
c© 2016 by Shashank Yaduvanshi. All rights reserved.

FASTRECOVER: SIMPLE AND EFFECTIVE FAULT RECOVERY IN A
DISTRIBUTED OPERATOR-BASED STREAM PROCESSING ENGINE

BY

SHASHANK YADUVANSHI

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Adviser:

Professor Marianne Winslett

Abstract

Fault tolerance is a key requirement in large-scale distributed stream processing engines

(SPEs), especially those that run atop commodity hardware. Currently, fault tolerance in

popular distributed SPEs is either inadequate (e.g., those without automatic recovery of

operator states) or complex and inefficient (e.g., those with transactional semantics). There

are two major considerations in the design of an effective fault tolerance mechanism: the

overhead of additional checkpointing operations during normal processing, and the time

required to recover and return to normal processing when a failure happens. The main

challenge lies in that faster recovery requires higher checkpointing overhead, and vice versa.

This thesis presents FastRecover, a novel fault tolerance mechanism for distributed SPEs

that strikes a balance between recovery time and checkpointing overhead. Specifically, given

an application topology consisting of interconnected operators, and an upper bound on

checkpoint overhead, FastRecover computes the optimal expected recovery time, as well

as the strategy used for checkpointing and recovery in each operator. The main idea of

FastRecover is to compute an optimal partitioning of the streaming operator topology into

independent segments; for each segment, FastRecover backs up its input tuples and period-

ically checkpoints the states of operators therein. During recovery for a particular segment,

FastRecover restores each affected operator state in the segment to the latest checkpoint,

and replays the inputs of the segment since then. Both checkpointing and recovery utilize the

parallel processing capabilities of the distributed SPE. Extensive experiments demonstrate

that FastRecover achieves an average of 50% reduction in expected recovery time compared

to simple solutions. The experiments also show that the total expected recovery time varies

ii

proportionally to the total computational recovery time and recovery latency in tests with

simulated failures, and hence is a good measure to optimize.

iii

To my parents and wife, for their continuous love and support.

iv

Acknowledgments

This project would not have been possible without the support and guidance of my advisor

Marianne Winslett, who I have had the pleasure of association with for almost a decade now.

I would also like to thank my advisor Prof Yin Yang for helping me design the algorithm

and evaluate it.

v

Table of Contents

List of Tables . vii

List of Figures . viii

Chapter 1 Introduction . 1

Chapter 2 Problem Definition . 4

Chapter 3 FastRecover . 12
3.1 Motivation . 12
3.2 Chain . 13

3.2.1 Recovery subchains . 14
3.2.2 Algorithm to find the optimal recovery configuration 15
3.2.3 Correctness . 19

3.3 Chain optimization . 21
3.4 Tree . 25

3.4.1 Algorithm . 27

Chapter 4 Experiments . 31
4.1 Setup . 31
4.2 Comparison of FastRecover with NSegments and 1Segment 34

4.2.1 Chain topologies . 34
4.2.2 Tree topologies . 41

4.3 Comparison of RT FastRecover with RT Computational and RT Latency . . 44
4.4 Running time for Algorithm 1 and Algorithm 2 46

4.4.1 Chain topologies . 46
4.4.2 Tree topologies . 47

Chapter 5 Conclusion . 49

References . 51

vi

List of Tables

1.1 Fault tolerance features in popular distributed SPEs 2

2.1 List of common notation . 8

4.1 Parameters and their default values . 34

vii

List of Figures

2.1 Trending keywords on Twitter application topology 4

3.1 A sample topology of operators running on an SPE 12
3.2 FastRecover on a chain operator topology 14
3.3 DP matrix for a simple chain . 17
3.4 FastRecover on a tree operator topology . 25

4.1 Comparing FastRecover with NSegments & 1Segment for chain topologies
with varying n . 35

4.2 Variance in RT FastRecover, RT NSegments & RT 1Segment for chain topolo-
gies with varying n . 36

4.3 Variance in RT FastRecover and RT NSegments for chain topologies with
varying n . 37

4.4 Comparing FastRecover with NSegments & 1Segment for chain topologies
with varying Ω . 39

4.5 Comparing FastRecover with NSegments & 1Segment for chain topologies
with varying CHmax . 40

4.6 Comparing FastRecover with NSegments & 1Segment for chain topologies
with varying Z . 41

4.7 Comparing FastRecover with NSegments & 1Segment for tree topologies with
varying n . 42

4.8 Comparing FastRecover with NSegments & 1Segment for tree topologies with
varying Ω . 42

4.9 Comparing FastRecover with NSegments & 1Segment for tree topologies with
varying CHmax . 43

4.10 Comparing FastRecover with NSegments & 1Segment for tree topologies with
varying Z . 43

4.11 Comparison of RT FastRecover with RT Computational and RT Latency with
varying n, Ω, CHmax and Z for chain topologies 44

4.12 Comparison of RT FastRecover with RT Computational and RT Latency with
varying n, Ω, CHmax and Z for tree topologies 45

4.13 Running time for Algorithm 1 on chain topologies with varying n and Z . . 46
4.14 Running time for Algorithm 2 on tree topologies with varying n and Z . . . 47

viii

Chapter 1

Introduction

In stream processing engines, data streams produced by various sources are processed and

aggregated by operators to produce some output of interest. A data stream is a real-time

continuous sequence of attribute-value tuples that all conform to some pre-defined schema.

Operators are functions that transform one or more input streams into one or more output

streams. A stream processing engine (SPE) applies to use cases where data tuples are not

available beforehand, but incrementally arrive at the system; users usually register long-

running, continuous queries whose results get updated as data arrives and expires.

To handle fast streams, complex analytics and/or stringent response time constraints,

nowadays it is common to employ a distributed SPE that spans multiple machines. While

such distributed SPEs achieve high scalability by exploiting massive parallelism, they are

also more prone to machine faults, especially when the underlying infrastructure consists of

commodity servers. Thus, fault tolerance, i.e., the capability of recovering from faults, is a

key requirement for distributed SPEs.

There are two popular types of SPE architectures: operator-based SPE (e.g., Storm [2],

S4 [5], TimeStream [6], and Muppet [4]) and minibatch-based SPE (e.g., Spark Streaming

[10]). The former answers a continuous query through a topology consisting of interconnected

operators. Each operator has one or more input streams, processes its inputs on the fly as

they arrive, and outputs one or more output streams which can be fed to downstream

operators as inputs. A minibatch-based SPE on the other hand follows a data centric

approach. In particular, input tuples are not processed immediately upon arrival, but wait

until they form a minibatch of a pre-defined size. Then, the SPE executes the query on

1

the minibatch similarly as in a distributed batch processing system, e.g., MapReduce [3] or

Spark [9]. Hence, a minibatch-based SPE usually has built-in fault tolerance provided by

the underlying batch processing system. On the other hand, a minibatch-based approach

might not be a good fit for certain applications, especially ones with strict response time

requirements.

This thesis focuses on fault recovery in operator-based distributed SPEs. Existing

operator-based distributed SPEs provide various degrees of fault tolerance, depending on

their target applications. Table 1.1 summarizes fault tolerance features for popular dis-

tributed SPEs. For instance, S4 [5] focuses on efficiency and simplicity rather than robust-

ness, since it mainly applies to use cases that do not require exact query answers, e.g., word

counting. Storm [7] guarantees that each input tuple is completely processed at least once.

However, it does not provide fault recovery for operator states, e.g., counters or partial re-

sults. Consequently, when a machine fails, the operator states stored therein are irreversibly

lost, leading to incorrect results. Trident [2] provides transaction support on top of Storm,

obtaining a stricter exact-once guarantee. Although Trident naturally supports operator

state recovery, it might be an overkill for some applications, e.g., those that do not require

exact-once semantics; more importantly, it incurs high overhead since it involves expensive

protocols for distributed transactions.

Operator based At least once Operator state
recovery

Low overhead

Spark
Streaming

. X X X

S4 X . . X
Storm X . . X
Trident X X X .

FastRecover X X X X

Table 1.1: Fault tolerance features in popular distributed SPEs

However, in most of these works fault recovery for each operator is handled independently.

Motivated by this, we designed FastRecover, a simple and effective fault handling module

2

for SPEs, which provides fault recovery for stateful operators. The main idea of FastRecover

can be understood as adding elements of a minibatch-based SPE to an operator-based SPE.

As we explain in Chapter 3, FastRecover checkpoints input tuples and operator states in an

external, robust storage system (permanent storage). FastRecover partitions the streaming

application topology into multiple segments, and performs checkpointing and fault recovery

for each segment independently, i.e., a fault only triggers the recovery process of its corre-

sponding segment. In such a configuration, while all the operators periodically checkpoint

their internal state to permanent storage, only the head operator of each segment needs to

store all its inputs to permanent storage and the other operators rely on this operator for

recovery. When a fault occurs, FastRecover restores each operator state of the respective seg-

ment to the last checkpoint, and replays the stored input tuples for that segment since that

checkpoint timestamp. In essence, this is similar to re-running a minibatch in minibatch-

based SPEs during fault recovery. The reduced recovery time, as will become clear later,

comes at the cost of increased checkpointing overhead. Hence, FastRecover contains a com-

ponent that optimizes the segment partitioning, in order to strike the right balance between

processing and recovery expenses.

3

Chapter 2

Problem Definition

A streaming application running on an SPE is executed by a set of interconnected logical

operators forming a topology. Let’s take an application that needs to detect trending key-

words on Twitter, for example. For such an application, a simple topology can comprise

three operators in a chain, such as in Figure (2.1). The first operator, opsplitter, gets all the

tweets in real time as input. It splits each tweet into words and passes each of the words

as a separate tuple to the second operator. The second operator, opfilter, receives all these

words as tuples from opsplitter and removes stop words such as punctuation marks, preposi-

tions, determiners, and other low-value words. It can also filter out words that are outside

a particular domain of knowledge. opfilter outputs tuples containing the filtered words and

sends them to the third operator. The third operator, opcounter, keeps a count of all the

words it receives as input in its internal state and outputs tuples containing the top trending

keywords along with their counts, thus achieving the result we want from the application.

