
c© 2016 Warren Hargon Kemmerer

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158313933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PARALLEL CODE-SPECIFIC CPU SIMULATION WITH DYNAMIC
PHASE CONVERGENCE MODELING FOR HW/SW CO-DESIGN

BY

WARREN HARGON KEMMERER

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Adviser:

Professor Deming Chen

ABSTRACT

While SystemC models provide a promising solution to the complex problem

of HW/SW co-design within the system-on-chip paradigm, such requires a

detailed annotation of transaction level energy and performance data within

the model. While this data can be obtained through source code profiling

of an application running on the target processor, accomplishing such when

the target CPU hardware is not actively available typically requires time-

consuming CPU simulation, which is often too slow to practically consider

for large programs. Additionally, while the use of SystemC modeling with

TLM 2.0 standard is widely adopted for the SoC modeling, the process of

transforming C/C++ code to SystemC code with TLM 2.0 functionality

remains non-trivial. Herein we propose an automated framework that:

1. Enables high speed code-specific CPU profiling support for both Sniper

and gem5 using parallelized dynamic steady state phase convergence

modeling, providing automatic annotation of energy and performance

within source code.

2. Provides an automated C to SystemC TLM 2.0 code generation flow

that utilizes the back-annotated source code to produce a SystemC

module for seamless incorporation into the virtual prototype.

Maximum speedups obtained using Sniper and gem5 are 48.76x and 562x

respectively, while average results obtained speedups of 31.5x and 323.1x.

Sniper results maintain an average accuracy of 0.89% for latency and 0.10%

for energy, while gem5 achieves average accuracies of 4.16% and 2.87% for

latency and energy respectively.

ii

To my wife, for her support and patience.

iii

ACKNOWLEDGMENTS

This work was done in collaboration with Intel, with Taemin Kim and Andrey

Ayupov as primary collaborators. We also acknowledge the collaboration of

Louis Noel Pouchet, whose provided Polybench test suite serves as an integral

part of our flow experimental results.

Elements of this research were performed in conjunction with a class project

with Wei Zuo. This work was later submitted as a conference paper with

coauthors Wei Zuo and Deming Chen. Within the context of this paper, my

work has focused primarily on simulation speedup through convergence mod-

eling while elements pertaining to back-annotated C to SystemC translation

were performed by Wei Zuo. I have included the latter as it provides both

context and completeness to the work.

iv

TABLE OF CONTENTS

LIST OF ABBREVIATIONS . vi

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND AND RELATED WORK 3
2.1 Software Modeling Strategies 3
2.2 Simulation Tools . 4
2.3 Simulation Modes . 4
2.4 Transaction-level Modeling . 6

CHAPTER 3 METHOD . 8
3.1 Software Modeling . 8
3.2 Energy vs. Power . 9
3.3 Simulator Dependent ROI Division 9
3.4 Parallel ROI Profiling . 10
3.5 Phase Convergence . 12
3.6 Instruction Count Normalization 12
3.7 N-way Convergence Sampling 13
3.8 Thread Scheduling . 13
3.9 Automated Back-Annotation 17
3.10 SystemC and TLM Generation 17
3.11 The Hierarchy of the Generated Code 18
3.12 The Code Generation Flow . 19

CHAPTER 4 EXPERIMENTS AND RESULTS 21
4.1 Experimental Setup . 21
4.2 Results . 24

CHAPTER 5 CONCLUSION AND FUTURE WORK 33

REFERENCES . 34

v

LIST OF ABBREVIATIONS

CPU Central Processing Unit

ISA Instruction Set Architecture

KVM Kernel-based Virtual Machine

pFSA Parallel Full Speed Ahead

ROI Region of Interest

RTL Register-Transfer Level

SoC System on a Chip

TLM Transaction Level Modeling

vi

CHAPTER 1

INTRODUCTION

Determining an efficient partitioning between hardware and software gen-

erally requires accurate means of modeling the performance characteristics

associated with running the customized software on the target platform [1].

While such modeling can occur at the RTL or even gate level, simulation

times associated with these methodologies are often too slow due to the

complexity associated with the low level design [2, 3]. For realistic applica-

tions, higher level SystemC models of hardware provide a promising solution

through the abstraction of low level complexity while preserving the relative

accuracy necessary to enable design decisions. However, running customized

code on fully detailed CPU SystemC models incorporated into virtual pro-

totypes (the high-level modeling stage of the SoC system before committing

to a physical prototype) remains excessively time-consuming when consid-

ering large programs. A promising alternative involves the generation of

code-specific SystemC modules which execute at host speed within the vir-

tual prototype and require only relevant energy and performance informa-

tion at target code locations. The process of extracting performance data

from a lower, more accurate representation and returning this information

for incorporation into the corresponding high-level model is known as back-

annotation. Back-annotation enables a natively inaccurate higher level model

to inherit the effects of details available only at the lower level, thereby re-

sulting in the increased accuracy of the higher level model while maintaining

a sufficient level of abstraction to enable relatively faster run-times. Current

means of extracting performance and energy data for back-annotation gen-

erally involve a detailed CPU simulation of the source code, the entirety of

which is often too slow for practical consideration for large programs.

We herein present dynamic phase convergence modeling in conjunction

with parallelized region-of-interest (ROI) profiling as a technique for improv-

ing the efficiency of the performance extraction process within the context

1

of energy and performance extraction for SystemC modules. While sev-

eral techniques already exist for achieving significant speedup with regard

to code profiling, such generally operates at a granularity level that is inap-

propriate for the back-annotation process. Our technique specifically targets

applications with iterative code constructs commonly considered for candi-

dacy within custom accelerators, which coincidentally also require a signifi-

cant majority of simulation time. We further provide a C/C++ to SystemC

framework whereby the automatically back-annotated source code is ported

into usable SystemC modules with TLM 2.0 support. These modules can be

integrated into virtual prototypes providing an effective means of conduct-

ing early stage hardware/software co-design. In summary, our work contains

following novel contributions:

1. An automated framework providing annotation of energy and perfor-

mance within source code through code-specific CPU profiling support

for both Sniper and gem5 using parallelized dynamic steady state phase

convergence modeling attaining average speedups of 31.5x and 323.1x

respectively.

2. An automated SystemC TLM 2.0 code generation framework to gen-

erate SystemC for the C code to enable seamless incorporation of the

software modeling to the SoC virtual platform.

2

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Software Modeling Strategies

We herein discuss several existing simulation strategies for the effective ac-

quisition of energy and performance data.

Simpoint [4] utilizes advanced code analytics to achieve high level phase

modeling that enables accurate estimation of aggregate performance statis-

tics of large programs. While useful in providing complete run times of large

programs, the methodology is not well suited in determining performance

results within fine-grained sub-regions, as required for meaningful SystemC

back annotation. Our target granularity is several orders of magnitude too

small for our Simpoint application, noting specifically that the minimum in-

terval of a single sample is generally larger than the entirety of the regions

that we are attempting to classify.

Region-of-interest (ROI) code profiling [5, 6] acquires performance data

associated with only a target region of code while preserving correctness rel-

ative to the entire program. Detailed simulation or performance estimation

of the entire program is often unnecessary, especially in instances of hard-

ware/software co-design in which regions such as variable instantiation and

assignment can be ignored as only the computational region of code is under

consideration. Region-of-interest code profiling relies on simulator capabili-

ties for efficient fast forwarding and a cache warm-up, and is only effective

as a standalone extraction method when the region is small relative to code

preceding the region.

