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ABSTRACT

Changes in cis-regulatory element composition that result in novel patterns

of gene expression are thought to be a major contributor to the evolution

of lineage-specific traits. Although transcription factor binding events show

substantial variation across species, most computational approaches to study

regulatory elements focus primarily upon highly conserved sites, and rely

heavily upon multiple sequence alignments. However, sequence conservation

based approaches have limited ability to detect lineage-specific elements that

could contribute to species-specific traits. In this thesis, we describe a novel

framework that utilizes a birth-death model to trace the evolution of lineage-

specific binding sites without relying on detailed base-by-base cross-species

alignments. Our model was applied to analyze the evolution of binding sites

based on the ChIP-seq data for six transcription factors (GATA1, SOX2,

CTCF, MYC, MAX, ETS1) along the lineage toward human after human-

mouse common ancestor. We estimate that a substantial fraction of binding

sites (58-79% for each factor) in humans have origins since the divergence

with mouse. Over 15% of all binding sites are unique to hominids. Such

elements are often enriched near genes associated with neural-related func-

tions and pathways, and harbor more common SNPs than older binding sites

in the human genome. These results support the ability of our method to

identify lineage-specific regulatory elements and help understand their roles

in shaping variation in gene regulation across species.
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CHAPTER 1

INTRODUCTION1

Changes in gene regulation play a key role in the evolution of morphological

traits (Wray, 2007; Davidson, 2001; King and Wilson, 1975). At the level

of transcription, gene expression is controlled via transcription factor (TF)

proteins that selectively bind to cis-regulatory elements in a sequence-specific

manner (Davidson, 2001; Wray et al., 2003). Utilizing chromatin immuno-

precipitation of specific TFs followed by high-throughput sequencing (ChIP-

seq), recent studies showed that the evolution of these transcription factor

binding sites (TFBS) is highly dynamic, with sites differing a great deal even

within mammals (Odom et al., 2007; Schmidt et al., 2010; Bourque et al.,

2008; Scally et al., 2012; Borneman et al., 2007).

Despite substantial experimental evidence for rapid divergence of regula-

tory protein-binding events across species, computational models designed to

analyze regulatory elements using cross-species comparisons have focused pri-

marily upon phylogenetic footprinting approaches, in which putatively func-

tional regulatory elements are identified according to sequence conservation

(Kasowski et al., 2010; Siepel et al., 2005; Hardison et al., 1997; Blanchette

et al., 2006; Kellis et al., 2003; Margulies et al., 2003). Previous compu-

tational studies have inferred the evolution of regulatory elements using,

for example, the emergence of new conserved elements specific to a partic-

ular clade in the phylogeny (Lindblad-Toh et al., 2011) or lineage-specific

alterations leading to a loss-of-function phenotype (Lowe et al., 2011; Hiller

et al., 2012). Although such approaches have been helpful in understand-

ing lineage-specific regulatory element evolution, all inherently rely upon

fixed cross-species alignments, which are frequently of low quality within

1This study previously appeared as an article in the Journal of PLoS Computation
Biology. The original citations is as follows: Yokoyama KD†, Zhang Y† and Ma J. Tracing
the Evolution of Lineage-Specific Transcription Factor Binding Sites in a Birth-Death
Framework. PLoS Computational Biology, 10(8):e1003771, 2014 (†: equally contributed
Author)
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non-coding regions in the genome (McLean et al., 2011; Chen and Tompa,

2010; Kim and Ma, 2011). Previous studies have estimated that more than

15% of aligned bases within human-mouse whole-genome alignments are in-

correct (Majoros and Ohler, 2010) and the error rate increases when more

species are involved (McLean et al., 2011). Ancestral reconstruction, which

is sensitive to details of the multiple alignment, is a particularly challenging

problem for non-coding regions (He et al., 2009; Lunter et al., 2007). As

a consequence, cross-species comparisons of non-coding sequences are lim-

ited in their ability to study regulatory sequence evolution, particularly in

cases where the elements are selected for novelty or newly-derived. Such

newly-derived regulatory elements are not rare; indeed, analyses using hu-

man population variation data from the 1000 Genomes Project (Margulies

et al., 2003) have shown that human genomic locations under selection un-

dergo considerable turnover and frequently lie outside mammalian-conserved

regions (Blanchette et al., 2004). Yet, systematic identification of binding

sites for specific TFs and assessment of their conservation and prevalence

using cross-species comparisons remains a challenging problem.

In this work, we introduce a novel evolutionary framework through which

lineage-specific TFBSs can be inferred on a genome-wide scale. In contrast to

conservation-based approaches (Blanchette et al., 2006; Lindblad-Toh et al.,

2011; 1000 Genomes Project Consortium et al., 2010), we utilize a birth-

death model to infer ancestral states of a given motif without the use of

the base-by-base alignment details in the underlying cross-species sequence

alignment (details in Chapter 2). Gains and losses of TFBS have been explic-

itly used both to improve cross-species sequence comparisons and to detect

cis-regulatory modules, although such models are usually framed within the

context of an alignment (Kim and Ma, 2011; Ward and Kellis, 2012). A more

similar alignment-free model was previously used to measure the overall rate

of TFBS creation along different lineages (Xie et al., 2005). In this work,

we instead applied our framework to infer lineage-specific TFBS, estimat-

ing the branch of origin of each individual TFBS for six TFs. Chapter 3

presents results about studying patterns for TFBS with different branches of

origin, including target genes of the newly-derived sites and relationship with

within-human variation. Our results provide strong support that this novel

method can help identify lineage-specific regulatory elements, a first step to-

wards understanding the role of regulatory element evolution in shaping the
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variation of gene regulation across species. Finally in Chapter 4 we provide

a brief summary of this thesis, its limitations and directions of future work.
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CHAPTER 2

METHOD

2.1 Method Overview

Our goal is to detect lineage-specific rates of TFBS evolution and the branch

of origin for individual TFBS. Here, lineage means any ancestral branches in

the phylogeny or a branch leading toward any modern species. Our approach

is to model TFBS evolution using a birth-death framework, in which indi-

vidual TFBSs can be gained, lost, or conserved within a given lineage during

evolution. The rate of TFBS creation (named birth rate) and loss (named

death rate) are first estimated from a set of orthologous sequences, and are

subsequently used to trace the evolutionary origin of individual TFBSs at

the sequence level. The birth rate (α) for a given motif represents the proba-

bility at which a TFBS appears at a single unoccupied site in a given year of

evolutionary time. Similarly, the death rate (β) represents the rate at which

an existing TFBS is lost per year. The method considers only TF motif

counts within orthologous sequences across species, and therefore does not

require an accurate base-to-base multiple sequence alignment. This frame-

work allows us to reconstruct the ancestral states for each TFBS throughout

the genome, providing a distribution for the branch of origin of the binding

sites genome-wide. The main scheme of our method is shown in Figure 2.1.

