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Abstract

The focus of this thesis is on solving a sequence of optimization problems that
change over time in a structured manner. This type of problem naturally arises
in contexts as diverse as channel estimation, target tracking, sequential machine
learning, and repeated games. Due to the time-varying nature of these problems,
it is necessary to determine new solutions as the problems change in order to
ensure good solution quality. However, since the problems change over time in a
structured manner, it is beneficial to exploit solutions to the previous optimization
problems in order to efficiently solve the current optimization problem.

The first problem considered is sequentially solving minimization problems
that change slowly, in the sense that the gap between successive minimizers is
bounded in norm. The minimization problems are solved by sequentially apply-
ing a selected optimization algorithm, such as stochastic gradient descent (SGD),
based on drawing a number of samples in order to carry out a desired number of
iterations. Two tracking criteria are introduced to evaluate approximate minimizer
quality: one based on being accurate with respect to the mean trajectory, and the
other based on being accurate in high probability (IHP). Knowledge of the bound
on how the minimizers change, combined with properties of the chosen optimiza-
tion algorithm, is used to select the number of samples needed to meet the desired
tracking criterion.

Next, it is not assumed that the bound on how the minimizers change is known.
A technique to estimate the change in minimizers is provided along with analysis
to show that eventually the estimate upper bounds the change in minimizers. This
estimate of the change in minimizers is combined with the previous analysis to
provide sample size selection rules to ensure that the mean or IHP tracking crite-
rion is met. Simulations are used to confirm that the estimation approach provides
the desired tracking accuracy in practice.

An application of this framework to machine learning problems is considered
next. A cost-based approach is introduced to select the number of samples with
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a cost function for taking a number of samples and a cost budget over a fixed
horizon. An extension of this framework is developed to apply cross validation
for model selection. Finally, experiments with synthetic and real data are used to
confirm that this approach performs well for machine learning problems.

The next model considered is solving a sequence of minimization problems
with the possibility that there can be abrupt jumps in the minimizers mixed in
with the normal slow changes. Alternative approaches are introduced to estimate
the changes in the minimizers and select the number of samples. A simulation
experiment demonstrates the effectiveness of this approach.

Finally, a variant of this framework is applied to learning in games. A sequence
of repeated games is considered in which the underlying stage games themselves
vary slowly over time in the sense that the pure strategy Nash equilibria change
slowly. Approximate pure-strategy Nash equilibria are learned for this sequence
of zero sum games. A technique is introduced to estimate the change in the Nash
equilibiria as for the sequence of minimization problems. Applications to a syn-
thetic game and a game based on a surveillance network problem are introduced
to demonstrate the game framework.
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Chapter 1

Introduction

1.1 A Motivating Example

Consider a sequence of classification problems that change slowly over time as in
Figure 1.1. Given the location of a point, we want to decide whether the point in

(a) p1 (b) p2 (c) p3

Figure 1.1: Slowly changing classification problems

question is orange or blue. In this simple example, we assume that the points are
linearly separable, i.e., it is possible to draw a line such that the orange points fall
on one side and the blue points fall on the other side. Thus, our goal is to find a
line that can separate the orange and blue points. The problem of finding a linear
classifier can be reduced to solving an optimization problem.

The key feature of this problem is that over time the relationship between
whether a point is orange or blue changes as in Figure 1.1. Therefore, the clas-
sifier developed for the first time instant will perform poorly as the underlying
distribution changes. To maintain good classification performance, it is essential
that we update our classifier as the underlying problem changes. However, since
the problem has only changed slightly over time, we want to take advantage of
the previously developed high-performance classifier. Since, as mentioned above,
finding a classifier can be carried out by solving an optimization problem, we want
to solve a sequence of optimization problems that change in a structured manner.
More precisely, the optimization problems change slowly in the sense that the
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linear boundary that separates the two classes changes slowly.
The problems we consider in this thesis all share the same features of this prob-

lem. We want to solve a sequence of optimization problems, to find a classifier in
the above example, that change over time in a structured manner. By exploiting
the structure of the change in the optimization problems, the previous solution,
and properties of the method used to solve the optimization problems, we produce
a good approximate solution to each problem.

1.2 Thesis Outline

The work in this thesis can be divided into two different areas. First, we con-
sider solving stochastic optimization problems that change over time. Second, we
consider solving a repeated zero sum game in which the stage games themselves
change slowly.

1.2.1 Adaptive Sequential Optimization

Problems involving optimizing a sequence of functions that slowly vary over time
naturally arise in many different contexts including channel estimation, parameter
tracking, and sequential learning. To describe and analyze such problems, we
consider solving a sequence of optimization problems

min
x∈X

fn(x) (1.1)

with x ∈ X ⊂ Rd . We call our process for efficiently solving a sequence of
optimization problems adaptive sequential optimization.

In this thesis, we consider several different models for the change in the min-
imizers. Section 2.2.3 contains a discussion of why we pose the idea of slow
changes in terms of the minimizers. It turns out that several different reasonable
models for changes in fn can be reduced to a bound on the change in the minimiz-
ers. First, to capture the idea that the sequence of functions in (1.1) is changing
slowly we assume a bound on the minimizers of the form

‖x∗n+1−x∗n‖L2 ≤ ρ (1.2)
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or
‖x∗n+1−x∗n‖2 ≤ ρ (1.3)

where
x∗n = arg min

x∈X
fn(x)

and ‖X‖Lq = (E[Xq])1/q. We assume that x∗n is unique for each n. Rather than
using a Markov chain model or other Bayesian model for the changes in {x∗n}∞

n=1,
we only use the bound (1.2) in our analysis. The formulation in (1.2) involves
an expectation to allow for the possibility that the functions { fn(x)} themselves
evolve stochastically. If the functions { fn(x)} evolve stochastically, then the min-
imizers x∗n are random variables. We will consider the case when ρ is known or
unknown separately. When ρ is unknown to us, we will develop an estimate of ρ .

Next, we consider abrupt changes in the sense that

ρn , ‖x∗n−x∗n−1‖2 ∈ {ρ(1),ρ(2)} ∀n≥ 2 (1.4)

where ρ(2)� ρ(1). The change ρ(1) corresponds to small, slow changes and the
change ρ(2) corresponds to large, abrupt change.

Given a sequence of functions { fn(x)}∞
n=1, we want to efficiently, sequentially

minimize each of the functions to within a desired accuracy. We look at solving
this problem by applying an optimization algorithm such as SGD that uses Kn

stochastic gradient steps. To be precise, suppose that we have a function gn (x,z)

such that, given zn ∼ pn from an auxiliary distribution pn, it holds that

Ezn∼pn[gn (x,zn) | x] = ∇ fn(x) (1.5)

For example, if the functions { fn(x)}∞
n=1 are of the form

fn(x) = Ezn∼pn[`(x,zn)] (1.6)

where `(x,z) can correspond to a loss in machine learning, then we can set

gn (x,zn) = ∇x`(x,zn)

under suitable technical conditions. We want to understand the trade-off between
the solution accuracy and the complexity, represented by the number of stochastic
gradients Kn. In effect, we want to understand how many samples {zn(k)}Kn

k=1 are
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necessary to achieve a desired level of accuracy.
We introduce two different types of criteria to characterize approximate mini-

mizers of (1.1), denoted xn for each n. First, we define a mean criterion

E [ fn(xn)]− fn(x
∗
n)≤ ε (1.7)

and second, we define an in high probability (IHP) criterion

P{ fn(xn)− fn(x
∗
n)> t} ≤ r (1.8)

with the expectation and probability taken over the samples {zn(k)}Kn
k=1. In the

context of machine learning, the mean criterion is referred to as an excess risk

criterion.
The goal of the analysis for adaptive sequential optimization is to connect the

number of samples Kn to either the mean criterion in (1.7) or the IHP criterion
in (1.8) being met. This connection makes it possible to select the number of
samples to achieve a desired mean criterion or IHP criterion.

1.2.2 Time-Varying Stage Game in a Repeated Game

Given a particular solution concept for a game, such as a Nash equilibrium, a
natural issue that arises is how the players learn the solution of a game. This prob-
lem is of particular consequence when the players have incomplete knowledge of
the game and can only learn through repeatedly playing the game. In a repeated
game, the players repeatedly play a fixed stage game observing outcomes such
as the utility achieved by the player and the strategies of the other players. For
repeated games, there are a variety of techniques that can discover solutions or
approximate solutions generally for games with finite strategy spaces [1].

We consider playing a sequence of finite horizon repeated games with a slowly
changing stage game Gn. The sequence of games played is as follows:

G1, . . . ,G1, . . . ,Gn, . . . ,Gn, . . .

Note that each group of games with the same stage game, i.e., Gn, . . . ,Gn, is itself
a finite horizon repeated game. The slowly changing nature is captured by the
idea that stage game Gn is played a number of times before changing where the
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solutions of the stage games change slowly. The notion of slow change will be
made more precise later. To learn the solution to each stage game, we exploit the
solution to the previous stage game. Using knowledge of the previous stage games
is crucial, since collecting the feedback needed to carry out the learning dynamics
for each stage game on its own may be expensive. When the players play the nth

stage game Kn times to determine a solution, the sequence of games is as follows:

G1, . . . ,G1︸ ︷︷ ︸
learning phase

K1 times

, G1, . . . ,G1︸ ︷︷ ︸
additional plays

, . . . ,Gn, . . . ,Gn︸ ︷︷ ︸
learning phase

Kn times

, Gn, . . . ,Gn︸ ︷︷ ︸
additional plays

, . . .

There is a learning phase consisting of Kn plays of Gn in which the players find
a solution to the current stage game and an exploitation phase in which the play-
ers use their knowledge until the stage game changes. Since the players only play
each game a finite number of times, they can generally only find approximate solu-
tions. Therefore, we seek a connection between the number of times Kn the stage
game must be played to learn an approximate solution and the desired quality of
the approximate solution.

1.3 Organization of Thesis

This thesis is organized as follows. Chapters 2, 3, 4, and 5 consider solving a se-
quence of minimization problems with various models on how the minimizers of
each problem change. Chapter 2 considers the problems of solving this sequence
of minimization problems when the change in the minimizers is known. Chap-
ter 3 considers the same problem except without knowledge of the change in the
minimizers and instead introduces an approach to estimate this quantity. Chap-
ter 4 applies the techniques in Chapters 2 and 3 to machine learning problems. In
addition, a cost based approach to selecting the number of samples is introduced.
Chapter 5 considers the case where the change in the minimizers need not be small
but can have abrupt jumps mixed in. New methods to estimate the change in the
minimizer and select the number of samples are developed based on the methods
of Chapter 3. In Chapter 6, we consider playing a sequence of repeated games
in which the stage games vary slowly. We introduce a technique for each player
to learn the Nash equilibrium of each stage game while exploiting knowledge of
the previous stage games. Finally, in Chapter 7, we consider some broad future
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research directions.
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Chapter 2

Change in Minimizers Known

We consider solving the sequence of optimization problems described in Sec-
tion 1.2.1. In this chapter, we work under the assumption that

‖x∗n+1−x∗n‖L2 ≤ ρ

and the change in the minimizers, ρ , is known to us. We develop rules to select the
number of stochastic gradients Kn to achieve a desired mean criterion or IHP crite-
rion in (1.7) and (1.8). In Chapter 3, we will drop the assumption that ρ is known
and extend the results in this chapter. The content of this chapter corresponds to
the work in [2] and [3].

2.1 Related Work

There has been some work on similar problems, but general optimization theory
tools to deal with time-varying optimization problems under (1.2) have yet to be
developed. One relevant approach is online optimization in which a sequence of
functions arrive. In the online optimization approach, generally no knowledge
is available about the incoming functions other than that all the functions come
from a specified class of functions, i.e., linear or convex functions with uniformly
bounded gradients. Online optimization models do not include the notion of a
desired tracking accuracy at each time instant such as (1.7) and (1.8). Instead,
only bounds on the worst case performance of the best estimators are investigated
through regret formulations [4–13].

For the problem of online optimization, the idea of controlling the variation of
the sequence of functions has been studied in [14] and [15]. In [15], regret is
minimized subject to a bound, say Gb, on the total variation of the gradients over
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a time interval T of interest, i.e.,

T

∑
n=2

max
x∈X

‖∇ fn(x)−∇ fn−1(x)‖2
2 ≤ Gb (2.1)

If all the functions { fn(x)} are strongly convex with the same parameter m, then
by the optimality conditions (see Theorem 2F.10 in [16]) relation (2.1) implies
that

T

∑
n=2
‖x∗n−x∗n−1‖2

2 ≤ G̃b

with G̃b a function of Gb. Therefore, the work in [15] can be seen as studying
the regret while controlling the total variation in the optimal solutions over T time
instants. In contrast, we control the variation of the optimal solutions at each time
instant with (1.2) and then seek to maintain a tracking criterion such as (1.7) and
(1.8) at each time instant.

Additionally, there is other work that has some of the ingredients of our pro-
posed problem formulation. In [17], a sequence of quadratic functions is con-
sidered and treated within the domain of estimation theory; however, the authors
only examine the least mean squares (LMS) algorithm (corresponding to Kn = 1
for all n). The work in [18, 19] considers a sequence { fn} of convex objective
functions converging to some limit function f , where all the functions fn have
the same set of minima. However, aside from considering time-varying objec-
tive functions, these works have nothing else in common with the work described
here. There has also been work in [20] considering the limit as the rate of change
of the functions goes to zero and for the defined just above LMS algorithm in [21].
The results in [20] and [21] both require a Bayesian model for the changes in the
function sequence, which we do not require.

If we have a quadratic loss centered at x∗n and a linear state space evolution
for the optimal solution x∗n, then we could apply the Kalman filter [22]. If the
function we seek to optimize is non-linear, another approach we can consider
under a Bayesian framework is particle filtering [23]. For particle filtering, it is
harder to provide exact guarantees on performance similar to those given in (1.7)
and (1.8).

To conclude, there are no existing approaches within optimization theory or
estimation theory that allow us to solve a sequence of time-varying problems,
subject to adhering to a pre-specified tracking error criterion such as (1.7) or (1.8)
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under only assumption (1.2). In this work, we fill in this gap and provide methods
to solve such problems.

2.2 Problem Formulation

2.2.1 A Simple Motivating Example

We motivate our problem formulation by analyzing a simple scalar quadratic
tracking problem based on the analysis of the least means squares (LMS) algo-
rithm in [21]. This example demonstrates the importance of knowing the prop-
erties of the functions fn(x) in order to choose the number Kn to achieve a good
mean-tracking performance.

At time n, we observe Kn realizations of a signal consisting of the pair yn(k)

and wn(k), with yn(k) given by

yn(k) = ηnwn(k)+ en(k) k = 1, . . . ,Kn

Our goal is to estimate ηn. In this example, yn(k), ηn, wn(k), and en(k) are all
scalars. We take wn(k) ∼N (0,1) and en(k) ∼N (0,σ2

e ). We assume that the
collection of all ηn, wn(k), and en(k) over n and k are independent. The random
variables ηn are generated by a random walk model

ηn+1−ηn ∼N (0,σ2
δ ) (2.2)

with η1 a fixed constant. In order to estimate ηn, we minimize

fn(x) = E(wn,en)∼pn

[
1
2
(xwn− yn)

2
]

(2.3)

as a function of x. Thus, we have x∗n = ηn, and so ‖x∗n+1− x∗n‖L2 = σδ where
‖X‖L2 =

√
E‖X‖2 due to the assumption in (2.2). Therefore, this problem satisfies

(1.2) with ρ = σδ .
For this signal model, we set zn(k) = [wn(k) en(k)]> and define the stochastic

gradients as
gn (x,zn(k)) =−(yn(k)− x>wn(k))wn(k)
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As required in (1.5), it holds that

Ezn(k)∼pn [gn (x,zn(k)) | x] = ∇ fn(x)

We generate an approximate minimizer xn of (2.3) to approximate ηn using Kn

steps of stochastic gradient descent

xn(k) = ΠX [xn(k−1)−µn(k)gn (x,zn(k))] (2.4)

xn(0) , xn−1

for k = 1, . . . ,Kn. For a generic application of SGD, we choose xn as a function
of {xn(0), . . . ,xn(Kn)} such as selecting the last iterate xn(Kn) or averaging the
iterates [24]. In this section, we simply choose constant step sizes µn(k) = µ and
the last iterate xn , xn(Kn). Finally, ΠX is the projection onto X .

We follow the analysis in [21] for non-stationary LMS adapted to this multiple
iteration version. By expanding the definition of fn(x) in (2.3), it holds that

fn(x) =
1
2

σ2
e +

1
2
E(x−x∗)2

Using this observation, define

an(k), E
[

1
2
(xn(k)− x∗n)

2
]

The quantity an(k) satisfies the following recursion from equation (5.8) in [21]:

an(k+1) = (1−2µ +3µ2)an(k)+
1
2

µ2σ2
e (2.5)

This recurrence relation can be solved to yield

an(Kn) =C1an(0)+C2

with C1 , (1− 2µ + 3µ2)Kn and C2 ,
µ(1−C1)

4−6µ σ2
e . This analysis captures the be-

havior of the multiple iteration LMS algorithm in (2.4). We then have

an+1(0) = an(Kn)+
1
2

σ2
δ

10



and so it follows that

E
[

1
2
(xn+1− x∗n+1)

2
]
≤C1

(
E
[

1
2
(xn− x∗n)

2
]
+

1
2

σ2
δ

)
+C2

This first order, inhomogeneous recurrence relation can be solved. The asymptotic
mean performance achieved is then given by

E∞(µ)

, lim
n→∞

(
Ezn∼pn

[
1
2
(yn− xnwn)

2
]
− 1

2
σ2

e

)
= lim

n→∞
E
[

1
2
(xn−x∗n)2

]
= lim

n→∞
an(Kn)

=
1
2C1σ2

δ +C2

1−C1

Note that if Kn = 1, then E∞(µ) is the same as equation (5.22) in [21] for LMS.

Unknown Parameters

If µ > 2
3 , then by the preceding analysis in (2.5) E[(yn− xnwn)

2]→ ∞. There-
fore, we need to know the function structure and choose the algorithm parameters
carefully just to guarantee a finite mean tracking criterion (1.7) at all times.

Known Parameters

A choice of µ in an appropriate range is important to guarantee finite mean track-
ing criterion (1.7); however, we also want good mean tracking performance guar-
antees, which requires optimizing E∞(µ) over µ for each K. To demonstrate this
issue, we plot E∞(µ) versus µ for σ2

e = σ2
δ = 1 and various values of Kn = K in

Figure 2.1. Minimizing the asymptotic mean tracking quality depends crucially
on the choice of step size µ . A bad choice of step size can result in mean track-
ing error orders of magnitude larger than the optimal choice. Figure 2.2 shows
the asymptotic mean tracking quality optimized over µ versus K. We need to be
careful in selecting µ for each K to obtain good mean tracking performance.
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Figure 2.1: E∞(µ) vs. µ
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Figure 2.2: minµ E∞(µ) vs. K

2.2.2 Assumptions

We make several assumptions to proceed. First, let X be closed and convex with
diam(X )<+∞. Define the σ -algebra

Fi , σ

(
i⋃

j=1

K j⋃
k=1

z j(k)

)
(2.6)

where by convention F0 is the trivial σ -algebra. We suppose that each function
fn(x) satisfies the following conditions:
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A.1 For each n, fn(x) is twice continuously differentiable with respect to x.

A.2 For each n, fn(x) is strongly convex with a parameter m > 0, i.e.,

∇
2 fn(x)� mI ∀x ∈X , ∀n. (2.7)

A.3 For each n, we can draw stochastic gradients gn (x,zn) such that (1.5) holds.

A.4 Given an optimization algorithm that generates an approximate minimizer

xn , A (xn−1,{gn (x,z(k))}Kn
k=1)

using Kn stochastic gradients {gn (x,zn(k))}Kn
k=1, there exists a function

b(d0,Kn) such that the following conditions hold:

1. With Kn and d0 both Fn−1-measurable, it holds that

‖xn−1−x∗n‖2 ≤ d0 ⇒ E[ fn(xn) |Fn−1]− fn(x
∗
n)≤ b(d0,Kn)

2. With Kn a constant, it holds that E[b(d0,Kn)] = b(E[d0],Kn).

3. The bound b(d0,Kn) is non-decreasing in d0 and non-increasing in Kn.

A.5 There exist constants A,B≥ 0 such that

E
[
‖gn (x,zn)‖2

2 |Fn−1
]
≤ A+B‖x−x∗n‖2

2 (2.8)

A.6 Initial approximate minimizers x1 and x2 satisfy

fi(xi)− fi(x
∗
i )≤ εi i = 1,2

with ε1 and ε2 known.

For assumption A.4, we generally look at SGD defined in (2.4). Given the iter-
ates, we choose xn as a convex combination of the iterates {xn(k)}Kn

k=0 generated
by SGD

xn =
Kn

∑
k=0

λn(k)xn(k)

One simple choice is setting xn = xn(Kn), which corresponds to setting λn(Kn) =

1 and
λn(0) = · · ·= λn(Kn−1) = 0

13



Appendix A discusses several applicable bounds b(d0,K) for SGD and choices
of convex combinations {λn(k)}. In practice, we may not know the parameters
such as the strong convexity parameter m from Assumption A.2 and the gradi-
ent parameters A and B from Assumption A.5. Appendix D introduces several
techniques to estimate these parameters using the stochastic gradients in A.3.

In our assumptions, we condition on the σ -algebra Fn−1, since this captures
all of the information available at the beginning of time n. Later, we will select
Kn as a function of the stochastic gradients {gi (x,zi(k))}Ki

k=1 for i = 1, . . . ,n−1.
This implies that Kn is Fn−1 measurable. In this case, where Kn is itself a random
variable Assumption A.4 is crucial to our analysis.

Finally, for Assumption A.6, we generally must select K1 and K2 blindly in the
sense that we have no information about ρ defined in (1.2). We can only make a
choice such as

Ki = min

{
K ≥ 1

∣∣∣∣∣ b
(
diam2(X ),K

)
≤ ε

}
i = 1,2

or fixed initial choices for K1 and K2. Regardless of our choice of K1 and K2, we
can set

εi , b
(
diam2(X ),K

)
i = 1,2

In order to have εi ≤ ε for i = 1,2, we may need to draw significantly more sam-
ples up front to find points x1 and x2 due to using diam(X ).

2.2.3 Constructing a Bound on the Change in Minimizers

We look at the justification behind our choice of controlling the change in func-
tions through the minimizers x∗n by showing that several other reasonable ways
to control how the functions change can be reduced to a bound on the change in
minimizers. In Section 2.3, we show that bounds on the change in the minimizer
can be used to select the number of stochastic gradients Kn.

Change in f

Suppose that we instead bound the change in the optimal function values, in the
following manner:

fn(x
∗
n−1)− fn(x

∗
n)≤ ρ̃

14



This bounds the loss incurred as a result of using the minimizer of a previous
function fn−1 and the next function fn. By the strong convexity Assumption A.2,
it holds that

‖x∗n−x∗n−1‖2 ≤
√

2
m

(
fn(x∗n−1)− fn(x∗n)

)
≤
√

2
m

ρ̃

Therefore, a bound on the optimal function values can be translated into a bound
on the change in the minimizers.

Change in Distribution

As mentioned before, for learning problems in (1.6), we can generally write our
functions as an expectation of a loss function `(x,z), i.e., fn(x)=Ezn∼pn[`(x,zn)].
Therefore, the source of change in this problem is the changes in the distributions
pn. We can control change by making an assumption on how pn changes through
an appropriate probability metric or pseudo-metric. Given a class of functions F

mapping from Z → R, an integral probability metric [25] between two distribu-
tions p and q on Z is defined as

γF (p,q), sup
h∈F
|Ez∼p[h(z)]−Ez̃∼p[h(z̃)]|

The following lemma shows that under an inclusion condition on the loss function
`(x,z), the integral probability metric bounds can lead to bounds on the change
in minimizers.

Lemma 1. If the class {`(x, ·) | x ∈X } ⊂F of loss functions is such that

γF (pn, pn−1)≤ ρ̃ for all n≥ 1, then it holds that

‖x∗n−x∗n−1‖2 ≤
√

2
m

ρ̃ for all n≥ 1

Proof. Applying the strong convexity Assumption (A.2) to fn(x) and fn−1(x),
for the solutions x∗n and x∗n−1, we obtain

fn(x
∗
n−1) ≥ fn(x

∗
n)+

1
2

m‖x∗n−x∗n−1‖2
2

fn−1(x
∗
n) ≥ fn−1(x

∗
n−1)+

1
2

m‖x∗n−x∗n−1‖2
2

15



By adding these two inequalities and rearranging, it holds that

m‖x∗n−x∗n−1‖2
2

≤
(

fn(x
∗
n−1)− fn(x

∗
n)
)
+
(

fn−1(x
∗
n)− fn−1(x

∗
n−1)

)
=
(

fn(x
∗
n−1)− fn−1(x

∗
n−1)

)
+( fn−1(x

∗
n)− fn(x

∗
n))

Now, examine the term fn(x
∗
n−1)− fn−1(x

∗
n−1). By relation (1.6), we have

fn(x
∗
n−1)− fn−1(x

∗
n−1)

≤ |Ezn∼pn

[
`(x∗n−1,zn)

]
−Ezn−1∼pn−1

[
`(x∗n−1,zn−1)

]
|

≤ sup
f∈F
|Ezn∼pn [ f (zn)]−Ezn−1∼pn−1 [ f (zn−1)] |

= γF (pn, pn−1)

Similarly, we can see that the same estimate holds for the term fn−1(x
∗
n)− fn(x

∗
n).

Therefore,

‖x∗n−x∗n−1‖2 ≤
√

2
m

γF (pn, pn−1)≤
√

2
m

ρ̃

Thus, we see that we can translate a bound on the change in distributions
through an integral probability metric to a bound on the change in minimizers.

Parameterized Functions

Finally, we examine the case in which the functions { fn(x)} come from a param-
eterized class of functions f (x,θ), i.e.,

fn(x) = f (x,θn)

Furthermore, we assume that the parameters themselves change slowly

‖θn−θn−1‖2 ≤ δ

We look at cases in which we can translate the bound δ on the parameters to
changes in the minimizers.

16



One simple case is when the function f (x,θ) satisfies

‖∇x f (x,θ)−∇x f (x, θ̃)‖2 ≤ M̃‖θ− θ̃‖2

and the stochastic gradients for our function f (x,θ) are the exact gradients plus
noise

gn (x,zn,θn) = ∇x f (x,θn)+ηn

where ηn is a mean zero random variable with E‖ηn‖2
2≤σ2. The following bound

follows from optimality principle (see Theorem 2F.10 in [16]) and the uniform
strong convexity:

‖x∗n−x∗n−1‖L2 ≤
1
m
‖∇x f (x∗n,θn)−∇x f (x∗n,θn−1)‖L2

Taking the expectation over ηn and ηn−1 yields

‖∇x f (x∗n,θn)−∇x f (x∗n,θn−1)‖L2

= ‖∇x f̃ (x∗n,θn)+ηn− (∇x f̃ (x∗n,θn−1)+ηn−1)‖L2

≤ M̃‖θn+1−θn‖2 +‖ηn−ηn−1‖L2

= M̃δ +2σ

This implies that

‖x∗n−x∗n−1‖L2 ≤
1
m

(
M̃δ +2σ

)
A second case is one in which we control the change through the implicit function
theorem. The optimal solution x∗(θ) for a fixed θ must satisfy

∇x f (x∗(θ),θ) = 0.

Applying the implicit function theorem [16] to this problem, we have

∇θx
∗(θ) =−∇xx f (x∗(θ),θ)∇xθ f (x∗(θ),θ).

If we can uniformly bound the matrix on the right-hand side in the spectral norm
by G, i.e.,

‖−∇xx f (x∗(θ),θ)∇xθ f (x∗(θ),θ)‖2 ≤ G

17



then x∗(θ) is Lipschitz in θ with modulus G. Therefore,

‖x∗n+1−x∗n‖L2 ≤ G‖θn+1−θn‖2 ≤ Gδ

In both cases, we recover a bound on the change in the minimizers.

2.3 Tracking Analysis with Change in Minimizers
Known

In this section we combine the bound b(d0,K) in Assumption A.4 with our model
for the changes in functions in (1.2) to choose the number of stochastic gradients
K needed to achieve desired mean criterion ε and IHP criterion (t,r) in (1.7) and
(1.8). In this section, we assume that ρ is known. In Chapter 3, we will consider
the case when ρ is unknown.