All tweets as input opsplitter opfilter opcounter

Figure 2.1: Trending keywords on Twitter application topology

To handle high input tuple rates, the work of each operator is typically partitioned

among several instances of that operator, and these instances run in parallel on different

machines. Each instance handles a partition of the operator’s input stream with the help

of a user defined mapping that determines which inputs go to which partitions. For the

trending keywords application in Figure (2.1), opcounter might have five instances, with the

4

mapping such that the input stream of words is sent to only one of the instances based on

the starting letter of the word in the tuple. So, the first instance might be assigned to receive

tuples with words starting with [a-e], while the second instance might be assigned to receive

tuples with words starting with [f-k], and so on. The five instances of opcounter might all

be running on different machines, implying that five different machines, or different cores

of the same machine, are running instances of opcounter. In most popular distributed SPEs

nowadays, such as Spark Streaming [10], Storm [7] and Samza [1], operator instances are

usually mapped randomly to the available hardware resources using a third party resource

scheduler such as YARN [8] that manages load balancing, security and logging.

Each operator can fail due to a software failure (e.g., an exception not properly handled)

or a hardware failure (e.g., a machine running an instance of the operator fails). In terms of

software failure, a subtle software issue is more likely to be encountered if an operator has

more instances running the same piece of code. Hence, an operator that has more instances

also has a higher failure frequency due to software failure.

In the case of a hardware failure, when a machine fails, all operator instances running on

that machine fail. Let’s say a machine was running one instance each of opsplitter and opfilter

in Figure (2.1). If this machine fails, the respective instances of both the operators will also

fail. In general, there are two main approaches to handle such a failure: duplication and

recovery. Duplication requires each instance to be duplicated across multiple machines so

that if one machine fails, there are other machines that can continue running the instance.

Duplication, however, is expensive, cannot always handle software failure, and does not work

when all machines running the duplicate copies of an instance fail at the same time.

The other alternative to handle a machine failure is recovery. Recovery for instances

of stateless operators is trivial and just involves ensuring that the instance is restarted to

continue processing of tuples. For instances of stateful operators, recovery is more complex

and involves a mechanism to rebuild the operator state that existed just before the failure.

Often, such a mechanism involves checkpointing useful data to permanent storage. Perma-

5

nent storage can be an external, fault tolerant and reliable data storage solution such as an

in-memory database or a cloud storage solution that is independent of the SPE.

There are two things that we can checkpoint. One is the internal states of the stateful

operators while the other is operators’ inputs. One naive solution can be for each operator to

checkpoint its internal state periodically and checkpoint all its inputs, making the recovery

process for an operator instance independent of other operators. This solution is similar to

the way fault tolerance is currently implemented in popular distributed SPEs such as Storm

[7]. Another naive solution is for each operator to checkpoint its internal state but not check-

point its inputs. Only the original input tuples received by the topology are checkpointed.

This sort of solution is how fault recovery works in mini-batch based approaches such as

Storm Trident [2] and Spark Streaming [10], where a failure is handled by reprocessing an

entire batch of input tuples across all the operators. When the goal is to minimize the

checkpointing and recovery costs, neither of these naive solutions are likely to be optimal.

In this thesis, we want to find the best way to combine the merits of these two approaches

to produce a less costly fault recovery process.

When an instance of an operator fails, its recovery might entail recovery of all instances

of the preceding operators, as the tuple mapping between instances of consecutive pairs of

operators might not be one-to-one. For example in the topology in Figure (2.1), if opcounter

does not checkpoint all its inputs and its instance that processes words starting with [a-e]

fails, recovery of that instance will require all the tuples with words starting with [a-e] that

it received since its last internal state checkpoint to be resent. Multiple instances of opfilter,

which sends inputs to opcounter, might have sent such words to the failed instance and hence

potentially all the instances of some of the preceding operators might need to be involved

in the recovery process. Hence, in the general case without assuming an application specific

knowledge, we will talk about operator failures and recovery rather than operator instance

failure and recovery. In other words, when an instance fails, we will recover its entire operator

as well as any preceding operators if needed.

6

An operator topology can be structured in several ways. In this thesis, we handle operator

topologies shaped as a chain or as a tree. Handling topologies with other shapes such as

DAGs is part of future work for this thesis.

We begin by introducing notations for the important factors involved in checkpointing

and recovery. Let opi denote the ith operator in the topology. We mainly consider four

attributes for each operator opi: (i) its average selectivity si, which is the number of output

tuples produced by opi for each tuple received as input, (ii) the average processing cost τi

per input tuple at opi, (iii) the average size πi of opi’s internal state, (iv) the average size per

tuple θi for input received by opi and (v) the frequency of failure ρi of opi. The frequency of

failure ρi can be affected by the number of instances that opi has, since the more instances

opi has, the more machines that instances of opi can run on, and the more likely that it is

affected by a hardware failure. From hereon, we represent each operator by its attributes,

i.e., opi = 〈si, τi, πi, θi, ρi〉. In our model, we assume that these parameters are independent

of the time since the last checkpoint. For example, the average selectivity or the average

size of the internal state of an operator does not depend on how long ago the last checkpoint

happened.

In addition to the above attributes, we also define Ωi as the number of input tuples

received by opi per unit time. Let Ω be the input rate of the entire application, i.e. the

first operator. We can calculate Ωi from Ω, the application topology, and the operator

selectivities, as we will demonstrate in Chapter 3 for a chain operator topology.

Some of the above mentioned operator attributes might vary over time; for example, Ω for

the topology in Figure (2.1) will vary as the volume of tweets rises and falls. The attributes

may also vary according to the state of input tuples; for example, a major earthquake might

change the selectivity of an operator looking for indications of natural disasters. We define

our problem given a specific set of values for these attributes. If the value of any parameter

changes more than a certain threshold, the solution can be recomputed with the updated

values. This computation can happen in parallel and independently from the topology

7

without affecting the application.

Notation Meaning

chi Checkpointing overhead of opi per unit time
CHall Total checkpointing overhead of the entire topology per unit time
CHinc Width of each of the Z increments of CHmax

CHmax Upper bound on CHall for a topology
F Number of increments Fmax is discretized into

Fmax The maximum possible checkpointing frequency for a tree topology
Finc Width of each of the F increments of Fmax
headi Index of the anchor operator of the recovery segment containing opi
n Number of operators in a topology
opi ith operator in the topology
R Set of anchor operators in a recovery configuration

RTall Total expected recovery time of the entire topology per unit time
rti Recovery time of opi per unit time
si Average selectivity of opi
Z Number of steps CHmax is discretized into
Ω Rate of input of tuples for the entire topology
Ωi Rate of input of tuples for opi
ηi Checkpointing frequency of opi in a recovery configuration
πi Average size of opi’s internal state
ρi Failure frequency for opi
τi Average processing time per tuple for opi
θi Average size per tuple for input received by opi

Table 2.1: List of common notation

For any operator topology, a recovery configuration contains two pieces of information:

(i) the frequency at which each operator opi checkpoints its internal state to permanent

storage, denoted by ηi, and (ii) the set of anchor operators, denoted by R, each of which

stores each of its input tuples to permanent storage, in addition to checkpointing its internal

state. A high checkpointing frequency ensures that not many input tuples will have been

received by the operator since the last checkpoint, so few tuples will need to be replayed

in case of a failure. However, frequent checkpointing also means more time spent by the

operator in checkpointing. Hence, a high checkpointing frequency implies faster recovery

times but more time spent taking checkpoints.

8

The anchor operators break a topology into multiple recovery segments, with each an-

chor operator marking its respective recovery segment. Each recovery segment performs

recovery independently. Different segments can perform recovery in parallel when multiple

operators fail at the same time. When an operator in a segment fails, the segment’s anchor

retrieves its most recent state checkpoint and replays all tuples it received since that check-

point. More anchor operators means shorter recovery segments and faster recovery times.

However, anchor operators do additional work compared to other operators, because they

checkpoint all their inputs. Hence, as the size of R grows, recovery time drops but time

spent checkpointing grows.

We use headi to denote the subscript of the anchor of the recovery segment that opi is

in. When opi fails, all the operators in the path from opi to opheadi in that segment need to

restore their internal state to the same point of time in history, the time stamp of the last

saved checkpoint of the failed operator t. opheadi will recover all its input since t, and this

recovered input will be processed through all the operators in the path from opi to opheadi

to complete the recovery process. Hence at any point of time, the last checkpoints for all

the operators in a recovery segment need to have the same checkpoint timestamps. This is

possible only if they have the same checkpointing frequencies. Let us define this restriction

as follows:

Definition 2.1. RSFS (Recovery segment frequency synchronization) restriction In any re-

covery configuration for a topology, all the operators in the same recovery segment should

have the same checkpointing frequency η.

For instance, if only opsplitter and opfilter checkpoint all their inputs in a particular re-

covery configuration of the topology in Figure (2.1), then the recovery segments for this

recovery configuration will be [opsplitter] and [opfilter, opcounter]. If opcounter fails, a recovery

process will be started for the recovery segment [opfilter, opcounter]. Both opfilter and opcounter

will need to recover their internal state from the last checkpoint and then inputs recovered

9

by opfilter since the last checkpoint will be replayed across these two operators. In order for

both the operators to have a checkpoint from the same point of time in history, both the

operators in this recovery segment would need to have synchronized checkpointing schedules

and the same checkpointing frequency.

We define checkpointing overhead, chi, as the proportion of time (i.e. per unit time)

spent by opi on checkpointing activities to support fault tolerance. chi is a function of (i)

the checkpointing frequency of opi, (ii) the time required for opi to checkpoint its internal

state and (iii) the time required for opi to save its inputs to permanent storage, if opi is an

anchor. Formally, let ∆(x) be the overhead for storing data of size x to permanent storage;

then, chi can be calculated by:

chi =

 ∆(ηi · πi) + ∆(Ωi ∗ θi) . . . if opi ∈ R

∆(ηi · πi) . . . otherwise
(2.1)

We define recovery time, rti, as the proportion of time (i.e. per unit time) spent by opi

in recovery from failure. rti can be split into three components: time for the anchor operator

to recover its inputs, time for each operator in the path between the anchor operator and

the failed operator to recover its internal state, and the time for each of these operators to

process the recovered input. In other words, rti includes the time taken by opi and all its

preceding operators in that recovery segment to recover from failures of opi.

