

LEADER ELECTION AND GROUP MANAGEMENT

IN VEHICULAR AD HOC NETWORK

BY

YIXIAO NIE

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Adviser:

Professor Nitin Vaidya

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158313904?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

ABSTRACT

 As automobiles become more intelligent, research on the Vehicular Ad Hoc Network

(VANET) also becomes more important. Leader election is an important piece of the puzzle

that can be utilized to solve many other problems in VANET. However, most existing literatures

either focus on Virtual Traffic Light (VTL) application or leader election in regular ad hoc

networks. In this thesis, we focus on creating a generalized algorithm for leader election in

VANET and designing a group management mechanism to address various scenarios. In

addition, simulations are conducted to evaluate performance of proposed algorithms.

iii

To Mother and Father

To My Love Bo

iv

ACKNOWLEDGMENTS

 This thesis would not have been possible without the support of many people. I would like

to thank my advisor, Professor Nitin Vaidya, who offered great guidance throughout the entire

process and provided excellent suggestions to clarify my confusion. Also thanks to Shegufta

Ahsan, who generously provided help in solving difficulties I met during experiments. I would

also like to show my gratitude to Janice Progen from ECE Editorial Services for her dedicated

guidance in editing my thesis. In addition, I am also immensely grateful to the University of

Illinois Graduate College and Electrical and Computer Engineering Department for offering

me a teaching assistant position and for providing me with financial aid to complete the degree

in Master of Science. Finally yet importantly, I would like to thank my parents, girlfriend, and

numerous friends, without whom it would be impossible for me to reach my goals this far.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION AND BACKGROUND .. 1

1.1 Vehicular Ad Hoc Network .. 1

1.2 Leader Election .. 1

1.3 Virtual Traffic Light ... 2

1.4 Problem Statement .. 2

CHAPTER 2 RELATED WORK .. 3

CHAPTER 3 LEADER ELECTION AND GROUP MANAGEMENT 6

3.1 Leader Election Protocol .. 6

3.2 Failure Handling .. 11

3.3 Group Maintenance, Joining, and Leaving... 14

3.4 Conflict Resolving and LAMP ... 16

3.5 Random Leader Election Protocol ... 17

3.6 Leader Handover Protocol ... 18

3.7 Group Partition and Merging .. 21

CHAPTER 4 SI MULATION AND RESULTS .. 24

4.1 Simulation Environment ... 24

4.2 Leader Election Protocol Evaluation ... 25

4.3 Group Management Evaluation ... 27

4.4 VTL Application .. 31

CHAPTER 5 DISCUSSION AND OPTIMIZATION .. 34

5.1 Communication Message Overhead .. 34

5.2 Neighbor List Reduction ... 36

CHAPTER 6 CONCLUSION AND FUTURE WORK ... 38

6.1 Conclusion .. 38

6.2 Future Work .. 38

REFERENCES ... 40

APPENDIX A EXAMPLE PSEUDO CODE FOR SIMULATION 42

1

CHAPTER 1

INTRODUCTION AND BACKGROUND

 The contents in this thesis are organized in the following structure. In chapter 1,

we introduce important concepts and a concrete problem statement. In chapter 2, we

review existing literature on similar topics in the past decades. In chapter 3, we propose

multiple versions of Leader Election Protocols as well as a comprehensive mechanism

for group management. In chapter 4, we simulate the protocols and evaluate the results.

In chapter 5, we provide discussion on the tradeoffs and gains for our algorithm and

offer several suggestions for optimization. In chapter 6, we draw conclusions and list

directions of future work.

1.1 Vehicular Ad Hoc Network

 The Vehicular Ad Hoc Network (VANET) [1] is a special case of the Mobile Ad

Hoc Network that specifically applies to communication between vehicles. To be more

specific, in this thesis, we study VANET as a type of decentralized wireless network,

through which the vehicles can directly communicate with each other without relying

on routers or access points. Key features in VANET include high mobility, which may

result in frequent changes in network topology. The mobility of vehicles can be

somewhat more predictable than general mobile ad hoc networks.

1.2 Leader Election

 Leader election, in VANET, is the process of cooperatively selecting a unique

vehicle to organize a group of vehicles. This process is non-trivial, since there are many

issues that may result in failure. In most cases, leader election is a particular type of

consensus problem, which is theoretically proven to be impossible to solve in an

asynchronous system [2] or under unbounded message losses [3], [4], [5] in process or

node failure. However, in real-world applications, it is still beneficial to design a Leader

Election Protocol with high accuracy and low latency.

2

1.3 Virtual Traffic Light

 The Virtual Traffic Light (VTL) [6] is a new way of managing traffic lights at road

intersections. Traditionally, physical traffic lights are used for controlling the traffic

signals, which is less efficient and consumes more energy. With the help of VANET and

leader election, we are able to create a VTL among vehicles, which is controlled by the

leader. Such optimization eliminates the need of physical traffic lights and allows the

vehicles to change the traffic signals intelligently.

1.4 Problem Statement

1.4.1 Problem Setting

 Each vehicle has reliable GPS equipment that can be used to determine its location

and velocity.

 Each vehicle has an accurate clock that is synchronized with other vehicles. Clock

skew and drift will not be considered in our study.

 IEEE 802.11 is used as the communication specifications between vehicles, which

may be lossy under heavy load or through long distance.

 Each vehicle maintains an accurate list of neighbors, updated through BEACON

messages. This is achieved by periodically broadcasting BEACON messages. In

addition, the location and velocity of each vehicle are sent through BEACON messages

and stored in the list of neighbors.

 All experiments in this study are conducted in computer simulation.

1.4.2 Problem Definition

 Our goal is to design, build, and test an algorithm for efficient fault-tolerant leader

election and group management in VANET, which later can be applied to applications

such as VTL.

3

CHAPTER 2

RELATED WORK

There exist works related to the problem we studied. Most of them focus on two

different aspects: VTL applications and leader election.

 One of the first proposals of an intelligent traffic light using the communication

between vehicles and fixed controller nodes in the intersection was presented in [6].

However, as it still requires the presence of a physical traffic light, it may not be

considered as a VTL application.

 Ferreira et al. [7] presented a more complete VTL protocol to replace the roadside-

based infrastructures. When vehicles are approaching the intersection, they

cooperatively decide one vehicle to be the leader based on two conditions: (i) the

vehicle should be stopped at a red light; (ii) the vehicle should be the closest one to the

intersection. After a vehicle is elected as the leader, it will be responsible for controlling

the virtual traffic light subsequently. When green traffic light is in the leader’s lane, it

will pass the intersection and hand over the leadership to one of the vehicles stopping

before the red light. However, [7] did not mention any details of leader election protocol

nor the protocol for leader handover. In addition, it is assumed that the reliability and

latency of wireless communication is adequate for the VTL protocol.

 A prototype for a VTL application using Android-based smartphones was

presented in [8]. The algorithm they implemented is based on the self-organized traffic

control paradigm presented in [7]. Yet details of the algorithms used are not presented.

 In [9], a fail-safe protocol for the VTL application was presented, and it was

verified using the PROMELA modeling language and SPIN model checker [10]. In

their protocol, a vehicle that is closest to the intersection is first chosen as the Cluster

Leader of that road segment by using reliable line-of-sight communication. Then one

of the up to four Cluster Leaders is chosen as the VTL Leader to control the traffic light.