2.3.1 Mean Criterion Analysis

We show how to choose K to achieve a target mean criterion ε for all n. The idea
behind the analysis is to proceed by induction using Assumption A.6 as a base
case. Suppose that

E[ fn−1(xn−1)]− fn−1(x
∗
n−1)≤ ε

Denote the distance from the initial point xn−1 to the minimizer x∗n by dn(0), i.e.,

dn(0) = ‖xn−1−x∗n‖2
2 (2.9)

To bound E[dn(0)] we first use the triangle inequality and (1.2) to get√
E[dn(0)] ≤ ‖xn−1−x∗n−1‖L2 +‖x∗n−1−x∗n‖L2

≤ ‖xn−1−x∗n−1‖L2 +ρ

By the strong convexity Assumption (A.2), we have

m
2
‖xn−1−x∗n−1‖2

2 ≤ fn(xn−1)− fn(x
∗
n−1) (2.10)
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yielding

E‖xn−1−x∗n−1‖2
2 ≤

2
m

(
E[ fn(xn−1)]− fn(x

∗
n−1)

)
≤ 2ε

m

Putting everything together we have

E[dn(0)]≤
(√

2ε
m

+ρ

)2

(2.11)

Therefore, we have a bound

E[ fn(xn)]− fn(x
∗
n)≤ b

(√2ε
m

+ρ

)2

,K


and we can set

K∗ = min

K ≥ 1

∣∣∣∣∣ b

(√2ε
m

+ρ

)2

,K

≤ ε

 (2.12)

to ensure that
E[ fn(xn)]− fn(x

∗
n)≤ ε ∀n≥ 1

2.3.2 IHP Tracking Error Analysis

For the IHP criterion, we assume that Assumptions A.1-A.6 hold. We seek an
upper bound r(t,K) such that

P{ fn(xn)− fn(x
∗
n)> t} ≤ r(t,K) ∀n≥ 1 (2.13)

Using the mean criterion bounds of the previous section, we know that for all n

E[ fn(xn)]− fn(x
∗
n)≤ ε

Then by Markov’s inequality, it holds that

P{ fn(xn)− fn(x
∗
n)> t} ≤ ε

t
(2.14)
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Although this bound always holds, we look at a way to tighten this bound. As
before, we proceed by induction. As a base case, we can set

P{ f1(x1)− f1(x
∗
1)> t} ≤ ε

t

Now, suppose that

P
{

fn−1(xn−1)− fn−1(x
∗
n−1)> t

}
≤ rn−1(t)

and we want to construct a bound rn(t) on P{ fn(xn)− fn(x
∗
n)> t}. We proceed

by conditioning on {dn(0)≤ δ} and {dn(0)> δ}with dn(0) defined in (2.9) using
the law of total probability:

P{ fn(xn)− fn(x
∗
n)> t}

= P{ fn(xn)− fn(x
∗
n)> t | dn(0)≤ δ}P{dn(0)≤ δ}

+P{ fn(xn)− fn(x
∗
n)> t | dn(0)> δ}P{dn(0)> δ}

For the first term, it holds that

P{ fn(xn)− fn(x
∗
n)> t | dn(0)≤ δ} ≤ 1

t
b(δ ,K), ψ(t,δ ) (2.15)

and
P{dn(0)≤ δ} ≤ 1

For the second term, it holds that

P{ fn(xn)− fn(x
∗
n)> t | dn(0)> δ} ≤ ψ(t,diam2(X ))

20



P{ fn(xn)− fn(x
∗
n)> t}

≤ inf
0<δ≤diam2(X )

{
ψ(t,δ )+ψ(t,diam2(X ))rn−1

(
2
m

(√
δ −ρ

)2

+

)}
(2.16)

rn(t) = inf
0<δ≤diam2(X )

{
ψ(t,δ )+ψ(t,diam2(X ))r

(
2
m

(√
δ −ρ

)2

+

)}
(2.17)

and

P{dn(0)> δ}
= P

{
‖xn−1−x∗n‖2

2 > δ
}

= P
{
‖xn−1−x∗n‖2 >

√
δ
}

≤ P
{
‖xn−1−x∗n−1‖2 +ρ >

√
δ
}

≤ P
{
‖xn−1−x∗n−1‖2 >

(√
δ −ρ

)
+

}
≤ P

{√
fn−1(xn−1)− fn−1(x

∗
n−1)>

√
2
m

(√
δ −ρ

)
+

}

≤ rn−1

(
2
m

(√
δ −ρ

)2

+

)
where (x)+ = max{x,0}. Combining these bounds yields an overall bound

P{ fn(xn)− fn(x
∗
n)> t}

≤ ψ(t,δ )+ψ(t,diam2(X ))rn−1

(
2
m

(√
δ −ρ

)2

+

)
We can optimize this bound over δ to yield the bound in (2.16). The quan-

tity ψ(t,δ ) defined in (2.15) can be replaced by any bound that also satisfies the
inequality in (2.15). Therefore, we can set

rn(t) = inf
0<δ≤diam2(X )

{
ψ(t,δ )+ψ(t,diam2(X ))r

(
2
m

(√
δ −ρ

)2

+

)}
(2.18)

resulting in
P{ fn(xn)− fn(x

∗
n)> t} ≤ rn(t)
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Bound at a Finite Number of Points

The bound of the preceding section is exact but difficult to compute. In this sec-
tion, we introduce a computationally simpler bound. Computing the entire se-
quence of functions rn(t) is generally difficult, so we look at bounding

P{ fn(xn)− fn(x
∗
n)> t}

at a finite number of points t(1), . . . , t(N) ordered in increasing order. We want to
compute bounds rn(1), . . . ,rn(N) such that

P
{

fn(xn)− fn(x
∗
n)> t(i)

}
≤ rn(i) i = 1, . . . ,N

We define an initial bound
r1(i) =

ε
t(i)

Suppose that

P
{

fn−1(xn−1)− fn−1(x
∗
n−1)> t(i)

}
≤ rn−1(i)

Then as in (2.18), it follows that

P
{

fn(xn)− fn(x
∗
n)> t(i)

}
≤ inf

0<δ≤diam2(X )

{
ψ(t(i),δ )+ψ(t(i),diam2(X ))P{dn(0)> δ}

}
(2.19)

The key then is to bound P{dn(0) > δ} in terms of {rn−1(i)}N
i=1. Define the

function
t(δ ) = max{t(i) | t(i) ≤ δ}
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to be point t(i) closest to δ but not greater. Provided that 2
m

(√
δ −ρ

)2

+
≥ t(1) and

t(i) = t
(

2
m

(√
δ −ρ

)2

+

)
it holds that

P{dn(0)> δ}

≤ P
{

fn−1(xn−1)− fn−1(x
∗
n−1)>

2
m

(√
δ −ρ

)2

+

}
≤ P

{
fn−1(xn−1)− fn−1(x

∗
n−1)> t(i)

}
≤ rn−1(i) (2.20)

Otherwise, if 2
m

(√
δ −ρ

)2

+
< t(1), then

P{dn(0)> δ} ≤ ε
2
m

(√
δ −ρ

)
+

Define the overall bound for the term P{dn(0)> δ} as follows:

φn(δ ),


rn−1

(
t
(

2
m

(√
δ −ρ

)2

+

))
, t(1) ≤ 2

m

(√
δ −ρ

)2

+

ε
2
m(
√

δ−ρ)
2
+

, else
(2.21)

Then we can set

r(i)n = inf
δ>0

{
ψ(t(i),δ )+ψ(t(i),diam2(X ))φn(δ )

}
This algorithm is summarized in Algorithm 1. In practice, once the bound
ψ(t(i),diam2(X )) is less than one, then the gains are significant. Figure 2.3 plots
a comparison of the bound produced by Algorithm 1 against the Markov inequal-
ity bound from (2.14) applied to the motivating example problem in Section 2.2.1
with Kn = 300.

Either the Markov bound of (2.14) or Algorithm 1 will produce valid upper
bounds of the form

P
{

fn(xn)− fn(x
∗
n)> t(i)

}
≤ rn(i) i = 1, . . . ,N

Suppose that the set {t(1), . . . , t(N)} contains t at index i∗. These bounds can in
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Algorithm 1 Calculate IHP bounds

Require: Points t(1), . . . , t(N)

1. Set
r(i)1 =

ε
t(i)

i = 1, . . . ,N

2. Compute

r(i)n = min
0<δ≤diam2(X )

{
ψ(t(i),δ )+ψ(t(i),diam2(X ))φn(δ )

}
for i = 1, . . . ,N
3. n← n+1 and go back to step 2

10-1 100

t

10-3

10-2

10-1

r

Markov
IHP Algorithm

Figure 2.3: IHP algorithm plot

turn be used to select Kn to achieve a target (t,r) pair by selecting the smallest Kn

such that
rn(i∗)≤ r
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Chapter 3

Change in Minimizers Unknown

We consider solving the sequence of optimization problems described in Sec-
tion 1.2.1. In this chapter, we work under the assumption that

‖x∗n+1−x∗n‖L2 ≤ ρ

and the change in the minimizers, ρ , is unknown to us. First, we develop a method
to estimate ρ and provide some theoretical guarantees for this estimate. We also
consider an alternate condition on the minimizers

‖x∗n+1−x∗n‖2 ≤ ρ (3.1)

using the Euclidean norm. This condition implies the L2 condition, so any esti-
mate of ρ for the L2 condition also works for this conditions. However, in practice,
we can provide an alternate, tighter estimate of ρ when the Euclidean norm con-
dition holds. Using our estimates of ρ , we extend the analysis of Chapter 2 and
provide similar guarantees for the mean criterion and IHP criterion. Finally, we
discuss a few alternate methods to estimate ρ that do not seem to work as well
in practice as the direct estimate. We include them in case useful applications
are found at a later date. We make the same assumptions as Chapter 2 given
in Assumptions A.1-A.6. The content of this chapter covers parts of the work
in [26], [27], and [28].

3.1 Estimating the Change in Minimizers

In practice, we do not know ρ , so we must construct an estimate ρ̂n using the
stochastic gradients {gn (x,zn(k))}Kn

k=1. First, we construct estimates ρ̃i for the
one-step changes ‖x∗i −x∗i−1‖2 for each i. Next, we combine the one-step esti-
mates to construct an overall estimate ρ̂n for ρ . As an intermediary step, we also
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look at a special case in which either

‖x∗n+1−x∗n‖2 = ρ (3.2)

or
‖x∗n+1−x∗n‖L2 = ρ (3.3)

We show that for our estimate ρ̂n and appropriately chosen sequences {tn} for all
n large enough ρ̂n + tn ≥ ρ almost surely. With this property, analysis similar to
that in Section 2.3 of Chapter 2 holds.

3.1.1 One-Step Changes

We construct an estimate ρ̃i for the one-step changes ‖x∗i −x∗i−1‖. As a conse-
quence of the strong convexity of fi(x), we have the following lemma:

Lemma 2. It holds that

‖x−x∗i ‖2 ≤
1
m
‖∇ fi(x)‖2 ∀i≥ 1 ∀x ∈X

Proof. Since our functions fi(x) are convex, it holds that

〈∇ fi(x
∗
i ),x−x∗i 〉 ≥ 0 ∀i≥ 1 ∀x ∈X

By the strong coercivity of the gradient, a consequence of strong convexity [29],
it holds that

〈∇ fi(x)−∇ fi(x̃),x− x̃〉 ≥ m‖x− x̃‖2
2

Plugging in x̃= x∗i and x yields

〈∇ fi(x),x−x∗i 〉 ≥ m‖x−x∗i ‖2
2

Applying the Cauchy-Schwarz inequality yields the result.
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This in turn by way of the triangle inequality proves that

‖x∗i −x∗i−1‖2

≤ ‖xi−xi−1‖2 +‖xi−x∗i ‖2 +‖xi−1−x∗i−1‖2

≤ ‖xi−xi−1‖2 +
1
m
‖∇ fi(xi)‖2 +

1
m
‖∇ fi−1(xi−1)‖2 (3.4)

Motivated by this bound, we define the following estimate denoted the direct es-

timate by approximating the gradients

ρ̃i , ‖xi−xi−1‖2 +
1
m
‖Ĝi‖2 +

1
m
‖Ĝi−1‖2 (3.5)

where

Ĝi =
1
Ki

Ki

∑
k=1
gi (xi,zi(k))

3.1.2 Combining with Constant Change of Minimizers

As a special case, we look at combining the one-step estimates when either (3.2)
or (3.3) holds.

Euclidean Norm Condition

Under (3.2), we construct an estimate by averaging the one-step estimates

ρ̂n ,
1

n−1

n

∑
i=2

ρ̃i (3.6)

We want to show that for an appropriate sequence {tn} and for all n large enough

ρ̂n + tn ≥ ρ

almost surely under (3.2) or (3.3). The difficulty in actually proving this condition
for (3.5) is that when we compute

Ĝi =
1
Ki

Ki

∑
k=1
gi (xi,zi(k))
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xi and {zi(k)}Ki
k=1 are dependent. To get around this issue, we consider performing

a second independent draw of samples {z̃i(k)}Ki
k=1. Note that we do not need to

actually draw new independent samples; this is purely for the sake of analysis. We
start from xi−1 and produce x̃i using these new samples. For example, with SGD,
we have

xi(k) = ΠX [xi(k−1)−µ(k)gi (xi(k−1),zi(k))]

x̃i(k) = ΠX [x̃i(k−1)−µ(k)gi (xi(k−1), z̃i(k))]
(3.7)

for k = 1, . . . ,Ki with xi(0) = x̃i(0) = xi−1. Then we copy the form of the direct
estimate using x̃i in place of xi by defining

ρ̃(2)
i = ‖x̃i− x̃i−1‖2 +

1
m
‖G̃i‖2 +

1
m
‖G̃i−1‖2 (3.8)

with

G̃i =
1
Ki

Ki

∑
k=1
gi (x̃i,zi(k))

In this case, x̃i and {zi(k)}Ki
k=1 are independent, so E[ρ̃(2)

i ] ≥ ρ by Lemma 2.
Under (3.2), using a dependent sub-Gaussian concentration inequality from [30]
similar to Hoeffding’s inequality, we then argue that ρ̂n from (3.6) is close to

ρ̂(2)
n =

1
n−1

n

∑
i=2

ρ̃(2)
i

which in turn upper bounds ρ for all n large enough almost surely. Similarly,
under (3.3), we show that ρ̂2

n from (3.10) is close to (ρ̂(2)
n )2, which in turn upper

bounds ρ2 for all n large enough almost surely.
To proceed with our analysis, suppose that the following conditions hold:

B.1 Suppose there exist functions Ci(Ki) such that

E
[
‖xi− x̃i‖2

2 |Fi−1
]
≤C2

i (Ki)

B.2 Suppose that it holds that

E [‖gi (x,zi)−gi (x̃,zi)‖2 |Fi−1]≤ME [‖x− x̃‖2 |Fi−1]

∀x, x̃ ∈X and

E [‖gi (x,zi)−∇ fi(x)‖2 |Fi−1]≤ σ ∀x ∈X
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Dn =
1

n−1

[(
1+

M
m

)
C1 +

√
σ
K1

+2
n−1

∑
i=2

((
1+

M
m

)
Ci +

√
σ
Ki

)
+

(
1+

M
m

)
Cn +

√
σ
Kn

]
(3.9)

B.3 Suppose that the gradients are bounded in the sense that

‖gn (x,z)‖2 ≤ G ∀x ∈X ,z ∈Z

Assumption B.1 is a bound on the difference between two independent outputs
of the optimization algorithm xi and x̃i starting from xi−1. Assumption B.2 con-
trols how the gradient grows for two points x and x̃. Finally, Assumption B.3 is
reasonable if the space Z that contains the zn has finite diameter. In this case, it
holds that

sup
x∈X ,z∈Z

‖gn (x,z)‖2 <+∞

We now show that the direct estimate from (3.6) upper bounds ρ from (3.2)
eventually.

Theorem 1. Provided that B.1-B.3 hold and our sequence {tn}1 satisfies

∞

∑
n=2

(
exp
{
− (n−1)t2

n

18diam2(X )

}
+2exp

{
−m2(n−1)t2

n
72G2

})
<+∞

it holds that for all n large enough

ρ̂n +Dn + tn ≥ ρ

almost surely with Dn defined in (3.9)

Proof. See Appendix B

From now on, for notational convenience, we absorb Dn into the tn term and
refer only to ρ̂n + tn.

1Note that a choice of tn that is no greater than 1/
√

n−1 works here.
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L2 Norm Condition

Under (3.3), we construct an estimate by averaging the squares of the one-step
estimates and taking a square root

ρ̂n ,

√
1

n−1

n

∑
i=2

ρ̃2
i (3.10)

We now show that the direct estimate from (3.10) upper bounds ρ from (3.3)
eventually.

Theorem 2. Provided that B.1-B.3 hold and our sequence {tn} satisfies

∞

∑
n=2

(
exp
{
− (n−1)t2

n

18diam2(X )

}
+2exp

{
−m2(n−1)t2

n
72G2

})
<+∞

it holds that for all n large enough√
(ρ̂n)

2 + D̃n + tn ≥ ρ

almost surely with D̃n = 2diam(X )Dn.

Proof. See Appendix B

3.1.3 Combining with Bounded Changes of Minimizers

We examine estimating ρ in the case that either (1.2) or (3.1) holds. We denote the
exact one-step time changes by ρi , ‖x∗i −x∗i−1‖. The simplest way to combine
these estimates would be to set

ρ̂n = max{ρ̃2, . . . , ρ̃n}

For the sake of argument, suppose that ρ̃i = ρi+ei with independent ei∼N (0,σ2).
Then it follows that [31]

E[ρ̂n]≥ E[max{e2, . . . ,en}]

For independent Gaussian random variables, it holds that E[max{e2, . . . ,en}]→∞,
so this estimate is guaranteed to blow up. We do produce an upper bound, but it
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increases to the trivial bound diam2(X ). Next, we examine how to avoid this
issue.

Euclidean Norm Condition

Suppose that the following conditions hold.

B.4 We have estimates ĥW : RW → R that are non-decreasing in their arguments
such that

E[ĥW (ρ j, . . . ,ρ j−W+1)]≥ ρ

B.5 There exists absolute constants {bi}Wi=1 for any fixed W ≥ 1 such that ∀p,q ∈
RW
≥0

|ĥW (p1, . . . , pW )− ĥW (q1, . . . ,qW )| ≤
W

∑
i=1

bi|pi−qi|

For example, if ρi
iid∼ Unif[0,ρ], then

ĥW (ρi,ρi+1, . . . ,ρi+W−1) =
W +1

W
max{ρi,ρi+1, . . . ,ρi+W−1}

is an estimate of ρ with the required properties with bi = 1+ 1
W . In this case, we

compute the max over a sliding window and then average the maximums. This
estimate will not blow up but will eventually upper bound ρ as we will see later.

Given an estimate satisfying Assumptions B.4-B.5, we compute

ρ̄(i) = ĥW (ρ̃i, ρ̃i−1, . . . , ρ̃i−W+1)

and produce an estimate ρ̂n that is an average of maximums of sliding windows
of one-step estimates

ρ̂n =
1

n−W

n

∑
i=W+1

ρ̄(i)

=
1

n−W

n

∑
i=W+1

ĥmin{W,i−1}(ρ̃i, ρ̃i−1, . . . , ρ̃max{i−W+1,2}) (3.11)

Under Assumptions B.1-B.5, we can then show that

ρ̂n =
1

n−W

n

∑
i=W+1

ρ̄(i) (3.12)
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eventually upper bounds ρ .

Theorem 3. Provided that B.1-B.5 hold and our sequence {tn} satisfies

∞

∑
n=2

exp

− (n−W )2t2
n

18(n−1)diam2(X )
(

∑
W
j=1 b j

)2


+2exp

− m2(n−W )2t2
n

72(n−1)G2
(

∑
W
j=1 b j

)2


<+∞ (3.13)

it holds that for all n large enough

ρ̂n +

(
n−1
n−W

W

∑
j=1

b j

)
Dn + tn ≥ ρ

with Dn from Theorem 1.

Proof. The proof in this case is similar to the proof for the equality assumption
on ρ in (3.2) and is provided in Appendix B.

As before, we will absorb
(

n−1
n−W ∑

W
j=1 b j

)
Dn into tn.

L2 Norm Condition

Suppose that the following conditions hold, which are analogs of B.4-B.5:

B.6 We have estimates ĥW : RW → R that are non-decreasing in their arguments
such that

E[ĥW (ρ2
j , . . . ,ρ

2
j−W+1)]≥ ρ2

B.7 There exist absolute constants {bi}Wi=1 for any fixed W ≥ 1 such that ∀p,q ∈
RW
≥0

|ĥW (p2
1, . . . , p2

W )− ĥW (q2
1, . . . ,q

2
W )| ≤

W

∑
i=1

bi|p2
i −q2

i |

For example, if ρi
iid∼ Unif[0,ρ], then

ĥW
(
ρ2

i ,ρ
2
i+1, . . . ,ρ

2
i+W−1

)
=

W +2
W

max{ρ2
i ,ρ

2
i+1, . . . ,ρ

2
i+W−1}
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is an estimate of ρ with the required properties with bi =
W+2

W . In this case, we
compute the max over a sliding window and then average the maximums. This
estimate will not blow up but will eventually upper bound ρ as we will see later.

Given an estimate satisfying Assumptions B.4-B.5, we compute

ρ̄(i) =
√

ĥW (ρ̃2
i , ρ̃2

i−1, . . . , ρ̃
2
i−W+1)

Under Assumptions B.1-B.3 and B.6-B.7, we can then show that

ρ̂n =

√
1

n−W

n

∑
i=W+1

(
ρ̄(i)
)2 (3.14)

eventually upper bounds ρ .

Theorem 4. Provided that B.1-B.3 and B.6-B.7 hold and our sequence {tn} sat-

isfies

∞

∑
n=2

exp

− (n−W )2t2
n

18(n−1)diam2(X )
(

∑
W
j=1 b j

)2


+2exp

− m2(n−W )2t2
n

72(n−1)G2
(

∑
W
j=1 b j

)2


<+∞ (3.15)

it holds that for all n large enough√√√√(ρ̂n)
2 +

(
n−1
n−W

W

∑
j=1

b j

)
D̃n + tn ≥ ρ

with D̃n from Theorem 2.

Proof. The proof in this case is similar to the proof for the equality assumption
on ρ in (3.2) and is provided in Appendix B.
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3.2 Tracking Analysis with Change in Minimizers
Unknown

We now examine the case with ρ unknown. We extend the work of Section 2.3
of Chapter 2 using the estimate of ρ in Section 3.1. Our analysis depends on the
following crucial assumptions:

C.1 For appropriate sequences {tn}, for all n sufficiently large it holds that ρ̂n +

tn ≥ ρ almost surely.

C.2 The bound b(d0,Kn) defined in Assumption A.4 factors as b(d0,Kn)=α(Kn)d0+

β (Kn)

We have demonstrated that Assumption C.1 holds for the direct estimate of ρ .
In this section, we assume that either of the L2 conditions (3.1) or (3.3) holds.

Our analysis is not affected by which one is true. We note that the Euclidean norm
conditions (1.2) and (3.2) imply the L2 conditions (3.1) and (3.3) respectively. We
use the following result, proved in Appendix C, to derive rules to pick Kn when ρ
is unknown:

Theorem 5. Under Assumptions C.1- C.2, with Kn ≥ K∗ for all n large enough

where

K∗ = min

K ≥ 1

∣∣∣∣∣ b

(√2ε
m

+ρ

)2

,K

≤ ε

 , (3.16)

we have

limsup
n→∞

(E[ fn(xn)]− fn(x
∗
n))≤ ε

almost surely.

Proof. See Appendix C.

3.2.1 Update Past Mean Criterion Bounds

We first consider updating all past mean criterion bounds as we go. At time n,
we plug-in ρ̂n−1 + tn−1 in place of ρ and follow the analysis of Section 2.3 of
Chapter 2. Define

ε̂(n)i = b

(√ 2
m

ε̂(n)i−1 +(ρ̂n−1 + tn−1)

)2

,Ki

 i = 1, . . . ,n
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If it holds that ρ̂n−1 + tn−1 ≥ ρ , then E [ fn(xn)]− fn(x
∗
n)≤ ε̂(i)n for i = 1, . . . ,n.

Assumption C.1 guarantees that this holds for all n large enough almost surely.
We can thus set Kn equal to

Kn = min

{
K

∣∣∣∣∣ b

((√
2
m

max{ε̂(n−1)
n−1 ,ε}+

(ρ̂n−1 + tn−1))
2 ,K

)
≤ ε
}

(3.17)

for all n≥ 3 to achieve mean criterion ε . The maximum in this definition ensures
that when ρ̂n−1+ tn−1 ≥ ρ , Kn ≥ K∗ with K∗ from (3.16). We can therefore apply
Theorem 5.

3.2.2 Do Not Update Past Mean Criterion Bounds

Updating all past estimates of the mean criterion bounds from time 1 up to n

imposes a computational and memory burden. Suppose that instead for all n ≥ 3
we set

Kn = min

K ≥ 1

∣∣∣∣∣ b

(√2ε
m

+(ρ̂n−1 + tn−1)

)2

,K

≤ ε

 (3.18)

This is the same form as the choice in (3.16) with ρ̂n−1 + tn−1 in place of ρ . Due
to Assumption C.1, for all n large enough it holds that ρ̂n + tn ≥ ρ almost surely.
Then by the monotonicity Assumption in A.4, for all n large enough we pick
Kn ≥ K∗ almost surely. We can therefore apply Theorem 5.

3.2.3 In High Probability Bounds

We can adopt the same approach as with ρ known by substituting ρ̂n−1 + tn−1 in
place of ρ . As soon as ρn−1 + tn−1 ≥ ρ , Algorithm 1 will produce valid upper
bounds of the form

P
{

fn(xn)− fn(x
∗
n)> t(i)

}
≤ rn(i) i = 1, . . . ,N

Suppose that the set {t(1), . . . , t(N)} contains t at index i∗. These bounds can in
turn be used to select Kn to achieve a target (t,r) pair by selecting the smallest Kn
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such that
rn(i∗)≤ r

3.3 Experiment

We apply our framework to a mean-squared vector estimation problem similar
to the scalar problem in Section 2.2.1 of Chapter 2. In Chapter 4, we apply the
framework developed in this chapter to a variety of machine learning problems
similar to (1.6) using real data. We fix the following signal model:

yn = η
>
n wn + en.

Our goal is to estimate ηn. We consider minimizing the following functions to
estimate ηn:

fn(x) = Ezn∼pn

[
1
2
(yn−x>wn)

2
]

(3.19)

By simple algebraic manipulation, it holds that

fn(x) =
1
2
(x−ηn)

>E[wnw
>
n ](x−ηn)+

1
2
E[e2

n]. (3.20)

It is easy to see then that x∗n = ηn. Set

zn , [w>n en]
> (3.21)

and define the stochastic gradients

gn (x,zn),−(yn−x>wn)wn

which satisfy the required condition in (1.5). To find approximate minimizers
xn, we apply SGD using the inverse step size averaging technique discussed in
Appendix A.

Let wn ∼N
(
0, σ2

w
d I
)

where wn ∈ Rd and en ∼N (0,σ2
e ). We assume ηn is

a deterministic sequence satisfying

‖ηn+1−ηn‖2 ≤ ρ (3.22)

Since x∗n = ηn, the minimizer change condition in (1.2) is satisfied and we use the
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ρ estimate in (3.6). Note that {ηn} is deterministic, so we cannot apply a Kalman
filter. Furthermore, we suppose that all wn, en, and ηn over all time instants are
independent.

With this choice of model combined with the form of the functions in (3.20),
it is clear that the functions fn(x) are strongly convex with m = σ2

w/d satisfying
Assumption A.2. By applying the inequality (a+b)≤ 2a2 +2b2, it follows that

E‖gn (x,zn)‖2
2

= E‖gn (x
∗,zn)+(gn (x,zn)−gn (x

∗,zn))‖2
2

≤ 2E‖gn (x
∗,zn)‖2

2 +2E‖gn (x,zn)−gn (x
∗,zn)‖2

2

For the first term, we have

E‖gn (x
∗
n,zn)‖2

2 = E‖enwn‖2
2

= E[e2
n]E‖wn‖2

2

= σ2
e σ2
w

and for the second term, we have

E‖gn (x,zn)−gn (x
∗,zn)‖2

2

= E
[
‖wn‖2

2(x−x∗)wnw
>
n (x−x∗)

]
≤ E

[
‖wn‖4

2
]
‖x−x∗)‖2

2

≤ 3σ4
w‖x−x∗‖2

2

The last inequality follows due to the fact the E|x|4 ≤ 3E|x|2 for x a centered
Gaussian. This implies that

E‖gn (x,zn)‖2
2 ≤ 2σ2

e σ2
w+6σ4

w‖x−x∗‖2
2

Therefore, for Assumption A.5, we can set

A = 2σ2
e σ2
w

B = 6σ4
w

Putting it together, we have the parameters summarized in Table 3.1. For this
simulation, we choose d = 2, σ2

w = 0.5, σ2
e = 0.5, and ρ = 1.
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Table 3.1: Parameter Table

Parameter Value
m σ2

w/d
A 2σ2

e σ2
w

B 6σ4
w

3.3.1 Mean Tracking Criterion

First, we assume that ρ and all the parameters in Table 3.1 are known. We focus
on the mean tracking criterion in (1.7). Figure 3.1 shows the trade-off for the
optimal ε versus K∗ defined in (3.16). Any pair (ε,K) located above this curve
can be achieved in the sense that by setting Kn = K∗, we achieve

E[ fn(xn)]− fn(x
∗
n)≤ ε

For comparison, we plot the mean criterion curve achievable using the choice

Kn = min
{

K ≥ 1
∣∣∣ b
(
diam2(X ),K

)
≤ ε
}

For a fixed value of Kn, the mean criterion achievable using K∗ is substantially
smaller than the value achieved using the diam2(X ) bound.

102 103

K
n

10-3

10-2

10-1

100

101

ǫ

diam2(X)

K*

Figure 3.1: ε vs. K

Next, we examine the case where ρ and the parameters in Table 3.1 are un-
known. We estimate ρ using the techniques introduced in Section 3.1, specifically
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(3.12), select Kn using the rule in (3.18), and estimate the parameters using the
techniques in Appendix D. We target several different values of the mean tracking
accuracy ε from (1.7) including 0.001, 0.01, and 0.03. For the problem in this
section, we can compute an estimate of the mean criterion to evaluate our meth-
ods. First, we have fn(x

∗
n) =

1
2σ2

e . Second, for the sake of evaluation, we draw

additional samples {z̃n(k)}Tn
k=1

iid∼ pn and compute

1
Tn

1
2

Tn

∑
k=1

(
ỹn(k)−x>n w̃n(k)

)2
(3.23)

to estimate fn(xn). With these two pieces, we can estimate the mean criterion by
computing

1
Tn

1
2

Tn

∑
k=1

(
ỹn(k)−x>n w̃n(k)

)2
− 1

2
σ2

e (3.24)

Table 3.2 shows an estimate of the actual achieved mean criterion for three differ-
ent ε mean criterion targets averaged over n = 1 to 100. In all cases, we meet our
mean criterion target on average.

Table 3.2: Estimate of Mean Criterion

ε Mean Criterion Estimate
0.001 0.0008±0.0002
0.01 0.0073±0.0012
0.03 0.022±0.0022

Figure 3.2 shows the estimate of ρ . Our estimates of ρ upper bound the true
value of ρ = 1 as desired. With a smaller mean criterion target, we produce a
tighter estimate of ρ . Figure 3.3 shows the selected number of samples Kn for
each mean tracking target ε . As expected, for smaller choices of ε , Kn is larger.
In addition, for any given choice of ε , Kn settles down and is roughly constant
for large n. Figure 3.4 shows the estimate ε̂i,n of the mean criterion achieved
computed by updating the past. In comparison to Table 3.2, we see that the mean
criterion estimates in Figure 3.4 are reasonable upper bounds.

Finally, we examine estimation of the parameters m, A, and B used in the above
simulations. We carry out the methods describe in Appendix D and compare them
to the true values in Table 3.1. Due to space constraints, we only include the
estimate of m in Figures 3.5. As desired, we have a lower bound on the strong
convexity parameter m.
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Figure 3.2: Estimate of ρ from (1.2)
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Figure 3.3: Selected Kn

3.3.2 IHP Tracking Criterion

Figure 3.6 plots r vs. ε for several values of K by applying the IHP algorithm.
The IHP bounds appear to be loose in general as we need fairly large values of
K to get non-trivial bounds for reasonable ε and small r. The looseness of these
bounds is not surprising, since we are only using the first moment of the tracking
error to bound.

We choose Kn by targeting t = 0.1 and r = 0.25. Figure 3.7 shows the resulting
empirical probability. As mentioned above, we can compute fn(xn)− fn(x

∗
n)

exactly, so we can calculate the fraction of the time that the loss violates the t = 0.1
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Figure 3.4: Estimate of mean tracking accuracy
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Figure 3.5: Estimate of m

constraint. The empirical probability that

fn(xn)− fn(x
∗
n)> t

satisfies our target value of r = 0.25.

3.3.3 Kalman Filter Comparison

We now consider a slight modification of our model, so that we can apply the
Kalman filter. As mentioned above, since we assume that ηn is generated as a
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Figure 3.7: Empirical probability

deterministic sequence, we cannot apply the Kalman filter. In this section, we
instead assume that

ηn−ηn−1 ∼N (0,σ2I)

and η1 is fixed as in (2.2). Then it holds that

‖ηn−ηn−1‖L2 ≤ σ , ρ

as in (2.2). We satisfy (3.1) and use the estimate of ρ in (3.10).
To apply the Kalman filter, we take ηn to be the state of the system. The state
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evolution equation is given by

ηn(k) =


η1(1), fixed

ηn−1(Kn−1)+ζn, k = 1

ηn(k−1), 1 < k ≤ Kn

with ζn∼N (0,σ2I). The observation equation is given by the pair (wn(k),yn(k))

with
yn(k) = η>n (k)wn(k)+ en(k)

Let η̂n(k|k̃) be the estimate of ηn at time k of epoch n given all the information
up to k̃ with k ≥ k̃. Let Pn(k|k̃) be the estimate of the covariance. The prediction
equations for the state estimate and covariance estimate are given by [32]

η̂n(k|k−1) = η̂n(k−1|k−1)

Pn(k|k−1) = Pn(k−1|k−1)+σ2I1{k=1} (3.25)

The update equations are given by

η̂n(k|k) = η̂n(k|k−1)+Gn(k)(yn(k)− η̂>n (k|k−1)wn(k))

Pn(k|k) = (I−Gn(k)w>n (k))Pn(k|k−1)

Gn(k) = Pn(k|k−1)wn(k)
(

σ2
e +w

>
n (k)Pn(k|k−1)wn(k)

)−1

where Gn(k) is the Kalman gain. We have the initial conditions

η̂n(1|0) = η̂n−1(Kn−1|Kn−1)

Pn(1|0) = Pn−1(Kn−1|Kn−1)

Figure 3.8 shows a comparison of the Kalman filter against our SGD based
approach both with exact and mismatched parameters for the Kalman filter. Ta-
ble 3.3 uses the technique from (3.24) to estimate the mean criterion for all three
methods. The Kalman filter receives the number of samples Kn chosen by the SGD
approach. With correct parameters for the Kalman filter, both methods achieve
similar performance, but the SGD method is able to control its desired accuracy.
With incorrect parameters, the Kalman filter’s performance is worse.
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Table 3.3: Kalman Filter Comparison

Method Mean Criterion Estimate
Direct Estimate 1.9×10−2±1.1×10−3

Kalman Filter 1.8×10−2±5.7×10−3

Kalman Filter - Mismatch 9.4×10−2±5.3×10−2
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Figure 3.8: Comparison of Kalman filter and our approach

3.4 Alternate Methods to Estimate the Change in the
Minimizers

We present three additional methods to estimate the one-step change in the min-
imizers, ρ , in this section. These methods generally are looser than the direct
estimate and are more complicated, so they are not as useful. We include them
for completeness and to provide an idea of possible alternatives. Some theorems
analogous to those in Theorems 1 and 3 are provided in Appendix B.4.

