E59A and RAD51E237A maintained basic 

biochemical activities of the wild type RAD51, but displayed reduced affinities for the BRC4 

peptide. Strong correlation between the calculated and experimental binding energies confirmed 

the predicted structure of the RAD51-BRC4 complex and highlighted the importance of RAD51 

N-terminal domain in RAD51-BRCA2 interaction.  

_________________________________ 

This chapter appeared in its entirety in the journal Nucleic Acids Research and is referred to later in this dissertation   as 

“Subramanyam et al., 2013”. Subramanyam S, Jones WT, Spies M, & Spies MA (2013) Contributions of the RAD51 N-terminal 

domain to BRCA2-RAD51 interaction. Nucleic acids research 41(19):9020-9032. This article is reprinted with the permission of 

the publisher and is available from http://nar.oxfordjournals.org using DOI: 10.1093/nar/gkt691. 
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Introduction 

Human RAD51 and BRCA2 proteins are the key contributors to genomic integrity and are of a 

paramount importance to the cell. The intricate choreography of molecular events orchestrated by 

these two proteins ensures accurate and timely progression of homologous recombination (HR) 

(Amunugama et al., 2012a; Holloman, 2011) and has an important additional function at the 

replication fork (reviewed in (Costanzo, 2011)). HR repairs genotoxic DNA lesions via precisely 

coordinated DNA transactions that lead to exchange of information between two homologous 

DNA molecules (Li and Heyer, 2008b) and play a prominent role in faithful duplication of the 

genome (Li and Heyer, 2008b) and telomere maintenance (Oganesian and Karlseder, 2011). DNA 

Repair by HR depends on assembly of the RAD51 recombinase into a continuous nucleoprotein 

filament on ssDNA generated at the site of damage or collapsed replication (Ciccia and Elledge, 

2010; Holthausen et al., 2011; Li and Heyer, 2008b; Moynahan and Jasin, 2010). Once formed, 

the nucleoprotein filament sequesters template dsDNA, searches for homology and exchanges 

DNA strands, forming joints between recombining molecules. Assembly of the RAD51 filament 

is tightly regulated and requires assistance from a recombination mediator.  The 3148 amino acid 

(aa) BRCA2 is a tumor suppressor protein which mediates HR by recruiting RAD51 to sites of the 

DNA double strand breaks (DSBs) and facilitates loading of the RAD51 protein onto resected 

single stranded DNA (ssDNA) coated with RPA ssDNA binding protein. Once formed, the pre-

synaptic RAD51 nucleoprotein filament promotes homology search and the DNA strand exchange 

reaction (Holloman, 2011; Jensen et al., 2010; Liu et al., 2010a; Thorslund et al., 2010a). Mutations 

in human BRCA2 protein predispose to breast and ovarian cancers, and increase susceptibility to 

other tumorigenic conditions (Nathanson et al., 2001; Turner et al., 2004).  

BRCA2 interacts with RAD51 through a series of eight motifs called BRC repeats and a 

separate binding site located in the C-terminal region (Chen et al., 1998; Heyer et al., 2010; 

Holloman, 2011; Moynahan and Jasin, 2010). The highly conserved BRC repeats, approximately 

35 amino acids in length, are variably spaced in a segment of the protein encoded in exon 11 of 

the BRCA2 gene (Bignell et al., 1997; Bork et al., 1996).  Although all BRC repeats of BRCA2 

promote RAD51 nucleoprotein formation, the modes of their interaction are split among two 

classes based upon their affinities for RAD51 versus the RAD51 ̶ ssDNA filament (Carreira and 
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Kowalczykowski, 2011). Among eight BRC repeats involved in RAD51 binding, BRC4 displays 

the highest affinity for RAD51 (Carreira and Kowalczykowski, 2011). 

The interaction between BRC peptides and RAD51 family proteins likely represents a 

universal means of regulating (positively or negatively) the recombinase assembly and activity. A 

variant of BRC motif recently found in RECQL5 helicase plays a critical role in its anti-

recombinogenic activity (Islam et al., 2012), whereas loading of bacterial RecA recombinase on 

the ssDNA by RecBCD helicase/nuclease involves interaction with the structural elements on the 

RecA/RAD51 core also critical for BRC4-RAD51 interaction (Spies and Kowalczykowski, 2006). 

While the interaction between BRCA2 and RAD51 is of a paramount importance, its structural 

understanding is limited to the crystal structure of the core domain of RAD51 fused to the BRC4 

peptide (Pellegrini et al., 2002). The structure features two areas of hydrophobic interactions 

involving F1524 and F1546 of the BRCA2 and the core of RAD51 and has been exploited in 

design of the peptide inhibitors of BRC4-RAD51 interaction (Nomme et al.) and, more recently, 

in the identification of low-molecular-weight fragments that display mM affinity with a goal of 

utilizing them in the fragment-based approach (Scott et al., 2013). As only the core of RAD51 is 

present in the structure, potential involvement of the missing N-terminal domain (NTD) is unclear.  

Here, we combined homology modeling and molecular dynamics (MD) simulations to 

build an accurate atomistic description of the full length RAD51 protein in complex with the BRC4 

peptide. Our computational studies predicted previously unknown interactions between BRC4 

peptide and the RAD51 N-terminal domain. Moreover, the structure and the position of the NTD 

differed significantly from that of the yeast Rad51 (Conway et al., 2004) used as a template for 

our model. The model’s rendition of the complex was validated by in silico binding studies and 

free energy calculations, and in vitro by the functional analysis of mutants designed based on the 

results of the computational studies.  
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Results 

RAD51 Homology Model and BRC4 peptide placement 

Saccharomyces cerevisiae Rad51 structure (PDB ID: 1SZP) (Conway et al., 2004) was used as a 

template to build a homology model of two adjacent protomers within human RAD51 filament 

(Figure 2.1).  

Following all atom MD simulations with the knowledge-based force field, YASARA, 

approximately 60% of the RAD51 model (chain B) overlapped with the yeast Rad51 (1SZP-B) 

with the average RMSD between Cα atoms under 1.23 Å. Several parts of the structure, however, 

deviated significantly between the yeast and human proteins (Figure 2.2) and therefore were not 

recognized by the alignment algorithm, MUSTANG, which was used for the structure comparison 

and has a cutoff of 3.75 Å for the structurally similar residues to be matched (Konagurthu et al., 

2006). The most profound difference between the two structures involved the linker region 

between the NTD and the conserved core domain (Figures 2.2A and 2.3A), which in the yeast 

Rad51 consists of two alpha helices connected by a flexible loop, while the N-terminal domain of 

human RAD51 is connected to the core by a long rigid helix. Although the overall 4 helix bundle 

structure of the N-terminal domain is preserved in the human protein, two of these helices display 

a slightly different orientation. Note that these differences in the NTD and the linker region affect 

mainly chain B of RAD51 model whose NTD is located near the protomer-protomer interface. 

Structural change in the linker region and NTD also affected the overall orientation of the N 

terminal domain resulting in the wider cavity between the NTD and the core, which in RAD51 

accommodates BRC4 peptide after a relatively small conformational change (Figure 2.1C-F; 

Figure 2.2C; Figure 2.3C shows structural overlap between the peptide-free and the peptide bound 

RAD51). Notably, we observed a remarkable overlap between our model and the crystal structure 

of the core RAD51 (1N0W), fused to BRC4 peptide of BRCA2 (Pellegrini et al., 2002), which 

was not used in the model construction. Most of the structure (1N0W) overlapped with the 

homology model to yield an RMSD under 1Å, with exception of flexible areas around the DNA 

binding loops, and several residues preceding the Walker A box. The overall RMSD for Cα atoms 

was 1.22 Å (Figures 2.2B and 2.3B). This provides valuable orthogonal information on the quality 

of the model as 1N0W was not used to construct the homology model. The convergence between 

our model and 1N0W RAD51 core structure is especially remarkable since these two structures 
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share higher similarity than that observed between our modeled RAD51 and the structure of the 

yeast protein, which was used as a template to build the model.  

Our RAD51 model scored very well on a number of physical metrics. The Z-score, which 

evaluates the homology model for a set of physical parameters such as 3D packing, bond lengths, 

bond angles, etc (Krieger et al., 2009), after MD was -0.89, which means that the normality of 3D- 

and 1D-packing, as well as Ramachandran coordinates are less than 1 standard deviation from the 

gold standards from high-resolution crystal structures (Krieger et al., 2009). Many other checks 

were also performed to ensure normality, including normality of van der Waals and Columbic 

energies = 0.557; planarity of peptide bonds = -0.215; normality of dihedral bonds = 0.08; 

normality of bond angles = 0.291; normality of bond lengths = 0.48; normality of water positions 

= -0.392; isomers = zero wrong isomers. 

The placement of the BRC4 peptide in the RAD51 model was a critical step as the 

previously published crystal structure of RAD51 core in complex with BRC4 peptide had the 

peptide fused to the RAD51 core domain via a flexible linker (Pellegrini et al., 2002). This posed 

some uncertainty with regard to the native complex in solution, and how it should be represented 

in MD simulations. Furthermore, absence of the NTD of RAD51 from the crystal structure allowed 

BRC4 peptide to partially occupy the spatial domain that should be occluded by the NTD.  

First, we placed the peptide in the chain B. Due to the inherent flexibility of the peptide, 

an exhaustive conformational search was performed using LowMode MD while keeping the 

protein coordinates static. LowMode MD is an accelerated MD method allowing configurational 

searches outside of the usually restrictive classical MD time scales, concentrating the kinetic 

energy on low frequency vibrational modes (see methods) (Labute, 2010). 

Finally, simulated annealing energy minimization and MD was performed with the 

YASARA knowledge-based force field (KBFF), as described above, (see methods) (Krieger et al., 

2009). The second peptide was placed in the chain A by structural superposition of the subunit A 

of the homology model and the peptide, followed by simulated annealing energy minimization, as 

described in the MD methods section. Thus we obtained a system of two monomers, each with a 

bound peptide. The motivation for placing the second peptide was to provide a greater degree of 

structural similarity to a multimeric system. Only the first peptide (placed in the chain B), which 



23 
 

interfaces with a structurally complete binding site was used in the free energy calculations and 

pocket analysis, and yielded insights that guided the experimental part of this study. Notably, the 

overall structure and position of this BRC4 peptide in the homology model was remarkably similar 

to that observed in the crystal structure (Figure 2.3B). This was primarily achieved through a slight 

movement of the RAD51 NTD relative to the peptide free model (Figures 2.2C and 2.3C). 

 

Model of the RAD51-BRC4 complex predicts that both the core and NTD of RAD51 

participate in the peptide positioning 

Some structural rearrangements within RAD51 model were necessary to accommodate the BRC4 

peptide (Figure 2.1C-F, Figure 2.2C & 2.3C), which primarily involved movement of the NTD 

and the DNA binding loops. The average RMSD between Cα atoms of the RAD51 core in the 

absence and presence of the peptide were 2 Å, while the average RMSD between Cα atoms of the 

NTDs were 4.9 Å. The NTD and the RAD51 core formed a cleft, which accommodates the C-

terminal part of the BRC4 peptide (Figure 2.4A). 

Several previously unknown interactions were predicted between RAD51 and the BRC4 

peptide (Figure 2.4A). Notably, while most of these interactions involved the RAD51 monomer to 

which the peptide is placed (chain B), the model reveals additional contacts between BRC4 peptide 

and the adjacent monomer (chain A). The carboxylate of E237 defines the turn between the dsDNA 

binding Loop 1 and the N-terminus of α-helix 5 (in the nomenclature from (Pellegrini et al., 2002)), 

by receiving a hydrogen bond from the backbone amide of S233. This feature results in the -

hydroxyl of S233 pointing into the peptide binding pocket and acting as a hydrogen bond donor 

for the backbone carbonyl of E1548 and a hydrogen bond recipient of the backbone amide of this 

same residue. Simulations of the E237A mutant showed that the turn region of the adjacent 

monomer became less defined than the wild-type, resulting in the S233 group pointing away from 

the peptide binding cavity, and thus contributing to a decrease in the peptide binding free energy. 

The N-terminal domain of RAD51 participates in the interaction as well:  the carboxylate 

of E59 forms hydrogen bonds with the amide of N1544 and the amide of K1549 on the BRC4 

peptide; the amide of K1543 bonds with the backbone carbonyls of A44 and E42. Within the same 

region, E42 interacts through hydrogen bonding with S26 which in turn stabilizes the secondary 
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structure of the RAD51 N-terminal domain (Figure 2.4A).  The average distance between the 

heteroatoms involved in these hydrogen bonds consistently remained below 3Å over the course of 

a 3ns MD simulation (Figure 2.4B).  

In silico mutagenesis of three key glutamates (E42, E59 and E237) suggested their 

importance for correct positioning of the BRC4 peptide and predicted a network of interactions 

that the RAD51 NTD contributes toward the stable binding of the BRC4 peptide to RAD51 protein 

(Figure 2.4). MD simulations of RAD51 E42A and E237A mutants were used to analyze 

disruption of the hydrogen bonding interactions mentioned earlier. As expected, the distances 

between the involved heteroatoms increased markedly after the 4ns MD of the mutants. Simulation 

results for E42A showed that the only hydrogen bonding partners left for K1543 are L41 and A42 

backbone carbonyls, with heteroatom distance of ~ 3.0 A; this is substantially different than the 

wild-type hydrogen bonding pattern in which every available hydrogen of the -nitrogen of K1543 

is engaged in hydrogen bonding: 2.8 Å to carbonyl of A44, 2.8 Å to carbonyl of E42 and 3.0 Å to 

carbonyl of F46. Therefore, both E237A and E42A mutants yield predictable decreases in binding 

affinities toward the BRC4 peptide and predict a series of collective interactions that the RAD51 

NTD contributes toward the stable binding of the BRC4 peptide to RAD51 protein (Figure 2.4A). 

These observations also suggested the mutant candidates for in vitro analysis of the contributions 

of the RAD51 NTD as well as for validation of our homology model.  

   

RAD51 mutants retained structure and basic biochemical properties of the wild type protein 

Based on the predictions from the model, alanine mutants of three residues E42, E59 and E237 

were constructed, purified and analyzed to validate the role of these residues in the RAD51-BRC4 

complex (Figures 2.5 and 2.6). If our model is sound, these amino acids should display reduced 

affinities toward BRC4 peptide without perturbing other biochemical activities and properties of 

RAD51. E237A was used to indirectly study the effect of S233 which is located in the dsDNA 

binding loop (L1) and may be critical for RAD51 function.   

Analysis by circular dichroism spectroscopy confirmed that the three mutants maintained the 

secondary structure contents characteristic of wild type RAD51 (Figure 2.5C & D).  
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Formation of the recombination competent RAD51 nucleoprotein filament causes ~1.5 fold 

ssDNA extension over the B-form. Such filaments contain one RAD51 monomer per 3 nucleotides 

of ssDNA and can be formed in the presence of ATP and Ca2+ ions (Bugreev and Mazin, 2004; 

Ristic et al., 2005). Both DNA extension and binding stoichiometry are indicators of the active 

nucleoprotein filament formation. DNA binding and extension activity was measured using a 

FRET based assay wherein, we observed and quantified the RAD51-mediated extension of a 60-

mer ssDNA substrate labeled with the FRET donor (Cy3) and acceptor (Cy5) fluorophores 

separated by 25 nucleotides (Grimme et al., 2010; Grimme and Spies, 2011; Masuda-Ozawa et al., 

2013). Under the stoichiometric binding conditions, RAD51 titration results in gradual FRET 

decrease due to the spatial separation of the Cy3 and Cy5 fluorophores until the substrate is 

saturated with RAD51 and no further extension can be achieved. The inflection point in the 

titration curve reports on the binding stoichiometry, while the amplitude of the FRET decrease 

reports on the DNA extension (see methods). Similar to the wild type RAD51, all three mutants 

showed capacity to bind and extend DNA (Figure 2.6A) with the characteristic ~1:3 

protein:nucleotide binding stoichiometries.  

RAD51 is a DNA-dependent ATPase (Bugreev and Mazin, 2004). ATP hydrolysis plays a 

role in the nucleoprotein filament dynamics and in particular in the protein turnover (Amunugama 

et al., 2012b; Bugreev and Mazin, 2004; Tombline and Fishel, 2002). E42A and E59A mutants 

hydrolyzed ATP similar to wild type RAD51 with kcat values of 0.26±0.01 min-1, 0.27±0.01 min-1 

and 0.27±0.01 min-1 (mean ± standard error) for the E42A, E59A and wild type respectively. 

E237A mutant had a slightly slower rate of ATP hydrolysis with kcat of 0.13±0.02 min-1 (Figure 

2.6B). This was still within the range previously reported for human RAD51 (Tombline and Fishel, 

2002). Moreover, since the mutant was able to form an extended nucleoprotein filament, E237A 

substitution likely affects ATP hydrolysis, but not ATP binding resulting in a more stable filament 

and lower protein turnover.  

 

RAD51 Mutants display reduced affinity for BRC4 

Since the three mutants retained structure and biochemical activities of the wild type RAD51, they 

can be directly compared for their ability to bind BRC4 peptide. Fluorescence Polarization 
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Anisotropy (FPA) was used to characterize binding of RAD51 mutants to the BRC4 peptide. 