For any set of orthologous sequences across species and a known phylogeny,

we first estimate birth and death rates according to the observed numbers of

TF motif occurrences within each species. Such orthologous sequences can,

for instance, be obtained using a genome-wide multiple species alignment

(MSA). However, the underlying base-level alignment is ignored once the

orthologous sequences are obtained, and subsequently the model considers

only the number of TF motifs within each sequence. Thus, the method op-

erates independently of any details within the alignment once the sequence
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correspondence between species (i.e., orthologs) is obtained. Every node in

the phylogeny is then associated with a (random) variable Qx, which repre-

sents the number of occurrences of the TFBSs at that node. The value of

Qx is known for each leaf node in the tree for any given ortholog set. Birth

and death rates of a given motif can then be estimated by maximizing the

likelihood across the entire data set, taking into account both branch lengths

as well as the size of the sequence region (see Section 2.3 for mathematics

details). Evolutionary rates were estimated using an iterative approach, but

were found to be extremely robust according to the initial parameter set-

tings. Once the birth and death rates are determined, we can use these rates

to trace the branch of origin of individual TFBSs. This can be done by firstly

reconstructing the most likely ancestral state at each node of the phylogeny;

i.e., the value of Qx that maximizes the likelihood of the data for each in-

dividual ChIP-seq peak region. This provides the most likely number of TF

motif occurrences at each node, and allows us to trace the most likely branch

of origin for individual site. The overall procedure of our method works as

follows.

1. We identify motif occurrences under human ChIP-seq peak region and

its orthologous sequences within the MSA block.

2. We estimate and maximize the likelihood for each ancestral node in the

phylogeny given the motif occurrences in the descendant species in a

iterative way.

3. We determine the branch of origin for the TF-bound motif within ChIP-

seq peak regions.

2.2 Determine motif position in extant species

In this study, we restrict motif search within human ChIP-seq peak region.

ChIP-seq data set can be got from public sources such as ENCODE (EN-

CODE Project Consortium, 2011). We then obtained orthologous sequences

across 46 vertebrate species genome-wide corresponding to ChIP-seq peaks

in humans using the 46-way multiz alignments (Miller et al., 2007) available

at the UCSC Genome Browser (Karolchik et al., 2004). To determine the
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binding motif of each TF and to determine the branch of origin for each

TFBS, we used the (−100,+100) region window relative to the summit of

the peak in humans.

TF binding motifs were predicted by clustering 7-mers with increased

branch-specific evolutionary rates using the likelihood ratio test as shown

in Section 2.3.5. Since the minimum length of most motifs in the JASPAR

Core Database is approximately 7bp (Sandelin et al., 2004), for each TF we

tested for increased lineage-specific evolutionary rates across 7-mer seeds. To

circumvent an exhaustive search across the comprehensive list of all 7-mer

motifs, we limited our motif scan to the 1500 most frequently occurring 7-

mers in each data set, which was generally the number of 7-mers exhibiting

statistically significant over representation within the sequences. We then

iteratively clustered significant 7-mers (P-value < 1e−10 according to like-

lihood ratio test) that are predicted along a branch ancestral to humans.

At each step, a 7-mer was placed into an existing cluster if it was found

to similar to another 7-mer in the cluster with at most one mismatch. As

many 7-mers were predicted under the threshold, we filtered redundant clus-

ters containing an identical 7-mer, keeping the cluster producing the highest

P-value. Each cluster thus comprised a set of aligned 7-mers, which was

condensed into a single consensus sequence using criteria similar to (Matys

et al., 2003; Cavener, 1987), where each column was assigned single residue

if it comprised at least 50% of the total score and at least twice the score of

every other nucleotide. In the remaining cases, double nucleotide degeneracy

was assigned to sites in which at least 75% of the total score was attributed

to two nucleotides, otherwise the site was considered fully-degenerate.

From the consensus sequences generated from the previous step, PWMs

were generated using an iterative approach in which the initial consensus

sequence was converted to a PWM. This generates a list of k-mer motifs,

and motifs are allowed to be on either strand. Based on this list, an initial

PWM can be constructed using the observed data within the (−100,+100)

window surrounding all ChIP-seq peaks. A new cutoff is then set, using a

score:

S = log

(∏k
i=1 cj(wi)∏k
i=1 b(wi)

)
(2.1)

where cj(wj) is the frequency of nucleotide wi in a given k-mer w = w1w2...wk

that is a potential binding site, and b(wi) is the background frequency of
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nucleotide wi.

This score represents the quality of the match of the potential k-mer over

the expected match. The threshold is set so that, with each iteration, the

score of the lowest-ranking k-mer is equal-to or above that of the new mo-

tif. In other words, we want to include a large number of peaks using a

small number of k-mers. PWMs are updated after each iteration using this

approach, until the list of k-mers no longer changes between successive iter-

ations. The final PWM is then used to generate a final list of k-mers. The

threshold is set to the score at which the number of peaks containing a bind-

ing site increases less than expected from a random list of k-mers, and also

includes at least 60% of the total number of peaks.

Finally, we scan for motifs in orthologous regions in extant species within

(−100,+100) window centered on human ChIP-seq peaks. The number of

motif occurrences in extant species was used as the input of our birth-death

model.

2.3 Birth-death framework

The foundation of our approach to estimate genome-wide rates of evolution

for a given motif is based on a birth-death framework (formally, a quasi birth-

death process (Cavender, 1978)), similar to that used to measure the timing

of accelerated motif evolution as in (Yokoyama and Pollock, 2012). In our

modal, we assume the evolution of TFBS can be modeled as a combination of

birth and death events which are determined by two parameters. The birth

rate (α) represents the rate at which a new motif occurrence appears at any

unoccupied site per year, while the death rate (β) represents the rate at which

an existing site is lost per year. Given a set of orthologous sequences and

a known phylogeny, we estimate birth and death rates for the motif across

the phylogenetic tree using a maximum likelihood approach. The following

sections will explain each step in details.