The total checkpointing overhead of a topology CHall is the sum of the checkpointing

overheads of all its operators. The total expected recovery time of a topology RTall is the

weighted sum of the recovery times of all its operators, where weights are equal to the

frequencies of failure of the respective operators: RTall =
∑

1≤i≤n rti · ρi. In other words,

CHall and RTall are the total time spent by the topology per unit time in checkpointing and

recovery activities respectively.

The total expected recovery time is closely related to other important ways to measure

10

recovery time. One such measure is the total recovery computational time, which is the

amount of computational time spent by the topology in recovery activities after a fault.

Since multiple operators might fail during the same fault, this is equal to the sum of the

computational time spent by each operator in recovery activities after a fault. When com-

modity servers are being used to implement the topology, this is a good approximation of the

computational cost involved in recovering from a fault. The total recovery computational

time is the actual cumulative time spent by all the operators in recovery activities after a

fault and might be different every time based on which operators fail. The total expected

recovery time is probabilistic, and is an estimation of the time the topology will spend in

recovery activities per unit time.

The second related measure is the elapsed wall clock time, which is also the maximum

latency experienced by new incoming tuples to the failed operators due to the occurrence of

a fault and the recovery process that ensues. Since recovery processes of different recovery

segments can occur in parallel, the wall clock time will be less than the total expected

recovery time. In fact, the recovery latency will be equal to the maximum recovery time

among all the recovery segments. If the topology is using commodity hardware such as

AWS, this is also an estimate of the total computational cost of a recovery from a fault. We

show in Section 4 that the total expected recovery time is a good approximation for both

the recovery latency and the total recovery computational time.

Our problem is to find the the recovery configuration that gives the lowest total expected

recovery time RTall, given an upper bound CHmax for the total checkpointing overhead CHall

for a particular operator topology.

Problem Definition 2.2. For any operator topology, find [ηi, . . . , ηn and R] under the

RSFS restriction s.t. RTall is minimized and CHall ≤ CHmax.

11

Chapter 3

FastRecover

Section 3.1 motivates the need for FastRecover. Section 3.2 describes FastRecover for chain

topologies. Section 3.4 describes FastRecover for tree topologies.

3.1 Motivation

Input O1 O2 O3 O4 O5 O6 O7 O8

Figure 3.1: A sample topology of operators running on an SPE

Let’s consider a simple example, an operator topology that has a straight chain of 8 oper-

ators with output of one operator feeding as input into the next operator as in Figure (3.1).

In order to provide fault tolerance, the topology needs to store all the input it receives. This

can be achieved by getting the first operator op1 to always store all its input to permanent

storage, hence being an anchor operator.

One possible naive fault recovery configuration, that we refer to as 1Segment from hereon,

is the one that has only 1 recovery segment. This is possibly only if only the first operator

is an anchor operator. This entails each subsequent operator relying on the first operator

for the recovery process. In this case, if any operator opi fails, it needs to restore itself to its

last saved checkpoint, let’s say from time t. Subsequently, all the operators preceding opi

need to restore themselves to their checkpoints from time t. The first operator op1 will then

need to recover its input since time t and this recovered input stream will then be processed

12

through op1 . . . opi before the recovery process is complete. For such a recovery process, the

topology has does not spend too much time in checkpointing for fault recovery but might

have a slow total expected recovery time.

Another naive fault recovery configuration, that we refer to as NSegments from hereon,

is the one that has n recovery segments. This is possible only if each operator is a recovery

segment in itself, thus implying that each operator is an anchor operator checkpointing all

its inputs with an independent fault recovery process and an independent checkpointing

frequency. If an operator opi fails, it just needs to restore itself to its last saved checkpoint,

let’s say from time t, recover its input since time t, process the recovered input and the

recovery is complete. In this approach, recovery from a failure might be quite fast but the

total checkpointing overhead of the topology might be too high.

It can be seen from the above argument that there is a trade off between the total expected

recovery time and the total checkpointing overhead for an operator topology. FastRecover

is a clever fault recovery module that involves only certain anchor operators storing their

input to permanent storage while the other operators depend on these anchor operators for

fault recovery. FastRecover determines which operators should store their inputs and what

should be the checkpointing frequencies for all the operators so as to minimize the total

expected recovery time for the topology given an upper bound on the time spent performing

checkpoints.

3.2 Chain

We first describe how FastRecover works for a topology consisting of a chain of operators,

e.g., the one in Figure (3.2).

13

Input O1 O2 O3 O4 O5 O6 O7 O8 O9 O10

R'=<O1,O5,O8> save input

Figure 3.2: FastRecover on a chain operator topology

3.2.1 Recovery subchains

For such a topology as shown in Figure (3.2), each recovery segment is simply a subchain,

which we call a recovery subchain. Each such subchain consists of an anchor operator,

followed by a chain of non-anchor operators. In order to satisfy the RSFS restriction, we set

the same checkpointing frequency for all operators in the same recovery subchain. Later in

Section 3.3, we discuss how to relax this constraint and allow operators in one subchain to

have different checkpointing frequencies. For the recovery configuration in Figure (3.2), op1

. . . op4, op5 . . . op7 and op8 . . . op10 are the three recovery subchains, with anchor operators

op1, op5 and op8 respectively and checkpointing frequencies η1, η5 and η8 respectively.

In a chain topology, we have Ω1 = Ω. In general, Ωi can be calculated as

Ωi = Ω ∗
i−1∏
k=1

sk ∀i ∈ [1, . . . , n]

For example in Figure (3.2), if s2 = 0.1, s3 = 0.5, s4 = 1 and if the topology is receiving

tuples at a rate of 1000 tuples per minute, then op4 will receive 1000∗0.1∗0.5∗1 = 50 tuples

per minute.

In a chain topology, headi can be calculated as

headi = max
opk∈R

k s.t. k ≤ i (3.1)

For the recovery configuration in Figure (3.2), the head of op3 is the index of the anchor of

14

the recovery subchain op1 . . . op4 it belongs to, which is 1.

When an operator opi fails, the maximum size of the recovered input that will be replayed

is the total size of input received by opheadi per unit time divided by its checkpointing

frequency ηheadi ,
Ωheadi

∗θheadi
ηheadi

. So rti for a chain topology can be calculated as follows:

rti = ∆(
Ωheadi ∗ θheadi

ηheadi
) +

∑
headi≤k≤i

∆(πk) +
∑

headi≤k≤i

τk(
Ωk

ηheadi
) (3.2)

We define the following functions that are useful for computing and analyzing a particular

fault recovery configuration.

• Ctoη(j, i, c) is the checkpointing frequency of the recovery subchain opj, . . . , opi when

opj ∈ R is the anchor operator of this subchain and the total checkpointing overhead of

this subchain is c. It can be calculated using Eq. 2.1 for each operator in the subchain

and due to the fact that all the operators of this subchain have the same checkpointing

frequency due to the RSFS restriction.

• ηtoR(j, i, η) is the total expected recovery time of the recovery subchain opj, . . . , opi if

the checkpointing frequency of this recovery subchain is η. It can be calculated using

Eq. 3.2 for each operator in the subchain.

• CtoR(j, i, c) is the total expected recovery time of the recovery subchain opj, . . . , opi

if the total checkpointing overhead of this subchain is c. CtoR(j, i, c) is equal to ηto

R(j, i, Ctoη(j, i, c)).

3.2.2 Algorithm to find the optimal recovery configuration

We use dynamic programming to find a recovery configuration that minimizes the total

expected recovery time of an operator chain. Consider a 2-D matrix DP where rows cor-

respond to the total checkpointing overhead of the operator chain and columns correspond

to operators in the chain [op1, . . . , opn]. In order for the dynamic programming to work,

15

we need to discretize the space [0, CHmax] where CHmax is the upper bound on the total

checkpointing overhead for the operator chain in our problem. Hence, we split this space

into Z equal increments with each increment having a width of CHinc = CHmax

Z
. Henceforth,

we measure the total checkpointing overhead in terms of number of increments. So, the cth

row in the DP matrix corresponds to c ∗ CHinc total checkpointing overhead and the ith

column refers to the chain [op1, . . . , opi]. DPrt(c, i) is the best total expected recovery time

of chain [op1, . . . , opi] such that the total checkpointing overhead of this chain is at most c.

DPhead(c, i) and DPch∗(c, i) are the head and the checkpointing overhead respectively of the

last recovery subchain that also contains opi, in the fault recovery configuration that results

in the best total expected recovery time (DPrt(c, i)). The base case for our DP solution can

be set as follows:

DPrt(c, 0) = 0 ∀c ∈ 1, . . . , Z

DPrt(0, i) =∞ ∀i ∈ 1, . . . , n

Since op1 is always a recovery operator,

DPrt(c, 1) = CtoR(1, 1, c ∗ CHinc)

To calculate DPrt(c, i) for i > 1, we first iterate over each possible head operator of opi. This

could be any operator in [op1, op2, . . . , opi]. For each such possible head operator opk, [opk,

. . . , opi] is a recovery subchain with some checkpointing overhead. Next we iterate over all

such possible values c′(0 ≤ c′ ≤ c) of the checkpointing overhead of this subchain. For each

such possible value, the total checkpointing overhead of the rest of the recovery subchains

including operators [op1, . . . , opk−1] cannot exceed c− c′. The optimal fault recovery config-

uration for [op1, . . . , opi], given opk as the head of opi and c′ as the checkpointing overhead of

16

P
ro

ce
ss

in
g

 O
ve

rh
ea

d

Operators

0 2 3 4 5 6 7

0

1

2

3

4

5

6

7

8

Figure 3.3: DP matrix for a simple chain

the last recovery subchain opk, . . . , opi, can be constructed by taking the best fault recovery

configuration for [op1, . . . , opk−1] with total checkpointing overhead at most c−c′ and adding

recovery subchain [opk, . . . , opi] with checkpointing frequency Ctoη(k, i, c′) to it. Iterating

over all possible values of k and c′, we can find the optimal fault recovery configuration for

chain [op1, . . . , opi].