Sampling methodologies such as SMARTS [7] use statistical sampling over

a provided range to characterize code regions. Within [8] the authors intro-

duce a new hardware accelerator enabled means of quickly fast forwarding

through non-meaningful regions of code. This drop in fast forwarding tim-

3

ing overhead enables the development of the pFSA sampling methodology, in

which sequential code can be sampled in parallel at the expense of simulation

redundancy, with the results aggregated into a single profile. However, re-

sults obtained remain sequential with respect to time while ultimate speedup

is tightly bound by the degree of parallelism.

Our simulation methodology seeks to combine the techniques of pFSA sim-

ulation with dynamic phase modeling analysis through the use of parallelized

non-adjacent region of interest profiling. Using active feedback, we seek to

acquire simulation speedup through profiling only the select region-of-interest

required by our model to achieve relative phase convergence.

2.2 Simulation Tools

Within the academic community, Sniper [5] and gem5 [2] are widely adopted

simulation tools. Sniper is a high-speed x86 simulator that provides modes of

operation for fast-forwarding, cache-warming, and detailed profiling. Sniper

is highly attractive due to its native support for iterative ROI simulation and

incorporation of power characterization software (McPAT [9]). Gem5 offers

cycle-accurate simulation for a wide range of ISAs and provides highly cus-

tomizable hardware configurations. Gem5 also provides several simulation

modes of operation, with a notable recent addition of hardware enabled fast

forwarding [8]. Nevertheless, detailed profiling of large programs within both

simulators remains a time-consuming process.

2.3 Simulation Modes

Both Sniper and gem5 offer several alternative simulation models that serve

as a means whereby the simulation can quickly fast forward through the pre-

fix code necessary to maintain program correctness. Sniper offers a functional

only mode, with a speedup of 100x relative to detailed simulation, while also

offering a cache only mode, with a speedup of 7x relative to detailed sim-

ulation. Switching between these modes is accomplished through simulator

control scripts which interface with macro functions placed within the source

code.

4

Within gem5, the options available for fast forwarding and cache warmup

are noticeably more complex. Rather than selecting a simulation mode,

the user specifies both a CPU model and a memory model. Traditionally

available CPU models include Atomic, Timing-Simple, and Out-of-Order

Detailed. The Out-of-Order Detailed CPU model is an accepted standard

model for detailed CPU profiling within academia, providing cycle accurate

results that have been verified against real world CPUs. Both Atomic CPU

and Timing Simple CPU models are lightweight in-order processor models;

however, they provide different levels of complexity. Atomic CPU preserves

functional correctness of code execution, but lacks timing profiling capabili-

ties. Timing Simple CPU processing timing profiling capabilities, but would

result in significant error if used to profile a modern out-of-order processor,

resulting in the latter model being more accurate than the former. Gem5

provides the means whereby these processor models can be swapped inter-

changeably at will, although control scripts might need to be modified to

support the desired configurations.

Memory models can also be configured at various levels of complexity

within gem5. The simplest form of memory, FastMem, is used solely for fast-

forwarding, and assumes no cache structure in addition to instantaneous data

transfer between the processor and main memory. While these assumptions

are generally completely invalid for data profiling, this model provides a

convenient means whereby program control flow can be correctly maintained.

Speedup is achieved by removing complex bus and cache processes from the

simulation paradigm while simultaneously skipping cycles in which the CPU

would need to stall for memory accesses. As gem5 does provide the means

whereby each cache level can be initialized, it would feasibly be possible to

construct various levels of memory layouts, each of which provided a degree

of speedup comparable to the level of complexity approximated into the

design. However, in practice, memory configurations are most useful in an

all or nothing state. For a given configuration, either all cache values can

be ignored for fast speedup, or cache values are considered important and

all values need to be monitored. This is inherent in the inter-dependencies

of cache levels of the state of the other cache levels. Therefore, within the

context of our simulations, we do not employ partial cache warming. Instead,

we ensure that all applications of cache warm-up consider all cache levels.

Recent developments [8] introduce an alternative CPU model for fast

5

forward applications. This model, known as a kernel vitalization machine

(KVM) CPU model, relies on hardware vitalization capabilities enabled in

most modern server and desktop CPUs. Rather than simulating the en-

tire CPU structure with associated memory or system functions, this model

allocates a sub-section of the CPU and memory resources of the host com-

puter, configuring it with the necessary parameters to enable direct transla-

tion between host and target platforms. After launching allocation of these

resources, the simulator launches the target application for a designated num-

ber of instructions on the virtual machine. Once the virtual machine reaches

the target instruction count, it returns the active state of the application to

the simulator. At this point the simulator can switch CPU models to either

a detailed or cache warming model all while inheriting the correct program

state as determined by the virtual machine. It is important to note that

this virtual machine is only useful in preserving processor state necessary for

correct control flow (i.e. processor registers and memory values). No mecha-

nism exists to enable the transfer of cache state between virtual machine and

simulated CPU, and even if such existed, it would likely prove highly inac-

curate as the virtual machine inherits cache properties of the host machine

and cannot be arbitrarily set to a customized configuration. As a result,

the caches inherited by the simulation CPU following a KVM execution are

empty, and cache warming period is recommended to preserve at the very

least correct low level cache functionality. Therefore, the application of KVM

CPUs is limited to fast-forwarding, although the contribution of providing a

means whereby fast forwarding can occur at near host speeds (approximately

19,000x faster than detailed simulation) cannot be understated.

2.4 Transaction-level Modeling

Transaction-level modeling (TLM) [10] is a popular method to model system

communication. In TLM, the communication blocks are decoupled from com-

putation details, thereby providing a uniform interface for different compo-

nents in the system and transparently addressing the coherency issues caused

by concurrent communication. TLM abstraction models capture the high-

level data transaction and associated latency information while neglecting

lower-level implementation details, and hence enable high simulation speed

6

with necessary accuracy for system performance modeling and architecture

selection. In practice, TLM is usually implemented in SystemC. In system

modeling, a TLM channel and communication block are generated for each

component, in a manner that enables the component to communicate with

other blocks while keeping the functionality transparent. To achieve full sys-

tem integration within the context of such a SystemC model, any profiled

CPU requires the generation of a TLM wrapper. However, by current stan-

dards, writing such a SystemC TLM wrapper that captures all possible CPU

behavior remains non-trivial and requires tedious manual design effort.

Previous processor modeling frameworks primarily target the modeling of

general purpose CPUs instead of targeted SoC applications. Since our goal is

to design a processor modeling flow that can be used in an SoC platform, ex-

tending the software model with TLM wrappers becomes a necessity. Hence,

within this work, we developed an automatic TLM block generator for the

output of our software modeling, such that our back-annotated software mod-

els can be equipped with TLM wrappers, ready for direct integration into

SystemC models used for hardware/software codesign.

7

CHAPTER 3

METHOD

Our overall framework contains two stages, the first of which is Software mod-

eling. Given C code as input, this stage estimates the energy and latency

associated with this application running on a target platform, and outputs

back-annotated C code, which serves as the input of the second stage: Sys-

temC and TLM 2.0 code generation. This stage wraps the C code into a

SystemC module, which then can be directly plugged into a SystemC system

modeling environment such as a virtual prototype.

3.1 Software Modeling

Figure 3.1: General flow for software modeling. Input source code is
subdivided into multiple regions of interest that are dynamically simulated
with results checked for steady state convergence. Results are
back-annotated into source code.

An overview of our software modeling is shown in Fig 3.1. The user pro-

vides C source code with directives specifying the regions to be profiled.