3.4.1 One-Step Changes

Direct Estimate with Resampling

We introduce a resampled direct estimate that is computationally more complex
but easier to analyze. To motivate this alternative approach, note that since xi is
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computed using the same samples used to compute

Ĝi ,
1
Ki

Ki

∑
k=1
gi (xi,zi(k))

it generally holds that

E

[
1
Ki

Ki

∑
k=1
gi (xi,zi(k))

∣∣∣∣∣ xi

]
6= ∇ fi(xi)

If xi was independent of the samples used to compute Ĝi, then it would hold that

E
[
Ĝi | xi

]
= ∇ fi(xi) (3.26)

We consider a resampling based method that does satisfy (3.26).
Fix a positive integer ∆K > 0 such that ∆K < Ki for all i. We choose R sub-

sets T 1
i , . . . ,T

R
i of {1, . . . ,Ki} of size ∆K with no repeats in a set. We compute

approximate minimizers x(T b
i ) generated from the samples not in T b

i , i.e.,{
z(k)

∣∣ k /∈ T b
i

}
As before, it holds that

‖x∗i −x∗i−1‖ ≤ ‖x
(T b

i )
i −x(T b

i−1)

i−1 ‖+
1
m

∥∥∥∇x fi

(
x
(T b

i )
i

)∥∥∥
+

1
m

∥∥∥∇x fi−1

(
x
(T b

i )
i

)∥∥∥
This suggests that we define the estimate

ρ̃i ,
1
R

R

∑
b=1

‖x(T b
i )

i −x(T b
i−1)

i−1 ‖+
1
m

∥∥∥∥∥ 1
|T b

i |
∑
z∈T b

i

gi

(
x
(T b

i )
i ,zi

)∥∥∥∥∥
+

1
m

∥∥∥∥∥ 1
|T b

i−1|
∑

z∈T b
i−1

gi−1

(
x
(T b

i−1)

i−1 ,zi−1

)∥∥∥∥∥
 (3.27)

which satisfies E[ρ̃i]≥ ρ .
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Integral Probability Metric Estimate

In this section, we consider functions fn(x) of the form

fn(x), Ezn∼pn [`(x,zn)]

This naturally arises in the machine learning context when `(x,z) corresponds to
a loss function where x parameterizes the model and zn is the piece of data at
time n.

Scalar Integral Probability Metric Estimate Given a class of functions F

where each h ∈F maps Z → R, an integral probability metric (IPM) [33] be-
tween two distributions p and q on Z is defined to be

γF (p,q), sup
h∈F

∣∣Ez∼p[h(z)]−Ez̃∼q[h(z̃)]
∣∣ (3.28)

Lemma 3 shows how an IPM can be used to bound the change in minimizer at
time i as long as the class of functions F is rich enough with respect to the loss
function `(x,z).

Lemma 3. Assume that {`(x, ·) : x ∈X } ⊂F . Then

‖x∗i −x∗i−1‖ ≤
2
m

γF (pi, pi−1)

Proof. By our strong convexity Assumption A.2 and [34],

fi(x
∗
i−1) ≥ fi(x

∗
i )+

1
2

m‖x∗i −x∗i−1‖2

fi−1(x
∗
i ) ≥ fi−1(x

∗
i−1)+

1
2

m‖x∗i −x∗i−1‖2

Adding and rearranging these inequalities yields

m‖x∗i −x∗i−1‖2 ≤ ( fi(x
∗
i )− fi−1(x

∗
i ))+

(
fi−1(x

∗
i−1)− fi(x

∗
i−1)

)
(3.29)

Since {`(x∗i , ·) : x ∈X } ⊂F , for the first term on the right-hand side of (3.29)
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we have

fi(x
∗
i )− fi−1(x

∗
i )

≤
∣∣Ezi∼pi[`(x

∗
i ,zi)]−Ezi−1∼pi−1[`(x

∗
i ,zi−1)]

∣∣
≤ γF (pi, pi−1)

Repeating this argument for the other term in (3.29) and rearranging completes
the proof.

Since we do not know pi and pi−1, we cannot compute γF (pi, pi−1). Instead,
we estimate the IPM. With Ki and Ki−1 samples from pi and pi−1 respectively, we
can plug in the empirical distributions p̂i and p̂i−1 to yield the estimate

2
m

γF (p̂i, p̂i−1) (3.30)

It is easy to see that empirical IPM is biased upward, i.e.,
E
[ 2

mγF (p̂i, p̂i−1)
]
≥ 2

mγF (pi, pi−1).
This estimate is not in a closed form, since the IPM in (3.30) still involves

taking the supremum over F . However, for certain classes of functions, eval-
uating this supremum can be reduced to solving an optimization problem in a
finite-dimensional space. Suppose that class of functions F is of the form

F =
{

f
∣∣ | f (z)− f (z̃)| ≤ r(z, z̃) ∀z, z̃ ∈Z

}
for a function r(z, z̃). Plugging empiricals into (3.4.1) shows that evaluating the
IPM in (3.30) is equivalent to evaluating

sup
h∈F

∣∣∣ 1
Ki

Ki

∑
k=1

h(z̃i(k))−
1

Ki−1

Ki−1

∑
k=1

h(z̃i(Ki + k))
∣∣∣

We relax by optimizing over the value of the function h at z̃(k) denoted αk. Con-
sider the following linear program (LP) where the constraints constitute a neces-
sary condition for the values {αi} to correspond to a 1-Lipschitz function:

maximize
1
Ki

Ki

∑
k=1

αk−
1

Ki−1

Ki−1

∑
k=1

αKi+k

subject to αk−α j ≤ r(z̃i(k), z̃i( j)) ∀k 6= j
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For any function h ∈ F , the point αk = h(z̃i(k)) is feasible; therefore, this LP
gives an upper bound on the IPM. In fact, authors in [33] showed that the value of
this LP is actually the IPM for F the class of 1-Lipschitz functions.

Vector Integral Probability Metric Estimate Given a class of functions F

where each h ∈F maps Z → R, an integral probability metric (IPM) [33] be-
tween two distributions p and q on Z is defined to be

γF (p,q), sup
h∈F

∣∣Ez∼p[h(z)]−Ez̃∼q[h(z̃)]
∣∣

We consider an extension of this idea, which we call a vector IPM, in which the
class of functions F maps Z →X :

γV
F (p,q), sup

f∈F
‖Ez∼p[ f (z)]−Ez̃∼q[ f (z̃)]‖ (3.31)

Lemma 4 shows that a vector IPM can be used to bound the change in minimizer
at time i and follows from variational inequalities in [16] and the assumption that
{∇x`(x, ·) : x ∈X } ⊂F .

Lemma 4. Assume that {∇x`(x, ·) : x ∈X } ⊂F . Then we have

‖x∗i −x∗i−1‖ ≤
1
m

γV
F (pi, pi−1)

Proof. By exploiting variational inequalities from [16], we can show that

‖x∗i −x∗i−1‖

≤ 1
m
‖∇x fi(x

∗
i−1)−∇x fi−1(x

∗
i−1)‖

=
1
m
‖Ezi∼pi

[
∇x`(x

∗
i−1,zi)

]
−Ezi−1∼pi−1

[
∇x`(x

∗
i−1,zi−1)

]
‖

By assumption {∇x`(x∗i−1, ·) : x ∈X } ⊂F , so

‖∇x fi(x
∗
i−1)−∇x fi−1(x

∗
i−1)‖

= ‖Ezi∼pi

[
`(x∗i−1,zi)

]
−Ezi−1∼pi−1

[
`(x∗i−1,zi−1)

]
‖

≤ sup
f∈F
‖Ezi∼pi [ f (zi)]−Ezi−1∼pi−1 [ f (zi−1)]‖

= γV
F (pi, pi−1)
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We cannot compute this vector IPM, since we do not know the distributions
pi and pi−1. Instead, we plug in the empiricals p̂i and p̂i−1 to yield the estimate
1
mγV

F (p̂i, p̂i−1). This estimate is biased upward, which ensures that ‖x∗i −x∗i−1‖ ≤
E
[ 1

mγV
F (p̂i, p̂i−1)

]
.

Our estimate is still not in a closed form since there is a supremum over F in
the computation of γV

F (p̂i, p̂i−1). For the class of functions

F =
{

h
∣∣ ‖h(z)−h(z̃)‖ ≤ r(z, z̃)

}
(3.32)

we can compute an upper bound Γi on γV
F (p̂i, p̂i−1) yielding a computable esti-

mate ρ̃i =
1
mΓi. Set z̃i(k) = zi(k) if 1≤ k ≤ Ki and z̃i(k) = zi−1(k)

if Ki +1≤ k ≤ Ki +Ki−1. From (3.31), we have

γV
F (p̂i, p̂i−1) = sup

h∈F

∥∥∥∥∥ 1
Ki

Ki

∑
k=1

h(z̃i(k))−
1

Ki−1

Ki−1

∑
k=1

h(z̃i(Ki + k))

∥∥∥∥∥
We can relax this supremum by maximizing over the function value f (z̃i(k)) de-
noted by αk in the following non-convex quadratically constrained quadratic pro-
gram (QCQP):

maximize

∥∥∥∥∥ 1
Ki

Ki

∑
k=1

αk−
1

Ki−1

Ki−1

∑
k=1

αKi+k

∥∥∥∥∥
subject to ‖αk−α j‖ ≤ r(z̃i(k), z̃i( j)) ∀k < j

The constraints are imposed to ensure that the function values αk can correspond
to a function in F from (3.32). The value of this QCQP may not exactly equal
the vector IPM but at least provides an upper bound.

Comparison of Estimates

The direct estimate is easier to compute but may be loose if ‖xn−x∗n‖ is large. If
‖xn−x∗n‖ is large, then the IPM approaches are generally tighter. However, the
IPM estimates are more difficult to compute due to need to solve an LP or QCQP
and check the inclusion conditions in Lemma 4. Also, the number of constraints
in the LP or QCQP grows quadratically in the number of samples.
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3.4.2 Combining the One-Step Estimates

Direct Estimate with Resampling

For the resampling direct estimate from (3.27), the analysis is straightforward.
The following lemma guarantees that averages eventually upper bound ρ .

Theorem 6. For any sequence {tn} such that

∞

∑
n=2

exp
{
− (n−1)t2

n

2diam2(X )

}
<+∞

it holds that for all n large enough

ρ̂n + tn ≥ ρ

almost surely

Proof. The proof in this case is similar to the proof for the equality assumption
on ρ in (3.2) and is provided in Appendix B.

This estimate is computationally more complex, but is substantially easier to
analyze. The case with the inequality constraint definition of ρ is straightforward.

IPM Estimates

We have the following lemma characterizing the performance of the IPM esti-
mates with a constant change in minimizers.

Lemma 5. For both IPM estimates and any sequence {tn} such that

∞

∑
n=2

exp
{
− nt2

n
4diam(X )2

}
< ∞

for all n large enough it holds that ρ̂n + tn ≥ ρ almost surely.

Proof. Define the random variables

Vi = ρ̃i−E [ρ̃i |Fi−2]
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with {Fi}n
i=1 defined in (2.6). We have

−diam(X )≤Vi ≤ diam(X )

Clearly, Vi is Fi-measurable and E[Vi |Fi−2] = 0. Now, we can apply Lemma 19
of Appendix B with W = 2 to yield

P

{
n

∑
i=1

Vi <−nt

}
≤ exp

{
− 2(nt)2

(2)
(
4ndiam2(X )

)}

= exp
{
− nt2

4diam2(X )

}

None of the random variables {zi(k)}Ki
k=1 and {zi−1(k)}Ki−1

k=1 are Fi−2 measur-
able. Also, regardless of how many samples Ki and Ki−1 are taken, the IPM esti-
mate is biased upward. Thus, it holds that

E [ρ̃i |Fi−2]≥ ρ

Therefore, it follows that

P{ρ̂n < ρ− t} ≤ P

{
n

∑
i=1

ρ̃i <
n

∑
i=1

E [ρ̃i |Fi−2]−nt

}

= P

{
n

∑
i=1

Vi <−nt

}

≤ exp
{
− nt2

4diam2(X )

}
Note that we pay a price of two in the exponent due to ρ̃i and ρ̃i−1 both depending
on the samples from pi−1. Since

∞

∑
n=2

exp
{
− nt2

n
4diam(X )2

}
< ∞

it follows that
∞

∑
n=2

P{ρ̂n + t < ρ}<+∞

This in turn guarantees by way of the Borel-Cantelli lemma that for n large enough

ρ̂n + tn ≥ ρ
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almost surely.

We have the following lemma characterizing the performance of the IPM esti-
mates with a bounded change in minimizers.

Lemma 6 (IPM One-Step Estimates). For the estimate in (3.11) computed using

either IPM estimate for ρ̃i and any sequence {tn} such that

∞

∑
n=2

exp
{
− 2(n−1)t2

n
(W +1)diam(X )2

}
< ∞

it holds that for all n large enough ρ̂n + tn ≥ ρ almost surely.

Proof. We copy the proof of Lemma 5 of Appendix B with W + 1 in place of 2
and note that ρ̃(i) and ρ̃( j) with |i− j|>W +1 do not depend on the same samples.
Lemma 19 and some simple algebra yield

P{ρ̂n < ρ− t} ≤ exp
{
− 2(n−1)t2

(W +1)diam(X )2

}
We pay a price of W +1 in the denominator of the exponent due to the dependence
of the ρ̃(i). By the Borel-Cantelli Lemma, for all n large enough it holds that
ρ̂n + tn ≥ ρ almost surely as long as

∞

∑
n=2

exp
{
− 2(n−1)t2

n
(W +1)diam(X )2

}
< ∞

3.4.3 Experiment

To compare the various one-step estimates of ρ , we run the simulation example
of Section 3.3 again with d = 1 under the assumption that

‖x∗n−x∗n−1‖2 ≤ ρ

from (3.6). We compare the direct estimate, direct estimate with resampling, and
both IPM methods in Figure 3.9. The IPM estimates are the loosest, the direct
estimate with resampling is the second closest, and the direct estimate is the tight-
est.
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Figure 3.9: Various one step estimates
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Chapter 4

Applications to Machine Learning

We consider a specialization of the model introduced in Section 1.2.1 to machine
learning problems. Consider solving a sequence of machine learning problems
such as regression or classification by minimizing the expected value of a fixed
loss function `(x,z) at each time n:

min
x∈X

{
fn(x), Ezn∼pn [`(x,zn)]

}
∀n≥ 1 (4.1)

For regression, zn corresponds to the predictors and response pair at time n and
x parameterizes the regression model. For classification zn corresponds to the
feature and label pair at time n and x parameterizes the classifier. Although moti-
vated by regression and classification, our framework works for any loss function
`(x,z) that satisfies certain properties discussed in Chapter 2. In the learning con-
text, a task consists of the loss function `(x,z) and the distribution pn, and so our
problem can be viewed as learning a sequence of tasks.

This chapter is a specialization of the work in Chapters 2 and 3 for general
functions fn(x) to the specific form in (4.1) applied to real world data sets. We
also consider a few extensions that are useful for machine learning problems. In
the machine learning context, the mean criterion is referred to as excess risk. We
make the same assumptions as Chapter 2 given in Assumptions A.1-A.6. The
content of this chapter covers parts of the work in [26], [27], and [35].

4.1 Related Work

We introduce some prior work that is relevant to the machine learning context.
The prior work in this section complements the prior work in Section 2.1.

Our problem has connections with multi-task learning (MTL) and transfer learn-

ing. In multi-task learning, one tries to learn several tasks simultaneously as
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in [36], [37], and [38] by exploiting the relationships between the tasks. In trans-
fer learning, knowledge from one source task is transferred to another target task
either with or without additional training data for the target task [39]. Multi-task
learning could be applied to our problem by running a MTL algorithm each time
a new task arrives, while remembering all prior tasks. However, this approach in-
curs a memory and computational burden. Transfer learning lacks the sequential
nature of our problem. For multi-task and transfer learning, there are theoretical
guarantees on regret for some algorithms [40].

We can also consider the concept drift problem in which we observe a stream of
incoming data that potentially changes over time, and the goal is to predict some
property of each piece of data as it arrives. After prediction, we incur a loss that is
revealed to us. For example, we could observe a feature wn and predict the label
yn as in [41]. Some approaches for concept drift use iterative algorithms such
as SGD, but without specific models on how the data changes. As a result, only
simulation results showing good performance are available. There are also some
bandit approaches in which one of a finite number of predictors must be applied to
the data as in [42]. For this approach, there are regret guarantees using techniques
for analyzing bandit problems.

Another relevant model is sequential supervised learning (see [43]) in which
we observe a stream of data consisting of feature/label pairs (wn,yn) at time n,
with wn being the feature vector and yn being the label. At time n, we want to
predict yn given xn. One approach to this problem, studied in [44] and [45], is to
look at L consecutive pairs {(wn−i,yn−i)}L

i=1 and develop a predictor at time n by
applying a supervised learning algorithm to this training data. Another approach
is to assume that there is an underlying hidden Markov model (HMM) [46]. The
label yn represents the hidden state and the pair (wn,yn) represents the observa-
tion with yn being a noisy version of yn. HMM inference techniques are used to
estimate yn.

None of the prior work discussed in this section involves choosing the number
of samples Kn at each time n to control the excess risk. Most approaches instead
focus on bounding the regret or provide no guarantees.
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4.2 Extensions for Real-World Applications

4.2.1 Cost Approach

In our experiments in Section 4.3, we run our algorithm to choose a number of
samples {Kn}T

n=1 over a horizon of length T using the choice in (3.18). We then
compare against taking

T

∑
n=1

Kn

samples at time n = 1 and no samples at the other T − 1 time instants. In this
section, we consider a different type of comparison based on assuming that there
is a cost c(Kn) of taking Kn samples. For example, we could have

c(K) =C01{K>0}+C1K (4.2)

This implies we pay a fixed cost of C0 any time we take at least one sample and
a marginal cost of C1 per sample. We want to control the excess risk by deciding
when to take samples, and how many samples to take with a total budget C over a
horizon of length T , i.e.,

T

∑
n=1

c(Kn)≤C (4.3)

We can compare our approach against any other approach that respects the cost
budget in (4.3). One option is to again take all samples up front

Kn =

max
{

K ≥ 1
∣∣ c(K)≤C

}
, n = 1

0, 2≤ n≤ T
(4.4)

Another option is to sample every ∆T time instants and divide the cost budget
evenly over the times that we take samples using

Kn =

max
{

K ≥ 1
∣∣ c(K)≤

⌊
C

T/∆T

⌋}
, ∆T |(n−1)

0, else
(4.5)

where the notation a|b means a divides b.
For analysis, we need Assumption C.1 and the following additional assump-

tions:
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E.1 There exists a function e(‖x−x∗n‖2
2) such that

fn(x)− fn(x
∗
n)≤ e(‖x−x∗n‖2

2)

For example, suppose that the functions fn(x) have Lipschitz continuous gradi-
ents with modulus M and x∗n ∈ int(X ) for all n≥ 1 where int(X ) is the interior
of X . By the descent lemma [34], we have

fn(xn)− fn(x
∗
n) ≤ 〈∇ fn(x

∗
n),xn−x∗n〉+

1
2

M‖xn−x∗n‖2
2

=
1
2

M‖xn−x∗n‖2
2

Thus, we can set
e(‖xn−x∗n‖2

2) =
1
2

M‖xn−x∗n‖2
2

Since we need to consider the possibility that Kn = 0 for some n in {1, . . . ,T}
but still provide estimates of the excess risk, we need an alternate version of the
bound in (2.11). Define

ts(n) = max{m | 1≤ m≤ n and Km > 0}

where ts(n) is the last time no later than n at which samples were taken. If no
samples have been taken so far, then by convention ts(n) = +∞. We construct the
recursively defined function b̃n(ρ,Kn) by considering the following four cases:

1. No samples have been taken by time n:

b̃n(ρ,Kn), e(diam(X ))

2. Samples taken at time n for the first time

b̃n(ρ,Kn), b(diam2(X ),Kn)

3. No samples taken at time n but samples have been taken previously

b̃n(ρ,Kn), e

(√ 2
m

b̃ts(n−1)+((n− ts(n−1))ρ)

)2
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4. Samples taken at time n and samples have been taken previously

b̃n(ρ,Kn), b
(

4
m

b̃ts(n−1)+2((n− ts(n−1))ρ)2 ,Kn

)

Suppose that over a time horizon of length T we have a total cost budget C with
respect to the number of samples {Kn}T

n=1 as in (4.3). Define the excess risk gaps

ξn =
(
b̃n (ρ,Kn)− ε

)
+

with (x)+ = max{x,0}. The variable ξn is the extent to which the target excess
risk of ε is violated upwards. If our excess risk is below our target level ε , then we
set ξn = 0. Our goal is to minimize the size of the ξn, while taking into account the
cost constraint in (4.3). To control the size of ξn, suppose that we have a function
φ : RT → R that describes the cumulative loss of the excess risk gaps ξ1, . . . ,ξT .
We provide a few possible choices for φ(ξ1, . . . ,ξT )

1. φ(ξ1, . . . ,ξT ) =
1
T ∑

T
n=1 ξt

2. φ(ξ1, . . . ,ξT ) = max{ξ1, . . . ,ξT}

3. Set

φ(ξ1, . . . ,ξT ) = max
(a,b)∈τ

b

∑
n=a

ξn

with
τ = {(a,b) | a < b , ξa ≤ ξa+1 ≤ ·· · ≤ ξb}

The first two conditions penalize the average and maximum excess risk gaps re-
spectively. In practice, with the first two choices, we will stop taking samples
before the horizon T resulting in relatively poor performance towards the end of
the horizon. To combat this problem we introduce the third criterion that penal-
izes large increasing runs of excess risk gaps. This penalty does not have the
drawbacks of the first two penalties and tends to favor a more uniform choice of
the number of samples Kn.

We consider the case when ρ is known to us and plan over the horizon of length

58



T by solving the following optimization problem:

minimize
K1,...,KT

φ(ξ1, . . . ,ξT )

subject to
T

∑
n=1

c(ρ,Kn)≤C

1{K1>0} ≤ 1{K2>0}

1{Kn>0} ≤ 1{Kn−1>0}+1{Kn+1>0} n = 2, . . . ,T −1

1{KT−1>0} ≤ 1{KT>0}

Kn ∈ Z≥0 n = 1, . . . ,T

(4.6)

The idea of this problem is to satisfy the excess risk bound ε with minimal vi-
olation φ(ξ1, . . . ,ξT ). To estimate ρ , we need samples from consecutive time
instants. Therefore, we impose the constraint that if we take samples at time n,
then we must take samples either at either time n− 1 or time n+ 1 through the
constraint

1{Kn>0} ≤ 1{Kn−1>0}+1{Kn+1>0}

This is a mixed integer non-linear programming problem (MINLP). There are no
general methods to efficiently solve MINLP, so we consider a relaxation of this
problem later. In the case that we know ρ , we can plan the number of samples
ahead of time before any samples have been taken.

When ρ is unknown, we cannot plan over the entire horizon. Instead, at each
time instant m we have to plan over the remaining time horizon of length T −
m+1, while using the estimate ρ̂m−1 + tm−1 in place of ρ and the remaining cost
budget

C−
m−1

∑
n=1

c(Kn)

Under Assumption C.1, we know that we eventually use an upper bound on ρ
and produce conservative estimates of the excess risk. We consider the cost-to-go
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problem

minimize
Km,...,KT

φ(ξm, . . . ,ξT )

subject to
T

∑
n=m

c(Kn)≤C−
m−1

∑
n=1

c(Kn)

1{Km>0} ≤ 1{Km+1>0}

1{Km>0} ≤ 1{Km−1>0}+1{Km+1>0} n = m+1, . . . ,T −1

1{KT−1>0} ≤ 1{KT>0}

Kn ∈ Z≥0 n = m, . . . ,T

(4.7)

This is the same form as (4.6) except over the time horizon from n = m, . . . ,T

taking into account the portion of the cost budget that has been expended. In this
problem, we only optimize over Km, . . . ,KT . This problem is again a MINLP.

Next, we look at approximate solutions to (4.6) and (4.7). The major difficul-
ties in solving these programs are that the decision variables {Kn}T

n=1 are integer-
valued and the cost function c(K) may be discontinuous at zero due to fixed costs.
We consider relaxing Kn to be real-valued and introduce a piecewise approxima-
tion ĉ(K) of the cost functions c(K):

ĉ(K) =

(
c(K0)K

K0

)
1{K≤K0}+ c(K)1{K>K0}

Generally, we pick 0 < K0 < 1. We consider the relaxed program

minimize
K1,...,KT

φ(ξ1, . . . ,ξT )

subject to
T

∑
n=1

ĉ(ρ,Kn)≤C

K1 ≤ K2

Kn ≤ Kn−1 +Kn+1 n = 2, . . . ,T −1

KT−1 ≤ KT

Kn ∈ R≥0 n = 1, . . . ,T

(4.8)

We also relax the indicator constraints to inequality to encourage taking samples
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at consecutive times. In practice, this forces more gradual changes in samples Kn

and makes it easier to solve these problems. This problem can be readily solved
by gradient based solvers such as IPOPT [47].

4.2.2 Cross Validation

We can also apply cross validation for model selection. Suppose we have loss
functions `λ (x,z) parameterized by λ , which controls the model complexity. For
example, we could have a quadratic penalty term

`λ (x,z) = ˜̀(x,z)+
1
2

λ‖x‖2
2

The value of λ = 0 corresponds to the true loss function that we want to minimize.
Suppose we have C different values λ (1),λ (2), . . . ,λ (C) of λ under consideration.
For each λ (i), we generate an approximate minimizer x(i)

n of

Ezn∼pn

[
`λ (i)(x,zn)

]
(4.9)

We want to select the value λ (i) and corresponding x(i)
n that achieves the smallest

loss
Ezn∼pn

[
`0(x

(i)
n ,zn)

]
(4.10)

We generate an approximate minimizer x(i)
n for each problem in (4.9) starting

from x
(i)
n−1. To select the best choice of λ (i∗) in terms of minimizing (4.10), we

apply cross validation and set xn = x
(i∗)
n [48].

The idea behind cross validation is to divide the training samples {zn(k)]}Kn
k=1

into P equal sized pieces. For every P−1 out of P pieces, we use the P−1 pieces
of the training set to generate an approximate solution x̃(i)

n to (4.9). We use the
remaining piece of the training set to evaluate the empirical test loss achieved by
x̃
(i)
n as in (3.23). We do this for every possible choice of P− 1 out of P pieces

and average the empirical test loss estimates. We then select the value λ (i∗) that
achieves the smallest empirical test loss.

To apply cross validation to our framework, we run C parallel versions of our
approach and at time n we generate C different choices for the number of samples
K(i)

n . We then choose
Kn = max{K(1)

n , . . . ,K(C)
n }
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After choosing Kn, we apply the usual cross validation approach to select λ (i) for
time n. Figure 4.1 shows this approach for two values of λ .

Crossval. toselect x1
Crossval. toselect x2

Crossval. toselect x3
K1 K2 max{K (1)3 ,K (1)3 }

Est ρ̂(1)2
Est ρ̂(2)2

K (1)3
K (2)3

n = 1 n = 2 n = 3

x (1)1
x (2)1

x (1)2
x (2)2

x (1)3
x (2)3

Figure 4.1: Cross validation approach

4.3 Experiments

We focus on two regression applications for synthetic and real data as well as
two classification applications for synthetic and real data. For the synthetic re-
gression problem, we can explicitly compute ρ and x∗n and exactly evaluate the
performance of our method. It is straightforward to check that all requirements in
A.1-A.6 are satisfied for the problems considered in this section. We apply the do
not update past excess risk choice of Kn here.

4.3.1 Synthetic Regression

Consider a regression problem with synthetic data using the penalized quadratic
loss

`(x,z) =
1
2

(
y−w>x

)2
+

1
2

λ‖x‖2
2

with z = (w,y) ∈ Rd+1. The distribution of zn is zero mean Gaussian with co-
variance matrix [

σ2
wI rwn,yn

r>wn,yn
σ2

yn

]
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Under these assumptions, we can analytically compute minimizers x∗n of fn(x) =

Ezn∼pn [`(x,zn)]. We change only rwn,yn and σ2
yn

appropriately to ensure that
‖x∗n−x∗n−1‖2 = ρ holds for all n. We find approximate minimizers using SGD
with λ = 0.1. We estimate ρ using the direct estimate.

We let n range from 1 to 25 with ρ = 1, a target excess risk ε = 0.1, and Kn

from (3.18). We average over twenty runs of our algorithm. Figure 4.2 shows ρ̂n,
our estimate of ρ , which is above ρ in general. Figure 4.3 shows the number of
samples Kn, which settles down. We can exactly compute fn(xn)− fn(x

∗
n), and

so by averaging over the twenty runs of our algorithm, we can estimate the excess
risk (denoted “sample average estimate”), shown in Figure 4.4. We average over
the time horizon from n = 1 to 25 to yield the sample average estimate excess risk
given by 2.797×10−2±1.071×10−2. Therefore, we achieve our desired excess
risk.

5 10 15 20 25
n

0

0.5

1

ρ

Direct Estimate
ρ

Figure 4.2: ρ Estimate

Cost Approach

We consider applying the cost approach in Section 4.2.1 to the synthetic regression
problem with the cost in (4.2). We compare the optimal cost approach introduced
in (4.8) of Section 4.2.1 to the approach in (3.18), taking all samples at time n = 1
as in (4.4), and taking samples every five time instants as in (4.5). Note that the
method from (3.18) does not satisfy the cost budget. Figure 4.5 shows the test
loss of these approaches. We achieve similar test loss to the method in (3.18)
and better than the other two methods. Figure 4.6 shows the number of samples
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Figure 4.3: Kn
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Figure 4.4: Excess risk

selected for both methods. At some time instants, our optimal cost approach does
not take samples.