2.3.1 Determining the probability of TFBS turn over

Suppose w(t) is the probability that a TFBS exists in time t. The probability

of observing binding site at same position in time t + 1 under birth-death
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model is then:

w(t+ 1) = α(1− w(t)) + (1− β)w(t) (2.2)

The rate of change of probability w(t) over time t can be written as w′(t) =

w(t+ 1)−w(t), which gives Equation 2.3 by taking the differential equation

of Equation 2.2:

w′(t) = α− (α + β)w(t) (2.3)

Solving differential Equation 2.3 gives two solutions depend on whether

there is a binding site at time t = 0. We denote those two solutions by

u(t) and v(t), where u(t) assumes that the motif was present at this site at

time t = 0 (w(0) = 1), while v(t) assumes that the motif did not exist at

time t = 0 (w(0) = 0). It is noted that both u(t) and v(t) are solutions

for Equation 2.3, both represent the probability that the motif exists at a

specific position after time t, differing only in the initial conditions. So the

solutions of Equation 2.3 give:

u(t) =
1

α + β

[
α + βe−(α+β)t

]
(2.4)

and

v(t) =
α

α + β

[
1− e−(α+β)t

]
(2.5)

In a region with N nucleotides, suppose there are i occupied binding sites

at time t = 0, then the probability that k binding sites remain after time t

can be derived from probability mass function of binomial distribution:

Ui,k(t) =
i!

(i− k)!k!
u(t)k(1− u(t))i−k, k ∈

[
0, i
]

(2.6)

Similarly, the probability that there are b binding sites generated from

N − i unoccupied nucleotide sites will be:

VN−i,b(t) =
(N − i)!

(N − i− b)!b!
v(t)b(1− v(t))N−i−b, b ∈

[
0, N − i

]
(2.7)

The transition probability pij(t) represents the probability that the given
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region have j binding sites after time t with initial binding site number i:

pij(t) =

min(i,j)∑
k=0)

Ui,k(t) · VN−i,j−k(t) (2.8)

Here, the sum is over all possible values k, where k represents the number of

motif occurrences at time t among the sites that were originally occupied at

time t = 0

2.3.2 Calculating the likelihood of the data

Given the birth and death rates (α and β) across the tree (which are esti-

mated using the method described in Section 2.3.4), we can calculate the like-

lihood of the data using Felsensteins pruning algorithm (Felsenstein, 1973).

Let us first consider data from a single sequence. We let θ = [α, β] represent

the paramter vector comprising the birth and death rates, and let DY repre-

sent the data downstream of a node Y in the phylogeny. Let Z1, Z2, ..., Zm be

the daughter nodes of Y , occurring at times tZ1 , tZ2 , ...tZm relative to parent

node Y, respectively.

If random variable Qy represents the number of motif occurrences at node

Y , the likelihood xY (i; θ) = Pr(DY | Qy = i; θ) of the data downstream of

Y , assuming i motif occurrences exist at node Y can be obtained recursively.

This likelihood is given by:

xY (i; θ) =
m∏
k=1

∑
j

pij(tZk
) · xZk

(j; θ), (2.9)

where the inner sum is across all possible values for j, corresponding to the

number of motif occurrences at daughter node Zk. If node Z is an extant

lineage, the probability xZ(j; θ) is equal to 1 if we actually observe j motif

occurrences within the sequence, otherwise the likelihood is zero.

The likelihood of the data can therefore be obtained recursively by deter-

mining the values x(i; θ) progressively for each node farther up the tree. The

log-likelihood L(D(k); θ) for the k-th sequence is then given by:

L(D(k), θ) = log
[∑

j

P (j) · xR(j; θ)
]
, (2.10)
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where R is the root node and P (j) is the prior probability that j binding sites

exist in a single sequence. For our implementation, prior probabilities P (j)

was set to the Poisson distribution: P (j) = λje−λ/j! where λ is the mean

number of motif occurrences per sequence. The total log-likelihood L(D : θ)

is then the sum L(D; θ) =
∑n

k=1 L(D(k); θ) across each of the n regions.

2.3.3 Determining the optimal ancestral states

We can determine the most likely ancestral states using the computed values

for x(j; θ) at each node in the phylogeny. At the root node R, the most

likely ancestral state is the one that produces the highest likelihood; that is,

the value of j that maximizes the expression qR = argmaxjP (j) · xR(j; θ).

Progressively moving down the tree, if the most likely number of motif occur-

rences at parent node Y is qY , then the optimal number of motif occurrences

qZ at a daughter node Z is given by:

qZ = argmaxjxZ(j; θ) · pqY j(tZ), (2.11)

where tZ is the time from node Y to node Z.

2.3.4 Birth-death rate estimation

Birth and death rates can be estimated using a maximum-likelihood ap-

proach. Namely, we use an EM-based approach (Dempster et al., 1977)

to iteratively optimize the likelihood of the data D given the paramters

θ = [α, β]. We begin with an initial estimate θ(0) for the birth-death rates,

generated by determining empirical birth-death rates after conducting an-

cestral reconstruction using parsimony (in our analysis, we found that the

optimized parameters were not sensitive to the initial estimates). We deter-

mine the most likely ancestral state at each node given the initial parameter

values. We then determine the observed number of births and deaths accord-

ing to these optimal ancestral states, providing new estimates for the birth

and death rates θ(1) = [α(1), β(1)]. We then continue the process, using the

previous parameter estimates θ(i) at each iteration to estimate the optimal

ancestral states and obtain more optimal estimates of the birth and death

rates θ(i+1) until convergence (i.e., where
∥∥θ(i+1) − θ(i)

∥∥2 falls below a certain

10



threshold).

2.3.5 Assessing branch-specific deviations in birth-death rates

To determine motifs or k-mers that exhibit branch-specific differences in

birth-death rates along a specific lineage, we use a likelihood-ratio test.

Namely, we compare the total log-likelihood L(D; θ0) of the data accord-

ing to the null model θ0 = [α, β], in which birth-death rates α and β are

constant throughout the phylogeny, to the log-likelihood L(D; θA) of an al-

ternative model θA = [α, β, αA, βA], in which birth-death rates αA and βA

vary along a single branch relative to the rest of the phylogeny. For both mod-

els we estimate the parameters θ0 and θA according to maximum-likelihood

as described in aforementioned birth-death model. Our framework meets

regularity conditions, and thus the scaled deviance 2[L(D; θA) − L(D; θ0)]

follows a chi-squared distribution with |θA| − |θ0| degrees of freedom (David-

son, 2001). P-values representing the statistical significance of lineage-specific

acceleration along a specific branch can thus be determined using an F-test.

2.4 Method Evaluation

We evaluated the performance of our model in predicting the age of TFBS

as compared to traditional methods based on phylogenetic footprinting ap-

proaches. To make a fair comparison, we first constructed a benchmark

data set based on ChIP-seq data generated in human-mouse analogous cells

used from ENCODE project. Positive cases (conserved TFBS originated be-

fore human-mouse common ancestor) are 200bp regions centered on human

ChIP-seq peak summit that satisfy the following requirements: 1) For the

same TF, there exists ChIP-seq peak in mouse analogous cells with mouse

peak summit within +/-200bp of the human peak summit; and 2) TFBS ex-

ist in both human and mouse peak region. Negative cases (TFBS originated

after human-mouse common ancestor) are 200bp regions centered on human

ChIP-seq peak summits that do not have shared peaks in mouse and do not

have TFBS in mouse orthologous region.