DPrt(c, i) = min
1≤k≤i

min
1≤c′<c

DPrt(c− c′, k − 1) + CtoR(k, i, c′ ∗ CHinc) . . . for i > 1 (3.3)

If k∗ and c∗ are the values corresponding to the optimal solution for DPrt(c, i), then

DPhead(c, i) = k∗

DPch∗(c, i) = c∗

After filling the entire matrix in Figure (3.3), DPrt(Z, n) gives the best total expected

recovery time for chain [op1, . . . , opn] such that the total checkpointing overhead of this

chain is at most CHmax. The optimal fault recovery configuration can be built by starting

from DPrt(Z, n) and using DPhead(Z, n) and DPch∗(Z, n) to find the recovery head and the

checkpointing overhead of the last recovery subchain. The checkpointing overhead can be

used to calculate the checkpointing frequency of this subchain. This process can be continued

for each preceding recovery subchain one by one, eventually reaching the first operator op1

17

and finishing.

Algorithm 1 gives the pseudocode for finding the optimal recovery configuration for an

operator chain.

Algorithm 1

1: for c from 0 to Z do
2: Set DP (c, 0) and DP (c, 1)
3: end for
4: for i from 0 to n do
5: Set DP (0, i)
6: end for
7: for i from 2 to n and c from 1 to Z do
8: Iterating from operator 1 to i and checkpointing overhead from 1 to c, find k and c′

that gives the best DP (c, i) and set DP (c, i) accordingly
9: end for
10: Set remaining checkpointing overhead as Z
11: Set current checkpointing overhead as DPch∗(Z, n)
12: Set current recovery head for the last recovery subchain as DPhead(Z, n)
13: Set current frequency for the last recovery subchain based on remaining checkpointing

overhead and DPch∗
14: for all operators from n to 1 starting from n do
15: if operator is current recovery head then
16: Set η as the current frequency
17: Add operator to the recovery configuration as a recovery operator
18: Reset current recovery head to the recovery head of the preceding operator which

belongs to the preceding subchain
19: Reset current checkpointing overhead to the overhead of the preceding operator

which belongs to the preceding subchain
20: Reset current frequency based on the new current checkpointing overhead
21: Reset remaining checkpointing overhead to the overhead left after removing the

overhead of the preceding recovery subchain
22: else
23: Set η as the current frequency
24: end if
25: end for

Looking at lines 1 to 9 of Algorithm 1, for each value of operator i and checkpointing

overhead c, the number of iterations of the loop at line 8 is i ∗ c and each iteration takes a

constant amount of time. Hence the total number of iterations of the loop at line 8 is
∑

1≤i≤n∑
1≤c≤Z i∗c =

∑
1≤i≤n i∗O(Z2) = O(n2)O(Z2) and hence the first part of Algorithm 1 takes

18

O(n2Z2) time. In the second part, there are O(n) iterations in lines 14-25. Every iteration

takes a constant amount of time. Hence the total runtime for this part of the algorithm is

O(n). Thus the overall runtime of the algorithm is O(n2Z2).

3.2.3 Correctness

Below is the proof of correctness of the algorithm proposed above:

Let us suppose that another solution OPT corresponds to the optimal solution for the

stated problem. That is, OPTrt(c, k) denotes the lowest total expected recovery time of

operators [op1, . . . , opk] if the maximum bound for the total checkpointing overhead of [op1,

. . . , opk] is c.

CLAIM OPTrt(c, k) = DPrt(c, k) ∀ 0 ≤ c ≤ CHmax, 1 ≤ k ≤ n

Proof. We prove this claim using strong induction on two variables, c and k.

Base Case For c = 0, no fault recovery is possible without any checkpointing and hence, the

optimal total expected recovery time is ∞.

For k = 0, there is no operator to perform fault recovery for and hence the optimal total

expected recovery time is 0.

For k = 1, there is only one operator. Hence, we assign it the highest possible checkpointing

frequency we can, given the max bound on the checkpointing overhead. Hence,

OPTrt(0, i) =∞ = DPrt(0, i) ∀i ∈ 1, . . . , n

OPTrt(c, 0) = 0 = DPrt(c, 0) ∀c

OPTrt(c, 1) = PtoR(1, 1, c) = DPrt(c, 1) ∀c

Inductive Step Suppose OPTrt(c, k) = DPrt(c, k) ∀ 0 ≤ c ≤ q, 1 ≤ k ≤ j.

19

Now let’s first consider OPTrt(q, j+1). Let the last recovery operator in the optimal solution

be opj∗ with checkpointing frequency η∗. OPTrt(q, j + 1) is the sum of the total expected

recovery time for the last subchain [opj∗ , . . . , opj+1] and the lowest possible total expected

recovery time for the chain [op1, . . . , opj∗−1]. Let’s use c∗ to denote the total checkpointing

overhead of the last recovery subchain in the optimal configuration, c∗ = ηtoP (j∗, j + 1, η∗).

OPTrt(q, j + 1)

= OPTrt(q − c∗, j∗ − 1)

+ ηtoR(j∗, j + 1, η∗)

= DPrt(q − c∗, j∗ − 1) . . . Induction

+ ηtoR(j∗, j + 1, η∗)

≥ DPrt(q, j + 1) . . .DP calculation

Since OPTrt(q, j + 1) is the most optimal solution by definition,

OPTrt(q, j + 1) = DPrt(q, j + 1).

Next let’s consider OPTrt(q + 1, j) and try to proceed in a similar manner. Let the last

recovery operator in the optimal solution be opj∗ with checkpointing frequency η∗. OPTrt

(q + 1, j) is the sum of the total expected recovery time for the last subchain [opj∗ , . . . , opj]

and the lowest possible total expected recovery time for the chain [op1, . . . , opj∗−1]. Again

let’s use c∗ to denote the total checkpointing overhead of the last recovery subchain in the

20

optimal configuration, c∗ = ηtoP (j∗, j, η∗).

OPTrt(q + 1, j)

= OPTrt(q + 1− c∗, j∗ − 1)

+ ηtoR(j∗, j, η∗)

= DPrt(q + 1− c∗, j∗ − 1) . . . Induction

+ ηtoR(j∗, j, η∗)

≥ DPrt(q + 1, j) . . .DP calculation

Since OPTrt(q + CHinc, j) is the optimal solution by definition,

OPTrt(q + 1, j) = DPrt(q + 1, j)

Hence by induction, we have proved that OPTrt(c, k) = DPrt(c, k) ∀ 0 ≤ c ≤ CHmax, 1 ≤ k

≤ n. This proves that Algorithm 1 gives the optimal solution.

3.3 Chain optimization

In the previous section, we had imposed the RSFS restriction stating that every operator of a

recovery subchain needs to have the same checkpointing frequency. This was done to ensure

that in case of a failure, the failed operator and all its preceding operators in its recovery

subchain had internal state snapshots from the same point of time in history. We can relax

this restriction by allowing operators to store multiple checkpoints on permanent storage

rather than storing only the last saved checkpoint. This allows an operator to checkpoint

more frequently as well as supporting recovery for a succeeding operator in its recovery

subchain. By doing so, we can have a more relaxed restriction (RSRFS - Recovery Segment

Relaxed Frequency Synchronization) defined as follows:

21

Definition 3.1. RSRFS (Recovery subchain relaxed frequency synchronization) restriction

In any recovery configuration for a topology, the checkpointing frequency of any operator

needs to be a multiple of the checkpointing frequency of the succeeding operator in the same

recovery subchain.

In Figure (3.2), η1 can be twice or thrice as frequent as η2, η2 needs to be a multiple of η3

and so on. op4 being the last operator in its recovery subchain can have any checkpointing

frequency.

Next, we propose a technique based on RSRFS restriction to improve the solution ob-

tained by Algorithm 1. In our optimization technique, we are going to start with the optimal

recovery configuration produced by Algorithm 1 and change the checkpointing frequencies

of the different operators. The intuition behind the technique is to take up checkpointing

overhead from one operator and give it to another operator if the corresponding increase in

expected recovery time of the former is less than the decrease in the expected recovery time

of the latter. Thus the total checkpointing overhead can be considered as a resource pool

shared by all the operators and we are trying to redistribute it so as to improve the total

expected recovery time without increasing the total checkpointing overhead. Let’s define a

few terms, in the context of a particular recovery configuration for the operator chain, as

follows:

• RTδ(i, f) : Change in expected recovery time of opi if ηi is multiplied by a factor of f .

• CHδ(i, f) : Change in checkpointing overhead of opi if ηi is multiplied by a factor of

f .

• CHdec(i) and RTinc(i) represent the change in total checkpointing overhead and the

total expected recovery time of the operator chain respectively if ηi is halved. This

includes the possible effect of operators succeeding opi in its recovery subchain needing

to halve their checkpointing frequency as well in order to comply with the RSRFS

restriction.

22

• CHinc(i) and RTdec(i) represent the change in total checkpointing overhead and the

total expected recovery time of the operator chain respectively if ηi is doubled. This

includes the possible effect of operators preceding opi in its recovery subchain needing

to double their checkpointing frequency as well in order to comply with the RSRFS

restriction.

RTinc(i) and CHdec(i) always contain RTδ(i, 1/2) and CHδ(i, 1/2) respectively. If opi+1

belongs to the same recovery subchain and ηi = ηi+1, then they also contain RTinc(i+1) and

CHdec(i + 1) respectively as opi+1 and succeeding operators in that recovery subchain also

need to halve their checkpointing frequency to comply with the RSRFS restriction. RTinc(i)

(and similarly CHdec(i)) can be calculated as follows:

RTinc(i) =

 RTδ(i, 1/2) . . . if opi+1 ∈ R or ηi ≥ 2ηi+1

RTδ(i, 1/2) +RTinc(i+ 1) . . . otherwise

As an example, let’s take Figure (3.2) and assume that in the current recovery configuration,

eta5 = 4 i.e. four times per unit time, η6 = 2, η7 = 2. Also, let’s assume RTδ(5, 1/2) =

RTδ(6, 1/2) = RTδ(7, 1/2) = 4ms i.e. the increase in expected recovery time for op5,op6 or

op7 if its corresponding frequency is halved is 4ms. If η7 is halved to 1, RTinc(7) = 4ms. But

if η6 is halved to 1, then η7 also needs to be halved to 1 and RTinc(6) = 4ms+ 4ms = 8ms.