Code is then parsed and analyzed wherein each iterative region within the

profiling area is further subdivided into multiple fine-grained regions of in-

terest based on iteration scheme. Non iterative code blocks are arbitrarily

8

assigned to a single region. Regions are independently isolated and prepared

for simulation in a manner that is dependent upon the simulator used. The

simulations of multiple ROI occur in parallel with results passed through

McPAT to enable power profiling. Simulation is managed using a dynamic

simulation thread launcher, which operates based on feedback provided by

an n-way convergence algorithm to dynamically determine the subset of ROI

that must be run in order to determine phase boundaries. Once convergence

is achieved, the simulation phase is complete and results are automatically

back-annotated into the source code.

3.2 Energy vs. Power

We note that in general, our flow considers energy and latency for the back-

annotation process as both variables represent quantities that can be directly

accumulated during the runtime of the target application. While power can

be derived for any region through the division of energy by latency, power

cannot be accumulated using direct summation and it is therefore prefer-

able to consider energy instead. However, we note that within our flow,

we intermediately consider power instead of energy in circumstances where

normalization with respect to latency is useful. Specifically, we perform all

phase curve analysis using normalized quantities, and, as a result, phase curve

analysis is performed with respect to power. Prior to the back-annotation

process, any units of power are converted into energy through multiplication

with the corresponding latency. Nevertheless, at any time power and energy

can be derived from one another, as the latency of the corresponding region

is always known.

3.3 Simulator Dependent ROI Division

As the input and control of each simulator is unique, we describe the process

by which target regions are independently separated for both Sniper and

gem5 environments.

Sniper: Sniper provides directives to specify target regions of interest

within both purely sequential and iterative constructs. Utilizing these tools,

9

we generate a control script that initializes the simulation in fast-forward

mode, switches to cache-only mode at a designated code location or iteration

number, enters a detailed simulation at the target region of interest, and ter-

minates upon completing the profile of the region of interest. For each region

or interest, a custom source code is generated and compiled in conjunction

with specific simulator commands that govern the behavior of the ROI. This

source code in conjunction with control directives (in the form of a make file)

is sufficient to enable independent parallel simulation of the target ROI.

Gem5: In order to isolate regions of interest while utilizing the hardware

enabled fast forwarding, it is necessary to translate target locations within

high level code directly into instruction counts. However, obtaining these

instruction counts without contaminating the original program can prove

challenging. We accomplish this by translating ROI directives into in-line

assembly labels. After statically compiling and disassembling the code, we

search for the designated labels as a means of obtaining the instruction ad-

dress associated with all target code positions without modification to the

compiled code.

To translate between instruction addresses and instruction counts we uti-

lize PIN [11]. We generate a custom pintool that dynamically outputs the

instruction count whenever the instruction addresses associated with the des-

ignated labels are executed on the host system. Combined with the code

structural information obtained from parsing the source code, this is suffi-

cient to enable a direct translation between the beginning and end of each

ROI and their associated instruction counts.

As neither Sniper nor gem5 provides power data, power results are gen-

erated by McPAT. While exporting performance parameters from Sniper to

McPAT is natively supported, such does not exist in gem5. Therefore, we

utilize a script provided by R. Strong [12] to translate output statistics from

gem5 to McPAT.

3.4 Parallel ROI Profiling

A key property of region-of-interest (ROI) code profiling is that each ROI

can be simulated independent of all other ROI, even though the original code

may be inherently sequential. While sequential code is highly dependent

10

Figure 3.2: Illustration of 3 sequentially placed regions-of-interest running
in parallel. Note that each ROI runs all preceding code in a fast-forward
mode to preserve state.

upon code preceding regions (denoted as prefix code), ROI simulation satis-

fies this dependency by ensuring proper processor and cache states through

preserving sufficient state during fast forward and warmup executions of all

prefix code. This property of independence between ROI simulations enables

the simulation of multiple ROI in parallel. Figure 3.2 illustrates the paral-

lel execution of three sequentially positioned ROI. Note that the leftmost

execution simulates the first ROI with no prefix code, the center execution

simulates ROI 1 in fast forward/warmup mode before simulating ROI 2 in

detailed mode, and the rightmost execution simulates both ROI 1 and ROI

2 in fast forward/warmup mode before simulating ROI 3 in detailed mode.

Admittedly, this results in significant code execution redundancy; however,

in simulation environments where the detailed simulation time is large and

the fast forwarding execution time is several orders of magnitude faster than

detailed simulation, this redundancy provides significant speedup. We note,

however, that the upper bound of speedup is limited by the degree of par-

allelism available on the host machine. Recognizing that most users will

be executing simulation with a finite degree of available parallel resources,

in order to achieve a speedup greater than native ROI simulation, we have

combined parallel ROI simulation with convergence modeling.

11

3.5 Phase Convergence

As a program executes, the dynamic state on the target platform can be cat-

egorized into phases. Significant phase changes can be caused by branch mis-

predictions, misses within the various caches, or changes within the general

control flow. When considering the effects of these phases upon performance

characteristics with respect to a dependent marker of code progression, such

as number of instructions or number of sequentially placed ROI, this results

in a mathematically describable phase function. At fine granularities this

plot can appear highly volatile and periodic in nature, but at coarser granu-

larities the resulting graph is generally smoother as periodic or volatile events

become averaged over the larger interval and the resulting plot typically re-

sembles a piecewise function. So long as the sampling required to determine

the function is less than the overall ROI space, a significant speedup can be

attained by approximating intermediate regions.

3.6 Instruction Count Normalization

In the general case, an iterative code structure need not have a constant

number of instructions per iteration. This may be caused by iteration based

control flow, or as commonly manifest in the benchmarks considered within

our experiments, an inner loop structure with bounds dependent upon the

outer loop iteration number. Additional inconsistencies in instructions per

ROI may result when performing ROI sub-division, specifically in situations

in which the number of iterations is not perfectly divisible by the number of

ROI, causing some ROI to envelope more iterations than others. Whenever

significant inconstancies in instruction counts per ROI occur, the resulting

latency and power curves of our model within the ROI space can contain

anomalous points that do not conform well to a linear piecewise function

and are difficult to capture within convergence modeling.

In order to address these inconsistencies, we normalize latency per ROI

relative to the number of instructions within each target region, with in-

struction counts obtained using our dynamic pin-tool profile. Convergence

detection then utilizes the normalized latency curve in combination with the

power curve. Note that we do not explicitly normalize power. Power is a

12

unit of Energy/Time, where Time is equivalent to Instructions/IPC*freq,

where IPC is defined as Instruction per Cycle. Therefore, Power = En-

ergy*IPC/(Instructions*freq), indicating that power is already normalized

with respect to the number of instructions.

3.7 N-way Convergence Sampling

To describe n-way convergence modeling (where n is the number of concurrent

processes), we first consider the simplest case of the single thread sampling.

Here we first evaluate the upper and lower bounds of the provided region

using a model to predict intermediary values. While convergence modeling is

applicable to any arbitrary model, within the context of this thesis, we choose

to consider a linear stepwise function. We then sample the midpoint of the

region, comparing the result to our predicted values. We then update the

model to reflect the data obtained through sampling the midpoint. Assuming

our model remains inaccurate beyond a given threshold, there are 2 regions

of unknown values, one on each side of the midpoint, and the process repeats.

Per iteration, the size of the target interval decreases by a factor of 2. Given

the number of ROI to be finite, the algorithm will terminate either when

accuracy threshold is reached or interval size is 1. Since we define both as

convergence, the algorithm is guaranteed to terminate successfully.

3.8 Thread Scheduling

In extending the algorithm to n-way convergence, we introduce a constant n

parallel threads all executing on the given initial region. Parallel simulation

requires the proper management of thread behavior on the host platform. In

order to accomplish this, we consider the following thread scheduling tech-

niques.