We compared our method with phylogenetic footprinting methods at both

element level (using MotifMap (Xie et al., 2009)) and module level (using

11



PReMod (Blanchette et al., 2006)). Since phylogenetic footprinting ap-

proaches only predict whether a TFBS is conserved in a phylogeny but not

provide information of specific lineage where the TFBS originated from, we

conducted our evaluation by comparing the ancestral TFBS (i.e., the ones

conserved between human and mouse) predicted by our method with the

predictions from MotifMap and the predictions from PReMod. We used two

windows sizes, ± 15bp and ±, 30bp, in order to directly compare with Mo-

tifMap (±15bp shift size). True positive (TP) means an ancestral TFBS

(originated before human-mouse last common ancesotr) is predicted under

positive benchmark data set defined above. False negative (FN) means no

ancestral TFBS is found under positive benchmark data set. True negative

(TN) and false negative (FN) are defined similarly using negative benchmark

data set.

2.5 Figures and Tables
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CHAPTER 3

RESULTS

We applied our birth-death probability model to six TF ChIP-seq data,

namely GATA1, SOX2, MYC, MAX, ETS1, and CTCF based on previ-

ous published data (Chen et al., 2008; Lister et al., 2009; ENCODE Project

Consortium, 2011). Here, ChIP-seq data was used because it is now com-

monly used to map in vivo TF occupancy genome-wide (Johnson et al.,

2007) and could reduce the false positive of searching TF occupancy using

only motif PWMs. These TFs were chosen, in part, for their diverse func-

tional attributes, their well-documented binding motifs, and the availability

of ChIP-seq data in analogous cell types in human and mouse (see Section

2.4 for how we build benchmark data for evaluation).

Based on the phylogenetic tree we used from UCSC Genome browser, each

binding site was thus either inferred to be present in the common human-

mouse ancestor, or a more recent lineage leading to human. In order to

assess the performance of our model, we first compared our predictions with

other computational predictions made by footprinting based method and

general conservation score such as PhyloP. It should be noted footprinting

method usually only predict whether a TFBS is conserved in a phylogeny,

while our model actually can also provide information of specific lineage

where a TFBS originated from. Next, we further assessed our prediction

using human and mouse ChIP-seq data from analogous cell type. Finally,

we studied genomic functional patterns for TFBS associated with different

branch of origin, including potential nearby target genes and relationship

with human common variations.

The model framework and its motivations are illustrated in Figure 3.1.

Figure 3.1(A) shows one scenario where the binding site was introduced

to the genome through transposable elements (TEs) insertion followed by

point mutation, which is most likely branch of origin of this site under our

model. Figure 3.1(B) shows an example that our method is able to identify
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cases of TFBS turnover within stationary modules that might not otherwise

be detected using human-mouse ChIP-seq data direct comparisons. In this

genomic region, there is a human GATA1 binding site originating on the

ancestral primate lineage and a GATA1 binding site specific to mouse and

rat. Although the ChIP-seq peaks appear in the same location between hu-

man and mouse, our model can predict such lineage-specific events (which

is also reflected in the cross-species alignment). Again, our algorithm pre-

dicted these branches of origin accurately without base-by-base details of

cross-species alignment.

3.1 Comparison with other methods

First, we compared the sequence level conservation of predicted TFBS ac-

cording to their predicted branch of origin. We used the PhyloP mammalian

conservation scores (Pollard et al., 2010) available at the UCSC Genome

Browser to determine the conservation level for TFBS in human. For a spe-

cific TF, we first computed the average PhyloP score (X) in each ChIP-seq

peak and then calculated the average score (M) as well as standard devia-

tion (SD) across all peaks in the genome. We then grouped the binding sites

according to their branch of origin (in four groups: Hominid-specific, Simian-

specific, Primate-specific, and Eutherian-specific). Finally, we calculated the

Z-score, i.e. (X −M)/SD) and compared Z-score distributions across four

age groups. As expected, older binding regions show higher sequence level

conservation than younger ones (Figure 3.2). These results suggest that our

method can identify more recent, less-conserved TFBS, without relying on

sequence-level conservation details.

Additionally, to further demonstrate the effectiveness of our method in

identifying conserved TFBS, we directly compared with methods that use

phylogenetic footprinting approaches. We compared with phylogenetic foot-

printing methods at both element level (using MotifMap (Xie et al., 2009)

which is based on the method used in (Stark et al., 2007; Xie et al., 2007;

Kheradpour et al., 2007)) and module level (using PReMod (Blanchette et al.,

2006)). For the MotifMap method, we chose 1.91 or 40% BBLS score (equal

to 60% confidence level according to (Stark et al., 2007; Xie et al., 2007)) as

threshold to call a conserved TFBS. For PReMod method, ancestral regions
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are defined as regulatory modules shared between human and mouse. We

evaluated sensitivity (Equation 3.1), specificity (Equation 3.2), and accuracy

(Equation 3.3) of these three methods.

Sensitivity =
TP

TP + FN
(3.1)

Specificity =
TN

TN + FP
(3.2)

Accuracy =
TP + TN

TP + FN + TN + FP
(3.3)

The definition of TP, FN, TN, FP can be found in Section 2.4.

Overall, our method outperformed both MotifMap and PReMod in terms

of accuracy (Table 3.1) . In addition to results from a fixed threshold for

MotifMap used in the (Table 3.1) , we also plot the ROC curves when different

threshold scores were used in MotifMap (Figure 3.3). For all TFs, our method

outperformed MotifMap.

3.2 Substantial number of human TFBSs have recent

origins in primates

Using our approach, we sought to determine the branch of origin for each

human binding site for the six TFs. The distribution of the branch of origin

for each TFBS is shown in Figure 3.4. Notably, between 58-79% of all human

TFBSs had inferred origins after the human-mouse split.

To assess the accuracy of the age estimates, we compared our results to

ChIP-seq data from human and mouse. Using analogous cell types across

species, we determined the amount of overlap between human ChIP-seq peaks

and ChIP-seq peaks in the orthologous regions in mouse. A human ChIP-

seq peak was considered to be shared with mouse if its summit was within

200bp of a mouse ChIP-seq peak summit in the orthologous region (note that

the mouse ChIP-seq data were not the input our method). The amount of

overlap was assessed separately for regions containing a human binding site

present in the common human-mouse ancestor and for regions that are not

ancestral.