When the VTL Leader leaves the intersection, a handover is performed to pass the

leadership to another vehicle. However, not enough protocol details are provided for

the implementation of the leader election or handover.

4

 Past work has shown that it is impossible to achieve guaranteed consensus in both

synchronous system and asynchronous system if the number of message losses is not

bounded [2], [3], [4], [5]. Therefore, it is unrealistic to discuss leader election protocol

in VANETs without a discussion of reliability, i.e., the probability for a protocol to

achieve consensus under different scenarios.

 A thorough study of a family of simple round-based consensus algorithms for the

VTL leader election protocol was performed in [11]. It shows the probability of

disagreement for a given algorithm depends on three parameters: (i) the number of

vehicles in the group; (ii) the number of rounds performed in the algorithm; and (iii)

the probability of message loss. However, for the third parameter, they assumed a fixed

probability of message loss q for all messages, which may not be ideal in VANET

settings. The q should depend on the distance between vehicles and the probability of

other nodes transmitting a packet in the same slotted time (transmission collision).

 One of the few papers that included a thorough explanation for the leader election

algorithm and considered packet loss is [12]. The VTL algorithm used in [12] is adopted

from [13] for dynamic ad hoc networks. They simulated the algorithm on Vein, a

simulation framework that combines the network simulator OMNeT++ and the traffic

simulator SUMO. Results show that VTL is able to reduce travel times by up to 35%.

However, when the intersection topologies become increasingly complex, they noticed

that the case when more than one leader is elected may increase to as high as 23%, and

they have to replace the VTL leader election with a perfect Oracle leader election. In

addition, they discovered that as the density of traffic grows, packet loss increases as

well, mostly due to collisions.

 On the other hand, [13] presented a leader election algorithm that can adapt to any

topological changes in mobile ad hoc networks. Three phases are used in the protocol:

(i) the source node sends out an Election message to all neighbors. Other nodes, upon

receiving the first Election message, will designate the sender as parent and propagate

the Election message; (ii) when a node i receives an Election message from a node j

that is not its parent, an Ack message will be responded to j immediately. An Ack

message to parent node will only be sent once all remaining neighbors responded with

5

an Ack message; and (iii) once the source node receives Ack messages from all the

children, it will broadcast a Leader message to all nodes. Essentially, this algorithm

completes the leader election by growing and shrinking a spanning tree. However, the

protocol requires that communication between nodes takes place using reliable

transport protocol, so that the sender knows whether the packet has been received by

the destination node or not. Therefore, it is uncertain how it would behave under a

massive packet loss rate.

6

CHAPTER 3

LEADER ELECTION AND GROUP MANAGEMENT

3.1 Leader Election Protocol

 In this section, we demonstrate the process of developing a new Leader Election

Protocol. To start, we build a first version from scratch. Then we adopt an idea from

similar work to create a second version. Last, we make improvements on the strategy

to reach a third and final version.

 To help better understand the protocols, a variable list for each vehicle is provided

in Table 1.

Table 1: A Variable Table for Each Vehicle

Variable Explanation

In_election A flag indicating if the vehicle is in election or not

Vid A variable set to the vehicle's id at initialization

Leader A variable storing the leader's id

LeaderList A container for all leaders' id

Proposal A variable storing the value of best proposal value collected so far

ProposalId A variable storing the vehicle id associated with the value in Proposal

ProposalList A container for all proposals

NeighborList

A container for all neighbors' information, updated upon receiving the

BEACON message

AckList A container for storing the acknowledgements from neighbors

Parent

A variable storing the parent's id when a spanning tree is constructed, -1 for

root

ChilrenList A container for storing children's ids when a spanning tree is constructed

3.1.1 First Version of Leader Election Protocol

 When a vehicle enters a new area, it will first check for the existence of a leader. If

the leader exists, the vehicle joins as a member and follows the instructions from the

leader. Otherwise, the vehicle starts the Algorithm 1 to elect a leader.

 In initialization, calculate_proposal() is a function to be defined. For simplicity, it

is defined to return Vid in the simulation. To achieve better performance, we can define

7

it to return an estimated time of how long it may stay within a given region, using the

location and velocity information provided by a GPS device.

 In all algorithms, words with all capital letters represent messages, and the

attributes associated with messages are placed in double quotes “ ”. Broadcasts are all

sent to the MAC broadcast address (FF:FF:FF:FF:FF:FF). Ttimeout is set to 1 s in the

simulation. Trerun is set to 0.2 s in the simulation.

Initialization

In_election=false, Leader=-1, Vid=get_self_id(), Proposal=calculate_proposal(),

ProposalList=<>, AckList=<>.

On entering new region:

 If In_election = false and Leader = -1

 Set In_election=true

 Broadcast ELECTION(“Sender”=Vid, “Proposal”=Proposal)

 Set a timeout after Ttimeout seconds

On receiving ELECTION message m:

 If In_election = false

Set In_election=true

broadcast ELECTION(“Sender”=Vid, “Proposal”=Proposal)

Set a timeout after Ttimeout seconds

 If m.Sender is not in AckList

 Add m.Sender to AckList; add m.Proposal and m.Sender to ProposalList;

broadcast ELECTION(“Sender”=m.Sender, “Proposal”=m.Proposal)

On timeout:

 Set Leader = vehicle with max proposal in ProposalList

 Broadcast ANNOUNCE(“Leader”=Leader)

On receiving ANNOUNCE message m:

 If m.Leader ≠ Leader

 Broadcast ABORT

On receiving ABORT message m:

 Stop leader election; propagate the ABORT message;

 Schedule a new round of election to run after Trerun seconds if self was initiator

Algorithm 1: First Version of Leader Election Protocol

8

 On success and with no message loss, the total number of messages broadcasted

should be (n+1) * n for a group of n vehicles. This is because each node will broadcast

1 ELECTION message of its own, rebroadcast n-1 ELECTION messages from the other

nodes, and broadcast 1 ANNOUNCE message.

3.1.2 Second Version of Leader Election Protocol

 Continuing from the first version, we adopt the idea of creating a spanning tree

from [13] to implement a second version of Leader Election Protocol as shown in

Algorithm 2. This implementation will reduce the number of messages rebroadcasted

due to the use of a spanning tree.

 In addition, we make the following assumption about participating nodes. Each

vehicle is periodically broadcasting a reliable BEACON message (see Section 1.4.1)

with its own information (location, speed). Once a BEACON message is received, the

recipient will denote the sender as a neighbor and store it in a list of neighbors. If no

BEACON message is received from a neighbor within k periods (default set to k = 1 in

simulation), that vehicle will be removed from the list of neighbors.

Initialization

In_election=false, Leader=-1, Parent=-1, Vid=get_self_id(), AckList=<>,

NeighborList=<all neighbors>, Proposal=calculate_proposal(), ProposalId=Vid.

