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ABSTRACT 

This dissertation expands conventional physically-based environmental models with 

human factors for watershed management analysis. Using an agent-based modeling framework, 

two approaches, one based on optimization and the other on data mining-are applied to modeling 

farmers' pumping decision-making processes in the High Plains aquifer within the hydrological 

observatory area. The resulting agent-based models (ABMs) are coupled with a physically-based 

groundwater model to investigate the interactions between farmers and the underlying 

groundwater system.  

With the optimization-based approach, the computational intensity arises from the 

execution of the resulting coupled ABM and groundwater model. This dissertation develops a 

computational framework that utilizes multithreaded programming and Hadoop-based cloud 

computing to address the computational issues. The framework allows multiple users to access 

and execute the web-based application of the coupled models simultaneously without an increase 

in latency via computer network. In addition, another computational framework to combine 

Hadoop-based Cloud Computing techniques with Polynomial Chaos Expansion (PCE) based 

variance decomposition approach is developed to conduct global sensitivity analysis with the 

coupled models, and influential behavioral parameters which are used to simulate agents’ 

behavior are identified.  

Being different from the optimization-based approach, which assumes all agents are 

rational, the data-driven approach attempts to account for the influences of agents’ bounded 

rationality on their behavior. A directed information graph (DIG) algorithm is used to exploit the 

causal relationships between agents’ decisions (i.e., groundwater irrigation depth) and time-series 

of environmental, socio-economical and institutional variables, and a machine learning technique, 

boosted regression tree (BRT) is applied to converting these causal relationships to agents’ 

behavioral rules. It is found that, in comparison with the optimization-based approach, crop profits 

and water tables as the result of agents’ pumping behavior derived using the data-driven approach 

can better mimic the actual observations. Thus, we can conclude that the data-driven approach 

using DIG and BRT outperforms the optimization-based approach when capturing agents’ 

pumping behavioral uncertainty as the result of bounded rationality, and for simulating real-world 

behaviors of agents. 
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摘要 

本文通过将人为因素整合于物理环境模型中的方式， 对传统的流域管理和分析模

型进行了扩展。 基于人工智能体模型的框架， 我们开发了两种方法来模拟处于 High 

Plains 含水层水文观测站区域内农民抽取地下水的决策过程； 其中一种方式是基于优化的

方法，另一种是基于数据挖据的方法。基于这两种方法所得到的人工智能体模型分别于基

于物理过程的地下水模型进行耦合。这些耦合后的模型将用于研究农民和地下水系统的互

动行为。 

基于优化方法开发的耦合人工智能体和地下水模型的计算强度高。为了解决运算强

度大的问题，本文作者开发了一种基于多线程和云计算(Hadoop)的框架。 在这个框架下，

多个用户在不经历延时的情况下可通过用户界面同时调用在服务器端的耦合模型。此外，

结合云计算(Hadoop)和多项式混沌展开(PCE)的方差分解方法，作者开发了一个用于耦合

模型的全局性敏感分析的框架。通过这个框架，我们可以识别模拟智能体行为中具有影响

力的行为参数。 

采用优化方法设计的智能体，每个智能体都被假设为理性决策者。 与优化方法不

同的是，采用数据驱动方式设计智能体时，会考虑到智能体的限制理性对于智能体行为的

影响。一种被称为有向信息图 (DIG) 的算法被用于去发掘智能体的决策 (i.e., 地下水灌溉

深度) 与相关的环境，社会经济和体制因素的因果关系。一种基于机器学习的增强性回归

树 (BRT) 方法将上述因果关系转换为智能体的行为规则。相对于优化方法， 通过数据驱

动方式得出的行为规则能够更好的模拟实际观察到的稻谷价格和地下水水位。由此我们可

以得出， 使用有向信息图和增强性回归树的数据驱动方式能够更有效的捕获到因限制理

性所带来的行为不确定性，从而更好的去模拟现实生活中智能体的行为。 
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1 CHAPTER I - INTRODUCTION 

1.1 Problem Overview 

River basin planning and management policies derived solely based on outcomes of 

physically-based watershed models usually fail to address severe social and environmental 

consequences (e.g., water resource conflicts). The crux of the problem is not the idea of using 

numerical models to assist policy making, but using the correct ones. The conventional 

physically-based models, on the one hand, lack the consideration of the uncertainty induced by 

heterogeneous human behaviors, which can lead to model overfitting while calibrating these 

models against observation data. On the other hand, these models lack the component to engage 

stakeholders and describe their interactions with the biophysical systems. Those models cannot 

take into account feedbacks from stakeholders who are affected by potential policies. Thus, 

failure to acknowledge the human behavioral uncertainty, and to describe interactions between 

human and biophysical systems can lead to poorly calibrated scientific models; the actual use of 

such model may end with unenforceable policies, or even worse, with unnecessary social 

conflicts. 

In the new era of watershed management, in order to develop appropriate policies that can 

mitigate water conflicts and promote sustainable uses of water resources, policy makers not only 

need to understand the features of the physical systems, but also need to have good insights into 

the behaviors of humans interacting with the physical systems. An integrated modeling 

framework is proposed in an attempt to assist the design of sustainable watershed management 

policy by accounting for spatial and dynamic interactions between human behavior and 

biophysical processes, and modeling watersheds as coupled human and natural systems (CHNSs) 

(Pahl-Wostl, 2005; Hipel et al., 2007; Liu et al., 2007; An, 2012). The various actors in the 

human system can be modeled as a collection of autonomous decision-making and interactive 

entities, which are defined as agents. Agent-based modeling (ABM) or Multi-agent system 

(MAS) modeling has become popular methods to simulate human behaviors in various 

disciplines (Urban and Schmidt, 2001; differences between ABM and MAS are quite subtle and 

thus used interchangeably in the dissertation). This modeling framework allows modelers to 

focus on the attributes and behaviors of individuals, which otherwise may not be possible by 

using other modeling methodologies (Crooks and Heppenstall, 2012). Coupling a behavioral 
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model with an environmental model can thus model a watershed as a CHNS by accounting for a 

wide range of relevant social, economic and environmental factors. Such coupled models can 

unveil hidden patterns in both human behavior and natural processes, capture emergent 

phenomena and thereby help us gain better understanding of the interactions between human and 

natural systems (Bonabeau, 2002; Monticino, et al. 2007; An, 2012). Thus, the main focus of 

this dissertation is on expanding the conventional watershed models with human behavioral 

simulation using the agent-based modeling framework. 

However, modeling human behaviors is not simple, since the behaviors are not always 

rational due to limited information, cognitive abilities and time to make decisions (Simon, 1996). 

In this sense, the rationality of human behavior is bounded (see Kennedy, 2012). Thus, the main 

complexity of modeling human behaviors lies in the behavioral uncertainty arising from the 

bounded rationality. Two common approaches are usually used to derive the behavioral rules: 1) 

the rule-based approach and 2) the optimization-based approach. These approaches usually 

model human behavior explicitly with behavioral parameters. To address the uncertainty 

associated with these behavioral parameters, approaches like sensitivity analysis are usually used 

to investigate the impacts of the behavioral parameters on model outputs. These approaches can 

be very computationally expensive when the behavioral models become complex, not to mention 

that the behavioral models are usually coupled with physically-based environmental models for 

modeling watersheds as coupled human and natural systems. In addition, well-defined 

behavioral parameters, which are expected to capture the behavioral uncertainty, require 

modelers to have good domain knowledge. With the advancement in data science and 

computational infrastructure, an alternative approach is suggested deriving the agents’ 

behavioral rules from a selective set of factors that are likely to affect agents’ behavior and reflect 

bounded rationality of their behavior. However, there still exist some limitations in using a data-

driven approach to derive behavioral rules primarily due to data availability and quality. 
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1.2 Research Objectives 

The goal of the dissertation is to investigate the interactions between farmers and the 

groundwater system through developing and coupling a behavioral model with an environmental 

model using the High Plains aquifer hydrological observatory (HO) area as the study site. 

Specific objectives are developed as milestones along the way to reach the goal. These objectives 

are to 

I. Apply an optimization-based approach to developing a behavioral model, and 

couple it with a groundwater model to simulate the High Plains aquifer within the 

HO area as a coupled human and natural system.  

II. Propose a computational framework to improve the computational efficiency of the 

behavioral model and provide the network access to the coupled models with user 

scalability so as to support participatory modeling exercise and facilitate 

stakeholders’ participation in groundwater resource management. 

III. Develop another computational framework to deal with the computational intensity 

issue arising from global sensitivity analysis with the coupled behavioral model and 

groundwater model so as to capture the impacts of behavioral parameters on the 

outputs of the coupled models. 

IV. Propose a new approach that combines data mining techniques (i.e., machine 

intelligence) with the expert domain knowledge (i.e., human intelligence) to derive 

the behavioral rules of agents as well as account for behavioral uncertainty.   

Objective I aims to develop a behavioral model using an optimization-based approach by 

assuming that all agents are rational. Objective II attempts to address the system scalability and 

user scalability arising from the web-based application of the coupled behavioral model and 

environmental model. Quantification of the impacts of behavioral uncertainty of the coupled 

models is achieved through the computational framework developed by Objective III. Different 

from Objective I, Objective IV proposes a new approach to model human behavior and address 

the associated behavioral uncertainty from a different perspective. Achieving these objectives 

towards the goal of the dissertation not only involves the development of new methodological 

frameworks, but also presents the alternative means to model human behavior under the 

behavioral uncertainty.    
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1.3 Dissertation Outline 

In Chapter II, a behavioral model is developed using optimization-based approach and a 

new computational framework is proposed to overcome the computational intensity of the coupled 

behavioral model and environmental model so as to support the coupled models as a service. 

By following Chapter II, a cost-efficient approach is developed in Chapter III to measure 

behavioral uncertainty when the quantification of the impacts of human behavior becomes 

computationally intractable with the conventional approaches. By combining Chapter II and III, 

the goal to develop a behavioral model under the behavior uncertainty is achieved with the 

optimization-based approach.  

Different from Chapter II and III that treat the behavioral uncertainty as the result of 

variations of behavioral parameters, Chapter IV attempts to propose a new approach for the design 

of the behavioral model under the condition of bounded nationality of human behavior. 

Chapter V summaries the major findings and contributions of the present work, discuss the 

limitations as well as the future work.  
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2 CHAPTER II 

Design of a web-based application of the coupled behavioral model and environmental model 

for watershed management analysis using Hadoop  

2.1 Introduction 

Conventional river basin development planning and management fails to address severe social 

and environmental consequences (e.g., water resource conflicts), partially due to the lack of 

management policies and quantitative modeling tools available to engage stakeholders and 

describe their interactions with the biophysical systems (Barrow, 1998). A new integrated 

watershed management framework is proposed in an attempt to address these issues and promote 

watershed sustainability by accounting for the spatial and dynamic interactions between human 

and biophysical processes, and modelling watersheds as coupled human and natural systems 

(CHNSs) (Pahl-Wostl, 2005; Hipel et al., 2007; Liu et al., 2007; An, 2012). The various actors in 

the human systems can be modeled as a collection of autonomous decision-making and interactive 

entities, which are defined as agents. These agents follow certain behavioral rules in order to 

acquire new information, update their behaviors and adapt to the variations of the environment. 

They are also characterized by the rules to change these rules (North and Macal, 2007). 

Environmental models, on the other hand, are developed to simulate specific physically-based 

environmental processes in a natural system. Thus, coupling a multi-agent system (MAS) model 

with an environmental model can model a watershed as a CHNS by accounting for a wide range 

of relevant social, economic and environmental factors. Such coupled models can unveil hidden 

patterns in both human behavior and natural processes, capture emergent phenomena and thereby 

help us gain better understanding of the interactions between human and natural systems 

(Bonabeau, 2002; Monticino, et al. 2007; An, 2012).  

Despite the recent progress made in modeling human behaviors for interactions with 

environmental systems, challenges still remain. For a modeler, one of the challenges lies in the 

computational intensity arising from running the MAS model with complex behavioral rules. In 

order to cope with this challenge, we usually resort to simplified behavioral rules for agents, and/or 

couple it with a lumped environmental model. In our prior work (Ng et al., 2011), a particular 

focus was to design an agent-based model (ABM) with relatively complex behavioral rules (utility 
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optimization combined with learning), and couple it with a hydrologic-agronomic watershed 

model to simulate agents' decisions on crop and best management practice (BMP), as well as assess 

the environmental impacts of the decisions. One of the motivations for our current work is to 

address the computational intensity arising from running the coupled models with agents 

associated with complex behavioral rules. We propose to use the multithreaded programming to 

tackle the computational burden. 

From the model application perspective, a large number of environmental models are 

developed but cannot be exploited by users other than the developers, which has affected the 

applicability of scientifically-based models for environmental research (Papajorgji et al., 2004). 

Using Web 2.0 technologies, design of a web-based application of environmental models 

becomes a viable trend for addressing the issues of data and model accessibility and service 

interoperability, and thereby increases the reusability of environmental models over computer 

networks (Papajorgji et al. 2004; Granell et al., 2010). For example, Castronova et al., (2013) 

demonstrate how to implement a hydrologic model, TOPography-based MODEL 

(TOPMODEL), as a web application using service-oriented architecture (SOA), which allows 

modelers to locate and couple different software components anywhere in computer networks. 

These individual components can then coordinate with each other via a certain protocol (such as 

HTTP protocol) to perform predefined tasks (Curbera et al., 2002; Huhns and Singh, 2005; 

Goodall et al., 2011). However, coupling the MAS model (e.g., with massive numbers of agents 

associated with evolving behaviors over time) with an environmental model (e.g., with long 

simulation time) by SOA is very challenging. The computational efficiency of the coupled 

models can be further affected when the large amount of data exchange used to describe the 

interactions between human and environmental systems becomes the bottleneck. In this chapter, 

we will discuss how to take advantage of the ease of implementation and flexibility of SOA 

while ensuring the computational efficiency of the coupled models as a web application. 

In this chapter, a MAS model is developed based on our prior work (Ng et al., 2011), and 

coupled with a physically-based environmental model to simulate the watershed as a CHNS. We 

propose a framework to combine the multithreaded programming with Hadoop-based cloud 

computing for the parallel modeling of the MAS model as well as the scalable execution of the 

coupled MAS model and environmental model via the network. The remaining sections of the 
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chapter are structured as follows. We begin with a brief introduction of MAS modeling and its 

applications for watershed management in the context of CHNS. Following that, we introduce 

parallelism, focusing on the computational patterns suitable for the MAS model and its parallel 

implementation. A Hadoop-based cloud computing scheme is then proposed to improve the user 

scalability of the web-based application. A real-world example that couples a MAS model for 

irrigation decision making with the Republican River Compact Administration (RRCA) 

groundwater model, is used to illustrate how to implement the coupled models in a Hadoop-

based cloud computing environment (Illinois Cloud Computing Testbed, 

http://cloud.cs.illinois.edu/hardware.html) and deploy them as a web application. Finally, we 

conclude with some insights gained through the study. 

2.2 Coupled MAS and Environmental Models 

 Multi-agent System (MAS) Model  

The multi-agent system (MAS) modeling framework defines how to build numerical models, 

based on autonomous, interdependent and adaptive agents that follow prescribed behavioral 

rules. These models allow researchers to investigate the relationship between individual 

behaviors and collective social structures. Differing from conventional centralized approach, 

which assumes top-down control to handle decision-making processes, MAS is designed to 

follow a bottom-up, distributed approach (Becu et al., 2003; Reeves and Zellner, 2010; Ng et 

al., 2011), and thereby has the capability to assist in the spatial-temporal exchange of 

information in systems consisting of decentralized agents (An et al., 2005; Deissenberg et al., 

2008; Robinson and Brown, 2009). As a result, MAS has gained popularity in both social and 

physical sciences over the last decade, moving from simple, theoretical exercises to more 

complex coupled social and biophysical models that describe a system, its components and the 

surrounding environments (Lansing, 1999; Reynolds et al., 2005; Ng et al., 2011). This 

dynamically coupled modeling approach can provide insight into progressive environmental 

feedbacks and subsequent societal responses (Reynolds et al., 2005). 

For MAS modeling, the behavioral rules of agents define the ability of agents to learn and 

adapt to the environment. The number of agents and the associated behavioral rules usually 

determine the computational intensity of MAS. In the context of the coupled MAS model and 

environmental model, agents are usually defined as stakeholders with various behavioral rules 
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operating on the shared common environmental resources (Feuillette et al., 2003; Monticino et 

al., 2007). The MAS model usually involves a large number of agents interacting with complex 

physically-based environmental models at multiple spatio-temporal scales (Epstein, 1999; 

Bennett and Tang, 2006; Tang et al., 2011). Their adaptations to the changing environment have 

to be simulated over a long period via the changes of behavioral rules (Gilbert and Troitzsch, 

1999; Parker et al., 2003). As a result, the complexity of the MAS models and their intensive 

information exchange with environmental models can easily overwhelm the modeling efforts and 

force oversimplified representations of real-world dynamic phenomena (Haefner, 1992; Gong et 

al., 2013). This situation often leads to the simplification of the models or the reduction of the 

modeling scopes. 

 

 Computational Patterns and Parallelism 

Rather than simplifying the coupled MAS model and environmental model by reducing the 

number of agents, defining them with simplified behavioral rules or coupling them with lumped 

environmental models, this study introduces parallel computing to ease the computational 

burden and solve the coupled MAS model and environmental model within a reasonable time. 

Parallel computing exploits the concurrency of the problem and solves the problem with multiple 

cores/processors. The problem can thereby be solved with less total wall-clock time than solving 

the problem on a single processor. 

 

2.2.2.1 Agent and Repository Structural Pattern 

A pattern language for parallel computing (Mattson et al., 2004; Massingill et al., 2005) is 

introduced to exploit the possibilities for parallelization in the coupled MAS model and 

environmental model. Specifically, the coupled MAS model and environmental model fit 

naturally to the agent and repository structural pattern defined by Our Pattern Language (OPL; 

Keutzer and Mattson, 2009). Different agents have their own tasks and communicate with each 

other on the basis of the common resources, including both information and natural resources. 

These common resources can be considered as repositories as shown by Figure 2-1. The 

hierarchical structure illustrates how parallelism can be introduced to the MAS model using the 

agent and repository pattern. At the upper level in Figure 2-1, different agents can have their 

independent tasks (e.g., crop choice and water use) associated with the common repository (e.g., 
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shared resources) implemented in parallel, namely task parallelism. If we look into the individual 

behaviors of each agent (e.g., learning and optimization) at the lower level in Figure 2-1, we may 

be able to unveil the possibilities where other types of parallelism (e.g., data parallelism) can be 

introduced. For example, a large number of data samples can be generated in parallel and used to 

optimize the decision of each agent. As a result, depending on the tasks carried out by the agents, 

both task parallelism and data parallelism can be applied to improving the performance of the 

coupled MAS model and environmental model in terms of total wall-clock time.  