We emphasize that, as illustrated previously in Figure 3.1, ChIP-seq peaks

shared across human and mouse can often contain TFBSs that are genuinely

16



lineage-specific, since ChIP-seq peaks span a relatively broad region and

can contain instances of TFBS turnover within static modules. In addition,

human-specific ChIP-seq peaks can also contain ancestral binding sites, since

such sites can either be lost (non-conserved) along the mouse lineage or may

not be bound by the TF along that lineage.

Table 3.2 shows the amount of overlap in ChIP-seq peaks between hu-

man and mouse according to the estimated branch of origin of the TFBSs.

Human peaks containing predicted ancestral TFBSs were far more likely

to overlap with bound regions in mouse than peaks containing only pre-

dicted lineage-specific sites. Between 24-41% of human peaks that over-

lapped with a peak for the same TF in mouse contained only predicted

lineage-specific TFBSs, while 59-76% of shared peaks contained a predicted

ancestral TFBS. Thus, there was a clear enrichment for TFBSs predicted to

be ancestral among the ChIP-seq peaks shared between human and mouse.

Among human-specific ChIP-seq peaks, a substantially greater number con-

tained only lineage-specific TFBSs than sites predicted to be ancestral to

human and mouse.

Although a relatively sizeable portion of shared ChIP-seq peaks contained

only TFBSs predicted to be lineage-specific, in the majority of cases (>90%)

the mouse TFBS did not occur within in sequence region orthologous to the

human peak region used, but was instead offset to a non-overlapping region

within a mouse peak. Very few of these TFBSs actually aligned across the

two species, compared with those with predicted ancestral origin.

3.3 Within-species variation is higher among TFBSs of

more recent origin

Recent work has reported a substantial difference between genomic locations

that are conserved across species versus those conserved within the human

population (Ward and Kellis, 2012). Thus, we compared human variation

data to the relative age of the TFBSs. Comparing the overall frequency of

common SNPs in humans among TFBSs originating at different times of evo-

lution showed that a substantial fraction of human-specific TFBSs contained

common SNPs, comprising over 6% of all human-specific TFBSs (Figure

3.5). This is much higher than the total fraction of TFBSs overlapping with

17



a common SNP, at a median of less than 3% across all six factors.

Since substantial variation exists in TF-binding events between human

individuals (Kasowski et al., 2010), this high amount of variation among

human-specific binding sites may partially reflect the fact that some TFBSs

inferred to be human-specific may not be shared by the entire human popu-

lation. However, recently-derived TFBSs in hominids were also substantially

enriched for common SNPs, even when excluding human-specific TFBSs. For

instance, among hominid-specific binding sites that are not human-specific,

with a median of almost 4% of all sites. As these sites are shared across

species, they cannot be fully explained by variation within the population.

In contrast, common SNPs were consistently low among TFBSs with origins

prior to hominids (Figure 3.5). Note that this observation was not biased by

the SNP density surrounding the binding sites (Figure 3.6).

3.4 Hominid-specific binding sites target specific

biological processes

To determine potential functions for the newly derived binding sites, we

tested whether genes predicted to be targeted by binding sites with recent

origins in hominids were involved in specific biological processes or pathways.

Such enrichment was determined for genes near hominid-specific binding sites

compared to the total list of protein-bound sites for each factor, where each

TFBS was mapped to the nearest TSS, up to a distance of 100kb. This

allowed us to assess potential lineage-specific functions of these sites relative

to sites of more ancient origin.

Genes located nearest to hominid-specific binding sites were more fre-

quently enriched for neural and sensory-related functions, and were in many

cases involved in neurological pathways (Table 3.3). CTCF, MYC, and SOX2

target gene sets were all enriched for GO categories involved in sensory per-

ception, while GATA1, MYC, ETS1, and MAX were enriched for neural

development and differentiation categories. Among the six factors, neural-

related functions are only well-documented for SOX2, which is involved in

neuronal-cell maintenance (Giorgetti et al., 2012; Cavallaro et al., 2008) and

whose hominid-specific target sites are enriched genes involved in sensory

perception. Similarly, genes in proximity to hominid-specific binding sites
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for CTCF and MYC were enriched for sensory perception processes and

pathways, particularly those related to olfaction, and in the case for MYC,

hominid-specific target genes were also enriched for genes involved in synapse

assembly and receptor clustering and binding. Hominid-specific binding sites

for GATA1, most commonly known for its role in erythroid differentiation

(Pevny et al., 1995), were also found enriched near genes involved in axon

extension of neural cells. For ETS1, hominid-specific binding sites were near

genes involved in spinal cord neuron differentiation, ventral spinal cord de-

velopment, and behavioral fear response.

3.5 A TFBS turnover event

Using our framework, we then utilized genome-wide chromatin data to search

for potential functional consequences driven by birth or death of specific

lineage-specific TFBS. We intersected the lineage-specific TFBSs with pre-

dicted human enhancer regions marked by ChromHMM model (Ernst and

Kellis, 2012) as well as in vivo verified enhancers listed in the VISTA En-

hancer Browser (Visel et al., 2007). Figure 3.7 shows a potential functional

take-over through TFBS turnover inside an enhancer after human-mouse di-

vergence. At the sequence level, two MAX binding sites were identified by

our method with an ancestral one and a primate-specific binding site emerg-

ing after human-bushbaby split (Figure 3.7). Here these two MAX binding

sites are also MYC binding sites since MAX and MYC have very similar

motif (their ChIP-seq peaks overlap in Figure 3.7). The orthologous region

of predicted primate-specific MAX/MYC binding site has no MAX or MYC

ChIP-seq signal at all in mouse, which is consistent with our lineage-specific

prediction. Since the young MAX/MYC binding site only locates 1,700bp

upstream of the ancestral one and ChIP-seq intensity of ancestral binding site

is much weaker in human compared to mouse, this is likely to be a turnover

of MAX/MYC binding site within the enhancer. Then we asked whether the

function of predicted enhancer was conserved between human and mouse.

Interestingly, despite the potential turnover of MAX/MYC binding site in

the sequence level, the mouse orthologous region of predicted enhancer was

found to drive reproducible LacZ expression in E11.5 mouse blood cell as

demonstrated by in vivo transgenic mouse embryos essay based on VISTA
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Enhancer Browser, which confirms that the predicted enhancer also functions

as an enhancer in mouse. It certainly remains to be solved whether this en-

hancer regulates the same genes in human and mouse and why the ChIP-seq

signal on ancient MAX/MYC binding site is much weaker than the younger

one in human. Nevertheless, this example demonstrates the ability of our

method to compare functional level dynamics with sequence level difference

in an evolutionary framework.