On entering new region:

 If In_election = false and Leader = -1

 Set In_election=true

 Broadcast ELECTION(“Sender”=Vid)

 Set a timeout after Ttimeout seconds

On receiving ELECTION message m:

 If In_election = false

Set In_election=true and Parent=m.Sender

Broadcast ELECTION(“Sender”=Vid)

Set a timeout after Ttimeout seconds

 Else

 Broadcast ELECTIONACK(“Sender”=Vid)

Algorithm 2: Second Version of Leader Election Protocol

9

On receiving ELECTIONACK message m:

 Add m.Sender to AckList

 If AckList = NeighborList

 Broadcast PROPOSAL(“Sender”=Vid, “Receiver”=Parent,

“Proposal”=Proposal, “ProposalId”=ProposalId)

On receiving PROPOSAL message m:

 Add m.Sender to AckList

 If m.Proposal > Proposal

 Set Proposal= m.Proposal and ProposalId = m.ProposalId

 If AckList = NeighborList

 If Parent ≠ -1

 Broadcast PROPOSAL(“Sender”=Vid, “Receiver”=Parent,

“Proposal”=Proposal)

 Else (NOTE: this is the case for initiator)

 Set Leader = ProposalId; cancel timeout

Broadcast LEADER(“Leader”= Leader)

On receiving LEADER message m:

 Set Leader = m.Leader and propagate the LEADER message

 Cancel timeout

On receiving ABORT message m:

 Stop leader election; propagate the ABORT message;

 Schedule a new round of election to run after Trerun seconds if self was initiator

On timeout:

 Broadcast ABORT and stop leader election

Algorithm 2 (cont.)

 On success and with no message loss, the total number of messages broadcasted

should be (2+avg(deg(v))) * n for a group of n vehicles. This is because each node v

will broadcast 1 ELECTION message, 1 PROPOSAL message, 1 LEADER message,

and deg(v)-1 ELECTIONACK messages (no ELECTIONACK message is sent to the

parent, replaced by a PROPOSAL message).

3.1.3 Third Version of Leader Election Protocol

 To further reduce the message overhead in the second version, we take advantage

of the overhearing property in wireless network and remove ELECTIONACK

10

messages from the protocol. To make up for the lack of the ELECTIONACK message,

a Parent attribute is added to the ELECTION message. In Algorithm 3 we present the

third and final version of our Leader Election Protocol.

Initialization

In_election=false, Leader=-1, Parent=-1, Vid=get_self_id(),

Proposal=calculate_proposal(), ProposalId=Vid, AckList=<>, ChildrenList=<>

NeighborList=<all neighbors>.

On entering new region:

 If In_election = false and Leader = -1

 Set In_election=true

 Broadcast ELECTION(“Sender”=Vid, “Parent”=-1, “ProposalId” =

ProposalId)

 Set a timeout after Ttimeout seconds

On receiving ELECTION message m:

 Add m.Sender to AckList

 If In_election = false

Set In_election=true and Parent=m.Sender

Broadcast ELECTION(“Sender”=Vid, “Parent”=Parent)

Set a timeout after Ttimeout seconds

 If m.Parent = Vid

 Add m.Parent to ChildrenList

 If AckList = NeighborList and ChildrenList is empty

 Broadcast PROPOSAL(“Sender”=Vid, “Proposal”=Proposal, “ProposalId” =

ProposalId)

On receiving PROPOSAL message m:

 If m.Sender is not in ChildrenList Then return

 If m.Proposal > Proposal

 Set Proposal= m.Proposal and ProposalId = m.ProposalId

 Remove m.Sender from ChildrenList

 If AckList = NeighborList and ChildrenList is empty

 If Parent ≠ -1

 Broadcast PROPOSAL(“Sender”=Vid, “Proposal”=Proposal,

“ProposalId” = ProposalId)

 Else (NOTE: this is the case for initiator)

 Set Leader = ProposalId; cancel timeout

 Broadcast LEADER(“Leader”= Leader)

Algorithm 3: Third Version of Leader Election Protocol

11

On receiving LEADER message m:

 Set Leader = m.Leader and propagate the LEADER message

 Cancel timeout

On receiving ABORT message m:

 Stop leader election; propagate the ABORT message;

 Schedule a new round of election to run after Trerun seconds if self was initiator

On timeout:

 Broadcast ABORT() and stop leader election

Algorithm 3 (cont.)

 On success and with no message loss, the total number of messages broadcasted

should be 3n for a group of n vehicles. This is because each node will broadcast 1

ELECTION message, 1 PROPOSAL message, and 1 LEADER message.

Figure 1 is a flowchart for the third version of Leader Election Protocol.

3.2 Failure Handling

 In both reality and the simulation, leader election may fail because of many

different reasons (e.g. co-channel interference, topology changes). Therefore, this

section discusses a couple of common failures and the methods to handle them during

leader election.

3.2.1 Group Overextension

 In dense network topology, such as downtown Manhattan, the size of a group may

become extremely large because the distances between vehicles are usually very small.

Therefore, if no restriction is enforced on the vehicles, a single leader election may

involve hundreds of cars, which is both unnecessary and unrealistic.

 In order to avoid such situations, we allow the initiator of leader election to apply

a restriction by specifying the vehicles allowed to participate. For example, in our

12

Figure 1: Flowchart for the Third Version of Leader Election Protocol

simulation, this restriction is usually specified as an n * n square centered at an

intersection.

3.2.2 Rebroadcast Collision

 When a vehicle broadcasts a message, all neighbors of the vehicle will be able to

13

receive it and rebroadcast. However, if rebroadcasts all happen immediately after

receipt of the first message, collisions may happen due to co-channel interference.

 In order to reduce the collision rate, we adopt a strategy similar to the counter-

based scheme in [14], by using the following formula to insert a random waiting time

before rebroadcast:

𝑤𝑎𝑖𝑡 𝑇𝑟𝑎𝑛𝑑𝑜𝑚 = (𝑟𝑎𝑛𝑑𝑜𝑚()%𝐶𝑛) ∗ 𝑇𝑠𝑙𝑜𝑡

where 𝑇𝑠𝑙𝑜𝑡 is the slot size in microsecond, and 𝐶𝑛 is the maximum number of slots

a rebroadcast can wait for. In the experiments, parameters are chosen such that 𝑇𝑠𝑙𝑜𝑡 =

10 μs and 𝐶𝑛 = 1000.

 While introducing randomness in the rebroadcast process is very effective in

reducing collisions, it does not guarantee to eliminate all collisions. We will discuss the

solution for this issue in the next section.

3.2.3 Message Loss and Requesting Resend Mechanism

 Message loss is the most common error in leader election, and it may happen due

to unavoidable reasons such as interference and hardware malfunction. In order to

recover from message loss and continue execution of the Leader Election Protocol, we

implemented a Requesting Resend Mechanism.

 After the leader election starts, all vehicles will periodically check the status of its

own AckList and ChildrenList. For any vehicle, if a certain message (ELECTION or

PROPOSAL) is not received, a REQUESTRESEND message will be transmitted to the

corresponding vehicle to request for retransmission.

If AckList ≠NeighborList

 For each vehicle i in NeighborList but not in AckList

 Broadcast REQUESTRESEND(“Sender”=Vid, “Receiver”=i)

Else if ChilrenList is not empty:

 For each vehicle i in ChildrenList:

 Broadcast REQUESTRESEND(“Sender”=Vid, “Receiver”=i)

Algorithm 4: Requesting Resend Mechanism

Upon receiving a REQUESTRESEND message, the target vehicle will resend the

14

missing message.