If η4 is halved to 2, the RSRFS restriction is already satisfied and nothing else needs to be

done, so RTinc(5) = 4ms.

Similarly, RTdec(i) and CHinc(i) always contain RTδ(i, 2) and CHδ(i, 2) respectively. If

opi−1 belongs to the same recovery subchain and ηi = ηi−1, then they also contain RTdec(i−1)

and CHinc(i − 1) respectively as opi−1 and preceding operators in that recovery subchain

also need to double their checkpointing frequency to comply with the RSRFS restriction.

23

RTdec(i) (and similarly CHinc(i)) can be calculated as follows:

RTdec(i) =

 RTδ(i, 2) . . . if opi ∈ R or ηi ≥ 2ηi−1

RTδ(i, 2) +RTdec(i− 1) . . . otherwise

Our optimization technique involves the following steps:

1. Calculate CHdec(i), RTinc(i), CHinc(i), RTdec(i) for all operators opi given the current

recovery configuration.

2. Find operators opi and opj such that:

• CHcurrent + CHdec(i)− CHinc(j) ≤ CHmax

• opi does not precede opj in the same recovery subchain.

• RTinc(i) +RTdec(j) < 0

To find such a pair of operators, we can consider all possible pairs of operators (at

most O(n2)) and check for the above conditions.

3. If such operators opi and opj are found, then halve the checkpointing frequency of opi

and double the checkpointing frequency of opj. Also, halve or double checkpointing

frequencies of other operators as needed to comply with the RSRFS restriction.

4. Repeat from step 2 until no such opi and opj can be found.

By this technique, we progressively lower the total expected recovery time of the operator

chain without violating the upper bound on the total checkpointing overhead.

Let us consider a hypothetical example to illustrate the above technique. Consider Figure

(3.2) and assume the solution obtained by Algorithm 1 gives checkpointing frequencies as

η1 = η2 = η3 = η4 = 4/min, η5 = η6 = η7 = 8/min, η8 = η9 = η10 = 6/min for all operators.

24

Suppose the values of certain functions are as follows:

RTδ(8, 2) = −15ms,CHδ(8, 2) = 10ms

RTδ(4, 1/2) = 6ms,CHδ(4, 1/2) = −3ms

RTδ(3, 1/2) = 8ms,CHδ(3, 1/2) = −7ms

Now if we halve η3 to 2/min, RTinc(3) = 6ms+8ms = 14ms while CHdec(3) = 3ms+7ms =

10ms. If we double η8 to 12/min, then RTdec(8) = 15ms and CHinc(8) = 10ms. Hence by

doubling η3 (along with η4) and halving η8, we decrease the total expected recovery time by

15ms− 14ms = 1ms without increasing the total checkpointing overhead.

3.4 Tree

O14

O13O12O11

O7 O8 O9 O10

O2O1 O3 O4 O5 O6

R'=<O7,O10,O11,O14> save input

Figure 3.4: FastRecover on a tree operator topology

Next let’s explore how FastRecover works for an operator topology with an operator

topology structured as a tree, such as in Figure (3.4). In such a structure, each operator

has one parent operator from which it receives tuples, except the root operator that gets

all the tuples received by the topology. However, tuples output by the parent operator are

passed to all its child operators. Operators are assigned indices from 1 starting with the leaf

operators and moving up the tree level by level. Let’s define a few more functions we will

25

need later as follows:

• subtree(i) : opi and the subtree of operators rooted at opi.

• child(i) : Set of indices of children of opi.

child(i) = {k : opk is a child of opi}

• parent(i): Index of the parent of opi. parent(n) = 0

• ancestor(i): Set of indices of ancestors of opi. ancestor(n) = {}.

ancestori =

 {} . . . if i = n

ancestor(parent(i))
⋃
{parent(i)} . . .Otherwise

• leaf(i) : Denotes whether opi is a leaf in the tree or not. leaf(i) = 1 if opi is a leaf

operator, leaf(i) = 0 otherwise.

• Ωi for a tree topology can be calculated as follows:

Ωi =

 Ω . . . if i = n

Ωparent(i) ∗ sparent(i) . . .Otherwise
(3.4)

• ch(i, f, inp) : checkpointing overhead of opi if it checkpoints its internal state at fre-

quency f and checkpoints all its inputs only if inp = 1. This can be calculated using

an adapted version of Eq. 2.1.

• rt(i, f, inp) : Time taken by opi to recover its last checkpointed internal state, and if

inp = 1, then its inputs as well since the last checkpoint when checkpointing frequency

26

for opi is f and it checkpoints all its inputs only if inp = 1. It can be calculated as:

rt(i, f, inp) = inp ∗∆(
Ωi ∗ θi
f

) + ∆(πi) + τi(
Ωi

f
)

3.4.1 Algorithm

We use dynamic programming to find a recovery configuration that minimizes the total

expected recovery time of an operator tree. However, a tree shaped operator topology

is much more complicated than a chain shaped operator topology. In an operator chain,

each operator only has a single succeeding operator. However since in an operator tree an

operator might have multiple child operators, there are a number of ways to distribute the

checkpointing overhead available to the parent operator among the different child operators.

Hence, an operator tree requires a more complex approach to the problem.

Consider a 4-D matrix DP where each of the four dimensions corresponds to the total

checkpointing overhead, the operator index, the checkpointing frequency of the correspond-

ing operator and whether the operator checkpoints all its inputs, respectively. As done

earlier for an operator chain, we need to discretize the space [0, CHmax] where CHmax is

the upper bound on the total checkpointing overhead for the operator tree in our problem.

Hence, we split this space into Z equal increments with each increment having a width of

CHinc = CHmax

Z
. Henceforth, we measure the total checkpointing overhead in terms of num-

ber of increments. Similarly, we fix Fmax as the maximum allowed checkpointing frequency

and split the space [0, Fmax] into F equal increments with each increment having a width

of Finc = Fmax

Z
. The higher the value of Z and F , the closer our DP solution will be to the

optimal solution, but the longer the algorithm will take to run. We use the following terms

in our dynamic programming solution:

• DPrt(c, i, f, inp) denotes the best total expected recovery time of subtree(i) such that

the total checkpointing overhead of subtree(i) is at most c, opi checkpoints its internal

27

state at frequency f and checkpoints all its inputs only if inp = 1.

• DPrt∗(c, i) denotes the optimal total expected recovery time across all possible fre-

quencies when opi stores all its input.

DPrt∗(c, i) = min∀fDPrt(c, i, f, 1)

• DPoc(c, i, f, inp) denotes the optimal configuration of ch(i), i.e., the configuration that

resulted in the optimal value of DPrt(c, i, f, inp). Configuration refers to the check-

pointing time assigned to each child and its subtree and which children checkpoint

their inputs and which do not.

• DPfr(c, i, f, inp) denotes how often opi will have to recover itself because of its own

failure or failure of any operator in subtree(i) that depends on opi for recovery in the

optimal configuration DPoc(c, i, f, inp).

The base case of our DP solution can be set as follows:

If c = 0, then ∀i, f, inp,

DPrt(0, i, f, inp) =∞

DPoc(0, i, f, inp) = {}

DPfr(0, i, f, inp) = ρi

If leaf(i) = 1, then ∀c, f, inp,

DPrt(c, i, f, inp) = rt(i, f, inp) . . .if ch(i, f, inp) ≤ c

DPrt(c, i, f, inp) =∞ . . .otherwise

DPoc(0, i, f, inp) = {}

DPfr(0, i, f, inp) = ρi

28

To calculate DPrt(c, i, f, inp) for non-leaf operators, we iterate over each possible combina-

tion of distributing the checkpointing overhead c to opi and all its children ch(i). For every

such combination, each child operator can either store all its inputs or not. We choose the

option that has the lower expected recovery time for each child operator given the check-

pointing overhead assigned to it. The minimum value obtained across all these combinations

is our desired result.

If leaf(i) = 0, then ∀c, f, inp,

DPrt(c, i, f, inp) = rt(i, f, inp) ∗ ρi (3.5)

+ min∑
k∈ch(i)

ck

=c−ch(i,f,inp)

 ∑
k∈ch(i) min

DPrt∗(ck, k),

DPfr(ck, k, f, 0) ∗ rt(i, f, inp)

+DPrt(ck, k, f, 0)

DPoc(c, i, f, inp) =

〈
< k, ck, inpk >:

k ∈ ch(i), subtree(k)’s total check-

pointing overhead is ck, inpk = 1 if

opk checkpoints all its inputs and

inpk = 0 otherwise, in the config-

uration corresponding to the opti-

mal value of DPrt(c, i, f, inp).

〉

DPfr(c, i, f, inp) = ρi (3.6)

+
∑

k s.t.<k,ck,0>
∈DPoc(c,i,f,inp)

DPfr(ck, k, f, 0)

29

After filling the entire DP matrix across the four dimensions, the lowest total expected

recovery time with the total checkpointing overhead at most CHmax for the operator tree is

given by

DPrt∗(CHmax, root).

In order to get the optimal recovery configuration, we can start from the root and go down-

wards, constructing the optimal recovery configuration using DPoc values for each operator.

Let’s step through the DP calculation with an example. In Figure (3.4), to calculate

DPrt(4CHinc, 11, f, 1), we iterate through all possible ways of splitting 4CHinc between op7

and op8. For each such split (let’s say CHinc to op7 and 3CHinc to op8), op7 will either

store its input or won’t based on whichever results in a lower total expected recovery time.

The optimal configuration for op8 will be decided similarly. Let’s say the above mentioned

split results in the lowest total expected recovery time if op7 is a recovery operator and op8

isn’t. In this case, DPoc(4CHinc, 11, f, 1) will be {< 7, CHinc, 1 >,< 8, 3CHinc, 0 >}. DPfr

(4CHinc, 11, f, 1) for the recovery configuration shown in Figure (3.4) will be (ρ11 + ρ8 + ρ3

+ ρ4). We will refer to this algorithm as Algorithm 2 henceforth.