Protein was incrementally titrated into buffer containing FITC-labeled BRC4 peptide. Increase in 

FPA reflected RAD51-BRC4 complex formation (LiCata and Wowor, 2008). In the presence of 

ATP, RAD51 bound BRC4 peptide with Kd of 33.6 ± 6.9nM. As expected, all alanine mutants 

displayed reduced affinity for BRC4 peptide and bound with Kd values of 174 ± 31nM, 959 ± 

274nM and 560 ± 131nM for E42A, E59A and E237A mutants respectively (Figure 2.7). The 

magnitude of the change in the FPA signal reflects the size of the complex containing fluorescence 

peptide. The E59A and E237A mutants displayed higher FPA changes compared to the wild type 

RAD51 and the E42 mutant. This is likely due to binding of higher RAD51 oligomeric species to 

BRC4 and highlights importance of the contacts between the C-terminal end of BRC peptide and 

both adjacent monomers.  

 

Correlation between in silico and in vitro results reaffirm the role of RAD51 N-terminal 

domain  

Endpoint free energy calculations were used to determine the relative ΔGbinding for peptide binding 

to RAD51, and were measured over the final 3 ns of the MD simulations, after an initial 1 ns pre-

equilibration period (see Methods section). These binding endpoint free energy calculations 

exclude a number of terms such as ligand and receptor binding entropies and the nonpolar 

interactions with solvent (i.e., cavitation and van der Waals interaction with solvent). Furthermore, 

the use of an implicit solvent model to calculate the changes in the solvation energies necessitates 

the use of a uniform dielectric constant, which strongly affects the magnitude of the calculated 

binding energy. However, such endpoint free energy calculations have been useful in accessing 

the relative changes in binding free energy (Brown and Muchmore, 2009; Shirts et al., 2010; 

Steinbrecher and Labahn, 2010).   

The ΔGbind trajectories for each protein (Figure 2.8A) were analyzed and converted into 

frequency histograms to yield the distributions of ΔGbind values over the course of MD simulation 

(Figure 2.8B). These representations allow following small, but discernible differences in the 

computed binding energies. Relative ΔGbind values derived from these distributions were compared 

to the respective relative ΔG values calculated from experimentally derived Kds. All three mutants, 
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E42A, E59A and E237A, showed average changes in ΔGbind rank-ordered similarly to the 

experimentally derived values. The changes in computational binding energies correlate extremely 

well with free energy changes obtained empirically with an R value of 0.964 (Figure 2.9). An 

agreement between relative changes in free energy of binding validates the protein-peptide 

interface of the homology model and the contributions of the RAD51 NTD toward BRC4 peptide 

binding. 

 

Discussion 

Proteins and enzymes orchestrating key steps in DNA repair are emerging as promising new 

targets in anticancer drug discovery, with RAD51 being one of the most attractive targets. Crucial 

for maintenance of genomic integrity in normal cells, RAD51 allows the transformed or cancerous 

cells to develop resistance to radiation and DNA-damaging drugs used in chemotherapy. Elevated 

levels of RAD51 lead to rapid accumulation of genetic variation, genomic instability, acquisition 

of invasiveness, drug and radiation resistance and disease progression in many cancers including 

Barrett’s adenocarcenoma (Pal et al.), multiple myeloma (Shammas et al., 2009), recurrence of 

chronic myeloid leukemia (Slupianek et al., 2011), high grade gliomas (Short et al., 2011),  and 

lung cancer (Qiao et al., 2005). Targeting RAD51 may therefore allow chemo- and radio-

sensitization of cancerous cells as an adjuvant in standard combination anticancer regimens 

(Huang et al., 2012). 

Several recent HTS campaigns and rational design of inhibitors/effectors of RAD51 were 

only mildly successful yielding an inhibitor of unknown mode of action with IC50 of 27.4 µM and 

poor drug-like properties (logP = 5 and low ligand efficiency of -0.23 kcal/heavy atom) (Huang et 

al., 2011); a small molecule that mildly stimulated RAD51-mediated strand exchange activity 

(Jayathilaka et al., 2008); DNA aptamers (Martinez et al.); peptide inhibitors (Nomme et al.) and 

most recently, an inhibitor of RAD51 filament formation that covalently binds to the RAD51 

(Budke et al., 2012).  

Whereas the overall extended filamentous structure and DNA strand exchange function is 

highly conserved within the RecA/RAD51 family of recombinases, the important features of their 

structures and mechanisms differ between species. Understanding of the RAD51 structure within 
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the dynamic nucleoprotein filament may greatly facilitate rational discovery of small-molecule 

scaffolds, which can be developed into potentially effective anticancer treatments and highly 

specific molecular probes. It also will improve our understanding of the mechanisms by which the 

recombination mediators and anti-recombinases affect RAD51 interaction with ssDNA and 

dsDNA, nucleoprotein filament assembly, disassembly and dynamics.  

The existing high resolution structure of the RAD51 core fused to the BRC4 peptide of 

BRCA2 tumor suppressor protein identified several key contacts between the two proteins, 

suggested the determinants of BRC4 peptide affinity for RAD51 and the mechanism by which it 

may affect the nucleoprotein filament (Pellegrini et al., 2002). The identified contact areas on the 

RAD51 core surface, however, display poor druggability due to a featureless interaction surface 

(Surade and Blundell, 2012) with only small pockets that bind phenylalanine (Scott et al., 2013). 

In contrast, the interface between the two adjacent RAD51 monomers within the filament and the 

cleft between the NTD and the RAD51 core may contain numerous loci that can be targeted.  

Here, we report a model of RAD51, which includes both the NTD and the conserved core. 

Four ns MD simulations with knowledge based force field were employed to relax the RAD51 

model to a stable form, whose core was similar to the structure of yeast Rad51 gain of function 

mutant (PDB ID: 1SZP) used as a template. More remarkably, the post-MD model converged with 

the structure of the RAD51 core (PDB ID: 1N0W) which was not used in the model building.  

The presence of the two monomers in the model allowed us to realistically represent the 

monomer-monomer interface within the RAD51 filament as well as the position of the NTD of 

one of the monomers (chain B). Our model also predicted interactions between BRC4 peptide and 

the two RAD51 monomers adjacent in the filament. It, therefore, represents the initial stage of the 

RAD51-BRCA2 complex formation where the interface between adjacent monomers of RAD51 

is slightly perturbed, but not yet completely abolished and replaced by the interactions with N-

terminal part of the BRC4 peptide. While the BRC4 peptides were placed in both monomers, 

contacts made by only one peptide placed in the chain B and contacting the monomer-monomer 

interface were evaluated. The backbone of the BRC4 peptide in our model overlapped well with 

the peptide in the 1N0W structure; the orientations of several side chains, however, were different 

reflecting their interactions with the NTD and the adjacent monomer. This was somewhat expected 

since the position of the peptide in the crystal structure might have been constrained by fusion of 
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the peptide to the RAD51 core and by extraordinary dense crystal packing. In our model, on the 

other hand, the NTD partially overlapped with the space occupied by the peptide in the crystal 

structure. Modeling of the RAD51-BRC4 complex suggested that the largest deviation between 

the RAD51 structures with and without the BRC4 peptide will involve movement of the NTD 

(Figure 2.1C&D, Figures 2.2C and 2.3C).  

To confirm the validity of the model we identified several previously unknown contacts 

between the BRC4 peptide and RAD51. In particular, we focused on the contacts that involved the 

NTD or the adjacent RAD51 monomer. The binding energy calculations of the BRC4 complexes 

with the 3 RAD51 glutamate to alanine mutants carried out over 4 ns MD simulations suggested 

that the three following mutants E42A, E59A, and E237A should display compromised affinities 

for the BRC4 peptide, but retain the biochemical properties of the wild type RAD51. Indeed the 

three purified mutants had lower than the wild type affinity for the BRC4 peptide with the rank 

order predicted by the binding energy calculations. While the contributions from each of the 

identified residues to the overall energy of the RAD51-BRC4 complex formation are relatively 

modest, as expected for the hydrogen bond disruptions in a protein-peptide contact surface, 

collectively they highlight the importance of the NTD of RAD51 in the BRC4 positioning and 

suggest the mechanism by which the interaction between BRC4 peptide and the adjacent monomer 

within the RAD51 oligomer contributes to the RAD51 oligomer destabilization and selectivity for 

ssDNA.  

We envision that the interaction between K1543 of the BRC4 and E42 and A44 of the NTD 

(Figure 2.4) guide the peptide into the cleft between NTD and the RAD51 core and simultaneously 

shift the position of the NTD (Figure 2.1 C & D, Figures 2.2C and 2.3C). This allows placement 

of the F1546 of the peptide in the hydrophobic pocket within the RAD51 core revealed by the 

crystal structure. Two hydrogen bonds accepted by E59 from N1544 and K1549 further stabilize 

the peptide in the cleft between the NTD and the RAD51 core. The peptide then interacts with the 

S233, which belongs to the Loop1 (dsDNA binding loop) of the adjacent RAD51 monomer. This 

interaction may constrain the dsDNA binding and at least in part be responsible for enforcing 

selectivity of the RAD51-BRCA2 for ssDNA over dsDNA. Together with the interaction between 

E1548 of the BRC4 and R250 observed both in the 1N0W structure and in our model, the S233-
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BRC4 interaction may also affect relative orientation of the two adjacent RAD51 monomers and 

thereby destabilize the monomer-monomer interface.  

Another notable interaction is the hydrogen bond between Q1551 of the peptide and P56 

within the NTD of RAD51. This interaction positions the C-terminus of the BRC4 peptide near 

the N terminus of the peptide docked in the second monomer.  

The difference between the yeast and human RAD51 proteins in the position and structure 

of the NTD provides a glimpse into co-evolution of the recombinase and recombination mediator. 

The more rigid connector between the two domains of human RAD51 shifts the position of NTD 

relative to the core and creates the binding site that has enough flexibility to accommodate diverse 

BRC peptides.    

 

Materials and Methods 

RAD51 Homology Model 

The crystal structure of yeast Rad51 gain of function mutant (PDB ID: 1SZP, (Conway et al., 

2004)) representing an active conformation of the Rad51 filament was used to build a homology 

model of two RAD51 monomers adjacent in the nucleoprotein filament. The model was 

constructed using The Chemical Computing Group’s Molecular Operating Environment (MOE) 

(Molecular Operating Environment (MOE) 2010.09, 2012). Ten intermediate homology models 

resulting from permutational selection of different loop candidates and side chain rotamers were 

built for RAD51, each subjected to a degree of energy minimization using the force field 

MMFF94x, with a distance-dependent dielectric. The model of the monomer (chain B) was 

constructed in the presence of the adjacent monomer in the 1SZP-A template, in order to optimize 

the monomer-monomer interface. The intermediate model which scored best according to the 

packing evaluation function was chosen for the next level of refinement: the RAD51 dimer was 

constructed by superposition of the RAD51 homology modeled monomer onto the 1SZP dimer 

crystal structure, followed by simulated annealing energy minimization and 4 ns MD simulations 

with the knowledge-based YASARA force field (see below). 
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The Mg-ATP substrate was placed by first building and then docking with flexible ligand 

docking into a region that corresponds to the canonical ATP binding site of the E. coli RecA protein 

(PDB ID: 1XMS, (Xing and Bell, 2004)). The AutoDock implementation in YASARA Structure 

was employed. AutoDock 4 employs a Lamarckian genetic algorithm to sample ligand 

conformations and binding modes. It uses a semi-empirical free energy force field to predict free 

energies of binding which accounts for intermolecular and intramolecular energies, as well as 

charge-based desolvation. The following general docking parameters were used: 25 independent 

docking runs, each with a total of 2.5 x 106 energy evaluations, a torsional degrees of freedom 

value of 8, grid point spacing was left at the default of 0.375 Å, and the force field selected was 

AMBER03. Specific to the genetic algorithm, the following parameters were used: a population 

size of 150, 2.7 x 104 generations, an elitism value of 1, a mutation rate of 0.02, and a crossover 

rate of 0.8. Final poses were considered distinct if they varied by > 5 Å RMSD. All atom energy 

minimization was then performed on the docked structure. This represented a starting point for 

MD simulations, and no constraints were placed on the Mg-ATP. 

 

Placement and Conformational Search of BRCA4 Peptide 

The partial structure of human Rad51 with BRACA4 peptide (PDB 1N0W) was superposed onto 

the dimer Rad51 homology model using the superpose utility of MOE, in order to initially place 

the BRACA4 peptide at the interface of the two monomers. The complex was then subjected to a 

specialized stochastic conformational search protocol called LowModeMD (Labute, 2010) within 

the MOE package. This method concentrates kinetic energy on low-frequency vibrational modes, 

in order to populate conformations in multiple low-energy states with high computational 

efficiency, and is particularly appropriate for complex systems with large numbers of nonbonded 

interactions, such as peptides, peptide loops and macrocyles. The LowModeMD conformational 

search procedure includes an iterative process of initial energy minimization, filtering of high 

frequency vibrational modes, a short (~0.5 ps) MD and saving distinct structures in a database. 

The energy minimization gradient threshold was 0.001 kcal/mol/Å, and searches were configured 

to terminate after 200 contiguous failed attempts to generate novel conformations, with up to 

10,000 iterations. Conformations were identified as unique if their root-mean-square-distance was 
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above a threshold value of 0.75 Å. RAD51 protein remained frozen throughout the LowModeMD 

conformational search, and a single low-energy peptide conformation was identified.  

 

Classical MD Simulations with two Adjacent RAD51 Monomers  

The molecular dynamics simulations on the homology model of RAD51 containing ATP and in 

the presence and absence of BRC4 peptide were performed with the YASARA Structure package 

version 12.4.1 (YASARA Biosciences) (Krieger). A periodic simulation cell with dimensions 

104.94 Å, 73.68 Å, and 78.23 Å was used with explicit solvent. The YASARA KBFF was used 

with long-range electrostatic potentials calculated with the Particle Mesh Ewald (PME) method 

(Darden et al., 1993; Essmann et al., 1995), with a van der Waals cutoff of 7.864 Å. This force 

field has been highly successful for use with homology modeling and protein structure prediction, 

in that it limits the damage (i.e. drifting into structurally unrealistic protein phase space) that often 

results from energy minimization and MD using empirical force fields.  

ATP force field parameters were generated with the AutoSMILES utility (Jakalian et al., 

2002) which employs semi-empirical AM1geometry optimization and assignment of charges, 

followed by assignment of AM1BCC atom and bond types with refinement using RESP charges, 

and finally the assignments of general AMBER force field atom types. The hydrogen bond network 

of RAD51 was optimized using the method of Hooft and coworkers (Hooft et al., 1996), in order 

to address ambiguities from multiple side chain conformations and protonation states that are not 

resolved by the electron density of the template. YASARA’s pKa utility was used to assign pKa 

values at pH 7.0 (Krieger et al., 2006). The box was filled with water, with a maximum sum of all 

bumps per water of 1.0 Å, and a density of 0.997 g/ml.  The simulation cell was neutralized with 

NaCl (0.9% w/v final concentration). Excessive water molecules were deleted to readjust the 

solvent density to 0.997 g/ml.  A short MD was run on the solvent only. The entire system was 

then energy minimized using first a steepest descent minimization to remove conformational 

stress, followed by a simulated annealing minimization until convergence (<0.05 kJ/mol/200 

steps). The MD simulation was then initiated, using the NVT ensemble at 298 K, and integration 

time steps for intramolecular and intermolecular forces were calculated every 1.25 fs and 2.5 fs, 
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respectively. This procedure was conducted after each in silico mutation as well. The structural 

alignments were performed with the MUSTANG method (Konagurthu et al., 2006). 

 

Free Energy Binding Calculations with the Fast Boundary Element Method (BEM)  

The method employed here is called the Boundary Element Method (BEM) (Juffer et al., 1991; 

Zauhar et al., 1985). It falls under the class of free energy calculations known as Endpoint Methods, 

which also includes the popular MM-PBSA approach (also called the finite difference method) 

(Steinbrecher and Labahn, 2010). Endpoint Methods calculate the ∆Gbind from constituent parts of 

a thermodynamic cycle that involve solvation of the individual components. The binding energy 

expression is: 

∆𝐺𝐵𝑖𝑛𝑑,𝑆𝑜𝑙𝑣  =  ∆𝐺𝐶𝑜𝑚𝑝𝑙𝑒𝑥,𝑉𝑎𝑐𝑐𝑢𝑚  +  ∆𝐺𝐶𝑜𝑚𝑝𝑙𝑒𝑥,𝑆𝑜𝑙𝑣 − (∆𝐺𝐿𝑖𝑔𝑎𝑛𝑑,𝑆𝑜𝑙𝑣  +  ∆𝐺𝑅𝑒𝑐𝑒𝑝𝑡𝑜𝑟,𝑠𝑜𝑙𝑣 ) + ∆𝐺𝑛𝑝  

In the BEM much of the focus is placed on accurately representing the boundary between the two 

dielectrics, in which a very accurate boundary charge distribution is used to represent a uniform 

dielectric at the interface between the low and the high dielectric continuum. From this boundary 

region of uniform dielectric strength, Coulomb's Law is used to calculate the electrostatic 

potentials.  