3.2.4 Vehicle Failure and Topology Change

 In rare situations, vehicles may fail without notifying their neighbors, or topology

changes may occur in the short time span of leader election. To address such issues, in

Requesting Resend Mechanism, a neighbor vehicle is labeled as unreachable after n

(chosen as n = 3 for the experiment) consecutive failed attempts and is removed from

the neighbor list after the current round of the leader election aborts. As a result, in the

next round of leader election, we will have an updated and accurate network topology.

3.2.5 Other Failures

 In this thesis, our protocol does not address the following failures:

 GPS Error, Unidirectional Link Failure. Equipping vehicles with high-end GPS and

network devices may resolve this issue.

 BEACON Message Loss. The loss of a BEACON message may result in an

inaccurate neighbor list, which will significantly affect the efficiency and accuracy of

the Leader Election Protocol. However, we could use other technologies in conjunction

to create a complete and accurate neighbor list. For example, communication through

a cellular network or wireless LAN access point may render higher accuracy, with the

tradeoff of larger latency.

3.3 Group Maintenance, Joining, and Leaving

3.3.1 Group Maintenance

 In order to keep track of the status of the group, the leader will periodically

broadcast a Leader Heartbeat with a timestamp to notify the neighbors (heartbeat

interval is set to 1 s in simulation). On receiving a Leader Heartbeat, each group

member will update the local timestamp accordingly and rebroadcast to propagate the

message to others (if it has not already done so).

 An example is provided in Figure 2. In (a), when the simulation reaches 2 s (from

15

the beginning of simulation), leader A updates its local timestamp to 2 s and broadcasts

a Leader Heartbeat with timestamp 2 s. In (b), after receiving a Leader Heartbeat from

A, B updates its local timestamp (associated with leader A) to 2 s and rebroadcasts. In

(c), though C missed the last Leader Heartbeat message at 1 s and has local timestamp

0 s, upon receiving the new Leader Heartbeat, it updates its local timestamp to 2 s and

rebroadcasts. In (d), after receiving the Leader Heartbeat, D updates its local timestamp

to 2 s and rebroadcasts.

 The Leader Heartbeat message serves two purposes. First, it notifies a new node

entering the region the existence of the leader. Second, it allows group members to keep

track of the leader and remove an inactive leader (explained in more detail in Section

3.3.3).

Figure 2: Group Maintenance

3.3.2 Group Joining

 When a new vehicle enters a region, it will first listen for a Leader Heartbeat

message. If such a message is received, the new vehicle marks the corresponding

16

vehicle as the leader and considers itself as having joined the group. If no such message

is received within a period of time, the new vehicle may start the Leader Election

Protocol as described in Section 3.1.3.

3.3.3 Group Leaving

 If a vehicle does not receive any Leader Heartbeat message after a certain period

of time (default is set to three heartbeat intervals), it will automatically consider itself

as removed from the group and clear the information about the leader. If in the future a

Leader Heartbeat message is received again, the vehicle rejoins the group.

3.4 Conflict Resolving and LAMP

 When two or more different Leader Heartbeats are received by a vehicle, we define

such situation as a conflict. Conflicts may happen due to groups merging, temporary

partition and recovery, etc. Our protocol handles conflict using a schema called Leader

Active Member Passive (LAMP).

 LAMP requires the leader to actively resolve conflicts while members passively

wait for updates. For example, if a member vehicle receives a Leader Heartbeat from a

different leader, it will simply forward it to other members inside the group. However,

if a leader receives a Leader Heartbeat from a different leader, it will pick a winner from

the two leaders using predefined rules (such as the vehicle with a larger id). If the winner

is itself, nothing will happen for this leader; if the winner is the other vehicle, a Leader

Resignation message will be broadcasted to inform members about the change of

leadership.

 In addition to the rules already mentioned, each group member also keeps track of

the Leader Heartbeat messages. For a particular leader, if more than three consecutive

Leader Heartbeat messages are missing, the group member will remove that leader from

the leader position.

 A detailed example of group merging will be discussed in Section 3.7.2.

17

3.5 Random Leader Election Protocol

 In the Leader Election Protocols described in Section 3.1, each vehicle is required

to make a proposal with a value it selects. The initiator will collect all the proposals and

declare the vehicle with the largest proposal value as the leader. However, there are

situations where we just want a random vehicle to be the leader. Therefore, we propose

the following Random Leader Election Protocol (Algorithm 5) to allow a random

vehicle to become the leader.

Initialization

In_election=false, Leader=-1, Vid=get_self_id(), AckList=<>, NeighborList=<all

neighbors>

On entering new region:

 If In_election = false and Leader = -1

 Set In_election=true and Leader = Vid

 Broadcast LEADER(“Sender”=Vid, “Leader”=Vid)

 Set a timeout after Ttimeout seconds

On receiving LEADER message m:

 If In_election = false

Set In_election=true and Leader=m.Leader

Broadcast LEADER(“Sender”=Vid, “Leader”= Leader)

Set a timeout after Ttimeout seconds

 Add m.Sender to AckList

 If AckList = NeighborList

 Cancel timeout

On timeout:

 Set Leader = -1; broadcast ABORT() and stop random leader election

Algorithm 5: Random Leader Election Protocol

 On success and with no message loss, the total number of messages broadcasted

should be n for a group of n vehicles. This is because each node will only broadcast one

LEADER message.

Figure 3 is a flowchart for the Random Leader Election Protocol.

18

Figure 3: Flowchart for Random Leader Election Protocol

3.6 Leader Handover Protocol

In traditional networks, once a leader is elected, it seldom leaves the group.

However, in VANET, the vehicle designated as the leader constantly moves from one

region to another, which results in unnecessary and inefficient reelections.

Fortunately, one unique feature of VANET is that the vehicles have access to their

locations and velocities via GPS devices. Thus, as one optimization to avoid performing

a new round of leader election, the leader may start a Leader Handover when it is about

to leave its region.

In the following introduction of two protocols, we assume the leader has already

decided which vehicle should be the new leader. Otherwise, the old leader can simply

19

start a new leader election by using the Leader Election Protocol (third version).

3.6.1 Leader Handover Protocol Derived from the Random Leader Election

Protocol

 Assuming the leader has already decided which vehicle should be the new leader,

we can adopt the Random Leader Election Protocol to perform the Leader Handover,

as shown in Algorithm 6.

Initialization

In_election=false, Vid=get_self_id(), AckList=<>, NeighborList=<all neighbors>

For original leader:

Before leaving region:

 Set Leader = calculate_new_leader()

 Broadcast NEWLEADER(“Sender”=Vid, “Leader”= Leader)

 Set a timeout after Ttimeout seconds

For all vehicles:

On receiving NEWLEADER message m:

 If In_election = false

Set In_election=true and Leader=m.Leader

Broadcast NEWLEADER(“Sender”=Vid, “Leader”= Leader)

Set a timeout after Ttimeout seconds

 Add m.Sender to AckList

 If AckList = NeighborList

 Cancel timeout

On timeout:

 Restore Leader to old leader; broadcast ABORT() and stop leader handover

Algorithm 6: Leader Handover Protocol from the Random Leader Election Protocol

 The advantage of using this Leader Handover Protocol is that it requires

acknowledgment of all neighbors in order to complete the Leader Handover process.