30

Chapter 4

Experiments

4.1 Setup

In order to analyze the performance of FastRecover for chain and tree operator topologies in

terms of its dependence on various parameters in the model as well as improvement over two

other naive fault recovery methods described earlier, we implemented Algorithm 1 in Python

2.7.8 on a cloud based VM, with a total of 128 GB of memory, 16 cores and 2199.875 Mhz

CPU frequency. Throughout the experiments, our unit of time is minutes and our unit of

data is kilobytes. Our primary measure is the total expected recovery time of the topology

(RT FastRecover = RTall) in the optimal fault recovery configuration given by FastRecover.

We vary the following parameters in our experiments to measure their effect on RT

FastRecover and other measures:

• n: The total number of operators in the topology.

• CHmax: The upper bound on total checkpointing overhead CHall for the topology.

• Z: Number of increments CHmax is discretized in for the purpose of running the DP

algorithm.

• Ω: The rate of input tuples for the topology.

To generate a random operator topology to run FastRecover on, we add the required

number of operators to the topology, with attributes generated as per the following rules.

• si: Selectivity of each operator is generated randomly between 0.1 and 1.

31

• τi: Runtime of each operator is fixed to 0.00001 minutes per tuple. This means that

each operator can process 100000 tuples in a minute.

• πi: Size of the internal state of each operator was generated between 10 and 20 MB

randomly.

• ρi: A fixed failure frequency is generated from a Gaussian distribution with mean 0.1

and variance 0.03. As explained earlier in Section 2, we assume that an operator fails

if any of its instances fails, and hence an operator with a higher number of instances

should have a higher frequency of failure. To be consistent with this assumption, we

add a failure frequency for each operator that is proportional to its parallelism hint

(i.e. the anticipated number of instances).

• θi: The average size of tuples received as input was fixed to 1 KB.

Apart from RT FastRecover, we report a few other measures in our experiments as well

and compare them with RT FastRecover. To calculate these measures, results are averaged

over multiple iterations, where each iteration corresponds to a new topology generated in

the manner described above. The additional measures we report are:

• RT NSegments : This is the minimal total expected recovery time of the topology

for a NSegments recovery configuration. Since each operator stores all its inputs to

permanent storage, which entails a certain amount of checkpointing overhead, such

a recovery configuration might be unfeasible for some topologies when it breaches

CHmax. Hence, we also measure the percentage of topologies for which there is no

feasible solution for this setting. For instance, for a given set of parameter values if

in 300 out of 1000 iterations, the topologies produced did not have a feasible solution

for NSegments, then the no feasible solution percentage will be 30%. In our results,

we compare RT FastRecover with RT NSegments as well as observe the failure rate of

NSegments in finding a feasible solution when FastRecover does manage to find one.

32

This is particularly important as present day real world SPEs such as Storm [7] and

Spark Streaming [10] do fault recovery in a manner quite similar to NSegments.

• RT 1Segment : This is the minimal total expected recovery time of the topology for

a 1Segment recovery configuration. In our results, we compare RT FastRecover with

RT 1Segment to see if FastRecover can outperform this naive method. This fault

recovery configuration is prevalent in the real world in SPEs that are minibatch based,

where a failure is handled by replaying the last minibatch of tuples across all the

operators.

• RT Computational : This is the total cumulative computational time spent by the

topology (all its operators) to recover from a fault. A fault is simulated by assuming

that one of the machines fails. Depending on how many instances are run on each

machine (its multiplicity), a corresponding number of operator instances, and hence

operators, fail in the topology. Failed operators are chosen based on their corresponding

probabilities of failure ρi. RT Computational is the total computational time spent in

recovering all these operators. In our experiments, we set the multiplicity of each

machine to five.

• RT Latency : This is the elapsed wall clock time for recovery from a fault. In other

words, it is the maximum latency experienced by incoming tuples to the failed operators

due to the occurrence of a fault and the recovery process that ensues.

In the real world, both the computational cost of recovery as well as the latency in pro-

cessing input tuples are important measures to optimize, and by comparing RT FastRecover

with RT Computational and RT Latency, we wish to show that RT FastRecover is a good

approximation for the other two measures. To calculate RT Computational and RT Latency,

we take the average value across 1000 simulated node failures for each set of parameter values.

33

Parameter Default value

CHmax 0.4 for chain, 0.5 for tree
F 100

Fmax 200.0
n 15

parallelismi Random value between 2 and 6.
si Random value between 0 and 1
Z 60 for chain, 20 for tree
Ω 3000 for chain, 1000 for tree
πi Random value between 10 MB and 20 MB.
ρi Proportional to parallelismi

τi 0.00001 minutes

Table 4.1: Parameters and their default values

4.2 Comparison of FastRecover with NSegments and

1Segment

4.2.1 Chain topologies

For a chain topology, the default parameter values we use are n = 15, Z = 60, CHmax =

0.4,Ω = 3000. We vary each of these parameters in turn, while keeping the others constant.

All the measures are calculated by averaging values across 1000 iterations, each correspond-

ing to a different chain topology. In general for all the parameter values and topologies,

FastRecover always outperforms NSegments and 1Segment, as expected. However, the mag-

nitude of the improvement of FastRecover over the other two methods varies as the parameter

values are varied.

Varying n, the number of operators in the topology

Figure (4.1) contains two different graphs. The graph on the left compares RT FastRecover

with RT NSegments while also showing the percentage of topologies where NSegments failed

to produce a feasible solution for on the right-hand Y axis. It can be observed that both

34

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0 5 10 15 20 25 30 35 40

N
o	
fe
as
ib
le
	so

lu
tio

n	
%
	fo

r	N
Se
gm

en
ts
	

To
ta
l	e
xp
ec
te
d	
re
co
ve
ry
	t
im

e	

Number	of	operators	in	topology	n

RT_FastRecover

RT_NSegments

No	feasible	solution	%	for	Nsegment

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 5 10 15 20 25 30 35 40

To
ta
l	e
xp
ec
te
d	
re
co
ve
ry
	t
im

e	

Number	of	operators	in	topology	n

RT_FastRecover

RT_1Segment

Figure 4.1: Comparing FastRecover with NSegments & 1Segment for chain topologies with
varying n

RT FastRecover and RT NSegments increase as n increases. This is expected due to the fact

that we have a fixed bound on the total checkpointing overhead CHmax = 0.4 and a higher

number of operators splitting this bound implies that each operator gets a lower checkpoint-

ing overhead to work with. This in turn would result in lower frequencies of checkpointing

for each operator and possibly fewer anchor operators in the optimal recovery configura-

tion found by RT FastRecover, thus resulting in a higher total expected recovery time. In

the graph, RT FastRecover performs better relative to RT NSegments as n increases, since

FastRecover can choose to have fewer anchor operators if needed to save some checkpoint-

ing overhead, while NSegments does not have that option. Since each operator stores all

its inputs to permanent storage in NSegments, an increase in n entails a higher amount

of checkpointing time spent on just storing those inputs, irrespective of the checkpointing

frequencies. If this overhead spent on storing inputs breaches CHmax, NSegments will fail to

have a feasible solution. Hence as n increases, a higher percentage of topologies are expected

to fail to have a feasible solution for NSegments, which is consistent with what we see in the

graph as well with n = 35 resulting in an infeasible solution for NSegments for almost 100%

of the topologies.

35

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

10 15 20 25 30 10 15 20 25 30 10 15 20 25 30

Ti
m

e

RT_FastRecover RT_NSegments RT_1Segment

Number of operators, n

Min Outlier Max Outlier

Figure 4.2: Variance in RT FastRecover, RT NSegments & RT 1Segment for chain topologies
with varying n

36

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

10 15 20 25 30 10 15 20 25 30

Ti
m

e

RT_FastRecover RT_NSegments

Number of operators, n

Min Outlier Max Outlier

Figure 4.3: Variance in RT FastRecover and RT NSegments for chain topologies with varying
n

The graph on the right compares RT FastRecover with RT 1Segment and shows a similar

trend as the left graph. In this case, a higher value of n implies a longer recovery subchain

in 1Segment, resulting in a longer recovery time as the recovered inputs would need to be

replayed by more operators. For this setting and in general as well, RT NSegments is lower

than RT 1Segment.

Figure (4.2) shows the variance in RT FastRecover, RT NSegments and RT 1Segment for

different values of n. Figure (4.3) shows the variance in RT FastRecover and RT NSegments

on a small scale for a closer comparison. Each box in the figure is bounded by the first

quartile (Q1) and the third quartile (Q3) from the 1000 iterations, with the median marked

in the middle. The ends of the whisker are set at 1.5 ∗ IQR (Inter quartile range) above

Q3 and 1.5 ∗ IQR below Q1. If the minimum or maximum values are outside this range,

then they are classified as outliers and the maximum and minimum outliers are shown in the

graph. The omitted maximum outliers in Figure (4.2) for NSegments [10, 15] are [1.211, 0.49]

respectively.

As is evident from the graphs, the variance for all the three measures increases with

37

increasing values of n. This is because a higher value of n provides a greater chance in varia-

tion of the different operator attributes in each generated topology. For instance, operators

might have high ∆i because of high selectivity values in a particular generated topology,

leading to fewer anchor operators, while another generated topology might have lower ∆i

values, leading to more anchor operators in the optimal recovery configuration. A higher

value of n implies more independent variables in the optimal recovery configuration, both in

terms of the number of anchor operators and the checkpointing frequencies for each recovery

segment, thus leading to higher variance.

However, for a given number of operators, the variance of RT FastRecover is roughly half

that of RT NSegments and a fifth that of RT 1Segment, as can be seen most easily in Figure

(4.3) and Figure (4.2) respectively. This implies that the minimal recovery time for the

optimal recovery configuration given by Algorithm 1 is much more predictable than for the

other two approaches. This predictability can be very useful for applications, as when the

application developers and owners know how long a recovery delay will be, they can use that

information to react appropriately at the application level and manage user expectations.

In addition to lower variance, the worst case recovery times for FastRecover, i.e. the

maximum outliers, are much lower compared to NSegments and 1Segment. This implies

that FastRecover is much more likely to give a good recovery configuration irrespective of

the topology parameters, while NSegments and 1Segment might, in rare occasions, give

significantly worse recovery times for certain topologies. The high variance of NSegments

for higher values of n also explains the lack of smoothness in the curve for NSegments in

Figure (4.1).