A major difficulty in Endpoint methods is assigning an internal dielectric (Schutz and 

Warshel, 2001). Since the BRC-peptide binding cavity of RAD51 is relatively solvated, we chose 

to employ a protein dielectric ε of 13; values of 4 to 20 are routinely employed, often using mixed 

values (Ravindranathan et al., 2011; Schutz and Warshel, 2001). It is important to note that ∆Gbind 

values obtained from Endpoint methods, such as MM-PBSA or BEM, should be viewed as 

enhanced scoring functions, which have enhanced rank-ordering value, rather than as metrics of 

accurate absolute binding free energy (Sotriffer and Matter, 2011). For the current study, using 

BEM, the boundary between solvent (dielectric constant 78) and the solute (dielectric constant 13) 

was formed by the latter's molecular surface, constructed with a solvent probe radius of 1.4 Å and 

the following radii for the solute elements: polar hydrogens 0.32 Å, other hydrogens 1.017 Å, 

carbon 1.8 Å, oxygen 1.344 Å, nitrogen 1.14 Å, sulfur 2.0 Å. The solute charges were assigned 

based on the AMBER03 force field (Cornell et al., 1995). The term for the hydrophobic component 



34 
 

of peptide binding, ∆Gnp was not included in these calculations, since this value is not expected to 

change in the mutated complexes being considered. The peptide binding entropy was not included 

in the relative binding energy calculations, and is not expected to significantly contribute to this 

value. After a 1 ns equilibration period, BEM ΔGbind value was calculated every 7 ps, for duration 

of 3 ns. The ensembles of the endpoint peptide binding free energy values were obtained for the 

wild type RAD51, E42A, E59A and E237A mutants (Figure 2.8A), and transformed into the 

histograms (Figure 2.8B) using GraphPad Prism 4. 

 

RAD51 Protein Expression and Purification 

RAD51 protein was expressed in E. coli Acella™ strain in the presence of pLysSRARE and 

pChaperone (generous gift from Dr. Alex Mazin, Drexel University) plasmids in LB medium 

containing Carbenicillin (50µg/ml), Kanamycin (40µg/ml) and Chloramphenicol (34µg/ml). The 

cells were grown at 37˚C. After OD600 reached 0.6 RAD51 expression was induced with 0.1mM 

IPTG (Calbiochem). Induced cells were further incubated at 37˚C for 4 hours, pelleted by 

centrifugation and lysed by sonication in the lysis buffer containing 100mM Tris-OAc (pH 7.5), 

2mM EDTA, 10% Glycerol, 1mM DTT, Lysozyme (0.5mg/ml), 0.1% Triton X-100 and Complete, 

mini, EDTA Free Protease Inhibitor Tablets (Roche). The clarified lysate was then dialyzed 

overnight against 3 changes of 0.5 liters of 20mM Tris-OAc pH 7.5, 7mM Spermidine, 10% 

Glycerol, 0.1mM DTT. The precipitate was collected by centrifugation, re-suspended in T-75 

buffer (50mM Tris-HCl pH 7.5, 10% Glycerol, 75mM NaCl, 0.1mM DTT) and then centrifuged 

again. The Pellet and supernatant were collected and the process was repeated by re-suspending 

the pellet in T-150, T-250, T-500 and T-600 buffers (containing 150mM, 250mM, 500mM and 

600mM NaCl, respectively). Fractions containing RAD51 were pooled and loaded onto HiTrap 

Blue column equilibrated with Buffer BA (100mM Potassium Phosphate pH 7.0, 5% Glycerol, 

300mM NaCl, 1mM EDTA, 1mM DTT). Protein was eluted using a 0 – 2M NaSCN gradient and 

dialyzed overnight in Buffer HA (20mM HEPES pH 7.5, 5% Glycerol, 150mM NaCl, 1mM 

EDTA, 1mM DTT). RAD51 containing fractions were then loaded onto a Heparin column and 

protein eluted with a 150mM – 2M NaCl gradient followed by overnight dialysis in Buffer HA. 

Finally, the RAD51-containing fractions were concentrated on a MonoQ column using a steep 

150mM – 1.2M NaCl gradient elution. The purified RAD51 was then dialyzed overnight in 
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modified Buffer HA (0.1mM EDTA), aliquoted and stored at -80˚C. RAD51 concentration was 

determined using absorption at A280 with an extinction coefficient of 12800M-1cm-1 (Baumann et 

al., 1997). Percentage of glycerol in buffers could be varied between 5% and 10%. Human RPA 

was purified as previously described (Henricksen et al., 1994).  

RAD51 E42A, E59A and E237A mutants were produced using the QuikChange II XL site-

directed mutagenesis kit (Agilent) using the following oligonucleotide primers (Supplementary 

Table S1). All mutants were purified using the protocol described for the wild type RAD51. 

 

Fluorescence Polarization Anisotropy based RAD51-BRC4 Binding Assay 

Binding affinity of RAD51 for the BRC4 peptide was measured by following fluorescence 

polarization anisotropy (FPA) of FITC labeled BRC4 peptide (LiCata and Wowor, 2008). Fifteen 

nM of FITC-BRC4 peptide (FITC-KEPTLLGFHTASGKKVKIAKESLDKVKNLFDEKEQ) 

(Carreira et al., 2010) was incubated at 37˚C in the reaction buffer containing (20mM HEPES pH 

7.0, 2mM CaCl2, 10mM MgCl2, 1mM DTT). FITC fluorescence was measured using excitation 

and emission wavelengths of 490 nm and 518 nm, respectively using Cary Eclipse Fluorimeter. 

Experiments were carried out in the presence of 1mM ATP. Dissociation constant (Kd) was 

measured by fitting the data to the binding isotherm – 

∆A = Ao +
∆Amax {(𝐾𝑑 + [𝑅𝐴𝐷51] + [𝐵𝑅𝐶4]) − √(𝐾𝑑 + [𝑅𝐴𝐷51] + [𝐵𝑅𝐶4])2 − 4[𝑅𝐴𝐷51][𝐵𝑅𝐶4]}

2[BRC4]
 

Where ΔA is change in anisotropy, Ao is initial anisotropy in the absence of RAD51 and ΔAmax is 

maximum change in anisotropy, [RAD51] is the total RAD51 concentration at each point of the 

titration and [BRC4] is the total peptide concentration. GraphPad Prism 4 software was used for 

data analysis. 

 

Circular Dichroism Spectroscopy 

The CD spectra of 3µM of RAD51 was recorded between 190 nm and 260 nm at room temperature 

in 50 mM Potassium Borate buffer pH 8.0 using J-750 Spectropolarimeter (JASCO). The 
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secondary structure contents for the wild type and mutant RAD51 proteins  (α-helix:-

strand:Random coil ratios) were determined using the DichroWeb K2D program (Whitmore and 

Wallace, 2004). 

 

RAD51 ATPase Assay 

ATP hydrolysis activity of RAD51 was measured using coupled reactions assay (Kowalczykowski 

and Krupp, 1987). Briefly, 5µM of RAD51 was incubated with 30µM (nucleotides) Poly dT100 in 

reaction buffer (20mM HEPES pH 7.5, 6mM MgCl2, 2mM ATP, 1mM DTT, 7.5mM PEP, 

0.2mg/mL NADH, 3.6-6.0U/mL pyruvate kinase, 5.4-8.4U/mL lactate dehydrogenase) at 37˚C; 

oxidation of NADH was measured by recording decrease in absorbance at A340.  The slope of the 

absorbance change was then converted into the rate of ATP hydrolysis in µM ATP hydrolyzed per 

min per µM RAD51.  

 

DNA Binding and Extension Assay 

The ability of RAD51 to bind and extend ssDNA was measured using the FRET based assay 

described previously (Grimme and Spies, 2011). Six hundred nM (nucleotides) of dT60 oligo 

labeled with the Cy3 and Cy5 dyes separated by 25 nt was titrated with RAD51 protein in FRET 

Reaction Buffer (20mM HEPES pH 7.5, 5mM CaCl2, 5mM MgCl2, 1mM ATP, 1mM DTT) at 

37˚C.  Cy3 and Cy5 fluorescence was recorded using Cary Eclipse Fluorimeter. The FRET 

efficiency was calculated as a fraction of acceptor intensity relative to the total donor and acceptor 

intensity adjusted by correction factors as described in (Grimme and Spies, 2011).  

RAD51 ability to extend DNA beyond the contour length was evaluated by comparing to the DNA 

extension by human RPA. 
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Images 

Molecular graphics images were produced using the UCSF Chimera package from the Resource 

for Biocomputing, Visualization, and Informatics at the University of California, San Francisco 

(supported by NIH P41 RR-01081; (Pettersen et al., 2004)). 
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Figures 

 

Figure 2.1. RAD51-BRC4 model and BRC4-induced structural rearrangements in RAD51 filament. 
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Figure 2.1. RAD51-BRC4 model and BRC4-induced structural rearrangements in RAD51 

filament. A. Ribbon diagram of the homology model of two adjacent RAD51 protomers 

containing BRC4 peptides: Chain B is shown in a dark blue; chain A is in a lighter blue; the two 

peptides are shown in purple. The RAD51 DNA binding loops L1 and L2 are shown in orange and 

green, respectively, and the ATP binding region is shown in yellow. B. Schematic representation 

of the BRC4 peptide bound RAD51.  C. 𝛼 −Carbon RMSDs for the peptide-free and BRC4-bound 

RAD51 (chain B) as a function of the residue number. Letters D-F above the graph indicate the 

most divergent structural elements. The respective structural overlaps are shown in the panels D-

F: D. NTD and the linker; E. dsDNA binding Loop L1; F. ssDNA binding loop L2. 
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Figure 2.2. Structural comparison of the RAD51 homology model and known RAD51 and Rad51 structures. 
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Figure 2.2. Structural comparison of the RAD51 homology model and known RAD51 and 

Rad51 structures. A. 𝛼 −Cα RMSDs derived from the structural overlap between RAD51 

homology model (Chain B, no peptide) and yeast Rad51 (1SZP, Chain B). 𝛼 −Cα RMSDs for the 

most of the residues within the NTD were larger than the 3.75Å, and therefore could not be paired 

by the alignment algorithm (MUSTANG) used to compare the two structures. The inset shows 

overlap between the NTD of RAD51 (blue) and the NTD of Rad51 (green). B. 𝛼 −Cα RMSDs 

derived from the structural overlap between RAD51 homology model (chain B with BRC4 

peptide) and the RAD51 core crystal structure (1NOW). Residues of the NTD and the DNA 

binding loops were absent from the 1NOW structure and therefore could not be compared.  C. 

𝛼 −Cα RMSDs derived from the structural overlap between RAD51 homology models (chain B) 

with and without BRC4 peptide.  
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Figure 2.3. Ribbon representation of the structural overlaps that yielded RMSD values shown in Figure 2.2. 
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Figure 2.3. Ribbon representation of the structural overlaps that yielded RMSD values 

shown in Figure 2.2. A. RAD51 chain B (blue) vs. yeast Rad51 1SZP-B (green). B. RAD51 chain 

B with peptide (RAD51 is shown in blue, peptide is in purple) vs. the core RAD51 and BRC4 from 

1N0W (both are shown in white). C. RAD51 chain B with peptide (RAD51 is shown in blue, 

peptide is in purple) vs. RAD51 Chain B in the absence of the peptide (white). In all structures, 

the DNA binding loops L1 & L2 are shown in orange and green, respectively. 
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Figure 2.4. Non-obvious interactions involved in BRC4 positioning between the RAD51 core and NTD revealed by the 

model. 
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Figure 2.4. Non-obvious interactions involved in BRC4 positioning between the RAD51 core 

and NTD revealed by the model. A. Interface between RAD51 (chain B is shown in blue, chain 

A is shown in white) and BRC4 peptide (purple).  The key residues are represented in ball in stick. 

The key hydrogen bonds described in the text are shown as black lines. The colored arrows indicate 

hydrogen bonds followed over the MD simulation as shown in the panel B. B. Change in the 

distances between heteroatoms participating in the hydrogen bonds as functions of MD simulation 

time. The distances were extracted from the wild type structure (top) and E42A mutant (middle); 

comparison of the wild type and E237A (bottom). The distributions of the distances are also shown 

as histograms on the right. 
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Figure 2.5. Purified RAD51 mutants retained secondary structure of the wild type RAD51 protein. A. SDS-PAGE gel of the 

purified wild type RAD51, RAD51E42A, RAD51E59A, and RAD51E237A. B. Schematic representation of the RAD51 monomer 

showing locations of each mutant within RAD51-BRC4 complex. RAD51 is shown in blue and BRC4 peptide is in purple. C. CD 

Spectra of RAD51 Wt and alanine mutants were similar suggesting preservation of protein secondary structure. D. The secondary 

structure compositions determined using the DichroWeb K2D program. 
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Figure 2.6. RAD51 mutants retained basic biochemical activities characteristic to the wild type protein. A. Formation of the 

active RAD51 nucleoprotein filament was monitored by following extension of the 60-mer oligonucleotide poly(dT)-60 containing 

Cy3 (FRET donor) and Cy5 (FRET acceptor) fluorophores separated by 25 nucleotides. Under the selected buffer conditions, the 

protein-free DNA has a characteristic FRET value of ~0.6; the same DNA molecule extended to its counter length upon 

complexation with RPA give a FRET signal of ~0.3; 1.5 times extension of the ssDNA bound by RAD51 decreases FRET to ~0.2. 

B. The kcats for the ssDNA-dependent ATP hydrolysis by the wild-type and mutant RAD51 proteins. ATP hydrolysis was measured 

using coupled reactions assay as described in the Supplementary Methods. 
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Figure 2.7. RAD51 mutants display compromised 

affinities for BRC4 peptide. A. schematic 

representation of the FPA-based peptide binding 

assay. BRC4 peptide is shown in purple; FITC dye is 

in orange; RAD51 is in blue B. Binding isotherms 

show titration of the 15 nM BRC4 peptide with the 

indicated concentrations of the wild type and mutant 

RAD51 proteins. The Kd values are indicated by the 

respective isotherms. The error bars represent standard 

error (SEM) for three independent experiments; error 

bars are smaller than the data points where not seen. 
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Figure 2.8. Computational binding energies ΔGbind for the BRC4 interaction with wild type 

RAD51, E42A, E59A and E237A. A. ΔGbind trajectories for the BRC4 complex with each protein 

over the course of MD simulation. B. Trajectories from 34 were converted into frequency 

histograms to yield the distributions of ΔGbind values.  
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Figure 2.9. Correlation between computational and experimental relative binding free energies. Computational and 

experimental relative binding free energies show a high degree of correlation (R=0.96). This validates the protein-peptide interface 

of the RAD51-BRC4 homology model and the contributions of the RAD51 N-Terminal Domain toward BRC4 binding. 

Experimental fractional changes in binding energy were calculated from Kd values (Figure 2.7B). Computational fractional changes 

in binding energy were calculated using endpoint, boundary element method as   twtwbind GGGG .. / 

(Figure 2.8).  
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CHAPTER 3: TYROSINE PHOSPHORYLATION STIMULATES ACTIVITY OF 

HUMAN RAD51 RECOMBINASE 

 

Abstract 

The DNA strand exchange protein RAD51 facilitates the central step in homologous 

recombination, a process fundamentally important for accurate repair of damaged chromosomes, 

restart of collapsed replication forks and telomere maintenance. The c-Abl tyrosine kinase and its 

oncogenic BCR-ABL fusion phosphorylate RAD51 on tyrosine residues 54 and 315. We combined 

biochemical reconstitutions with Total Internal Reflection Fluorescence Microscopy (TIRFM) to 

determine how the two phosphorylation events affect the biochemical activities of RAD51 and 

properties of the RAD51 nucleoprotein filament. By mimicking RAD51 tyrosine phosphorylation 

using a non-natural amino acid, p-Caboxymethyl-L-Phenylalanine (pCMF) we demonstrated that 

Y54 phosphorylation enhances the RAD51 recombinase activity, modifies the RAD51 

nucleoprotein filament formation and allows RAD51 to efficiently compete with ssDNA binding 

protein RPA. In contrast, Y315 phosphorylation has little effect on the RAD51 activities. Based 

on our work and previous cellular studies we propose a mechanism underlying RAD51 activation 

by c-Abl/BCR-ABL kinases. 
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Introduction 

 

The DNA in the human genome is constantly subjected to damage. This damage is a byproduct of 

normal cellular metabolic activities, exposure to radiation and chemical mutagens present in the 

environment (Ciccia and Elledge, 2010). Homologous Recombination (HR) and the pathways that 

employ the machinery of HR are responsible for the most accurate repair of the most deleterious 

DNA lesions including double-stranded DNA breaks (DSBs), inter-strand DNA crosslinks (ICLs), 

and damaged replication forks and thereby contributes to maintenance of the stable genome 

(Couedel et al., 2004; Head, 2010; Heyer, 2015; Jasin and Rothstein, 2013b; Li and Heyer, 2008a; 

Moynahan and Jasin, 2010; Schipler and Iliakis, 2013). HR also plays an important role in telomere 

maintenance (Doksani and de Lange, 2014; Oganesian and Karlseder, 2011). HR, a process highly 

conserved throughout the evolution, is carried out through a precisely coordinated and tightly 

regulated series of events. The key step in HR is the assembly of a RecA-family recombinase 

(phage UvsX, bacterial RecA, archaeal RadA, or eukaryotic RAD51 DNA strand exchange 

protein) onto resected single stranded DNA (Symington, 2014). The recombinase forms a 

nucleoprotein filament which then invades homologous duplex DNA resulting in a displacement 

loop structure that can be used as a primer for synthesis using the intact duplex as a template (Jasin 

and Rothstein, 2013a). Similarly to its bacterial and yeast homologs, human  RAD51 binds single 

stranded DNA (ssDNA) in an ATP dependent manner (Tombline et al., 2002). The nucleoprotein 

filament formed by the ATP-bound RAD51, is arranged such that each RAD51 monomer binds 

three nucleotides, forming the pairing unit in these reactions (Lee et al., 2015). Beyond these basic 

attributes, the characteristics of RAD51 protein differs significantly from its archaeal and bacterial 

homologues. Subtle differences in ATP hydrolysis (Tombline and Fishel, 2002), DNA binding and 

nucleoprotein filament formation and extension (Holthausen et al., 2011) influence the mechanism 

by which the RecA homologs function as well as how they are regulated.  