Therefore, it will ensure at most one leader exists at all times.

Figure 4 is a flowchart for the Leader Handover Protocol.

20

Figure 4: Flowchart for Leader Handover Protocol from Random Leader Election

Protocol

3.6.2 Leader Handover Protocol by LAMP

 In addition to the previous Leader Handover Protocol, we leverage the nice

property of LAMP to implement a much easier protocol, on the condition that the user

does not care if two leaders exist simultaneously for a short period of time.

 The advantage of this Leader Handover Protocol is that it is easy to implement, as

this protocol is built on top of the LAMP property. Once the new leader starts

broadcasting Leader Heartbeat messages, the old leader will resign and consider the

handover finished. Even if the Leader Resignation message does not reach all members,

they will passively drop the old leader after three consecutive misses of Leader

Heartbeats.

21

Initialization

In_election=false, LeaderList=<Leader>, Vid=get_self_id(), AckList=<>,

NeighborList=<all neighbors>

For original leader:

Before leaving region:

 Set Leader = calculate_new_leader()

 Broadcast NEWLEADER(“Sender”=Vid, “Leader”= Leader)

 Stop propagating LEADERHEARTBEAT message

For all vehicles:

On receiving NEWLEADER message m:

 If m.Leader = Vid

 Set Leader = Vid; start propagating LEADERHEARTBEAT(“Leader”=Vid)

On receiving LEADERHEARTBEAT message m:

 Propagate the LEADERHEARTBEAT message received

 If m.Leader = Newleader and self is the original leader

 Broadcast LEADERRESIGNATION(“Leader”=Vid)

On receiving LEADERRESIGNATION message m:

 Propagate the LEADERRESIGNATION message received

 Remove m.Leader from LeaderList

 If size(LeaderList) = 1

 Leader = LeaderList[0]

Algorithm 7: Leader Handover Protocol by LAMP

3.7 Group Partition and Merging

3.7.1 Group Partition

 Upon a group partition, vehicles in the partition without the leader will eventually

consider themselves as removed from the group because the Leader Heartbeat can no

longer reach them. After a certain period of time (default is set to three heartbeat

intervals in simulation), one of the vehicles will start the Leader Election Protocol to

select a new leader.

22

3.7.2 Group Merging

 Group merging is one of the most complicated scenarios in group management. In

our protocol, group merging is done through active merging using LAMP. For example,

when members of one group receive a Leader Heartbeat from the other leader, they will

forward a Leader Heartbeat to the rest of the group. If the original leader receives the

message and decides to resign leadership, it will both stop sending its own Leader

Heartbeat and send out a Leader Resignation message. After receiving a Leader

Resignation message, members from the old group will set the other leader as the new

leader. Occasionally, the Leader Resignation message may get lost due to collision. In

such cases, the resigned leader will not be removed immediately. Instead, all member

vehicles will passively remove the old leader after three consecutive Leader Heartbeat

messages are missing.

 An example is illustrated in Figure 5. In (a), before merging, group {A1, B1, C1}

has leader A1 and group {A2, B2, C2} has leader A2. In (b), two groups merge and A2

happens to send out a Leader Heartbeat first. In (c), B1 receives A2’s Leader Heartbeat,

adds A2 to the leader list, and forwards A2’s Leader Heartbeat to the group. In (d),

every vehicle in the original A1’s group receives A2’s Leader Heartbeat. In (e), because

A2 has a higher vehicle id, A1 decides to resign and broadcasts a Leader Resignation

message. In (f), every vehicle in the original A1’s group receives A1’s Leader

Resignation message and removes A1 from the leader list. Now A2 becomes the new

leader.

23

Figure 5: Group Merging

24

CHAPTER 4

SI MULATION AND RESULTS

4.1 Simulation Environment

 Our tests are conducted on a platform called Vehicular Networks Simulator (VNS)

[15], a high-performance simulation framework that combines mobility models and

network models together.

 For the mobility model, our test uses the Manhattan mobility model as shown in

Figure 6, which is a grid road topology that consists of vertical and horizontal streets.

During the simulation, vehicles will appear from the start of each road under Poisson

distribution, using the following formula for the interval:

TInterval = 𝑇𝑚𝑒𝑎𝑛 ∗ (− log(random(0.0001,1.0)))

where 𝑇𝑚𝑒𝑎𝑛 is set to 2 seconds in our simulation.

Figure 6: Manhattan Mobility Model

25

 For the network model, our test utilizes NS-3 [16], a discrete-event network

simulator. We utilize IEEE 802.11 as the communication protocol for lower layers,

since it is the most popular protocol in VANET.

4.2 Leader Election Protocol Evaluation

 In this section, we evaluate the accuracy and efficiency of the third version of

Leader Election Protocol proposed. To simplify the testing environment, we run our

simulation with a 1-by-1 Manhattan map, i.e., one vertical street and one horizontal

street. The size of map is 100 m * 100 m, and a periodic traffic light is installed at the

intersection (traffic signals set to 25 s for both green and red).

 In this test, group management properties, such as Leader Heartbeat, are not

enabled. Therefore, vehicles recently entering the map will not be able to detect the

existence of a leader and will always initiate a new leader election. We run each

experiment for 60 seconds and record important information. The result of an example

run is given in Table 2.

 A trial is defined as leader election(s) started by one vehicle within a group. The

number of vehicles denotes the size of the group in which the leader election is executed.

Start time is defined as the moment that a vehicle initiates a leader election by

broadcasting an ELECTION message. End time is defined as the moment that the last

member in a group receives the LEADER message. Number of rounds is the number

of Leader Election Protocol (third version) being executed for a single trial. For

example, if the leader election succeeds in the first execution (no ABORT sent), the

number of rounds should be 1. But if the first execution ends by ABORT while the

second one succeeds, the number of rounds should be 2. We confirm correctness by

checking if the leader elected is the one with the largest Vid within the group.

26

Table 2: A 60 s Experiment for the Leader Election Protocol (third version)

Trial

Number of

vehicles Start time (s) End time (s)

Time elapsed

(s)

Number

of rounds Correctness

1 2 3.066 3.081 0.015 1 TRUE

2 2 6.333 6.363 0.030 1 TRUE

3 2 6.498 6.530 0.032 1 TRUE

4 5 6.696 6.776 0.080 1 TRUE

5 2 9.105 9.133 0.028 1 TRUE

6 18 10.425 10.578 0.153 1 TRUE

7 23 13.263 13.684 0.421 1 TRUE

8 22 20.292 20.892 0.600 1 TRUE

9 2 22.437 22.710 0.273 1 TRUE

10 28 24.351 24.930 0.579 1 TRUE

11 28 27.717 29.451 1.734 2 TRUE

12 30 32.139 32.722 0.583 1 TRUE

13 32 33.259 33.587 0.328 1 TRUE

14 34 34.607 35.473 0.866 1 TRUE

15 36 39.036 40.820 1.784 2 TRUE

16 37 43.260 43.963 0.703 1 TRUE

17 38 46.593 47.322 0.729 1 TRUE

18 38 50.652 52.445 1.793 2 TRUE

19 38 56.625 57.271 0.646 1 TRUE

20 39 60.519 62.216 1.697 2 TRUE

It is worth noting that four of the trials took two rounds, i.e., two executions of

Algorithm 3, to elect a leader. After thorough analysis, we realize that one of the

vehicles exited the simulation during the leader election, which resulted in a topology

change. Thus an additional round is required to reach consensus.