Varying Ω, rate of input of tuples to the topology

Looking at the left graph in Figure (4.4), it can be observed that both RT FastRecover and

RT NSegments increase as Ω increases. This is consistent with our expectation in a real world

scenario as a higher Ω will result in a higher rate of input of tuples Ωi for each operator thus

38

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

500 1000 1500 2000 2500 3000 3500 4000

To
ta
l	e
xp
ec
te
d	
re
co
ve
ry
	t
im

e	

Rate	of	tuple	 input	Ω

RT_FastRecover

RT_1Segment

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.000

0.005

0.010

0.015

0.020

0.025

0.030

500 1000 1500 2000 2500 3000 3500 4000

N
o	
fe
as
ib
le
	so

lu
tio

n	
%
	fo

r	N
Se
gm

en
ts
	

To
ta
l	e
xp
ec
te
d	
re
co
ve
ry
	t
im

e	

Rate	of	tuple	 input	Ω	

RT_FastRecover

RT_NSegments

No	feasible	solution	%	for	Nsegment

Figure 4.4: Comparing FastRecover with NSegments & 1Segment for chain topologies with
varying Ω

leading to more time spent by anchor operators to store their inputs to permanent storage.

Because we have a fixed bound on the total checkpointing overhead CHmax = 0.4, this in

turn would result in lower frequencies of checkpointing for each operator and possibly fewer

anchor operators in the optimal recovery configuration in the case of RT FastRecover, thus

resulting in a higher total expected recovery time. In the graph, RT FastRecover performs

better relative to RT NSegments as n increases, since FastRecover can choose to fewer anchor

operators if needed to save significant checkpointing overhead for high values of Ω, while

NSegments does not have that option. Similarly, higher values of Ω are more likely to result

in a lack of a feasible solution for NSegments on a topology, because this increase in time

spent by all the operators in storing their inputs, caused by a high Ω, becomes more likely

to breach CHmax. This is evident in the graph as well.

The right side graph shows an increase in RT 1Segment with increasing Ω, justified by

the fact that a higher value of Ω implies a larger set of recovered inputs that would need to

be replayed in case of a fault.

39

Varying CHmax, the upper bound on total checkpointing overhead of the

topology

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.25 0.3 0.35 0.4 0.45 0.5 0.55
N
o	
fe
as
ib
le
	so

lu
tio

n	
%
	fo

r	N
Se
gm

en
ts
	

To
ta
l	e
xp
ec
te
d	
re
co
ve
ry
	t
im

e	

Total	checkpointing	overhead	bound	CHmax

RT_FastRecover

RT_NSegments

No	feasible	solution	%	for	Nsegment

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.25 0.3 0.35 0.4 0.45 0.5 0.55

To
ta
l	e
xp
ec
te
d	
re
co
ve
ry
	t
im

e	

Total	checkpointing	overhead	bound	CHmax

RT_FastRecover

RT_1Segment

Figure 4.5: Comparing FastRecover with NSegments & 1Segment for chain topologies with
varying CHmax

Looking at the left graph in Figure (4.5), it can be observed that both RT FastRecover

and RT NSegments increase as CHmax decreases. A lower bound would result in lower check-

pointing frequencies for the operators of the topology and possibly fewer anchor operators

in the optimal recovery configuration for FastRecover, thus causing a higher total expected

recovery time. Hence, our observation is consistent with our expectation of the effect of

decreasing CHmax. It’s also evident from the graph that RT FastRecover starts performing

better relative to RT NSegments as CHmax decreases, for the same reason as mentioned

in the effects of varying n and Ω. Similarly, lower values of CHmax are more likely to be

exceeded by the checkpointing time spent by all the operators in storing their inputs in

NSegments, thus resulting in a lack of a feasible solution. This is evident in the graph as

well.

In the right graph, we can observe that RT 1Segment increases with decreasing CHmax.

A lower bound on the total checkpointing overhead might force the checkpointing frequency

of 1Segment to drop, thus causing a higher total expected recovery time.

40

Varying Z, the number of increments for CHmax

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.000

0.005

0.010

0.015

0.020

0.025

30 40 50 60 70 80 90

N
o	
fe
as
ib
le
	so

lu
tio

n	
%
	fo

r	N
Se
gm

en
ts
	

To
ta
l	e
xp
ec
te
d	
re
co
ve
ry
	t
im

e	

Number	Z	of	increments	for	total	checkpointing	overhead

RT_FastRecover

RT_NSegments

No	feasible	solution	%	for	Nsegment

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

30 40 50 60 70 80 90

To
ta
l	e
xp
ec
te
d	
re
co
ve
ry
	t
im

e	

Number	Z	of	increments	for	total	checkpointing	overhead

RT_FastRecover

RT_1Segment

Figure 4.6: Comparing FastRecover with NSegments & 1Segment for chain topologies with
varying Z

Since Z reflects how finely we discretize the total checkpointing overhead CHmax, a higher

value of Z implies a finer discretization and more precision in our DP calculations, resulting

in values closer to the lowest possible total expected recovery time. Thus, increasing Z should

cause a decrease in the total expected recovery time. RT FastRecover and RT 1Segment do

decrease with increasing Z, as seen in the graphs in Figure (4.6). RT NSegments stays flat

or even slightly increases as we increase Z. The real benefit of increasing Z for NSegments

is that the percentage of topologies with no feasible solution for NSegments does drop as we

increase Z, as expected.

4.2.2 Tree topologies

To analyze tree topologies, we generated trees with a maximum fan out of three. In other

words, each node can have at most three children. The default parameter values we use are

n = 15, Z = 20, CHmax = 0.5,Ω = 1000, Fmax = 200.0, F = 100. We vary each of these

parameters one by one, keeping the others constant. All the measures are calculated by

41

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

6 8 10 12 14 16 18 20

N
o	
fe
as
ib
le
	so

lu
tio

n	
%
	fo

r	N
Se
gm

en
ts
	

To
ta
l	e
xp
ec
te
d	
re
co
ve
ry
	t
im

e	

Number	of	operators	in	topology	n

RT_FastRecover

RT_NSegments

No	feasible	solution	%	for	Nsegment

0.00

0.01

0.01

0.02

0.02

0.03

0.03

0.04

0.04

0.05

6 8 10 12 14 16 18 20

To
ta
l	e
xp
ec
te
d	
re
co
ve
ry
	t
im

e	

Number	of	operators	in	topology	n

RT_FastRecover

RT_1Segment

Figure 4.7: Comparing FastRecover with NSegments & 1Segment for tree topologies with
varying n

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0 500 1000 1500 2000 2500 3000

N
o	
fe
as
ib
le
	so

lu
tio

n	
%
	fo

r	N
Se
gm

en
ts
	

To
ta
l	e
xp
ec
te
d	
re
co
ve
ry
	t
im

e	

Rate	of	tuple	 input	Ω	

RT_FastRecover

RT_NSegments

No	feasible	solution	%	for	Nsegment

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 500 1000 1500 2000 2500 3000

To
ta
l	e
xp
ec
te
d	
re
co
ve
ry
	t
im

e	

Rate	of	tuple	 input	Ω

RT_FastRecover

RT_1Segment

Figure 4.8: Comparing FastRecover with NSegments & 1Segment for tree topologies with
varying Ω

averaging values across 1000 iterations, with each iteration corresponding to a different tree

topology.

Figure (4.7), Figure (4.8), Figure (4.9) and Figure (4.10) contain graphs comparing

RT FastRecover with RT 1Segment and RT NSegments, along with the no feasible solu-

tion percentage for NSegments, for varying values of n, Ω, CHmax and Z respectively. The

42

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.25 0.3 0.35 0.4 0.45 0.5 0.55

N
o	
fe
as
ib
le
	so

lu
tio

n	
%
	fo

r	N
Se
gm

en
ts
	

To
ta
l	e
xp
ec
te
d	
re
co
ve
ry
	t
im

e	

Total	checkpointing	overhead	bound	CHmax

RT_FastRecover

RT_NSegments

No	feasible	solution	%	for	Nsegment

0.00

0.01

0.01

0.02

0.02

0.03

0.03

0.04

0.04

0.05

0.05

0.25 0.3 0.35 0.4 0.45 0.5 0.55

To
ta
l	e
xp
ec
te
d	
re
co
ve
ry
	t
im

e	

Total	checkpointing	overhead	bound	CHmax

RT_FastRecover

RT_1Segment

Figure 4.9: Comparing FastRecover with NSegments & 1Segment for tree topologies with
varying CHmax

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.000

0.002

0.004

0.006

0.008

0.010

0.012

18 20 22 24 26 28 30 32

N
o	
fe
as
ib
le
	so

lu
tio

n	
%
	fo

r	N
Se
gm

en
ts
	

To
ta
l	e
xp
ec
te
d	
re
co
ve
ry
	t
im

e	

Number	Z	of	increments	for	total	checkpointing	overhead

RT_FastRecover

RT_NSegments

No	feasible	solution	%	for	Nsegment

0.00

0.01

0.01

0.02

0.02

0.03

0.03

0.04

18 20 22 24 26 28 30 32

To
ta
l	e
xp
ec
te
d	
re
co
ve
ry
	t
im

e	

Number	Z	of	increments	for	total	checkpointing	overhead

RT_FastRecover

RT_1Segment

Figure 4.10: Comparing FastRecover with NSegments & 1Segment for tree topologies with
varying Z

trends observed are similar to the trends we saw for the chain topologies. In general for

all the parameter values and topologies, FastRecover always outperforms NSegments and

1Segment as expected. Further, the performance advantage of FastRecover over the other

two schemes grows larger as we increase n, increase Ω, or decrease CHmax.