4.3.2 Synthetic Classification

Consider a binary classification problem using

`(x,z) =
1
2
(1− y(w>x))2

++
1
2

λ‖x‖2
2
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Figure 4.5: Test loss
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Figure 4.6: Cost choice of Kn

with z = (w,y) ∈ Rd×R and (y)+ = max{y,0}. This is a smoothed version of
the hinge loss used in support vector machines (SVM) [48]. We suppose that at
time n, the two classes have features drawn from a Gaussian distribution with
covariance matrix σ2I but different means µ(1)

n and µ(2)
n , i.e.,

wn | {yn = i} ∼ N (µ(i)
n ,σ2I)
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The class means move slowly over uniformly spaced points on a unit sphere in
Rd as in Figure 4.7 to ensure that the constant Euclidean norm condition defined
in (3.2) holds. We find approximate minimizers using SGD with λ = 0.1. We
estimate ρ using the direct estimate with tn ∝ 1/n3/8.

Figure 4.7: Evolution of class means

We let n range from 1 to 25 and target a excess risk ε = 0.1. We average over
twenty runs of our algorithm. As a comparison, if our algorithm takes {Kn}25

n=1

samples, then we consider taking ∑
25
n=1 Kn samples up front at n = 1. This is what

we would do if we assumed that our problem is not time varying. Figure 4.8 shows
ρ̂n, our estimate of ρ . Figure 4.9 shows the average test loss for both sampling
strategies. To compute test loss we draw Tn additional samples {ztest

n (k)}Tn
k=1 from

pn and compute 1
Tn

∑
Tn
k=1 `(xn,z

test
n (k)). We see that our approach achieves sub-

stantially smaller test loss than taking all samples up front. We do not draw the
error bars on this plot as it makes it difficult to see the actual losses achieved.

To further evaluate our approach we look at the receiver operating characteristic
(ROC) of our classifiers. The ROC is a plot of the probability of a true positive
against the probability of a false positive. The area under the curve (AUC) of
the ROC equals the probability that a randomly chosen positive instance (y = 1)
will be rated higher than a negative instance (y =−1) [49]. Thus, a large AUC is
desirable. Figure 4.10 plots the AUC of our approach against taking all samples
up front. Our sampling approach achieves a substantially larger AUC.

4.3.3 Panel Study on Income Dynamics Income - Regression

The Panel Study of Income Dynamics (PSID) surveyed individuals every year to
gather demographic and income data annually from 1974 to 2012 [50]. We want
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Figure 4.9: Test Loss

to predict an individual’s annual income (y) from several demographic features
(w) including age, education, work experience, etc. chosen based on previous
economic studies in [51]. The idea of this problem conceptually is to rerun the
survey process and determine how many samples we would need if we wanted to
solve this regression problem to within a desired excess risk criterion ε .

We use the same loss function, direct estimate for ρ , and minimization algo-
rithm as the synthetic regression problem. The primary difference is that we set
the parameter λ in the loss function by using cross validation as in Section 4.2.2.
The values of λ that we consider are 0.1, 0.15, and 0.2. The income is adjusted
for inflation to 2012 dollars with mean $35,176. We only consider individuals
with income below $300,000. Including individuals with much higher income
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Figure 4.10: Area under the curve

degrades the regression model’s performance. We average over twenty runs of
our algorithm by resampling [48]. We compare to taking an equivalent number of
samples up front.

Figure 4.11 shows the number of samples Kn, which settles down quickly. Fig-
ure 4.12 shows ρ̂n, which appears to converge. Figure 4.13 shows the test losses
over time evaluated over twenty percent of the available samples. The test loss
for our approach is substantially less than taking the same number of samples up
front. The square roots of the average test losses over this time period for our
approach and all samples up front are $2254±798 and $4194±425 respectively
in 2012 dollars.
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Figure 4.11: Kn
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Figure 4.12: ρ Estimate
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Figure 4.13: Test loss

4.3.4 General Social Survey - Classification

The General Social Survey (GSS) surveyed individuals every year to gather socio-
economic data annually from 1981-2013 [52]. We want to predict an individual’s
marital status (y) from several demographic features (w) including age, education,
etc. We model this as a binary classification problem using the loss

`(x,z) =−yw>x+ log
(

1+ ew
>x
)
+

1
2

λ‖x‖2
2

with z = (w,y) ∈ Rd×R. This loss corresponds to logistic regression with a
quadratic penalty [48]. We find approximate minimizers using SGD with λ = 0.1.
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Figure 4.14 shows the estimate of ρ for the GSS data set. Figure 4.15 shows
the test loss. We see that our approach achieves smaller test loss than taking all
samples up front. We plot the AUC against time in Figure 4.16. Our approach has
a larger AUC than the samples up front method especially for the later years.
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Figure 4.14: ρ Estimate
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Figure 4.15: Test Loss
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Chapter 5

Abrupt Changes in the Minimizers

In this section, we again solve the sequence of minimization problems of Sec-
tion 1.2.1, but under a different assumption on how the minimizers change. The
minimizers change abruptly in the sense that

ρn , ‖x∗n−x∗n−1‖2 ∈ {ρ(1),ρ(2)} ∀n≥ 2 (5.1)

where ρ(2)� ρ(1). The case with ρn = ρ(1) corresponds to small, slow changes
and the case with ρn = ρ(2) corresponds to large, abrupt changes.

First, we study the case where ρ(1) and ρ(2) are known in order to characterize
the impact of abrupt changes. We then introduce alternative Kn selection rules
to respond to abrupt changes. Next, we consider the case where ρ(1) and ρ(2) are
unknown and develop estimates for ρ(1) and ρ(2) extending the work in Chapter 3.
Building on our new estimates for ρ(1) and ρ(2), we develop selection rules for Kn

when ρ(1) and ρ(2) are unknown. We do not have theoretical guarantees for the
estimates of ρ(1) and ρ(2) and the Kn selection rules that rely on these estimates.
We only have rigorous analysis for the case when ρ(1) and ρ(2) are known. Finally,
an experiment on synthetic data demonstrates that our methods work. We make
the same assumptions A.1-A.6 from Chapter 2.

5.1 Optimization with Changes in Minimizers Known

Consider first the case when the changes ρ(1) and ρ(2) are known. We further
assume that the change at time n, ρn, is revealed to us at the beginning of time
n+1. In later sections, we will replace the assumption that ρn is revealed to us a
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time n+1 with an estimate of ρn at time n+1. Recall the function

φK,ρ(v) = α(K)

(√
2v
m

+ρ

)2

+β (K) = b

(√2v
m

+ρ

)2

,K


defined in (C.1) of Appendix C. If either K or ρ is implicit, then we drop the
subscripts in φ . With this notation, it holds that

K∗ = min{K ≥ 1 | φK(ε)≤ ε}

From previous analysis in Lemma 21 of Appendix C, we know that φK,ρ(v) has a
unique positive fixed point v̄ with 0 < φ ′K,ρ(v̄) < 1. Furthermore, the fixed point
iteration

vn = φK∗,ρ(vn−1)

converges to v̄ with v̄≤ ε . We consider the following recursion:

εn = φKn,ρn(εn−1) (5.2)

where εn bounds the mean criterion at time n. It is difficult to quantify the effect
of the abrupt jumps ρ(2) from (5.1), so we consider a linear upper bound on (5.2).
Since φK(v) is a concave function in v, it holds that

φK(v) ≤ φK(v̄)+φ ′K(v̄)(v− v̄)

= v̄+φ ′K(v̄)(v− v̄)

= φ ′K(v̄)v+(1−φ ′K(v̄))v̄

This in turn implies that

εn ≤ φ ′Kn
(v̄n)εn−1 +(1−φ ′Kn

(v̄n))v̄n (5.3)

Define
gn = φ ′Kn,ρn

(v̄n) (5.4)

which is a function of Kn and ρn. By Lemma 21, it holds that 0 < gn < 1. Then it
holds that

εn ≤ gnεn−1 +(1−gn)v̄n
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If Kn is selected to drive v̄n below ε and εn−1 ≤ ε , then it holds that εn ≤ ε . For
any n0, by induction applied to (5.3), it holds that

εn ≤
(

n

∏
i=n0

gi

)
εn0−1 +

n

∑
i=n0

(
n

∏
j=i+1

g j

)
(1−gi)v̄i (5.5)

For the recursion in (5.2), it is difficult to quantify the impact of abrupt changes.
For the upper bound in (5.5), due to the linearity in εn0−1, it is substantially easier
to characterize and quantify the effect of abrupt changes.

To understand some properties of the bound in (5.5) and possible ways to re-
spond to abrupt changes, we provide Lemma 7 that develops useful properties of
g and v̄ viewed as functions of ρ and K.

Lemma 7. It holds that1

1. g = φ ′K,ρ(v̄) as a function of ρ is non-decreasing in ρ

2. If α(K) = β (K) = Θ(K−δ ) for δ ∈ (0,1], then g→ 0 as K→ ∞

3. (1−g)v̄ as a function of ρ is non-decreasing in ρ

4. If α(K)→ 0 and β (K)→ 0 as K→ ∞, then (1−g)v̄→ 0 as K→ ∞

Proof. First, by solving the quadratic

φK,ρ(v̄) = v̄

we have

√
v̄ =

2αρ
√

2/m
1−2α/m

+
1

2(1−2α/m)

√
8
m

ρ2α2 +4(1−2α/m)(αρ2 +β ) (5.6)

We have dropped the K argument here due to space. It also holds that

φ ′(v) =
2α(K)

m

1+
ρ√

2
mv

 (5.7)

By examining the form of this derivative, we see that g depends on ρ through ρ√
v̄
,

1 f (K) = Θ(g(K)) iff f (K) = O(g(K)) and g(K) = O( f (K))
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which equals

ρ√
v̄
=

1
2α
√

2/m
1−2α/m + 1

2(1−2α/m)

√
8
mα2 +4(1−2α/m)(α + β

ρ2 )

It is clear that φ ′(v̄) is non-decreasing in ρ .
Second, suppose that α = β = Θ(K−δ ) for δ ∈ (0,1]. Then from (5.7) it holds

that

φ ′(v̄) =
2α(K)

m
+

2ρα(K)

m
√

2
m v̄

Since α(K) = Θ(K−δ ), the first term 2α(K)
m → 0 as K → ∞. By applying the

assumption that α(K) = β (K) = Θ(K−δ ) with (5.6), we have

2α(K)ρ
m
√

v̄
= Θ

(
K−δ

)
This implies that φ ′(v̄)→ 0 as K→ ∞ by (5.7).

For the third claim, we have by (5.7)

(1−g)v̄ = (1−φ ′(v̄))v̄ (5.8)

Plugging in (5.6) and simplifying shows that

(1−g)v̄

= αρ

((
4
√

2
√

α2m2ρ2 (−2αβ +αmρ2 +βm)

m(m−2α)2

+
2m
(
β (m−2α)+αρ2(2α +m)

)
m(m−2α)2

)1/2

+
4αρ

m−2α
+ρ
)
+

2
√

2
√

α2m2ρ2 (−2αβ +αmρ2 +βm)

m2−2αm
+β

It then follows that (1−g)v̄ is non-decreasing in ρ .
For the fourth claim, first note that

|(1−g)v̄| ≤ v̄
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Then by examining (5.6) and using the assumption that α,β → 0 as K → ∞, it
follows that

(1−g)v̄→ 0

as K→ ∞

We now apply the tools we have developed to a few different models for abrupt
changes.

5.1.1 No Abrupt Changes

Consider the case in which there are no abrupt jumps, which is equivalent to ρ(2)=

ρ(1). In this special case, we set Kn = K∗, with K∗ defined in (3.16), yielding

g = gn = φ ′K∗,ρ(1)(v̄)

from (5.4) and so it holds that

εn ≤ gn−n0+1εn0−1 +(1−gn−n0+1)v̄

By our choice of K∗, it follows that v̄ ≤ ε . Provided that εn0−1 ≤ ε , it holds that
εn ≤ ε . Therefore, in this simple case, we continue to meet the mean criterion for
all n.

5.1.2 Periodic Groups of Jumps

Consider a periodic model in which blocks of jumps occur. A block of ∆J1 ρ(1)

slow changes occur followed by a block of ∆J2 ρ(2) abrupt jumps as follows:

ρ(1), . . . ,ρ(1)︸ ︷︷ ︸
∆J1 times

,ρ(2), . . . ,ρ(2)︸ ︷︷ ︸
∆J2 times

,ρ(1), . . . ,ρ(1)︸ ︷︷ ︸
∆J1 times

,ρ(2), . . . ,ρ(2)︸ ︷︷ ︸
∆J2 times

, . . . (5.9)

We start with the bound in (5.5). Suppose that n0 is the start of a run of ∆J2 abrupt
jumps associated with ρ(2). To ensure that the mean criterion does not blow up,
we need a stability condition of the following form called the mean criterion cycle

condition:
εn0+∆J2+∆J1−1 ≤ εn0−1 (5.10)
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This ensures that over the course of a cycle of ρ(2) and ρ(1) jumps, the mean
criterion returns to at least the level it was at before the cycle began. Using (5.5),
this condition can be satisfied if it holds that

εn0+∆J2+∆J1−1

≤
(

n0+∆J2+∆J1−1

∏
i=n0

gi

)
εn0−1 +

n0+∆J2+∆J1−1

∑
i=n0

(
n0+∆J2+∆J1−1

∏
j=i+1

g j

)
(1−gi)v̄i

≤ εn0−1

By rearranging, this condition becomes

εn0−1 ≤
∑

n0+∆J2+∆J1−1
i=n0

(
∏

n0+∆J2+∆J1−1
j=i+1 g j

)
(1−gi)v̄i

1−∏
n0+∆J2+∆J1−1
i=n0

gi

If we want the mean criterion gap to be no greater than ε at the end of a ρ(2) and
ρ(1) cycle, then we need

∑
n0+∆J2+∆J1−1
i=n0

(
∏

n0+∆J2+∆J1−1
j=i+1 g j

)
(1−gi)v̄i

1−∏
n0+∆J2+∆J1−1
i=n0

gi
≤ ε (5.11)

Now, suppose that we use the choice of Kn in (3.16) with no modifications. It
holds that gi ∈ {g(1),g(2)} and v̄i ∈ {v̄(1), v̄(2)} where g(i) and v̄(i) are computed
under ρ(i) with K = K∗. Using this observation, it holds that

n0+∆J2+∆J1−1

∏
i=n0

gi =
(

g(1)
)∆J1

(
g(2)
)∆J2
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In addition, it follows that

n0+∆J2+∆J1−1

∑
i=n0

(
n0+∆J2+∆J1−1

∏
j=i+1

g j

)
(1−gi)v̄i

=
n0+∆J2−1

∑
i=n0

(
n0+∆J2+∆J1−1

∏
j=i+1

g j

)
(1−gi)v̄i

+
n0+∆J2+∆J1−1

∑
i=n0+∆J2

(
n0+∆J2+∆J1−1

∏
j=i+1

g j

)
(1−gi)v̄i

=
∆J2

∑
i=1

(
g(1)
)∆J1

(
g(2)
)∆J2−i

(1−g(2))v̄(2)+
∆J1

∑
i=1

(
g(1)
)∆J1−i

(1−g(1))v̄(1)

≤
(

g(1)
)∆J1

(
1−
(

g(2)
)∆J2

)
v̄(2)+

(
1−
(

g(1)
)∆J1

)
v̄(1)

≤ v̄(1)+
(

g(1)
)∆J1

(
v̄(2)− v̄(1)

)
This in turn implies that

εn ≤
(

g(1)
)∆J1

(
g(2)
)∆J2

εn0−1 +
(

g(1)
)∆J1

(
v̄(2)− v̄(1)

)
+ v̄(1)

By our choice of K = K∗, it follows that v̄(1) ≤ ε . Therefore, we want(
g(1)
)∆J1

(
g(2)
)∆J2

εn0−1 +
(

g(1)
)∆J1

(
v̄(2)− v̄(1)

)
+ ε ≤ εn0−1

This in turn implies that across an entire cycle we can satisfy the cycle condition
(5.10) with mean criterion at the end of a cycle equal to

ε

1−
(
g(1)
)∆J1

(
g(2)
)∆J2

+

(
g(1)
)∆J1

(
v̄(2)− v̄(1)

)
1−
(
g(1)
)∆J1

(
g(2)
)∆J2

(5.12)

From the analysis of Lemma 7, it follows that v̄(2) ≥ v̄(1), so the second term in
this expression is non-negative. In regards to the cycle condition, we roughly have
mean criterion given by

ε +
(

g(1)
)∆J1

(
v̄(2)− v̄(1)

)
From this expression, it is clear that the primary effect of the abrupt changes is

in the term v̄(2)− v̄(1), which is suppressed by the
(

g(1)
)∆J1

term. Finally, as the
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time between abrupt jumps ∆J1 becomes large, we have

limsup
∆J1→∞

 ε

1−
(
g(1)
)∆J1

(
g(2)
)∆J2

+

(
g(1)
)∆J1

(
v̄(2)− v̄(1)

)
1−
(
g(1)
)∆J1

(
g(2)
)∆J2

≤ ε

Therefore, for large n, we will roughly meet the mean criterion target ε in the
sense of (5.10).

Finally, we look at bounding the mean criterion for n not corresponding to
abrupt jumps. Suppose that n satisfies

∆J2 < n−n0 ≤ ∆J2 +∆J1

This condition on n ensures that this time instant occurs between rounds of ρ(2)

jumps. Then by similar analysis, it follows that

εn ≤
(

g(1)
)n−n0+1−∆J2

(
g(2)
)∆J2

εn0−1 +
(

g(1)
)n−n0+1−∆J2

(
v̄(2)− v̄(1)

)
+ ε
(5.13)

This provides us with an idea of the effect of a ρ(2) jump. There is a spike
in the mean criterion due to the ρ(2) jump captured in the v̄(2)− v̄(1) term. This
spike is exponentially suppressed during the ρ(1) phase. This shows that even just
using Kn = K∗ provides some protection against abrupt jumps provided they are
sufficiently rare.

5.1.3 New Sample Selection Rules

We consider alternative rules for choosing Kn now to counteract ρ(2) jumps. If we
knew whether ρn equals ρ(1) or ρ(2) at the beginning of the nth time instant, then
we would choose

Kn =

K(1), ρn = ρ(1)

K(2), ρn = ρ(2)

with

K(1) = min
{

K ≥ 1 | φK,ρ(1)(ε)≤ ε
}

K(2) = min
{

K ≥ 1 | φK,ρ(2)(ε)≤ ε
}
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With this choice, it is obvious that the mean criterion is always less than ε for all
n.

Update the Past

A more reasonable assumption is that we can determine whether ρn equals ρ(1)

or ρ(2) at the beginning of the (n+ 1)th time instant but not during the nth time
instant. The bound εn−1 from (5.2) can be computed at time n. Suppose that we
choose Kn by hypothesizing that ρn = ρn−1

Kn , min

K ≥ 1

∣∣∣∣∣ b

(√2εn−1

m
+ρn−1

)2

,K

≤ ε

 (5.14)

If it is true that ρn ≤ ρn−1, then it holds that

E[ fn(xn)]− fn(x
∗
n)≤ ε

When ρn > ρn−1, we have no guarantees. Thus, in general, we will not satisfy our
mean criterion target when ρn > ρn−1. However, since our bound εn−1 is always
correct at time n, as soon as ρn ≤ ρn−1, we will again satisfy our mean criterion
target ε . For the periodic jump model in Section 5.1.2, the only time we fail to
meet the mean criterion is when ρn−1 = ρ(1) and ρn = ρ(2).

Do Not Update the Past

Suppose that we compute

K(i) = min

K ≥ 1

∣∣∣∣∣ b

(√2ε
m

+ρ(i)

)2

,K

≤ ε

 i = 1,2 (5.15)

and set

Kn ,

K(1), ρn−1 = ρ(1)

K(2), ρn−1 = ρ(2)
(5.16)

Note that K(1) = K∗ with K∗ defined in (3.16).
The following analysis characterizes the performance of this rule for the peri-
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odic model. By way of comparison, define the rule

K̃n =


K(1), ρn−1 = ρ(1),ρn−2 = ρ(1)

K(2), ρn−2 = ρ(2)

K(2), ρn−1 = ρ(2),ρn−2 = ρ(1)

(5.17)

This rule is identical to the rule in (5.16) except K(2) is used when the jump size
transitions from ρ(1) to ρ(2). With this rule, the mean criterion is always less than
ε provided that ε1 ≤ ε . Define gi and v̄i with respect to the choice of Kn in (5.16)
and g̃i and ṽi with respect to the choice of Kn in (5.17).

With the choice of Kn in (5.17), we have

εn ≤
(

n

∏
i=n0

g̃i

)
εn0−1 +

n

∑
i=n0

(
n

∏
j=i+1

g̃ j

)
(1− g̃i)ṽi

With the choice of Kn in (5.16), we have

εn ≤
(

n

∏
i=n0

gi

)
εn0−1 +

n

∑
i=n0

(
n

∏
j=i+1

g j

)
(1−gi)v̄i

=

(
n

∏
i=n0

g̃i

)
εn0−1 +

n

∑
i=n0

(
n

∏
j=i+1

g̃ j

)
(1− g̃i)ṽi

+

(
n

∏
i=n0+1

gi

)
(gn0− g̃n0)εn0 +

(
n

∏
i=n0+1

gi

)
((1−gn0)v̄n0 +(1− g̃n0)ṽn0)

This shows that the gap between the choice of Kn in (5.17) and the choice of Kn

in (5.16) is bounded by(
n

∏
i=n0+1

gi

)
(gn0− g̃n0)εn0 +

(
n

∏
i=n0+1

gi

)
((1−gn0)v̄n0 +(1− g̃n0)ṽn0) (5.18)

This bound shows that as ∆J1 becomes large, the mean criterion of the rule in
(5.16) approaches ε . From Lemma 7, we have

gn0 ≥ g̃n0

and
(1−gn0)v̄n0 ≥ (1− g̃n0)ṽn0
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This shows that the gap (5.18) is non-negative as expected.
The mean criterion performance of the Kn rule from (5.16) is superior to Kn =

K∗ rule, since the rule in (5.16) always selects at least K(1) = K∗ samples. In
comparison to the rule in (5.14), we cannot guarantee that the mean criterion is
met at all time instants except for the case when ρn > ρn−1.

5.2 Estimating Changes in Minimizers

We now examine the case when we do not know ρ(1) and ρ(2) and must instead es-
timate them. We develop methods to combine the one-step estimates from Chap-
ter 3 to yield estimates for ρ(1) and ρ(2).

Suppose that we have one-step estimates ρ̃i of ρi = ‖xi−xi−1‖2. First, we
consider combining the one-step estimates ρ̃i to estimate ρ(1) and ρ(2) as follows:

ρ̂(1)
n =

1
n−1

n

∑
i=2

ρ̃i

ρ̂(2)
n =

1
n−W

n

∑
i=W+1

ĥmin{W,i−1}(ρ̃i, ρ̃i−1, . . . , ρ̃max{i−W+1,2})
(5.19)

These two methods are precisely the ones developed in Chapter 3 defined in (3.5)
and (3.11). Under the conditions of Theorems 1 and 3 of Chapter 3, it follows that
for appropriate sequences tn and n large enough

1. ρ̂(1)
n + tn ≥ ρ(1)

2. ρ̂(2)
n + tn ≥ ρ(2)

almost surely. Therefore, with these two estimates, we have upper bounds on ρ(1)

and ρ(2).
Although both of these estimates work, there is a slight complication with the

estimation of ρ(1). Suppose that the fraction of time that ρ(2) occurs is λ ∈ (0,1).
Then by examining the analysis of ρ̂(1)

n from Chapter 3, it holds that

ρ̂(1)
n + tn ≥ ρ(1)+λ (ρ(2)−ρ(1)) (5.20)

almost surely. If the product λ (ρ(2)−ρ(1)) is large, then our estimate of ρ(1) can
be far from the true value. When our estimate of ρ(1) is substantially above ρ(1),
we take substantially more samples than are necessary to meet our mean criterion
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target when ρn = ρ(1). In the following sections, we examine alternative ways to
estimate ρ(1) and ρ(2) to avoid this issue.

5.2.1 Trimmed Mean Estimate

To combat this issue, we compute an estimate of ρ(1) while trying to remove those
one-step estimates ρ̃n that correspond to ρn = ρ(2) through an α-trimmed mean
estimate with α ∈ (0, 1

2). We remove 100α% of the samples from each side and
compute the mean. This estimate is defined as

ρ̂(1)
n =

1
(n−1)(1−2α)

1+(n−1)(1−α)

∑
i=2+(n−1)α

ρ̃(i) (5.21)

with order statistics ρ̃(2) ≤ ·· · ≤ ρ̃(n). The ith-order statistic ρ̃(i) is the (i− 1)th

smallest value in the set {ρ̃2, . . . , ρ̃n}. The following lemma from [53] describes
how far an order statistic can be from the sample mean.

Lemma 8. For any collection of random variables X1, . . . ,Xn, it holds that

X(i) ≥ An−Bn max
{
(n−1)(i−1)
n(n− i+1)

,
(n−1)(n− i)

ni

}
with

An =
1
n

n

∑
i=1

Xi

and

Bn =

√
1
n

n

∑
i=1

(Xi−An)2

Applying Lemma 8 and (5.20), for all n large enough, it follows that

ρ̂(1)
n + tn ≥ ρ(1)+λ (ρ(2)−ρ(1))−E[Bn]

1
(n−1)(1−2α)

(n−1)(1−2α)

∑
i=1

h(i,n−1)

almost surely where

h(i,n), max
{
(n−1)(i−1)
n(n− i+1)

,
(n−1)(n− i)

ni

}
This provides a little control on the possible overshoot when estimating ρ(1).
However, we have no proof that this estimate upper bounds ρ(1) for n large enough.
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All we can say is that if we select α such that

λ (ρ(2)−ρ(1))−E[Bn]
1

(n−1)(1−2α)

(n−1)(1−2α)

∑
i=1

h(i,n−1)≥ 0 (5.22)

then it does indeed hold that for all n large enough

ρ̂(1)
n + tn ≥ ρ(1)

almost surely. Unfortunately, we have no way to select α such that (5.22) holds.

Selecting α for the Trimmed Mean Approach

To apply a trimmed mean filter, we must select a fraction α to trim. In this section,
we look at data dependent methods to select α known as α-adaptive trimmed
mean filters. There are no strong theoretical guarantees on the correctness of α-
adaptive trimmed mean filters, but they do work well in practice.

We examine two methods proposed in [54]. We first introduce some basic
properties of trimmed means. Suppose that we have n− 1 one-step estimates
ρ̃2, . . . , ρ̃n

iid∼ F . Our estimates are not in fact iid, but far apart ρ̃i are only weakly
dependent, so this assumption is not too far from the truth. Define the exact
trimmed mean

a(α),
1

1−2α

∫ 1−α

α
ρdF(ρ)

and the approximate trimmed means

an(α),
1

n−2[αn]

n−[αn]

∑
j=[αn]+1

ρ̃( j)

The following central limit theorem (CLT) type result from [55] relating an(α) to
a(α) holds: √

n(an(α)−a(α))
D→N (0,V (α))
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with variance

V (α) =
1

(1−2α)2

(∫ F−1(1−α)

F−1(α)
(ρ−a(α))2dρ

+α(F−1(α)−M(α))2 +α(F−1(1−α)−M(α))2)
(5.23)

The first method, known as Jaeckel’s estimate, is based on this CLT result and
chooses α to minimize the variance V (α). Since we cannot compute V (α) in a
closed form, we instead compute a trimmed estimate of the variance as a proxy

Vn(α) =
1

(1−2α)2

(
1
n

n−[αn]

∑
j=[αn]+1

(ρ̃( j)−an(α))2

+α(ρ̃[αn]−1−an(α))2 +α(ρ̃n−[αn]−an(α))2)
and choose

α∗ = arg min
α∈[0, 1

2 ]

Vn(α)

The second method, referred to as Otën’s estimate, is motivated by noting that
the reason for using a trimmed mean is to remove atypical outliers that bias the
estimate. We want to find the part of the distribution F that is roughly symmetric.
This removes outliers since they introduce a large degree of skew in the distribu-
tion. If the distribution F−1 is symmetric between [α,1−α], then a(α) is the
median. Thus, it holds that

(F−1(α)−a(α))+(F−1(1−α)−a(α))

1−2α
= 0

By a simple computation, it is easy to see that

da
dα

=
(F−1(α)−a(α))+(F−1(1−α)−a(α))

1−2α

The condition for symmetry is thus

da
dα

= 0

We want to pick a value for α such that da
dα is small. Since da

dα (α) cannot be
computed exactly, we need to estimate this quantity. Given a parameter T > 0 that
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controls the desired degree of symmetry, we select

α∗ = min

{
α

∣∣∣∣∣ 1
1/n
|an(α)−an(α−1/n)| ≤ T,αn ∈ Z,

1
n
≤ α <

1
2

}

As a result of this choice of α , it holds that

1
1/n
|an(α∗)−an(α∗−1/n)| ≈ da

dα
(α∗)

5.2.2 Heuristic Methods for Estimating the Change in Minimizers

We apply the expectation-maximization (EM) algorithm and k-means clustering
to estimate ρ(1) and ρ(2). We have no theoretical guarantees for these techniques,
but they work well in practice.

K-Means Clustering Approach

To combine the one-step estimates, we apply the k-means++ algorithm [56], a
variant of the k-means algorithm with good choices for the initial clusters, to de-
termine ρ(1) and ρ(2). The k-means algorithm clusters the one-step estimates
ρ̃2, . . . , ρ̃n into two clusters with centroids ρ̂(1) and ρ̂(2). The k-means algorithm
works by alternatively assigning the one-step estimates to the closest current clus-
ter centroid ρ̂(i) and averaging the one-step estimates currently assigned to a clus-
ter to produce a new centroid ρ̂(i). Finally, we decide that ρi = ρ( j) if ρ̃i is assigned
to the cluster with centroid ρ̂( j).

Expectation-Maximization Approach

We apply the expectation-maximization algorithm to estimate ρ(1) and ρ(2) and
the value of ρn defined in (5.1) under a Gaussian mixture model (GMM). We
model the abrupt changes using a Gaussian mixture model where ρn is a {ρ(1),ρ(2)}-
valued random variable with distributionα= (α(1),1−α(1)). For notational con-
venience, we also define α(2) = 1−α(1). For the GMM model, we assume that
our estimates of ρi satisfy

ρ̃i = ρi + ei
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where ei ∼N (0,σ2). This will not be true in practice and is only an approximate
model. For a fixed value of ρ , the pdf of the observation is given by

p(x,ρ) =
1√

2πσ2
exp
{
−(x−ρ)2

2σ2

}
For a GMM, the pdf of ρ̃i is given by

α(1)p(x,ρ(1))+(1−α(1))p(x,ρ(2))

We apply the EM algorithm [57] to estimate ρ(1) and α. For this particular GMM
model, the expectation step is equivalent to computing the following quantities:

wik =
α(k)p(ρ̃i, ρ̂(k))

α(1)p(ρ̃i, ρ̂(1))+(1−α(1))p(ρ̃i, ρ̂(2))

The quantity wik is interpreted as the responsibility of the kth mixture component
for the ith observation. The maximization step is comprised of the following up-
dates:

N̂ j
n =

n

∑
i=2

wi j

α̂( j)
n =

N̂ j
n

n−1

ρ̂( j)
n =

1

N̂ j
n

n

∑
i=2

wi jρ̃i

σ̂2
n =

1
2

2

∑
j=1

1

N̂ j
n

n

∑
i=2

wi j(ρ̃i− ρ̂( j)
n )2

To decide whether a ρ(2) change occurred at time n, we check whether it holds
that

(1− α̂(1)
n )p(ρ̃n, ρ̂

(2)
n )> α̂(1)

n p(ρ̃n, ρ̂
(1)
n )

This is a maximum likelihood estimate of which change occurred at time n. The
EM algorithm provides an effective approach to estimate ρ(i) for i = 1,2 and to
determine which change occurred. In practice, this method seems to work well
and provides accurate estimate of ρ(i) for i = 1,2.
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5.3 Optimization with Changes Unknown

We now consider the problem of selecting Kn when ρ(1) and ρ(2) are unknown
and must be estimated. We introduce alternative rules to select Kn under these
conditions by modifying the selection rules in (5.14) and (5.16). We consider the
estimates in (5.19), the trimmed mean, k-means, and EM approaches to estimate
ρ(1) and ρ(2).