Naive Scheduling: In the naive implementation, threads are concurrently

generated for each region-of-interest simulation and results are reordered fol-

lowing the completion of all processes. In the absence of convergence de-

tection, this is the easiest algorithm to implement, as it involves little more

13

than a fork() instruction for each ROI. However, there are multiple short-

comings that make this unsuitable for our current design. First, the memory

requirements become prohibitive when concurrently simulating large num-

bers of ROI. Second, operating systems attempting to service all threads

generally rely on time-multiplexed context switching, which diminishes host

processor performance, and results in all thread finishing at effectively the

same time. Finally, without enforced ordering, implementing convergence

detection on top of naive scheduling is self-defeating. If all threads finish

execution at roughly the same time, then detecting convergence at the time

when all threads complete is a degenerative case of convergence, and offers

no benefit to complete simulation.

Batch Scheduling: In batch scheduling, regions of interest are executed

into batches of n, where n is the degree of parallelism available on the host

machine. The content of each batch is determined by the previous results of

conservative n-way search algorithm, where excess resources are assigned to

the candidate points of near future iterations. Upon the completed execution

of a batch, results are reordered to preserve the correctness of the original

algorithm. After the current model has been updated to reflect batch results,

the next batch is generated and launched. This process continues until the

entire model indicates convergence is achieved.

This algorithm offers several advantages over the naive implementation.

First, the number of threads launched at any given time is fixed, thus lim-

iting the amount of system memory required at any given time. Second,

batch scheduling results in inherent ordering, as one batch is not launched

until the previous batch has been completed. Third, thread-safe execution is

easily achieved as the intermediate time between batch launches enables des-

ignated points at which the analysis for our n-way search can be performed.

Fourth, batch scheduling ensures that the majority of ROI corresponding to

converged phase regions never occupy system resources, as such threads will

never be launched.

Our initial implementation of n-way search convergence modeling success-

fully employed the technique of batch scheduling. Global queues designated

target threads with one region of interest per batch, while maintaining proper

ordering between results for correct incorporation into the model. Unfortu-

nately, as was discovered by our initial results and subsequent execution

14

profiling, batch scheduling also introduces inherent challenges that must be

addressed to maximize runtime performance. Batch scheduling requires a

high degree of thread synchronization, in which threads must wait for all

other threads to reach a designated code position. As batch execution time

is equivalent to the longest execution of any thread in the batch, load balanc-

ing between batches became key to maximizing resource consumption and

containing overall runtime.

Unfortunately, within the context of ROI simulation, runtimes for disjoint

ROI can vary widely, and in practice we found this variation could extend

to several orders of magnitude. We attempted to address this by enforcing

batches to contain ROI all from the same block of iterative code (in order

to maximize similarity between ROI), but in practice this often proved in-

sufficient to ensure proper balancing and resulted in wasted resources, often

caused by edge cases and discrepancies in fast forwarding overhead present

in considering ROI from opposite ends of the iteration space.

Algorithm 1: N-way convergence algorithm

1 Input: UncovergedRoI, tol
2 while UnconvergedRoI 6= ∅ do
3 for t ∈ AvailableThreads do
4 minBlock ← find least populated block(uncovergedRoI);
5 (ub, lb,mp)← find unconverged interval(minBlock);
6 log dep(t);
7 (simP, simL)← detailed simulation(mp);
8 while depcomplete(t) == false do
9 wait();

10 end
11 err ← calculate err(simL, simP);
12 if err :≤ tol then
13 remove unconverged(ub, lb);
14 end
15 update model(ub, lb);

16 end

17 end

Asynchronous Dependency Thread Scheduling Our solution to the

challenges associated with batch scheduling was the development of an asyn-

chronous thread scheduler that tracked and maintained the dependencies

15

inherent within our n-way convergence algorithm. By employing this algo-

rithm, we ensure that thread updates to the convergence model must only

wait upon threads with which they have a direct dependency. This is accom-

plished using a dynamic array of mutex semaphores that protect individual-

ized access to the convergence models and scheduling queues associated with

each iterative code block. It eliminates the need for global synchronization

and instead allows for independent threads of various execution time to run

concurrently without negative impact. Each iterative ROI block is assigned

a dependency list that ensures that the next dependent instruction may, with

no wait, update the model, receive a new assignment, and immediately begin

execution of the new assignment.

The pseudo code is shown in Algorithm 1. Given error tolerance tol and

input set of all ROI, UncovergedROI, the algorithm outputs a converged

model containing approximated power and latency for each ROI. We first

identify the block within the unconverged ROI that currently contains the

least number of assigned threads (line 4). We then request the next avail-

able interval within that block, identified by the upper and lower bounds

(ub, lb), and receive an assignment to evaluate the interval midpoint mp (line

5). We log our dependency chain to preserve order correctness (line 6) and

execute simulation to acquire power and latency (line 7). Upon return from

simulation, we verify that all points within our dependency chain have also

completed (lines 8-10). We then determine model error (line 11), use the

error to determine and mark convergence (lines 12-14), and calculate new

approximate values of power and latency using most recent simulation data,

updating the model over the assigned interval (lines 15-17). The process

repeats until no unconverged ROI remain.

As a further optimization, we recognize that while our asynchronous schedul-

ing algorithm provides full resource utilization, it can also result in excess

simulation in conditions where speculative assignments are provided to a re-

gion that converges soon thereafter. We address this by providing a means

whereby model convergence can track and kill speculative simulation pro-

cesses currently executing within the specified region. Special care is taken

to ensure that while the simulation process is killed, the thread remains active

and ready to receive a new assignment.

16

3.9 Automated Back-Annotation

Back-annotation of energy and latency data into the original source code is

achieved through the automated generation of C++ header files. Results for

each block of iterative ROI code are exported from our convergence model

and assigned to designated arrays. Update functions are automatically in-

corporated into the original source code. The resulting source code when

compiled will actively maintain current energy and latency of the system at

ROI/iteration granularity.

3.10 SystemC and TLM Generation

As described in Sec 1, SystemC together with TLM 2.0 is a widely adopted

methodology for SoC modeling and virtual prototyping. However, manually

translating a C code into SystemC can be very tedious. Hence, to incorporate

our software modeling output into the virtual platform automatically, we

developed an automated SystemC and TLM 2.0 code generation framework,

which takes C code as input, and directly transforms it into a component

module written in SystemC equipped with TLM 2.0 communication channels

and functions. In particular, it achieves three goals:

1. Enable seamless incorporation of the software model into virtual plat-

form for effective system-level simulation and analysis.

2. Consider both communication and computation cost. The latency and

energy associated with computation is derived from the back-annotated

software model, while the communication cost is obtained from memory

model and TLM channel.

3. Maintain the memory correctness in the SoC. In a real SoC, different

components access memory and exchange data constantly. Therefore

it is necessary to maintain the memory consistency among all the com-

ponents. Since our original software model is a pure C code with no

communication with the rest of the system, one major feature of our

SystemC and TLM framework is to enable data movement between the

component and the rest of the system.

17

3.11 The Hierarchy of the Generated Code

Figure 3.3 shows the hierarchy of the generated SystemC modules and sim-

ulation environment. We generate two components: The Processor module

and the Memory module. The Processor is SystemC code embedded with

the output of software modeling flow. The Memory module is a SystemC

code used to model the memory behavior, annotated with latency and en-

ergy associated with memory accesses. These two modules are connected

via communication payloads. This environment can be extended to incor-

porate additional components to form a more comprehensive system. The

main contribution of our framework is to automatically generate the proces-

sor modeling, while the memory model is a separate (and standard) SystemC

block which is used for simulation purpose; hence, we explain the processor

model in detail.