 

Figure 2-1 Architecture of the agent and repository pattern. 

2.2.2.2 Parallel implementation  

There exist a variety of ways to implement agent and repository structural pattern in 

parallel. For example, Tang et al. (2011) use message passing interface (MPI; Snir et al., 

1998) to implement the parallel version of an ABM of land use opinions. Graphics 

Processing Units (GPU) programming is also used for the parallel modelling of ABMs 

(Tang and Bennett, 2012). However, these high-performance computing techniques are 

developed for specially designed CPU-GPU supercomputing resources. With recent 

advancements in multi-core technology for the x86/64 architecture, multithreaded 

programming which can initiate multiple threads to handle events concurrently on a single 

machine with less programming effort is becoming widely used. For example, a distributed 

platform for global-scale ABMs of disease transmission is built by Parker and Epstein 

(2011) using multithreaded programming. In this chapter, we will use the same 

programming technique for the parallel implementation of our MAS model. 

In the context of the integration of MAS models with environmental systems, agents are 
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usually associated with a large data set, including environmental data, social data and economic 

data, and execute independent tasks defined by their individual behavioral rules (Reeves and 

Zellner, 2010). Different tasks operate on the large shared data structure, which may consist of a 

set of text files, model solvers and databases. In order to improve the computational efficiency of 

the agents operating on the shared data structure, we try to execute the agents with independent 

tasks in parallel. However, unexpected results are likely to be generated due to simultaneous 

accesses to the shared data structure by multiple agents. Thus, the correctness of the program 

running in parallel must be guaranteed by making agent operations on the shared data structure 

thread-safe (Goetz et al., 2006). In other words, regardless of the scheduling of the threads 

generated by the runtime environment, a thread safe program running in parallel ought to generate 

the same results as the one running sequentially. To address the thread safety issue, the large 

shared data structure should be treated as a repository and a manager is needed to control the 

repository access by different agents and thus maintain the data consistency issue (Keutzer and 

Mattson, 2009). For the agent and repository pattern, one of the common approaches is to use 

relational database management systems (RDBMS) to manage the access to the repository, and 

ensure reliable database transactions. In addition, in the ideal ACID-compliant (A: atomicity; C: 

Consistency; I: Isolation; D: Durability) world, operations by different agents on the common 

repository managed by RDBMS can be programmed to be thread safe. 

 Model Coupling 

As mentioned above, for the coupled MAS model and environmental model the computational 

intensity arises not only from the complexity of the coupled models themselves, but also from the 

data transfer between the MAS and environmental model. Data transfer usually occurs during the 

run-time to represent the interactions between human and natural systems so as to simulate the co-

evolution of the two systems. Thus, they should be either tightly-coupled as a single model or 

treated as a single software component of the web application in order to avoid network latency 

(Goodall et al., 2011). The other components, such as web interface, visualization toolkits and 

web-based database can then be loosely coupled with the coupled models component using HTTP 

protocol (GET, PUT, POST, DELETE and HEAD) to reduce the complexity of the implementation 

of the model coupling and system debugging. 
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2.3 Cloud Computing with Hadoop 

 Cloud Computing 

Most parallel computing paradigms for MASs or ABMs are evolved from the conventional 

supercomputing resources. For example, Da-Jun et al., (2005) design the parallel computing 

platform for the specific Beowulf-style clusters, and Tang et al., (2011) use supercomputer grids, 

TeraGrid, for the parallel agent-based modelling. However, in reality the time and monetary cost 

to access these computing resources can limit their applications. In addition, to acquire the 

technical knowledge and skills (such as those for dynamic load balancing, scheduling and 

synchronization) associated with the conventional high-performance computing can be 

challenging. In order to minimize the cost and circumvent these technical challenges, we propose 

a viable alternative to execute the coupled models in a cloud computing environment. Cloud 

computing is considered as a cost-saving means to bring unprecedented computing power which 

has huge potentials for water resources applications (Hunt et al., 2010; Liu et al., 2013). Its great 

advantage of on-demand access outweighs the supercomputer and makes it well suited for the web 

application in need of user scalability. For example, when the coupled MAS and environmental 

models are deployed as a web application, a variable number of users may expect to test the model 

simultaneously via the network without being affected by multiple accesses initiated by others. 

This can be satisfied if different model runs invoked by different users are executed independently 

on different machines, which in fact require easily scalable computing resources.  

 Apache Hadoop 

Apache Hadoop is a commonly used open-source software framework used to create a cloud 

computing environment for large amounts of data storage and processing on clusters of commodity 

hardware (Apache Hadoop, 2009). This framework consists of two main components, Hadoop 

MapReduce (Dean and Ghemawat, 2008) and Hadoop Distributed File Systems (HDFS) 

(Borthakur, 2007). From a programmer’s point of view, MapReduce, similar to other Java libraries, 

is imported at the beginning of a program. One only needs to implement the map and reduce 

function defined by the "mapper" and “reducer” interface, and pass the input data into these 

functions. MapReduce takes over and ensures that the input data are distributed through the cluster, 

and computes the two functions across the entire cluster of machines. The details (i.e., 

parallelization, distribution of data and tolerance of machine failures) are hidden away from the 



14 

 

programmer inside the library (Nielsen, 2009). We thereby do not need to be concerned about the 

load balancing and task rescheduling if any task fails. HDFS is used to store both the input and the 

output data from MapReduce jobs in the distributed file systems, ensuring data accessibility and 

consistency across the entire cluster. A detailed example is provided below to explain how we can 

leverage MapReduce for the parallel MAS modelling. As a result, we expect that the integration 

of the cloud computing with the Hadoop framework into the design of a web-based application of 

the coupled models will allow many users to execute the model simultaneously without an increase 

in latency.  

2.4 Methodology 

 Case Study Site 

The Republican River basin (RRB) in the U.S. Midwest is used as a case study. The 

Republican River originates in the high plains of northeastern Colorado, western Kansas and 

southern Nebraska. The basin covers approximately 25,018 square miles (~16 million acres) 

of the three states. The rapid development of irrigated agriculture in the basin in recent decades 

has resulted in a significant increase of groundwater use for irrigation and a declining water 

table. Due to the interaction between surface water and groundwater systems, the declining 

groundwater level has led to a trend of stream depletion that concerns policy-makers. Further, 

water conflicts arise because groundwater resources are shared by the three states. In order to 

understand groundwater use and the spatial impacts of groundwater pumping on streamflow, a 

comprehensive groundwater model, the Republican River Compact Administration (RRCA) 

groundwater model, was developed. The RRCA model uses MODFLOW-2000 (written in 

FORTRAN 77) with additional modules, and was developed and calibrated through the 

collaboration of the three affected states, the U.S. Geological Survey, and the U.S. Bureau of 

Reclamation (McKusick, 2003). The RRCA model is updated regularly, and data and code are 

freely available online (http://www.republicanrivercompact.org). In this study, a MAS model is 

developed to combine hydrologic, economic, and institutional factors into a detailed, cohesive 

and computationally tractable modeling framework for the simulation of farmers’ irrigation 

behaviors on groundwater withdrawal. Thus, coupling it with the RRCA model can help us gain 

some insights into the interactions between famers’ pumping behaviors and declining 

groundwater levels and stream depletion in the Republican River basin.  

http://www.republicanrivercompact.org/
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Using the case study site as an illustrating example, we will describe the design of the MAS 

model, the coupling of the MAS model with the RRCA model as a single software component, 

the procedure to execute the coupled MAS model and RRCA model in a parallel manner, and the 

integration with other components as a web-based application in the Hadoop-based cloud 

computing environment shown by Figure 2-2. 

 

  

Figure 2-2 Architecture of the web-based application of the coupled MAS model and environmental model. 

Communications between the coupled models and the other components (database and visualization toolkit) are 

implemented via HTTP protocol.  
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Table 2-1 List of variables associated with agents’ pumping behavior. 

 

Y: Yes; N: No; PA: Partially Available; NA: Not Applicable; RRCA: Republican River Compact 

Administration; USDA: U.S. Department of Agriculture; FarmDoc: Farm Decision Outreach Central; Nebraska: 

Department of Natural Resources, Nebraska; Cell: 1 mile by 1 mile. There are 13,220 cells in total which locate in 

46 different agents. The number of the cells in the individual agent varies from few to approximately 1,000. Rainfed 

and Dryland are used interchangeably in this chapter. 

 

 Coupled MAS Model and RRCA Model 

Pumping from the underlying aquifer is identified as the major water use practice for 

agricultural irrigation in the Republican River basin. Therefore, a better understanding of the 

impact of farmers’ pumping behavior on water table and stream baseflow is of importance to 

resolve the water conflicts among the affected states. Here, the MAS model is used to simulate 

farmers’ pumping decisions. The agent is defined as a county within the High Plains aquifer which 

underlies the Republican River basin. We assume that besides pumping from the same aquifer 

these agents have no explicit interactions with each other and their attributes are characterized by 

various factors from environmental, social and institutional perspectives, as shown by Table 2-1. 

Note that most of the data used by the MAS model are publicly accessible from the RRCA website 

(http://www.republicanrivercompact.org), U.S. Department of Agriculture (USDA), Farm 

Decision Outreach Central (FarmDOC) at University of Illinois and Department of Natural 

Resources, Nebraska, U.S. In addition, we estimate some factors at the desired spatio-temporal 

scale for the MAS model denoted by “Model Estimation” in Table 2-1. The data we used for the 

estimations are mainly obtained from Palazzo (2009) and Zhang et al. (2009 and 2010). We then 

develop a socioeconomic model to describe the behavioral rules of the agents by linking the 

http://www.republicanrivercompact.org/
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environmental, institutional and economic factors with agents’ decision on pumping (See 

Appendix A.1). We assume that agents behave strategically for the purpose of maximization of 

their individual utilities. In addition to this, agents’ adaptation to the new environment is reflected 

in their ability to learn and update their behaviors over time.  

2.4.2.1 Coupling the MAS model with the RRCA model 

Coupling the multi-agent irrigation decision making system model with the RRCA 

groundwater model provides us with a way to investigate the water conflicts between the baseflow 

requirement for ecosystems and the demand for irrigation in the basin. Figure 2-3 (a) and (b) show 

spatial and temporal coupling processes between the MAS model and the RRCA groundwater 

model. For each agent, it communicates with hundreds of grids in the RRCA model within its 

boundary over the simulation period from year 1993 to 2006. Agent makes decisions on crop 

types, irrigated/rainfed areas and irrigation depth given the estimated crop prices and precipitation 

at the annual time scale. Then, the annual pumping rate for each agent is estimated and converted 

to the monthly pumping rates for each grid in proportion to their observed monthly pumping rates. 

Given the estimated pumping rates, the RRCA model updates the water table for each grid which 

is transferred to the MAS model, and then translated into crop profit function in terms of energy 

cost as shown by Figure 2-3 (c). 
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Figure 2-3 (a) Spatial coupling between the MAS model (upper part) and the RRCA groundwater model (lower 

part); (b) temporal coupling of the MAS model (with an annual time interval) and the RRCA groundwater model 

(with monthly time period); (c) exchange of pumping rates and water tables between the MAS model and the 

RRCA model. 

 

2.4.2.2 Behavioral rules: utility maximization 

Utility is defined as the agents’ preference regarding crop profits in face of uncertainties. In 

our case, we assume agents deal with two kinds of uncertainties arising from both human and 

natural systems. The first one is the uncertainty of the future crop prices from the market, which 

we assume is one of the dominant factors associated with agents’ decisions on crop types and 
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planted acreage. The other uncertainty, coming from the physical environment, is precipitation, 

which is related to agents’ decisions regarding irrigation depth. In our case, crop prices are 

determined only by the market and treated independently from precipitation. Agents update their 

perceptions about crop prices and precipitation via learning, and integrate them into their utility 

function.  

Through this strategy, agents make optimal decisions on pumping in an attempt to balance 

the crop profits and risks associated with the uncertainties of crop prices and precipitation. In 

order to mimic this decision making process, we propose a Robust Optimization (RO) framework 

suggested by Mulvey et al. (1995) to define the utility function as follows: 

      - .U E Var                                                                  (1) 

Where E(π) and Var(π) are the expected value and variance of the crop profits, π, respectively. 

The agent’s attitude towards the fluctuation  of crop  profits is denoted by λ. The higher the value 

of λ, the more risk averse the agent. Given the land and water availability constraints, we assume 

that all agents intend to maximize their utilities.  Ng et al. (2011) used this form of utility to 

describe farmer agents who decide crop choices. In our case, the utility maximization problem is 

solved using a two-stage stochastic and deterministic optimization algorithm, which helps agents 

determine the crop types, optimal irrigated/rainfed area and irrigation depth under the uncertainty 

of crop prices and precipitation at the annual time scale (see Appendix A.1). 

 

2.4.2.3 Bayesian learning  

Developing a learning process is essential for agents to adapt to the ever-changing external 

environment. In our case, it is assumed that individual agents predict the crop prices and 

precipitation for the crop growing season before planting the crop. They have their own 

perceptions about crop prices and precipitation derived from their past experiences, namely prior 

knowledge. In addition to their prior knowledge, they also observe the crop prices and 

precipitation right before the crop planting season. In our study, we incorporate an agent’s prior 

knowledge and their observations to derive their posterior knowledge of crop prices and 

precipitation, which can then lead to adaptive decisions over time. 

Bayesian statistics is used to simulate the learning process. Bayes’ theorem specifies how 

prior beliefs (in our case, the prior knowledge of crop prices and precipitation) should be 

combined with the diagnosticity of the evidence (agents’ current observations), denoted by the 
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likelihood function (Kahneman, 2011, p154). The simulation of the learning process is an 

extension of the work by Ng et al. (2011). For both crop prices and precipitation, we assume that 

their likelihood function follows the normal distribution: 

2 2 2

2
1

2

/2

/

1 1
( | ) ( ) exp(, [ ( ) ( ) ]).

(2 ) 2
   







    
n

n

in
i

p D n x x n x                    (2) 

Where 1( , , , , )i nD x x x   is the observed data, which are an independent and identically distributed 

(IID) sequence and x  is the mean of the sequence.  and 2 are the mean and variance of the 

likelihood function. A suitable conjugate prior, normal-inverse-chi-squared ( 2NI ) prior as the 

product of normal distribution ( N ) and inverse-chi-squared distribution ( 2  ) is used (Murphy, 

2007): 
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Where n  is the posterior mean and n  represents the level of confidence in the posterior mean; 

2

n  is the posterior variance and n  reflects the level of confidence in the posterior variance. By 

the Bayesian approach, the model allows agents to adjust their annual predictions of the expected 

crop prices and precipitation as they make new observations, which will further impact agents’ 
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decisions on groundwater pumping for irrigation. 

 Software Design of the Coupled Models  

The coupled MAS model and RRCA groundwater model are implemented in the object-

oriented language, Java. The implementation and interaction of different Classes are described by 

the unified modeling language (UML) (Muller, 1997) as shown by Figure 2-4. The coupled 

models are initialized by the two Java Classes, “RRBProjectViewer” and 

“RRBProjectController”. Each agent’s learning and optimization process is then controlled by 

the Java Class, “ExecuteAgent”. This class acts as the brain of the agent, invoking the 

getPosterior()  method in the Java Class, “BayesianLearning” to update the agent’s prediction 

of the future crop prices and precipitation on the basis of their prior knowledge about them and 

the current observations. Based on their newly updated estimations of crop prices and 

precipitation, the getPlantedAreaMethod() and getAgentWaterUseandCropArea() method 

defined in the Java Classes, “AgentPlantedArea” and “AgentWaterUseArea” are invoked by 

the “ExecuteAgent” to solve the two-stage stochastic optimization problem (see Appendix A.1), 

and help agents to determine the crop types, optimal irrigation/rainfed area and groundwater 

usage. An open source software package with application program interfaces (APIs) written in 

Java, called the Java Native Interface (JNI, https://projects.coin-or.org/Ipopt/wiki/JavaInterface) 

for Interior Point OPTimizer (Ipopt) (Wächter and Biegler, 2006) is tightly integrated  into the 

MAS model to solve our large-scale nonlinear optimization problems (NLPs). 
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Figure 2-4 UML description of the coupled MAS model and RRCA model. The coupled models consist of one 

Interface and eight Classes. 

Following the optimization, agents then determine the annual pumping rates. Their 

decisions on pumping rates are the key driving force to the RRCA model, which is invoked by 

the Java Class, “ExecuteModFlow” through calling the MODFLOW executable file. The outputs 

of the RRCA model are then used as the feedback to the MAS model. One of the key feedbacks 

is the water table, which can be used to evaluate the impacts of agents’ pumping decisions on 

groundwater. The water table is then translated into the crop revenue function in terms of energy 

cost (See Appendix A.1), and thereby affects agents’ decisions on pumping in the consecutive 

year. The communication between MAS and RRCA model is implemented through data exchange 

by input/ output files to/from each other.  

In addition to the computational complexity, running the coupled MAS model and RRCA 

model also generates a huge variety of data for each agent, including environmental and 
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socioeconomic data listed in Table 2-1. In order to store and manage the data for the agents, we 

decided to use the popular open-source relational database, MySQL. Given that the MAS model 

is coded in Java, Java Database Connectivity (JDBC) APIs (Poo et al., 2007) are used by the Java 

Classes, “BayesianLearning” and “ExecuteAgent” to store, query and update data in the 

MySQL database, which ensures that all transactions occur in an atomic fashion. Thread safety is 

thereby guaranteed when multiple agents want to access and operate on this common repository.  

 Parallel Version of the Coupled Models 

2.4.4.1 Profiling and Performance Analysis 

Coupling the MAS model defined by complex behavioral rules with the large-scale 

physically-based groundwater model results in a high computational intensity. Originally it took 

nearly four hours to run the coupled models sequentially over the fourteen year simulation period. 

We identify two main performance bottlenecks according to the profiling and performance 

analysis: 1) 46 agents execute learning and optimization in sequence, and each optimization needs 

to call the external MATLAB nonlinear optimization solver, fmincon function; 2) For each agent, 

a large amount of samples are sequentially drawn from the posterior distribution of the crop prices 

and precipitation to calculate the sample mean and variance for solving the stochastic optimization 

problem by the getSamples() method in the Class, “ModelSampling”. Notice that the second 

bottleneck is embedded in the learning process. Currently 74% of the original sequential runtime 

is related to these two bottlenecks.  

 

2.4.4.2 Parallel Implementation 

According to the pattern languages for parallel  computing  (Mattson et  al.,  2004) and the 

features of our MAS model, we decide to parallelize the MAS model with task parallelism for the 

first bottleneck, and apply both task and data parallelism for the second bottleneck as follows. For 

each agent, their tasks of variable initialization, optimization and learning are independent from 

other agents. We thereby create workers with the Java concurrent package to execute the tasks 

for each individual agent. The outputs from each agent are collected as the inputs to the 

groundwater RRCA model after the execution is completed. The second bottleneck comes from 

the use of the Monte Carlo method to generate samples from the posterior distribution of crop 

prices and precipitation. Note the sequential invocation of the random number generator and 
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the sequential execution of the corresponding function evaluation with these random numbers 

cause the slowdown of the program. Given the assumption that the samples are independent 

and identically distributed, we then introduce task parallelism to sample generation, and data 

parallelism to the evaluation functions to improve the speedup.  