 

The critical role of HR requires all steps of this process to be tightly regulated to avoid 

untimely or illegitimate recombination that may cause carcinogenic genome rearrangements or 

result in the cytotoxic intermediates. Inactive HR causes loss of faithful DNA repair and leads to 



53 
 

genetic instability whereas excessive HR interferes with cellular processes such as replication, 

transcription and telomere maintenance and also can lead to gross chromosomal rearrangements 

(Heyer, 2015). In human cells, the assembly of RAD51 nucleoprotein filament is aided by the 

recombination mediator BRCA2 and RAD51 paralogs (Prakash et al., 2015; Zelensky et al., 

2014b), antagonized by the antirecombinases (Daley et al., 2014b) and the heteroduplex rejection 

machinery (Spies and Fishel, 2015), and is also regulated by post translational modifications. 

Activities of RAD51 in the cell are influenced by two types of phosphorylation. RAD51 protein is 

phosphorylated at threonine residue 309 by the Chk1 checkpoint kinase (Sorensen et al., 2005) 

which regulates the DNA damage response. It is also phosphorylated at tyrosine residues 54 and 

315 by the c-Abl/BCR-ABL tyrosine kinase (Slupianek et al., 2001; Yuan et al., 1998). Ionizing 

radiation and other genotoxic agents activate c-Abl kinase in an ATM and DNA-PK dependent 

manner (Baskaran et al., 1997; Shafman et al., 1997). There have been several studies on how c-

Abl regulates RAD51 with a major debate regarding the site targeted by this tyrosine kinase. 

Recent studies suggested that RAD51 is phosphorylated in two steps with Y315 phosphorylation 

being a prerequisite for the Y54 phosphorylation (Popova et al., 2009). There remains, however, 

an uncertainty about the biochemical effects of RAD51 phosphorylation by c-Abl.  Results of the 

cell-based studies suggested that the Y54 and Y315 phosphorylation enhances the RAD51 nuclear 

foci formation and resistance to DNA damaging agents (Slupianek et al., 2001; Yuan et al., 2003). 

In contrast, biochemical studies which used aspartate and glutamate amino acids to mimic Y315 

phosphorylation, or used s. cerevisiae Rad51 (sceRad51) phosphorylated in vitro by c-Abl kinase 

showed a decrease in the DNA strand exchange activity (Takizawa et al., 2004; Yuan et al., 1998). 

The discrepancy between the results of the biochemical and cellular studies may stem from the 

fact that Saccharomyces cerevisiae lacks tyrosine phosphorylation (Lim and Pawson, 2010) and 

from a substantial structural difference between yeast and human proteins (Subramanyam et al., 

2013). Also, representation of phosphotyrosine by a negatively charged amino acid is often 

inaccurate. In fact, we have recently shown that Y/D substitution incorrectly represents tyrosine 

phosphorylation in another c-Abl target, human RAD52 (Honda et al., 2011).  

Our studies aim to provide a mechanistic model that reconciles biochemical data with that 

observed in the cell-based studies and to identify the properties of RAD51 protein and its 

nucleoprotein filament that are altered to enhance or diminish HR. By incorporating a non-natural 

amino acid that accurately mimics phosphorylated tyrosine residues, we provide a realistic 



54 
 

representation of the phosphorylated RAD51. Moreover, the impact of the two individual 

phosphorylation events can be easily distinguished. Our model of human RAD51 (Subramanyam 

et al., 2013) predicted that Y54 participates in the inter-subunit stacking interaction with F195 of 

the adjacent monomer within the RAD51 filament similar to the interaction revealed in sceRad51 

structure (Conway et al., 2004) (Figure 3.1A). Introduction of a large negative charge by Y54 

phosphorylation is expected to break the stacking and may alter the RAD51-RAD51 interface. 

Even slight deviations towards either a more or a less stable RAD51 filament due to this alteration 

may have significant effect of the RAD51 nucleoprotein filament assembly and function. Y315 is 

also near the RAD51-RAD51 interface and is directly adjacent to D316, which was proposed to 

form a salt-bridge to the γ-phosphate of ATP and to function as a conformational sensor that 

enhances nucleoprotein filament turnover (Amunugama et al., 2012b). It is more difficult to 

anticipate the effect of placing an additional negative charge next to this charged aspartate. 

Using biochemical assays that report on the recombinase function of phosphomimetic 

RAD51, we observed elevated DNA strand exchange activity of Y54-phosphomimetic 

(RAD51Y54pCMF), but not the Y-315-phosphomimetic protein (RAD51Y315pCMF) consistent with 

previously published cellular studies that reported the enhanced HR and RAD51 localization at the 

sites of the DNA damage (Shimizu et al., 2009; Slupianek et al., 2001). Moreover, we showed that 

RAD51Y54pCMF can efficiently carry out the so-called “RPA-first” DNA strand exchange reactions 

that would normally require the presence of a recombination mediator. To elaborate on the 

mechanism of RAD51 function and regulation, we employed Forster Resonance Energy Transfer 

(FRET) based experiments at ensemble and single molecule levels. Analyzing single molecule 

data by Hidden Markov Modeling (HMM’s), we showed differences in DNA binding on 

phosphorylation that explain the basis of nucleoprotein filament formation and robust DNA strand 

exchange activity of RAD51Y54pCMF. Finally, we provide a model for the regulation of the RAD51 

protein by sequential phosphorylation, highlighting the mechanism of regulation by the c-

Abl/BCR-ABL kinases. 
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Results 

 

Mimetics of the RAD51 Y54 and Y315 Phosphorylation 

Protein phosphorylation is commonly mimicked by charged amino acids Aspartate (D) and 

Glutamate (E). These substitutions may inaccurately represent phosphotyrosine when the precise 

geometries or the aromatic ring of the tyrosine are important (Honda et al., 2011; Xie et al., 2007).   

For a more accurate representation of the effects of tyrosine phosphorylation on RAD51, we used 

a non-natural amino acid, p-carboxmethyl-L-phenylalanine (pCMF), which mimics all aspects of 

a phosphorylated tyrosine residue (Figure 3.1B) (Honda et al., 2011; Xie et al., 2007). 

RAD51Y54pCMF and RAD51Y315pCMF mutants were produced using expression in E. coli Acella™ 

Cells transformed with the pCH1-RAD51 vector (see methods), along with the pSUPT-UaaRS 

vector encoding the amber tRNA and pCMF-RS (Figure 3.2). Induction of the cells in the presence 

of IPTG produced large amounts of truncated proteins which could easily be distinguished from 

the full length protein which was expressed in the presence of pCMF (Figure 3.1C, D & E). The 

uniform incorporation of the amino acid for both RAD51Y54pCMF and RAD51Y315pCMF mutants was 

confirmed through western blot analysis using α-RAD51 (3C10) antibodies (Figure 3.1D) and by 

MALDITOF-MS as a ~42Da increase in molecular weight (Figure 3.2). Protein yields were around 

20% compared to the wild type RAD51 expression owing to loss to insoluble fractions and 

truncated products. Mutants replacing the RAD51 Y54 and Y315 residues with Aspartate (D), 

Glutamate (E) and phenylalanine (F) residues were also purified (Figure 3.2) to illustrate the 

differences between these and the pCMF mutants. 

 

Tyrosine 54 Phosphorylation stimulates RAD51 DNA Strand Exchange activity 

A critical HR function of the RAD51 nucleoprotein filament is to perform an ATP-

dependent homologous DNA pairing and the DNA strand exchange reaction (Ciccia and Elledge, 

2010; Mehta and Haber, 2014). This activity can be reconstituted in-vitro in the three strand 

exchange reaction where a RAD51 nucleoprotein filament preformed on circular φX174 virion 

ssDNA pairs with and invades ϕX174 linear double stranded DNA (dsDNA) (Baumann et al., 
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1996; Sigurdsson et al., 2001). The DNA strand exchange activity of RAD51 leads to the 

displacement of the complementary linear ssDNA from the dsDNA substrate eventually leading 

to the formation of a nicked circular product through a series of joint molecule intermediates 

(Figure 3.3). The reaction depends on the presence of the ssDNA binding protein RPA, which, 

when added after the RAD51 nucleoprotein filament is formed, stimulates the DNA strand 

exchange by destabilizing remaining secondary structure in the ssDNA and by sequestering the 

displaced DNA strand. The nicked circular product along with the joint molecule intermediates 

are separated on an agarose gel which tracks the progress of the reaction over time.  

 

There are two general regimes under which human RAD51 promotes an efficient DNA 

strand exchange reaction. The reaction can be carried out in the presence of Ca2+ and Mg2+ ions, 

which stabilize the RAD51 nucleoprotein filament by preventing ATP hydrolysis, leading to 

efficient DNA strand exchange (Bugreev and Mazin, 2004). To measure the DNA strand exchange 

activity while permitting ATP hydrolysis, our reaction conditions contained Mg2+ and Ammonium 

Sodium Phosphate (NaNH4PO4) (see methods) (Shim et al., 2006).  RAD51 Y54 phosphomimetic 

mutants showed an enhanced DNA strand exchange activity compared to the wild type protein 

(Figure 3.3). Nicked circular products indicating completion of the reaction, were observed earlier 

in reaction facilitated by RAD51Y54pCMF than in the reaction the wild type protein. We also 

observed an increase in product formed over a time course of 180 minutes from 60% to 80% of 

the input dsDNA (Figure 3.3). The RAD51Y54D and RAD51Y54E mutants were observed to have a 

higher stimulatory effect compared to RAD51Y54pCMF whereas RAD51Y54F behaved identical to 

the wild type protein (Figure 3.4). Two distinct species of the joint molecule intermediates are 

formed during the strand exchange reaction (Tham et al., 2013). The early joint molecule 

intermediates are known to migrate faster in the agarose gel compared to those formed further 

along reaction progression towards the nicked circular product. The stimulation of strand exchange 

activity can be attributed to the efficient conversion of early joint molecule intermediates which 

were observed in much higher amounts for the wild type protein compared to RAD51Y54pCMF 

(Figure3.3), RAD51Y54D or RAD51Y54E (Figure 3.4) mutants. Although mild stimulation of strand 

exchange was observed in the RAD51Y315D or RAD51Y315E mutants, the RAD51Y315pCMF mutant 

showed strand exchange activity identical to the wild type protein (Figure 3.3). Considering the 
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pCMF mutants have the closest structural resemblance to phosphorylated proteins, it is likely that 

the glutamate and aspartate mutations, strongly exaggerate the effects of tyrosine phosphorylation 

in RAD51. 

 

RAD51 phosphomimetic mutants efficiently overcome the kinetic barrier to the 

nucleoprotein filament formation presented by the ssDNA binding protein RPA.  

 The RPA protein plays multiple important roles in HR and in recombination dependent 

DNA repair. While processing DNA double strand breaks, the ssDNA produced by end resection 

machinery is immediately bound by RPA preventing secondary structure formation and further 

stimulates end resection (Symington, 2014). The bound RPA is eventually replaced by RAD51 

nucleoprotein filament in a reaction facilitated by the recombination mediator BRCA2 (Jensen et 

al., 2010; Liu et al., 2010b; Prakash et al., 2015). The in-vitro reconstituted DNA strand exchange 

reaction requires RPA (Baumann et al., 1996; Sung, 1994), which removes secondary structures 

in the ssDNA (Sigurdsson et al., 2001; Sugiyama et al., 1997) and as the reaction progresses, 

sequesters the displaced ssDNA thereby preventing non-productive RAD51 nucleoprotein 

complexes. When added first, however, RPA kinetically impedes the RAD51 nucleation (New et 

al., 1998). Thus, the order of RAD51 and RPA addition while performing the DNA strand 

exchange reaction has a very significant impact on the reaction outcome. As expected, under our 

experimental conditions, the efficiency of nicked circular product formation was significantly 

higher when RAD51-nucleoproten filaments were formed prior to the addition of RPA protein. 

However, while the appearance of the joint molecules and nicked circular products was delayed 

and diminished in the “RPA-first” reactions, it was not completely abolished. Not only did the Y54 

phosphomimetic mutants display higher DNA strand exchange activity in the “RAD51-first” 

reactions, RAD51Y54pCMF displayed no difference in the efficiency between the “RAD51-first” and 

“RPA-first” reactions (Figure 3.5 & 3.6). These experiments suggest that phosphorylated RAD51 

may efficiently displace RPA from the ssDNA in the absence of recombination mediators. As with 

the “RAD51-first” reaction, RAD51Y315pCMF was indistinguishable from the wild type protein 

(Figure 3.5). A slight decrease in the reaction yield was due to the effect of the storage buffer and 

was recapitulated in the wild type protein reaction adjusted to match the buffer. RAD51Y315D and 

RAD51Y315E were more robust DNA strand-exchange proteins than the wild type, RAD51Y315pCMF 
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and RAD51Y315F yet again suggesting that the glutamate and aspartate mutations inaccurately 

represent tyrosine phosphorylation. 

 

Tyrosine phosphorylation limits RAD51 dsDNA binding. 

RAD51 can form nucleoprotein filament on both ssDNA and dsDNA substrates. However, 

only filaments formed on ssDNA substrates are productive in homologous pairing and DNA strand 

exchange (Sung and Robberson, 1995). The recombination mediator BRCA2 is known to promote 

a bias in binding affinity favoring the ssDNA (Jensen et al., 2010; Liu et al., 2010b; Thorslund et 

al., 2010b). We investigated the effect of RAD51 phosphorylation on the RAD51-dsDNA 

interaction by incubating the RAD51 phosphomimetic mutants with ϕX174 dsDNA and analyzing 

the electrophoretic mobility shift. The RAD51Y54pCMF, RAD51Y54D and RAD51Y54E showed a 

significant decrease in the dsDNA binding (Figure 3.7) whereas only a slight decrease was 

observed in RAD51Y315D and RAD51Y315E. As expected, the Y/F substitution had no effect on the 

RAD51-dsDNA interaction. The decrease in dsDNA binding in all RAD51 mutants directly 

correlated with the stimulation of the DNA strand exchange activity. The only deviation from this 

trend was RAD51Y315pCMF, which upon incubation with the supercoiled ϕX174 dsDNA formed 

large aggregates that failed to enter the gel. Similar experiments were performed on shorter dsDNA 

substrates with results consistent with those from the ϕX174 dsDNA substrate (data not shown).  

 

The altered ssDNA binding behavior of phosphomimetic mutants 

To elucidate the regulation of RAD51 nucleoprotein filament formation on ssDNA, we 

investigated the RAD51-ssDNA interaction using Forster Resonance Energy Transfer (FRET) 

based assays (see methods). These experiments monitored binding of RAD51 to a Poly dT60 

substrate which was labelled internally with Cy3 (FRET donor) and Cy5 (FRET acceptor) 

fluorescent dyes separated by 25 nucleotides. Free ssDNA yields a high FRET value due to the 

proximity of the donor and acceptor dyes. Addition of RAD51 into the reaction mixture and 

ensuing nucleoprotein filament formation extends the ssDNA, which can be measured as a 

decrease in FRET as the two fluorophores move away from each other (Subramanyam et al., 2013). 

RAD51 protein binds and extends ssDNA1.5 fold beyond its contour length with each RAD51 

monomer occluding approximately three nucleotides as evident by the FRET of approximately 

0.55, compared to 0.19 expected for the fully extended B-form ssDNA (Figure 3.8). ATP bound 
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RAD51 forms stable nucleoprotein filaments (Namsaraev and Berg, 1998) while hydrolysis of 

ATP to ADP leads to the protein turnover. Using an NADH coupled ATPase assay (see methods), 

we measured ATP hydrolysis activity for all phosphomimetic mutants. All mutants could 

hydrolyze ATP similar to the wild type protein. (Figure 3.9D).  

The characteristic ssDNA binding and extension was observed in buffers which permitted 

ATP hydrolysis (Mg2+/ NaNH4PO4) as well as under conditions which inhibited ATP hydrolysis 

(Ca2+/Mg2+/KCl) (Figure 3.8). Under both sets of experimental conditions we observed a 

stoichiometric binding of the RAD51 protein to 600 nM (nucleotides) ssDNA. Under these 

conditions, RAD51Y54pCMF binding to and extension of the ssDNA was indistinguishable from the 

wild type protein, while RAD51Y54D and RAD51Y54E showed weaker binding to the ssDNA 

substrate (Figure 3.9A & B). Under conditions permitting ATP hydrolysis, binding of the 

RAD51Y54pCMF to the ssDNA was no longer stoichiometric as higher concentrations of 

RAD51Y54pCMF were required to saturate the ssDNA substrate compared to wild type. This binding 

deficiency was even more pronounced in the RAD51Y54D were RAD51Y54E proteins, which 

respectively required approximately 6- and 160-fold more protein to saturate the ssDNA substrate 

(Figure 3.8). No difference between the wild type RAD51 and RAD51Y54F was observed. 