Table 3 is a summary of five experiments conducted. Notice the running time for

[31, 50] vehicles is actually smaller than [21, 30] vehicles. This is because in simulation,

a few more cases for [21, 30] vehicles required two rounds. Nonetheless, the execution

time for all cases is below 1 second.

27

 Table 3: Summary of Five Experiments for the Leader Election Protocol (third

version)

Number of vehicles [2, 10] [11, 20] [21, 30] [31, 50]

Average running time (s) 0.0682962963 0.435375 0.834273913 0.7639272727

 One of the problems encountered in the simulation is that when two or more

vehicles simultaneously start the Leader Election Protocol, a vehicle with a sub-optimal

proposal may occasionally be selected as leader. However, we noticed that even in such

cases, no more than one leader existed in the same group.

4.3 Group Management Evaluation

 Though the Leader Election Protocol is efficient and accurate, it does not provide

any property of group maintenance. For example, since no Leader Heartbeat message

is sent, vehicles recently entering the region will not be able to detect the existence of

the leader and therefore restart the leader election. As a result, 20 elections are executed

in a one-minute experiment. In this section, we will test the group management

protocols discussed from Section 3.3 to 3.7.

4.3.1 Group Management without Leader Handover

 In this experiment, in addition to the Leader Election Protocol, we enabled all

group management messages except Leader Handover. We run each experiment for 180

seconds and record important information. Table 4 shows the result from one

experiment.

 The start time of the Group Merging event is defined as the first timestamp at which

a conflict is discovered (there are Leader Heartbeats from two unique leaders). The end

time of the Group Merging event is defined as the timestamp at which the last member

in the group removes the leader resigned. We confirm correctness by checking if the

leader who resigned during merging is the one with a smaller id, which is the rule we

set to solve conflicts.

28

Table 4: A 150 s Experiment for Group Management Protocols (without Leader

Handover)

Event

number

Event

type

Number of

vehicles

Start time

(s)

End time

(s)

Time

elapsed

(s)

Number of

rounds Correctness

1

Leader

Election 2 6.650 6.669 0.019 1 TRUE

2

Leader

Election 2 7.013 7.034 0.021 1 TRUE

3

Leader

Election 2 7.937 7.957 0.020 1 TRUE

4

Group

Merging 4 8.046 8.066 0.020 NA TRUE

5

Group

Merging 6 8.977 9.032 0.055 NA TRUE

6

Leader

Election 3 9.290 9.351 0.061 1 TRUE

7

Group

Merging 9 10.386 13.412 3.026 NA TRUE

8

Leader

Election 18 13.778 14.093 0.315 1 TRUE

9

Leader

Election 33 48.362 48.96 0.598 1 TRUE

10

Leader

Election 40 98.819 99.416 0.597 1 TRUE

11

Leader

Election 36 151.949 152.873 0.924 1 TRUE

 At the initial stage of the experiment, vehicles enter the map in four directions and

form independent groups separately. Later, as the groups move toward the center of the

map, they start to merge into a larger group. The process continues until event 7 is

finished. Once the density of vehicles increases on the map, a single large group will

be formed. In the single large group, the leader being elected will never change until it

leaves the region. This explains why leader election occurs much less frequently in the

later part of the simulation. No Leader Handover is performed as this property is not

enabled.

29

Note in event 7 that we have an outlier in Time elapsed when compared to other

Group Merging events. After investigation, it turns out that the Leader Resignation

message was lost and the Group Merging process is not able to complete immediately.

However, due to LAMP property, after three consecutive missing heartbeats, the

members will automatically remove the resigned leader, which explains why event 7

terminates roughly 3 seconds after the groups start to merge.

4.3.2 Group Management with Leader Handover

 In this experiment, we enabled all group management messages including Leader

Handover Protocol (by LAMP). We run each experiment for 180 seconds and record

important information. Table 5 shows the result from one experiment.

 The start time of the Leader Handover event is defined as the timestamp at which

the leader broadcasts a NEWLEADER message in Algorithm 6. The end time of the

Leader Handover event is defined as the timestamp at which the last member in the

group removes the old leader. We confirm the correctness for Leader Handover by

checking if every member in the group changes the leader to the new leader.

 At the initial stage of the experiment, vehicles enter the map in four directions and

form independent groups separately. Later, as the groups move toward the center of the

map, they started to merge into a larger group. The process continues until event 6 is

finished. Once the density of vehicles increases on the map, a single large group will

be formed. In the single large group, the leader being elected will never change until it

performs a Leader Handover.

 In this simulation, we define that the leader will perform a Leader Handover

immediately after it passes the intersection. The rule for selection of a new leader gives

priority to the vehicles on the perpendicular road. As a result, a pattern will emerge: (i)

the leader waits at a red traffic light; (ii) the traffic light for leader turns from red to

green after the red cycle ends, and the traffic light for the perpendicular road turns from

green to red after the green cycle ends; (iii) the leader passes the intersection and hands

over the leadership to another vehicle waiting for red light on the perpendicular road;

and (iv) the new leader waits at the red traffic light and repeats from (i). Because the

30

periods for both red and green traffic lights are set to 25 seconds, the Leader Handover

should take place roughly every 25 seconds, which matches the observation in the latter

part of the simulation.

Table 5: A 150 s Experiment for Group Management Protocols (with Leader

Handover)

 Table 6 is a summary of five experiments conducted with all group management

protocols enabled. Note when calculating the average, we exclude the cases where

Event

number Event type

Number of

vehicles

Start

time (s)

End time

(s)

Time

elapsed

(s)

Number of

rounds Correctness

1

Leader

Election 2 7.244 7.276 0.032 1 TRUE

2

Leader

Election 7 7.574 7.88 0.306 1 TRUE

3

Group

Merging 9 8.279 9.104 0.825 1 TRUE

4

Leader

Election 16 13.844 14.284 0.440 1 TRUE

5

Leader

Election 3 20.114 20.158 0.044 1 TRUE

6

Group

Merging 19 21.168 21.369 0.201 NA TRUE

7

Leader

Handover 33 42.852 43.327 0.475 NA TRUE

8

Leader

Handover 35 61.287 61.511 0.224 NA TRUE

9

Leader

Handover 38 89.008 89.228 0.220 NA TRUE

10

Leader

Handover 34 113.193 113.420 0.227 NA TRUE

11

Leader

Handover 38 139.254 139.465 0.211 NA TRUE

12

Leader

Handover 40 163.404 163.633 0.229 NA TRUE

31

Leader Resignation message is lost. The LAMP property will take care of those

situations and the average running time is around 3 second. For the remaining cases,

the average is much less than 1 second.