In this study, due to data limitation, the interactions between agents are not implemented 

explicitly, but implicitly through the sharing of the groundwater via the RRCA model. It is 

assumed that each agent optimizes utility individually; however, the connection among agents’ 

decisions on pumping for irrigation is captured by the conditions of water available for pumping 

and pumping cost (depending on water table), which is simulated by the RRCA model coupled 

with the MAS model. It should be admitted that this correspondingly reduces the computational 

complexity of the parallel implementation of the MAS model with multithreaded 

programming. If the communication between agents is explicit the multithreaded 

programming will be complicated, since individual threads need to handle the information 

shared by the agents. In the literature there are some studies that handle the communications 

between agents for the parallel implementation of a MAS model. For example, Parker and 

Epstein (2011) applied the priority queues (TreeMaps) to tackle the scheduling of simulation 

events; Tang et al. (2011) used the ghost zones approach to address the exchange of 

information between agents. 

Thread safety is extremely crucial to the correctness of a parallel program. We use two 

approaches to address code thread safety. First, the variables associated with individual agents, 

such as agent’s behavioral parameters, were originally defined as Class variables, which are 

visible to other agents.  Now, we redefine them as local variables, becoming invisible to other 

agents. Second, for the variables shared by different agents such as some socioeconomic and 

environmental factors listed in Table 2-1, we categorize variables into three groups:  1) 

immutable objects; 2) read-only objects; 3) modifiable objects. Only the third type, modifiable 

objects, has thread safety concerns. In addition to the use of RDBMS, we also use two other 

methods to ensure the thread safety. The first method is to replace some non-atomic data 

structures with the built-in concurrent collections. For example, the data structure, 

“MultiKeyMap” in Java can be replaced by the atomic data structure, “ConcurrentHashMap”. 

The second method uses synchronized methods to restrict the shared data access among 

threads and thereby avoid accessing the same resources by the multiple threads, so-called race 
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conditions. In this method, we try to improve the execution time by reducing the lock duration 

only to the part of the Java functions that can cause race conditions, rather than synchronizing 

the entire functions in the Class. 

 Coupled Models as a Web-based Application 

When the coupled models are deployed as a web-based application, it is expected that multiple 

users can run the model over a network simultaneously without incurring increased latency caused 

by each other, namely user scalability. We thereby propose to execute the individual instances of 

the coupled models in parallel on a multi-core node, and different model runs invoked by different 

users over the web interface are distributed and executed across different nodes using the Apache 

Hadoop software framework. Various input files required by the agents are distributed locally to 

each map task from the HDFS. Each agent is executed with multiple threads on a single node 

within the map phase. Different instances associated with different scenario IDs are executed on 

other available nodes of the cluster. Figure 2-5 shows model inputs stored in the HDFS are copied 

to the local system when the map phase is invoked. The coupled models are then executed with 

multiple threads over fourteen years and no execution occurs in the reduce phase. Another instance 

can be running on another node in the same manner. 

The coupled models use some shared libraries not available on the Illinois Cloud Computing 

Testbed. We thereby distributed the libraries through the distributed cache (Hadoop Map/Reduce 

tutorial, 2013). All shared libraries are placed in a zip file and added to the distributed cache. The 

paths to the shared libraries are added as Hadoop system environmental variables, which make the 

libraries available to the programs written in Java as shown by Figure 2-5. Only a few selected 

outputs from the MAS model are then saved into the web database and the rest are save in files in 

HDFS.  

Adding the web interface and visualization toolkits is about making it easier to start and 

manage the coupled models running in a Hadoop-based cloud environment, and then to visualize 

the model results as shown by Figure 2-6. Users can assign different values to the behavioral 

parameters ( prk , prv , prepk , prepv  and  ) for different agents (e.g., in different states located in the 

study basin) via the web interface on the client side. These behavioral parameters are associated 

with agents’ learning and utility maximization as mentioned above. The input information is stored 
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into the database with a unique scenario ID via HTTP POST function. JavaScript Object Notation 

(JSON) is used as data exchange format between the database on the server side and the web 

interface on the client side. After the execution is completed, users can view the results, including 

crop-related information and the water table of selected points along the Republican River. 

Asynchronous JavaScript and XML (AJAX) is applied to allowing the clients to query the 

information from the database via the web interface, and Google Charts APIs (Google Charts, 

https://developers.google.com/chart/) are used as visualization toolkits to visualize data on the web. 

 

Figure 2-5 Overview of the execution of the coupled MAS model and RRCA model with the Apache Hadoop 

framework. The shared libraries are distributed through the distributed cache. 

 

 

https://developers.google.com/chart/
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Figure 2-6 The client-server model: data exchange between the web interface on the client side and the Database, 

coupled MAS and RRCA models and visualization toolkits on the server side. 

2.5 Results and Discussions 

One challenging issue to make the coupled MAS model and RRCA model useful for scientific 

research is to improve its computational efficiency. Initially, it took nearly four hours to execute 

the coupled models over a fourteen year study period. We found that one of the major culprits of 

the computational burden was the optimization solver. Our software originally used the MATLAB 

fmincon function to numerically solve the two-stage stochastic and deterministic optimization 

(see Appendix A.1). This method needs to export the fmincon function as a Java .jar file via 

MATLAB BuilderTM, JA (MATLAB BuilderTM, JA, 

http://www.mathworks.com/products/javabuilder/), and integrate it as a Java Class into the 

coupled models. However, the overhead to initiate the external optimization solver from the 

coupled models is too large and there are potential concerns regarding licensing when using a 

commercial solver for the application. Because of these concerns, we incorporated the open-

source optimization solver, Ipopt. We test both solvers using the same inputs drawn from agents, 

showing the results from Ipopt are the same as the MATLAB solver, but with Ipopt the total 

http://www.mathworks.com/products/javabuilder/
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running time of the coupled models has been reduced from nearly four hours to one hour for 46 

agents over fourteen years (i.e., the runtime for each individual agent with the complex behavioral 

rules is about one second with Ipopt). In addition, the MAS model is also very stable with Ipopt, 

resulting in nearly no runtime errors that prevent the model from working properly. 

System scalability is an important attribute associated with multi-processor systems. It is used 

to measure the effects of multithreaded programming in comparison with the sequential 

implementation of the program. We use speedup to define system scalability and measure the 

program’s running time with different numbers of threads from one to eight on an eight-core 

workstation (4 Intel Xeon(R) E7329 @ 2.13GHz Dual Core Processors, 32GB DDR3 memory 

and network file system). Two measurements have been carried out to measure the speedup of 

the parallel version of the program against the original sequential version. The first measurement 

is used to measure the speedup of the section where we implement task and data parallelism. The 

second is used to measure the overall speedup. For each statistic, we measure the execution time 

five times and then average them. The speedup is then calculated by Amdahl's law (Amdahl, 

1967). Figure 2-7 (a) shows a nearly linear scalability with the increase of the number of cores 

for the first measurement. Under the assumption that there exist no explicit interactions between 

the agents, the speedup should be linear to the number of cores when the overhead to initiate a 

single thread is not taken into account. But, in fact, the speedup will level off when the overhead 

offsets the runtime reduced by the additional thread. Figure 2-7 (b) shows the overall speedup for 

the coupled models. Notice that there exists an increasing gap between the overall speedup and 

the linear line in Figure 2-7 (b). This observation can be explained by that the running time for 

the parallel portion decreases significantly (from 91.4% of total execution time for a single core 

to 57.5% of the total execution time for eight cores) while the runtime for the remaining portions 

of the program (e.g., the RRCA model) remains the same. The total running time of the coupled 

models is thereby reduced from one hour to twelve minutes on an eight-core desktop machine. 
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Figure 2-7 ( a) Speedup for the parallel section (left) and ( b ) Overall speedup (right). 

For the sake of user scalability, we decided to deploy the web-based application of the 

coupled models in a Hadoop-based cloud computing environment. The MAS model lends itself 

nicely to the MapReduce framework under the assumption of no direct communications between 

agents in the MAS model. We originally designed two approaches to execute the coupled models 

with the Apache Hadoop framework. For approach one, in the map phase, agents in the MAS 

model execute their tasks independently in different nodes, and outputs from the agents are 

combined in the reduce phase as the inputs for the RRCA model. For approach two, rather than 

spreading the agents over different nodes, as mentioned above, we execute the simulation of all 

agents over fourteen years in parallel on the same node in map phase. Likewise, the outputs are 

used as inputs for the RRCA model executed in the map phase as well. As a result, no execution 

occurs in the reduce phase. Consider that the first approach has a significant amount of overhead 

associated with starting a MapReduce job, and agents also require very large amount of input data 

that must be distributed locally to each map task. We therefore believe that the second approach 

with multiple threads is more efficient by taking advantage of data locality while executing the 

MAS model, but more analysis needs to be done to confirm our hypothesis. 

The coupled MAS model and RRCA model are deployed as a web application for better 

accessibility. The web interface (http://waterproject.web.engr.illinois.edu/) can help clients access 

the coupled models running on the cluster, in addition to viewing and comparing model results. 

For example, Figure 2-8 shows the crop information for a specific agent under the scenario where 

http://waterproject.web.engr.illinois.edu/
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3prk  , 5prv  , 4prepk  , 5prv   and 10  for all the agents in Colorado. The agents in Kansas 

and Nebraska use the default values ( 5prk  , 40prv  , 5prepk  , 40prv   and 2.5  ). To be more 

specific, Figure 2-8 (a) shows the distribution of total/irrigated crop area over the simulation 

period from year 1993 to 2006. For readability, the results in Figure 2-8 (a) are represented as a 

stepped-area graph as shown by Figure 2-8 (b). Users can also select a specific year and view the 

water use, distribution of crop area and crop profit of that year as shown by Figure 2-8 (c). In 

addition, users can compare the impact of pumping behavior on crops and the water table with 

different settings of behavioral parameters under different scenarios. Figure 2-9 shows the 

distribution of crop area under the specific scenario ( 5prk  , 5prv  , 5prepk  , 5prv   and 

5   for Nebraska and the other agents use the default values). In comparison with the results 

in Figure 2-8 (b), wheat is the dominant crop planted in the dryland area in Figure 2-9. 

 

 

(a) 

Figure 2-8 (a) Irrigated (I) and dryland (D) crop area [acre] for agent 18 over the simulation period from year 1993 to 

2006; (b) distribution of total, irrigated and dryland crop area [acre] for different crops for agent 18 displayed in a 

stepped area graph; (c) water use [inch/acre], crop area [acre] and the percentage of crop profit [$] for different crops 

for agent 18 in year 1996.  
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Figure 2-8 (continued). (Caption shown on previous page.) 

 

 

 

(b) 

 

    (c) 
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Figure 2-9 Distribution of total, irrigated and dryland crop area [acre] for different crops for agent 18 for the specific 

scenario ( , , ,  and  for the agents in Nebraska and other agents use the default 

values).  

Moreover, multiple users can invoke instances of the coupled models via the web interface and 

these instances will be distributed and executed on different nodes through the MapReduce 

framework when nodes are available. However, one should be aware that during execution these 

instances access the shared web-database simultaneously where the provider sets a hard constraint 

on the number of database connections. As a result, initiating many instances simultaneously can 

easily exceed the constraint and lead to the execution failure of each individual instance. 

2.6 Summary and Conclusions  

We have developed a web-based application of a coupled MAS model and environmental 

model for a case study of irrigation and its environmental impacts in the Republican River basin. 

A multi-agent system model is designed to simulate the agents’ pumping behaviors, and it is 

coupled with the physically-based RRCA groundwater model. The MAS model, which 

incorporates self-learning and utility maximization for the various agents, simulates agents’ 

decisions on the crop types, optimal irrigated/dryland area, and irrigation depth at the annual time 

5prk  5prv  5prepk  5prv  5 
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scale; meanwhile the RRCA model simulates groundwater state (e.g., water table). As a result, the 

coupled models allow us to investigate the interactions between the agents’ pumping decision-

making and the groundwater system. 

This chapter focuses on the computational complexity of the coupled models, which could 

limit the usefulness of the models. To tackle the computational issue, we first integrate the open 

source optimization solver, Ipopt, into MAS. The test result shows that the execution time of the 

coupled models running in sequence is reduced from nearly four hours with MATLAB solver to 

one hour with the Ipopt solver. We then introduce multithreaded programming to ease the 

computation intensity of the coupled models by executing the simulation of the agents in parallel 

using the agent and repository pattern from OPL. A database is used to store and manage data to 

ensure the thread safe access to the shared data structures. Other approaches such as concurrent 

data structure and synchronized methods are used to avoid race conditions and thus ensure the 

thread safety while executing the MAS model in parallel. The speedup test in Figure 2-7 shows 

that the execution time of the parallelizable part of the program is reduced from 91.4% of the total 

execution time for a single core to 57.5% for eight cores. The total running time of the coupled 

models is reduced by 80%, from one hour down to twelve minutes on an eight-core node. The 

significant improvement of the computational efficiency for the coupled models opens up 

possibilities for implementing complex models for real world applications. In particular, it 

empowers users to conduct even more time-consuming tasks with complex models, such as 

sensitivity analysis and model calibration. 

A web application will allow many users to access the application over a network. Cloud 

computing, using the Apache Hadoop software framework, including MapReduce and HDFS, 

brings us on-demand access to the unprecedented computational power via the network. As a result, 

the Hadoop framework integrated in the design of the web application enables the coupled models 

to handle a large number of invocations through the web interface. As a demonstration, the coupled 

models are deployed to the Illinois Cloud Computing Testbed and different instances initiated by 

different users via a web interface should be primarily distributed and executed on different nodes 

by the MapReduce framework when nodes are available. It is found that the Hadoop-based cloud 

computing scheme allows the coupled models to effectively respond to a number of requests by 

the users. Moreover, the web application is facilitated by loosely coupling the model with other 
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components via HTTP protocol, including web interface, web-based database and visualization 

toolkit.  

In summary, our experimental work takes advantage of advancements in computer 

technologies (multithreaded programming, Hadoop-based cloud computing and web 2.0) to build 

a platform that provides network access to a physically realistic and computationally efficient 

coupled MAS model and environmental model. This chapter presents an initial effort of modeling 

CHNSs as a web application which facilitate an online dissemination of the models and the results, 

and then support participatory modeling exercises. Although the work presented in this chapter is 

tailored to the Republican River basin case study, the design of the coupled models can be used 

as a reference for other cases that involve the interactions between human and natural systems. 

The framework which combines multithreaded programming with Hadoop-based cloud 

computing and managed from a web application is generally applicable to models which require 

system and user scalability. Multithreaded programming can be applied to improving the 

computational efficiency of the single instance of the model (i.e. system scalability). Hadoop-

based cloud computing provides on-demand computational power to execute multiple instances 

of the model simultaneously (i.e. user scalability).  
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3 CHAPTER III 

Global sensitivity analysis for the coupled agent-based model and groundwater model using 

Hadoop 

3.1 Introduction 

Society faces a number of water challenges due to human decisions, inducing water 

scarcity, waste, pollution and unsustainable management. Incorporating human factors into water 

resources systems analysis provides a framework to address sustainability issues in water resources 

planning and management (Molle, 2009). This framework will allow us to understand the 

interactions between human and environmental systems while tackling the challenging water 

issues arising from human activities. The coupling component models (CCMs) approach (Kelly et 

al., 2013) is applied to designing a socio-hydrological model by coupling a multi-agent system 

(MAS) behavioral model with a physically-based groundwater model- the Republican River 

Compact Administration (RRCA) model. The MAS model describes farmers’ behaviors in terms 

of groundwater pumping decisions; the RRCA model simulates the water level in an aquifer and 

water exchange between the aquifer and streams (RRCA, 2003; Mulligan et al., 2014). Thus, the 

coupled socio-hydrological model enables us to have a quantitative understanding of the impacts 

of the farmers' pumping behaviors on the water table and the baseflow requirement for ecosystems, 

and vice versa (Hu et al., 2015).  

However, in behavioral modeling and simulation (Van Hemel et al., 2008), virtually all 

simulations include some random elements in both their initial conditions and their mechanisms 

for change (Axelrod, 1997). Human behavioral parameters as inputs to these models are highly 

uncertain and variable. The input data are either not directly available or may only be indirectly 

inferred from related information, and their uncertainty and error must be considered (Liebl, 1995; 

Bier, 2011). In addition, as in many cases in the social sciences, the cause and effect relations in 

the systems of interest are not yet well understood. A single run of the simulation model with one 

given set of parameters will not be able to represent the real underlying uncertainties, and the result 

can be misleading (Axelrod, 1997). By changing the input systematically, sensitivity analysis can 

help explore the relationships and mechanisms that are not yet well understood, reveal the possible 

variations in the results, and highlight the most important processes especially in social sciences 
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(Chattoe, et al., 2000). For example, Happe (2005) presents the application of sensitivity analysis 

with an agent-based model named AgriPolis in order to identify the factors which most affect 

average economic land rent per hectare.  

With simple simulation models, sensitivity analysis is often conducted by varying one 

parameter at a time while keeping the remaining parameters constant. For complex simulation 

models, such as coupled socio-hydrological models, this ‘One-At-a-Time’ (OAT) approach 

ignores the possible interactions between input parameters, and therefore is not able to capture 

their impacts on the model outputs as the result of their interactions (Kleijnen et al., 2003; Happe 

2005). Derivative-based local sensitivity analysis is often limited to a few simulation models with 

analytical solutions of the derivatives with respect to the parameters of interest (Huard and Mailhot, 

2006). It becomes unwarranted when the inputs are uncertain, and less informative, in particular 

when we want to explore the rest of the space of the input factors, other than the base points where 

the derivatives are calculated (Saltelli et al., 2008). Meanwhile, we are aware that the quantities of 

interest for social scientists usually lie in the effects of input variables on the spatio-temporal 

evolution of output variables. However, those sensitivity analysis methods lack of the ability to 

analyze the spatial and temporal effects of human behavioral uncertainty, which are of great 

importance to understanding the interactions between human and hydrological systems.   