5.3.1 Update the Past

First, we first consider an analog of the rule in (5.14). We estimate the mean
criterion achieved at times 1, . . . ,n using

ε̂i,n = b

(√2ε̂i−1,n

m
+ρ( ji,n)

)2

,Ki

 i = 2, . . . ,n

with

ji,n =

1, ρ̃i ≥ ρ̂(2)
n − tT H

2, else

In this recursion, we use the estimates of ρ(1) and ρ(2) at time n and decide the
value of ρi by checking if ρ̃i is sufficiently close to ρ̂(2)

n . Then we set

Kn = min

K ≥ 1

∣∣∣∣∣ b

(√2ε̂n−1,n−1

m
+ ρ̂( jn−1,n−1)

n−1

)2

,K

≤ ε

 (5.24)

We cannot provide any theoretical guarantees for this method, but it behaves sim-
ilarly to the rule in (5.14).

5.3.2 Do Not Update the Past

We now consider an analog of the rule in (5.16). We compute

K(i)
n , min

K ≥ 1

∣∣∣∣∣ b

(√2ε
m

+ ρ̂(i)
n−1 + tn−1

)2

,K

≤ ε

 (5.25)
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and set

Kn =

K(1)
n , ρ̃n−1 ≤ ρ̂(1)

n−1 + tT H

K(2)
n , ρ̃n−1 > ρ̂(1)

n−1 + tT H

(5.26)

We cannot provide any theoretical guarantees for this method, but it behaves sim-
ilarly to the rule in (5.16).

5.4 Experiment

We present a synthetic example to demonstrate that our sample selection and ρ
estimation rules work as expected. We use the example from Section 4.3.1 of
Chapter 4 with the change model in (5.1). We use the periodic jump model with
∆J1 = 10, ∆J2 = 4, ρ(1) = 1, and ρ(2) = 8. We average over twenty runs. We test
all ρ estimation methods. To select Kn, we compare the selection rule in (5.16)
with ρ(1) and ρ(2) known against the rules in (5.24) and (5.26) with ρ(1) and ρ(2)

unknown. We do not plot the Kn selection rule in (5.14), since its performance is
nearly identical to that in (5.16).

Figure 5.1 and 5.2 show the various estimates of ρ(1) and ρ(2) respectively. All
of the estimates upper bound their respective ρ values of ρ(1) = 1 and ρ(2) = 8
respectively. The k-means and EM methods produce estimates closest to the true
values of ρ . The trimmed mean methods produce looser estimates with Jaeckel’s
method for selecting α the tightest of the trimmed mean methods. Simply aver-
aging the one-step estimates to estimate ρ(1) produces the loosest estimate.
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Figure 5.1: Abrupt ρ(1) estimates
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Figure 5.2: Abrupt ρ(2) estimates

Figure 5.3 shows the resulting choice of Kn using the ρ for a variety of choices
of Kn averaged over a cycle of ρ(1) and ρ(2) changes. The ρ known method
implements the method in (5.14). The ρ unknown methods implement the update
past rule from (5.24) and the current rule from (5.26). The only ρ(1) method uses
the selection rule from (3.18) with

ρ̂n =
1

n−1

n

∑
i=2

ρ̃i (5.27)

Finally, the exact ρ(1) method uses the rule in (3.16) using ρ = ρ(1) with ρ(1)

known. These two choice of Kn corresponds to applying the methods of Chap-
ters 2 and 3 ignoring the change model in (5.1).

The exact ρ(1) method uses the fewest samples. The only ρ(1) method uses
substantially more samples due to the mixing of estimates of ρ(1) and ρ(2) in
ρ̂n. All of the abrupt change methods select a similar number of samples. These
methods select a small number of samples when ρn = ρ(1) and takes more when
ρn = ρ(2). Table 5.1 shows the average number of samples selected for each
method. We see that the new abrupt selection rules take slightly fewer samples
than the only ρ(1) approach using the methods of Chapter 3 naively.

Figure 5.4 compares the test losses of the various Kn selection methods using
the EM ρ estimation method. During the period of ρ(1) small changes all of
the Kn choices offer similar performance. Since the only ρ(1) and abrupt change
methods with ρ unknown take more samples during this period they offer slightly
better performance, but there is not a large gap in test loss. During a period of

90



2 4 6 8 10 12 14
n

0

20

40

60

80

100

120

K
n

ρ Known
ρ Unknown - Update Past

Only ρ(1)

ρ Unknown - Current

Exact ρ(1)

Figure 5.3: Abrupt Kn

Table 5.1: Average Kn

Method Kn

Exact ρ(1) 35
Only ρ(1) 64±3
ρ Known 60±3

ρ Unknown - Update 61±2
ρ Unknown - Current 60±3

ρ(2) jumps, the exact ρ(1) method offers the worst performance with a substantial
increase in test loss. The only ρ(1) method is less sensitive to the first ρ(2) jump,
since it take more samples in the ρ(1) regime. However, for subsequent ρ(2) jumps
the test loss remains higher than desired. All of the abrupt changes show the ability
to respond more aggressively to ρ(2) changes and decrease the test loss after the
first jump.

In summary, the abrupt Kn selection rules offer better test loss performance
without taking more samples in light of Table 5.1. In fact, the abrupt change rules
use slightly fewer samples than the only ρ(1) approach, which uses the tools of
Chapter 3 naively. Both of the abrupt Kn selection rules with ρ unknown offer
similar performance to the case when ρ is known.
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Chapter 6

Slowly Changing Dynamic Games

In this chapter, we consider the game problem introduced in Section 1.2.2. We ex-
amine the problem of finding solutions to a sequence of repeated games in which
the stage game slowly varies over time. We find solutions to each stage game
by finding an approximate saddle point for each stage game. We develop gra-
dient based learning dynamics to find an approximate Nash equilibrium of each
stage game. We apply our framework to a simple quadratic zero-sum game and
an estimation problem in a wireless sensor network.

6.1 Related Work

The problem of learning in games with continuous state spaces has been studied
in several settings. The work in [58] studied the problem of learning in a game
in which each player has a utility concave in its action. Gradient based strategies
were developed to asymptotically learn a Nash equilibrium for the determinis-
tic case. Learning under different concavity assumptions on the utilities, which
allows for more general, not gradient based, learning techniques, has been stud-
ied [59]. For this class of games, there are some guarantees on recovering an
approximate Nash equilibrium. Prior work on finding saddle points such as the
Arrow-Hurwicz-Uzawa algorithm [60] can be viewed as finding the Nash equilib-
rium of a zero sum game.

There is also a rich body of work on learning in games with finite strategy
spaces. We give a brief overview of prior work summarized in [1]. The simplest
learning dynamic is fictitious play in which a player assumes that its opponents
play stationary strategies. The player can treat the empirical distribution of the op-
ponent’s plays as the opponent’s true (mixed) strategy. For an oblivious opponent,
an opponent that does not react to its opponent’s play, fictitious play will converge
to a Nash equilibrium. However, for non-oblivious opponents, there are simple
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counterexamples such as Shapley’s game [1] in which the play does not converge
to a Nash equilibrium. There has been some work on repeated matrix games in
which the players employ gradient based learning approaches that converge to
Nash equilibria in [61].

In the replicator dynamic approach to learning, the share of players using a
given strategy increases if the strategy produces good results relative to other
strategies in play. A thorough overview of learning techniques is provided in [1].
The authors of [62, 63] consider the problem of a finite zero sum game in which
the two players may employ different learning strategies due to differences in ra-
tionality and information. For this model, when both players use gradient based
approaches to update their strategies, it is possible to show that the strategies of
the players converge to a Nash equilibrium. This model has applications to secu-
rity problems in which the security system and the attacker have differing levels
of knowledge. Finally, there has been some work on the case in which the stage
games of a repeated game change focused on 2×2 matrix games using an exten-
sion of fictitious play [64].

Our work is novel and focuses on slowly changing games with continuous strat-
egy spaces in which we try to transfer knowledge between the changing games.
Most prior work has focused only on finding solutions for repeated games with a
fixed stage game.

6.2 Zero Sum Games

Consider a sequence of two player zero-sum games modeled as a sequence of
saddle point problems. For a saddle point problem we have a function L n(xn

1,x
n
2)

with xn
1 ∈X1 the action of player one at time n and xn

2 ∈X2 the action of player
two at time n. We assume that this function is of the form

L n(x), E [`n(x)] (6.1)

where `n(x) is a random function. We seek a saddle point (x̄n
1, x̄

n
2) such that

L n(x̄n
1,x2)≤L n(x̄n

1, x̄
n
2)≤L n(x1, x̄

n
2) ∀x1 ∈X1,∀x2 ∈X2

A saddle point corresponds to a pure strategy Nash equilibrium (PNE) of this
game, since player one cannot unilaterally decrease L n(x̄n

1, x̄
n
2), and player two
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cannot unilaterally increase L n(x̄n
1, x̄

n
2).

We look to find a PNE by iterative, gradient based methods. Since we generally
cannot exactly recover a PNE, we need to consider an approximate PNE. There-
fore, our goal is to find a pure strategy ε-Nash equilibrium (ε-PNE) (x̃n

1, x̃
n
2). An

ε-PNE (x̃n
1, x̃

n
2) is defined by the following two conditions:

L n(x̃n
1, x̃

n
2)−L n(x1, x̃

n
2)≤ ε ∀x1 ∈X1

L n(x̃n
1,x2)−L n(x̃n

1, x̃
n
2)≤ ε ∀x2 ∈X2

(6.2)

This ensures that no player can improve its utility by more than ε by deviating
from the ε-PNE.

We capture the idea of slow change in the stage games by assuming that the
PNE of subsequent stage games are close in the sense that

‖x̄n− x̄n−1‖2 ≤ ρ (6.3)

Under assumptions that we will later impose on L n(x), it holds that the Nash
equilibrium x̄n is unique. Therefore, the slow change condition in (6.3) is well-
defined. Under this slow change assumption, we choose the number of times, Kn,
the game must be played to produce a sequence of ε-PNE x̃n.

We assume that the players have access to random functions ∇i`(x), denoted
stochastic gradients, such that

E [∇i`(x) | x] = ∇iL (x) i = 1,2 (6.4)

The players’ learning dynamics are based on using Kn stochastic gradients. We
assume that both players know the saddle point functions and that both can com-
pute ∇1`(x) and ∇2`(x). As a result, each player can independently compute the
Nash equilibrium without cooperation of the player. We can view this as a case
where there is a cost to receiving feedback useful for learning a NE, which each
player wants to control while still producing a useful ε-PNE.

Since each player’s ε-PNE x̃ is thus a random variable, the criteria we consider
are as follows:

Ex̃ [L n(x̃n
1, x̃

n
2)−L n(x1, x̃

n
2)]≤ ε ∀x1 ∈X1

Ex̃ [L n(x̃n
1,x2)−L n(x̃n

1, x̃
n
2)]≤ ε ∀x2 ∈X2

(6.5)
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This condition ensures that (6.2) holds on average. We are in effect trying to
control the average quality of the ε-PNE that we produce. This criterion is a
direct analog of the mean criterion for optimization problems from (1.7). For
convenience, when we refer to generating an ε-PNE x̃, we mean in the sense of
(6.5).

Assumptions: Suppose that L (x1,x2) is m1 strongly convex in x1, M1 Lips-
chitz gradients in x1, m2-strongly concave in x2, M2 Lipschitz gradients in x2,

E‖∇iL (x)‖2
2 ≤ Ai +Bi‖x− x̄‖2

2 i = 1,2 (6.6)

and
max

x1∈X1,x2∈X2
‖∇2

12L (x1,x2)‖2 ≤ H (6.7)

In addition, we assume that ∇iL (x̄) = 0 for i= 1,2, and we set m=min{m1,m2}
and M = max{M1,M2}. We generally need m > H for our work.

6.3 Learning for Fixed Zero Sum Games

We examine how players can learn ε-PNE for a fixed stage game using a gradient-
based learning dynamic. In this section, we drop the index n, since we only con-
sider a single stage game.

First, we give conditions for a unique saddle point to exist. By the continuity
and the convexity/concavity of L (x1,x2) and the compactness of X1 and X2,
we can apply Sion’s minimax theorem [65] to show the existence of a saddle point.
Furthermore, we want each of our saddle point functions to possess a unique sad-
dle point in order for (6.3) to be well-defined. Lemma 9 guarantees the uniqueness
of the saddle point under the strong convexity and strong concavity conditions.

Lemma 9. Suppose that the saddle point function L (x1,x2) is m1-strongly con-

vex in x1 and m2-strongly concave in x2. Then L (x1,x2) possesses a unique

saddle point.

Proof. Suppose that L (x1,x2) possesses two distinct saddle points x̄ and x̆.
Without loss of generality, suppose that x̄1 6= x̆1. Since x̄ is a saddle point, it
follows that

〈∇1L (x̄1, x̄2), x̆1− x̄1〉 ≥ 0 ∀x̆1 ∈X1
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By the strong convexity of L (x1,x2) in x1, it holds that

L (x̄1, x̄2) < L (x̄1, x̄2)+
1
2

m1‖x̆1− x̄1‖2
2

≤ L (x̄1, x̄2)+ 〈∇1L (x̄1, x̄2), x̆1− x̄1〉+
1
2

m1‖x̆1− x̄1‖2
2

≤ L (x̆1, x̄2)

≤ L (x̆1, x̆2)

Similarly, starting from x̆, it holds that

L (x̆1, x̆2)< L (x̆1, x̄2)≤L (x̄1, x̄2)

This is a contradiction, so L (x1,x2) possesses a unique saddle point.

Second, we look at the simple case of finding one saddle point of L (x1,x2).
Consider the following gradient learning dynamics with step sizes µ(k):

x1(k+1) = ΠX1 [x1(k)−µ(k+1)∇1`(x(k))]

x2(k+1) = ΠX2 [x2(k)+µ(k+1)∇2`(x(k))]
k = 0, . . . ,K−1 (6.8)

As noted in the related work section, this is the stochastic version of the Arrow-
Hurwicz-Uzawa algorithm for finding a saddle point [60].

The analysis in Lemma 10 is a first step to connecting the number of iterations
K in (6.8) to the ε-PNE quality. Lemma 10 connects the distance of the iterates
from the PNE to the number of iterations K.

Lemma 10. Provided that (6.10) and (6.7) hold with m > H, it follows that

E‖x1(k+1)− x̄1‖2
2 ≤ (1−2m1µ(k+1)+Bµ2(k+1))E‖x1(k)− x̄1‖2

2

+2Hµ(k+1)E [‖x1(k)− x̄1‖2‖x2(k)− x̄2‖2]

+Bµ2(k+1)E‖x2(k)− x̄2‖2
2 +Aµ2(k+1)

E‖x2(k+1)− x̄2‖2
2 ≤ (1−2mµ(k+1)+Bµ2(k+1))E‖x2(k)− x̄2‖2

+2Hµ(k+1)E [‖x1(k)− x̄1‖2‖x2(k)− x̄2‖2]

+Bµ2(k+1)E‖x1(k)− x̄1‖2
2 +Aµ2(k+1)

97



Proof. We have

‖x1(k+1)− x̄1‖2
2 ≤ ‖x1(k)− x̄1−µ(k+1)∇1`(x(k))‖2

2

≤ ‖x1(k)− x̄1‖2
2−2µ(k+1)〈∇1`(x(k)),x1(k)− x̄1〉

+µ2(k+1)‖∇1`(x(k))‖2
2

Define the σ -algebra

F (k) = σ (∇1`(x(1)), . . . ,∇1`(x(k)))

Then it holds that

E
[
‖x1(k+1)− x̄1‖2

2 |F (k)
]

≤ ‖x1(k)− x̄1‖2
2 +2µ(k+1)〈∇1L (x(k)),x1(k)− x̄1〉

+µ2(k+1)E
[
‖∇1`(x(k))‖2

2 |F (k)
]

Taking the unconditional expectation over F (k) yields

E‖x1(k+1)− x̄1‖2
2 ≤ E‖x1(k)− x̄1‖2

2−2µ(k+1)E〈∇1L (x(k)),x1(k)− x̄1〉
+µ2(k)E‖∇1`(x(k))‖2

2

(6.9)

By assumption, we have

E
[
‖∇1`(x(k))‖2

2
]
≤ A1 +B1‖x(k)− x̄‖2

2 (6.10)

By Taylor’s theorem, for some point x̃, we have

∇1L (x(k)) = ∇1L (x̄)+∇
2
11L (x̃)(x1(k)− x̃1)+∇

2
12L (x̃)(x2(k)− x̃2)
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This in turn implies that

〈∇1L (x(k)),x1(k)− x̄1〉
= 〈∇1L (x̄),x1(k)− x̄1〉+

〈
∇

2
11L (x̃)(x1(k)− x̄1),x1(k)− x̄1

〉
+
〈
∇

2
12L (x̃)(x2(k)− x̄2),x1(k)− x̄1

〉
≥ 〈∇1L (x̄),x1(k)− x̄1〉+m1‖x1(k)− x̄1‖2

2

−H‖x2(k)− x̄2‖2‖x1(k)− x̄1‖2 (6.11)

Substituting the bounds in (6.10) and (6.11) into (6.9), it holds that

E‖x1(k+1)− x̄1‖2
2 ≤ (1−2m1µ(k+1)+B1µ2(k+1))E‖x1(k)− x̄1‖2

2

+2Hµ(k+1)E [‖x1(k)− x̄1‖2‖x2(k)− x̄2‖2]

+B1µ2(k+1)E‖x2(k)− x̄2‖2
2 +A1µ2(k)

Similarly, for the second player, it holds that

E‖x2(k+1)− x̄2‖2
2 ≤ (1−2m2µ(k+1)+B2µ2(k+1))E‖x2(k)− x̄2‖2

2

+2Hµ(k+1)E [‖x1(k)− x̄1‖2‖x2(k)− x̄2‖2]

+B2µ2(k+1)E‖x1(k)− x̄1‖2
2 +A2µ2(k)

Define the pair of recursions

a(k+1) = (1−2m1µ(k+1)+B1µ2(k+1))a(k)+2Hµ(k+1)
√

a(k)b(k)

+B1µ2(k+1)b(k)+A1µ2(k+1)

b(k+1) = (1−2m2µ(k+1)+B2µ2(k+1))b(k)+2Hµ(k+1)
√

a(k)b(k)

+B2µ2(k+1)a(k)+A2µ2(k+1)
(6.12)

with
E‖x1(k)− x̄1‖2

2 ≤ a(0)

and
E‖x2(k)− x̄2‖2

2 ≤ b(0)
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From the Cauchy-Schwarz inequality, it follows that

E [‖x1(k)− x̄1‖2‖x2(k)− x̄2‖2] ≤
(
E‖x1(k)− x̄1‖2

2
)1/2 (E‖x2(k)− x̄2‖2

2
)1/2

Therefore, using this observation combined with the bounds in Lemma 10, it fol-
lows that

E‖x1(k)− x̄1‖2
2 ≤ a(k)

E‖x2(k)− x̄2‖2
2 ≤ b(k)

(6.13)

Remark: Suppose that m1 = m2 = m, A1 = A2, and B1 = B2. Consider minimizing
a m−H-strongly convex function f (x) by applying stochastic gradient descent
using the gradient bound

E‖∇xφ(x)‖2
2 ≤ A+2B‖x−x∗‖2

2

where x∗ = arg minx∈X φ(x). Then it holds that

E‖x(K)−x∗‖2
2 ≤ a(K)

This shows that the analysis of the saddle point problem in this chapter is similar
to the analysis of the optimization problem in previous chapters.

Define
b(a(0),b(0),K) = a(K)+b(K) (6.14)

This bound in turn satisfies

E‖x(K)− x̄‖2
2 ≤ b(a(0),b(0),K)

This gives us control on the strategies produced by gradient ascent and their
closeness to the PNE, but does not guarantee that x(K) is an ε-PNE. We examine
a way to translate from a strategy’s proximity to an ε-PNE to guaranteeing that
the strategy is in fact an ε-PNE. Applying strong convexity, it holds that

L (x1,x2(K))−L (x(K)) ≥ 〈∇1L (x(K)),x1−x1(K)〉+ 1
2

m1‖x1−x1(K)‖2
2

This lower bound is a positive definite quadratic in x1. Minimizing over x1 and
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rearranging yields

L (x(K))−L (x1,x2(K)) ≤ 1
2m1
‖∇1L (x(K))‖2

2 ∀x1 ∈X1

This guarantees that if ‖∇1L (x(K))‖2 is small, then player one cannot decrease
L (x(K)) by a large amount. Similarly, for player two it holds that

L (x1(K),x2)−L (x(K)) ≤ 1
2m2
‖∇2L (x(K))‖2

2 ∀x2 ∈X2

If it holds that

max
{

1
2m1
‖∇1L (x(K))‖2

2,
1

2m2
‖∇2L (x(K))‖2

2

}
≤ ε (6.15)

then x(K) is an ε-PNE as desired. By the Lipschitz gradient property applied at
the PNE x̄, it holds that

‖∇1L (x1, x̄2)‖2
2 = ‖∇1L (x1, x̄2)−∇1L (x̄)‖2

2

≤ M2
1‖x1− x̄1‖2

2

and

‖∇2L (x̄1,x2)‖2
2 = ‖∇2L (x̄1,x2)−∇2L (x̄)‖2

2

≤ M2
2‖x2− x̄2‖2

2

Therefore, we have

max
{

1
2m1
‖∇1L (x(K))‖2

2,
1

2m2
‖∇2L (x(K))‖2

2

}
≤ 1

2min{m1,m2}
(
‖∇1L (x(K))‖2

2 +‖∇2L (x(K))‖2
2
)

≤ max{M1,M2}2

2min{m1,m2}
‖x(K)− x̄‖2

2 (6.16)
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and

E
[

max
{

1
2m1
‖∇1L (x(K))‖2

2,
1

2m2
‖∇2L (x(K))‖2

2

}]
≤ max{M1,M2}2

2min{m1,m2}
b
(
E‖x1(0)− x̄1‖2

2,E‖x2(0)− x̄2‖2
2,K
)

(6.17)

Provided that

max{M1,M2}2

2min{m1,m2}
b
(
E‖x1(0)− x̄1‖2

2,E‖x2(0)− x̄2‖2
2,K
)
≤ ε

it follows that (6.15) holds yielding an ε-PNE.
We have control on the distance between the strategies produced by the gradient

learning dynamics and the distance between the PNE and the resulting ε-PNE. By
setting

K∗=min

{
K ≥ 1

∣∣∣∣∣ max{M1,M2}2

2min{m1,m2}
b
(
E‖x1(0)− x̄1‖2

2,E‖x2(0)− x̄2‖2
2,K
)
≤ ε

}

we produce an ε-PNE. With this control we will be able to learn an ε-PNE for
each stage game in the next section.

6.4 Learning for Time-Varying Zero Sum Games

We apply the same gradient ascent learning dynamics as in (6.8) except with a
time index n for the current stage game

xn
1(k+1) = ΠX [xn

1(k)−µn(k+1)∇1`
n(xn(k))]

xn
2(k+1) = ΠX [xn

2(k)+µn(k+1)∇2`
n(xn(k))]

xn(0), xn−1(Kn−1)

x̃n , xn(Kn)

(6.18)

with k = 0, . . . ,Kn−1. At time n, we start with the strategy generated by the learn-
ing dynamics for the previous stage game. Since the stage games change slowly
according to (6.3), this is a reasonable starting point. The last iterate xn(Kn) is
our ε-PNE x̃n. Note that each player can unilaterally apply this method due to its
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knowledge of the saddle point function.
In light of (6.17), to generate a sequence of ε-PNE, it is sufficient to generate a

sequence of iterates xn(Kn) such that

E‖xn(Kn)− x̄n‖2
2 ≤ ε̃

with
ε̃ =

2min{m1,m2}ε
max{M1,M2}2

We start with the trivial bounds

E‖x1
1(0)− x̄1

1‖2
2 ≤ diam2(X )

and
E‖x1

2(0)− x̄1
2‖2

2 ≤ diam2(X )

We set

K1 = min

{
K ≥ 1

∣∣∣∣∣ b
(
diam2(X1),diam2(X2),K

)
≤ ε̃

}
Proceeding inductively, suppose that at the beginning of time instant n, we have

E‖xn(0)− x̄n−1‖2
2 ≤ ε̃

By the triangle inequality for i = 1,2, we have

(
E‖xn

i (0)− x̄n
i ‖2

2
)1/2 ≤

(
E‖xn(0)− x̄n‖2

2
)1/2

=
(
E‖xn−1− x̄n‖2

2
)1/2

≤
(
E‖xn−1− x̄n−1‖2

2
)1/2

+‖x̄n− x̄n−1‖2

≤
√

ε̃ +ρ

Using this bound and setting

Kn = min

{
K ≥ 1

∣∣∣∣∣ b
((√

ε̃ +ρ
)2

,
(√

ε̃ +ρ
)2

,K
)
≤ ε̃

}

yields an ε-PNE xn(Kn).
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Disagreement Among Players

Assuming that all players know the saddle point functions L n(x), they can com-
pute an ε-PNE to their desired accuracy. However, the players may choose dif-
ferent ε . As a result player one discovers an ε1-PNE x̃ and plays x̃1. Player two
discovers an ε2-PNE x̆ and plays x̆2. The question then is what can we say about
the combination of strategies (x̃1, x̆2)? We know that for player one

L (x̆)−L (x̃1, x̆2)≤ ε2

and for player two
L (x̃1, x̆2)−L (x̃)≤ ε1

This ensures that player one’s deviation from the ε2-PNE computed by player
two cannot reduce L (x̆) by more than ε2. Similarly, player two’s deviation from
player one’s ε1-PNE cannot increase L (x̆) by more than ε1. Therefore, a player’s
choice of ε constrains the benefit that its opponent can accrue by deviating from
the player’s choice of ε-PNE. A player cannot, however, guarantee that it is im-
possible to substantially improve its own reward.

6.5 Estimating the Change in the Nash Equilibrium

It is also possible that we do not know ρ and must estimate it. We look at the
special case with

‖x̄n− x̄n−1‖2 = ρ

By using the ε-PNE generated through (6.18) and the triangle inequality, we have

‖xn−xn−1‖2 ≤ ‖x̃n− x̃n−1‖2 +‖x̃n− x̄n‖2 +‖x̃n−1− x̄n−1‖2 (6.19)

Lemma 11 provides a tool to bound ‖x− x̄n‖2.

Lemma 11. Provided that min{m1,m2} > H, for any strategies x = (x1,x2), it

holds that

‖x− x̄n‖2 ≤
1

min{m1,m2}−H
(‖∇1L

n(x)‖2 +‖∇2L
n(x)‖2)
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Proof. By Taylor’s theorem, for some point x̆n it holds that

〈x1− x̄n
1,∇1L

n(x)〉
= 〈x1− x̄n

1,∇1L
n(x̄n)〉+

〈
x1− x̄n

1,∇
2
11L

n(x̆n)(x1− x̄n
1)
〉

+
〈
x1− x̄n

1,∇
2
12L

n(x̆n)(x2− x̄n
2)
〉

≥ m1‖x1− x̄n
1‖2

2−H‖x1− x̄n
1‖2 · ‖x2− x̄n

2‖2

This in turn implies that

‖x1− x̄n
1‖2‖∇1L

n(x)‖2 ≥ m1‖x1− x̄n
1‖2

2−H‖x1− x̄n
1‖2 · ‖x2− x̄n

2‖2

and so
‖∇1L

n(x)‖2 ≥ m1‖x1− x̄n
1‖2−H‖x2− x̄n

2‖2

Similarly, we have

‖∇2L
n(x)‖2 ≥ m2‖x2− x̄n

2‖2−H‖x1− x̄n
1‖2

This in turn implies that

(m1−H)‖x1− x̄n
1‖2 +(m2−H)‖x2− x̄n

2‖2 ≤ ‖∇1L
n(x)‖2 +‖∇2L

n(x)‖2

By the sub-additivity of the square root function, it holds that

‖x− x̄n‖2 =
√
‖x1− x̄n

1‖2
2 +‖x2− x̄n

2‖2
2

≤ ‖x1− x̄n
1‖2 +‖x2− x̄n

2‖2

This in turn implies that

(min{m1,m2}−H)‖x− x̄n‖2 ≤ (min{m1,m2}−H)(‖x1− x̄n
1‖2 +‖x2− x̄n

2‖2)

≤ (m1−H)‖x1− x̄n
1‖2 +(m2−H)‖x2− x̄n

2‖2

≤ ‖∇1L
n(x)‖2 +‖∇2L

n(x)‖2
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Using Lemma 11 and (6.19), we have the bound

‖x̄n− x̄n−1‖2

≤ ‖x̃n− x̄n‖2 +‖x̃n− x̃n−1‖2 +‖x̃n−1− x̄n−1‖2

≤ ‖x̃n− x̃n−1‖2

+
1

min{m1,m2}−H
(‖∇1L

n(x̃n)‖2 +‖∇2L
n(x̃n)‖2)

+
1

min{m1,m2}−H

(
‖∇1L

n−1(x̃n−1)‖2 +‖∇2L
n−1(x̃n−1)‖2

)
Therefore, we can define the one-step estimate of ρ

ρ̃n , ‖x̃n− x̃n−1‖2

+
1

min{m1,m2}−H

(∥∥∥∥∥ 1
Kn

Kn

∑
k=1

∇1`
n
k(x̃

n)

∥∥∥∥∥
2

+

∥∥∥∥∥ 1
Kn

Kn

∑
k=1

∇2`
n
k(x̃

n)

∥∥∥∥∥
2

)

+
1

min{m1,m2}−H

(∥∥∥∥∥ 1
Kn−1

Kn−1

∑
k=1

∇1`
n−1
k (x̃n−1)

∥∥∥∥∥
2

+∥∥∥∥∥ 1
Kn−1

Kn−1

∑
k=1

∇2`
n−1
k (x̃n−1)

∥∥∥∥∥
2

)

We can then combine the one-step estimates ρ̃i by averaging to yield an estimate

ρ̂n =
1

n−1

n

∑
i=2

ρ̃i

By using Lemma 16 as in Theorems 1 and 3, it is possible to prove the for all n

large enough
ρ̂n + tn ≥ ρ

almost surely for appropriate choices of sequences {tn}. This inures that we sat-
isfy Assumption C.1. Since the proof is nearly identical, we omit it here.

By examining our bound b(d0,d0,K) defined in (6.14), it can be seen that bound
factors as in Assumption C.2 of Chapter 3. Thus, we can apply Theorem 5 to argue
that we eventually produce a sequence of εn-PNE x̃n with

limsup
n→∞

εn ≤ ε
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6.6 Experiments

We examine a simple synthetic example of a zero-sum game and an example of
an adversary attacking a surveillance network.