3.6 Figures and Tables
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(A)

Present (# of TFBS = 1)

Absent  (# of TFBS = 0)

Branch of Origin

DNA

chr2
SPOPL

SINE

LINE

LTR

hg19 139,290,000 139,295,000 139,300,000

GATA1

ChIP-seq

GATA1

binding motif

Human GAATCTATAGATAACACAAGCAGTTCA

Chimp GAATCTATAGATAACACAAGCAGTTCA

Gorilla --------------- ------------

Orangutan GAATCTATAGATAACACAAGCAGTTCA

Macaque GAATCTATAGCTAACACAAGCACTTCA

Baboon GAATCTATAGCTAACACAAGCACTTCA

Marmoset ---------------------------

Tarsier ---------------------------

Mouse Lemur ---------------------------

Bushbaby ---------------------------

Tree Shrew ---------------------------

Mouse ---------------------------

Rat ---------------------------

chr2:139,295,009-139,295,035
Human-Chimp

Hominines
Hominids

Catarrhines

Simians

Haplorhines

Primates

Human TCCTGGCAAATTTCACATTACTCCC-T--ATCT

Chimp TCCTGGCAAATTTCACATTACTCCC-T--ATCT

Gorilla TCCTGGCAAATTTCACATTACTCCC-T--ATCT

Orangutan TCCTGGCAAATTTCACATTACTCCC-T--ATCT

Macaque TCCTGGCAAATTTCACATTACTCCC-T--ATCT

Baboon TCCTGGCAAATTTCACATTACTCCC-T--ATCT

Marmoset TCCTGGCAAATTTCACATTACTTAC-T--ATCT

Tarsier ---------------------------------

Mouse Lemur TCCTGAAAAATTTCACAGTACTCCCTT--ATCT

Bushbaby ---------------------------------

Tree Shrew TCCTGAAAAATTTCTCATTCCTCCC-TCAACTT

Mouse TCCTTATCAGTTTCA------------------

Rat TCCTTATCAATTTCACGTGGACCCC-AC-ATCT

Guinea Pig TTCCAACGAATTTCATATTACTCCC-TC-GTCT

Squirrel    TCCCACCAAATTTCACATTACTCCC-TC-ATCT

chr15:40,851,773-40,851,802
Human-Chimp

Hominines

Hominids
Catarrhines

Simians

Haplorhines

Primates

(B)

hg19  chr15 40,850,000 40,855,000

C15orf57

mm9    chr2 118,850,000 118,855,000

GATA1

ChIP-seq

GATA1

ChIP-seq

Figure 3.1: Model framework for lineage-specific GATA1 binding sites. Mul-
tiple alignments are shown for two GATA1-bound regions in humans. Red
and blue boxes in the alignment correspond to GATA1 binding sites. Phy-
logenies illustrate the birth-death model framework, where the most likely
number of binding sites is assigned to each ancestral node (denoted here
as either present or absent, at values 1 or 0 in this example). Highlighted
branches denote the branch of origin. Evolutionary comparisons were con-
ducted across ten primate species, as well as 36 non-primate vertebrates (not
all are shown). (A) A binding site originating within an LTR insertion. (B)
A genomic region containing a human GATA1 binding site originating along
the ancestral primate lineage and a GATA1 binding site specific to mouse and
rat. Despite nearly identical locations of the ChIP-seq peaks across human
and mouse (in analogous Erythroblast cell lines), the ability of the method
to identify specific branches of origin allows us to identify cases of TFBS
turnover in close proximity.
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Figure 3.2: PhyloP conservation vs. TFBS with different branch of origins.
We used the PhyloP mammalian conservation scores available at the UCSC
Genome Browser to determine the sequence conservation level for TFBS
with different branch of origins in human. X-axis shows TFBS with different
branch of origins for four different window sizes surrounding the peak summit.
Y-axis shows the Z-score distribution for each group. For a specific TF, we
first computed the average PhyloP score (X) in each ChIP-seq peak and
then calculated the average score (M) as well as standard deviation (SD)
across all peaks in the genome. We then grouped the binding sites according
to their branch of origin (in four groups: Hominid, Simian, Primate, and
Eutherian). Finally, we calculated the Z-score, i.e. (X −M)/SD, in each
age group. t-statistic from t-test between the youngest and the oldest for
each group is also shown.
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Figure 3.3: Comparison between our method and MotifMap. A receiver
operating characteristic (ROC) curve shows the prediction power between
our method and MotifMap. ROC curves for MotifMap were generated using
different BBLS thresholds (ranging from zero to the maximum possible BBLS
score here, 4.73) to call a TFBS as a conserved one. In our method, we tested
two shift sizes, ±15 bp (light blue) and ±30 bp (dark blue). The results
from MotifMap were based on ±15 bp shift size (magenta). See Section 2.4
for detailed explanation of the comparison method and how the benchmark
dataset was constructed.
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Figure 3.4: Time of origins for binding sites of six TFs in humans. Bind-
ing motifs were determined using human ChIP-seq data for GATA1, SOX2,
MYC, CTCF, ETS1, and MAX. The branch of origin was determined for
each binding site within the (−100,+100) region relative to a human ChIP-
seq peak summit. (A) Distribution of the branch of origin for each binding
site. Branch labels correspond to those in Figure 3.1. Ancestral binding
sites have origins prior to human-mouse divergence. (B) The rate of binding
site creation along branches ancestral to humans. Rates were estimated by
dividing the number of sites originating along each branch by evolutionary
time, including only binding sites currently existing in humans.
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Figure 3.5: Within-species variation of binding sites according to time of ori-
gin. Boxplots show the fraction of TFBSs containing common SNPs of human
population (Sherry et al., 2001), where plots show the median (center line),
upper- and lower-quartile (boxes), and range (whisker extremes) of percent-
ages across the TFBSs of six TFs. TFBSs are categorized as human-specific,
hominid-specific (not including human-specific sites), Simian primate-specific
(not including hominid-specific sites), and ancestral (present in the human-
mouse common ancestor). Overall fractions (including all sites) are shown
in the left-most boxplot. Note the substantial rise in the amount of human
variation within more recently derived binding sites compared to older sites.
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Figure 3.6: Background SNP density for TFBSs with different branch of ori-
gin. TFBSs were grouped into different branches of origin (X-axis). To cal-
culate the background SNP density surrounding these TFBSs, we extended
1 kb, 500 bp, or 125 bp to both directions (i.e., 2k, 1k, or 250 bp window)
and counted the number of common SNPs in flanking windows. The figure
shows that there are no significant differences of SNP density surrounding
the TFBSs with different branches of origin.
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      Human  --TTATCAGGCT-(52)-GCT-AGAGCCACGTGGCTG-//-GGAGCAGTACCACGTGTCAAATTGCT