Figure 3.3: Generated SystemC TLM 2.0 platform

The Processor module is the SystemC code embedded with the output of

our software modeling flow. The application of TLM 2.0 enables the separa-

tion of the computation and communication parts, as indicated in the figure.

In the computation part there are two major pieces. The SC MODULE() is

a C++ class declaration which defines the interface and structure of the com-

18

ponent. It generates and registers the communication socket with the trans-

port function, declares the member variables and methods, and declares the

thread function in the constructor and registers it with the SystemC sched-

uler kernel. The SC THREAD computation func() is the main function; once

the simulation starts, this function continues running until sc stop() is called.

The function body contains three parts: The read data() and writeData() are

two communication functions, which are called before and after the compu-

tation to achieve atomic data movement. Note that once these two functions

are called, the latency associated with computation part is collected and

passed to these functions as a parameter, which is used in updating and syn-

chronizing with the SystemC global scheduler. In the communication part,

the framework creates two functions for data read and write, which are simi-

lar in structure. Considering writeData() as an example, it first generates the

payload as a channel to pass necessary TLM 2.0 communication parameters

to the target socket; then it generates the transport function, which directly

binds to the socket and passes the payload parameters to the memory for

communication.

3.12 The Code Generation Flow

Figure 3.4: Overall flow of the code generation framework

With the hierarchy of the generated code illustrated, it is easier to demon-

strate the code generation framework flow. Figure 3.4 shows the block dia-

19

gram. Given back-annotated C code as input, the first step in our flow utilizes

compiler analysis to identify the function structures as well as the memory

variables in the C code and transform them into C++ member functions

and variables. Once this is completed, in the second step we generate the

SC MODULE using the information acquired in step 1. We then generate

the communication TLM functions, which can be done independent of the

original C code and this function can be reused in different modules. The

next step is to generate the body of the SC THREAD. Here we need to in-

sert member methods which are transformed from the original C code and

insert required SystemC syntax such as super while(1) loop and sc stop()

function at the end of the function. The next step is to insert the commu-

nication function calls, and communicate with the memory module. Finally,

the memory model, top module, and the main() functions are generated to

enable the complete simulation environment. This step can also be done once

and generated files can be reused for different applications. In addition, we

also provide extensive scripts support, enabling the designer to perform all

code generation steps as well as simulation by a single command.

20

CHAPTER 4

EXPERIMENTS AND RESULTS

Experimental results are collected on both Sniper and gem5. The primary

purpose of our experimental results is simulation proof of compatibility with

regard to our flow, the subsequent speedup and limited loss of accuracy.

4.1 Experimental Setup

Benchmarks We evaluate our described flow using benchmarks from the

Polybench Suite [13]. The affine code structure offered within the Polybench

suite is ideal for static ROI partitioning, although such is not required for

our flow to operate correctly. Furthermore, we have targeted benchmark

kernels within this suite, as custom accelerator modules for these kernels are

available for incorporation into the virtual prototype environment [14].

Initially both gem5 and Sniper experiments were conducted using the four

benchmarks of Atax, Correlation, Covariance, and Gemver. Results obtained

provided sufficient demonstration of proof-of-concept application of conver-

gence modeling within the context of both simulators. However, as results

provided by these initial experiments indicated that gem5 provided greater

potential application for our overall flow, additional verification tests were

considered within the gem5 framework, further incorporating Gemm, Lu,

and Jacobi-2d.

Characteristics of each benchmark considered are provided in Table 4.1.

The column Blocks provides the number of iterative code blocks for each

benchmark. The column Depth describes the iterative depth associated with

each block. For example the simplest kernel, Atax, contains only a single

iterative code block consisting of a double nested for loop. Correlation con-

sists of four iterative code blocks, the first three of which are double nested

for loops while the fourth consists of a triple nested for loop. Lu is a special

21

Table 4.1: A high-level description of code structure and data sets for all
benchmarks considered in flow verification

Benchmark Blocks Depth Sniper Dataset gem5 Dataset
Atax 1 [2] 4000 8000
Correlation 4 [2,2,2,3] 1000 1000
Covariance 3 [2,2,3] 1000 2000
Gemver 4 [2,2,1,2] 4000 8000
Gemm 1 [3] - 1024
Jacobi-2d 2 [2,2] - 2000
Lu 1 [(2,3)] - 1024

case, in which a single iterative code block contains both double and triple

nested loops. Each benchmark dataset operates on an NxN matrix of vari-

able size. The column Sniper Dataset lists the dataset size (N) associated

with benchmarks used in conjunction with our Sniper experiments, while the

column gem5 Dataset lists the dataset size (N) associate with benchmarks

used in gem5.

Simulator Configuration Sniper: We maintain the default simulation en-

vironment inherent in the native Sniper, which instantiates a Xeon (Gainestown)

duel-core processor running at 2.66 GHz. Although we recognize that this

processor configuration was not originally designed to for SoC applications,

it remains useful within our proof of concept verification. In addition, we

specify the cache-warming phase of one iteration. Sniper experiments are

conducted by utilizing 4-way parallelism on a host system with an Intel i7-

4770K processor and 16 GB RAM.

Gem5: In using gem5, we likewise configure several simulation parameters,

such as cache sizes, to their simulator default settings. We specify the CPU

frequency to be 3.4 GHz, which is consistent with the McPAT template we

obtained. Cache and functional warming are fixed at 3 million instructions.

Gem5 experiments are conducted by utilizing 6-way parallelism on a host

system with an AMD FX-6100 processor and 8 GB RAM.

Variations in ROI Granularity In order to demonstrate the variations

in speedup associated with parallel ROI simulation with convergence model-

ing, we implement each benchmark with multiple levels of ROI granularity.

For simplicity, in benchmarks with multiple blocks, we chose to limit our ex-

22

ploration space along a single dimension, meaning that modifications to the

number of ROI blocks is applied universally to all code blocks. An exception

is one code block within the Gemver benchmark that is only a single nested

for loop, for which the total number of instructions and the corresponding

simulation time are insufficient to consider for fine grain partitioning. For

consistency, results are provided for all benchmarks at ROI granularities of

1, 50, 100, and 500. While it would be ideal to provide results for all possi-

ble granularity divisions within the iteration space, this would prohibitively

increase our experimental runtime by several orders of magnitude. Thus

we have primarily focused our experiments on variation of fine granularities,

which is the target domain of both simulation parallelism and convergence

modeling. In some cases we have included additional granularities to provide

additional insight into general simulation trends.

Guided ROI Granularity Preliminary results indicated that ROI gran-

ularity has a dramatic effect on speedup, and in general, increasing the ROI

granularity will result in increased speedup. However, in considering the re-

sults of Gemver as shown in Table 4.2 and Correlation as shown in Table 4.3,

the increased granularity can be beneficial to a point, after which further

increasing the granularity degrades the initial speedup. An analysis of the

resulting phase curves indicates this slowdown can be primarily attributed

to oscillations within the phase curve, which are graphically illustrated for

Gemver within Fig 4.1 and Fig 4.2. The effects of this oscillation can be re-

moved by clustering the alternating regions into groups, resulting in a smooth

curve that converges quickly. However, defining the ROI granularity corre-

sponding to this clustering may be too abstract for the common user. Given

differences in benchmarks, including variations in problem size and itera-

tive structures, we note while there is no one-size-fits-all granularity that

is ideal across all benchmarks, our flow extracts enough information regard-

ing the target application to produce an educated guess based on a minimum

instruction threshold. We provide a simulation mode that automatically sub-

divides each iterative region into the maximum number of divisions, while

then ensuring that each division maintains a minimal instruction count. This

is made possible through the analysis of the dynamic host-profiling output

that provides a detailed map of ROI to instruction count correlations. This

is particularly useful in instances where instruction counts between ROI can

23

vary greatly, and results in a form of minimal load balances. We have chosen

a minimum sub-division instruction count of 4,000,000 instructions, which

corresponds roughly to the point at which periodicity corresponding to sys-

tem events becomes prevalent within the resulting phase curves.