Compared to local sensitivity analysis, Wainwright et al., (2014) claim that global 

sensitivity analysis (GSA) can provide robust sensitivity measures in the presence of nonlinearity 

and interactions among the parameters. However, GSA can be computationally expensive using 

Monte Carlo methods, since it usually requires a large number of model evaluations (Sobol, 1993; 

Saltelli, 2002; Saltelli et al., 2008). Thus, in practice, conducting the Monte Carlo-based GSA with 

complex models can be infeasible. In this chapter, we propose a methodological framework for 

GSA applied to large scale socio-hydrological models by combining a Hadoop-based cloud 

computing approach for model evaluation, with a Polynomial Chaos Expansion (PCE) based 

variance decomposition approach for estimation of the sensitivity indices. We will demonstrate 

how these techniques make GSA computationally tractable for complex socio-hydrological 

models.  The rest of the chapter is organized as follows. We start with a brief introduction of our 

coupled socio-hydrological models. Then, we address two major challenges arising from GSA 

with large-scale socio-hydrological models: 1) the computational cost associated with running the 
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computationally intensive coupled socio-hydrological models to generate sufficient model outputs 

for GSA; 2) sensitivity analysis methods that can effectively utilize a large amount of 

multidimensional data as the result of Monte Carlo runs and capture the spatial and temporal 

variations of input variables on model outputs. Finally, we will conclude with the advantages of 

the proposed computational framework for large-scale socio-hydrological models.  

3.2 Background  

 Case Study Site 

The Republican River originates in the high plains of northeastern Colorado, western 

Kansas and southern Nebraska. The basin covers approximately 25,018 square miles (~16 million 

acres) of the three states, and is encompassed by the underlying High Plains aquifer as shown by 

Figure 3-1. Due to the intensive agriculture development in the Republican River Basin since the 

1970s, there has been a significant increase of groundwater use for irrigation. Water conflicts and 

lawsuits arise from the sharing of the groundwater resources among the three states in the 

Republican River Basin: Colorado, Kansas and Nebraska. As part of the US Supreme Court 

settlement, a comprehensive groundwater model, the Republican River Compact Administration 

(RRCA) groundwater model which uses MODFLOW-2000 with additional modules, was 

developed through the collaboration of the three affected states, the U.S. Geological Survey, and 

the U.S. Bureau of Reclamation (McKusick, 2003). Using the principle of water balance, the 

RRCA model, which allows for spatial variability in hydraulic conductivity (K), 

evapotranspiration (ET), recharge, etc. is used to represent groundwater flow in the Republican 

River Basin and determine the time, location and amount of stream depletions as the result of well 

pumping (RRCA, 2003; Mulligan et al., 2014).  

 Coupled MAS Model and RRCA Model 

The multi-agent system is characterized as a collection of autonomous decision-making 

and interactive entities, namely agents. These agents are autonomous, interdependent and 

adaptive, and they follow a base-level set of behavioral rules. Those rules can be altered by other 

high-level sets of rules for agents to learn and adapt to the environment (North and Macal, 2007). 

The design of the MAS model follows a bottom-up approach to assist in the spatial-temporal 

exchange of information. In this study, we developed a multi-agent system (MAS) model to 

describe farmers’ decision-making processes on groundwater pumping for irrigation in this region 
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by taking various environmental and socioeconomic factors into account, and coupled it with the 

RRCA model to simulate the interactions between farmers’ pumping behaviors and the 

groundwater system as shown by Figure 3-2.  

For individual components of the coupled models, they often work on different space and 

time scales and necessary disaggregation and aggregation procedures are required to couple them 

together (Kelly et al., 2013). For example, in these coupled socio-hydrological models, each agent 

is defined as a county within the High Plains aquifer as shown by Figure 3-1 and characterized 

by the five behavioral parameters (
pr ,

pr ,
prep ,

prep and ) in Table 3-1 (i.e., 46 agents and 230 

parameters in total). For parameters 
pr ,

pr ,
prep  and

prep , the larger the parameter values, the 

more confidence the agents have on the prior knowledge of the mean and variance of the crop 

prices and precipitation. For parameter  , the larger the value, the more cautious the agents are 

to take the risk in pursuit of higher crop profit return. Given the behavioral parameters, each agent 

makes annual predictions of the future crop prices and precipitation via Bayesian learning (See 

Appendix B.1). The estimated crop prices and precipitation are then fed into the stochastic utility 

maximization model which mimics agent’s decisions on the choices of crop types, the 

corresponding planted irrigated and rainfed crop areas and the annual groundwater usage (Hu et 

al., 2015). The annual groundwater withdrawal is then converted to the monthly pumping rate for 

the wells (shown as red dots in Figure 3-1) to drive the RRCA model. The outputs of the RRCA 

model are used as the feedback to the MAS model for the next year. One of the key feedbacks is 

the water table, which is used to evaluate the impacts of agents’ pumping decisions on 

groundwater. The water table is converted to the depth to groundwater and then translated into 

the crop revenue function in terms of energy cost, which affects agents’ decisions on pumping in 

the following year (Hu et al., 2015).    

Given the complexity of the underlying models and their links, it is very challenging to 

fully understand the true uncertainty in the coupled models (Kelly et al., 2013). In this study, we 

assume that the parameters in the RRCA model are constant and the only uncertainty is in the 

MAS model as the result of the variations of the behavioral parameters. We recognize that there 

can be uncertainty in the hydrogeological parameters in the RRCA model, but we leave that for 

future investigations. Some test results have shown the impacts of the behavioral parameters on 

the selection of crops, irrigation area, crop profits and groundwater usage (Hu et al., 2015).  

Through sensitivity analysis, we want to identify which parameter(s) have the most significant 
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impacts on the groundwater table. As a result, it can help us gain some insights into the causes 

and effects between farmers’ pumping behaviors and groundwater decline. 

 

Figure 3-1 The aerial view of the pumping wells (red dots) and High Plains aquifer (blue line) in MODFLOW-2000 

and the overlapping counties (blocks) of different states (orange: Colorado; light green: Kansas; spruce green: 

Nebraska; each county is treated as an agent and the numbers are selected agent IDs). 

 

Figure 3-2 Coupling of the MAS model (with an annual time interval) and RRCA model (with monthly stress 

period). The simulation period is from year 1993 to 2006. 
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Table 3-1 Five behavioral parameters ( , , , and ). It is assumed that all parameters are independent 

and follow uniform distribution with different ranges as shown in the table.   

  

3.3 Methodology 

 In the following sections, we first discuss the sampling approach that can generate sparse 

but well-represented samples from the parameter domain. Then, we delve into the computational 

issues which result from running a large number of simulations of the coupled socio-hydrological 

model with the samples from the previous step. Once we obtain the large amount of model outputs, 

we introduce an efficient approach to estimate sensitivity indices.  

 Sampling Generation 

The five behavioral parameters defined for each agent describe the agent's preference 

between the prior knowledge and the historical experience of crop prices and precipitation when 

predicting their values during the crop planting season (Hu et al., 2015). However, no data is 

available to measure the correlation between agents' preferences across county lines; in the current 

study, we assume all the parameters are independent and follow a uniform distribution with 

different ranges shown in Table 3-1 and leave the case of the correlation between agents’ 

preferences for future investigation.  The coupled Latin Hypercube Sampling (LHS) with a Genetic 

Algorithm (Stocki, 2005), called geneticLHS in R (R Package ‘lhs’, Carnell and Carnell, 2012) is 

applied for sampling the parameter sets that are expected to well represent the entire parameter 

domain through maximizing the mean distance from each design point to all the other points in the 

domain. Thus, the designed points are spread out as much as possible. The sampling method works 

as follows. First, we apply the geneticLHS to generate a large number of sample sets as the 

candidate input sets for the MAS model, and each sample set contains the values of the five 

pr pr
prep prep 
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behavioral parameters. For each run of the coupled MAS model and RRCA model (i.e. running 

the coupled models over 14 years from 1993 to 2006), we randomly choose one input set from the 

candidate input sets, assign it to one individual agent and repeat the procedure for all 46 agents. 

Then, we iterate the run over N times and thus generate a data set, including N independent and 

identically distributed samples for all 230 parameters in the coupled models denoted by

(1) (N){ ,..., }S X X , where ( ) ( ) ( )

1 230( ,..., )i i iX X X is treated as one model input, and hence one 

scenario for sensitivity analysis is thus defined as a single execution of the coupled models with 

( )i
X . 

 Cloud Computing with Hadoop 

As mentioned above, each agent is characterized by five human behavioral parameters (i.e. 

230 independent parameters in total for all 46 agents in the coupled models). It is expected to run 

the coupled models at least twice as many times as the total number of parameters (i.e. 460 times) 

in order to estimate the effect of changing each parameter when using the OAT approach (Saltelli, 

et al., 2008). In the case of GSA with a variance decomposition approach accounting for the impact 

on model outputs incurred by parameter interactions, even more model evaluations are desired. 

However, one single sequential execution of the coupled models over 14 years takes one hour on 

a desktop machine (2.4GHz Dual Core; Hu et al., 2015). For example, if we want to run the coupled 

models 1,000 times for sensitivity analysis (i.e., 1,000 scenarios), the total computation time is 

approximately 42 days. Here, we assumed that the interactions between agents are not 

implemented explicitly, but implicitly through the RRCA model and much of their computation 

work can thus be executed independently without the need of message passing among agents (Hu 

et al., 2015), and each scenario for sensitivity analysis is independent. These features make 

sensitivity analysis with the coupled models well suited for parallel computing. Cloud computing, 

as one kind of parallel computing, is considered as a cost-saving means to bring this unprecedented 

computing power, and also has a great advantage of on-demand access in comparison with 

conventional supercomputers. Hunt et al. (2010) point out that sensitivity analysis or auto-

calibration with the complex models can benefit from cloud computing techniques, among which 

Apache Hadoop is a commonly used open-source software framework for a large amount of data 

storage and processing on clusters of commodity hardware. This framework consists of two main 

components: Hadoop MapReduce framework (Dean and Ghemawat, 2008) and Hadoop 
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Distributed File Systems (HDFS) (Borthakur, 2007). MapReduce framework includes two phases, 

map phase and reduce phase. A MapReduce job usually splits the input dataset into independent 

sub-datasets on different nodes, processes them in the map phase and outputs the results in terms 

of key-value pairs in a completely parallel manner (Hadoop Map/Reduce tutorial, 2013). The 

framework then shuffles and sorts the key-value pairs according to the keys and uses them as the 

inputs to the reduce phase. In the reduce phase, the key-value pairs will be combined together to 

form a smaller set of values given the same keys. From a programmer’s point of view, MapReduce, 

similar to other Java libraries, is imported at the beginning of a program. One only needs to 

implement the map and reduce function defined in the map and reduce phase, and pass the input 

data into these functions (Nielsen, 2009). HDFS can be used to store both the input and the output 

files of the job. We develop two approaches using the Apache Hadoop framework to address the 

computational issues arising from the sensitivity analysis with our socio-hydrological model.  

3.3.2.1 Approach I: Running different agents with different machine nodes 

Given the assumption that agents only have implicit interactions through the RRCA model, 

the first approach is developed to execute the tasks associated with the individual agent in parallel 

during the map phase. For each scenario, each of the 46 agents randomly chooses values for the 

five target behavioral parameters from the pre-generated samples using the geneticLHS as shown 

by Figure 3-3 (a), and executes their tasks. The output in the map phase is the key-value pair 

associated with the individual agent, where the scenario ID is the key and the pumping rates are 

the value.  We repeat the process over N times in the map phase. Notice that available machine 

nodes are randomly allocated for different agents to execute their tasks. In the reduce phase, all 

the key-value pairs with the same scenario IDs are grouped together and the values are used as the 

input for the RRCA model. After the execution of the RRCA model in the reduce phase completes, 

the output, such as the water table is saved to the HDFS and used as the input for the MAS model 

in the consecutive year. The coupled models require a number of read-only files which are stored 

in the distributed cache. Figure 3-4 (a) shows the integration of the Apache Hadoop framework 

into the coupled models. Each map/reduce loop represents one-year execution of the coupled 

models. The total simulation period of the coupled models is 14 years for the case study as 

described by the pseudo-code of Algorithm I. The input sets of the behavior parameters for a 

specific agent and the corresponding outputs of the groundwater table under N scenarios are then 

used for sensitivity analysis. It is noted that this approach requires significant overhead associated 
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with starting a MapReduce job, and agents also require a very large number of input files that must 

be distributed locally to each task in the map phase (map task). In order to amortize the 

computational cost of copying the input files to the map tasks, we need to estimate the amount of 

time that it takes to execute the tasks for a single agent, and the amount of time to copy the input 

files to the map task and start the map task. To find the optimal number of tasks, the total 

computation time to execute the N simulations in the map phase is minimized as shown in the 

following optimization model: 

( )

;

;

1

   

  

 



Minimize c O t n m

Subject to t n c O

n m T

n

                                                                                                            (1) 

where c is the time to copy the input files for the new map task; O is the overhead associated with 

initializing a new MapReduce job; t is the amount of time it takes to execute the tasks for a single 

agent; n is the number of agents that run in a single map task and m is the number of map tasks 

spawned; T is the total number of agents to be executed for sensitivity analysis, that is, 46∙N. As 

shown by the first constraint, it is worthwhile to initiate a new MapReduce job only when the total 

amount of time to execute the task for n agents is larger than the time to prepare the input files for 

the new MapReduce job and the associated overhead to initialize the MapReduce job. Otherwise, 

we can distribute the n agents to other existing MapReduce jobs. 
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(a) 

 

 

(b) 

Figure 3-3 (a) schematic diagram of Approach I: agents are randomly chosen by different map tasks initiated at 

different machine nodes and (b) schematic diagram of Approach II: agents are lumped together and different scenarios 

are distributed by the MapReduce framework and executed at different machine nodes. 
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(a) 

                

(b) 

Figure 3-4 (a) Approach I: Integration of the Apache Hadoop framework into the coupled MAS and RRCA model. A 

number of read-only files for the coupled models are stored in the distributed cache. HDFS is used to save the model 

outputs. Agents are spread over and executed in different map tasks initiated at different nodes, and all the key-value 

pairs with the same scenario IDs are grouped together, where the values are used as the input for the RRCA model. 

This loop continues over the entire simulation period. (b) Approach II: Integration of the Apache Hadoop framework 

into the coupled MAS and RRCA models. The single simulation of the coupled models over the entire simulation 

period is executed only in the map phase. 
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Algorithm I: Implementation of Approach I: integration of the Apache Hadoop framework into the coupled 

models (DB: database). 

3.3.2.2 Approach II: Running different scenarios with different machine nodes 

Different from the first approach where agents are randomly chosen by different map tasks 

initiated at different machine nodes and the key-value pairs of results are collected in the reduce 

phase, the second approach executes the single simulation of the coupled models over the entire 

simulation period within the map phase. In this sense, all 46 agents are lumped together and 

execute their tasks in the same map task. It works as follows: similar to Approach I, each of the 46 

agents randomly chooses values for the five behavioral parameters from the pre-generated samples 

as the inputs for the MAS model as shown by Figure 3-3 (b). Since there exists no explicit 

communication between agents for the MAS model, the MAS model can then run in parallel with 

multithreading techniques in the map phase (Hu et al., 2015). The outputs from the MAS model 

are then used as the inputs for the RRCA model, and it iterates over the next year until the end of 

the entire simulation period as shown by Figure 3-4 (b) (See Algorithm II regarding the 

implementation of this approach). In addition, note that in Approach II different scenarios are 

distributed by the MapReduce framework and executed over the available nodes as shown by 

Figure 3-3 (b), rather than all agents from all N scenarios for every year spreading over different 

nodes in the first approach as shown by Figure 3-3 (a).  
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Algorithm II: Implementation of Approach II: Integration of the Apache Hadoop framework into the coupled models. 

 Global Sensitivity Analysis 

In the first part of the chapter we develop two approaches based on the Apache Hadoop 

framework to address the computational issues arising from the model evaluations with the 

coupled socio-hydrological models. As mentioned above, these model inputs and outputs from 

model evaluations are going to be used for GSA. In the following sections, we will discuss a 

promising GSA approach that has the potential to handle the large amount of multidimensional 

data that results from the large number of model evaluations, and explore the spatio-temporal 

variations of the input behavioral parameters on the model outputs.  

GSA has been widely used in hydrology and environmental fields (Francos et al., 2003; 

Pappenberger et al., 2008; Moreau et al., 2013; Zhang et al., 2013; Garcia-Cabrejo and Valocchi, 

2014; Sweetapple et al., 2014, 2013). The quantitative approach to GSA that has been used 

extensively in recent years is called variance or Sobol decomposition (Sobol, 1993). Let 

1( , , )nX X X be a set of n independent random variables that serve as an input to a mathematical 

and/or computational model (·)g . This model produces a scalar random variable Y as output, that 

is, ( )XY g , the Sobol decomposition of which is given by Sobol (1993): 
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, , , 1,2, , 1 2

1

( ) ( ) ( , ) ( , , ) ( , , , ).X 

   

        
n

0 i i i j i j i j k i j k n n

i i j i j k

Y g g g X g X X g X X X g X X X           (2) 

In this equation, 0 [ ]g E Y  and 0( ) [ | ] i i ig X E Y X g  represents the variation of Y due to the 

changes in the input variable iX only when the mean 0g  has been considered. In the same way, 

, 0[ | , ]   i j i j i jg E Y X X g g g  represents the variation of Y that is not accounted for by the 

changes in variables iX  and 
jX  taken separately.  

Given the independence of each term (orthogonality) in the decomposition in Equation 2, 

the variance of the model output is equal to the sum of the contributions of variances associated 

with singles, pairs, triplets and so on, of input variables: 

, , , 1,2, ,

1 1 1

[ ] .

       

     
n

i i j i j k n

i i j n i j k n

V Y V V V V                                                                       (3) 

From this decomposition, the variation of the output Y associated with variations in input variable

iX  with no reference to other variables is given by the ratio of iV / V[Y] , leading to the definition 

of the single effect index (Sobol, 1993) or the main factor as: 

~
[ [ | ]]

1 .
[ ] [ ]

i iX ii
i

Var E Y XV
S

V Y Var Y
 

X
                                                                                                 (4) 

The variation of the output Y associated with changes when the input variables 

( , ), ( , , ),i j i j kX X X X X change at the same time can be quantified with the variances 
, , ,, ,i j i j kV V 

in Equation 3. Thus, the total effect index is given by Homma and Saltelli (1996): 
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

  

 

     



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X

                    (5) 

where ~X i indicates fixing all input variables
j X  except variable i . iST  is a measure of the total 

contribution of the variable to the output including first and higher order effects (Saltelli et al., 

2008). 
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3.3.3.1  Polynomial Chaos Expansion 

The estimation of the single and total effect sensitivity indices using Equation 4 and 

Equation 5 can be conducted using Monte Carlo simulation, but this is computationally intensive 

(Sobol, 1993; Saltelli, 2002; Saltelli et al., 2008),  especially for large complex socio-hydrological 

models. Such models require the evaluation of 2n Monte Carlo integrals to calculate those 

sensitivity indices, which is only practically feasible if the number of input parameters, n, is small 

(Sudret, 2008).  Therefore, GSA of the complex models must combine 1) an efficient approach to 

evaluate models, which is achieved with Hadoop-based cloud computing, and 2) an efficient 

approach to estimate the sensitivity indices with a metamodel or surrogate model. According to 

Storlie and Helton (2008) “The use of meta-models for estimating sensitivity measures can be more 

accurate than the use of standard Monte Carlo methods for estimating these measures with small 

to moderate sample sizes”. In the GSA framework, an important type of orthogonal polynomial 

metamodel called Polynomial Chaos Expansion (PCE) can be used to efficiently estimate the 

sensitivity indices in Equation 4 and 5 (Sudret, 2008; Garcia-Cabrejo and Valocchi, 2014). 