Table 6: Summary of Five Experiments for Group Management Protocols

Event Group Merging Leader Handover

Average running time (s) 0.245 0.256

4.4 VTL Application

 In the last simulation, we apply our Leader Election Protocol and Group

Management Protocols to build a VTL application. In the simulation, we define the

leader to be the only vehicle allowed to change the traffic light signal. We also adopt

the idea from [7] and design a simple algorithm for the leader to follow as shown in

Algorithm 8.

Before passing the intersection:

 If the traffic light on my road is green

 Pass the intersection

 Else

 If my speed is below VThreshold

 Change the traffic light on the perpendicular road to red

 Change the traffic light on my road to green

 Pass the intersection

 Else

 Brake and slow down

After passing the intersection:

 If there is any vehicle on the perpendicular road

 Select a random vehicle from the perpendicular road

 Start Leader Handover Protocol

 Else

 Select a random vehicle

 Start Leader Handover Protocol

Algorithm 8: A Simple Algorithm for the Leader in a VTL Application

32

 The basic idea of Algorithm 8 is to allow the leader to change the traffic light of its

lane from red to green whenever the leader stops at a red light. However, in simulation,

it takes a long time before the velocity of the leader reaches 0. Therefore, a threshold

for velocity is defined, and all vehicles with speed lower than VThreshold will be

considered as stopped. In the experiments, we set VThreshold = 0.8 mile/hour.

 We run the same experiment five times with 120 s for each. All other conditions

are set the same as in Section 4.3.2 except that the traffic light signal is now controlled

by the leader. The passing time is defined as the period for a vehicle between entering

and leaving the map.

Table 7: Simulation with VTL Application

Virtual Traffic Light Simulation time(s) Vehicles passed Average passing time(s)

Trial 1 122 49 22.107

Trial 2 143 38 19.249

Trial 3 130 36 23.492

Trial 4 132 48 24.014

Trial 5 128 45 23.643

Final average passing time 22.501

For comparison, we conduct the experiment with the same parameters using

Periodic Traffic Lights. The period for both the red and green lights is set to 35 s, 25 s,

and 15 s respectively. For each Periodic Traffic Light, we simulate three trials to obtain

a more stable result.

Table 8: Simulation with Periodic Traffic Light (35 s)

Periodic Traffic Light (35 s) Simulation time(s) Vehicles passed Average passing time(s)

Trial 1 131 41 32.271

Trial 2 151 49 29.577

Trial 3 131 43 31.151

Final average passing time 31.000

33

Table 9: Simulation with Periodic Traffic Light (25 s)

Periodic Traffic Light (25 s) Simulation time(s) Vehicles passed Average passing time(s)

Trial 1 152 44 25.052

Trial 2 131 34 28.491

Trial 3 133 45 29.614

Final average passing time 27.719

Table 10: Simulation with Periodic Traffic Light (15 s)

Periodic Traffic Light (15 s) Simulation time(s) Vehicles passed Average passing time(s)

Trial 1 138 40 25.828

Trial 2 130 41 24.676

Trial 3 139 37 23.427

Final average passing time 24.644

 It is easy to observe from the results above, when compared to 15 s, 25 s, and 35 s

Periodic Traffic Light, our VTL application has 8.7%, 18.8%, and 27.4% reductions in

the average passing time for vehicles.

 It is also worth noting that the algorithm we adopted for traffic light signal control

is very simple, as it is not the focus of this thesis. In theory, it is possible to adopt a

more complicated strategy for traffic light control in order to achieve better

performance.

34

CHAPTER 5

DISCUSSION AND OPTIMIZATION

5.1 Communication Message Overhead

 In the current design of our protocol, the communication message overhead may

occur when a vehicle tries to propagate a message within the group. For example, when

the leader tries to propagate a Leader Heartbeat in the group through broadcasting,

many duplicate Leader Heartbeats will be rebroadcasted by members even if it is not

necessary.

 Creating a spanning tree within the group to help in propagating messages and

reducing overhead is definitely a good idea. However, as the spanning tree has been

studied extensively in other works and is out of the scope of this thesis, we will not

discuss such optimization. Instead, we will present two ideas for optimization using

geolocation information, which we adopt from the distance-based scheme and location-

based scheme in [14]. Note that in both scenarios we assume that vehicles are aware of

the maximum communication distance between vehicles.

 The first optimization prevents rebroadcasting if all neighbors can be reached by

the sender. For example, in Figure 7, A is the leader and is periodically broadcasting a

Leader Heartbeat for group maintenance. In standard settings, B, C, and D will

rebroadcast the Leader Heartbeat immediately after receiving the message, which is

unnecessary since all members in the group can receive the message directly from A.

However, under the first optimization, B will check its neighbor list and use the location

information stored for A, C, and D to determine whether C and D can hear the message

from sender A directly. Therefore, B can avoid sending the Leader Heartbeat again. C

and D will take similar measurements and avoid sending unnecessary messages. In this

scenario, the communication messages to propagate the Leader Heartbeat are reduced

from four to one.

35

Figure 7: Scenario for First Optimization

 The second optimization prevents rebroadcasting if any neighbor i, which cannot

be reached by the sender, has at least another neighbor j closer to i, and j can be reached

by the sender. For example, in Figure 8, A is the leader and is periodically broadcasting

a Leader Heartbeat for group maintenance. In standard settings, B and C will both

rebroadcast the Leader Heartbeat so that D will be able to receive the message, though

one of the rebroadcasts is unnecessary. However, under the second optimization, B will

check the neighbor list and realize C can receive message from A and is closer to D.

Therefore, B can avoid sending the Leader Heartbeat again. In the meantime, C will

check the neighbor list and realize D cannot receive the message from A and there is no

other node able to receive the message from A and closer to D. Therefore, C will send

the Leader Heartbeat again. For D, after receiving the message from C, it will check the

neighbor list and realize that both B and C can receive the message from C. Therefore,

D can avoid sending the Leader Heartbeat again. In this scenario, the communication

messages to propagate the Leader Heartbeat are reduced from four to two messages.

36

Figure 8: Scenario for Second Optimization

5.2 Neighbor List Reduction

 In our Leader Election Protocol, a vehicle is considered as a neighbor of another

vehicle if its BEACON message can be received. However, in dense network topology,

such as downtown Manhattan, the vehicles are extremely close to each other and may

have more than 30 neighbors. Since our protocol requires confirmation from every

neighbor in order to continue execution, a single message drop will delay the entire

election. In order to address such issue, two optimizations are proposed.

 The first optimization reduces the number of neighbors by setting a predetermined

maximum distance between vehicle pairs that can be considered as neighbors. For

example, in downtown Manhattan, such a number could be 30 m while 50 m~100 m

for a rural area. This method is extremely easy to implement, but may introduce

unnecessary group partitions once in a while.

 The second optimization reduces the number of neighbors by selectively erasing

vehicle pairs from each other’s neighbor list. For example, if vehicles A and C both find

that there is another vehicle B right in between them, then both A and C can remove

each other from their own neighbor list. This method is relatively difficult to implement

37

and may result in increase in group diameter, but it is effective in preventing group

partition.