Variations in Warmup Within Sniper, warmup of iterative code can be

instantiated by specifying the iteration number corresponding to the point in

code at which the processor transitions between the fast forward and warmup

states. Given the size of the iterative constructs considered within the pro-

vided benchmarks, sufficient accuracy was achieved using a warmup phase

consisting of a single iteration. As the number of instructions associated

with a single iteration can vary across benchmarks, this implies that, within

Sniper, the number of instructions associated with each warmup phase is

benchmark dependent. Gem5 provides the ability to control warmup du-

ration at the instruction level, enabling perfect consistency between bench-

marks. Therefore, within the gem5 environment, we further consider the

effect of warmup variation across multiple benchmarks. As combining varia-

tions in ROI granularity and warmup duration results in a multidimensional

problem, we have considered expanding the warmup variation only in the

instance of ROI granularity 500. For all other gem5 evaluations, default

warmup duration is set at 3,000,000 instructions, which was decided on the

basis of results obtained by [8].

4.2 Results

Detailed results for our experiments can be seen in Table 4.2 for Sniper and

Table 4.3 for gem5. Results show the max speedup as averaged across all

benchmarks to be 31.5x for Sniper and 323.1x for gem5. Average latency

error from Sniper is 0.89% while the average energy error from Sniper is

0.10%. Likewise the average latency error from gem5 is 4.16% while the

average energy error from gem5 is 2.87%.

Phase Curves For illustration of the model output, we have provided

phase curves associated with the benchmarks simulated within the Sniper

simulation flow. The phase curves corresponding with latency per ROI can be

24

Figure 4.1: Resulting latency phase curves as output from Sniper
simulation flow.

seen in Fig 4.1 while the phase curves associated with power per ROI can be

seen in Fig 4.2. In general, these phase curves demonstrate the benefits of lin-

ear step-wise convergence modeling, even though some benchmarks, namely

Correlation and Covariance, contain non-linear behavior. Sharp edges within

the phase curve represent either changes in control flow or system events

such as cache misses scattered throughout execution. We do however note

the limitations of our methodology as captured within the region in Gemver

between ROI numbers 500 and 1000. At this ROI granularity, the phase

curve is periodic in nature, which is inherently difficult to capture using

only linear likewise convergence, and results in the limited speedup at higher

granularities as shown by Table 4.2.

Speedup Results demonstrate that, in general, increasing the granularity

of ROI partitioning results in a significant runtime speedup of the simulation

profile. We note that the magnitude of the speedup obtained can vary across

25

Table 4.2: Results obtained using Sniper simulation platform in conjunction
with our flow. For each benchmark, overall runtime, latency, and energy are
reported for multiple ROI granularities. Speedup and error have been
computed relative to full detailed simulation with complete cache states.

Num ROI Runtime Speedup Latency Energy Latency Energy
Per Loop (s) (s) (J) Error Error
Atax
base 1468.02 1.00 0.2430 2.531 0.000% 0.000%
1 773.29 1.90 0.2430 2.497 0.015% 1.339%
8 166.47 8.82 0.2428 2.497 0.076% 1.345%
20 213.43 6.88 0.2427 2.497 0.090% 1.346%
40 104.46 14.05 0.2427 2.497 0.090% 1.346%
50 122.64 11.97 0.2427 2.497 0.090% 1.346%
80 78.84 18.62 0.2427 2.497 0.090% 1.346%
100 71.44 20.55 0.2427 2.497 0.091% 1.346%
200 48.89 30.02 0.2427 2.497 0.090% 1.347%
400 35.56 41.28 0.2427 2.497 0.093% 1.348%
500 32.90 44.62 0.2427 2.497 0.091% 1.349%
1000 34.19 42.94 0.2427 2.497 0.085% 1.352%
2000 34.09 43.07 0.2428 2.496 0.071% 1.358%
3000 32.83 44.71 0.2428 2.496 0.069% 1.360%
4000 32.70 44.90 0.2428 2.496 0.049% 1.369%
guided 47.60 30.84 0.2427 2.497 0.091% 1.348%

Correlation
base 14631.39 1.00 5.8669 48.915 0.000% 0.000%
1 13327.48 1.10 5.8782 49.456 0.194% 1.106%
20 2889.72 5.06 5.8687 49.325 0.032% 0.838%
50 1245.91 11.74 5.8783 49.456 0.196% 1.107%
100 2348.54 6.23 5.8780 49.456 0.189% 1.106%
500 1545.25 9.47 5.8747 49.454 0.134% 1.102%

guided 1048.25 14.17 5.8783 49.456 0.196% 1.106%
Covariance

base 14856.39 1.00 5.8567 48.802 0.000% 0.000%
1 14102.28 1.05 5.8655 48.809 0.150% 0.014%
20 3258.44 4.56 5.8573 48.703 0.009% 0.202%
50 1653.64 8.98 5.8708 48.813 0.240% 0.023%
100 2713.92 5.47 5.8650 48.809 0.140% 0.013%
500 1315.62 11.29 5.8637 48.808 0.118% 0.012%

guided 814.25 18.25 5.8638 48.799 0.120% 0.006%
Gemver

base 2410.18 1.00 0.5623 4.585 0.000% 0.000%
1 666.12 3.62 0.5623 4.603 0.001% 0.393%
20 229.04 10.52 0.5623 4.603 0.010% 0.393%
50 49.43 48.76 0.5623 4.603 0.000% 0.392%
100 154.32 15.62 0.5632 4.604 0.173% 0.404%
500 328.01 7.35 0.5624 4.603 0.024% 0.388%

guided 63.73 37.82 0.5625 4.603 0.050% 0.381%

26

Table 4.3: Results obtained using gem5 simulation platform in conjunction
with our flow. For each benchmark, overall runtime, latency, and energy are
reported for multiple ROI granularities.

Num ROI Runtime Speedup Latency Energy Latency Energy
Per Loop (s) (s) (J) Error Error
Atax
base 57888.86 1.00 1.164 3.345 0.00% 0.00%
1 27445.70 2.11 1.194 3.293 2.57% 1.56%
50 761.30 76.04 1.194 3.294 2.59% 1.54%
100 425.40 136.08 1.194 3.294 2.63% 1.52%
500 161.53 358.37 1.196 3.298 2.77% 1.41%

guided 122.61 472.14 1.198 3.303 2.97% 1.26%
Correlation

base 120467.32 1.00 5.536 16.591 0.00% 0.00%
1 120237.83 1.00 5.754 16.145 3.95% 2.69%
12 19689.72 6.12 5.775 16.203 4.33% 2.34%
24 9882.86 12.19 5.716 16.084 3.26% 3.05%
50 4703.62 25.61 5.713 16.081 3.20% 3.07%
100 2401.08 50.17 5.658 15.980 2.22% 3.69%
250 932.96 129.12 5.659 16.004 2.23% 3.54%
500 634.32 189.91 5.682 16.052 2.65% 3.25%
750 703.54 171.23 5.786 16.266 4.53% 1.96%
1000 715.91 168.27 5.593 16.089 1.04% 3.03%
guided 752.08 160.18 5.788 16.229 4.56% 2.18%