Synthetic Zero-Sum Game

Consider the following stochastic convex-concave, zero-sum game corresponding
to finding the saddle point of

L n(x1,x2), E(an,bn)∼pn [`
n(x1,x2)]

with

`n(x1,x2),
1
2

m1‖x1‖2
2 + 〈an,x1〉+H 〈x1,x2〉−〈bn,x2〉−

1
2

m2‖x2‖2
2

The random variables an and bn are unknown to the players. Note that this in-
cludes the case where an and bn are deterministic as well. This function satisfies
the assumptions of Section 6.2. The stochastic gradients in this problem are of the
form

∇1`
n(x1,x2)(k) = m1x1 +an(k)+Hx2

∇2`
n(x1,x2)(k) =−m2x2 +bn(k)+Hx1

k = 1, . . . ,Kn

with (an(k),bn(k)) iid∼ pn. In effect, each time we play the game, we can elect to
receive a realization (an,bn), which can be used to carry out the learning strategy
from (6.18).

We can find the PNE in a closed form

x̄n =

 m2E[an]−HE[bn]
m1m2+H2

−m1E[bn]+HE[an]
m1m2+H2
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This in turn implies that

‖x̄n− x̄n−1‖2
2

=

∥∥∥∥∥m2E[an]−HE[bn]

m1m2 +H2 − m2E[an−1]−HE[bn−1]

m1m2 +H2

∥∥∥∥∥
2

2

+

∥∥∥∥∥− m1E[bn]+HE[an]

m1m2 +H2 +
m1E[bn−1]+HE[an−1]

m1m2 +H2

∥∥∥∥∥
2

2

≤ 2(m2
2 +H2)

(m1m2 +H2)2E‖a
n−an−1‖2

2 +
2(m2

1 +H2)

(m1m2 +H2)2E‖b
n−bn−1‖2

2

and so it follows that

‖x̄n− x̄n−1‖2 ≤

√
2(m2

2 +H2)

m1m2 +H2 ‖a
n−an−1‖L2 +

√
2(m2

1 +H2)

m1m2 +H2 ‖b
n−bn−1‖L2

with ‖x‖L2 =
(
E‖x‖2

2
)1/2. Therefore, by controlling the size of the changes in

an and bn using the L2-norm, it follows that the PNE changes slowly according to
(6.3).

For this problem, clearly we have m1 = M1, m2 = M2, and H. For the gradient
growth condition in (6.10), we have

E‖∇1`
n(x1,x2)‖2

2

≤ 2E‖∇1`
n(x̄1, x̄2)‖2

2 +2E‖∇1`
n(x1,x2)−∇1`

n(x̄1, x̄2)‖2
2

= 2tr{Cov(an)}+4m2
1‖x1− x̄1‖2

2 +4H2‖x2− x̄2‖2
2

A similar bound holds for ∇2`
n(x1,x2), so we have

E‖∇1`
n(x1,x2)‖2

2 +E‖∇2`
n(x1,x2)‖2

2

≤ 2tr{Cov(an)}+2tr{Cov(bn)}+4
(
m2

1 +H2)‖x− x̄‖2
2

Figure 6.1 shows the estimate of ρ . As desired, this estimate upper bounds the
true ρ = 1. Figure 6.2 shows the chosen number of rounds of play (Kn). This
appears to settle down. Figure 6.3 shows the quality of the achieved PNE. We
achieve our target value of ε = 0.2.
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Figure 6.2: Choice of Kn

Surveillance Network Game

Consider an estimation problem in which a fusion center estimates a scalar quan-
tity wn during epoch n using the observations of two sensor nodes. An adversary
has compromised one of these sensor nodes and sends a false signal to the fusion
center. Figure 6.4 shows the surveillance network and adversary structure. We
draw the compromised sensor closer to the signal wn to visually indicate that it
is compromised by the adversary. The goal of the fusion center is to estimate wn

and the goal of the adversary is to impede the estimation process, while avoiding
detection of its actions. Avoiding detection is crucial, since otherwise the fusion
center can ignore the compromised sensor node or reset it to regain control.
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Figure 6.4: Surveillance network

We model this problem as a zero sum game that corresponds to finding the
saddle point of the function

L n(xn
1,x

n
2), Eyn

1,y
n
2
[φ(xn

1,y
n
1,y

n
2(x

n
2))+ψ(xn

2)]

where xn
1 is the action of the fusion center, xn

2 is the action of the adversary, yn
1 is

the observation of the not compromised sensor node, and yn
2(x

n
2) is the observation

of the compromised sensor node. The function φ(xn
1,y

n
1,y

n
2(x

n
2)) is the estimation

loss of the sensor network. The function ψ(xn
2) penalizes the actions of the ad-

versary based on how likely it is that the fusion center can detect the adversary’s
action.
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We consider the specific problem with

φ(xn
1,y

n
1,y

n
2(x

n
2)) =

1
2

(
wn− (xn

1)
>
[

yn
1

yn
2(x

n
2)

])2

(6.20)

and
ψ(xn

2) =−
λ
2
(xn

2)
2 (6.21)

We model these observations as

yn
1(k) = wn +en

1(k)

yn
2(k) = wn +xn

2 +en
2(k)

k = 1, . . . ,Kn

where wn ∼N (µn,σ2
w), en

1(k),e
n
2(k) ∼N (0,σ2

e ), and en
1(k),e

n
2(k),w

n are inde-
pendent. Note that at each time instant only one wn is drawn. We capture the idea
of slow change by assuming that µn changes slowly. We do not have a closed form
for the saddle point, but our simulation indicates that this slow change assumption
on µn actually produces slow changes in the game’s PNE.

The estimation loss φ(xn
1,y

n
1,y

n
2(x

n
2)) in this choice is mean squared error. To

understand the motivation for the detection penalty, we consider a particular scheme
for the fusion center to detect the adversary. Suppose that given Kn observations
yn

1(1), . . . ,y
n
1(Kn) and yn

2(1), . . . ,y
n
2(Kn) the fusion center computes the test statistic

Tn ,
1

2σ2
e

Kn

∑
k=1

(yn
2(k)− yn

1(k))
2

Under our signal model, this test statistic becomes

Tn =
1

2σ2
e

Kn

∑
k=1

(xn
2 + en

2(k)− en
1(k))

2

If the adversary no action, then the statistic Tn is χ2-distributed with Kn degrees
of freedom. If the adversary takes an action, then Tn is noncentral χ2-distributed
with Kn degrees of freedom and noncentrality parameter

λn =
Kn
(
xn

2
)2

2σ2
e

(6.22)
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Therefore, the fusion center can carry out the hypothesis test

H0 :Tn ∼ χ2
Kn

H1 :Tn ∼ χ2
Kn
(λn)

(6.23)

using a threshold test

δ (yn
2(1), . . . ,y

n
2(Kn)) =

0, Tn ≤ τ

1, Tn > τ
(6.24)

The complementary CDF of the test statistic Tn depends on the Marcum Q-function
[66], i.e.,

Pxn
2
{Tn > τ}= Q K

2

(√
λn,
√

τ
)

The false alarm probability of the test in (6.24) can be set at α by finding τ satis-
fying

P0 {Tn > τ}= Q K
2

(
0,
√

τ
)
= α

The Marcum Q-function is monotone increasing in its first argument [66], so we
have

lim
λn→∞

Pxn
2
{Tn > τ}= 1

monotonically. Thus, the size of the noncentrality parameter directly controls
the power of the test. From the form of the noncentrality parameter in (6.22), it
follows that

(
xn

2
)2 directly controls the power of the test in (6.24). This justifies

the detection penalty in (6.21), since
(
xn

2
)2 directly affects the power of the test

in (6.24).
Expanding this model and evaluating the expectation, it holds that

L n(xn
1,x

n
2) =

1
2
((1−xn

11−xn
12)w+xn

12x
n
2)

2 +
1
2

σ2
e ‖xn

1‖2
2−

1
2

λ (xn
2)

2 (6.25)

This model does not fit into the framework exactly, so we consider an approxima-
tion of our saddle point function of the following form:

L n(xn
1,x

n
2) =

1
2
(1−xn

11−xn
12)

2 ((µn)2 +σ2
w
)
+(1−xn

11−xn
12)x

n
2µn

+ γ
√(
xn

12x
n
2
)2

+δ 2 +
1
2

σ2
e ‖xn

1‖2
2−

1
2

λ (xn
2)

2

(6.26)
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Figure 6.5 shows the estimation loss, MSE, for the fusion center

1
2
(
(1−x11−x12)

(
(µn)2 +σ2

w
)
−x12x2

)2
+

1
2

σ2
e ‖xn

1‖2
2

plotted against λ for both the exact saddle point function in (6.25) and the approx-
imate saddle point function in (6.26). We see that the approximate saddle point
problem roughly captures the trade-off between detection probability, through λ ,
and MSE of the exact saddle point problem. Finally, we assume that we have

Figure 6.5: Mean squared error vs. λ

access to stochastic gradients of ∇iL n(xn
1,x

n
2) of the form

∇i`
n(xn

1,x
n
2) = ∇iL

n(xn
1,x

n
2)+gi

with gi ∼N (0,σ2
e ).

Figure 6.6 plots the estimate of ρ . We do not know what the true value of
ρ is, but our estimate settles down. Figure 6.7 plots the choice of numbers of
rounds of the game, Kn, selected by our method. Our choice of Kn settles down
too. Figure 6.8 plots the Nash equilibrium quality. We achieve close to our target
of ε = 0.2. Figure 6.9 plots the estimation loss achieved by the approach in this
chapter, an approach where only the fusion center modifies its strategy, and an
approach where only the adversary modifies its strategy. Note that we plot the
exact MSE estimation loss and not the approximate loss. If the fusion center stops
playing, then the adversary can substantially increase the MSE. If the adversary
stops playing, then the fusion center can substantially lower the MSE. Our game
approach performs in between these two approaches.
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Chapter 7

Conclusion

We have introduced general techniques to solve a sequence of time varying op-
timization problems and to find solutions of repeated games with time-varying
stage games. We have introduced data dependent ways to select either the number
of samples for the optimization problem or the number of rounds for the game
problem to find approximate solutions under a variety of different models for how
the problems change. We have provided theoretical guarantees on the accuracy
of our approximate solutions. Tests involving both synthetic and real data have
demonstrated the efficacy of our approaches in this thesis.

7.1 Future Work

In this section, we outline some broad future research directions.

7.1.1 Model Free Approach

We look at an approach to controlling the mean criterion when we do not know
b(d0,Kn). Since we do not know b(d0,K), we will not estimate the change in the
minimizers, ρ , in contrast to the approach of Chapters 3, 4, and 5. Suppose that
Assumptions A.1-A.6 and the following assumptions hold:

1. The functions fn(x) have uniformly Lipschitz continuous gradients in x
with modulus M, i.e.,

Ezn∼pn‖g (x,zn)−g (x̃,zn)‖ ≤M‖x− x̃‖

2. The minimizers satisfy x∗n ∈ int(X ) for all n≥ 1.

As an aside, we first consider the problem of variable structure control (VSC)
from control theory, which has connections to our problem [67].
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Variable Structure Control Consider controlling a discrete-time linear system

xn+1 = Axn +Bun +dn (7.1)

where xn is the state, un is the control input, and dn is a disturbance signal. We
now examine a special type of control law relevant to our work. From [67], the
design of a sliding mode controller consists of the following two steps:

1. Find a switching function s(x) such that the sliding mode s(xn)= 0 is stable

2. Determine a control law

u(x) =

u+(x), s(x)> 0

u−(x), s(x)< 0

with un = u(xn)

A sliding mode controller tries to drive the system to s(x) = 0 by switching be-
tween two control laws, u+(x) and u−(x), depending on whether the system is
above the sliding plane, s(x) > 0, or below, s(x) < 0. In general for a discrete-
time system, it is impossible to achieve s(xn) = 0, since crossings of the sliding
mode need not occur at an exact discrete time instant. Instead, the best we can
hope for is that the state xn remains close to the sliding mode in the sense that
|s(xn)| is small (known as a quasi-sliding mode band (QSMB)). For linear and
non-linear sliding mode controllers, there are some results and theoretical guaran-
tees for sliding mode controllers [67, 68].

For our problem, we can view the state of discrete time system as the approxi-
mate minimizer xn

xn = A
(
xn−1,{zn(k)}Kn

k=1

)
where A captures the behavior of our optimization algorithm. In this section, we
treat A

(
xn−1,{zn(k)}Kn

k=1

)
as a black box that is completely unknown to us. As

a consequence of the descent lemma [34], we have

fn(xn)− fn(x
∗
n)≤

1
2

M‖xn−x∗n‖2

As a consequence of strong convexity, we have

‖xn−x∗n‖ ≤
1
m
‖∇x fn(xn)‖
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This in turn shows that

fn(xn)− fn(x
∗
n) ≤

1
2

M
(

1
m
‖∇x fn(xn)‖

)2

≤ M
2m2‖∇x fn(xn)‖2

and so
E[ fn(xn)]− fn(x

∗
n)≤

M
2m2E

[
‖∇x fn(xn)‖2]

Therefore, if we have

E
[
‖∇x fn(xn)‖2]≤ 2m2ε

M
, δ

then it holds that
E[ fn(xn)]− fn(xn)≤ ε

This suggests that we choose the switching function

sn(x) = ‖∇x fn(x)‖2

Our goal is to find a QSMB such that

sn(xn)≤ δ

almost surely. This will in turn imply that

E[ fn(xn)]− fn(x
∗
n)≤ ε

as desired.
With K1 fixed, we consider using the controller

Kn = max


1, ‖∇x fn(x)‖2 > δ

−1, ‖∇x fn(x)‖2 < δ
,1


If we are above our target δ for ‖∇x fn(x)‖2, then we increase the number of
samples by one. If we are below our target δ for ‖∇x fn(x)‖2, then we decrease
the number of samples by one.

In practice, we do not know ‖∇x fn(x)‖2, so we must approximate this quantity.
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Define

Ĝn ,
1

Kn

Kn

∑
k=1

∇x`(xn,zn(k))

Suppose we start out with a fixed K1. We choose Kn from Kn−1 by setting

∆Kn =

+1, Ĝ2
n−1 > δ

−1, Ĝ2
n−1 ≤ δ

and for n≥ 2

Kn = Kn−1 +∆Kn

= K1 +
n

∑
i=2

∆Ki

We have no theoretical guarantees for this approach, but this is of interest as it is
computationally simple. Future work would consist of studying properties of this
approach and trying to provide theoretical guarantees.

We consider a simple test of this method on the synthetic regression problem
from Section 4.3.1 of Chapter 4. Figure 7.1 shows the number of samples se-
lected using our method against the number of samples selected by the model
free method. This method eventually settles down and select Kn close to what
the methods of this thesis pick. Figure 7.2 shows the loss achieved by the direct
estimate method against the model free approach of this section.
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Figure 7.1: Model free Kn
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7.1.2 Extension of the Game Problem

We consider several extensions of the game problem in Chapter 6 to non-zero-sum
games. Consider a P-person continuous game where player p has utility un

p (x)

for the nth stage game. The strategy space for player p is Xp ⊂ Rdp . We impose
various convexity/concavity conditions on the utilities. As before, we want to find
a pure strategy ε-Nash equilibrium for each stage game n. A pure strategy ε-Nash
equilibrium is a pure strategy x̄ such that

un
p (xp, x̄−p)−un

p (x̄)≤ ε ∀xp,∀p

This means that any player can only unilaterally increase its utility by ε . With
ε = 0, an ε-PNE is just a PNE. We focus on ε-Nash equilibria with ε > 0, since
there are polynomial time algorithms to find such equilibria for games with con-
tinuous strategy spaces. The problem of finding a Nash equilibrium, ε = 0, is
more challenging and no general, time efficient algorithm is known [4]. We focus
on pure strategies in this section due to the difficulty of finding mixed equilibrium
for continuous games. In the most general case, we need to deal with distribu-
tions over the entire continuous strategy space, which is challenging. For some
continuous games with utilities that can be expressed as the sum of polynomials,
the mixed strategy Nash equilibria are supported on a finite subset of the strategy
space [69]. For such games, it may be possible to efficiently find a mixed strategy
ε-Nash equilibrium; however, we do not consider this problem in this section.
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Diagonally Strict Concave Utilities First, suppose that the utilities up (xp,x−p)

are concave in the action xp of player p. Note that certain forms of Cournot com-
petitions are concave games [58]. Then it holds that there exists a pure strategy
Nash equilibrium [58]. However, the pure strategy Nash equilibrium need not be
unique. As an example, consider the two player game with utilities

u1 (x1,x2) = x1x2−
1
2

x2
1

u2 (x1,x2) = x1x2−
1
2

x2
2

and X1 = X2 = X . The best responses are given by

BR1(x2) = x2

BR2(x1) = x1

where BRi(x−i) is the best response of player i to the actions of all the other
players, i.e.,

BRi(x−i) = arg max
xi∈Xi

ui
(
xi,x−i

)
Thus, it follows that any pair (x1,x2) = (x,x) is a Nash equilibrium.

We want to focus on the case when our game admits a unique PNE, so that it is
straightforward to discuss how the PNE is changing. If the PNE are not unique,
then defining the change in stage games is more difficult. From the previous
example, we see that concavity in the players’ strategy is not enough to guarantee
a unique PNE. To guarantee a unique pure strategy Nash equilibrium, we need
stronger conditions on the utilities. The utilities are said to be diagonally strictly

concave if there exist constants rp > 0 such that the pseudo-gradient map

g(x,r) =


r1∇1u1 (x)

...
rP∇PuP (x)


satisfies

(x̃−x)>g(x,r)+(x− x̃)>g(x̃,r)> 0 ∀x, x̃

If the utilities are diagonally strictly concave, then the pure strategy Nash equilib-
rium is unique [58]. In order to check for diagonally strict concave utilities, it is
sufficient that G(x,r)+G(x,r)> is negative definite with G(x,r) the Jacobian
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associated with the mapping g(x,r). Again, certain forms of Cournot competi-
tions have diagonally strictly concave utilities.

For a fixed stage game, the analysis in [58] shows that if all players use gradient
ascent

xp(k) = ΠX

[
xp(k−1)+µ(k)∇pup (x(k))

]
k = 1, . . . ,K

then the player’s strategies converge to the unique pure strategy Nash equilibrium
x̄. To compute the gradient ascent iteration, all players need to know their own
utilities plus the pure strategy played by the other players at the previous time
instant. The analysis in [58] only proved that gradient ascent converges to the
pure strategy Nash equilibrium x̄ but does not provide rates. We can look at
extending the analysis in [58] to our time varying stage game problem.

Socially Concave Utilities Next, we consider a variant of concave games with
fewer restrictions on the learning dynamics. A socially concave game is a game
for which there exists positive constants {rp}P

p=1 such that

P

∑
p=1

rpup (x)

is concave and up (xp,x−p) is convex in x−p for each p [59]. If the utilities
are twice differentiable, then the game is also a concave game. Certain Cournot
competitions and resource allocation games are socially concave games.

The following theorem captures several nice properties of learning in socially
concave games from [59]:

Theorem 7. If all players play strategies that achieve bounded external regret,

i.e.,

max
xp

K

∑
k=1

(
up (xp,x−p(k))−up (x(k))

)
≤ Rp(K),

then it holds that

1. The average strategy 1
K ∑

K
k=1x(k) is a

(
1

rmin
∑

P
p=1

rpRp(K)
K

)
-Nash equilib-

rium with rmin = mini ri

2.
∣∣∣up (x(K))−up

( 1
K ∑

K
k=1x(k)

)∣∣∣≤ 1
rp

∑
P
p=1

rpRp(K)
K
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This shows that the average strategy is an ε-Nash equilibrium, and the utility at
time K is close to the utility of the ε-Nash equilibrium. Any method that achieves
low regret in the sense that Rp(K) = o(K) is sufficient. Applying gradient ascent
achieves O(

√
K) regret if the utilities are concave [13] or O(logK) regret if the

utilities are strongly concave [7]. Gradient ascent thus meets the requirements of
a socially concave game but any low regret method can be used.

Future work consists of extending Theorem 7 to the time varying problem to
track the PNE.

Folk Theorem Extension Thus far, we have looked at tracking the equilibria
of the stage games that constitute the nth repeated game. However, the repeated
game formed from the stage game may have Nash equilibria not present in the
stage game. A classic example is the prisoner’s dilemma game. In the stage game,
the unique Nash equilibrium is for both players to defect. Consider the following
strategy know as tit for tat: a player initially cooperates and then repeats the action
of the other player for every time instant afterwards. Both players using tit for tat
constitutes a Nash equilibrium of the repeated game and results in both players
cooperating [1].

In the field of repeated games, there are results known as folk theorems that
characterize the type of new Nash equilibria that can appear in repeated games
that are not present in the stage game [70]. This suggests that as our stage games
change slowly over time, we need to examine Nash equilibria of the overall re-
peated game and not just the stage game. For the simple case in which the stage
game does not change there has been a little work on finding equilibria of the
repeated game [71].
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Appendix A

Examples of b(d0,K) Bound for SGD

We examine bounds b(d0,K) satisfying assumption A.4 for SGD (2.4). We form
a convex combination of the iterates to yield a final approximate minimizer

x̄(K) =
K

∑
k=0

λ (k)x(k)

Note that this includes the case where x̄(K) = x(K) by selecting λ (K) = 1 and
λ (0) = · · ·= λ (K−1) = 0. We consider the following bounds:

1. Lipschitz gradient bound with x̄= x(K) (Lemma 13)

b(d0,K) =
1
2

M

(
K

∏
k=1

(1−2mµ(k)+Bµ2(k))d(0)

+A
K

∑
k=1

K

∏
i=k+1

(1−2mµ(i)+Bµ2(i))µ2(k)

)

2. Inverse step size averaging (Lemma 14)

b(d0,K) =
(1+B)d(0)+B∑

K
k=1 γ(k)+(K +1)A

m(K +1)(K +4)

3. Special quadratic bound with averaging (Lemma 15)

b(d0,K) =
M
2

(
1

m1/2

K−1

∑
k=1

∣∣∣∣ 1
µ(k+1)

− 1
µ(k)

∣∣∣∣(γ(k))1/2

+
1

m1/2µ(1)
(d(0))1/2 +

1
m1/2µ(K)

(γ(K))1/2

+

√
A

mK
+

√√√√ 2B
mK2

K

∑
k=1

E[d(k−1)]

2
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We now examine the proofs of these three bounds, which are mostly small
extensions of previous results. Define

d(k), ‖x(k)−x∗‖2 (A.1)

First, we bound E[d(k)] in Lemma 12, which follows the classic Lyapunov func-
tion analysis of SGD [72].

Lemma 12. It holds that

E[d(k)]≤
K

∏
k=1

(1−2mµ(k)+Bµ2(k))d(0)

+A
K

∑
k=1

K

∏
i=k+1

(1−2mµ(i)+Bµ2(i))µ2(k)

Proof. See [72].

It is possible to further upper bound the bound in Lemma 12 to yield a closed
form given in [73]; however, the bound in Lemma 12 is generally tighter. Next, we
apply Lemma 12 along with a Lipschitz gradient assumption on f (x) to produce
a simple b(d0,K) bound.

Lemma 13. With arbitrary step sizes, assuming that f (x) has Lipschitz continu-

ous gradients with modulus M, and λ (K) = 1, it holds that

E[ f (x̄(K))]− f (x∗)≤ 1
2

ME[d(K)]

and therefore, it holds that

b(d0,K) =
M
2

(
K

∏
k=1

(1−2mµ(k)+Bµ2(k))d(0)

+A
K

∑
k=1

K

∏
i=k+1

(1−2mµ(i)+Bµ2(i))µ2(k)

)

satisfies the requirements of A.4.

Proof. Using the descent lemma from [34], it holds that
E[ f (x)]− f (x∗) ≤ 1

2ME[d(K)]. Plugging in the bound from Lemma 12 yields
the bound b(d0,K).
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Next, we consider an extension of the averaging scheme derived with B = 0
in [74] to the case with B > 0 using the bounds in Lemma 12. This averaging
scheme puts weight

λ (k) =
1

µ(k)

∑
K
j=1

1
µ( j)

on the iterate x(k) with step size µ(k) = O(k−1). Therefore, this averaging puts
increasing weight on later iterates.

Lemma 14. With the choice of step sizes given by

µ(k) =
1

m(k+1)
∀k ≥ 1

it holds that

b(d0,K) =
(1+B)d(0)+B∑

K
k=1 γ(k)+(K +1)A

m(K +1)(K +4)

satisfies assumption A.4 where E[d(k)]≤ γ(k).

Proof. This proof is a straightforward extension of the proof in [74]. We have
using standard analysis of SGD (see [72] for example).

E[d(k)]≤ (1−2mµ(k)+Bµ2(k))E[d(k−1)]

−2µ(k)(E[ f (x(k−1))]− f (x∗))+Aµ2(k)

Then dividing by µ2(k), we have

1
µ2(k)

E[d(k)]≤
(

1−2mµ(k)
µ2(k)

+B
)
E[d(k−1)]

− 2
µ(k)

(E[ f (x(k−1))]− f (x∗))+A

It holds that
1−2mµ(k)

µ2(k)
≤ 1

µ2(k−1)
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This implies that

1
µ2(k)

E[d(k)]− 1
µ2(k−1)

E[d(k−1)]

≤ BE[d(k−1)]− 2
µ(k)

(E[ f (x(k−1))]− f (x∗))+A

Summing from k = 1 to K +1 and rearranging yields

K

∑
k=0

1
µ(k+1)

(E[ f (x(k))]− f (x∗))

≤ 1
2
(1+B)d(0)+

1
2

B
K

∑
k=1

E[d(k)]+
1
2
(K +1)A

With the weights

λ (k) =
1

µ(k+1)

∑
K
τ=0

1
µ( j+1)

we have

E[ f (x̄(K))]− f (x∗)≤
1
2(1+B)d(0)+ 1

2B∑
K
k=1E[d(k)]+

1
2(K +1)A

∑
K
τ=0

1
µ(τ)

Then it holds that

K

∑
τ=0

1
µ(τ +1)

=
K

∑
τ=0

m(τ +2) =
1
2

m(K +1)(K +4)

so

E[ f (x̄(K))]− f (x∗)

≤ (1+B)d(0)+B∑
K
k=1E[d(k)]+(K +1)A

m(K +1)(K +4)

≤ (1+B)d(0)+B∑
K
k=1 γ(k)+(K +1)A

m(K +1)(K +4)

To get the required γ(k) bounds, we use Lemma 12. For the choice of step sizes
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in Lemma 14 from Lemma 12, it holds that E[d(k)] = O
(1

k

)
. Since

K

∑
k=1

1
k
= O (logK)

it holds that

E[ f (x̄(K))]− f (x∗) = O

(
d(0)
K2 +

log(K)

K2 +
1
K

)
The O( 1

K ) rate is minimax optimal for stochastic minimization of a strongly con-
vex function [75].

Next, we look at a special case of averaging from [73] for stochastic gradients
such that

E‖g (x,z)−g (x̃,z)−g(2) (x,z)(x− x̃)‖2 = 0 ∀x, x̃ ∈X

where g(2) (x,z) is an unbiased stochastic second derivative with respect to x.
Quadratic objectives satisfy this condition.

Lemma 15. Assuming that

1. E‖g (x,z)−g (x̃,z)−g(2) (x,z)(x− x̃)‖2 = 0 ∀x, x̃ ∈X

2. µ(k) =Ck−α with α ≥ 1/2

3. λ (0) = 0 and λ (k) = 1/K for 1≤ k ≤ K

4. E[d(k)]≤ γ(k)

it holds that

(
E[d̄(K)]

)1/2 ≤ 1
m1/2

K−1

∑
k=1

∣∣∣∣ 1
µ(k+1)

− 1
µ(k)

∣∣∣∣(γ(k))1/2

+
1

m1/2µ(1)
(d(0))1/2 +

1
m1/2µ(K)

(γ(K))1/2

+

√
A

mK
+

√√√√ 2B
mK2

K

∑
k=1

E[d(k−1)]

with d̄(K) = ‖x̄(K)−x∗‖2. If f has Lipschitz continuous gradients with modulus
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M, then it holds that

b(d0,K) =
M
2

(
1

m1/2

K−1

∑
k=1

∣∣∣∣ 1
µ(k+1)

− 1
µ(k)

∣∣∣∣(γ(k))1/2

+
1

m1/2µ(1)
(d(0))1/2 +

1
m1/2µ(K)

(γ(K))1/2

+

√
A

mK
+

√√√√ 2B
mK2

K

∑
k=1

E[d(k−1)]

2

5 satisfies Assumption A.4.

Proof. See [73] for the proof.

This decays at rate O
( 1

K

)
as long as µ(k) =Ck−α with 1

2 ≤ α ≤ 1. To get the
bounds γ(k), we can again apply Lemma 12.

129



Appendix B

ρ Estimation Proofs

For our analysis of minimizer change estimation in this appendix and parameter
estimation in Appendix D, we need to introduce a few results for sub-Gaussian
random variables including the following key technical lemma from [30]. This
lemma controls the concentration of sums of random variables that are sub-Gaussian
conditioned on a particular filtration {Fi}n

i=0. Such a collection of random vari-
ables is referred to as a sub-Gaussian Martingale sequence.

Lemma 16 (Theorem 7.5 of [30]). Suppose we have a collection of random vari-

ables {Vi}n
i=1 and a filtration {Fi}n

i=0 such that for each random variable Vi it

holds that

1. E
[

es
(

Vi−E
[
Vi

∣∣Fi−1

]) ∣∣∣∣Fi−1

]
≤ e

1
2 σ2

i s2
with σ2

i a constant

2. Vi is Fi-measurable

Then for every a ∈ Rn it holds that

P

{
n

∑
i=1

aiVi >
n

∑
i=1

aiE
[
Vi
∣∣Fi−1

]
+ t

}
≤ exp

{
− t2

2ν

}

with ν = ∑
n
i=1 σ2

i a2
i . The other tail is similar.

Remark: If we can upper bound the conditional expectations E
[
Vi
∣∣Fi−1

]
≤ Ci

by Fi−1-measurable random variables Ci, then we have

P

{
n

∑
i=1

aiVi >
n

∑
i=1

aiCi + t

}
≤ P

{
n

∑
i=1

aiVi >
n

∑
i=1

aiE
[
Vi
∣∣Fi−1

]
+ t

}

≤ exp
{
− t2

2ν

}
For our analysis, we generally cannot compute E

[
Vi
∣∣Fi−1

]
, but we can find

“nice” Ci.
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To find σ2
i for use in Lemma 16, we employ the following conditional version

of Hoeffding’s lemma.

Lemma 17 (Conditional Hoeffding’s Lemma). If a random variable V and a σ -

algebra F satisfy a≤V ≤ b and E[V |F ] = 0, then

E
[
esV |F

]
≤ exp

{
1
8
(b−a)2s2

}
Proof. Follows from the standard proof of Hoeffding’s Lemma from [76].

Using these concentration tools, we can analyze averages of the direct estimate.

B.1 Euclidean Norm Condition

As a reminder, we consider running our optimization algorithm used to generate
xi again using independent samples {z̃i(k)}Ki

k=1 to yield a second approximate
minimizer x̃i. For SGD, the process to generate x̃i is summarized in (3.7). We
connect ρ̃i to ρ̃(2)

i with ρ̃(2)
i defined in (3.8).