RAD51Y315E and RAD51Y315pCMF mutants displayed ssDNA binding only slightly weaker than the 

wild type under ATP hydrolysis conditions while formed stable nucleoprotein filaments similar to 

wild type when hydrolysis was inhibited (Figure 3.9C & D). All other RAD51 Y315 mutants 

showed binding characteristics similar to the wild type protein under both, permissive and 

inhibitory conditions for ATP hydrolysis. The inverse correlation between the ssDNA binding and 

the capacity to carry out the DNA strand exchange activity was somewhat unexpected. This is 

especially true for the RAD51Y54D which in contrast to other mutants does not show ssDNA 

nucleoprotein filament formation even at the tens of µM concentrations exceeding those of the 

DNA strand exchange reactions. This apparent discrepancy can be explained from the previous 

studies (Carreira et al., 2009) which showed that RAD51 forms less stable complexes with short 

oligonucleotides: while RAD51 dissociates from the shorter oligonucleotides normally, 

reassembly of the nucleoprotein filament is blocked under the steady-state conditions. RAD51 

forms stable nucleoprotein filaments on longer ssDNA much more efficiently. The same is likely 

applies to the phosphomimetic mutants. 
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Equilibrium single-molecule measurements quantify RAD51-ssDNA binding  

 To further understand the effect of the RAD51 Y54 phosphorylation, we employed single-

molecule Total Internal Reflection Fluorescence Microscopy (smTIRFM). A FRET-based analysis 

(Joo et al., 2006) was used to follow binding of RAD51 to the individual surface-tethered partial 

DNA duplex molecules, where the Cy3 and Cy5 dyes were separated by 21 nucleotides and the 

overall ssDNA region was 60 nucleotides (Figure 3.8 & Figure 3.10). Similar to the bulk ssDNA-

binding experiments described above, the Cy3 dye is excited with the green (532 nm) laser and 

the Cy5 dye is excited via FRET. Measurements collected for 3839 RAD51-free DNA molecules 

from fifteen second movies yielded a normally distributed FRET peak with an average FRET value 

of 0.5. A second smaller peak distributed around 0 FRET value represents the fraction of molecules 

that underwent acceptor photo-bleaching. Upon binding by RAD51, the donor and acceptor dyes 

move apart as the ssDNA molecule is stretched. This manifests in the change from high to low 

FRET. The DNA molecules fully extended by the bound RAD51 yielded a FRET distribution with 

an average FRET of approximately 0.1. Using this system, we compared the binding properties of 

the wild type RAD51 with RAD51Y54pCMF. The concentration-dependence of these reactions 

recapitulates the data observed in bulk, except binding of the RAD51 protein here is not 

stoichiometric and therefore can be directly compared to that of RAD51Y54pCMF. A clear difference 

was observed wherein, 250nM of RAD51 was required to fully extend the ssDNA substrates 

whereas 2.5μM of the Y54pCMF mutant was required to achieve similar results (Figure 3.8). This 

is approximately a 10-fold increase in protein required to form stable nucleoprotein filaments. 

Notably, these measurements predict that both proteins will bind and extend the ssDNA at 

concentrations used in the DNA strand exchange reaction.  

 

RAD51 nucleates ssDNA as a dimer  

 To visualize the nucleation of the RAD51 filament on ssDNA in real time, we carried out 

smTIRFM flow experiments. In these experiments RAD51 was introduced into a reaction chamber 

containing tethered ssDNA molecules as described earlier, but 10 seconds into the recording. 

Movies were recorded for three minutes at a time resolution of 100 milliseconds. The fluorescence 

trajectories (time-based changes in Cy3 and Cy5 fluorescence originating from distinct spots on 

the slide) were collected. The trajectories that contained binding events were then corrected for 

donor leakage and trimmed to contain all events prior to donor or acceptor photo-bleaching (Figure 
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3.11A & B show representative trajectories). Only events containing anti-correlated trajectories 

for donor and acceptor intensities were selected for further FRET analysis. Selected trajectories 

were then analyzed collectively using ebFRET (van de Meent et al., 2014) to determine the number 

of distinct states in the trajectories. This program uses an Empirical Bayesian method to generate 

Hidden Markov Models (HMM) to analyze complex FRET trajectories. In our experiments, on 

addition of 250nM of the wild type RAD51, filament formation was observed to proceed in a step 

wise manner. The trajectories were fit to models for two to eight distinct FRET states. The model 

that best fitted the trajectories was determined by calculating the statistical mean lower bound per 

series output from the ebFRET program. The model that showed the best fit was then visually 

compared with the raw data (Figure 3.11A & B). All data points in the fit dataset were also plotted 

as frequency histograms which indicate the value of the individual FRET states as a Gaussian 

distribution. Models that under-fit or over-fit the dataset can be distinguished using this method 

and eliminated.  Four distinct states were observed between FRET values of 0.5 and 0.1 (Figure 

3.11C & D) indicating three steps. Since the donor and acceptor dyes are separated by 21 bases 

and each RAD51 monomer binds ssDNA as a triplet (Lee et al., 2015), we conclude that the basic 

unit for binding and extension of RAD51 nucleoprotein filaments is a dimer. At similar 

concentrations, no binding events were observed with RAD51Y54pCMF. However, at 2.5μM 

RAD51Y54pCMF, multiple trajectories were observed with assembly and dissociation events for both 

the wild type protein and for the RAD51Y54pCMF mutant. Both proteins were found to bind and 

extend the nucleating nucleoprotein filament as a dimer. To determine the dynamics of the nucleus 

assembly, the transitions between multiple FRET states were plotted as transition density plots 

(TDP) (McKinney et al., 2006) (Figure 3.12). This plot represents the FRET state of a molecule 

prior to and after the transition on the horizontal and vertical axes respectively. Interestingly, at a 

lower concentration of 250nM, RAD51 nucleation includes transitions in the forward 

(S1→S2→S3→S4) and the reverse direction (S4→S3→S2→S1) with similar frequencies 

indicating a very dynamic process whereby RAD51 dimers rapidly bind and dissociate at each step 

of the filament formation. At higher concentrations of 2.5μM, a bias was observed towards 

transitions between the final two states, i.e. S3→S4 transitions are the most prevalent with lower 

occupancy in the density of S4→S3 transitions. This shows that the nucleoprotein filament 

nucleation proceeds in the forward direction. Analysis of the RAD51Y54pCMF showed no binding 

events at 250nM protein concentration. However, the RAD51Y54pCMF filament nucleation was 
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highly efficient compared to wild type RAD51 at higher concentrations of RAD51Y54pCMF, i.e. 

2.5μM. Experiments were also performed at an intermediate concentration of 750nM of protein 

where RAD51Y54pCMF was able to form filaments with a stronger forward directionality compared 

to the wild type protein.  

It is important to note that the studies reported above are pre-equilibrium measurements that 

follow the initial steps of the filament nucleation process. When the reactions were allowed to 

reach an equilibrium (i.e. 5 – 10 min after the addition of RAD51 or RAD51Y54pCMF to the surface-

tethered DNA), we observed a stable low FRET signal indicative of the fully-formed nucleoprotein 

filaments. 

To determine whether the differences between the nucleation mechanisms of the wild type 

RAD51 and RAD51Y54pCMF are due to differences in their respective capacity to form dimers 

required for the filament nucleation we analyzed the oligomeric state of the phosphomimetic 

proteins by native PAGE (Figure 3.13). This analysis was carried out at 7.5 µM of each protein, 

which is the concentration used in our DNA strand exchange reactions. Prior to loading on the gel, 

the proteins were incubated in the strand exchange buffer. While all assayed proteins showed a 

tendency to form large oligomeric complexes, slightly lower molecular weight and more discrete 

bands were observed for the RAD51Y54pCMF, RAD51Y54D and RAD51Y54E mutants. 

  

 

Discussion 

 

Here, we addressed the biochemical consequences of RAD51 phosphorylation by c-Abl/BCR-

ABL using phosphomimetic mutants that accurately mimic the effect of tyrosine phosphorylation 

(Honda et al., 2009; Xie et al., 2007). First, we showed that RAD51Y54pCMF protein has an enhanced 

DNA strand exchange activity on the plasmid-length substrates (Figure 3.3A). Our findings 

contrast previous biochemical studies where phosphorylation of Y54 on RAD51 was thought to 

inhibit the DNA strand exchange (Yuan et al., 1998), but is in an excellent agreement with cellular 

studies where RAD51 nucleoprotein formation was enhanced after c-Abl phosphorylation (Yuan 

et al., 2003). These earlier biochemical studies were performed using sceRad51 phosphorylated in 

vitro by human c-Abl. While the tyrosine residue analogous to Y54 is conserved in sceRad51, 

yeast cells lack tyrosine phosphorylation (Lim and Pawson, 2010) resulting in different 
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mechanisms of regulation for the yeast and human proteins. This makes our studies the first to 

mechanistically address and to parse out the effects of the two tyrosine phosphorylation events on 

RAD51 activities. We observed that the Y54 phosphorylation enhances the recombinase activity 

of RAD51 in at least three important ways. Firstly, RAD51Y54pCMF appeared to efficiently promote 

nicked circular DNA formation, the DNA strand exchange product, while the joint molecule 

intermediates accumulated to a much greater extent in the reactions utilizing the unmodified 

RAD51 protein (Figure 3.3). Human RAD51 readily forms the DNA joint-molecules, but, in 

contrast to its bacterial functional homolog RecA, is inefficient at their branch migration 

(Baumann et al., 1996). Y54 phosphorylation appears to alleviate this deficiency allowing for a 

rapid clearing of the intermediates and formation of the DNA strand exchange products. Second 

and most unexpectedly, RAD51Y54pCMF was able to enhance the so-called “RPA-first” reaction 

allowing it to reach the extent of the “RAD51-first” reaction (Figure 3.5A). The ssDNA binding 

protein RPA plays both inhibitory and stimulatory roles at different HR steps. RPA stimulates the 

DNA strand exchange by removing regions of the secondary structure in the ssDNA, which allows 

RAD51 to form a contiguous nucleoprotein filament (Sugiyama et al., 1997), and also sequesters 

the displaced DNA strand thereby assisting in progression of the reaction from the joint molecule 

intermediates to the nicked circular products by competing with RAD51 for free ssDNA 

(Sigurdsson et al., 2001). If added to the ssDNA first (“RPA-first” reaction), RPA delays the 

RAD51 nucleoprotein filament formation by kinetically inhibiting the nucleation step (New et al., 

1998). This inhibition is overcome by the recombination mediator activity of BRCA2 (Jensen et 

al., 2010; Liu et al., 2010b). Robust DNA strand exchange reaction promoted by RAD51Y54pCMF 

suggests that RAD51 protein phosphorylated by the c-Abl kinase may nucleate on the RPA-coated 

ssDNA and form contiguous active nucleoprotein filaments even in the absence of the 

recombination mediator. However, a scenario where the DNA damage response leads to a 

coordinated activation of several simultaneous pathways that ensure faithful and efficient 

recombination mediated DNA repair is more likely. BRCA2 has been shown to diffuse in the 

nucleus together with RAD51 delivering it to the sites of DNA damage (Reuter et al., 2014) with 

each BRCA2 binding 4-5 RAD51 monomers and promoting the filament nucleation (Jensen et al., 

2010; Shahid et al., 2014). Phosphorylation of RAD51 may then ensure the filament growth on the 

RPA-coated ssDNA, as the RAD51 focus formation is reduced in c-Abl-/- cells (Yuan et al., 2003). 

Finally, the selectivity of the RAD51Y54pCMF towards binding the ssDNA over dsDNA (Figures 3.7 
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and 3.8) is another means of enhancing the RAD51-mediated DNA strand exchange reaction by 

favoring the formation of active nucleoprotein filament, and is also akin to the function of the 

recombination mediator (Jensen et al., 2010; Sung and Robberson, 1995).  

In contrast to RAD51Y54pCMF, RAD51Y315pCMF displayed the biochemical activities essentially 

similar to those of the unmodified protein. These data are consistent with a sequential 

phosphorylation of RAD51 proposed earlier (Colicelli, 2010; Popova et al., 2011). According this 

this model, c-Abl phosphorylates RAD51 on Y315 by binding the consensus PXXP motif through 

its SH3 domain. Phosphorylation of Y315 residue then forms a pYXXP motif which is a consensus 

binding motif for the SH2 domain of c-Abl. This in turn leads to phosphorylation of the Y54 

residue which upregulates DNA repair activity through stimulation of the RAD51-mediated DNA 

strand exchange.  

The ostensible discrepancy between the enhanced DNA strand exchange activity of 

RAD51Y54pCMF and its reduced capacity to bind ssDNA was unexpected. A ten-fold difference in 

the concentration of the unmodified RAD51 and RAD51Y54pCMF required to bind and extend the 

ssDNA under conditions identical to those used in the DNA strand exchange reactions (Figure 

3.8B) may be explained as reduced affinity for ssDNA, change in the binding cooperativity, or in 

the altered RAD51 oligomerization. RAD51 nucleoprotein filaments were shown to grow from 

heterogeneous nuclei ranging size from dimers and even monomers to large oligomers (Candelli 

et al., 2014). Using single-molecule TIRFM we were able to follow the formation kinetics of these 

nuclei at a single monomer resolution. We observed no RAD51 monomers binding to ssDNA, but 

showed that both RAD51 and RAD51Y54pCMF interact with ssDNA as a dimer. The nucleus then 

grows by dynamic addition and dissociation of the RAD51 dimers. At intermediate and high 

protein concentrations, growth of the RAD51Y54pCMF nucleus is more directional than that of the 

unmodified RAD51, which manifests in fewer transitions in the reverse direction (Figure 3.12B). 

The lack of the DNA binding at 250 nM RAD51Y54pCMF may be due to the decreased 

oligomerization of the phosphomimetic protein brought about by a possibly slightly distorted 

monomer-monomer interface. Y54 is located in the N-terminal domain of RAD51 near the 

monomer-monomer interface. In the unmodified protein, it participates in the stacking interaction 

with F195 of the adjacent monomer (Subramanyam et al., 2013). Introduction of the negative 

charge upon Y45 phosphorylation or due to the presence of phosphomimetic residue may affect 

this interface so that the RAD51 oligomerization is delayed until higher protein concentrations. 
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Although RAD51 nucleates the nucleoprotein filaments at much lower protein concentrations, 

these complexes are dynamic, unstable, and are likely non-productive with respect to formation of 

the recombination proficient nucleoprotein filaments. On the other hand, RAD51Y54pCMF while 

unable to form these early unstable filaments at lower protein concentrations forms more stable, 

recombination proficient nucleoprotein filaments at higher protein concentrations. The same 

properties that allow RAD51Y54pCMF dimers to directionally and rapidly assemble into the 

contiguous nuclei, are also likely underlie its ability to displace RPA and to efficiently carry out 

the “RPA-first” DNA strand exchange reactions.  

 

Materials and Methods 

 

Protein Expression & Purification 

To achieve a robust expression system compatible with both, the expression of the soluble 

RAD51 protein and efficient pCMF incorporation, the RAD51 open reading frame was codon 

optimized for E. coli expression and cloned into a pCOLADuet (Novagen) expression vector 

which also encoded for the E. coli GroE Operon. The resulting plasmid is referred herein as pCH1-

RAD51. Protein incorporating pCMF was expressed in E. coli Acella™ Cells (F- ompT hsdSB(rB
-
 

mB
-) gal dcm (DE3) ∆endA ∆recA). These cells were transformed with the pCH1 vector encoding 

E. coli codon optimized RAD51 Y54TAG and Y54315TAG sequences, along with the pSUPT-

UaaRS vector encoding the amber tRNA and pCMF-RS expressed under proK and araBAD 

promoters respectively. E. coli Acella™/pCH1-RAD51 cells were taken from a glycerol stock and 

inoculated in 10 ml of LB Broth containing 40µg/ml Kanamycin and incubated at 37C overnight. 

8ml of the overnight culture was used to seed a 1L LB culture containing 40µg/ml Kanamycin. 

The culture was grown at 37C until an OD600 of ~0.6 was reached. RAD51 expression was then 

induced for 4 hours at 37C with 0.1 mM IPTG. The cells were pelleted and stored at -80C for 

protein purification.  RAD51 protein was then purified using the protocol described previously 

(Subramanyam et al., 2013). Briefly, cells from the RAD51 expression were thawed on ice for two 

hours and resuspended in lysis buffer containing protease inhibitors and lysozyme. The cells were 

then sonicated and the soluble fraction was dialyzed against spermidine acetate buffer. Spermidine 

precipitates RAD51 which is selectively resuspended in buffers containing increasing amounts of 

sodium chloride. The fractions containing RAD51 are then purified through a Blue Agarose 
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column followed by a Heparin column. Finally, the protein collected from this step is concentrated 

using a MonoQ anion exchange column.  RAD51 pCMF mutants were expressed similarly to the 

wild type protein except that, E. coli Acella™/pCH1-RAD51/pSUPT-UaaRS starter cultures were 

seeded to 2L culture volumes and grown in the presence of 34μg/ml chloramphenicol and 1% 

arabinose in addition to 40µg/ml Kanamycin. These cultures were then induced as described above 

with IPTG along with 300μg/ml of p-carboxymethyl-L-phenylalanine (custom synthesized by 

AsisChem). The wild type protein concentration was determined using molar extinction coefficient 

of 14900 M-1cm-1 at A280. The concentrations for all mutants were measured using molar extinction 

coefficient of 13410 M-1cm-1 at A280. Human RPA was purified as described earlier (Henricksen 

et al., 1994). 