Covariance
base 762759.16 1.00 45.686 135.460 0.00% 0.00%
1 761991.38 1.00 47.067 136.708 3.02% 0.92%
50 45898.96 16.62 47.047 138.484 2.98% 2.23%
100 22696.44 33.61 47.102 138.582 3.10% 2.30%
500 4704.88 162.12 47.085 138.576 3.06% 2.30%

guided 1597.87 477.36 47.035 131.190 2.95% 3.15%
Gemm
base 376349.75 1.00 48.246 107.892 0.00% 0.00%
1 375753.16 1.00 52.469 114.907 8.75% 6.50%
50 10994.29 34.23 52.468 114.905 8.75% 6.50%
100 5847.38 64.36 52.466 114.902 8.75% 6.50%
500 2157.33 174.45 52.451 114.872 8.72% 6.47%

guided 668.94 562.61 52.434 114.837 8.68% 6.44%
Gemver

base 47524.91 1.00 3.197 8.304 0.00% 0.00%
1 17429.17 2.73 3.333 8.369 4.24% 0.78%
12 4219.71 11.26 3.330 8.363 4.14% 0.70%
24 2219.43 21.41 3.322 8.348 3.91% 0.52%
50 1177.00 40.38 3.333 8.370 4.24% 0.79%
100 665.07 71.46 3.334 8.373 4.28% 0.82%
250 370.34 128.33 3.334 8.373 4.27% 0.83%
500 275.06 172.78 3.335 8.377 4.31% 0.88%
750 246.68 192.66 3.205 8.118 0.24% 2.25%
1000 229.53 207.05 3.113 7.935 2.63% 4.45%
2000 206.45 230.20 3.190 8.102 0.22% 2.44%
4000 195.70 242.85 3.347 8.445 4.67% 1.69%
guided 278.80 170.46 3.335 8.379 4.31% 0.90%

Jacobi-2d
base 2809.52 1.00 0.102 0.292 0.00% 0.00%
1 1504.14 1.87 0.100 0.281 1.12% 3.71%
50 104.71 26.83 0.099 0.286 2.68% 1.86%
100 126.81 22.16 0.099 0.286 2.99% 2.07%
500 92.85 30.26 0.101 0.291 0.53% 0.16%

guided 315.94 8.89 0.099 0.279 2.24% 4.49%
Lu
base 81798.17 1.00 4.107 11.624 0.00% 0.00%
1 81596.98 1.00 4.445 12.306 8.23% 5.87%
50 4102.34 19.94 4.434 12.293 7.96% 5.76%
100 2115.59 38.66 4.455 12.336 8.47% 6.13%
500 479.66 170.53 4.447 12.326 8.29% 6.04%

guided 285.43 286.58 4.412 12.259 7.43% 5.46%

27

Figure 4.2: Resulting power phase curves as output from Sniper simulation
flow.

different benchmarks and simulators. Variation across benchmarks is due in

part to the differing phase typologies, which directly affect the rate at which

each benchmark converges to our model. Drastic changes in control flow or

instruction composition result in sharp edges within the phase curve that

require multiple iterations to resolve.

Within Sniper, for the ROI granularities tested, the max speedup obtained

was 48.76x achieved using the benchmark Gemver at an ROI granularity of

50. While higher speedups may exist at granularities not tested, time con-

strains to not permit an exhaustive sweep of all possible granularity levels.

More detailed sweeps were considered for benchmarks will relatively short

runtimes. Atax received a similar max speedup of 44.90x at a granularity

of 4000, while Correlation and Covariance achieved their max speedups of

14.17x and 18.25x respectively at the guided granularities. In considering

all benchmarks, it is significant to note that there is no consistent granu-

larity at which optimal speedup is obtained. Nevertheless, our guided ROI

28

division, by considering maximal granularity with a threshold minimum in-

struction count, effectively achieves speedup that is either optimal or near

optimal across all benchmarks. Overall, across the benchmarks considered

with Sniper, the average max speedup achieved is 31.5x.

Similar speedup trends were found within the results of the gem5 exper-

iments. Overall maximum speedup of 562x was obtained from the Gemm

benchmark using the guided granularity. We likewise note that within gem5

our guided ROI division was also able to achieve optimal or near optimal

speedup across all benchmarks. The smallest maximum speedup 30.26x

gained occurred in testing Jacobi-2d, with the overall average maximum

speedup equal to 323.1x. For large benchmarks this constitutes the difference

between a simulation requiring a few hours vs. a simulation requiring a few

weeks!

Speedup differences between simulators can be attributed in part to the

magnitude of speedup provided by fast-forward and cache warming modes

relative to the speed of detailed profiling. Sniper, although natively faster

than gem5, does not offer the same speed advantage provided by gem5’s

hardware-accelerated fast forwarding. As a result, we see that the benefit

of increased ROI granularity can decrease after a certain threshold resolu-

tion. In considering why such occurs, we note that increasing the number of

ROI partitions also increases the number of simulations required for reach-

ing convergence. This in turn increases the number of times that prefix code

(code preceding the ROI) must also be simulated. As the granularity of

the ROI becomes finer, the time spent performing detailed simulation for

each ROI decreases, and the ratio of simulation time spent executing this

prefix code relative to the time spent profiling the ROI increases. Thus, in-

creasing the granularity increases the cumulative overhead associated with

partitioned profiling which counteracts and eventually diminishes speedup.

Within Sniper, this overhead is particularly pronounced, due to the lack of

hardware accelerated fast-forwarding, and can be seen in the slowdown of

Gemver at high granularities.

Further Speedup Limitations Our speedup model assumes that detailed

profiling of code through cycle-accurate simulation remains the dominant

contributor to overall runtime. Techniques employed within our flow specif-

ically work to reduce runtime through limiting the overall detailed profiling

29

required for code profiling. This is particularly valuable when considering

the simulation time required for large programs. However, we note that the

following case conditions will invalidate this assumption, and will therefore

result in limited speedup:

Case 1: Non-convergence Non-convergence can occur under conditions

in which convergence is never realized, either due to an unstable phase func-

tion or unachievable convergence tolerances. If such occurs, every ROI must

be simulated, and the overall amount of code profiled using detailed simula-

tion will be the entire code space. Alternatively, convergence may eventually

occur, but not before the majority of the ROI subspace has been sampled.

Such may occur when the resulting phase curve does not mathematically

conform well to the target modeling scheme. Within the context of lin-

ear step-wise approximation modeling, this condition occurs when the phase

curve is highly periodic, alternating rapidly between disjoint values, which

results in the consistent misprediction of intermediary points. In both situ-

ations, the speedup achieved through convergence modeling is lost. While it

may still be possible to achieve an overall speedup by virtue of native par-

allel ROI simulation, max speedup would be limited by a hard upper bound

based on the number of parallel computation resources available on the host

system.

Case 2: Prefix Dominance Prefix runtime domination occurs whenever

overall simulation time is dominated by fast forwarding and warm-up phases

rather than detailed simulation. This can occur when the ROI size is much

smaller than prefix code or if the fast forwarding mode provided by the

simulator provides an insufficient speed advantage relative to the detailed

profiling mode. Under such conditions, increasing the ROI granularity, which

has no effect on prefix code run time, will result in minimal speedup.

Case 3: External Dominance External runtime domination occurs typ-

ically in conditions in which benchmarks are relatively small. While simu-

lation time is directly proportional to the number of instructions within a

ROI, other processes within the flow require near constant runtime regardless

of the ROI size. The biggest contributor to external runtime is the power

profiling performed by McPAT, specifically when used within our gem5 flow.

30

We note that for our benchmarks, a standard run of McPAT on the uninitial-

ized CPU is approximately 19.9 seconds. Therefore, for detailed profiling of

ROI that does not require significantly more than this time, the non-trivial

contribution of constant runtime flow components will significantly degrade

the speedup achieved through higher ROI granularities.