The Polynomial Chaos Expansion (PCE) is a polynomial expansion of a random variable 

Y in terms of other random variables ξ with a given Probability Density Function (PDF) using an 

orthogonal basis that depends on that PDF. According to Wiener (1938) and Ghanem and Spanos 

(1991), the PCE of a random variable Y can be expressed as: 

0

( ) ( )ξ ξ




 j j

j

Y                                                                                                                         (6) 

where 
j are a set of coefficients that define the expansion, 1( , , )nξ     are independent 

random variables with a given PDF 
Ξ

f , and  j
 are a given type of multivariate orthogonal 

polynomials that depends on 
Ξ

f . For example, if ξ  follow a multivariate normal distribution then 

 j
 are the Multivariate Hermite Polynomials, while   j

 are Multivariate Legendre Polynomials 

in the case that all , 1, ,  i i n  follow a uniform distribution. The PCE of order M and degree p

are defined using these multivariate orthogonal polynomials that can be obtained by products of 

univariate polynomials as
1

: ( )( )α α ξ   


  i

M

i

i

j , where M  is usually equal to the number 
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of random input parameters of the model (i.e., M n ), and
i

  are the terms of an integer sequence 

α  defined as (see Sudret, 2008): 

1

{ ; 1, , }, 0, .
M

i i i

i

i M p  


    α               (7) 

The number of terms in the PCE of Y using the multivariate orthogonal polynomial 
α

 is given 

by    1 !/ ! !  D M p M p . A simple example of the definition of the PCE of random variable 

Y using one-dimensional and multivariate orthogonal polynomials is presented in Appendix B.2. 

The coefficients in the PCE are estimated either by projection taking advantage of the 

orthogonality of the polynomials (Ghanem and Spanos, 1991; Xiu and Karniadakis, 2002 and Xiu, 

2010) or by regression using a set of model evaluations (Eldred and Burkardt, 2009). Once the 

coefficients are estimated, the mean and variance of Y can be obtained using 

0 Y   and
2 2 2

0

  


  
D

Y j j

j

                                                                                                      (8) 

where 2 j
 is the expected value of the square of the orthogonal polynomials used in the PCE. 

3.3.3.2 GSA using PCE 

The sensitivity indices can be estimated from the coefficients of the PCE of the random 

variable Y . The variances of Y due to changes in the input variable iX  only and the joint change 

of this variable and other variables ( , ), ( , , ),i j i j kX X X X X required for the estimation of the 

sensitivity indices 1iS  and iST  can be obtained using Equation 6 after choosing the specific 

coefficients of the PCE of Y where iX  appears. In other words, the Sobol decomposition of Y  

can be obtained from a reorganization of the coefficients of its PCE (Sudret, 2008): 
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where 
( )i is the multi-index of the input variable iX  and it is given by: 
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Where α  is an integer set defined in Equation 7 (For more details about this construction, see 

Sudret, 2008). Using this multi-index and Equation 8, the single effect index S1i  can be compactly 

expressed as: 
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where the numerator is the variance of the terms of Equation 9 involving only the single variable 

iX , and the denominator is the total variance of the output Y . The total sensitivity index requires 

the definition of a set of valid indices i   that selects all the terms in the PCE where the variable 

iX  is present (Sudret, 2008; Alexanderian et al., 2012): 

 
1 2, , , 1: 0 1, , , ( , , )α        

si i i k sk n k i i                                                                       (12) 

and the total effect index of the variable i  can be compactly expressed as: 
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We then carry out GSA for the coupled socio-hydrological models using PCE to measure 

both spatial and temporal impacts of the five target behavioral parameters, 
pr ,

pr ,
prep ,

prep and

 on model outputs, including crop profits and the groundwater table.  
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3.4 Results and Discussions 

We assume that the five behavioral parameters are independent and uniformly distributed 

random variables for each agent (see Table 3-1). For example, Figure 3-5 shows the sample 

distribution of the behavioral parameter sets randomly selected by agent 18 (See the agent’s 

location in Figure 3-1), and their relationships with each other. The histogram plots on the diagonal 

show that every behavioral parameter is uniformly distributed, and the off-diagonal plots show 

that there exists no correlation among each other given the scattering of the sample points. This 

confirms that the computational procedure we use to generate behavioral parameter sets for 

sensitivity analysis works properly.  

We then developed two approaches to run the coupled socio-hydrological models in 

parallel with the Apache Hadoop framework. Approach I exploits both the independence of model 

evaluations and lack of explicit interactions between agents using the MapReduce framework. 

Table 3-2 shows the running time of the MAS model for a single year and a single execution with 

Approach I. The results show some improvements with different numbers of map tasks over 

running the model sequentially on a single machine (as shown in the “Time faster” row in Table 

3-2), but not as much as we expected. Since the bulk of the execution of the coupled models 

happens in the execution of the MAS model, parallelizing the agents should provide a great 

opportunity for improving performance, but the overhead of copying the input files and starting 

the MapReduce tasks negates much of the performance gains that would be realized by executing 

the agents in parallel. If this overhead did not exist, we expect to see better performance 

improvements approaching 5, 10, and 20 times for 5, 10, and 20 map tasks, respectively. In other 

words, data locality and the overhead of initialization of MapReduce tasks are the major concerns 

while applying this approach to run the socio-hydrological model in parallel.  
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Figure 3-5 Sample distribution of the behavioral parameter ( , , , and ) and their correlation with 

each other. The off-diagonal blocks in the Biplot show that there exist no correlation between different behavioral 

parameters and the diagonal blocks show that every behavioral parameter is uniformly distributed.  

Table 3-2 The execution time of the MAS model with 5, 10 and 20 map tasks for approach I. 

      

pr pr prep prep 
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In addition, according to the analysis based on Equation 1, for the first approach the optimal 

number of agents per map task is ( ) / n c O t . The number of map tasks, m equals to 

/ ( )Tt c O  if we are not limited by the available computer resources. In our case, 20n  and 

2,300m   with 46 agents/scenario and 1,000 scenarios. However, we can only access lim 50m   

nodes on the Illinois Cloud Computing Testbed (http://cloud.cs.illinois.edu/hardware.html). As 

a result, this approach cannot achieve its optimal efficiency due to the limited computation 

resources. Different from Approach I, Approach II exploits only the independence of model 

evaluations using the MapReduce framework, which means that a single scenario of the coupled 

models is executed in its entirety over 14 years in a single map task, and no execution occurs in 

the reduce phase. The execution time of the MAS model for a single year with Approach II is 

234.00s, much longer than the execution time with Approach I as shown in Table 3-2. However, 

for Approach II, first, no extra overhead to initialize a new MapReduce job for the consecutive 

years is required. Thus, this approach scales nearly linearly with the number of map tasks. Second, 

all machine nodes in the Hadoop cluster are multiple cores and the multithreaded programming 

technique can be used to parallelize the agents within a single map task (Hu et al., 2015). Third, 

the implementation of this approach is much more straightforward than Approach I. We therefore 

decide to use Approach II to run the coupled models for sensitivity analysis. With this approach, 

running 1,000 scenarios of the coupled models can be completed within two hours using the Illinois 

Cloud Computing Testbed, a substantial improvement over the 42 days required to run these 

scenarios sequentially on a desktop machine. 

GSA using PCE requires the estimation of the PCE of the crop profits and the water table. 

Given the fact that the input parameters follow uniform distribution, the PCE of the output 

variables is defined using Legendre polynomials according to Xiu (2010). Each agent has five 

random behavioral parameters (i.e., 5M ). Given Equation 7, the sum of single-index, i  for 

five random variables should be no more than the degree, p . The number of coefficients, 1D+  

in the PCE monotonically increases with p , and the number of model evaluations should be at 

least twice as many as the number of coefficients in the PCE for an accurate estimation of these 

coefficients (Eldred and Burkardt, 2009). Due to the complexity of the coupled models, we want 

to have the least number of model evaluations by taking the minimum value of p  which satisfies 
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Equation 7, that is, 5p = . Thus, the total number of coefficients in the PCE is 252 ( 5,p 5 M ; 

See Sudret, 2008) and the minimum number of required model evaluations is 504. In our case, we 

have sufficient model inputs and outputs (as the result of 1,000 model evaluations) which can be 

used to derive the coefficients of the PCE-based surrogate model by the regression approach 

(Eldred and Burkardt, 2009) and calculate sensitivity indices of the behavioral parameters. 

The behavioral parameters play important roles in agents’ decisions on pumping, which 

are critical to the outputs of the coupled models, including crop profits and groundwater. Figure 

3-6 (a) shows the relationship between the behavioral parameters and crop profits for agent 18 at 

a specific time in year 2006. Given the scattering points, it is found that crop profits do not change 

with the variation of the behavioral parameters
pr ,

prep  and 
prep , which are also observed in the 

relationships between the behavioral parameters and the water table in Figure 3-6 (b). In addition, 

some minor impacts of parameter 
pr on crop profits, but not on the water table are observed. In 

contrast, parameter   has significant impacts on the variations of crop profits as well as the water 

table, in particular when  is small. In other words, agents (defined with small  values as willing 

to task risks) tend to have more impacts on crop profits and the water table, but more analysis 

needs to be done to confirm our hypothesis in the future work. 

We are aware that the aforementioned statements are derived from the analysis of the 

relationships between the input and output variables of the coupled models at a specific time step. 

GSA using PCE can also help us explore the temporal evolution of the single and total effect index, 

1iS  and iST  of the behavioral parameters on crop profits and the water table, respectively, as 

shown by Figure 3-7 (a) and (b). From the values of the single effect index (continuous line in 

Figure 3-7 (a) and (b)), parameter   has the dominant impact on both crop profits and the water 

table over the entire simulation period. The narrow gap between the continuous line and the dashed 

line shows that the impact of parameter  on the coupled models comes primarily from the 

variation of the parameter itself, rather than the result of the interactions with other parameters. In 

addition, we also notice the impact of the other behavior parameters, in particular an increase in 

the single and total effect indices of the parameter 
pr on crop profits in years 1994-1998 and 2002-

2006, with a corresponding reduction in the sensitivity indices of parameter . As for the water 

table, beyond the initial noisy period (i.e. the warm-up period for the RRCA model) the variations 
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in the period 1994-2006 are controlled mainly by the individual variation of parameter  (single 

effect index as continuous purple line in Figure 3-7 (b)), and the role of the interactions associated 

with this variable is negligible as shown by the total effect index (dashed purple line in Figure 3-7 

(b)). This result suggests that among the five behavioral variables, parameter   (i.e., agents’ 

attitudes towards the fluctuation of crop profits) has the greatest impact on the water table. In 

addition, there exists a small increase in the single and total effect indices of parameter 
pr  with a 

corresponding decrease in the importance measures of parameter . However, this increase is not 

significant enough to make 
pr  an influential variable. In summary, the results of the GSA applied 

on agent 18 indicate that the variability showed by the crop profits are controlled mainly by 

individual variations of parameters and 
pr , while the variations in the water table are controlled 

only by the individual variations of  . 

In addition, we also check the spatial evolution of the sensitivity index of the behavioral 

parameters for the selected agents from upstream to downstream along the Republican River (top 

left and right: agent 20 and 27; bottom left and right: agent 21 and 23 as shown in Figure 3-1) on 

crop profits and the water table. Figure 3-8 (a) shows that beyond the initial noisy warm-up period 

in the periods 1994-1998 and 2002-2006, the variations in the crop profits for the agents located 

both downstream and upstream are controlled mainly by the individual variations of parameters

and 
pr . As is evident from this plot, the variations in the crop profits due to the interactions 

between these parameters are small except in the case of the downstream agent where the 

interactions with 
pr  contribute much more to the variations of the crop profits than that by

pr  

alone. The sensitivity indices of the water table are shown in Figure 3-8 (b). The variations of the 

water table in the period of 1994-2002 are also controlled by the individual variations of parameter

 and 
pr , and the importance of the interactions between these parameters increase downstream 

in such a way that for the agent located downstream the interactions account for almost 50% of 

the contribution to the variations in the water table. In the period 2002-2006, the influence of 

parameter
pr reduces with the corresponding increase in the single effect index of parameter 

and the reduction of the influence of the interactions associated with this influential parameter. 

These results are interesting in terms of the impacts on the variations of crop profits and the water 

table as the result of the dynamic interactions between parameter
pr and  across different agents. 
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(a) 

 

(b) 

Figure 3-6 The relationship between behavioral parameters and crop profits for agent 18 in year 2006; (b) The 

relationship between the behavioral parameters and the water table in year 2006. 
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(a): GSA for crop profits 

 

(b): GSA for water table 

Figure 3-7 (a) and (b) The temporal evolution of the sensitivity index of the behavioral parameters for agent 18 on 

crop profits and the water table (The continuous line and dashed line denote the single and total effect index of the 

behavioral parameters). 
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(a): GSA for crop profits 

 

(b): GSA for the water table 

Figure 3-8 (a) and (b) The spatio-temporal evolution of the sensitivity index of the behavioral parameters for the 

selected agents from upstream to downstream of the Republican River (top left and right: agent 20 and 27; bottom left 

and right: agent 21 and 23 as shown in Figure 3-1) on crop profits and the water table. 
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3.5 Conclusions 

In this chapter, a methodological framework for the application of GSA to large-scale 

socio-hydrological models is presented. This framework attempts to find a balance between the 

heavy computational burden associated with the model execution and the number of model 

evaluations required for GSA analysis. Specifically, the balance is achieved through the 

combination of Hadoop-based cloud computing and Polynomial Chaos Expansion (PCE); the 

former can efficiently execute a large number of complex models in parallel and the latter allows 

efficient estimation of sensitivity indices from PCE coefficients. To illustrate the effectiveness of 

the framework, we applied it to a coupled MAS decision-making model and RRCA groundwater 

model to investigate how the behavior parameters associated with the agents affect the outputs 

from the coupled models temporally and spatially, including crop profits and the water table. 

Two approaches are developed to execute the coupled models in parallel using the 

MapReduce framework. Approach I exploits both the independence of model evaluations and lack 

of explicit interactions between agents using the MapReduce framework, and thus different agents 

in various scenarios can run their tasks simultaneously with different machine nodes. Different 

from Approach I, Approach II exploits only the independence of model evaluations using the 

MapReduce framework, and thus different scenarios (rather than different agents) are executed 

with different machine nodes. Through the analysis, we found that the first approach outweighs 

the second approach in terms of flexibility and is also more suitable for a large number of simple 

computational tasks with sufficient computational resources. However, the second approach is 

easy to implement and scale up, and can therefore be considered as a good choice for complex 

computational tasks with limited computational resources, as in our case study. In addition, the 

multithreaded programming technique can be used to take advantage of multiple cores in all 

machine nodes in the Hadoop cluster and parallelize the agents within a single map task for the 

second approach. As a result, with Approach II, a substantial reduction of the computation time is 

achieved, from 42 days required to run 1,000 scenarios sequentially on a desktop machine to two 

hours by running them on the Illinois Cloud Computing Testbed. 

Each agent is defined with five behavioral parameters (i.e.,
pr ,

pr ,
prep ,

prep and  ). 

Parameters 
pr ,

pr ,
prep  and

prep  describe the level of confidence an agent has on the prior 



68 

 

knowledge of the mean and variance of the crop prices and precipitation, and parameter   

describes the level of aversion the agent has to risk in pursuit of higher crop profit return. These 

behavioral parameters affect agents' predictions of the future crop prices and precipitation through 

the learning process, which are used later by agents to determine the optimal pumping rates so as 

to maximize their utilities. With the well-represented sample sets of the behavioral parameters and 

the mechanism to efficiently run the coupled models 1,000 times, a large amount of crop profits 

and water table data are generated. The PCE is applied to generating the surrogate model for the 

complex coupled models using the data sets. The variance-based sensitivity indices are then 

calculated using the PCE coefficients. As a result, GSA using PCE-based variance decomposition 

approach identifies the influential parameters (i.e., 
pr  and ) and quantify the spatio-temporal 

interactions between agents and the groundwater system through these parameters. In addition, 

based on the results of temporal and spatial sensitivity analysis, we will be able to narrow down 

our focus to these two parameters while calibrating the coupled models against the real observation 

data. 
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4 CHAPTER IV 

Combining human and machine intelligence to derive agents’ behavioral rules for 

groundwater irrigation 

4.1 Introduction 

In the new era of water resources management, a good understanding of physical systems 

alone cannot guarantee the effectiveness of the policies that are drawn upon. Policy makers need 

to understand stakeholders’ behavior to make appropriate policies that can mitigate water conflicts 

and promote the sustainable use of water resources. As a result, modeling their behavior, in 

particular their interactions with the biophysical systems, has ever been so important in the history 

of water resource management.  Over the last decade, agents have gained in importance for the 

modeling of human behaviors, and agent-based models (ABMs) have been used to study the 

dynamics of complex systems consisting of distributed agents, and gained its popularity in both 

social science and economics (Arthur, 1999; Bonabeau, 2002; Tesfatsion, 2006).  

The design of agent-based model follows a bottom-up, distributed approach, starting 

from the definition of the attributes and behaviors of individual agents, and their interactions 

with the surrounding environments (Ng et al., 2011; Hu et al, 2015), which allows modelers to 

focus on the attributes and behaviors of individuals which otherwise may not be possible using 

other modeling methodologies (Crooks and Heppenstall, 2012; Urban and Schmidt, 2001). 

Modelers can test a variety of theoretical assumptions and concepts about human behavior within 

the safe environment of a computer simulation (Stanilov, 2012). Thus, for coupled human and 

environmental systems, ABM outweighs the conventional simulation models (built based on the 

top-down centralized approach) in studying the system dynamics and is more likely to capture 

emergent phenomena arising from the interactions between human and environmental systems. 

For coupled human-environment systems, the behavioral rules of agents are usually the 

results of combining effects of environmental, socio-economical and institutional factors. Rule-

based ABMs usually assume the availability of explicit behavior rules from domain knowledge 

and empirical observations. Commonly used representations of expert knowledge consist of two 

basic forms, declarative knowledge of facts and procedural knowledge, and the latter is typically 
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represented in IF-THEN rules (Newell 1972; Anderson 2007). Some ABM studies assume that all 

agents are rational and follow the general utility optimization principles (e.g., Yang et al., 2009; 

Ng et al. 2011). Although the ABMs based on explicit rules are meaningful for normative 

prediction of a system, they are often challenged by model validation with respect to the most 

relevant observed facts and phenomena, which is often considered as the means to justify the 

modelling of agents’ behavior rules within ABM (Elsawah et al., 2015). 