38

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

 In this thesis, leader election and group management are studied in the context of

VANET. By adopting the idea from [13] and making improvements, a new Leader

Election Protocol is proposed. It takes advantage of two properties of the VANET: the

overhearing property of the wireless network reduces unnecessary communication

messages; and location information allows vehicles to closely track the status of

neighbors as well as perform leader handover. Furthermore, we present a set of group

management protocols, in which solutions for conflict, group partition, and group

merging are provided. Evaluation has shown that the Leader Election Protocol is able

to achieve high efficiency (< 1 s for Leader Election) and high accuracy, while the group

management protocols provide high efficiency (< 0.5 s for Group Merging and Leader

Handover) and high stability.

6.2 Future Work

 The next step of this study is to deploy the algorithms in real-world devices to test

its performance. It does not have to be on vehicles, for example, android-based robots

will be able to utilize the algorithm for leader election and share important data among

group members.

 In addition, as a continuity of the study, it would be interesting to extend the

algorithms to include shared memory management. Once the concept of shared memory

is integrated into the protocol, it will be very convenient to implement a VTL

application on top of it, which is essentially creating a multi-read single-write instance.

 Last but not least, as the technology advances, there are more and more applications

that can be implemented in the field of VANET. For example, an electronic brake light

alerts a driver when cars in front brake suddenly, even if sight of the brake light is

obscured by other vehicles. A supervisor vehicle, like a police vehicle, may be allowed

39

to access any driver’s public information without the need to stop the driver’s vehicle.

Our hope is that, with the technology studied in this thesis, some day these applications

will become available in our daily lives.

40

REFERENCES

[1] Hartenstein, H., and Laberteaux, K. P. (2008). A tutorial survey on vehicular ad hoc

networks. Communications Magazine, IEEE, 46(6), pp. 164-171.

[2] Fischer, M. J., Lynch, N. A., and Paterson, M. S. (1985). Impossibility of distributed

consensus with one faulty process. Journal of the ACM (JACM), 32(2), pp. 374-382.

[3] Santoro, N., and Widmayer, P. (2007). Agreement in synchronous networks with

ubiquitous faults. Theoretical Computer Science, 384(2), pp. 232-249.

[4] Schmid, U., Weiss, B., and Keidar, I. (2009). Impossibility results and lower bounds

for consensus under link failures. SIAM Journal on Computing, 38(5), pp. 1912-1951.

[5] Biely, M., Schmid, U., and Weiss, B. (2011). Synchronous consensus under hybrid

process and link failures. Theoretical Computer Science, 412(40), pp. 5602-5630.

[6] Gradinescu, V., Gorgorin, C., Diaconescu, R., Cristea, V., and Iftode, L. (2007,

April). Adaptive traffic lights using car-to-car communication. In Proceedings of the

IEEE Vehicular Technology Conference, pp. 21-25.

[7] Ferreira, M., Fernandes, R., Conceição, H., Viriyasitavat, W., and Tonguz, O. K.

(2010, September). Self-organized traffic control. In 7th ACM International Workshop

on Vehicular Inter-Networking, pp. 85-90.

[8] Nakamurakare, M., Viriyasitavat, W., and Tonguz, O. K. (2013). A prototype of

Virtual Traffic Lights on android-based smartphones. In Proceedings IEEE SECON,

pp. 236-238.

[9] Neudecker, T., An, N., and Hartenstein, H. (2013, December). Verification and

evaluation of fail-safe virtual traffic light applications. In Vehicular Networking

Conference (VNC), pp. 158-165.

[10] Holzmann, G. J. (1993). Design and validation of protocols: A tutorial. Computer

Networks and ISDN Systems, 25(9), pp. 981-1017.

[11] Fathollahnejad, N., Villani, E., Pathan, R., Barbosa, R., and Karlsson, J. (2013,

June). On reliability analysis of leader election protocols for virtual traffic lights.

In Dependable Systems and Networks Workshop (DSN-W), 2013 43rd Annual

IEEE/IFIP Conference on, pp. 1-12.

[12] Sommer, C., Hagenauer, F., and Dressler, F. (2014, March). A networking

perspective on self-organizing intersection management. In Internet of Things (WF-

41

IoT), 2014 IEEE World Forum on, pp. 230-234.

[13] Vasudevan, S., Kurose, J., and Towsley, D. (2004, October). Design and analysis

of a leader election algorithm for mobile ad hoc networks. In Network Protocols, 2004.

ICNP 2004. Proceedings of the 12th IEEE International Conference on, pp. 350-360.

[14] Tseng, Y. C., Ni, S. Y., Chen, Y. S., and Sheu, J. P. (2002). The broadcast storm

problem in a mobile ad hoc network. Wireless Networks, 8(2-3), pp. 153-167.

[15] Fernandes, R., Vieira, F., and Ferreira, M. (2012, November). VNS: An integrated

framework for vehicular networks simulation. In Vehicular Networking Conference

(VNC), 2012 IEEE, pp. 195-202.

[16] Henderson, T. R., Lacage, M., Riley, G. F., Dowell, C., and Kopena, J. (2008).

Network simulations with the ns-3 simulator. SIGCOMM Demonstration, 14.

42

APPENDIX A

EXAMPLE PSEUDO CODE FOR SIMULATION

An example pseudo code for the third version of Leader Election Protocol is

provided. If you are interested in the simulation source code, please contact Yixiao Nie

at nie4@illinois.edu or lucasnyx37@gmail.com to request access.

INITIALIZATION:

Parent=-1, In_election=false, Leader=-1, Proposal=-1, ProposalId=-1, AckList={},

ChildrenList={}, NeighborList=get_neighbors(), Vid=get_my_id();

BEGIN:

If (is_source()) {

 broadcast(ELECTION(“Parent”=-1, “Sender”=Vid));

 in_election=true;

}

While(an ELECTION packet p is received) {

 AckList.add(p.Sender);

 If (!In_election) {

 In_election=true;

 Parent= p.Sender;

 broadcast(ELECTION(“Parent”= Parent, “Sender”=Vid));

 } else {

 If (Vid == p.Parent) ChildrenList.add(p.Sender);

 }

 If (AckList == NeighborList) break;

}

Proposal = get_proposal_value();

ProposalId = Vid;

While(1) {

 If (ChildrenList == < >) {

 broadcast(PROPOSAL(“Proposal”=Proposal, “ProposalId”=ProposalId,

“Sender”=Vid);

 break;

 }

 If (a PROPOSAL packet p is received) {

 If (ChildrenList.has(p.Sender)) {

 ChildrenList.remove(p.Sender);

 If (Proposal < p.Proposal or (Proposal == p.Proposal and ProposalId <

mailto:nie4@illinois.edu
mailto:lucasnyx37@gmail.com

43

p.ProposalId) {

 Proposal = p.Proposal;

 ProposalId = p.ProposalId;

 }

 }

 }

}

If (is_source()) {

 Leader = ProposalId;

 In_election=false;

 Broadcast(LEADER(“Leader”= Leader);

}

If (In_election and a LEADER packet p is received) {

 Leader = p.Leader;

 In_election=false;

 Broadcast(LEADER(“Leader”= Leader);

}

END.

(NOTE: here we omitted the code that sets a timeout for sending ABORT message in

case of failure)