43

4.3 Comparison of RT FastRecover with

RT Computational and RT Latency

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

500 1000 1500 2000 2500 3000 3500 4000

To
ta
l	e
xp
ec
te
d	
Re

co
ve
ry
	t
im

e	

Rate	of	tuple	 input	Ω

RT_FastRecover

Total	recovery	computational	time

Recovery	latency

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.25 0.3 0.35 0.4 0.45 0.5 0.55

To
ta
l	e
xp
ec
te
d	
Re

co
ve
ry
	t
im

e	

Total	checkpointing	overhead	bound	CHmax

RT_FastRecover

Total	recovery	computational	time

Recovery	latency

0.000

0.005

0.010

0.015

0.020

0.025

0 5 10 15 20 25 30 35 40

To
ta
l	e
xp
ec
te
d	
Re

co
ve
ry
	t
im

e	

Number	of	operators	in	topology

RT_FastRecover

Total	recovery	computational	time

Recovery	latency

0.000

0.002

0.004

0.006

0.008

0.010

0.012

20 30 40 50 60 70 80 90
To
ta
l	e
xp
ec
te
d	
Re

co
ve
ry
	t
im

e	
Number	Z	of	increments	for	total	checkpointing	overhead

RT_FastRecover

Total	recovery	computational	time

Recovery	latency

Figure 4.11: Comparison of RT FastRecover with RT Computational and RT Latency with
varying n, Ω, CHmax and Z for chain topologies

The graphs in Figure (4.11) compare RT FastRecover with RT Computational and RT

Latency with varying with varying n, Ω, CHmax and Z for chain topologies. Similarly, the

graphs in Figure (4.12) do the same for tree topologies. Both total recovery computational

time and maximum recovery latency are relevant measures for failure recovery in the real

world. As is evident from the last three graphs in each of these figures, for a fixed value of

44

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

18 20 22 24 26 28 30 32

To
ta
l	e
xp
ec
te
d	
Re

co
ve
ry
	t
im

e	

Number	Z	of	increments	for	total	checkpointing	overhead

RT_FastRecover

Total	recovery	computational	time

Recovery	latency

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

6 8 10 12 14 16 18 20

To
ta
l	e
xp
ec
te
d	
Re

co
ve
ry
	t
im

e	

Number	of	operators	in	topology

RT_FastRecover

Total	recovery	computational	time

Recovery	latency

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0 500 1000 1500 2000 2500 3000

To
ta
l	e
xp
ec
te
d	
Re

co
ve
ry
	t
im

e	

Rate	of	tuple	 input	Ω

RT_FastRecover

Total	recovery	computational	time

Recovery	latency

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.25 0.3 0.35 0.4 0.45 0.5 0.55

To
ta
l	e
xp
ec
te
d	
Re

co
ve
ry
	t
im

e	

Total	checkpointing	overhead	bound	CHmax

RT_FastRecover

Total	recovery	computational	time

Recovery	latency

Figure 4.12: Comparison of RT FastRecover with RT Computational and RT Latency with
varying n, Ω, CHmax and Z for tree topologies

n, total expected recovery time is a good proxy for both those measures. In other words, for

a fixed topology (and hence a fixed value of n), changes in parameter values affect all three

measures in a very similar manner.

The situation is more complex when we change n, because the expected total recovery

time always goes up when an additional operator is added to the topology. More precisely,

RT Computational and RT Latency are actual recovery times that depend on the exact

operators that fail in a simulated failure. Since we set the machine multiplicity in our

experiments to five, these two measures will always depend on the recovery times of the

45

five failed operators, irrespective of the value of n. However, RT FastRecover is a weighted

sum of the recovery times of all the operators in the topology and is the expected time

spent on recovery from failures per unit time. Increasing the number of operators increases

the chance that something will fail, and so as n increases, RT FastRecover is the weighted

sum of recovery times of an increasing number of operators. Hence, RT Computational and

RT Latency do not vary significantly as n increases while RT FastRecover does.

Hence in general, for a specific value of n, RT FastRecover is a good proxy for RT

Computational and RT Latency and hence is a good measure to optimize in our problem.

4.4 Running time for Algorithm 1 and Algorithm 2

We measured the running time of the algorithms described in Chapter 3 on one node of a

cloud based VM with 128 GB of memory, 16 cores and 2199.875 Mhz processor for different

values of n and Z.

4.4.1 Chain topologies

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0 5 10 15 20 25 30 35 40

Ru
nn
in
g	
tim

e	
fo
r	A

lg
or
ith

m
	1
	(i
n	
se
co
nd
s)
	

Number	of	operators	in	topology	n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

30 40 50 60 70 80 90

Ru
nn
in
g	
tim

e	
fo
r	A

lg
or
ith

m
	1
	(i
n	
se
co
nd
s)

Number	Z	of	increments	for	total	checkpointing	overhead

Figure 4.13: Running time for Algorithm 1 on chain topologies with varying n and Z

The graphs in Figure (4.13) show the time required to run Algorithm 1 on chain topologies

for different values of n and Z. Each data point in the graphs is the average of 1000 iterations

46

of FastRecovery over topologies that are randomly generated in the manner described in

Section 4.1. As explained in Section 3.2, we expect the running time to vary with both

n and Z in a quadratic manner. This can be seen in the graphs as well. For Z, there is

a trade off involved for choosing a suitable value of Z to use in FastRecover. A high Z

implies a higher running time for the algorithm but a better solution to the optimization

problem. A choice needs to be made based on the importance of quickly finding a new

recovery configuration, versus finding the best possible recovery configuration.

4.4.2 Tree topologies

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

6 8 10 12 14 16 18 20

Ru
nn
in
g	
tim

e	
fo
r	A

lg
or
ith

m
	2
	(i
n	
se
co
nd
s)

Number	of	operators	in	topology	n

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

15 20 25 30 35 40 45 50

Ru
nn
in
g	
tim

e	
fo
r	A

lg
or
ith

m
	2
	(i
n	
se
co
nd
s)

Number	Z	of	increments	for	total	checkpointing	overhead

Figure 4.14: Running time for Algorithm 2 on tree topologies with varying n and Z

The graphs in Figure (4.14) show the time required to run Algorithm 2 on tree topologies

for different values of n and Z. The left-hand graph is for 1000 iterations over randomly

generated topologies; the right-hand graph is for only 100 iterations, because the running

times get so large as Z grows. In the graphs, the running time grows linearly with n and

exponentially with Z, as expected. As Z increases, the number of ways to split a certain

value for checkpointing time at an operator across its children increases exponentially. Also,

if we continue increasing n, we would need to increase the value of Z as well in order for

Algorithm 1 to find a feasible solution. This is because as n increases, the minimum unit of

47

checkpointing overhead, CHinc, needs to decrease for more operators to be able to share the

same CHmax. CHinc is decreased by increasing Z. That is why we only use values of n up to

18 in the left-hand graph of Figure (4.14). Just like for chain topologies, choosing a suitable

value of Z to use in Algorithm 2 requires an analysis of the importance of Algorithm 2’s

running time versus the quality of the solution.

48

Chapter 5

Conclusion

This thesis investigates effective and efficient fault recovery in a distributed SPE. We identify

two main cost metrics in the design of a fault tolerance mechanism: the time spent in

taking checkpoints and the time required to recover from a failure. Accordingly, we model

fault tolerance mechanism design as a constrained optimization problem, i.e., minimizing

expected recovery time given a limit on maximum permissible time taking checkpoints.

Then, addressing this problem, we propose FastRecover, an effective and efficient solution

that handles a variety of application topologies, notably operator chains and operator trees.

Finally, through an extensive set of experiments we show that on average, FastRecover spends

50% less time to recover from a failure than do the two naive methods while spending the

same time in taking checkpoints. An additional advantage is that FastRecover often is able

to find a recovery scheme when a more naive method fails to do so. Further, recovery time

for the two naive methods has a variance 2-5 times larger than the variance of the recovery

time for FastRecover. This makes recovery time for FastRecover much more predictable

than for the other two approaches, which is quite helpful in the real world. We also show

that the performance metric used in FastRecover, i.e., expected recovery time, tracks other

relevant measures of recovery time.

This work also opens several exciting directions for future work.

• So far FastRecover addresses software failures and machine failures, and it does not

yet explicitly address network communication problems, which are more difficult to

detect, quantify and recover from. Handling communication failures is an interesting

direction for future work.

49

• An interesting open question is how FastRecover can be generalized to handle more

complex operator topologies such as DAGs and arbitrary graphs containing cycles.

• We built a prototype version of FastRecover in Storm, and tried it out with a simple

chain topology. An interesting direction for future work is to extend the prototype

to address all the tricky race conditions that can occur in the aftermath of failures.

Another direction is to build a prototype of FastRecover for Samza. With robust

prototypes in hand, it will be interesting to evaluate performance with real-world

stream processing tasks and failures.

• Another interesting direction for future work is to measure the effect of varying addi-

tional attributes such as selectivity, average size per input tuple, processing time per

tuple and size of internal state on the performance of FastRecover.

• Another direction of future work is implementation and evaluation of the optimization

algorithm in Section 3.3 and its ability to improve on the solution given by Algorithm

1.

50

References

[1] Apache Samza. http://samza.apache.org/.

[2] Apache Storm. (2014, December) Trident API Overview. http://storm.apache.org/
releases/current/Trident-tutorial.html.

[3] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

[4] W. Lam, L. Liu, S. Prasad, A. Rajaraman, Z. Vacheri, and A. Doan. Muppet:
MapReduce-style processing of fast data. Proceedings of the VLDB Endowment,
5(12):1814–1825, 2012.

[5] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed stream computing
platform. In Data Mining Workshops (ICDMW), 2010 IEEE International Conference
on, pages 170–177. IEEE, 2010.

[6] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu, and Z. Zhang.
Timestream: Reliable stream computation in the cloud. In Proceedings of the 8th
ACM European Conference on Computer Systems, pages 1–14. ACM, 2013.

[7] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson,
K. Gade, M. Fu, J. Donham, et al. Storm@ Twitter. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data, pages 147–156. ACM,
2014.

[8] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves,
J. Lowe, H. Shah, S. Seth, et al. Apache Hadoop Yarn: Yet another resource negotiator.
In Proceedings of the 4th annual Symposium on Cloud Computing, page 5. ACM, 2013.

[9] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica. Resilient Distributed Datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation, page 2. USENIX Association, 2012.

[10] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica. Discretized Streams: an efficient
and fault-tolerant model for stream processing on large clusters. In Proceedings of
the 4th USENIX Conference on Hot Topics in Cloud Ccomputing, page 10. USENIX
Association, 2012.

51