Modeling human behavior is complex. Human behavior is not random but based on our 

diverse knowledge and abilities, and it would not be particularly challenging if human behavior is 

always rational (Kennedy, 2012). However, the rationality of human behavior is affected by 

emotional, intuitive, or unconscious decision making processes. These processes can distort our 

perceptions of the environment and the likelihood of future evaluations (Loewenstein and Lerner, 

2003). In this sense, the rationality of human behavior is bounded, which is the result of the limited 

information, limited cognitive abilities, and limited time for humans to make decisions (Simon, 

1996). Regardless of the origin of the bounded rationality, agents’ bounded rationality is an 

important source of human behavior uncertainty, which makes it difficult, if not impossible, to 

derive “perfect” rules for an ABM.  

However, it may not be necessary to pinpoint the origin of agents’ bounded rationality case 

by case and simulate it explicitly. Instead, this chapter proposes an alternative approach, which 

presents a “grey box” to simulate agents’ behaviors under the influence of bounded rationality. We 

will later discuss how to identify the major factors relevant to the decision variable, and obtain the 

grey box (i.e. agents’ behavioral rules) from the data sets of these factors that hold memories of 

agents’ behavior with the data-driven approach. The grey box can then be fed by the data of the 

decision variable and its major factors to predict agents’ decisions given these factors. 

The chapter is organized for the goal to derive agents’ behavioral rules considering the 

impact of bounded rationality using a combined data-driven approach and domain expertise. In the 

next section, we first present general concepts and methods that we need to use in introducing and 

developing our methodology. Following it, we propose a methodological framework to derive 

agents’ behavioral rules, use a case study to demonstrate the proposed framework, and show some 

results. Finally, we conclude with our findings on the methodology and results. 
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4.2 Methodology 

Agents’ behavior reflects their cognitive processes of decision-making. They may be 

modelled either by how decisions should be ideally made (i.e., optimization-based) or by 

describing how they are actually made (i.e., rule-based) (Elsawah et al., 2015). Both the 

optimization-based and rule-based approaches require modelers to have a good understanding of 

the underlying mechanism that drives agents’ decision-making, and then model the mechanism 

with behavioral parameters. However, these two approaches are designed to describe agents’ 

behavioral rules without accounting for behavioral uncertainty arising from agents’ bounded 

rationality. Separate techniques are usually needed for the quantification of the impacts of agents’ 

behavioral uncertainty, such as global sensitivity analysis (Hu et al, 2015). A holistic method from 

the data-driven approach perspective (e.g., statistical modeling) can be used to derive behavioral 

rules using both the available data and the expert knowledge while accounting for behavioral 

uncertainty.  

Some limitations are noticed regarding the application of data-driven approaches to derive 

agents' behavioral rules. The first is with data availability. Although significant progress has been 

made in recent years to gather data for the definition of agents and the representation of their 

behavioral rules (Janssen and Ostrom, 2006; Robinson et al., 2007; Smajgl et al., 2011), unlike 

those measuring physical quantities, ways to measure human behaviors directly are limited. Some 

aspects such emotion and social behaviors are very difficult to measure if not unmeasurable. 

Conventionally, researchers use social surveys such as interviews to gather human behavioral data 

indirectly. Lack of sufficient data and also the quality of behavior data make derivation, validation 

and verification of agents’ behavioral rules difficult for ABM development (Kennedy, 2012).  

Furthermore, the relationships derived by a data-driven approach can be spurious due to the 

missing of a confounding variable, which is an extraneous variable that correlates with other 

variables in a statistical model. A story about the role of a confounding variable in machine 

learning is about “diapers and beer”: the grocery store data show that diapers and beer consumption 

are correlated. However, such correlation is spurious because the two variables are actually 

correlated with male customers, who buy beer while purchasing diapers in the same store. For 

complex systems, it is difficult to identify and appropriately represent all factors that affect agents' 
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behaviors. To rule out spurious relationships, this study will incorporate the cross validation into 

regression tree processes and also use the expert domain knowledge. 

In the following section, we will firstly introduce basic concepts and applications of a 

particular type of statistical models, namely probabilistic graphical models (PGMs). Then, we will 

delve into a specific PGM, directed information graph (DIG) and explain how it can be used to 

derive the causal relationships between agents’ decision and the factors. Based on the DIGs for 

different agents, a machine learning technique called boosted regression tree (BRT) is applied to 

converting the DIGs to the behavioral rules for different agents. 

 Probabilistic Graphical Models 

Probabilistic graphical models (PGMs) emerge as an innovative approach to organically 

connect different parts used to build up the complex system while ensuring the consistency of the 

system. PGMs are considered as the marriage between probability theory and graph theory. The 

probability theory side provides ways to interface models to data and the graph theory side enables 

humans to vividly model highly interacting sets of variables (Jordan, 1998; Koller and Friedman, 

2009). They are the representations of the probabilistic relationships of the variables in a complex 

system (Buntine, 1996). In recent decades, there has been a large body of work on PGMs, including 

but not limited to, Markov networks, Bayesian networks, and factor graphs (Pearl, 1988; Koller 

and Friedman, 2009). For example, given the joint distribution and a specified variable ordering, 

the structure of Bayesian networks (i.e. directed and acyclic graph) can be found using Markov 

blanket properties (Pearl, 1988). However, if the variable ordering is not known, learning and 

optimally approximating the structure becomes NP-hard (Chickering et al., 1994). In addition, 

some researches are focused on identifying causal relationships using Bayesian networks (Koller 

and Friedman, 2009, Ch. 21), which requires the use of expert domain knowledge to label the 

variables. Thus, the resulting Bayesian network depends on the variable labeling; without expert 

labeling the Bayesian network is not unique and the identified relationships are only correlative. 

For the setting of time-series, dynamic Bayesian networks can be applied to finding a Bayesian 

network to characterize relationships over time. Each process corresponds to multiple nodes in the 

graph, one for each time step (Koller and Friedman, 2009, Ch. 6). Thus, the number of potential 

edges increases quickly with the number of time-series, making structure learning challenging. In 

this chapter, we will later discuss a more recent class of PGMs where each time series is a single 
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node with edges corresponding to causation between time series, not correlation between variables 

like other PGMs. 

PGMs are widely used in various fields including, but not limited to, medical diagnosis, 

navigation, image processing and communication. Recently, a few case studies have been 

conducted in land and watershed management in the context of adaptive natural resource 

management using PGMs (Alexandridis 2006; Carmona, et al., 2011). For example, Aalders (2008) 

tries to incorporate the characteristics of land managers with Belief Networks (BNs) to explore the 

impacts of their behaviors in decision-making processes. However, they usually obtain the 

structure of the graphical models purely based on the domain expertise. In the following, we will 

propose a methodological framework that combines the expert domain knowledge with a PGM-

based data-driven approach to derive the causal network structure of factors that are likely to affect 

agents’ behavior. The derived graph structure will be translated into agents’ behavioral rules for 

the design of ABM, which can be coupled with environmental models to investigate the 

interactions between human and environmental systems. 

 Granger Causality  

 We now discuss the framework leading to the graphical model we will use in this work.  

Granger proposed the definition of causality for a network of autoregressive time series in the 

1960’s: “Given a pair of random processes X and Y, we say that X is causing Y if we are better 

able to predict [the future of] Y, using all available information than if the information apart from 

[the past of] X had been used” (Granger 1969). The key principle is that if “X causes Y,” then the 

past of X should help predict the future of Y. This was based on earlier time-series prediction work 

by Wiener (1956). Granger suggested using the ratio of model error variances as a strength of 

causality, the “Granger causality test”. This is a statistical hypothesis test for linear models. 

However, for coupled human-environmental systems, there exist complex, non-linear relationships 

between the factors the conventional Granger causality test approach cannot deal with. In this 

sense, the information theoretic quantity known as directed information will be able to capture 

such non-linear relationships to determine Granger causality.  
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 Directed Information 

Given a pair of random processes X and Y, the directed information (DI) from X to Y is 

defined as 
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which measures how correlated the past of X is to the future of Y in terms of Kullback-Leibler 

(KL) divergence (Marko, 1973; See Appendix C.1). Different from mutual information which 

quantifies correlation (See Appendix C.1), DI is used to quantify the statistical causation between 

factors in the sense of Granger causality, even for factors that have complex, non-linear 

relationships. Equation 1 is well defined for any distribution P. However, even when measured 

with DI, spurious relationships as the result of latent confounding factors cannot be avoided. Thus, 

when necessary, expert domain knowledge (i.e. human intelligence) is applied to rule out 

impossible directions of influence. Also, to avoid overfitting, we use a model complexity penalty 

known as minimum description length (MDL; Grunwald, 2007). This penalty ensures the 

influences found are not due to noisy data. 

 

 Directed Information Graph 

We next discuss a PGM defined using directed information. For a set of random processes

X , the directed information graph (DIG) is a directed graph where each node represents a process 

and there is a directed edge from process 
j

X to 
i

X (for , j {1,..., }i m ) if 

{1,..., }\{ , j}( || ) 0m ij iI X X X  (Quinn et al., 2011; Amblard and Michel, 2011); that is to say, there 

is a directed edge from
j

X  to i
X , if and only if knowing the future of i

X  depends on the past 

value of 
j

X , even when conditioned on the past of all other processes in the network. We now use 

DIG to derive the causal relationship of variables that are likely to affect agents’ behavior. 

We define a directed information graph,  : ,  G V E  where the set of vertices is denoted by 

V and the set of edges is denoted by E. Each process is represented as a vertex and the DIG, G is 

identified by testing the direction information from process 
j

X  to i
X  conditioned on the past of 

all other processes in the network. We calculate the error variances of model fitting under two 
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scenarios: I)  is the response variable and the rest of the vertices in the network are explanatory 

variables; II)  is the response variable and the rest of the vertices except  in the network 

are explanatory variables. The corresponding error variances for scenario I and II are denoted by 


I
 and 

II
. We then compare the logarithm of the ratio of error variances

I
  to 

II
 with the 

minimum description length (MDL) to determine if {1,..., }\{ , j}( || ) 0m ij iI X X X   and repeat the 

procedure for all the vertices in the network. As a result, we obtain the DIG as described by 

Algorithm I from Quinn et al. (2015): 

 

Algorithm I: construction of the directed information graph. 

The computational complexity of Algorithm I is O(m2) if the directed information values are 

calculated beforehand. The algorithm can also be implemented in parallel, since each DI values 

can be computed separately. In order to rule out the impossible directions of influence, we will 

integrate the expert domain knowledge into Algorithm I. Once the DIG, G is derived, we then 

select the target vertices used to describe agents’ behavior, keep the incoming edges of these target 

vertices and their connected vertices, and prune the rest of the edges and vertices. In this way, we 

obtain causal relationships between the selected vertices and target vertices in terms of simplified 

DIG. These causal relationships are later used to define the behavioral rules of agents.  

 Based on the similarity of the simplified DIGs for various agents, a graph clustering tool, 

GraphCluster is used to cluster the graphs of individual agents based on existing similarities 

(Reforgiato et al., 2008). The clustering algorithm proceeds in two phases: 1) finds the highly 

connected substructures (i.e., the shortest path from one vertex to the other vertices in the graph) 

in each graph; 2) uses those substructures to represent each graph as a feature vector. Clustering 

i
X

i
X j

X
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itself is done using the k-means method (Lloyd, 1982). As a result, we can use fewer graphs to 

represent agents’ behavioral rules and reduce the computation for the agent-based modeling. 

 

 Boosted Regression Tree  

Boosted Regression Tree (BRT) is a machine learning technique that uses the boosting 

techniques to combine a large number of relatively simple tree models adaptively to optimize the 

predictive power of the ensemble tree models (Roe et al., 2005, Elith et al., 2008 and Pedregosa et 

al., 2011). Different from conventional regression methods that aim to produce a single best 

predictive model, BRT uses the boosting method to find and average many models to improve 

the model accuracy (Elith et al., 2008). For example, given a regression problem, at each step, 

boosting adds a new model to improve the predicative performance of the current models, which 

is measured by the deviance between the sample data and the fitted values, namely loss function. 

The final BRT model is the linear combination of many tree models. Several software packages 

have implemented BRT with easy-to-use functions (e.g., R and MATLAB). In order to use these 

functions, users only need to provide two important parameters: 1) the learning rate (lr) which 

determines the contributions of each tree model to the ensemble models; 2) the tree complexity 

(tr; e.g., tree depth) which controls whether interactions are fitted (Elith et al., 2008). 

Given the empirical comparison of supervised learning algorithms done by Caruana and 

Niculescu-Mizil (2006), the BRT model has overall the best predictive performance over the other 

methods. Thus, BRT is chosen to convert the DIGs for different agents that describe the causal 

relationships between the selected vertices and target vertices, to ensemble tree models. As a result, 

these ensemble tree models are then used as grey boxes to represent agents' behavioral rules, and 

simulate/predict agents’ decisions as shown by Equation 2: 

(V) ,D BRT                   (2) 

where D  represents the decision variable and V is a set of variables identified by the directed 

information graph algorithm and used as the input to the ensemble tree models, BRT. The residual 

 reflects the information contributed to the decision variable by the variables that are missed out, 

such as, constant variables like soil types.  
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4.3 Case Study Site 

The Republican River originates in the high plains of northeastern Colorado, western 

Kansas and southern Nebraska, which covers approximately 25,018 square miles (~16 million 

acres) of the three states, and is encompassed by the underlying High Plains aquifer hydrological 

observatory (HO) area. Intensive agriculture development in the Republican River Basin since the 

1970s has led to the significant increase of groundwater use for irrigation. Water conflicts and 

lawsuits have arisen as the result of sharing the groundwater resource among these three states. As 

part of the US Supreme Court settlement, a comprehensive groundwater model, the Republican 

River Compact Administration (RRCA) groundwater model was developed through the 

collaboration of the three affected states, the U.S. Geological Survey, and the U.S. Bureau of 

Reclamation (McKusick, 2003). MODFLOW-2000 with additional modules, a finite difference 

groundwater flow simulation code is used to construct the RRCA model (Harbaugh, 2005). 

In our case study, a human behavioral model (i.e., ABM) is designed and coupled with this 

physically-based environmental model for groundwater simulation (i.e., RRCA model). The ABM 

provide decisions on the annual groundwater pumping rates, which are then used as inputs to the 

RRCA model. The coupled ABM and RRCA model are used to investigate the impacts of farmers’ 

pumping decisions on the groundwater systems, and the simulation period is from year 1993 to 

2006, as shown by Figure 4-1. Due to the fact that most data (e.g. crop areas and production) is 

only available at county level, a county located in the High Plains aquifer HO area is thus defined 

as a super-farm agent as shown by Figure 4-2, leading to 46 agents in total.  
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Figure 4-1 Coupling of the agent-based model (ABM) with the RRCA groundwater model. The ABM is developed 

through the combination of the data-driven approach (i.e., DIG and BRT) with expert domain knowledge, and the 

RRCA model is simulated by MODFLOW-2000. The simulation period is from year 1993 to 2006.    

 

Figure 4-2 The plain view of the pumping wells (red dots) and High Plains aquifer (blue line) in MODFLOW-2000 

and the overlapping counties (blocks) of different states (orange: Colorado; light green: Kansas; spruce green: 

Nebraska; each county is treated as an agent and the number is the selected agent ID; see Hu et al., 2015). 

Table 4-1 shows the environmental, economic, social, and infrastructure factors on agents’ 

decision on groundwater pumping depth. Note that corn price instead of other crop prices is 

selected as one factor in the economic category due to the fact that corn is the dominant crops in 

the study area (See Figure 4-7 (e)). Most of the data used by the ABM are publicly accessible from 

the RRCA website (http://www.republicanrivercompact.org); Carbon Dioxide Information 

http://www.republicanrivercompact.org/
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Analysis Center (CDIAC); Texas A&M AgriLife Extension (TAMU); U.S. Department of 

Agriculture (USDA); Farm Decision Outreach Central (FarmDOC) at the University of Illinois 

and Natural Resources Districts, Nebraska, U.S. We select these time-series variables based on 

three criteria: 1) data is available at the desired spatial and temporal scale (e.g., annual or monthly 

data for each agent); 2) there exist some variations in the data for each variable, since the statistical 

causality between variables is identified based on the variables with variations (the variables which 

do not change significantly over time are reflected in the form of residuals see Equation 2); 3) the 

matrix consisting of the selected variables (i.e., each variable is treated as a column) is full column 

rank. In this sense, no variables can be directly calculated from the other variables using 

physically-based equations or models.   

We select an agent in the High Plains aquifer HO area to illustrate the application of the 

combined DIG and the expert domain knowledge to derive agents’ behavioral rules. For example, 

Chase County in the Nebraska portion (i.e., agent 13 as shown by Figure 4-2) is a good candidate 

due to the heavy monitoring in that area. In order to account for the interactions between the Chase 

County agent and the neighboring agents, we also include the groundwater levels (GWLs*) of the 

neighboring agents as the variables to test if they have potential effects on Chase County agent’s 

behavior. We then apply the DIG algorithm to deriving the DIG of those variables that are 

associated with the agents’ behavior.  

Next, we select the target variable among the associated variables that describes agents’ 

pumping behavior, that is, the monthly groundwater irrigation depth (GWID). Based on the DIG 

obtained from the previous step, we keep the incoming edges of GWID and the associated nodes, 

and truncate the remaining edges and nodes. To do so, we obtain a directed acyclic graph which 

characterizes the causal relationships between the selected variables and GWID. This directed 

acyclic graph that models the agent’s behavioral rules is used to simulate the agent's decision on 

irrigation depth. We repeat the aforementioned procedures for the other agents to obtain directed 

acyclic graphs to simulate their pumping behavior. With a directed acyclic graph for each of the 

agents, we exam the similarities among the graphs using GraphCluster. As a result, some 

representative graphs are identified to represent the behavior rules for different clusters of agents. 

Next, given the representative graph structure and the information of the associated nodes for an 

individual agent, we can then compute GWID using BRT. Note that the tree models are trained 

individually using available data sets of the nodes of the representative graph for a specific agent. 
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Thus, they vary from one agent to the other and forms the agent-based model, which is then 

coupled with the RRCA model to investigate the impacts of agents’ pumping behavior on the 

groundwater system. 

Table 4-1 List of variables associated with agent’s pumping behavior. 

 

Y: Yes; N: No; PA: Partially Available; NA: Not Applicable; RRCA: Republican River Compact Administration; 

CDIAC: Carbon Dioxide Information Analysis Center; EIA: U.S. Energy Information Administration; TAMU: Texas 

A&M AgriLife Extension; USDA: U.S. Department of Agriculture; FarmDoc: Farm Decision Outreach Central; 

Nebraska NRD: Natural Resources Districts, Nebraska; Cell: 1 mile by 1 mile. There are 13,220 grid cells in total 

which locate in 46 different agents. The number of the cells in the individual agent varies from few to approximately 

1,000. 