 

DNA Strand Exchange Assay 

RAD51 DNA Strand Exchange Assay was performed similarly as described earlier 

(Sigurdsson et al., 2001). The assay was performed using the φX174 virion ssDNA and the φX174 

RFI dsDNA as substrates for the reaction. The φX174 RFI dsDNA was linearized using ApaLI to 

generate 4 base pair, 5’ overhangs, and purified using phenol-chloroform-isoamyl alcohol 

extraction. The “RAD51-first” DNA strand exchange reactions were initiated by incubating 7.5µM 

RAD51 with 30µM (Nucleotide) φX174 ssDNA and 2.5mM ATP in the Reaction Buffer (20mM 

HEPES-NaOH pH 7.5, 10% Glycerol, 1mM MgCl2 and 1mM DTT) for 5 minutes at 37°C. To 

this, 150mM of NaNH4PO4 was added along with 2µM RPA unless indicated otherwise, and 

incubated for another 5 minutes. This was followed by addition of 15µM (base pair) of ApaLI-

digested Linear φX174 dsDNA and further incubation at 37°C over for 30, 60, 90 or 120 min. All 

concentrations were determined for a 90µl Reaction volume. The samples were then deproteinized 

by addition of 0.8% SDS and Proteinase K (800µg/ml) followed by incubation at 37°C for 30 

minutes and resolved on a 0.8% Agarose gel (UltraPure Agarose) at 3.5V/cm (60V) at 25°C for 

16 hours. The gel was then stained for 10 minutes using SYBR Gold and then destained for 20 

minutes in MilliQ H2O. In the “RPA-first” reactions the order of addition of RAD51 and RPA was 

reversed. The appearance of the nicked circular products were quantitated using ImageJ software 

normalized to the amount of initial linear dsDNA substrate. The intensities obtained for the 

mutants were then statistically compared to the wild type strand exchange reaction using two way 

ANOVA and verified for significance.  All data were plot using GraphPad Prism 6.  
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ATPase Assay 

A coupled NADH assay was performed as described earlier (Kreuzer and Jongeneel, 1983). 

A reaction mixture was assembled containing 20mM HEPES-NaOH pH7.5, 5mM MgCl2, 150mM 

NaNH4PO4, 1mM DTT, 0.2mg/ml NADH, 7.5mM Phosphoenol Pyruvate, 2.5mM ATP, 20U of 

Lactate Dehydrogenase and Pyruvate Kinase and 7.5μM RAD51. The reaction was incubated at 

37°C and A340 measured using an Agilent 8453 UV-Vis Spectrophotometer. 80µM nucleotides of 

poly dT100 was added to start the DNA dependent ATP hydrolysis. The slope of the decrease of 

NADH absorbance at 340nm was used to calculate the rate of ATP hydrolysis using the following 

conversion: rate of A340 decrease (s-1) × 9880 = rate of ATP hydrolysis (µM/min). Data were plotted 

using GraphPad Prism 6. 

 

RAD51 DNA Binding & Extension Assay 

The FRET based DNA binding assay for RAD51 was performed as described in 

(Subramanyam et al., 2013). Six hundred nM (nucleotides) of dT60 oligo labeled with the Cy3 and 

Cy5 dyes separated by 25 nt was titrated with RAD51 protein in FRET Reaction Buffer (20mM 

HEPES pH 7.5, 5mM CaCl2, 5mM MgCl2,  150mM KCl, 1mM ATP, 1mM DTT or 20mM HEPES 

pH 7.5, 150mM NaNH4PO4, 2mM MgCl2, 1mM ATP, 1mM DTT) at 37˚C.  Cy3 and Cy5 

fluorescence was recorded using Cary Eclipse Fluorimeter. FRET was calculated as a fraction of 

acceptor intensity relative to the total donor and acceptor intensity adjusted by correction factors 

–  

              4.2*Icy5             . 

(4.2*Icy5) + (1.7*Icy3) 

 

 

FRET value was plotted against the concentration to observe RAD51 DNA Binding and Extension 

characteristics. Data were plotted using GraphPad Prism 6. 
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dsDNA Binding Assay 

RAD51 dsDNA binding assay was performed largely as described in (Takizawa et al., 

2004). The reaction was initiated by incubating 2.5µM, 5µM and 7.5µM RAD51 with 15µM (base 

pair) φX174 dsDNA in 4X Reaction Buffer (80mM HEPES-NaOH pH7.5, 40% Glycerol, 4mM 

MgCl2, 4mM Dithiothreitol and 0.4mg/ml BSA) and 2.5mM ATP and 150mM of indicated salt for 

20 minutes at 37°C. The samples were then mixed with 6X DNA Loading Dye and resolved on a 

0.8% Agarose gel at 3.5V/cm (50V) at 25°C for ~3 hours. The gel was then stained for 10 minutes 

using SYBR Gold and then de-stained for 10 minutes in MilliQ H2O. 

 

 

Acquisition of Single Molecule Data 

A diode-pumped solid state (DPSS) 532nm green laser was used to excite Cy3 molecules 

in an evanescent field produced in a reaction chamber. Scattered light was removed using Cy3/Cy5 

dual band-pass filter (Semrock, FF01-577/690) in the emission optical pathway Images were 

chromatically separated into Cy3 image and Cy5 image using 630-nm dichroic mirror inside the 

dual view system (DV2; Photometrics). The data acquisition was carried out through an Andor 

IXON CCD camera, using software written in Visual C++. The movies obtained with the CCD 

were analyzed first using IDL and the intensities of the fluorophores and the time traces were 

visualized using customized MATLAB programs. FRET was calculated using the equation (Ha, 

2001) –  

 

𝐸 =
1

(1 + 𝛾
𝐼𝐷

𝐼𝐴
)

−1

 

 

 

The where 𝐼𝐷 and 𝐼𝐴 are the sensitized emission intensity of the donor and acceptor, respectively. 

The measured raw intensities of the donor and acceptor channels were then corrected by measuring 

the leakage intensities from the donor channel β to the acceptor channel. The donor leakage was 

subtracted from the acceptor channel intensities and added it back to the donor intensity. For our 

optical setup, the donor leakage correction was measured to be 7%. Applying this correction, we 

get the equation for FRET given below –  
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𝐸 =
(𝐼𝐴

∗ − 𝛽)

(𝐼𝐴
∗ − 𝛽) + 𝛾(𝐼𝐷

∗ + 𝛽) 
 

 

Where, 𝐼𝐴
∗ and 𝐼𝐷

∗   are the background corrected acceptor and donor intensity. 𝛾 = 1, is calculated 

as the ratio of change in the acceptor intensity, ΔIA to change in the donor intensity, ΔID upon 

acceptor photobleaching (γ = ΔIA / ΔID) (Joo and Ha, 2012b; Roy et al., 2008). 

 

Single-Molecule RAD51 DNA Binding Assay (TIRFM) 

An oligo made of 18 random bases and was labelled with a 5’ Cy5 dye and a 3’ biotin tag. 

This oligo was annealed to a 78 base oligo containing the complementary 18 bases to the 

biotinylated oligo followed by a T60 sequence and an internal Cy3 dye spaced 21 bases apart from 

the Cy5 dye on the tethered oligo. This arrangement ensures that all oligos tethered to the slide 

have a complete FRET pair. PEGylated slides and sample chamber were prepared as described 

earlier (Joo and Ha, 2012a). 100µl of 0.2mg/ml Neutravidin was passed through the reaction 

chamber and incubated for 3 minutes. The chamber was washed with 300µl T50 buffer (Tris pH 

8.0, 50mM NaCl). Fifty pM Biotinylated DNA substrate was then added to the Imaging Buffer 

(Trolox, 20mM HEPES pH 7.5, 2mM MgCl2, 0.8% Glucose, 150mM NaNH4PO4, 1mM ATP, 

1mM DTT, 0.1mg/ml BSA, 0.04 mg/ml Catalase and 1 mg/ml Glucose Oxidase) and flowed into 

the chamber. The indicated concentrations of RAD51 were then added into the Imaging Buffer 

and flowed into the imaging chamber. Forty movies of 15 second duration (100 ms time resolution, 

400 background value and 1600 data scalar) were recorded using gain of 230 at 45.6 mW green 

laser intensity. Data were analyzed using customized programs for IDL & MATLAB. The DNA 

substrates used for the experiment are 5Cy5-Bot18-3Bio (GCCTCGCTGCCGTCGCCA) and 

Top18-(T21)Cy3(T39) (TGGCGACGGCAGCGAGGCTTTTTTTTTTTTTTTTTTTTT/iCy3/TT 

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT).  

For experiments performed under flow, similar conditions were used to set up the experiment 

except 75 pM of the DNA substrate was used instead of 50 pM to account for uniform 

concentration of molecules in a larger flow chamber. Once the DNA substrate was bound to the 

PEGylated slide, the imaging chamber was washed with the RAD51 Imaging Buffer. Using the 

same values for laser power and gain, three minute movies were recorded at the same time 
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resolution with the indicated concentration of RAD51 being injected into the imaging chamber at 

~10 seconds into the movie recording.  

 

Analysis of Single Molecule binding Data 

To generate FRET state histograms, five frames from each movie were used to calculate 

the FRET values for each frame for each molecule in the movie and plotted as a FRET histogram 

after the data were normalized in MATLAB. Each histogram was fit to a Gaussian distribution or 

to a sum of Gaussians using GraphPad Prizm. The area under the histogram defined the percentage 

of molecules in each FRET state.  

The time dependent trajectories obtained from flow experiments were analyzed using Hidden 

Markov Modeling. Empirical Bayesian methods were used to determine transitions indicating 

RAD51 filament formation. The leakage corrected trajectories were trimmed to include all data 

points until donor/acceptor photo-bleaching events. ebFRET analysis suite (van de Meent et al., 

2014) was used to statistically determine the FRET states observed in the course of the RAD51 

nucleoprotein filament formation. Mean lower bound was used to determine the evidence for the 

model that best described the number of states for each series. This was confirmed by visually 

comparing the idealized trajectories from the model with the raw data to confirm the fit. 
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Figures

 

Figure 3.1. Incorporation of pCMF into RAD51 
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Figure 3.1. Incorporation of pCMF into RAD51 (A) Homology model of two adjacent RAD51 

monomers. RAD51 DNA binding loops L1 & L2 are shown in orange and green respectively. 

Residues Y54, Y315, and F195 are shown in ball and stick rendering. (B) The structures of 

tyrosine, phosphorylated tyrosine and the non-natural amino acid pCMF (p-Carboxymethyl-L-

phenylalnine). (C) Schematic showing expression system for the pCMF incorporation using the 

amber suppressor system. RAD51 expression in the absence of pCMF leads to translation of a 

truncated product, whereas full length protein is produced on addition of the pCMF amino acid 

into the expression media. (D) Western blot showing expression of full length RAD51Y54pCMF and 

RAD51Y315pCMF proteins using mouse anti-RAD51 (3C10) antibody. Truncated products are 

observed in the absence of pCMF (Y54 truncations are too small to be verified by standard gel-

electrophoresis). (E) SDS-PAGE gel showing purified RAD51, RAD51Y54pCMF and 

RAD51Y315pCMF. The RAD51Y315pCMF have a very small amount of truncated product (<10%) that 

could not be separated using our purification scheme (Figure S1B). 
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Figure 3.2. Incorporation of non-natural amino acid into RAD51 protein. 
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Figure 3.2. Incorporation of non-natural amino acid into RAD51 protein. (A) Expression 

system established for incorporation of the pCMF amino acid consists of E. coli Acella™ cells 

transformed with two plasmids. The first plasmid, pCH1-RAD51opt contains anRAD51 ORF 

optimized for E. coli expression as well as the GroE operon from E. coli. The second plasmid 

contains components for the amber suppressor system. (B) Purification scheme for obtaining 

homogeneous RAD51 protein. (C) SDS-PAGE gel showing purified RAD51 and phosphomimetic 

mutants. (D) Data from MALDITOF-MS experiments confirming incorporation of pCMF amino 

acid at the Y54 (top) and Y315 (bottom) residues respectively.   
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Figure 3.3. Y54 phosphorylation stimulates DNA strand exchange activity of RAD51 
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Figure 3.3. Y54 phosphorylation stimulates DNA strand exchange activity of RAD51 (A) 

Schematic showing the biochemically reconstituted DNA strand exchange reaction. Circular 

ϕX174 ssDNA is incubated with RAD51 in reaction conditions permitting ATP hydrolysis (see 

methods) followed by addition of RPA which helps remove secondary structures in the ssDNA 

allowing stable nucleoprotein filament formation. The RAD51 nucleoprotein then invades ϕX174 

linear dsDNA to form nicked circular dsDNA products through several joint-molecule 

intermediates showing various stages of branch migration. (B) Strand exchange reactions carried 

out by RAD51 (left), RAD51Y54pCMF (middle) and RAD51Y315pCMF (right). For each protein, the 

respective panel shows reactions stopped at 0, 30, 60, 120 and 180 min. All substrates, joint-

molecules and nicked circular products are observed on a 0.8% TAE agarose gel stained with 

SYBR Gold. (C) Quantitative analysis of formed nicked circular products. The RAD51Y54pCMF 

mutant (red) is able to convert ~80% of linear dsDNA substrate into nicked circular products 

compared to ~58% products formed for RAD51 wild type (grey) and RAD51Y315pCMF mutant 

(orange) over a 180 minute time course. All reactions were performed in triplicate with data 

represented as mean ± SEM. The results for both mutants were compared to the wild type protein 

using two way ANOVA to verify significance of results. 
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Figure 3.4. Strand exchange reactions with RAD51 Y54 & Y315 mutants 
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Figure 3.4. Strand exchange reactions with RAD51 Y54 & Y315 mutants (A) Schematic 

showing the in vitro reconstituted “RAD51-first” DNA strand exchange reaction (Figure 2). (B) 

Strand exchange reactions comparing RAD51 wild type to RAD51Y54D, RAD51Y54E and 

RAD51Y54F mutants respectively. (C) Strand exchange reactions comparing RAD51 wild type to 

RAD51Y315D, RAD51Y315E and RAD51Y315F mutants respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 



79 
 

 

Figure 3.5. RAD51Y54pCMF performs efficient “RPA-first” DNA strand exchange 
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Figure 3.5. RAD51Y54pCMF performs efficient “RPA-first” DNA strand exchange (A) 

Schematic explaining the “RPA-first” reactions. Circular ϕX174 ssDNA is incubated with RPA 

protein. This is followed by RAD51 protein which displaces the bound RPA to form nucleoprotein 

filaments which can then invade ϕX174 linear dsDNA to form nicked circular products through a 

series of joint-molecule intermediates. (B) “RPA-first” DNA strand exchange reactions carried out 

by RAD51 (left), RAD51Y54pCMF (middle) and RAD51Y315pCMF (right). For each protein, the 

respective panel shows reactions stopped at 0, 30, 60, 120 and 180 min. (C) “RPA-first” DNA 

strand exchange reactions carried out by RAD51 (left) and RAD51Y315pCMF (right). (D&E)  

Quantitation of product formed in the DNA strand exchange reactions. The RAD51Y54pCMF mutant 

(blue) converts ~80% of linear dsDNA substrate into nicked circular products in the presence of 

RPA compared to ~20% products formed for RAD51 wild type (black) while RAD51Y315pCMF 

mutant (cyan) is similar to wild type protein in both “RAD51-first” and “RPA-first” reactions. All 

reactions were performed in triplicate with data represented as mean ± SEM. The results for both 

mutants were compared to the wild type protein using two way ANOVA to verify significance of 

results. 
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Figure 3.6. “RPA-First” Strand exchange reactions with RAD51 Y54 & Y315 mutants 
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Figure 3.6. “RPA-First” Strand exchange reactions with RAD51 Y54 & Y315 mutants (A) 

Schematic showing the in vitro reconstituted “RPA-first” DNA strand exchange reaction (Figure 

3). (B) Strand exchange reactions comparing RAD51 wild type to RAD51Y54D, RAD51Y54E and 

RAD51Y54F mutants respectively. (C) Strand exchange reactions comparing RAD51 wild type to 

RAD51Y315D, RAD51Y315E and RAD51Y315F mutants respectively. 
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Figure 3.7. RAD51 phosphorylation limits dsDNA binding. (A) Electrophoretic mobility shift assay (EMSA) RAD51 Y54 

mutants binding supercoiled ϕX174 dsDNA. 25μM (base-pair) dsDNA was incubated with increasing concentrations of 2.5μM, 

5.0μM or 7.5μM RAD51 and loaded on a 0.8% TAE agarose gel and stained with SYBR gold. RAD51Y54pCMF, RAD51Y54D, 

RAD51Y54E showed decrease in dsDNA binding compared to wild type protein and RAD51Y54F. (B) In a similar assay 

RAD51Y315pCMF formed aggregates that failed to enter into the gel whereas RAD51Y315D, RAD51Y315E mutants showed slightly 

reduced dsDNA binding compared to RAD51 and RAD51Y315F. 

 



84 
 

 

Figure 3.8. Effects of Y54 phosphorylation on ssDNA binding activity 
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Figure 3.8. Effects of Y54 phosphorylation on ssDNA binding activity (A) RAD51 binding to 

ssDNA was observed by following the extension of the 60-mer oligonucleotide poly(dT)-60 

containing Cy3 (FRET donor) and Cy5 (FRET acceptor) fluorophores separated by 25 nucleotides. 