      Chimp  --TTATCAGGCT-(52)-GCT-AGAGCCACGTGGCTG-//-GGAGCAGTACCACGTGTCAAATTGCT

    Gorilla  --TTATCAGGCT-(52)-GCT-AGAGCCACGTGGCTG-//-GGAACAGTACCACGTGTCAAATTGCT

  Orangutan  --TTATCAGACT-(52)-GCT-AGAGCCACGTGGCTG-//-GGGGCAGTACCACGTGTCAAATTGCT

     Rhesus  --TTATCAGGCC-(52)-GCT-AGAGCCACGTGGCTG-//-GGGGCAGTACCACGTGTCAAATTGCT

     Baboon  --TTATCAGGCT-(52)-GCT-AGAGCCACGTGGCTG-//-GGGGCAGTACCACGTGTCAAATTGCT

   Marmoset  --TTATCAGGCT-(52)-GCT-AGAGCCACGTGGCTG-//-AGGGCAGCACCACATGGCAAATTACA

    Tarsier  ---TATCAGGCT-(52)-GCC-GGAGCCGCGTGCGTG-//-TGGTCTGCGCCATGTGTGAGATTGCA

Mouse lemur  --TTATCAGGCT-(53)-GCTGGGAGCCACGTGCCTG-//-GGGGCAGCACCACGTGGCAAATTGCA

   Bushbaby  --TTATCAGGCT-(52)-ACT-GGAGACACGTGCCTG-//--GGGCAGCACCACGTGGCAAATTTCA

 Tree shrew  --TTATCAGGCC-(51)-G-------------------//-TGGCAAGAACCATGTGGCAAATTGCA

        Rat  --TAATCAGGCA-(53)-GCT-GGAGCCTCGCGCC---//-GGGTCAGCACCACGTGGCAAATTGCT

      Mouse  --TTATCAGGCA-(53)-GCT-GGAGCCTCATGCCGG-//-GGGTCAGCACCACGTGGCAAATTGCT

 Guinea pig  ATTTATCAGACT-(56)-GAT-GGAGCCGTGCTCCTG-//-----CAGCACCACAAGACAAACTGTT

   Squirrel  --TTATCAGGCT-(53)-GCT-GGAGCCACTTGCCTG-//-GGGACAGCACCACGTGGCAAATAGCC
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Figure 3.7: A TFBS turnover event within a functionally conserved enhancer.
A TFBS turnover event shows the impact of lineage-specific TFBS within
an enhancer. The Genome Browser view shows the upstream of human
gene EPB41. VISTA Enhancer track and ChromHMM track (orange means
strong enhancer, yellow means weak enhancer) indicate a putative human
enhancer. ChIP-seq signals of three TFs used in this study near predicted
enhancer region are consistent with predicted lineage-specific binding site
represented by 46-way multiple sequence alignment (only a subset of species
are shown). Note that here the two MAX binding sites are also MYC bind-
ing sites since MAX and MYC have very similar motif. A potential TFBS
turnover is observed between two predicted MAX/MYC binding sites (1700
bp apart). Different TFBSs are highlighted in different colors with MAX
in blue and GATA1 in red. The predicted enhancer may function as blood
cell specific enhancer in mouse, demonstrated by images of LacZ positive
E11.5 mouse transgenic embryo on the VISTA Enhancer Browser (Visel
et al., 2007) (ID: mm80;http://enhancer.lbl.gov/cgi-bin/imagedb3.
pl?form=presentation&show=1&experiment\_id=80\&organism\_id=2).
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Table 3.1: Performance comparison with MotifMap and PReMod. We com-
pared our method with phylogenetic footprinting methods MotifMap for el-
ement level comparison and PReMod for module level comparison. For Mo-
tifMap, BBLS score cutoff to call a conserved TFBS is 1.91 in this table. Bold
numbers indicate the best among the three methods. PReMod database does
not contain results for CTCF and SOX2, so we filled ’NA’. Here we tested our
method using two window sizes: ±15bp and ±30bp. The window size used
by MotifMap is ±15bp. The overall accuracy (which balances sensitivity and
specificity) of our method is much better than MotifMap and PReMod. We
also show the comparison between our method and MotifMap using differ-
ent BBLS thresholds and for all TFs our method outperformed MotifMap
(Figure3.3).

(a) Results from ± 15bp shift size in our method

Sensitivity Specificity Accuracy
Our method MotifMap PReMod Our method MotifMap PReMod Our method MotifMap PReMod

CTCF 0.6533 0.3115 NA 0.7405 0.7940 NA 0.7100 0.512 NA
ETS1 0.8722 0.5903 0.3633 0.7074 0.3669 0.7005 0.7381 0.4806 0.4989

GATA1 0.7664 0.4348 0.4054 0.8496 0.8857 0.6974 0.8464 0.7069 0.5959
MAX 0.8591 0.4368 0.5202 0.8596 0.7447 0.6957 0.8595 0.5023 0.5758
MYC 0.7944 0.8478 0.3448 0.8304 0.4658 0.7802 0.8215 0.6341 0.5362
SOX2 0.8643 0.0909 NA 0.6708 1.0000 NA 0.6783 0.5238 NA

(b) Results from ± 30bp shift size in our method

Sensitivity Specificity Accuracy
Our method MotifMap PReMod Our method MotifMap PReMod Our method MotifMap PReMod

CTCF 0.6836 0.3115 NA 0.7257 0.7940 NA 0.7110 0.5120 NA
ETS1 0.9055 0.5903 0.3633 0.6550 0.3669 0.7005 0.7017 0.4806 0.4989

GATA1 0.8437 0.4348 0.4054 0.7529 0.8857 0.6974 0.7565 0.7069 0.5959
MAX 0.9208 0.4368 0.5202 0.6649 0.7447 0.6957 0.6934 0.5023 0.5758
MYC 0.8049 0.8478 0.3448 0.8184 0.4658 0.7802 0.8151 0.6341 0.5362
SOX2 0.8543 0.0909 NA 0.6407 1.0000 NA 0.6490 0.5238 NA
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Table 3.2: Evaluation with human-mouse ChIP-seq factor bound regions

Shared peaks (human-mouse)b Lineage-specific peaksc

Factor/Motif Categorya Ancestral Sitesd Lineage-specific Sitese Ancestral Sitesd Lineage-specific Sitese

GATA1 Human (Total) 433 (73.3%) 158 (26.7%) 6921 (34.9%) 12914 (65.1%)
AGATAAG With Mouse 88 (14.9%) 24 (4.10%) 985 (5.00%) 623 (3.10%)