Proof of Theorem 1: To proceed, we compare the three single step estimates:

1. ρ̃i = ‖xi−xi−1‖2 +
1
m‖Gi‖2 +

1
m‖Gi−1‖2

2. ρ̃(2)
i = ‖x̃i− x̃i−1‖2 +

1
m‖G̃i‖2 +

1
m‖G̃i−1‖2

3. ρ̃(3)
i = ‖x̃i− x̃i−1‖2 +

1
m‖∇ fi(x̃i)‖2 +

1
m‖∇ fi−1(x̃i−1)‖2

where

Ĝi =
1
Ki

Ki

∑
k=1

∇x`(xi,zi(k))

and

G̃i =
1
Ki

Ki

∑
k=1

∇x`(x̃i,zi(k))

Define ρ̂(2)
n and ρ̂(3)

n analogously to ρ̂n as an average of the corresponding single
step estimates. Using the triangle inequality and the reverse triangle inequality, it
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holds that

|ρ̂n− ρ̂(3)
n |

= |ρ̂n− ρ̂(2)
n + ρ̂(2)

n − ρ̂(3)
n |

≤ |ρ̂n− ρ̂(2)
n |+ |ρ̂(2)

n − ρ̂(3)
n |

≤ 1
n−1

n

∑
i=2

(
‖xi− x̃i‖2 +‖xi−1− x̃i−1‖2 +

1
m
‖Ĝi− G̃i‖2

+
1
m
‖Ĝi−1− G̃i−1‖2

)
+

1
n−1

n

∑
i=2

(
1
m
‖G̃i−∇ fi(x̃i)‖2 +

1
m
‖G̃i−1−∇ fi−1(x̃i−1)‖2

)
≤ 1

n−1

(
‖x1− x̃1‖2 +2

n−1

∑
i=2
‖xi− x̃i‖2 +‖xn− x̃n‖2

)

+
1

m(n−1)

(
‖Ĝ1− G̃1‖2 +2

n−1

∑
i=2
‖Ĝi− G̃i‖2 +‖Ĝn− G̃n‖2

)

+
1

m(n−1)

(
‖G̃1−∇ f1(x̃1)‖2 +2

n−1

∑
i=2
‖G̃i−∇ fi(x̃i)‖2

+‖G̃n−∇ fn(x̃n)‖2
)

Define

Un =
1

n−1

(
‖x1− x̃1‖2 +2

n−1

∑
i=2
‖xi− x̃i‖2 +‖xn− x̃n‖2

)

and

Vn =
1

m(n−1)

(
‖Ĝ1− G̃1‖2 +2

n−1

∑
i=2
‖Ĝi− G̃i‖2 +‖Ĝn− G̃n‖2

)

and

Wn =
1

m(n−1)

(
‖G̃1−∇ f1(x̃1)‖2 +2

n−1

∑
i=2
‖G̃i−∇ fi(x̃i)‖2

+‖G̃n−∇ fn(x̃n)‖2
)

Then it holds that
|ρ̂n− ρ̂(3)

n | ≤Un +Vn +Wn
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We will apply Lemma 16 to each of Un, Vn, and Wn. Define the following sums of
conditional expectations closely related to Un, Vn, and Wn:

Ŭn =
1

n−1

(
E [‖x1− x̃1‖2 |F0]+2

n−1

∑
i=2

E [‖xi− x̃i‖2 |Fi−1]

+E [‖xn− x̃n‖2 |Fn−1])

V̆n =
1

m(n−1)

(
E
[
‖Ĝ1− G̃1‖2 |F0

]
+2

n−1

∑
i=2

E
[
‖Ĝi− G̃i‖2 |Fi−1

]
+E
[
‖Ĝn− G̃n‖2 |Fn−1

])
W̆n =

1
m(n−1)

(
E
[
‖G̃1−∇ f1(x̃1)‖2 |F0

]
+2

n−1

∑
i=2

E
[
‖G̃i−∇ fi(x̃i)‖2 |Fi−1

]
+E
[
‖G̃n−∇ fn(x̃n)‖2 |Fn−1

])
Bounding these sums of conditional expectations will be useful in terms of the
remark after Lemma 16.

Next, we look at bounding E[‖xi−xi−1‖2 |Fi−1], E[‖Ĝi− G̃i‖2 |Fi−1], and
E[‖G̃i−∇ fi(x̃)i‖2 |Fi−1]. First, by assumption B.1, it holds that

E[‖xi− x̃i‖2 |Fi−1]≤Ci

Second, it holds that

E
[
‖Ĝi− G̃i‖2 |Fi−1

]
≤ 1

Ki

Ki

∑
k=1

E [‖gi (xi,zi(k))−gi (x̃i,zi(k))‖2 |Fi−1]

= E [‖gi (xi,zi(1))−gi (x̃i,zi(1))‖2 |Fi−1]

≤ME [‖xi− x̃i‖2 |Fi−1]

≤MCi
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Third, it holds that

E
[
‖G̃i−∇ fi(x̃i)‖2 |Fi−1

]
≤

E

∥∥∥∥∥ 1
Ki

Ki

∑
k=1

(gi (x̃i,zi(k))−∇ fi(x̃i))

∥∥∥∥∥
2

2

∣∣∣∣∣Fi−1

1/2

≤
(
E

[
1

K2
i

Ki

∑
k=1
‖gi (x̃i,zi(k))−∇ fi(x̃i)‖2

2

∣∣∣∣∣Fi−1

])1/2

≤
(

σ
Ki

)1/2

We can now produce bounds on Ŭn, V̆n, and W̆n denoted Ūn, V̄n, and W̄n as
follows:

1. Ūn =
1

n−1

(
C1 +2∑

n−1
i=2 Ci +Cn

)
2. V̄n =

M
m(n−1)

(
C1 +2∑

n−1
i=2 Ci +Cn

)
3. W̄n =

1
m(n−1)

((
σ
K1

)1/2
+2∑

n−1
i=2

(
σ
K1

)1/2
+
(

σ
Kn

)1/2
)

Then it holds that

P
{
|ρ̂n− ρ̂(3)

n |> (Ŭn +V̆n +W̆n)+ tn
}

≤ P{Un +Vn +Wn > (Ūn +V̄n +W̄n)+ tn}

≤ P
{

Un > Ūn +
1
3

tn

}
+P

{
Vn > V̄n +

1
3

tn

}
+P

{
Wn > W̄n +

1
3

tn

}
Now, we bound each of these three probabilities using Lemma 16. First, we have

0≤ ‖xi− x̃i‖2 ≤ diam(X )

so applying Lemmas 17 and 16 with σ2
i = 1

4diam2(X ) and

a1 = an =
1

n−1

a2 = · · ·= an−2 =
2

n−1
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yields

νU =
1
4

diam2(X )
n

∑
i=1

a2
i

=
1
4

diam2(X )

(
1

n−1

)2

+
n−1

∑
i=2

(
2

n−1

)2

+

(
1

n−1

)2

≤ 1
n−1

diam2(X ) (B.1)

Therefore, it holds that

P
{

Un > Ūn +
1
3

tn

}
≤ exp

{
−(tn/3)2

2νU

}
= exp

{
− (n−1)t2

n

18diam2(X )

}
Since

0≤ ‖Ĝi− G̃i‖2 ≤ 2G

and
0≤ ‖G̃i−∇ fi(x̃i)‖2 ≤ 2G

we can apply Lemmas 17 and 16 to Vn and Wn to yield

P
{

Vn > V̄n +
1
3

tn

}
≤ exp

{
−(tn/3)2

2νV

}
= exp

{
−m2(n−1)t2

n
72G2

}
and

P
{

Wn > W̄n +
1
3

tn

}
≤ exp

{
−(tn/3)2

2νW

}
= exp

{
−m2(n−1)t2

n
72G2

}
Define

Dn = Ūn +V̄n +W̄n

which is the definition in (3.9). It follows that

P
{

ρ̂n < ρ̂(3)
n −Dn− tn

}
≤ exp

{
− (n−1)t2

n

18diam2(X )

}
+2exp

{
−m2(n−1)t2

n
72G2

}
(B.2)
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Then it follows that

∞

∑
n=2

P
{

ρ̂n < ρ̂(3)
n −Dn− tn

}
≤

∞

∑
n=2

(
exp
{
− (n−1)t2

n

18diam2(X )

}
+2exp

{
−m2(n−1)t2

n
72G2

})
<+∞

Therefore, by the Borel-Cantelli lemma, for all n large enough it holds that

ρ̂n +Dn + tn ≥ ρ̂(3)
n

almost surely. Finally, by (3.4), it holds that ρ̂(3)
n ≥ ρ , which proves the result.

Looking at the form of Di, it follows that in this case

Dn = O

(
1

n−1

n

∑
i=1

1√
Ki

)

In the case where Ki = K∗, this implies that

Dn = O

(
1√
K∗

)
We can also prove the result for the inequality constraint of (1.2) using similar

techniques in Theorem 3.

Proof of Theorem 3: Define ρ̄(2)
i and ρ̄(3)

i analogous to the equality case proof and
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the pair ρ̂(2)
i and ρ̂(3)

i of the form in (3.12). First, we have by assumptions B.4-B.5

|ρ̂n− ρ̂(3)
n |

≤ 1
n−W

n

∑
i=W+1

|ρ̄(i)− ρ̄(i)
3 |

≤ 1
n−W

n

∑
i=W+1

i

∑
j=i−W+1

b j|ρ̃ j− ρ̃(3)
j |

≤ 1
n−W

n

∑
i=W+1

i

∑
j=i−W+1

b j

(
|ρ̃ j− ρ̃(2)

j |+ |ρ̃
(2)
j − ρ̃(3)

j |
)

≤ ∑
W
j=1 b j

n−W

n

∑
i=2

(
|ρ̃i− ρ̃(2)

i |+ |ρ̃
(2)
i − ρ̃(3)

i |
)

≤
(

n−1
n−W

W

∑
j=1

b j

)
1

n−1

n

∑
i=2

(
|ρ̃i− ρ̃(2)

i |+ |ρ̃
(2)
i − ρ̃(3)

i |
)

In comparison, we looked at controlling

1
n−1

n

∑
i=2

(
|ρ̃i− ρ̃(2)

i |+ |ρ̃
(2)
i − ρ̃(3)

i |
)

in the proof of Theorem 1. The quantity of interest here is the same scaled by

n−1
n−W

W

∑
j=1

b j

We know that this term is finite, so we can argue that ρ̂n upper bounds ρ̂(3)
n for

large enough n as in Theorem 1. The only remaining piece of the proof is to argue
that ρ̂(3)

n eventually upper bounds ρ .
By construction, we always have ρ̃(3)

i ≥ ρi. Therefore, by assumptions B.4-B.5,
it follows that

ĥW (ρ̃(3)
i , ρ̃(3)

i−1, . . . , ρ̃
(3)
i−W+1)≥ ĥW (ρi,ρi−1, . . . ,ρi−W+1)

and

E
[
ĥW (ρ̃(3)

i , ρ̃(3)
i−1, . . . , ρ̃

(3)
i−W+1) |Fi−W

]
≥ E

[
ĥW (ρi,ρi−1, . . . ,ρi−W+1) |Fi−W

]
≥ ρ (B.3)
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We know that the random variable ĥW (ρ̃(3)
i , ρ̃(3)

i−1, . . . , ρ̃
(3)
i−W+1) is Fi measurable

and we can bound its expectation conditioned on Fi−W . Under these conditions,
we can apply a slight modification of Lemma 16 to show that for all n large enough

ρ̂(3)
n + tn ≥ ρ

This observation combined with a nearly identical proof to equality case shows
that for all n large enough and appropriate {tn}

ρ̂n +

(
n−1
n−W

W

∑
j=1

b j

)
Dn + tn ≥ ρ

almost surely.

B.2 L2 Norm Condition

Now, we look at analyzing ρ̂n from (3.10) under the L2 condition. First, we con-
sider the condition in (3.3). Define the averaged estimate

ρ̂(3)
n ,

√
1

n−1

n

∑
i=2

(
ρ̃(3)

i

)2

and analogously
(

ρ̂(2)
n

)2
. The following lemma shows that ρ̂(3)

n upper bounds ρ
eventually.

Lemma 18. For all sequences {tn} such that

∞

∑
n=2

exp
{
− 2(n−1)t2

n

diam2(X )

}
<+∞

it holds that for all n large enough√(
ρ̂(3)

n

)2
+ tn ≥ ρ

almost surely.
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Proof. First, for all i it holds that

ρ̃(3)
i ≥ ‖x∗i −x∗i−1‖

This in turn implies that

E

[(
ρ̃(3)

i

)2
∣∣∣∣∣Fi−1

]
≥ E

[
‖x∗i −x∗i−1‖2 |Fi−1

]
= ρ2

Second, it holds that 0 ≤
(

ρ̃(3)
i

)2
≤ diam2(X ). Applying Lemmas 17 and 16

yields

P
{(

ρ̂(3)
n

)2
< ρ2− tn

}
≤ P

{(
ρ̂(3)

n

)2
<

1
n−1

n

∑
i=2

E

[(
ρ̃(3)

i

)2
∣∣∣∣∣Fi

]
− tn

}

≤ exp
{
− 2(n−1)t2

n

diam2(X )

}
By the Borel-Cantelli lemma, this in turn implies that for n sufficiently large√(

ρ̂(3)
n

)2
+ tn ≥ ρ

We can now follow the proof technique of Theorem 1 and Lemma 18 to prove
Theorem 2.

Proof of Theorem 2: This is a straightforward extension of the proof of Theo-
rem 1 using the observation that

|(ρ̂n)
2− (ρ̂(3)

n )2|
≤ |(ρ̂n)

2− (ρ̂(2)
n )2|+ |(ρ̂(2)

n )2− (ρ̂(3)
n )2|

≤ |ρ̂n + ρ̂(2)
n ||ρ̂n− ρ̂(2)

n |+ |ρ̂(2)
n + ρ̂(3)

n ||ρ̂(2)
n − ρ̂(3)

n |
≤ 2diam(X )

(
|ρ̂n− ρ̂(2)

n |+ |ρ̂(2)
n − ρ̂(3)

n |
)

We can now follow the proof technique of Theorem 1.
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Proof of Theorem 4: This is a straightforward extension of the proof of Theo-
rem 3 along the lines of Theorem 2

B.3 Effect of Parameter Estimation

Our analysis of estimating ρ assumes that we know the parameters of the functions
and in particular the strong convexity parameter m. We now argue that the effect
of using estimated parameters ψ from Appendix D of [3] instead is minimal. This
happens because we know that for all n large enough it holds that

ψ̂n + tn1+oP(1)≥ ψ∗

almost surely. Applying Lemma 25 with φi = ρ̃i and πi = ψ̂i + ti (the parameters
such as strong convexity parameter) guarantees that estimating ρ with the param-
eters unknown works as with the parameters known. Therefore, the analysis in
this section is not restrictive.

B.4 Proofs for Alternate One-Step Estimates

For the IPM estimates, we need a version of Hoeffding’s inequality that allows for
some dependence. Given an integer W , we construct a cover of {1,2, . . . ,n} by
dividing the set into W groups of integers spaced by W , i.e.,

A j =

{
j, j+W, j+2W . . . , j+

⌊
n− j

W

⌋
W
}

j = 1, . . . ,W (B.4)

Note that

{1,2, . . . ,n}=
W⋃
j=1

A j

and Ai∩A j = /0 for i 6= j. The proof of Lemma 19 is nearly identical to the proof
of the extension of Hoeffding’s inequality from [77] with Lemma 16 used instead.
We assume that if we refer to a filtration Fi with i < 0, then we implicitly refer to
F0.

Lemma 19 (Dependent Hoeffding’s Inequality). Suppose we are given a collec-

tion of random variable {Vi}n
i=1 and a filtration {F}n

i=0 such that
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1. ai ≤Vi ≤ bi for constants ai and bi i = 1, . . . ,n

2. Vi is Fi-measurable i = 1, . . . ,n

3. Given an integer W and a cover {A j}Wj=1 as in (B.4) for each j it holds that

E
[
Vj+iW

∣∣∣F j+(i−1)W

]
= 0 i = 1, . . . ,

⌊
n− j

W

⌋
and

E
[
Vj

∣∣∣F0

]
= 0

Then it holds that

P

{
n

∑
i=1

Vi > t

}
≤ exp

{
− 2t2

W ∑
n
i=1(bi−ai)2

}
and

P

{
n

∑
i=1

Vi <−t

}
≤ exp

{
− 2t2

W ∑
n
i=1(bi−ai)2

}
Proof. Define

U j ,

⌊
n− j
W

⌋
∑
i=0

Vj+iW

for j = 1, . . . ,W . Let {p j}Wj=1 be a probability distribution on {1, . . . ,W} to be
specified later. By Jensen’s inequality, we have

exp

{
s

n

∑
i=1

Vi

}
= exp

{
W

∑
j=1

p j
s
p j

U j

}

≤
W

∑
j=1

p j exp
{

s
p j

U j

}

Then it holds that

E

[
exp

{
s

n

∑
i=1

Vi

}]
≤

W

∑
j=1

p jE
[

exp
{

s
p j

U j

}]
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Now consider one term

E
[

exp
{

s
p j

U j

}]
= E

exp

 s
p j

⌊
n− j
W

⌋
∑
i=0

Vj+iW




Since a j+iW ≤Vj+iW ≤ b j+iW and

E
[
Vj+iW

∣∣∣F j+(i−1)W

]
= 0,

we can apply the conditional version Hoeffding’s lemma given in Lemma 17 to
yield

E
[
esV j+iW

∣∣F j+(i−1)W
]
≤ exp

{
1
8
(
b j+iW −a j+iW

)2 s2
}

Then we can apply Lemma 16 to {Vj+iW}
⌊

n− j
W

⌋
i=0 and {F j+iW}

⌊
n− j
W

⌋
i=0 to yield

E
[

exp
{

s
p j

U j

}]
≤ exp

 s2

8p2
j

⌊
n− j
W

⌋
∑
i=0

(b j+iW −a j+iW )2


=

⌊
n− j
W

⌋
∏
i=0

exp

{
s2

8p2
j
(bα −aα)

2

}

Then we have

E

[
exp

{
s

n

∑
i=1

Vi

}]
≤

W

∑
j=1

p j

⌊
n− j
W

⌋
∏
i=0

exp

{
s2

8p2
j
(bα −aα)

2

}

=
W

∑
j=1

p j exp

{
s2c j

8p2
j

}

with

c j =

⌊
n− j
W

⌋
∑
i=0

(b j+iW −a j+iW )2

Let p j =
√c j/T and

T =
W

∑
j=1

√
c j
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Therefore, we have

E

[
exp

{
s

n

∑
i=1

Vi

}]
≤ exp

{
1
8

T 2s2
}

Applying the Chernoff bound [76] and optimizing yields

P

{
n

∑
i=1

Vi > t

}
≤ exp

{
−2t2/T 2}

Bounding T with Cauchy-Schwarz yields

T 2 ≤
(

W

∑
j=1

1

)(
W

∑
j=1

c j

)
=W

n

∑
i=1

(bi−ai)
2

and the results follows. The proof for the other tail is nearly identical.

Remark: If we do not have the condition 3 of Lemma 19, then it holds that

P


n

∑
i=1

Vi >
W

∑
j=1

⌊
n− j
W

⌋
∑
i=0

E
[
Vj+iW

∣∣F j+(i−1)W
]
+ t


≤ exp

{
− 2t2

W ∑
n
i=1(bi−ai)2

}
(B.5)

If we can bound the conditional expectation

E
[
Vj+iW

∣∣F j+(i−1)W
]
≤C j+iW ,

by a F j+(i−1)W -measurable random variable, then we have

P

{
n

∑
i=1

Vi >
n

∑
i=1

Ci + t

}
≤ exp

{
− 2t2

W ∑
n
i=1(bi−ai)2

}
This remark is similar to the remark after Lemma 16.
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Appendix C

Proofs for Analysis with Change in
Minimizers Unknown

We prove a general result showing that for any choice of Kn such that Kn ≥ K∗

for all n large enough, with K∗ from (3.16), the mean criterion is controlled in the
sense that

limsup
n→∞

(E[ fn(xn)]− fn(x
∗
n))≤ ε

Consider the function

φK(v) = α(K)

(√
2
m

v+ρ

)2

+β (K) = b

(√ 2
m

v+ρ

)2

,K

 (C.1)

from Assumption C.2. Note that as a function of v, φK(v) is clearly increasing and
strictly concave. If we select Kn = K∗, then by definition it holds that

φK∗(ε)≤ ε (C.2)

First, we study fixed points of the function φK∗(v). We need Theorem 3.3 of [78]
to proceed

Lemma 20 (Theorem 3.3 of [78]). Suppose that f is an increasing and strictly

concave function mapping from R to R such that f (0) ≥ 0 and there exist points

0< a< b such that f (a)> a and f (b)< b. Then f has unique positive fixed point.

Proof. See [78] for the proof.

We consider the fixed points of the function φK∗,ρ(ν)+δ with δ ≥ 0. We add
the term δ for reasons that will become clear later in the proof of Theorem 5.

Lemma 21. Provided that α(K)> 0 for all K > 0, ρ > 0, and δ ≥ 0, the function

φK∗,ρ(v)+δ has a unique positive fixed point v̄δ with the following properties:

1. ν̄0 = φK∗,ρ(v̄0)≤ ε
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2. φ ′K∗,ρ(v̄δ )< 1

3. ν̄δ is non-decreasing in δ and

lim
δ↘0

ν̄δ = ν̄0

Proof. Since
lim
v→0

(φK∗(v)+δ ) = φK∗(0)+δ

and
φK∗(0)+δ = α(K∗)ρ2 +β (K∗)+δ > 0

for all δ ≥ 0, there exists a positive a sufficiently small that

φK∗(a)+δ > a

Next, expanding φK(v) yields

φK(v) =
2
m

α(K)v+2α(K)ρ
√

2
m
√

v+α(K)ρ2 +β (K)

Since φK∗(ε)≤ ε , we obviously must have 2
mα(K∗)≤ 1. Suppose that

2
m

α(K∗) = 1

Then it holds that

φK∗(ε) = ε +
√

2mρ
√

ε +
m
2

ρ2 +β (K)> ε

This contradicts (C.2), so it holds that

2
m

α(K∗)< 1

It is thus readily apparent that

v− (φK∗(v)+δ )→ ∞

as v→ ∞. Therefore, there exists a point b > a such that

φK∗(b)+δ < b
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In addition, it is easy to check that φK∗(v)+ δ is increasing and strictly concave.
Therefore, we can apply Lemma 20 from [78] to conclude that there exists a
unique, positive fixed point ν̄δ of φK∗(v)+δ .

Next, suppose that φ ′K∗(ν̄δ ) > 1. Then by continuity for v > ν̄δ sufficiently
close to ν̄δ , we have

φK∗(v)+δ > v

However, we know that as v→ ∞, it holds that v− (φK∗(v)+δ )→ ∞. By the
Intermediate Value Theorem, this implies that there is another fixed point on [v,b].
This is a contradiction, since ν̄δ is the unique, positive fixed point. Therefore, it
holds that φ ′K∗(ν̄δ ) ≤ 1. Now, suppose that φ ′K∗(ν̄δ ) = 1. Since φK∗(v) is strictly
concave, its derivative is decreasing [29]. Therefore, on [0, ν̄δ ), it holds that

φ ′K∗(v)≥ 1

This implies that

ν̄δ = φK∗(ν̄δ )+δ

= φK∗(0)+
∫ ν̄δ

0
φ ′K∗(v)dv+δ

≥ φK∗(0)+δ + ν̄δ

> ν̄δ

This is a contradiction, so it must be that φ ′K∗(ν̄δ )< 1.
Since there is a unique positive fixed point ν̄δ and v−(φK∗(v)+δ )→∞, it must

hold that φK∗(x)+δ ≤ x iff x≥ ν̄δ . Since φK∗(ε)≤ ε , it holds that ν̄0 ≤ ε .
Finally, for δ ′ ≥ δ , it holds that

ν̄δ = φK∗(ν̄δ )+δ

= φK∗(ν̄δ )+δ ′+(δ −δ ′)︸ ︷︷ ︸
<0

< φK∗(ν̄δ )+δ ′ (C.3)

By the observation above, we then have ν̄δ ≤ ν̄δ ′ . This monotonicity and the
implicit function theorem [79] in turn imply that

lim
δ↘0

ν̄δ = ν̄0
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As a simple consequence of the concavity of φK∗(v), we can study a fixed point
iteration involving φK(v). Define the n-fold composition mapping

(φK +δ )(n)(v), ((φK +δ )◦ · · · ◦ (φK +δ ))(v)

Lemma 22. For any v > 0, it holds that

lim
n→∞

(φK∗+δ )(n)(v) = ν̄δ

Proof. Following [80], for any fixed point ν̄ , it holds that

|φK∗(v)+δ − ν̄δ | ≤ φ ′K∗(ν̄)|v− ν̄δ |

Therefore, applying the fixed point property repeatedly yields

|(φK∗+δ )(n)(v)− ν̄δ | ≤ (φ ′K∗(ν̄))
n|v− ν̄δ |

By Lemma 21, it holds that
φ ′K∗(ν̄)< 1

and so the result follows.

This implies that if we select K∗ stochastic gradients at every time instant, and
we start from any ν , then it holds that

φ (n)
K∗,ρ(ν)→ ν̄0

with ν̄0 ≤ ε .
Now, we show that we control the mean criterion defined in (1.7) when we

estimate ρ . In Section 2.3.1 of [3], we pick a deterministic choice of Kn = K∗ and
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proceed with the analysis. Then it holds that

E[ fn(xn)]− fn(x
∗
n)

≤ E

b

(√ 2
m
( fn−1(xn−1)− fn−1(x

∗
n−1))+ρ

)2

,Kn


= E

α(Kn)

(√
2
m
( fn−1(xn−1)− fn−1(x

∗
n−1))+ρ

)2


+E[β (Kn)] (C.4)

= α(Kn)E

(√ 2
m
( fn−1(xn−1)− fn−1(x

∗
n−1))+ρ

)2


+β (Kn) (C.5)

We can bound

E

(√ 2
m
( fn−1(xn−1)− fn−1(x

∗
n−1))+ρ

)2


using (2.11) and recover (C.1). However, in Chapter 3, Kn and xn−1 are dependent
random variables, so (C.5) does not hold in general. Instead, only (C.4) holds. To
get around this issue, we need a more sophisticated analysis using the observation
that Kn ≥ K∗ for all n large enough. This property implies that Kn behaves like
a constant for n large enough and a close analog of the analysis in Section 2.3.1
applies.

Proof of Theorem 5: We know that for all n large enough, we pick Kn≥K∗ almost
surely. This in turn implies that there exists a finite almost surely random variable
Ñ such that

n≥ Ñ ⇒ Kn ≥ K∗

Since Ñ is finite almost surely, we know that

lim
n→∞

P
{

Ñ > n
}
= 0
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By the compactness of X , it follows that there is a constant C > 0 such that

max
x∈X

φK∗,ρ ( fn(x)− fn(x
∗
n))≤C ∀n≥ 1

Then it follows that

E[ fn(xn)]− fn(x
∗
n)

= E
[
φKn,ρ

(
fn−1(xn−1)− fn−1(x

∗
n−1)

)]
= E

[
φKn,ρ

(
fn−1(xn−1)− fn−1(x

∗
n−1)

)
1{n≥Ñ}

]
+E

[
φKn,ρ

(
fn−1(xn−1)− fn−1(x

∗
n−1)

)
1{n<Ñ}

]
≤ E

[
φK∗,ρ

(
fn−1(xn−1)− fn−1(x

∗
n−1)

)
1{n≥Ñ}

]
+CP

{
Ñ > n

}
≤ φK∗,ρ

(
E[ fn−1(xn−1)]− fn−1(x

∗
n−1)

)
+CP

{
Ñ > n

}
To bound the mean criterion, we consider the recursion

εn = φK∗,ρ (εn−1)+CP
{

Ñ > n
}

∀n≥ Ñ (C.6)

which satisfies
E[ fn(xn)]− fn(x

∗
n)≤ εn ∀n≥ Ñ

By assumption, we know that as n→ ∞

CP
{

Ñ > n
}
→ 0

Fix δ > 0. Then there exists a random variable Ñδ ≥ Ñ such that

n≥ Ñδ ⇒ CP
{

Ñ > n
}
≤ δ

Then we consider the recursion

ε̃n = φK∗,ρ (ε̃n−1)+δ

ε̃Ñδ
= εÑδ

∀n≥ Ñδ (C.7)

By construction, we have εn ≤ ε̃n for all n≥ Ñδ . As a consequence of Lemmas 21
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and 22, we have

limsup
n→∞

(E[ fn(xn)]− fn(x
∗
n))≤ limsup

n→∞

εn

≤ limsup
n→∞

ε̃n

≤ ν̄δ

Since δ > 0 was arbitrary and ν̄δ ↘ ν̄0 as δ ↘ 0 from Lemma 21, it follows that

limsup
n→∞

(E[ fn(xn)]− fn(x
∗
n))≤ ν̄0 ≤ ε
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Appendix D

Parameter Estimation

We may need to estimate parameters of the functions { fn(x)} such as the strong
convexity parameter m to compute the bound b(d0,K) from assumption A.4. In
this section, we assume that the bound b(d0,K,ψ) is parameterized by ψ ∈P ,
which depends on properties of the functions fn(x). In most cases, we have the
parameters

ψ =
[

1/m M A B
]>

where m is the parameter of strong convexity, M is the Lipschitz gradient modulus,
and the pair (A,B) controls gradient growth as in assumption A.5, i.e.,

E‖∇xg (x,z)‖2 ≤ A+B‖x−x∗‖2 (D.1)

We parameterize using 1/m, since a smaller m generally increases the bound
b(d0,K,ψ). Therefore, if the true parameters are ψ∗ for all functions { fn(x)},
then we want to find an estimate ψ̂ such that ψ̂ ≥ ψ∗. It is generally true that
b(d0,K,ψ) is increasing in ψ , so the estimate ψ̂ produces a more conservative
bound on the mean criterion. With a more conservative bound on the mean crite-
rion, the methods of Chapters 2-6 work.

There is a slight complication in estimating the gradient parameters A and B in
(D.1), since the choice of A and B is generally not unique. As an example, since
the space X is compact, for any fixed B > 0 it holds that

max
x∈X

{
E‖∇xg (x,z)‖2−B‖x−x∗‖2}<+∞

Therefore, we fix any B> 0 and set A=maxx∈X
{
E‖∇xg (x,z)‖2−B‖x−x∗‖2}.

In practice, a choice of (A,B) with A or B too large leads to a much larger choice
of Kn. We need to find a trade-off between a choice of A and B such that neither is
too large. Finally, when comparing estimates of A and B, since there is no unique
choice of A and B, we need to be careful in evaluating a particular estimate.

151



As in estimating ρ , we produce one time instant estimates m̃i, M̃i, Ãi, and B̃i at
time i and combine them by averaging to yield

1. m̂n =
1
n ∑

n
i=1 m̃i

2. M̂n =
1
n ∑

n
i=1 M̃i

3. Ân =
1
n ∑

n
i=1 Ãi

4. B̂n =
1
n ∑

n
i=1 B̃i

We can analogously define maximum combinations of the single time instant es-
timates as with ρ estimation in section 3.1.3 of Chapter 3. The details of this
approach are not included but the results are analogous to the direct estimate in
(3.5). In this case, we can assume that fn(x) has true parameters ψn such that
ψn ≤ ψ∗.

We make the following assumptions for our analysis:

D.1 The parameters ψ ∈P with P compact and there exists a true set of pa-
rameters ψ∗

D.2 The bound b(d0,K, ψ̃) is non-decreasing in ψ , i.e.,

ψ ≤ ψ̃ ⇒ b(d0,K,ψ)≤ b(d0,K, ψ̃)

D.3 ∇ fn(xn) has Lipschitz continuous gradients with modulus M and

E]
[
‖g (x,z)−g (x̃,z)‖2 | x, x̃

]
≤ L2‖x− x̃‖2

D.4 fn(x) is twice differentiable and there exist stochastic second derivatives
with respect to x, g(2) (x,z), such that

Ezn∼pn

[
g
(2)
n (x,zn) | x

]
= ∇

2
xx fn(x)

D.5 The space Z is compact and there exists a constant G such that

‖gn (x,z)‖ ≤ G ∀x ∀z ∀n

D.6 We have access to functions f̂n (x,z) such that

E[ f̂n (x,z) | x] = fn(x)
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D.1 Estimating Strong Convexity Parameter and
Lipschitz Gradient Modulus

We seek one-step estimates m̃i and M̃i, of the parameter of strong convexity and
Lipschitz gradient modulus respectively, such that E[m̃i |Fi−1]≤ m and
E[M̃i |Fi−1]≥M. In this section, we focus on estimates for the strong convexity
parameter. The methods can be extended to estimating the Lipschitz gradient
modulus trivially.