Binding of RAD51 to 600nM (Nucleotide) ssDNA moves the two dyes apart which can be seen 

as a change from high FRET (0.55) to low FRET (0.19). Under conditions preventing ATP 

hydrolysis (Ca2+) the RAD51Y54pCMF binds and extends the ssDNA substrate similar to wild type 

RAD51 with a 1:3 RAD51:ssDNA ratio, whereas under reactions conditions permitting ATP 

hydrolysis (Mg2+) RAD51Y54pCMF binding in non-stoichiometric. (B) Analysis of the equilibrium 

ssDNA binding using single-molecule TIRFM. FRET histograms indicating binding of RAD51 to 

immobilized ssDNA substrate (see methods, Figure S5). Unbound ssDNA yeilds a histogram 

centered on FRET value of (~0.5), while fully extended RAD51 nucleoprtoein filament yields a 

histogram centered on ~0.1 FRET value. Grey and blue histograms represent FRET values in the 

absence and presence of RAD51 respectively. Concentrations of RAD51 or RAD51Y54pCMF, as 

well the number of molecules used to build each histogram are indicated in each panel. 
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Figure 3.9. Altered ssDNA binding of RAD51 Y54 and Y315 mutants 
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Figure 3.9. Altered ssDNA binding of RAD51 Y54 and Y315 mutants (A) FRET based assay 

to measure binding for RAD51 Y54 mutants to ssDNA. Under conditions inhibiting ATP 

hydrolysis (Ca2+) RAD51Y54D & RAD51Y54E mutants deviate from ideal RAD51 binding 

behavior. (B) This effect is significantly exaggerated under conditions permitting ATP hydrolysis 

(Mg2+) (C & D) Similar FRET based experiments were conducted for Y315 mutants which were 

observed to have similar ssDNA binding characteristics under both, prohibitive conditions for ATP 

hydrolysis (Ca2+) as well as permissive conditions (Mg2+). Data is represented as mean ± SEM 

with n = 3. (E) Rates of ssDNA dependent ATP hydrolysis of all RAD51 mutants measured using 

the coupled NADH assay. Data is represented as mean ± SEM with n = 3. 
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Figure 3.10. Single-Molecule TIRF ssDNA binding Assay (A) A Poly dT(60) ssDNA substrate is immobilized to a biotinylated 

quartz slide using the biotin-Neutravidin interaction (see methods). Evanescent wave produced by a prism-based total internal 

reflection (TIR) illumination and a 532nm laser is used to excite the Cy3 dye on the surface-tethered DNA substrate. In the absence 

of protein, the acceptor Cy5 dye on the partial duplex DNA is excited via FRET. Upon binding, RAD51 extends the ssDNA 

substrate leading to a decrease in energy transfer and reduction in Cy5 emission with a corresponding increase in Cy3 intensity. 

Both Cy3 and Cy5 emission can be tracked simultaneously using a dual view system. The change in Cy3 and Cy5 intensities on 

RAD51 binding to ssDNA substrate are tracked over time by recording movies over the course of the experiment.   
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Figure 3.11. Hidden Markov Analysis shows that RAD51 and RAD51Y54pCMF nucleate on ssDNA as dimers 
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Figure 3.11. Hidden Markov Analysis shows that RAD51 and RAD51Y54pCMF nucleate on 

ssDNA as dimers (A & B) Representative Cy3 (donor) and Cy5 (acceptor) trajectories from pre-

equilibrium experiments visualizing RAD51 (A) and RAD51Y54pCMF (B) nucleation onto ssDNA 

in real time. RAD51 protein was introduced into the reaction chamber at ~10 seconds into a 3 

minute recording. Trajectories that showed anti-correlated behavior were selected and corrected 

for background intensities as well as donor leakage followed by calculation of FRET trajectories. 

Regions containing transitions were trimmed and used for Hidden Markov analysis (ebFRET). The 

idealized trajectories are overlaid on the raw FRET trajectories showing the fit. . (C &D) 

Histograms showing distribution of observed FRET states from 281 and 179 molecules for RAD51 

(C) and RAD51Y54pCMF (D). Four distinct FRET states were observed with FRET values between 

0.5 and 0.1. Since the Cy3-Cy5 FRET pair is 21 nucleotides apart, this shows the RAD51 

molecules bound ssDNA in three steps indicating each step as a dimer.  
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Figure 3.12. Formation of the dynamic RAD51 nuclei vs directional nuclei formation by RAD51Y54pCMF. (A) Schematic 

explaining the 3D Transition Density Plots (TDP). Four distinct FRET states 1, 2, 3 and 4 correspond to respective states in the 

RAD51 nucleus formation on ssDNA with three steps between these states required to fully extend the ssDNA substrate. Transitions 

1→2→3→4 correspond to the filament formation, while filament disassembly is reflected in transitions in the reverse direction.  

(B) TDPs showing the transition densities corresponding to each state for the wild type RAD51 protein at increasing concentrations. 

The transitions were calculated from 85, 50 and 146 molecules for 250nM, 750nM and 2.5μM concentrations respectively. Brighter 

colors represent more frequent transitions. The frequency scale is shown on the right of the graphs.  (C) TDP plots showing 

transition densities for the RAD51Y54pCMF mutant. No transitions were observed at 250nM concentrations. Transitions were 

calculated from 63 and 116 molecules for 750nM and 2.5μM concentrations, respectively.  
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Figure 3.13. Effect of phosphomimetics on the RAD51 oligomerization Native-PAGE gel of all RAD51 mutants loaded at 

7.5μM concentration similar to that used in strand exchange assays. All RAD51 Y54 mutants except RAD51Y54F display increase 

in the electrophoretic mobility where the higher order oligomeric species are shifted to a lower molecular weight with more discrete 

bands.RAD51Y315D & RAD51Y315E mutants migrate higher compared to the Y54 mutants. A fraction of RAD51Y315pCMF formed 

higher molecular weight aggregates that were slow to enter the gel. 
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CONCLUSIONS & FUTURE DIRECTION 

In the work described in this dissertation, I have answered some fundamental questions regarding 

aspects of regulation of DNA repair by Homologous Recombination. My studies have focused 

mainly around the human RAD51 protein and its regulation in DNA repair. Using previously 

known structural information from the yeast Rad51 protein as well as information from a partial 

Human RAD51 crystal structure, I helped build and validate a homology model that explains the 

structural features of the complete RAD51 recombinase. Using this model, I was also able to 

describe new interactions between RAD51 protein and the BRCA2 tumor suppressor protein. 

These studies make significant contributions to the role of the BRCA2 mediator in RAD51 

mediated DNA repair.  

 Using information from the homology model, I decided to probe the mechanism of 

regulation of the RAD51 protein by the c-Abl/BCR-ABL kinase protein. Biochemical information 

on this topic is very sparse and conflicts with observation made in cellular studies. Using a novel 

method to incorporate and artificial amino acid pCMF that is a more relevant replacement for the 

a phosphotyrosine residue, I was able to reconcile results with cellular data and for the first time, 

provide a complete understanding of how c-Abl phosphorylation affects RAD51 mechanistically 

using high resolution single molecule methods and traditional biochemical and biophysical 

approaches.  

 The results of my studies and methods developed by me, will be used to further understand 

the regulation of the RAD51 protein as well as study other mediators and antirecombinases 

involved in homologous recombination which will generate insights into one of the most critical 

steps in DNA repair and to find an ‘Achilles Heel’ in RAD51 function and exploit it to develop 

novel anticancer therapies. 
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APPENDIX: IMPORTANT DNA SEQUENCES RELATED TO RAD51 STUDIES 

 

 

>Homo sapiens RAD51 homolog (RecA homolog, E. coli) (S. cerevisiae) (RAD51), 

transcript variant 1, CDS (SPIES LAB VERSION) 

ATGGCAATGCAGATGCAGCTTGAAGCAAATGCAGATACTTCAGTGGAAGAAGAAAGCTTTGGCCCACAACCCATTTC

ACGGTTAGAGCAGTGTGGCATAAATGCCAACGATGTGAAGAAATTGGAAGAAGCTGGATTCCATACTGTGGAGGCTG

TTGCCTATGCGCCAAAGAAGGAGCTAATAAATATTAAGGGAATTAGTGAAGCCAAAGCTGATAAAATTCTGGCTGAG

GCAGCTAAATTAGTTCCAATGGGTTTCACCACTGCAACTGAATTCCACCAAAGGCGGTCAGAGATCATACAGATTAC

TACTGGCTCCAAAGAGCTTGACAAACTACTTCAAGGTGGAATTGAGACTGGATCTATCACAGAAATGTTTGGAGAAT

TCCGAACTGGGAAGACCCAGATCTGTCATACGCTAGCTGTCACCTGCCAGCTTCCCATTGACCGGGGTGGAGGTGAA

GGAAAGGCCATGTACATTGACACTGAGGGTACCTTTAGGCCAGAACGGCTGCTGGCAGTGGCTGAGAGGTATGGTCT

CTCTGGCAGTGATGTCCTGGATAATGTAGCATATGCTCGAGCGTTCAACACAGACCACCAGACCCAGCTCCTTTATC

AAGCATCAGCCATGATGGTAGAATCTAGGTATGCACTGCTTATTGTAGACAGTGCCACCGCCCTTTACAGAACAGAC

TACTCGGGTCGAGGTGAGCTTTCAGCCAGGCAGATGCACTTGGCCAGGTTTCTGCGGATGCTTCTGCGACTCGCTGA

TGAGTTTGGTGTAGCAGTGGTAATCACTAATCAGGTGGTAGCTCAAGTGGATGGAGCAGCGATGTTTGCTGCTGATC

CCAAAAAACCTATTGGAGGAAATATCATCGCCCATGCATCAACAACCAGATTGTATCTGAGGAAAGGAAGAGGGGAA

ACCAGAATCTGCAAAATCTACGACTCTCCCTGTCTTCCTGAAGCTGAAGCTATGTTCGCCATTAATGCAGATGGAGT

GGGAGATGCCAAAGACTGA 

 

>gi|49168602|emb|CAG38796.1| RAD51 [Homo sapiens] 

MAMQMQLEANADTSVEEESFGPQPISRLEQCGINANDVKKLEEAGFHTVEAVAYAPKKELINIKGISEAKADKILAE

AAKLVPMGFTTATEFHQRRSEIIQITTGSKELDKLLQGGIETGSITEMFGEFRTGKTQICHTLAVTCQLPIDRGGGE

GKAMYIDTEGTFRPERLLAVAERYGLSGSDVLDNVAYARAFNTDHQTQLLYQASAMMVESRYALLIVDSATALYRTD

YSGRGELSARQMHLARFLRMLLRLADEFGVAVVITNQVVAQVDGAAMFAADPKKPIGGNIIAHASTTRLYLRKGRGE

TRICKIYDSPCLPEAEAMFAINADGVGDAKD* 

 

 

 

GEFRTGK – Walker A Domain 

RYALLIVDSATALYR – Walker B Domain 

TDYSGRG – DNA Binding Loop 1 

VDGAAMFAADPK – DNA Binding Loop 2 

PKKP – PXXP Consensus Sequence for c-Abl SH3 Binding 

YDSP – (p)YXXP Consensus Sequence for c-Abl SH2 Binding 

PCLP – PXXP Consensus Sequence for c-Abl SH3 Binding 
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>RAD51 (OPT) Sequence Codon Optimzed for E. coli expression  

ATGGCAATGCAGATGCAGCTGGAAGCGAACGCAGATACCTCAGTGGAAGAAGAAAGTTTTGGTCCGCAACCGATTAG

CCGCCTGGAACAGTGCGGTATCAACGCAAATGATGTGAAAAAGCTGGAAGAAGCTGGCTTTCATACCGTTGAAGCAG

TCGCTTATGCGCCGAAAAAGGAACTGATCAACATCAAGGGTATCAGCGAAGCCAAAGCAGACAAGATCCTGGCCGAA

GCGGCCAAACTGGTTCCGATGGGCTTTACCACGGCAACCGAATTTCATCAGCGTCGCAGCGAAATTATCCAAATTAC

CACGGGTTCTAAAGAACTGGATAAGCTGCTGCAGGGCGGTATTGAAACCGGCTCTATCACGGAAATGTTTGGTGAAT

TTCGCACCGGCAAAACGCAGATTTGCCACACCCTGGCGGTGACGTGTCAACTGCCGATCGATCGTGGCGGTGGCGAG

GGTAAAGCCATGTACATTGACACCGAAGGCACGTTTCGTCCGGAACGCCTGCTGGCTGTTGCGGAACGCTATGGTCT

GAGCGGCTCTGATGTGCTGGACAACGTTGCCTACGCACGTGCTTTCAATACCGATCATCAGACGCAACTGCTGTATC

AGGCGAGTGCCATGATGGTCGAATCCCGCTACGCGCTGCTGATTGTGGATAGCGCAACCGCTCTGTATCGTACGGAC

TACTCAGGTCGCGGCGAACTGTCGGCACGTCAAATGCACCTGGCTCGTTTTCTGCGCATGCTGCTGCGTCTGGCGGA

CGAATTTGGTGTTGCCGTGGTTATCACCAACCAGGTCGTGGCGCAAGTCGATGGCGCAGCTATGTTCGCGGCCGACC

CGAAAAAGCCGATTGGTGGCAATATTATCGCGCACGCCAGTACCACGCGCCTGTATCTGCGTAAAGGTCGCGGCGAA

ACCCGTATTTGCAAAATCTATGATTCCCCGTGTCTGCCGGAAGCCGAAGCCATGTTTGCCATCAATGCCGACGGTGT

TGGTGACGCTAAGGATTAA 

 

 

NcoI-RAD51o FP – AATAGCCCATGGCAATGCAGATGCAGCTGG 

NotI-RAD51o RP – GCTATTGCGGCCGCTTAATCCTTAGCGTCACCAACACCGTC 

NcoI-RAD51o FPN - TAAATAGCCCATGGCAATGCAGATGCAGCTGG 

NotI-RAD51o RPN – ATGCTATTGCGGCCGCTTAATCCTTAGCGTCACCAACACCGTC 

RAD51o F1 - TCGCACCGGCAAAACGCAG 

RAD51o R1 – TCAGAGCCGCTCAGACCATAGC 
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>pCOLADuet-1/GroE/RAD51_OPT (pCH1-RAD51Opt) 