Accuracy The accuracy of both latency and energy results obtained from

Sniper is shown in Table 4.2. Overall, the latency error ranges between 0.0%

and 0.240%, with an average error of 0.10%. The energy error ranges between

0.006% and 1.369% with an average error of 0.89%. From Table 4.3, we see

that within gem5, the overall latency error ranges between 0.22% and 8.75%,

with an average error of 4.17%. The energy error ranges between 0.16% and

6.50% with an average error of 2.87%.

In general we note that the deviation of cumulative latency and energy

relative to the baseline model is greater within the gem5 environment than

within the Sniper simulation environment. We note, however, that error

reported within gem5 is consistent with the expected error associated with

imperfect cache warming associated with a warmup phase duration of 3 mil-

lion instructions as reported by the pFSA model [8]. This error is directly

observable in considering the reported error associated with the ROI granu-

larity of 1. Specifically in considering single kernel benchmarks such as Atax,

Gemm, and Lu, in which no parallelism or convergence is exploited, the only

functional difference in simulation between the base case and ROI granularity

1 is that the former utilizes a complete cache state, while the latter utilizes an

imperfect cache state as determined by fast forwarding and warmup modes.

Thus the error reported from ROI granularity of 1 directly corresponds with

the error associated with imperfect cache warming and warmup phases of the

gem5 simulator. The consistency of results between ROI granularity 1 and

higher ROI granularity demonstrates that this error associated with imper-

fect cache warming remains the primary source of inaccuracy within gem5,

even at higher granularities.

Warmup Variation Results obtained from varying the duration of the

warmup phase are shown in Table 4.4. Results are provided with respect

to the Correlation benchmark running on gem5 at an ROI granularity of

500. For each warmup configuration, we report the run-time associated with

31

Table 4.4: Warmup Variation Results

Num Warmup Runtime Speedup Latency Power Lat Pow
Instructions (s) (s) (W) Error Error

base 120467.32 1.00 5.536 2.997 0.00% 0.00%
0 554.00 217.45 5.928 2.787 7.09% 7.03%

100000 616.98 195.25 5.728 2.819 3.48% 5.95%
1000000 624.71 192.84 5.717 2.820 3.28% 5.90%
3000000 634.32 189.91 5.682 2.825 2.65% 5.75%

10000000 694.14 173.55 5.587 2.839 0.92% 5.28%
20000000 795.24 151.48 5.588 2.839 0.94% 5.29%
50000000 1042.52 115.55 5.587 2.839 0.93% 5.28%

100000000 1252.60 96.17 5.586 2.839 0.91% 5.28%

the complete convergence modeling process, the reported latency, and the

reported power. Using the complete detailed simulation as our base case,

we further report the speedup, latency error, and power error relative to the

base.

In general, increasing the duration of the warmup period decreases the

overall speedup. This is to be expected, as cache profiled warmup modes

are significantly slower than the corresponding fast forwarding mode. While

increasing the warmup period does not decrease the amount of prefix code

that must be simulated for each ROI, it modifies the distribution, causing less

of the prefix code to be simulated in the fast forward mode and more of the

prefix code to be simulated in the slower cache profiling mode. We further

note that increasing the warmup duration decreases the error associated with

both power and latency. This is also to be expected, as increasing warmup

duration also increases the cache history, resulting in a more accurate cache

profile at the beginning of detailed simulation. As cache behavior has a direct

impact of CPU power and latency, the more accurate cache states result in

decreased error within the overall profile.

32

CHAPTER 5

CONCLUSION AND FUTURE WORK

We have herein developed and implemented a complete flow for application

within the domain of HW/SW co-design. Beginning with source code, we

identify and subdivide regions of highly iterative code into fine-grained re-

gions of interest. Utilizing phase convergence modeling with fine granularity

region-of-interest profiling, we achieve a maximum speedup of 48.76x and

562x for Sniper and gem5 respectively and an average simulation speedup of

31.5x and 323.1x with only minor losses of profile accuracy. We then auto-

matically back-annotate performance data into our original executable code,

which we then wrap using the TLM 2.0 framework. The result is a flow

that efficiently converts host executed source code into TLM 2.0 compliant

modules for direct incorporation into a virtual prototype design.

We recognize that code profiles may not always conform to contours that

can be easily converged to using a linear approximation method. There-

fore we propose for future work the incorporation of additional curve fitting

techniques that can be used to analyze the data. Within the application

of convergence modeling, such work would require significant additional pro-

gramming complexity to track multiple data dependencies within the context

of the asynchronous thread scheduling technique. Nevertheless, we recognize

that if additional accuracy is desired for irregular contours, it may be worth

the additional complexity. We specifically suggest the incorporation of both

higher order stepwise polynomial modeling in addition to recognition of pe-

riodic functionality within phase curves, noting that the latter would enable

additional accuracy and speedup of convergence modeling at higher granu-

larity.

33

REFERENCES

[1] W. Wolf, “A decade of hardware/software codesign,” Computer, vol. 36,
no. 4, pp. 38–43, 2003.

[2] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[3] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: exploring the
level of abstraction for scalable and accurate parallel multi-core simu-
lation,” in Proceedings of 2011 International Conference for High Per-
formance Computing, Networking, Storage and Analysis. ACM, 2011,
p. 52.

[4] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster
and more flexible program phase analysis,” Journal of Instruction Level
Parallelism, vol. 7, no. 4, pp. 1–28, 2005.

[5] W. Heirman, T. Carlson, and L. Eeckhout, “Sniper: Scalable and
accurate parallel multi-core simulation,” in 8th International Sum-
mer School on Advanced Computer Architecture and Compilation for
High-Performance and Embedded Systems (ACACES-2012). High-
Performance and Embedded Architecture and Compilation Network of
Excellence (HiPEAC), 2012, pp. 91–94.

[6] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sampled simulation of
multi-threaded applications,” in Performance Analysis of Systems and
Software (ISPASS), 2013 IEEE International Symposium on. IEEE,
2013, pp. 2–12.

[7] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “Smarts:
Accelerating microarchitecture simulation via rigorous statistical sam-
pling,” in Computer Architecture, 2003. Proceedings. 30th Annual In-
ternational Symposium on. IEEE, 2003, pp. 84–95.

34

[8] A. Sandberg, N. Nikoleris, T. E. Carlson, E. Hagersten, S. Kaxiras,
and D. Black-Schaffer, “Full speed ahead: Detailed architectural sim-
ulation at near-native speed,” in Workload Characterization (IISWC),
2015 IEEE International Symposium on. IEEE, 2015, pp. 183–192.

[9] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing model-
ing framework for multicore and manycore architectures,” in Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microar-
chitecture. ACM, 2009, pp. 469–480.

[10] F. Ghenassia et al., Transaction-level Modeling with SystemC. Springer,
2005.

[11] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “PIN: Building customized pro-
gram analysis tools with dynamic instrumentation,” in ACM Sigplan
Notices, vol. 40, no. 6. ACM, 2005, pp. 190–200.

[12] R. Strong, “m5-mcpat-parse.py,” 2009. [Online]. Available:
https://bitbucket.org/rickshin/m5-mcpat-parser

[13] L.-N. Pouchet, “PolyBench/C the polyhedral benchmark suite,” 2015.
[Online]. Available: http://polybench.sf.net

[14] W. Zuo, W. Kemmerer, J. B. Lim, L.-N. Pouchet, A. Ayupov, T. Kim,
K. Han, and D. Chen, “A polyhedral-based SystemC modeling and gen-
eration framework for effective low-power design space exploration,” in
Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design. IEEE Press, 2015, pp. 357–364.

35