4.4 Results and Discussion  

 

Figure 4-3 Directed information graph of variables for agent 13 in Nebraska as shown in Figure 4-2; the symbol ∆ 

indicates the causal relationship is identified based on the variables with variations. 

Without taking the expert domain knowledge into account, Figure 4-3 shows the DIG of 

the variables in Table 4-1 using Algorithm I. For some cases, it is intuitive for domain expert to 
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understand the causal relationship between variables. For example, monthly mean temperature (T) 

and precipitation (P) causally influence the monthly groundwater irrigation depth (GWID), since 

temperature and precipitation can affect crop evapotranspiration (ET) and effective rainfall (ER), 

which is defined as the part of the rainfall stored in the root zone and can be used by crops. If the 

contribution of ER to crop water demand increases, the amount of water needed for irrigation (i.e., 

GWID) decreases accordingly.  

Meanwhile, some causal relationships discovered by the algorithm are not straightforward 

to understand. For example, agents’ irrigation behavior can affect the key components of regional 

climate, such as evapotranspiration, temperature and precipitation. Figure 4-3 shows that GWID 

causally influence the regional T and P at agent 13, which can be explained that soil moisture can 

increase dramatically during the warm season due to heavy irrigation. High soil moisture level can 

then lead to the increases in ET, cooling of surface temperature and enhancement of precipitation 

(Eltahir and Bras, 1996; Eltahir, 1998; Vörösmarty and Sahagian, 2000; Pielke, 2001; Kanamitsu 

and Mo, 2003; Betts, 2004; Haddeland et al., 2006a; Kustu et al., 2010). Similar results found by 

Chase et al. (1999), who investigated the effect of land use changes on the regional climate of 

northern Colorado plains, show that irrigational practices can introduce the forcing strong enough 

to affect the regional temperature, cloud cover, precipitation and surface hydrology. These 

scientific findings help verify some parts of the graph derived completely from the historic data 

using the DIG algorithm. 

Figure 4-3 also shows some spurious causal relationships derived purely from data that do 

not make sense according to the expert knowledge. For example, T, P and GWLs* can causally 

influence corn price (CP), and GWL can affect the regional mean T and P. As mentioned above, 

these spurious relationships are ruled out either by cross-validation or the negation normal form of 

expert knowledge. For example, local T should not causally influence national CP, which should 

not be causally affected by GWLs* as well. In the case study, we try to include as few constraints 

as possible and do not impose any causal relationships directly based on the expert knowledge but 

not reflected in the data. As a result, Figure 4-4 shows the DIG of the variables that affect the 

agents’ behavior based both on the improved BRT models with cross-validation and the expert 

domain knowledge.  
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Figure 4-4 Directed information graph of the variables that affect agents’ behavior based on the combination of the 

improved BRT models with cross-validation and the expert domain knowledge. 

Given the goal to derive the DIG that shows the causal relationships between the selected 

variables and the target variable (i.e., GWID), based on Figure 4-4, we keep the incoming edges 

of GWID and the associated nodes (i.e., GWL, T and P), and truncate the rest edges and nodes. 

Figure 4-5 shows the nodes that have the direct influence on GWID for the Chase County agent. 

The value on each edge is the measure of directed influence from one variable to the other. The 

large the value, the more influence has one variable on the other variable. Thus, T has the dominant 

impact on GWID for the Chase County agent. We further generate directed acyclic graphs for all 

agents within the High Plains aquifer HO area, and cluster the graphs based on their similarity. As 

a result, three representative graphs are identified to represent all agents’ decision on GWID as 

shown in Figure 4-6. Four factors including CP, GWL, T and P have causal influences on agents’ 

decision on GWID to various extents, and T is the most common factor which appears in all three 

graphs. Note that different colors representing different agents’ behavior rules are not randomly 

distributed, rather than display certain types of spatial patterns. In the following, we attempt to 

explain the formation of the spatial patterns.   
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Figure 4-5 Directed information graph of Chase County Agent’s decision on the groundwater irrigation depth. The 

numbers on the edges are the measures of directed influence from one variable to the other.   

 

Figure 4-6 Color-coded map with three directed acyclic graphs that represent agents’ decisions on the groundwater 

irrigation depth within the High plains aquifer HO area. The dashed lines are boundaries between different states.  

The three representative DIGs over the study site is explained with some spatially 

distributed factors as shown in Figure 4-7 (b-h). For the agents with type 1 DIG (marked in green), 

T is the only factor that causally influences agents' decision on GWID. The areas of agents 36, 40 

and 48 circled in blue in Figure 4-7 (a) overlap with the region circled also in blue in Figure 4-7 

(b), which receives the least average annual precipitation in the Republican River basin. This can 

be explained as follows: in a dry area, the crop evapotranspiration (ET) which determines the crop 

water requirement is mainly affected by temperature. In this sense, an agent’s response to 
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temperature leads water application to satisfy crop water requirement. In addition, these three 

agents are among the agents with the largest coefficient of variation (CV) of annual mean 

temperature as shown in Figure 4-7 (c). Different from these three agents, agents 1 and 18 have 

relatively high but stable annual precipitation. As shown in Figure 4-7 (d), their CVs of annual 

mean precipitation in the crop growth season are far below the average. Thus, the small CVs in 

precipitation lead famers’ attention more to temperature in their pumping decisions. 

With type 2 DIG, T, P and CP are the factors that causally influence agents' decision on 

GWID. All agents with this type are shown in yellow in Figure 4-6. For most of these agents 

(except agents 30, 44 and 45), their corn acreage is over 70% of their cropland area as shown in 

Figure 4-7 (e). It explains why these agents’ pumping decisions are sensitive to the variations of 

CP. In addition, for most of the agents (except for agents 16 and 37), they experience minor 

groundwater drawdowns as shown in Figure 4-7 (f); in particular, agents 30 and 31 (circled in 

purple) in Figure 4-7 (a) have the lowest well density over the study area as shown in Figure 4-7 

(g). This explains why GWL has limited effects on these agents’ pumping behavior. 

 For type 3 where T, P and GWL are the factors that causally influence agents' decision on 

GWID (agents marked in red in Figure 4-6). Referring to Figure 4-7 (f), in areas of agents 2, 3, 6, 

8, 9, 13, 19, 25 and 38 with type 3 DIG (circled in yellow), the change of groundwater level is 

relative large; Different from these agents, agents 14, 15, 23, 24, 26, 27, 28 and 32 (circled in black) 

are located within the areas with small depth to groundwater level as shown in Figure 4-7 (h) and 

shallow pumping wells are used in these areas. Thus, although there are relative small groundwater 

drawdowns, they can still be noticeable to these agents with shallow pumping wells. Thus, for all 

the aforementioned agents their pumping decisions are affected by the variations of GWL.   

 We are aware of the limitations in explaining the spatial patterns of the DIGs, although we 

can provide some justifications with some patterns shown in Figure 4-7. Agents' decision-making 

is very complicated and the three simple DIGs may not represent all agents' behaviors perfectly. 

In addition, the data for analysis can be noisy or the sampling frequency can be insufficient or 

even, the important variables associated with agents' decision can be missing. Thus, it is reasonable 

that for some agents like agents 5, 10, 11 and 20, their DIGs are not well explained by our 

hypotheses.   
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Figure 4-7 Relationships between agents’ behavior rules represented in different colors in (a) and the other graphs, 

(b)-(h); (b): average annual precipitation for the Republican River basin [inch]; (c): coefficient of variation (CV) of 

annual average temperature in the crop growth season; (d): coefficient of variation (CV) of annual average 

precipitation in the crop growth season; (e): distribution of the percentage of corn acreage [%]; (f): change of 

groundwater level [ft]; (g): locations of pumping wells in blue dots in MODFLOW; (h): average depth to groundwater 

level [ft]; The simulation period is from year 1993 to 2006. 

The representative graphs are converted to three types of ensemble tree models using BRT. 

Agents’ monthly GWID is then computed through these tree models. Through trial and error, we 

set the number of trees equal to 500, the learning rate equal to 0.01 and the tree depth equal to 4. 

60% of data are used for model training and the rest data for model validation. Figure 4-8 shows 

the tree No. 1 of 500 trees for agent 24 and the ensemble tree model M is the linear combination 

of the 500 trees. Being different from T and P, the variation on GWL is hardly noticeable to agents 

if the pumping wells are not drying out. Thus, before they notice groundwater drawdowns in 

pumping wells, the more groundwater agents withdraw, the lower is the GWL. Thus, lower GWL 

corresponds to the higher groundwater withdrawal (i.e., GWID), as shown in Figure 4-8.  

Given the tree model M, we can then compute GWID. Figure 4-9 shows the comparisons 

of monthly GWID between the observation and the model simulation using the ensemble tree 

models of agents 17,  18 and 24 between year 1993~2006.  Notice that we only consider GWID 
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during the crop planting/growing season from May to October, that is, 84 months in total for 14 

years. It shows that the results for validation from the ensemble tree models have a good match 

with the observation one in general, although the spike of GWID for agent 17 during 2004 is not 

well captured by the tree model. This can be explained that the factors that lead to the spike of 

GWID are not considered by the tree model and future investigations need to be conducted to find 

out these factors and mitigate the discrepancy between the observation and the simulation.   

 

Figure 4-8 Tree No. 1 of the 500 trees for agent 24; T: monthly mean temperature [oF]; GWL: groundwater level [ft]; 

P: monthly mean precipitation [inch]; solid black nodes are monthly groundwater irrigation depth [mm].  
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Figure 4-9 Comparisons of monthly groundwater irrigation depth between the observation (red) and the model 

simulation using boosted regression tree model (blue) for agents 17,  18 and 24 (from top to bottom) between year 

1993~2006. The dashed line separates the training datasets from the validation ones. 

All GWIDs for individual agents are then converted to groundwater monthly pumping rate, 

which is used as the driving force to the RRCA model as shown in Figure 4-10, and water table is 

then simulated through the RRCA model. The coupled ABM and RRCA models are used to 

investigate the impacts of agents’ pumping behavior on the underlying groundwater system. We 

ran the coupled models from year 1993 to 2006, namely the directed information graph-boosted 

regression tree (DIG-BRT) scenario.  
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Figure 4-10 Coupling of agent-based model (ABM) with the groundwater model (RRCA); three representative graphs 

are simulated by the corresponding BRT models denoted by T1, T2 and T3. The simulation period is from year 1993 

to 2006. 

The agents’ behavioral rules derived using DIG and BRT attempt to mimic actual agents’ 

behavioral rules. Figure 4-11 (a) and (b) show the comparisons of crop profits and water tables 

between the simulation scenario (using the input data from the RRCA model) and the DIG-BRT 

scenario for agents 17, 18, 24 whose behavioral rules are represented by one of the three ensemble 

tree models respectively shown in Figure 4-10. The results for different agents from the DIG-BRT 

scenario match the ones from the simulation scenario well. In addition, we also compare crop 

profits and water tables for the rest agents under these two scenarios, and similar results are found-

for the rest agents, crop profits and water tables under the DIG-BRT scenario can well resemble 

the simulation results. We think the high goodness of fit is the result of the combined effects of 

DIG and BRT: the former identifies the important variables that causally influence agents’ 

behavior and the latter derives the good models to quantitatively describe the causal relationships.  

Figure 4-11 (a) and (b) show the impact of variations of agents’ behavior on crop profits 

and water table using the optimization-based approach, which simulates agents’ behavior with 

behavioral parameters (Please refer to Hu, et al. (2015) for more details). The shaded area indicates 

the confidence intervals of crop profits and water table for agent 17, 18 and 24 as the result of 

1,000 model evaluations with different values of behavioral parameters and the dashed line shows 

their mean values. Although the mean values from the optimization-based approach well mimic 
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the crop profits and water tables from the simulation scenario for agent 24, these mean values 

either underestimate or overestimate the results from the simulation for agent 17 and 18. In contrast 

with the inconsistent performance of the optimization-based approach, the crop profits and water 

table as the result of the behavioral rules derived using DIG and BRT can well mimic the results 

from the simulation. In this sense, we can conclude that the data-driven approach using DIG and 

BRT outperforms the optimization-based approach to capture the uncertainty of agents’ behavior 

as the result of bounded rationality and simulate the actual agents’ behavior.  

 

Figure 4-11 Comparisons of crop profits ($M; a) and water table (ft, b) between the simulation scenario (red), the 

DIG-BRT scenario (blue) and the optimization scenario (the shaded area is the confidence interval and the dashed line 

is the mean value) for agent 17, 18 and 24 (from top to bottom). 
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4.5 Summary and Conclusions 

The most challenging aspect of agent-based modeling is to derive the agents’ behavioral 

rules under the behavioral uncertainty, which arises from the fact that agents have bounded 

rationality in their decision making processes. In this chapter, we introduced a data-driven 

approach using the DIG as a vehicle to find the causal relationships between processes for the 

agent-based modeling in water resources management. Based on the measurement of directed 

information between variables that are likely to affect agents’ behavior (i.e., groundwater irrigation 

depth in our case), we derive the corresponding DIG for each individual agent using the directed 

information graph algorithm. Expert domain knowledge and cross-validation are employed in the 

algorithm to rule out spurious causal relationships that could be caused by missing confounders, 

insufficient sample frequency, or noisy data. Through the combination of human and machine 

intelligence, we can derive the behavioral rules to describe agents’ behavior as well as account for 

their bounded rationality. Based on the results, not only is it important to find out that the 

environmental factors like temperature and precipitation can affect agents’ decision on 

groundwater irrigation depth, it is also interesting to show that the local irrigation practices can 

affect the key components of local climate, such as temperature and precipitation.    

 Based on the similarity of the DIG for each agent, three representative graphs are identified 

to represent all agents’ behavior rules in the study area. We found that corn price, underlying 

groundwater level and monthly mean precipitation have causal influences on agents’ decisions on 

groundwater irrigation depth to various extents; monthly mean temperature is the most common 

factor that affects all agents’ irrigation behavior, especially in dry areas where temperature 

becomes the most dominant factor. Thus, our findings confirm that agents’ irrigation behavior is 

consistent with the actual crop irrigation requirements, especially in dry areas.  

An agent-based model is designed with behavioral rules characterized by three 

representative graphs, and coupled with the physically based groundwater model, the RRCA 

model. Through the coupled models, we investigate the impacts of agents' pumping behavior on 

the underlying groundwater system in the High Plains aquifer HO area. It is found that in 

comparison with the optimization-based approach, crop profits and water tables as the result of 

agents’ pumping behavior derived using DIG and BRT can better mimic the actual ones from the 

simulation scenario. Thus, we can conclude that the data-driven approach using DIG and BRT 
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outperforms the optimization based approach to capture the uncertainty of agents’ behavior as the 

result of bounded rationality and mimic their actual behavior. 
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5 CHAPTER V – FINAL REMARKS 

This dissertation focuses on expanding the conventional environmental models with 

human factors for watershed management analysis in the context of coupled human and natural 

systems. Using an agent-based modeling framework, optimization-based and data-driven 

approaches are applied to modeling farmers' pumping decision-making processes in the High 

Plains aquifer within the hydrological observatory area. Please refer to the following subsections 

for a summary of major findings and discussions, as well as limitations of the study and possible 

future work. 

5.1 Summary 

Agent-based model (ABM) or multi-agent system (MAS) framework is used to model 

farmers' pumping decision-making processes in the High Plains aquifer within the hydrological 

observatory area. For my research, I developed different approaches (i.e., optimization-based 

and data-driven approaches) to design ABMs and coupled them with a physically-based 

groundwater model to investigate the interactions between farmers and the underlying 

groundwater system.    

For the first part of my study, Chapter II, all agents are assumed to be rational. An 

optimization-based approach, which incorporates self-learning and utility maximization, is 

developed to simulate agents’ decisions on crop types, optimal irrigated/dryland area, and 

irrigation depth at the annual time scale. The agent-based model (ABM) is then coupled with a 

physically-based groundwater model, RRCA model. Unfortunately, high computational 

intensity arises from the coupled models, which limits the applications of the models. As a result, 

multithreaded programming is used to ease the computation intensity of the coupled models by 

running agents in parallel. The result shows that the total running time of the coupled models is 

reduced by 80%, from one hour down to twelve minutes on an eight-core machine node.  

A web-based application is built to provide network access to the coupled ABM and 

groundwater model. In order to ensure the web application of the coupled models with system 

and user scalability, a framework which combines multithreaded programming with Hadoop-

based cloud computing is developed. The multithreaded programming is applied to improving 
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the computational efficiency of the single instance of the model (i.e. system scalability); Hadoop-

based cloud computing provides on-demand computational power to execute multiple instances 

of the model simultaneously (i.e. user scalability). As a result, this part of my work presents an 

initial effort of modeling the coupled human behavioral model and environmental model as a web 

application, which can facilitate an online dissemination of the models, and support participatory 

modeling exercises. 

The optimization-based approach simulates agents’ behavior with behavioral parameters. 

These behavioral parameters affect agents' predictions of the future crop prices and precipitation 

through the learning process, which are used later by agents to determine the optimal pumping 

rates while maximizing their utilities. For the second part of the study, Chapter III, we 

investigated how these behavioral parameters affect the outcomes of the coupled models in terms 

of crop profits and water tables using global sensitivity analysis (GSA), which provides us with 

better understanding of the interactions between farmers’ pumping behavior and the underlying 

groundwater systems.  

A large number of model evaluations is required for GSA. Thus, two approaches are 

developed to address the computational issues arising from the execution of the coupled models 

using the MapReduce framework. Approach I exploits both the independence of model evaluations 

and the lack of explicit interactions between agents, and thus different agents in various scenarios 

can run their tasks simultaneously with different machine nodes. Different from Approach I, 

Approach II exploits only the independence of model evaluations, and thus different scenarios 

(rather than different agents) are executed with different machine nodes. Through the analysis, it 

is found that the second approach is more suitable for our case with limited computational 

resources. As a result, with Approach II, a substantial reduction of the computation time is 

achieved, from 42 days required to run 1,000 scenarios sequentially on a desktop machine to two 

hours by running them on the Illinois Cloud Computing Testbed. 

With the well-represented sample sets of the behavioral parameters and the mechanism to 

efficiently run the coupled models 1,000 times, a large amount of crop profits and water table data 

are generated. The PCE is applied to generating the surrogate model for the complex coupled 

models using the data sets. The variance-based sensitivity indices are then calculated using the 

PCE coefficients. As a result, GSA using PCE-based variance decomposition approach identifies 
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the influential parameters (i.e., 
pr  and ) and quantify the spatio-temporal interactions between 

agents and the groundwater system through these parameters. 

Overall, for Chapter III, we developed a methodology framework for the application of 

GSA to the coupled models. This framework attempts to find a balance between the heavy 

computational burden associated with the model execution and the number of model evaluations 

required for GSA analysis. The balance is achieved through the combination of Hadoop-based 

cloud computing and Polynomial Chaos Expansion (PCE); the former can efficiently execute a 

large number of complex models in parallel and the latter allows efficient estimation of sensitivity 

indices from PCE coefficients.  