ggggaattgtgagcggataacaattcccctgtagaaataattttgtttaactttaataaggagatataCCATGGCAA

TGCAGATGCAGCTGGAAGCGAACGCAGATACCTCAGTGGAAGAAGAAAGTTTTGGTCCGCAACCGATTAGCCGCCTG

GAACAGTGCGGTATCAACGCAAATGATGTGAAAAAGCTGGAAGAAGCTGGCTTTCATACCGTTGAAGCAGTCGCTTA

TGCGCCGAAAAAGGAACTGATCAACATCAAGGGTATCAGCGAAGCCAAAGCAGACAAGATCCTGGCCGAAGCGGCCA

AACTGGTTCCGATGGGCTTTACCACGGCAACCGAATTTCATCAGCGTCGCAGCGAAATTATCCAAATTACCACGGGT

TCTAAAGAACTGGATAAGCTGCTGCAGGGCGGTATTGAAACCGGCTCTATCACGGAAATGTTTGGTGAATTTCGCAC

CGGCAAAACGCAGATTTGCCACACCCTGGCGGTGACGTGTCAACTGCCGATCGATCGTGGCGGTGGCGAGGGTAAAG

CCATGTACATTGACACCGAAGGCACGTTTCGTCCGGAACGCCTGCTGGCTGTTGCGGAACGCTATGGTCTGAGCGGC

TCTGATGTGCTGGACAACGTTGCCTACGCACGTGCTTTCAATACCGATCATCAGACGCAACTGCTGTATCAGGCGAG

TGCCATGATGGTCGAATCCCGCTACGCGCTGCTGATTGTGGATAGCGCAACCGCTCTGTATCGTACGGACTACTCAG

GTCGCGGCGAACTGTCGGCACGTCAAATGCACCTGGCTCGTTTTCTGCGCATGCTGCTGCGTCTGGCGGACGAATTT

GGTGTTGCCGTGGTTATCACCAACCAGGTCGTGGCGCAAGTCGATGGCGCAGCTATGTTCGCGGCCGACCCGAAAAA

GCCGATTGGTGGCAATATTATCGCGCACGCCAGTACCACGCGCCTGTATCTGCGTAAAGGTCGCGGCGAAACCCGTA

TTTGCAAAATCTATGATTCCCCGTGTCTGCCGGAAGCCGAAGCCATGTTTGCCATCAATGCCGACGGTGTTGGTGAC

GCTAAGGATTAAGCGGCCGCataatgcttaagtcgaacagaaagtaatcgtattgtacacggccgcataatcgaaat

taatacgactcactataggggaattgtgagcggataacaattccccatcttagtatattagttaagtataagaagga

gatataCATATGAATATTCGTCCATTGCATGATCGCGTGATCGTCAAGCGTAAAGAAGTTGAAACTAAATCTGCTGG

CGGCATCGTTCTGACCGGCTCTGCAGCGGCTAAATCCACCCGCGGCGAAGTGCTGGCTGTCGGCAATGGCCGTATCC

TTGAAAATGGCGAAGTGAAGCCGCTGGATGTGAAAGTTGGCGACATCGTTATTTTCAACGATGGCTACGGTGTGAAA

TCTGAGAAGATCGACAATGAAGAAGTGTTGATCATGTCCGAAAGCGACATTCTGGCAATTGTTGAAGCGTAATCCGC

GCACGACACTGAACATACGAATTTAAGGAATAAAGATAATGGCAGCTAAAGACGTAAAATTCGGTAACGACGCTCGT

GTGAAAATGCTGCGCGGCGTAAACGTACTGGCAGATGCAGTGAAAGTTACCCTCGGTCCAAAAGGCCGTAACGTAGT

TCTGGATAAATCTTTCGGTGCACCGACCATCACCAAAGATGGTGTTTCCGTTGCTCGTGAAATCGAACTGGAAGACA

AGTTCGAAAATATGGGTGCGCAGATGGTGAAAGAAGTTGCCTCTAAAGCAAACGACGCTGCAGGCGACGGTACCACC

ACTGCAACCGTACTGGCTCAGGCTATCATCACTGAAGGTCTGAAAGCTGTTGCTGCGGGCATGAACCCGATGGACCT

GAAACGTGGTATCGACAAAGCGGTTACCGTTGCAGTTGAAGAACTGAAAGCGCTGTCCGTACCATGCTCTGACTCTA

AAGCGATTGCTCAGGTTGGTACCATCTCCGCTAACTCCGACGAAACCGTAGGTAAACTGATCGCTGAAGCGATGGAC

AAAGTCGGTAAAGAAGGCGTTATCACCGTTGAAGACGGTACCGGTCTGCAGGACGAACTGGACGTGGTTGAAGGTAT

GCAGTTCGACCGTGGCTACCTGTCTCCTTACTTCATCAACAAGCCGGAAACTGGCGCAGTAGAACTGGAAAGCCCGT

TCATCCTGCTGGCTGACAAGAAAATCTCCAACATCCGCGAAATGCTGCCGGTTCTGGAAGCTGTTGCCAAAGCAGGC

AAACCGCTGCTGATCATCGCTGAAGATGTAGAAGGCGAAGCGCTGGCAACTCTGGTTGTTAACACCATGCGTGGCAT

CGTGAAAGTCGCTGCGGTTAAAGCACCGGGCTTCGGCGATCGTCGTAAAGCTATGCTGCAGGATATCGCAACCCTGA

CTGGCGGTACCGTGATCTCTGAAGAGATCGGTATGGAGCTGGAAAAAGCAACCCTGGAAGACCTGGGTCAGGCTAAA

CGTGTTGTGATCAACAAAGACACCACCACTATCATCGATGGCGTGGGTGAAGAAGCTGCAATCCAGGGCCGTGTTGC

TCAGATCCGTCAGCAGATTGAAGAAGCAACTTCTGACTACGACCGTGAAAAACTGCAGGAACGCGTAGCGAAACTGG

CAGGCGGCGTTGCAGTTATCAAAGTGGGTGCTGCTACCGAAGTTGAAATGAAAGAGAAAAAAGCACGCGTTGAAGAT

GCCCTGCACGCGACCCGTGCTGCGGTAGAAGAAGGCGTGGTTGCTGGTGGTGGTGTTGCGCTGATCCGCGTAGCGTC
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TAAACTGGCTGACCTGCGTGGTCAGAACGAAGACCAGAACGTGGGTATCAAAGTTGCACTGCGTGCAATGGAAGCTC

CGCTGCGTCAGATCGTATTGAACTGCGGCGAAGAACCGTCTGTTGTTGCTAACACCGTTAAAGGCGGCGACGGCAAC

TACGGTTACAACGCAGCAACCGAAGAATACGGCAACATGATCGACATGGGTATCCTGGATCCAACCAAAGTAACTCG

TTCTGCTCTGCAGTACGCAGCTTCTGTGGCTGGCCTGATGATCACCACCGAATGCATGGTTACCGACCTGCCGAAAA

ACGATGCAGCTGACTTAGGCGCTGCTGGCGGTATGGGCGGCATGGGTGGCATGGGCGGCATGATGTAAAGATCTcaa

ttggatatcggccggccacgcgatcgctgacgtcggtaccctcgagtctggtaaagaaaccgctgctgcgaaatttg

aacgccagcacatggactcgtctactagcgcagcttaattaacctaggctgctgccaccgctgagcaataactagca

taaccccttggggcctctaaacgggtcttgaggggttttttgctgaaacctcaggcatttgagaagcacacggtcac

actgcttccggtagtcaataaaccggtaaaccagcaatagacataagcggctatttaacgaccctgccctgaaccga

cgacaagctgacgaccgggtctccgcaagtggcacttttcggggaaatgtgcgcggaacccctatttgtttattttt

ctaaatacattcaaatatgtatccgctcatgaattaattcttagaaaaactcatcgagcatcaaatgaaactgcaat

ttattcatatcaggattatcaataccatatttttgaaaaagccgtttctgtaatgaaggagaaaactcaccgaggca

gttccataggatggcaagatcctggtatcggtctgcgattccgactcgtccaacatcaatacaacctattaaGCCGC

tttcccctcgtcaaaaataaggttatcaagtgagaaatcaccatgagtgacgactgaatccggtgagaatggcaaaa

gtttatgcatttctttccagacttgttcaacaggccagccattacgctcgtcatcaaaatcactcgcatcaaccaaa

ccgttattcattcgtgattgcgcctgagcgagacgaaatacgcggtcgctgttaaaaggacaattacaaacaggaat

cgaatgcaaccggcgcaggaacactgccagcgcatcaacaatattttcacctgaatcaggatattcttctaatacct

ggaatgctgttttcccggggatcgcagtggtgagtaaccatgcatcatcaggagtacggataaaatgcttgatggtc

ggaagaggcataaattccgtcagccagtttagtctgaccatctcatctgtaacatcattggcaacgctacctttgcc

atgtttcagaaacaactctggcgcatcgggcttcccatacaatcgatagattgtcgcacctgattgcccgacattat

cgcgagcccatttatacccatataaatcagcatccatgttggaatttaatcgcggcctagagcaagacgtttcccgt

tgaatatggctcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacat

atttgaatgtatttagaaaaataaacaaataggcatgctagcgcagaaacgtcctagaagatgccaggaggatactt

agcagagagacaataaggccggagcgaagccgtttttccataggctccgcccccctgacgaacatcacgaaatctga

cgctcaaatcagtggtggcgaaacccgacaggactataaagataccaggcgtttccccctgatggctccctcttgcg

ctctcctgttcccgtcctgcggcgtccgtgttgtggtggaggctttacccaaatcaccacgtcccgttccgtgtaga

cagttcgctccaagctgggctgtgtgcaagaaccccccgttcagcccgactgctgcgccttatccggtaactatcat

cttgagtccaacccggaaagacacgacaaaacgccactggcagcagccattggtaactgagaattagtggatttaga

tatcgagagtcttgaagtggtggcctaacagaggctacactgaaaggacagtatttggtatctgcgctccactaaag

ccagttaccaggttaagcagttccccaactgacttaaccttcgatcaaaccgcctccccaggcggttttttcgttta

cagagcaggagattacgacgatcgtaaaaggatctcaagaagatcctttacggattcccgacaccatcactctagat

ttcagtgcaatttatctcttcaaatgtagcacctgaagtcagccccatacgatataagttgtaattctcatgttagt

catgccccgcgcccaccggaaggagctgactgggttgaaggctctcaagggcatcggtcgagatcccggtgcctaat

gagtgagctaacttacattaattgcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcat

taatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgccagggtggtttttcttttcaccagtgaga

cgggcaacagctgattgcccttcaccgcctggccctgagagagttgcagcaagcggtccacgctggtttgccccagc

aggcgaaaatcctgtttgatggtggttaacggcgggatataacatgagctgtcttcggtatcgtcgtatcccactac

cgagatgtccgcaccaacgcgcagcccggactcggtaatggcgcgcattgcgcccagcgccatctgatcgttggcaa



117 
 

ccagcatcgcagtgggaacgatgccctcattcagcatttgcatggtttgttgaaaaccggacatggcactccagtcg

ccttcccgttccgctatcggctgaatttgattgcgagtgagatatttatgccagccagccagacgcagacgcgccga

gacagaacttaatgggcccgctaacagcgcgatttgctggtgacccaatgcgaccagatgctccacgcccagtcgcg

taccgtcttcatgggagaaaataatactgttgatgggtgtctggtcagagacatcaagaaataacgccggaacatta

gtgcaggcagcttccacagcaatggcatcctggtcatccagcggatagttaatgatcagcccactgacgcgttgcgc

gagaagattgtgcaccgccgctttacaggcttcgacgccgcttcgttctaccatcgacaccaccacgctggcaccca

gttgatcggcgcgagatttaatcgccgcgacaatttgcgacggcgcgtgcagggccagactggaggtggcaacgcca

atcagcaacgactgtttgcccgccagttgttgtgccacgcggttgggaatgtaattcagctccgccatcgccgcttc

cactttttcccgcgttttcgcagaaacgtggctggcctggttcaccacgcgggaaacggtctgataagagacaccgg

catactctgcgacatcgtataacgttactggtttcacattcaccaccctgaattgactctcttccgggcgctatcat

gccataccgcgaaaggttttgcgccattcgatggtgtccgggatctcgacgctctcccttatgcgactcctgcatta

ggaaattaatacgactcactata 

 

 

>MCS1-RAD51 OPT 

aatagcCCATGGCAATGCAGATGCAGCTGGAAGCGAACGCAGATACCTCAGTGGAAGAAGAAAGTTTTGGTCCGCAA

CCGATTAGCCGCCTGGAACAGTGCGGTATCAACGCAAATGATGTGAAAAAGCTGGAAGAAGCTGGCTTTCATACCGT

TGAAGCAGTCGCTTATGCGCCGAAAAAGGAACTGATCAACATCAAGGGTATCAGCGAAGCCAAAGCAGACAAGATCC

TGGCCGAAGCGGCCAAACTGGTTCCGATGGGCTTTACCACGGCAACCGAATTTCATCAGCGTCGCAGCGAAATTATC

CAAATTACCACGGGTTCTAAAGAACTGGATAAGCTGCTGCAGGGCGGTATTGAAACCGGCTCTATCACGGAAATGTT

TGGTGAATTTCGCACCGGCAAAACGCAGATTTGCCACACCCTGGCGGTGACGTGTCAACTGCCGATCGATCGTGGCG

GTGGCGAGGGTAAAGCCATGTACATTGACACCGAAGGCACGTTTCGTCCGGAACGCCTGCTGGCTGTTGCGGAACGC

TATGGTCTGAGCGGCTCTGATGTGCTGGACAACGTTGCCTACGCACGTGCTTTCAATACCGATCATCAGACGCAACT

GCTGTATCAGGCGAGTGCCATGATGGTCGAATCCCGCTACGCGCTGCTGATTGTGGATAGCGCAACCGCTCTGTATC

GTACGGACTACTCAGGTCGCGGCGAACTGTCGGCACGTCAAATGCACCTGGCTCGTTTTCTGCGCATGCTGCTGCGT

CTGGCGGACGAATTTGGTGTTGCCGTGGTTATCACCAACCAGGTCGTGGCGCAAGTCGATGGCGCAGCTATGTTCGC

GGCCGACCCGAAAAAGCCGATTGGTGGCAATATTATCGCGCACGCCAGTACCACGCGCCTGTATCTGCGTAAAGGTC

GCGGCGAAACCCGTATTTGCAAAATCTATGATTCCCCGTGTCTGCCGGAAGCCGAAGCCATGTTTGCCATCAATGCC

GACGGTGTTGGTGACGCTAAGGATTAAGCGGCCGCaatagcat 

 

Cloning and sequencing primers 

NcoI-RAD51o FP – AATAGCCCATGGCAATGCAGATGCAGCTGG 

NotI-RAD51o RP – GCTATTGCGGCCGCTTAATCCTTAGCGTCACCAACACCGTC 

NcoI-RAD51o FPN - TAAATAGCCCATGGCAATGCAGATGCAGCTGG 

NotI-RAD51o RPN – ATGCTATTGCGGCCGCTTAATCCTTAGCGTCACCAACACCGTC 

RAD51o F1 - TCGCACCGGCAAAACGCAG 

RAD51o R1 – TCAGAGCCGCTCAGACCATAGC 
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>MCS2-GroE Operon 

aatagcCATATGAATATTCGTCCATTGCATGATCGCGTGATCGTCAAGCGTAAAGAAGTTGAAACTAAATCTGCTGG

CGGCATCGTTCTGACCGGCTCTGCAGCGGCTAAATCCACCCGCGGCGAAGTGCTGGCTGTCGGCAATGGCCGTATCC

TTGAAAATGGCGAAGTGAAGCCGCTGGATGTGAAAGTTGGCGACATCGTTATTTTCAACGATGGCTACGGTGTGAAA

TCTGAGAAGATCGACAATGAAGAAGTGTTGATCATGTCCGAAAGCGACATTCTGGCAATTGTTGAAGCGTAATCCGC

GCACGACACTGAACATACGAATTTAAGGAATAAAGATAATGGCAGCTAAAGACGTAAAATTCGGTAACGACGCTCGT

GTGAAAATGCTGCGCGGCGTAAACGTACTGGCAGATGCAGTGAAAGTTACCCTCGGTCCAAAAGGCCGTAACGTAGT

TCTGGATAAATCTTTCGGTGCACCGACCATCACCAAAGATGGTGTTTCCGTTGCTCGTGAAATCGAACTGGAAGACA

AGTTCGAAAATATGGGTGCGCAGATGGTGAAAGAAGTTGCCTCTAAAGCAAACGACGCTGCAGGCGACGGTACCACC

ACTGCAACCGTACTGGCTCAGGCTATCATCACTGAAGGTCTGAAAGCTGTTGCTGCGGGCATGAACCCGATGGACCT

GAAACGTGGTATCGACAAAGCGGTTACCGTTGCAGTTGAAGAACTGAAAGCGCTGTCCGTACCATGCTCTGACTCTA

AAGCGATTGCTCAGGTTGGTACCATCTCCGCTAACTCCGACGAAACCGTAGGTAAACTGATCGCTGAAGCGATGGAC

AAAGTCGGTAAAGAAGGCGTTATCACCGTTGAAGACGGTACCGGTCTGCAGGACGAACTGGACGTGGTTGAAGGTAT

GCAGTTCGACCGTGGCTACCTGTCTCCTTACTTCATCAACAAGCCGGAAACTGGCGCAGTAGAACTGGAAAGCCCGT

TCATCCTGCTGGCTGACAAGAAAATCTCCAACATCCGCGAAATGCTGCCGGTTCTGGAAGCTGTTGCCAAAGCAGGC

AAACCGCTGCTGATCATCGCTGAAGATGTAGAAGGCGAAGCGCTGGCAACTCTGGTTGTTAACACCATGCGTGGCAT

CGTGAAAGTCGCTGCGGTTAAAGCACCGGGCTTCGGCGATCGTCGTAAAGCTATGCTGCAGGATATCGCAACCCTGA

CTGGCGGTACCGTGATCTCTGAAGAGATCGGTATGGAGCTGGAAAAAGCAACCCTGGAAGACCTGGGTCAGGCTAAA

CGTGTTGTGATCAACAAAGACACCACCACTATCATCGATGGCGTGGGTGAAGAAGCTGCAATCCAGGGCCGTGTTGC

TCAGATCCGTCAGCAGATTGAAGAAGCAACTTCTGACTACGACCGTGAAAAACTGCAGGAACGCGTAGCGAAACTGG

CAGGCGGCGTTGCAGTTATCAAAGTGGGTGCTGCTACCGAAGTTGAAATGAAAGAGAAAAAAGCACGCGTTGAAGAT

GCCCTGCACGCGACCCGTGCTGCGGTAGAAGAAGGCGTGGTTGCTGGTGGTGGTGTTGCGCTGATCCGCGTAGCGTC

TAAACTGGCTGACCTGCGTGGTCAGAACGAAGACCAGAACGTGGGTATCAAAGTTGCACTGCGTGCAATGGAAGCTC

CGCTGCGTCAGATCGTATTGAACTGCGGCGAAGAACCGTCTGTTGTTGCTAACACCGTTAAAGGCGGCGACGGCAAC

TACGGTTACAACGCAGCAACCGAAGAATACGGCAACATGATCGACATGGGTATCCTGGATCCAACCAAAGTAACTCG

TTCTGCTCTGCAGTACGCAGCTTCTGTGGCTGGCCTGATGATCACCACCGAATGCATGGTTACCGACCTGCCGAAAA

ACGATGCAGCTGACTTAGGCGCTGCTGGCGGTATGGGCGGCATGGGTGGCATGGGCGGCATGATGTAAAGATCTaat

agc 

 

Cloning and Sequencing Primers 

NdeI-GroE FP – AATAGCCATATGAATATTCGTCCATTGCATGATCG 

BglII-GroE RP – GCTATTAGATCTTTACATCATGCCGCCCATGCCAC 

GROE RP1 - ACGCGGATCAGCGCAACACCAC 

GROE RP2 – TCCGGCTTGTTGATGAAGTAAGGAG 

GROE RP3 – ACTGCATCTGCCAGTACGTTTACG 

COLAORF2 FP – CGTATTGTACACGGCCGCATAATCG 

COLAORF2 RP - CGATTATGCGGCCGTGTACAATACG 
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Vector Map of the pCH1-RAD51Opt Plasmid 
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Vector Map of the pSUPT-uaaRS Plasmid 

 

  