D.1.1 Penalty Method

Suppose that our functions are of the form

fi(x) = Ezi∼pi [`(x,zi)]

with
`(x,z) = ˜̀(x,z)+

1
2

λ‖x‖2

Then it holds, trivially, that m≥ λ yielding a simple estimate of m.

D.1.2 Hessian Method

Due to the strong convexity condition in assumption A.1, we have

∇
2
xx fi(x)� mI ∀x ∈X

This in turn implies that

λmin
(
∇

2
xx fi(x)

)
≥ m ∀x ∈X

where λmin(X) is the smallest eigenvalue of the matrix X . For convenience, we
assume that

min
x∈X

λmin
(
∇

2
xx fn(x)

)
= m
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This suggests that given {zi(k)}Ki
k=1 we set

m̃i , min
x∈X

λmin

(
1
Ki

Ki

∑
k=1
g
(2)
i (x,zi(k))

)

Since
λmin(A) = min

v:‖v‖=1
〈Av,v〉

λmin(A) is a concave function of A. By Jensen’s inequality, we have

E[m̃i |Fi−1] = E

[
min
x∈X

λmin

(
1
Ki

Ki

∑
k=1
g
(2)
i (x,zi(k))

) ∣∣∣∣Fi−1

]

≤ min
x∈X

E

[
λmin

(
1
Ki

Ki

∑
k=1
g
(2)
i (x,zi(k))

) ∣∣∣∣Fi−1

]

≤ min
x∈X

λmin

(
E

[
1
Ki

Ki

∑
k=1
g
(2)
i (x,zi(k))

∣∣∣∣Fi−1

])
= min

x∈X
λmin

(
∇

2
xx fi(x)

)
= m

Similarly, we can set

M̃i , max
x∈X

λmax

(
1
Ki

Ki

∑
k=1
g
(2)
i (x,zi(k))

)

where λmax(X) is the largest eigenvalue ofX . Since

λmax(A) = max
v:‖v‖=1

〈Av,v〉

λmax(A) is a convex function of A. By Jensen’s inequality, it holds that
E[M̃i |Fi−1]≥M.
Gradient Descent Approach: To minimize over x and compute m̃i and M̃i, we
can use gradient descent by exploiting eigenvalue perturbation results [81]. First,
suppose that we are given a matrix valued function T (x), and we want to compare
the eigenspectrum of T (x) and T (x0) for a fixed point x0. Given eigenvectors v0i

and eigenvalues λ0i of the matrix T (x0), we want to efficiently find eigenvectors
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vi and eigenvalues λi of T (x). From [81], it holds that

∂λi

∂Tk j
(x) = v

(k)
i (x)v

( j)
i (x)(2−δi j)

where v(k)i (x) is the kth entry of the eigenvector corresponding to λi(x). Then it
holds that

∇xλmin (T (x)) = ∑
i, j

∂λmin

∂Ti j
∇xTi j(x)

= ∑
i, j
v
(i)
min(x)v

( j)
min(x)(2−δi j)∇xTi j(x)

With this observation, we can use gradient descent to solve the optimization prob-
lem

min
x∈X

λmin

(
1
Ki

Ki

∑
k=1
g
(2)
i (x,zi(k))

)
by setting

T (x) =
1
Ki

Ki

∑
k=1
g
(2)
i (x,zi(k))

Starting from anymi(0) ∈X , we compute

mi(p) = ΠX

[
mi(p−1)−µ(p)∇xλmin

(
1
Ki

Ki

∑
k=1
g
(2)
i (mi(p−1),zi(k))

)]

for p = 1, . . . ,P and set

m̂i , λmin

(
1
Ki

Ki

∑
k=1
g
(2)
i (mi(P),zi(k))

)
(D.2)

D.1.3 Ratio Method

For any two points x and x̃, by strong convexity we have

fi(x̃)≥ fi(x)+ 〈∇ fi(x), x̃−x〉+
1
2

m‖x̃−x‖2 ∀x, x̃ ∈X
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which implies that

m≤ fi(x̃)− fi(x)−〈∇ fi(x), x̃−x〉
1
2‖x̃−x‖2

We suppose that for all n

m = min
x,x̃∈X

fi(x̃)− fi(x)−〈∇ fi(x), x̃−x〉
1
2‖x̃−x‖2

This is not restrictive, since any m > 0 that satisfies

m≤ min
x,x̃∈X

fi(x̃)− fi(x)−〈∇ fi(x), x̃−x〉
1
2‖x̃−x‖2

can be taken as a parameter of strong convexity for the function fi(x). Consider
the following estimate of m:

m̃i , min
x,x̃∈X

{
1
Ki

∑
Ki
k=1 f̂i (x̃,zi(k))− 1

Ki
∑

Ki
k=1 f̂i (x,zi(k))

1
2‖x̃−x‖2

−

〈
1
Ki

∑
Ki
k=1gi (x,zi(k)) , x̃−x

〉
1
2‖x̃−x‖2
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This estimate satisfies 1

E[m̃i |Fi−1]

= E

[
min
x,x̃∈X

{
1
Ki

∑
Ki
k=1 f̂i (x̃,zi(k))− 1

Ki
∑

Ki
k=1 f̂i (x,zi(k))

1
2‖x̃−x‖2

−

〈
1
Ki

∑
Ki
k=1gi (x,zi(k)) , x̃−x

〉
1
2‖x̃−x‖2




≤ min
x,x̃∈X

E

[
1
Ki

∑
Ki
k=1 f̂i (x̃,zi(k))− 1

Ki
∑

Ki
k=1 f̂i (x,zi(k))

1
2‖x̃−x‖2

−

〈
1
Ki

∑
Ki
k=1gi (x,zi(k)) , x̃−x

〉
1
2‖x̃−x‖2


= min
x,x̃∈X

fi(x̃)− fi(x)−〈∇ fi(x), x̃−x〉
1
2‖x̃−x‖2

= m

We can approximately solve this minimization problem by using a numerical
solver or gradient descent. Additionally, since computing the minimum here is
difficult and is generally a non-convex problem, we can instead look at an approx-
imate method. Suppose that we have N points x(1), . . . ,x(N). Then we know that
for any two distinct points xi and x j

m≤ fi(x(i))− fi(x( j))−〈∇ fi(x( j)),x(i)−x( j)〉
1
2‖x(i)−x( j)‖2

This suggests the estimate

m̂i , min
i6= j

{
1
Ki

∑
Ki
k=1 f̂i (x(i),zi(k))− 1

Ki
∑

Ki
k=1 f̂i (x( j),zi(k))

1
2‖x(i)−x( j)‖2

−

〈
1
Ki

∑
Ki
k=1gi (x( j),zi(k)) ,x(i)−x( j)

〉
1
2‖x(i)−x( j)‖2


(D.3)

1We ignore measurability issues here.
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for the strong convexity parameter. Then, by similar reasoning, we have

E[m̂i |Fi−1]≤min
i 6= j

fi(x(i))− fi(x( j))−〈∇ fi(x( j)),x(i)−x( j)〉
1
2‖x(i)−x( j)‖2

It is difficult to compare this estimator to m exactly. All we can say is that

m≤min
i6= j

fi(x(i))− fi(x( j))−〈∇ fi(x( j)),x(i)−x( j)〉
1
2‖x(i)−x( j)‖2

In practice, this method produces estimates close to m.

D.1.4 Problem Specific Estimate

The methods of this appendix are general in the sense that they can be applied to
any function { fn(x)} satisfying assumptions D.1-D.6. For any specific problem,
there may be alternate estimates of the function parameters based on the specific
form of the functions. As an example, suppose that

fn(x) = Ezn∼pn [` (x,zn)]

with z = [ w>y ]> and

` (x,z) =
1
2

(
y−w>x

)2
+

1
2

λ‖x‖2

Then the strong convexity parameter is given by

m = λmin

(
λI+E

[
ww>

])
where λmin(X) is the largest eigenvalue of the matrix X . This suggests that we
set

m̂i = λmin

(
λI+

1
Ki

Ki

∑
k=1
wi(k)w>i (k)

)
Since the smallest eigenvalue λmin(X) is a concave function of the matrix X as
argued above, it follows that E [m̂i |Fi−1] ≤ m. For other classes of functions
{ fn(x)}, there may be other useful estimates of the strong convexity, Lipschitz
gradient, and gradient parameters.
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D.2 Estimating Gradient Parameters

We seek (A,B) such that

E‖g (x,z)‖2 ≤ A+B‖x−x∗‖2

We consider three different approaches to estimate (A,B). The first method es-
timates B through an intermediate quantity and then estimates A. The second
method estimates (A,B) jointly by searching for a pair (A,B) that satisfy assump-
tion A.5. The final method is a heuristic method that estimates (A,B) through
testing a finite number of points akin to the ratio method of section D.1.3 .

D.2.1 Estimate (A,B) through an Intermediate Step

From assumption D.6, it holds that

E‖g (x,z)‖2 = E‖g (x∗,z)+(g (x,z)−g (x∗,z))‖2

≤ 2E‖g (x∗,z)‖2 +2E‖g (x,z)−g (x∗,z)‖2

≤ 2E‖g (x∗,z)‖2 +2L2‖x−x∗‖2

Thus, we can set B = 2L2 and A = 2E‖g (x∗,z)‖2. This suggests that given an
estimate L̃i for L such that E[L̃i |Fi−1]≥ L, we set

B̃i = 2L̃2
i

Then by Jensen’s inequality, we have

E[B̃i |Fi−1] = 2E[L̃2
i |Fi−1]

≥ 2
(
E[L̃i |Fi−1]

)2

≥ 2L2

= B

Given this observation, we now look at methods to estimate L and thus B.
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L Estimation - Ratio Method

First, we consider a ratio estimator like the strong convexity ratio method. It
clearly holds that

L2 ≤ max
x,x̃∈X

E‖gi (x,zi)−gi (x̃,zi)‖2

‖x− x̃‖2

To that end define

L̃2
i = max

x,x̃∈X

1
Ki

∑
Ki
k=1 ‖gi (x,zi(k))−gi (x̃,zi(k))‖2

‖x− x̃‖2

This estimate satisfies2

E
[
L̃2

i |Fi−1
]

= E

[
max
x,x̃∈X

1
Ki

∑
Ki
k=1 ‖gi (x,zi(k))−gi (x̃,zi(k))‖2

‖x− x̃‖2

∣∣∣∣∣Fi−1

]

≥ max
x,x̃∈X

E

[
1
Ki

∑
Ki
k=1 ‖gi (x,zi(k))−gi (x̃,zi(k))‖2

‖x− x̃‖2

∣∣∣∣∣Fi−1

]

= max
x,x̃∈X

E‖gi (x,zi)−gi (x̃,zi)‖2

‖x− x̃‖2

≥ L2

We can approximately evaluate this estimate using a numerical solver or gradi-
ent descent. As with the case of estimating strong convexity, we can construct an
alternate estimate based on only a finite number of points x(1), . . . ,x(N), i.e.,

L̃2
i = max

i, j∈{1,...,N}

1
Ki

∑
Ki
k=1 ‖gi (x(i),zi(k))−gi (x( j),zi(k))‖2

‖x(i)−x( j)‖2

This is not exact but close in practice.

L Estimation - M Method

For our second estimate, we start from Taylor’s theorem, which guarantees that
for some x̄ ∈X

gi (x̃,zi) = gi (x,zi)+g
(2)
i (x̄,zi)(x̃−x)

2We ignore measurability issues for this maximum.
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This in turn implies that

‖gi (x̃,zi)−gi (x,zi)‖2 ≤ ‖g(2)i (x̄,zi)‖2
F‖x̃−x‖2

with ‖X‖F the Frobenius norm. By simple computation, we have

‖∇2
xx f (x̄)‖2

F ≤ λ 2
max
(
∇

2
xx f (x̄)

)
≤ M2

This in turn implies that

E
[
‖g(2)i (x̄,zi)−∇

2
xx fi(x̄)‖2

F |Fi−1

]
= E

[
‖g(2)i (x̄,zi)‖2

F |Fi−1

]
−‖∇2

xx fi(x̄)‖2
F

≥ E
[
‖g(2)i (x̄,zi)‖2

F |Fi−1

]
−λ 2

max
(
∇

2
xx fi(x̄)

)
≥ E

[
‖g(2)i (x̄,zi)‖2

F |Fi−1

]
−M2

Finally, we have

E
[
‖gi (x̃,zi)−gi (x,zi)‖2 |Fi−1

]
≤ E

[
‖g(2)i (x̄,zi)‖2

F‖x̃−x‖2 |Fi−1

]
≤
(

M2 +E
[
‖g(2)i (x̄,zi)−∇

2
xx fi(x̄)‖2

F |Fi−1

])
‖x̃−x‖2

This in turn implies that

L2 ≤M2 + max
x∈X

E
[
‖g(2)i (x,zi)−∇

2
xx fi(x)‖2

F |Fi−1

]
Finally, we arrive at the estimate

L̃2
i , (M̂i−1 + ti−1)

2 + max
x∈X

1
Ki−1

Ki

∑
k=1

∥∥∥∥∥g(2)i (x,zi(k))−
1
Ki

Ki

∑
j=1
g
(2)
i (x,zi( j))

∥∥∥∥∥
2
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This estimate satisfies

E
[
L̃2

i |Fi−1
]

= E
[
(M̂i−1 + ti−1)

2 |Fi−1
]

+E

max
x∈X

1
Ki−1

Ki

∑
k=1

∥∥∥∥∥g(2)i (x,zi(k))−
1
Ki

Ki

∑
j=1
g
(2)
i (x,zi( j))

∥∥∥∥∥
2 ∣∣∣∣∣Fi−1


≥M2 + max

x∈X
E

 1
Ki−1

Ki

∑
k=1

∥∥∥∥∥g(2)i (x,zi(k))−
1
Ki

Ki

∑
j=1
g
(2)
i (x,zi( j))

∥∥∥∥∥
2 ∣∣∣∣∣Fi−1


≥M2 + max

x∈X
E
[
‖g(2)i (x,zi)−∇

2
xx fi(x)‖2

F |Fi−1

]
≥ L2

A Estimate - Maximization

We drop the i index temporarily for convenience. We have

E‖g (x,z)‖2 ≤ A+2L2‖x−x∗‖2

First, we seek A such that

E‖g (x,z)‖2 ≤ A+2
(

L
M

)2

‖∇ f (x)‖2 (D.4)

Since
‖x−x∗‖2 ≥ 1

M
‖∇ f (x)‖

for any A such that (D.4) holds, we have

E‖g (x,z)‖2 ≤ A+2
(

L
M

)2

‖x−x∗‖2
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Therefore, we have

A = max
x∈X

(
E‖g (x,z)‖2−2

(
L
M

)2

‖∇ f (x)‖2

)

= max
x∈X

(
E‖g (x,z)‖2−2

(
L
M

)2 (
E‖g (x,z)‖2−E‖g (x,z)−∇ f (x)‖2))

= max
x∈X

((
1−2

(
L
M

)2
)
E‖g (x,z)‖2 +2

(
L
M

)2

E‖g (x,z)−∇ f (x)‖2

)

It holds that

1. L
M ≤ L

m

2. − L
M ≤−m

M

Our estimates of L and M produce upper bounds and our estimate of m produces a
lower bound. Therefore, we can upper bound both of the above quantities: L

m and
−m

M .
Returning back to the i index, this suggests that we set

Ãi = max
x∈X

((
1−2

(
m̂i−1 + ti−1

M̂i−1− ti−1

)2
)

1
Ki

Ki

∑
k=1
‖gi (x,zi(k))‖2

+2
(

L̂i−1 + ti−1

m̂i−1− ti−1

)2 1
Ki−1

Ki

∑
k=1

∥∥∥∥∥gi (x,zi(k))−
1
Ki

Ki

∑
j=1
gi (x,zi( j))

∥∥∥∥∥
2


We will show later that for i large enough L̂i−1 + ti−1 ≥ L, M̂i−1− ti−1 ≥M, and
m̂i−1− ti−1 ≤ m≤M. Therefore, for i large enough, it holds that

Ãi ≥max
x∈X

((
1−2

(
L
M

)2
)

1
Ki

Ki

∑
k=1
‖gi (x,zi(k))‖2

+2
(

L
M

)2 1
Ki−1

Ki

∑
k=1

∥∥∥∥∥gi (x,zi(k))−
1
Ki

Ki

∑
j=1
gi (x,zi( j))

∥∥∥∥∥
2
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Then for i large enough, it holds that

E[Ã |Fi−1]

≥ E

[
max
x∈X

((
1−2

(
L
M

)2
)

1
Ki

Ki

∑
k=1
‖gi (x,zi(k))‖2

+2
(

L
M

)2 1
Ki−1

Ki

∑
k=1

∥∥∥∥∥gi (x,zi(k))−
1
Ki

Ki

∑
j=1
gi (x,zi( j))

∥∥∥∥∥
2


= max
x∈X

E

[(
1−2

(
L
M

)2
)

1
Ki

Ki

∑
k=1
‖gi (x,zi(k))‖2

+2
(

L
M

)2 1
Ki−1

Ki

∑
k=1

∥∥∥∥∥gi (x,zi(k))−
1
Ki

Ki

∑
j=1
gi (x,zi( j))

∥∥∥∥∥
2


= max
x∈X

((
1−2

(
L
M

)2
)
E‖gi (x,zi)‖2 +2

(
L
M

)2

E‖gi (x,zi)−∇ fi(x)‖2

)

= max
x∈X

(
E‖gi (x,zi)‖2−2

(
L
M

)2

‖∇ fi(x)‖2

)
= A

Alternatively, we can consider the estimate

Ãi = max
x∈X

((
1−2

(
L̂i−1 + ti−1

M̂i−1− ti−1

)2
)

1
Ki

Ki

∑
k=1
‖gi (x,zi(k))‖2

+2
(

L̂i−1 + ti−1

M̂i−1− ti−1

)2 1
Ki−1

Ki

∑
k=1

∥∥∥∥∥gi (x,zi(k))−
1
Ki

Ki

∑
j=1
gi (x,zi( j))

∥∥∥∥∥
2


which consists of plugging in our estimates of L and M into (D.5). We have no
guarantees for this method, but it seems to work well in practice.

D.2.2 Search Method

For this estimate, we assume that there is a convex region G ⊂ R2
+ such that for

any (A,B) ∈ G , it holds that

E‖gi (x,zi)‖2 ≤ A+B‖x−x∗i ‖2 ∀x ∈X ,∀n≥ 1
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and for all tA, tB > 0

(A,B) ∈ G ⇒ (A+ tA,B+ tB) ∈ G

In light of the discussion at the beginning of this appendix, this is a reasonable as-
sumption. We again drop the i index again for convenience. Due to the following
bound [29]

‖x−x∗‖ ≥ 1
M
‖∇ f (x)‖

it holds that

E‖g (x,z)‖2 ≤ A+
B

M2‖∇ f (x)‖2 ⇒ E‖g (x,z)‖2 ≤ A+B‖x−x∗‖2

Therefore if we can find a pair (A,B) such that

E‖g (x,z)‖2 ≤ A+
B

M2‖∇ f (x)‖2

holds, then the pair (A,B) also works for the gradient condition. In practice, we
must use an estimate M̂i of M that satisfies

M̂i + ti ≥M

for all i large enough almost surely. This in turn implies that

E‖g (x,z)‖2 ≤ A+
B

(M̂i + ti)2
‖∇ f (x)‖2 ⇒ E‖g (x,z)‖2 ≤ A+

B
M2‖∇ f (x)‖2

⇒ E‖g (x,z)‖2 ≤ A+B‖x−x∗‖2

Therefore, using the estimate M̂i in place of M produces more conservative esti-
mates. Thus, we develop the search estimate of this section using the true M.

We have

E

[
1
Ki

Ki

∑
k=1
‖gi (x,z(k))‖2

]
= E‖gi (x,z)‖2
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and

E

 1
Ki−1

Ki

∑
k=1
‖gi (x,z(k))‖2− 1

Ki

Ki

∑
k=1

∥∥∥∥∥gi (x,z(k))−
1
Ki

Ki

∑
j=1
gi (x,z( j))

∥∥∥∥∥
2


= E‖gi (x,z)‖2−E‖gi (x,z)−∇ fi(x)‖2

= ‖∇ fi(x)‖2

Define the function

ψx(A,B) = A+
B

M2

(
1
Ki

Ki

∑
k=1
‖gi (x,z(k))‖2

− 1
Ki−1

Ki

∑
k=1

∥∥∥∥gi (x,z(k))−
1
Ki

Ki

∑
j=1
gi (x,z( j))

∥∥∥∥2
)

− 1
Ki

Ki

∑
k=1
‖gi (x,z(k))‖2

We have the following lemma that characterizes the performance of a simple esti-
mate of (Ã, B̃).

Lemma 23. Suppose that we always choose Ãi and B̃i such that

minx∈X ψx(Ã, B̃)≥ 0. Then it holds that

E‖gi (x,z)‖2 ≤ E[Ãi]+E[B̃i]‖x−x∗‖2 ∀x ∈X
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Proof. First, by the monotone convergence theorem, it holds that

E
[(

Ã+
B̃

M2‖∇ f (x)‖2−E‖g (x,z)‖2
)
−ψx(Ã, B̃)

]
= E

[
B̃

M2

(
‖∇ f (x)‖2

−
(

1
Ki

Ki

∑
k=1
‖gi (x,z(k))‖2− 1

Ki−1

Ki

∑
k=1

∥∥∥∥gi (x,z(k))−
1
Ki

Ki

∑
j=1
gi (x,z( j))

∥∥∥∥2
))]

= E

[
lim
q→∞

B̃∨ 1
q

M2

(
‖∇ f (x)‖2

−
(

1
Ki

Ki

∑
k=1
‖gi (x,z(k))‖2− 1

Ki−1

Ki

∑
k=1

∥∥∥∥gi (x,z(k))−
1
Ki

Ki

∑
j=1
gi (x,z( j))

∥∥∥∥2
))]

= lim
q→∞

E

[
B̃∨ 1

q

M2

(
‖∇ f (x)‖2

−
(

1
Ki

Ki

∑
k=1
‖gi (x,z(k))‖2− 1

Ki−1

Ki

∑
k=1

∥∥∥∥gi (x,z(k))−
1
Ki

Ki

∑
j=1
gi (x,z( j))

∥∥∥∥2
))]

≥ limsup
q→∞

1
qM2E

[
‖∇ fi(x)‖2

−
(

1
Ki

Ki

∑
k=1
‖gi (x,z(k))‖2− 1

Ki−1

Ki

∑
k=1

∥∥∥∥gi (x,z(k))−
1
Ki

Ki

∑
j=1
gi (x,z( j))

∥∥∥∥2
)]

= 0

This in turn implies the following chain of inequalities

E[Ãi]+E[B̃i]‖x−x∗‖2−E‖gi (x,z)‖2

= E
[
Ãi + B̃i‖x−x∗‖2−E‖g (x,z)‖2]

≥ E
[

Ãi +
B̃i

M2‖∇ fi(x)‖2−E‖gi (x,z)‖2
]

≥ E
[
ψx(Ãi, B̃i)

]
≥ E

[
min
x∈X

ψx(Ãi, B̃i)

]
≥ 0

This lemma shows that the pair (E[Ãi],E[B̃i])∈ G . From the convexity assump-

167



tion, it holds that (
1
n

n

∑
i=1

E[Ãi],
1
n

n

∑
i=1

E[B̃i]

)
∈ G

To find (Ãi, B̃i) that satisfy minx∈X ψx(Ã, B̃)≥ 0, we start out with (Ãi(0), B̃i(0))
and growth rates α,β > 1. We then set

Ãi(k) = αÃi(k−1)

B̃i(k) = β B̃i(k−1)

and stop when
min
x∈X

ψx(Ãi(k), B̃i(k))≥ 0

This minimum can be evaluated using numerical optimization methods. We are
then guaranteed that (EÃi(k),EB̃i(k)) ∈ G

D.2.3 Finite Point Approximation

Suppose that we select N points x(1), . . . ,x(N) ∈X . We want to find A and B

such that
E‖g (x( j),z)‖2 ≤ A+B‖x( j)−x∗‖2 j = 1, . . . ,N

The following implication holds

E‖g (x( j),z)‖2 ≤ A+
B

M2‖∇ f (x( j))‖2

⇒ E‖g (x( j),z)‖2 ≤ A+B‖x( j)−x∗‖2

As discussed in section D.2.2, it follows that plugging in the estimate M̂i in place
of M produces larger estimates of (A,B), so plugging in M̂i in place of M does not
negatively affect the methods of this section.

We look for (A,B) such that

E‖g (x( j),z)‖2 ≤ A+
B

M2‖∇ f (x( j))‖2 j = 1, . . . ,N

Define

si( j),
1
Ki

Ki

∑
k=1
‖gi (x( j),zi(k))‖2
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and

di( j), gi( j)− 1
Ki−1

Ki

∑
k=1

∥∥∥∥∥gi (x( j),zi(k))−
1
Ki

Ki

∑
p=1
gi (x(p),zi(p))

∥∥∥∥∥
2

We want to find (A,B) such that

si( j)≤ A+
B

(M̂i−1 + ti−1)2
di( j) j = 1, . . . ,N

Suppose that we are given a function φ(A,B) that controls the size of (A,B).
For example, we may have φ(A,B) = 1

2A2 + 1
2B2 or φ(A,B) = λA2 +(1−λ )B2

with 0 < λ < 1. We solve

minimize
Ãi,B̃i

φ(Ãi, B̃i)

subject to si( j)≤ Ãi +
B̃i

(M̂i−1 + ti−1)2
di( j), j = 1, . . . ,N

Ãi ≥ 0 , B̃i ≥ 0

to generate approximate (Ãi, B̃i). This allows us to choose to emphasize large or
smaller A or B.

D.3 Combining One-Step Estimates and ρ Estimation

One issue in parameter estimation is that there may be some dependencies among
the various estimates. For example, the estimate of A relies on an estimate of
L and m. However, the actual estimates we compute, Ãi, depend on L̂i−1 and
m̂i−1, which may not be above L and below m respectively. Fortunately, due to
controlling the conditional expectations of our estimates we can argue that the
averaged estimates eventually upper bound the desired quantity. First, we present
a result showing that if we plug in the true parameters that our estimates work.

Lemma 24. Suppose that we want to estimate φ∗ by combining one-step estimates

φi(π∗) where π∗ are the true parameters on which the estimate φi depends and the

following conditions hold:

1. |φi(π∗)| ≤C

2. E[φi(π∗) |Fi−1]≥ φ∗
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3. ∑
∞
n=1 exp

{
−2nt2

n
C2

}
<+∞

Then for all n large enough, it holds that

1
n

n

∑
i=1

φi(π∗)+ tn ≥ φ∗

almost surely.

Proof. Since |φi(π∗)| ≤C, by applying Lemma 17 it holds that

E
[
es(φi(π∗)−E[φi(π∗) |Fi−1]) |Fi−1

]
≤ exp

{
1
2

C2

4
s2
}

Then by Lemma 16, it holds that

P

{
1
n

n

∑
i=1

φi(π∗)< φ∗− tn

}
= P

{
1
n

n

∑
i=1

φi(π∗)<
1
n

n

∑
i=1

E [φi(π∗) |Fi−1]− tn

}

≤ exp
{
−2nt2

n
C2

}
Since it holds that

∞

∑
n=1

P

{
1
n

n

∑
i=1

φi(π∗)< φ∗− tn

}
≤

∞

∑
n=1

exp
{
−2nt2

n
C2

}
<+∞

by the Borel-Cantelli lemma, it follows that for all n large enough

1
n

n

∑
i=1

φi(π∗)+ tn ≥ φ∗

Since our estimates of m and M do not depend on any parameters π , this lemma
shows that both of these estimates averaged do lower and upper bound m and M

respectively. We bootstrap from this result to show that the estimates of L, B and
A work using Lemma 25. The random variables Xn is oP(1) if

lim
n→∞

P{|Xn| ≥ t}= 0 ∀t > 0

Lemma 25. Suppose that we want to estimate φ∗ by combining one-step esti-

mates φi(πi) where πi are the estimates of the parameters on which the estimate
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φi depends and the following hold:

1. |φi(π)| ≤C

2. For all n large enough πn ≥ π∗ almost surely

3. π ≤ π̃ ⇒ φi(π)≤ φi(π̃)

4. For appropriate sequences tn, 1
n ∑

n
i=1 φi(π∗)+ tn ≥ φ∗

Then for all n large enough, it holds that

1
n

n

∑
i=1

φi(πi)+ tn ≥ φ∗+oP(1)

almost surely.

Proof. There exists a finite almost surely random variable Ñ such that

n≥ Ñ ⇒ πi ≥ π∗

It holds that

1
n

n

∑
i=1

φi(πi) =
1
n

Ñ−1

∑
i=1

φi(πi)+
1
n

n

∑
i=Ñ

φi(πi)

=
1
n

Ñ−1

∑
i=1

φi(πi)+
1
n

n

∑
i=Ñ

φi(π∗)

=
1
n

Ñ−1

∑
i=1

(φi(πi)−φi(π∗))+
1
n

n

∑
i=1

φi(π∗)

By the boundedness of φ(π), this implies that

1
n

n

∑
i=1

φi(πi)+ tn =

(
1
n

n

∑
i=1

φi(π∗)+ tn

)
+oP(1)

≥ φ∗+oP(1)

Using Lemma 25, we have constructed estimates ψ̂n such that for all n large
enough it holds that

ψ̂n + tn1+oP(1)≥ ψ∗
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almost surely with 1 a vector all ones. Therefore, by assumption for all n large
enough it holds that

b(d0,K,ψ∗)≤ b(d0,K, ψ̂n + tn1+oP(1))

D.4 Experiment

We carry out a simple experiment based on the simulation in section 3.3 and sec-
tion 4.3.1 to test our various estimates of the strong convexity parameter m and the
gradient parameters (A,B). In estimating the strong convexity parameter, the Hes-
sian method is from section D.1.2 and the ratio and finite ratio methods are from
section D.1.3. In estimating the gradient parameter method, the search method
is from section D.2.2, the finite method is from section D.2.3, the L estimation
methods max and ratio are from sections D.2.1 and D.2.1 respectively.

Figure D.1 shows the estimate of the strong convexity parameter m. We see
that all methods eventually produce estimates that lower bound m. Note that even
when the estimates are above the true value m, the gap is small. Figure D.2 and
Figure D.3 show estimates of the gradient parameters A and B. The L estimation
methods for A and B produce estimates quite close to the values computed from
section 3.3. As noted in the beginning of this appendix, the choice of A and B is
not unique. The fixed value corresponds to the values of A and B in section 3.3.
Finally, we note that the fixed values of A and B from section 3.3 use the inequality

(a+b)2 ≤ 2a2 +2b2

so there may be some slack in the fixed values computed using section 3.3. Due
to this slackness, the smaller values of A and B chosen by the search method and
the fixed method may be better choices of the gradient parameters.

172



5 10 15 20 25
n

0.48

0.5

0.52

0.54

0.56
m

Ratio
Finite
Min Hessian
Fixed
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