However, the optimization-based approach is developed based on the assumption that 

agents are rational. But, in fact, agents have bounded rationality in their decision-marking 

processes. For the third part of this dissertation, Chapter IV, a data-driven approach is thus 

introduced to derive agents’ behavioral rules considering the influence of bounded rationality. The 

DIG approach is used as a vehicle to find the causal relationships between variables that that are 

likely to affect agents’ behavior (i.e., groundwater irrigation depth in our case) as well as reflect 

agents’ bounded rationality. Expert domain knowledge and cross-validation are employed in our 

approach to rule out spurious causal relationships that could be caused by missing confounders, 

insufficient sample frequency, or noisy data. 

Each agent is associated with a DIG that describes their pumping behavior. We found that 

corn price, underlying groundwater level and monthly mean precipitation have causal influences 

on agents’ decisions on groundwater irrigation depth to various extents; monthly mean temperature 

is the most common factor that affects all agents’ irrigation behavior in the study area, especially 

in dry districts where temperature becomes the most dominant factor. Based on the similarity of 

their graphs, three representative graphs are identified to represent all agents’ behavior rules in the 

study area.   

An agent-based model is designed with behavioral rules characterized by three 

representative graphs using boosted regression tree (BRT) models, and coupled with the 

physically-based groundwater model, the RRCA model. Through the coupled models, the 

investigation is conducted to understand the impacts of agents' pumping behavior on the 
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underlying groundwater system in terms of crop profits and water tables. In comparison with the 

results from the optimization-based approach, it is found that crop profits and water tables as the 

result of agents’ pumping behavior derived using the data-driven approach can better mimic the 

actual ones from the simulation scenario (i.e., use the input data from RRCA model). Thus, it is 

concluded that the data-driven approach based on DIG and BRT outperforms the optimization-

based approach to capture the uncertainty of agents’ behavior as result of bounded rationality. 

Overall, I have demonstrated two different approaches to design agent-based model to 

model famers’ pumping behavior in my dissertation, optimization-based and data-driven 

approaches, and shown that both approaches have their own limitations: the optimization-based 

approach usually assumes the rationality of agents. It also requires modelers to have a good 

understanding of the mechanism that drives agents to behave, and model these behaviors with 

behavioral parameters. Although these limitations can be dealt with by the data-driven approach, 

its applications are often constrained by the data availability. In the following section, I will delve 

into the assumptions made for the ABM development as the result of data shortage in my work, 

and suggest how to address these assumptions when data become available in the future 

5.2 Limitations and Future Work 

The major challenge of agent-based modeling is to derive agents’ behavioral rules due to 

limited empirical data. Assumptions made in this dissertation need to be verified by data when 

they become available. In the following, I would like to review the major assumptions made in 

the dissertation, describe limitations as the result of the assumptions and discuss strategies for 

future work to tackle with these limitations.  

Agents can interact with each other in various ways. In my current work, only the indirect 

interaction between agents through the RRCA model is considered, that is, the impact of one 

agent’s pumping behavior affects other agents through the shared underlying groundwater 

resource. However, in the real world, there can exist direct interactions between agents. For 

example, the adaptation of new irrigation technologies by one agent can promote the adaptation 

of these technologies by other agents. The current agent-based model is not able to capture such 

direct interactions, which is mainly due to the lack of empirical data to describe direct interactions 

between agents. 

In Chapter II, agents’ pumping behavior is derived from the optimization-based approach 
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which assumes that all agents optimize their utility through learning the future crop prices and 

precipitation. Agents’ learning process is simulated using Bayesian statistics. However, little 

evidence can be used to justify the way to simulate agents’ beliefs in future crop prices and 

precipitation as a Bayesian learning process, or even more fundamental, if and how real famers 

incorporate their beliefs into their decision-making processes in the real world. Again, these 

assumptions have been made due to the lack of empirical data that can be used to update the 

current learning and optimization strategies with more realistic ones.  

Moreover, agents' beliefs in prices or precipitation can be correlated across county 

lines.  Presumably, agents' rely on similar information sources (e.g., weather reports and radio) 

would shift their beliefs in a correlated fashion. However, no data is available to measure the 

correlation between agents' preferences across county lines. Thus, in Chapter III, all five 

behavioral parameters defined for each agent to describe their preferences between prior 

knowledge and historical experience of crop prices and precipitation are assumed to follow 

uniform distribution.  For the future work, it will be useful to collect data to verify the distributions 

of their behavioral parameters and how agents’ beliefs are correlated through these parameters.  

Unlike measuring physical quantities, ways to measure human behavior directly are 

limited, especially for emotional and social aspects of human behavior. Conventionally, 

researchers use social surveys or interviews to gather human behavioral data indirectly. However, 

the data quality is subject to uncontrolled human factors, such as the design of questionnaire, 

interviewers’ skills and their interactions with the respondents. Fortunately, thanks to the new 

technologies, such as portable sensors, wearable devices and social media, we are provided with 

various means to directly measure human activities and their interactions with environmental 

systems. Thus, future work will include the collection of data related to farmers’ decision-process 

on pumping. With these data, the aforementioned assumptions will be carefully checked and 

updated. In addition to data collections, other work can be done in parallel. 

In Chapter II, a relational database is used for data management of the web application of 

the coupled models, and running many instances simultaneously can exceed the constraint on the 

number of database connections set by the provider, which affects the user scalability. In the 

future work, a distributed NoSQL database could be implemented to replace the current relational 

database. As a result, the simultaneous execution of the coupled models should scale linearly with 

the number of nodes available on the cluster. In addition, when agents’ direct interactions are 
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included in the set of behavioral rules, the computational design for the parallel implementation 

of agent-based model should be updated accordingly. 

In Chapter III, the major focus is the development of a computational framework to 

identify the most influential behavioral parameters. For the future work, it is worthwhile to 

understand why the variations of these behavioral parameters have significant impacts on the 

coupled models, and explore the implications of the results of temporal and spatial sensitivity 

analysis for the design of sustainable groundwater use policy in the study area. It will be also 

interesting to apply the auto-calibration techniques (e.g. simulated annealing) to calibrating the 

coupled models against the observation data to find the optimal values of the influential behavioral 

parameters.   

In Chapter IV, the results show that the behavioral rules derived from data-driven 

approach outperforms the optimization-based approach to simulate agents’ pumping behavior in 

the real world. However, there are still some parts of agents’ behavior (i.e. monthly groundwater 

irrigation depth) are not well captured by the rules from the data-driven approach. For example, 

agents tend to use more water in the real world than that predicted by our approach, and it will be 

worthwhile to make efforts to address the prediction discrepancy.    

Finally, this dissertation mainly investigates the impacts of agents’ pumping behavior on 

the underlying groundwater systems in terms of water tables. For the future work, it will be 

meaningful to explore how agents’ behavior affect surface water and ecosystems via base flow, 

i.e., water exchange between groundwater and surface water.  
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Appendix A  

A.1 Optimization (utility maximization) 

This section will give an overview of the optimization approach used to describe agents’ 

decision making processes. We start with the crop yield function (Palazzo, 2009). 

 

A.1.1 Crop yield function 

                      
1/( )[1 (1 ) ].    d m d rY Y Y Y I                                                           (A.1) 

Where Y : crop yield [bu/acre]; mY : maximum crop yield without water stress [bu/acre]; dY : 

rainfed yield [bu/acre];  : irrigation efficiency ( [0,1]  ), calculated by (ET -ET )/Im d m ; ETm : 

seasonal evapotranspiration under no water stress [inches]; ETd : seasonal evapotranspiration for 

dryland [inches], which is defined as the sum of effective rainfall, Pe [inches/month] and monthly 

allowable soil water depletion during the crop growing season, bW  [inches/month] : ETd e bP W  , in 

which we assume that no soil water depletion occurs during the crop growing season, equivalent 

to 0bW  . Thus, Pe  is equal to ETd ; Im  is the maximum water demand [inches]; Ir : the ratio of 

actual irrigation depth to the maximum irrigation depth denoted by I/Im . 

 

A.1.2 Estimation of effective rainfall 

Effective rainfall means useful or utilizable rainfall, which is defined as the portion of 

rainfall used for crop growth. Effective rainfall does not include the rainfall allocation producing 

runoff or drainage below the root zone. The monthly potential effective rainfall is estimated using 

the USDA-SCS method (USDA, 1967): 

                

(0.001 )* 0.824[0,(1.253· 2.935)·10.0 ]cET

e mP max p 
                                                        (A.2) 

*( , , ) 12

.

 
 


e m c m

e

m

min P P ET p mm
P

p Otherwise
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Where 
mP  is mean monthly rainfall [mm/month]; cET  is the potential crop evapotranspiration in 

the absence of environmental or water stress [mm/month]. In the crop coefficient approach the 

crop evapotranspiration, cET  is calculated as the product of the reference crop evapotranspiration, 

0ET  and the crop coefficient, Kc : ·c c oET K ET . Here, we calculate daily ETo using the so-called 

1985-Hargreaves equation (HG) (Hargreaves and Samani, 1985):

0.50.0023·( 17.8)( )o mean max minET T T T Ra   ; maxT : the maximum daily air temperature [°C], minT : 

the minimum daily air temperature [°C]; R a : the extraterrestrial solar radiation [ 2 1· ·MJ m d  ]. 

Further, we assume the maximum yield is reached when cET is equal to mET . Then, we 

obtain the crop yield function for different crops 

1/

, , , , ,( )[1 (1 · / ( · )) ].     j d j m j d j j c j o e jY Y Y Y I K ET P                                                        (A.3) 

and the crop profit function π is given as: 

4 4

, , , , , , , , , ,

1 1

( [( )· · ] [( )· ]).j i j i j i j j i j j i j d j i j i j d j d j

j j

A P t Y cw I F A P t Y F 
 

                            (A.4) 

Where i and d represent irrigated and dryland (rainfed) area respectively. ,i jA  and ,d jA are the 

irrigated area and dryland area [acre]; ,i jP  and ,d jP  are the crop prices for crop j in the irrigated 

area and dryland area [$/bu]; ,i jt is the corresponding transportation cost [$/bu]; ,i jF and ,d jF are 

the crop-specific fixed cost of production [$/acre]. Different from planting in rainfed area, ,i jcw  is 

the energy cost associated with pumping [$/arce-inch]. The energy cost function for pivot 

irrigation is given as follows (Palazzo, 2009):  

,

, ,

6 3 2

· · ·ˆ( )
· (3 1.5· )·

ˆ ˆ9 10 ·( 2.31· ) 2.4 10 ·( 2.31· ) 2.9137. 

  


     

i j

i j i j j

C T E Lh Cl
cw h

A D Pivot A

h P h P

                                        (A.5) 

Where ,cw i j is the energy cost associated with pumping for crop j  planted in the irrigated 

area denoted by i [$/arce-inch]; C is the cost of diesel fuel [$/gallon]; D j  is the water allocation 
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depth [inches]; T is the total operation time of pumps [h], given by 

, ,7.48 43560 / (12 60 )· ·i j i jv A D  , where v  is the pumping rate [gpm]; E is the hourly energy 

consumption  [gallon/h]; Lh  is the number of labor hours required per irrigation [h]; Cl is the unit 

labor cost [$/h]; Pivot denotes the irrigation depth using the pivot irrigation system [inch]; ĥ  is 

the distance that water must be lifted to the elevation of pump discharge[feet]; we assume ĥ  equals 

the distance from the land surface to the groundwater level; ĥ  is computed via the centroid 

weighted average using the inverse of the distance of each pumping well within the agent to the 

centroid of the agent as the weight; P is the pump discharge pressure [psi]. Notice that as the water 

table lowers, agents will have to bear higher energy costs. 

 

A.1.3 Two-stage optimization  

In order to mimic an agent’s actual pumping decision process, we decompose the utility 

maximization problem defined by Equation 1 in Chapter II into two sub-problems using a two-

stage optimization strategy. First, before the crop planting and growing season agents make 

predictions of the future crop prices and precipitation for the entire planting and growing season. 

The aforementioned Bayesian learning process is used to simulate agents’ learning from their prior 

knowledge and experiences, and update their predictions of the posterior distribution of crop prices 

and precipitation, and expected water demand [inches], ,e jI for crop j accordingly. Given the 

posterior distribution of the crop prices and precipitation, a sampling-based stochastic optimization 

method is developed to simulate agents’ decisions on the choices of crop type, j and the 

corresponding planted irrigated and rainfed crop area [acre], ,

planted

i jA and ,

planted

d jA . Thus, the utility 

maximization approach for the first-stage optimization strategy is formulated as follows: 

4

, ,

1

4

, ,

1

, d,

maximize ( )

( ) ,

,

0, 0.







 



 





planted planted

i j d j

j

planted

i j e j

j

planted planted

i j j

U

subject to A A A

A I TWA

A A

                                                          (A.6) 
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Where A  is the total arable land [acre]; TWA denotes the estimated total water availability for 

each individual agent [acre-inch]. 

For the second stage, agents determine the optimal water use I j  and irrigated and dryland 

area ,Ai j  and ,Ad j  given the observations of crop prices, precipitation at the current stage and the 

planted crop areas from the first stage. A deterministic optimization problem is formulated based 

on the crop profit function: 

4

,

1

, , d, , d,

m,

maximize

,

0 ,0 ,

0 .







    

 

 i j j

j

planted planted planted

i j i j j i j j

j j

subject to A I TWA

A A A A A

I I

                                         (A.7) 

Where ,Im j  is the maximum crop water demand [inches]. 
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Appendix B  

B.1 Bayesian Learning 

A Bayesian learning framework is used to simulate agents' ability to predict the future crop 

prices and precipitation during the crop growing season (Hu et al., 2015). The framework uses 

Bayesian statistics to incorporate the observations of crop prices and precipitation before planting 

the crops (i.e., simulated as likelihood functions) into their past experiences of them (i.e., prior 

knowledge) to update their predictions of crop prices and precipitation (i.e., posterior knowledge). 

For crop prices and precipitation, we assume that their likelihood functions follow the normal 

distribution: 

/2 2

/2

2

1

2

2

1 1
( | ) ( ) exp( [ ( ), ( ) ])

(2 ) 2

n
n

obs in
i

p D n x x n x   
 





                                    (B.1) 

where 1( , , , , )obs i nD x x x     are the observations, the sequence of which is independent and 

identically distributed (IID) and x  is the mean of the sequence.  and 
2  are the mean and 

variance of the likelihood function.  

A suitable conjugate prior, the normal-inverse-chi-squared ( 2NI ) prior as the product of 

normal distribution ( N ) and inverse-chi-squared distribution ( 2  ) is used (Murphy, 2007): 

2 2 2 2 2 2 2

0 0 0 0 0 0 0 0( , ) ( , , , ) ( | , / ) ( | , )p NI N                                                                  (B.2) 

where 0 is the prior mean and 0  is how strongly we believe the prior mean; 
2

0  is the prior 

variance and 0 is how strongly we believe this. The hyperparameters 0 and 
2

0/   can be 

interpreted as the location and scale of  , and the hyperparameters 0  and 
2

0  as the degrees of 

freedom and the scale of  
2 . Then, we obtain the posterior distributions of prices and precipitation 

via Bayes theorem (Lee, 2004, P67): 
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 
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       (B.3)                                            

where n  is the posterior mean and n  represents the level of confidence to the posterior mean; 
2

n

is the posterior variance and n  reflects the level of confidence to the posterior variance. As a result, 

agents update their annual predictions of the expected crop prices and precipitation given their new 

observations, which will further impact agents’ decisions on groundwater pumping for irrigation 

(Hu et al., 2015). 

B.2 Polynomial Chaos Expansion 

Let's suppose that we have a mathematical model that can be expressed as Y ( ),g   where 

Y and ξ are the output and input random variables respectively, and ξ follows a uniform 

distribution. In this case, the PCE of the output variable Y is given in terms of the Legendre 

Polynomials  of a degree that is defined by the complexity of the relationship between the input 

and output variables. An example of a PCE of Y using unidimensional Legendre polynomials 

up to degree four ( 1, 4 M p ) is given by: 

    
0

1
2 3

4

2 2

0 1 2 3

4
4 2

4

0

Y 1.0 1.5 0.5 0.5 5.0 3.0

(4.375 3.75 0.375) ( )
i i

i

       

    

 
 




     

    
    (B.4) 

where 0 1 2 3, , ,    are the coefficients that must be estimated from a set of RN model evaluations 

( ) ( ){ ( )}, 1, ,  ir ir

RY g ir N using either linear regression (Sudret, 2008; Eldred and Burkardt, 
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2009) or integration methods taking advantage of the orthogonality of the polynomials (Ghanem 

and Spanos, 1991; Xiu and Karniadakis, 2002 and Xiu, 2010). 

 If the model 1 2Y ( , )  g depends on two input variables ( 2)M then the PCE of Y 

requires the use of multivariate orthogonal polynomials that can be defined via a tensor product of 

polynomials of a single variable. This product can be easily calculated using the integer set α  

defined in Equation 7 in Chapter III that defines the specific terms that are multiplied. A simple 

example of the terms of the PCE of Y of order two ( 2)M  and using multivariate orthogonal 

polynomials Ψ of degree up to four ( 4)p is given in the Table B-1 where a total of 

1 (2 4)!/ (2!4!) 15   D  are required. 

Table B-1: Number, integer set α  and multivariate orthogonal polynomials defined from the tensor product of 

the unidimensional Legendre Polynomials.  

 

From the values in Table B-1, the PCE of Y using multivariate orthogonal polynomials is given 

by: 
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5 2 6 1 1 7 2 1

2 3

8 1 2 9 2 2
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(1.5 0.5)
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j α j

j

Ψ
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       

     
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  
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

     
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 
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2 2

1 2

2 4 2

13 1 2 2 14 2 2

0.75 0.75 0.25)

( (2.5 1.5)) (4.375 3.75 0.375)

 

      

 

    

     (B.5)  

where the coefficients { ; 0, ,14}j j    are estimated in the same way as the unidimensional case 

if a set of model evaluations is available. 
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Appendix C  

C.1 Statistical Quantities 

We now briefly introduce statistical quantities which are used in the algorithms (see Ch. 2 

of Cover and Thomas, 2012). The Kullback-Leibler (KL) divergence, 

( )
( ) : log

( )
P

P Z
D P Q E

Q Z

 
  

 
            (C.1) 

measures how close the distribution Q is to P, where both are over the same random variable Z. 

The mutual information defined as  

X,Y: ); ) ((
X Y

D PI X PY P              (C.2)  

measures how correlated two random variables X and Y are by comparing their joint distribution 

to the product of the marginals. Equation A.2 is well defined for any distribution P. If X and Y are 

independent, 
, |( ,  ) ( ) ( | ) ( ) ( ) X Y X Y X X YP x y P x P y x P x P y  so ( ; ) 0.I X Y  Note that mutual 

information can be used to quantify the statistical correlation for complex, non-linear models.  

 