TFBS-pair aligned 34 (5.80%) 11 (1.90%) 358 (1.80%) 93 (0.50%)
SOX2 Human (Total) 340 (75.7%) 109 (24.3%) 9451 (47.4%) 10487 (52.6%)
WTAACAA With Mouse 123 (27.4%) 26 (5.80%) 2242 (11.2%) 1009 (5.10%)

TFBS-pair aligned 85 (18.9%) 7 (1.60%) 747 (3.80%) 138 (0.70%)
MYC Human (Total) 406 (58.5%) 288 (41.5%) 704 (26.4%) 1966(73.6%)
KCACGTG With Mouse 111 (16.0%) 39 (5.60%) 109 (4.10%) 93 (3.50%)

TFBS-pair aligned 64 (9.20%) 16 (2.30%) 55 (2.10%) 38 (1.40%)
MAX Human (Total) 420 (69.8%) 182 (30.2%) 1167 (21.2%) 4350 (78.9%)
KCACGTG With Mouse 134 (22.3%) 49 (8.10%) 209 (3.80%) 269 (4.90%)

TFBS-pair aligned 79 (13.1%) 19 (3.20%) 125 (2.30%) 66 (1.20%)
ETS1 Human (Total) 644 (73.5%) 232 (26.5%) 3885 (48.1%) 4189 (51.9%)
MGGAAGT With Mouse 172 (19.6%) 35 (4.00%) 705 (8.70%) 283 (3.50%)

TFBS-pair aligned 81 (9.3%) 9 (1.00%) 283 (3.50%) 58 (0.70%)
CTCF Human (Total) 2008 (68.0%) 947 (32.0%) 3829 (41.2%) 5458 (58.8%)
GGGGCKC With Mouse 766 (25.9%) 277 (9.40%) 770 (8.30%) 323 (3.50%)

TFBS-pair aligned 256 (8.70%) 73 (2.50%) 231 (2.50%) 42 (0.50%)

aThe first row in each section gives the total number of ChIP-seq peaks with binding
sites in humans within the (100,+100) window separated into categories. The second
row shows the number of these peaks also containing a TFBS in the orthologous regions
in mouse, while the third row gives the number of aligned binding sites across the two
species. Percentages are given with respect to the total number of shared and lineage-
specific ChIP-seq peaks for each factor.
bShared peaks are human ChIP-seq peaks within 200 bp of a ChIP-seq peak summit in
the orthologous region in mouse. Analogous cell types were used across species (GATA1:
Erythroblasts, SOX2: Embryonic stem cells, MYC, MAX, ETS1, CTCF: B-lymphocytes).
cLineage-specific peaks in human are not within 200 bp of a mouse ChIP-seq peak in the
analogous cell type. Only human peaks with identifiable orthologous regions in mouse
were included.
dThe numbers (and fractions) of human ChIP-seq peaks in each category containing bind-
ing motif occurrences estimated to be present in the human-mouse ancestor (Ancestral
sites).
eThe numbers (and fractions) of human ChIP-seq peaks in each category containing
only binding motif occurrences originating after human-mouse divergence (Lineage-specific
sites).
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Table 3.3: Gene functions and pathways associated with hominid-specific
TFBS. Shown are the top-ranking biological processes and gene pathways
for genes associated with hominid-specific binding sites for each TF. Func-
tional category enrichment was determined relative to the target genes for
the comprehensive list of binding sites, with P-values and fold-enrichment
over this background set of target genes determined by GREAT.

Factor Biological Process P-val Fold Biological pathways P-val
CTCF Positive regulation of actin filament 3e-14 3.45x Olfactory signaling pathway 7e-5

polymerization (32 genes) (346 genes)
Retrograde transport endosome to 2e-12 3.50x Phase II conjugation (37 genes) 4e-3
Golgi (29 genes)
Positive regulation of protein 2e-8 2.41x Stearate biosynthesis I (animals) 1e-2
polymerization (44 genes) (12 genes)
Detection of chemical stimulus 5e-8 2.20x Regulation of lipid metabolism by 1e-2
involved in sensory perception peroxisome proliferator-activated
of smell (385,genes) receptor alpha (PPARalpha) (32 genes)

GATA1 Inositol phosphate metabolic 2e-4 2.40x Ketone body metabolism (5 genes) 6e-4
process (16 genes)
Positive regulation of histone 6e-4 2.90x Mevalonate pathway I (10 genes) 6e-4
acetylation (12 genes)
Axon extension involved in 1e-3 5.23x Transmission across electrical 2e-3
axon guidance (14 genes) synapses (5 genes)
Organophosphate catabolic process 2e-3 2.77x Tryptophan degradation III 5e-3
(11 genes) (eukaryotic) (9 genes)

MYC Synapse assembly (41 genes) 2e-5 3.33x Olfactor signaling pathway (346 genes) 4e-5
Sensory perception of chemical 7e-5 2.11x Neurotransmitter receptor binding and 6e-4
stimulus (456 genes) downstream transmission in the

postsynaptic cell (90 genes)
Receptor clustering (17 genes) 7e-5 3.33x NCAM1 interactions (23 genes) 2e-3
Neuron maturation (25 genes) 1e-4 3.30x CREB phosphorylation through the 2e-3

activation of Ras (29 genes)
SOX2 rRNA processing (109 genes) 2e-4 2.01x Signaling by Aurora kinases (98 genes) 2e-4

Detection of stimulus involved in 5e-4 1.91x Aurora B signaling (41 genes) 2e-4
sensory perception
GTP metabolic process (249 genes) 8e-4 1.50x The citric acid (TCA) cycle and 2e-4

respiratory electron transport (106 genes)
tRNA modification (22 genes) 1e-3 3.81x Eukaryotic translation elongation (88 genes) 5e-4

ETS1 Ventral spinal cord development 2e-4 3.55x Mitotic spindle checkpoint (19 genes) 4e-4
(26 genes)
Receptor guanylyl cyclase 2e-3 4.51x APC-Cdc20 mediated degradation of 8e-4
signaling pathway (11 genes) Nek2A (23 genes)
Cell differentiation in spinal cord 3e-3 2.70x Phosphorylation of Emi1 (20 genes) 6e-3
(37 genes)
Behavioral fear response (15 genes) 4e-3 2.80x Tetrahydrobiopterin (BH4) synthesis, 1e-2

recycling, salvage and regulation (12 genes)
MAX Establishment of organelle 1e-3 3.36x Signal amplification (16 genes) 5e-3

localization (100 genes)
Neural crest cell differentiation 3e-3 2.14x Thrombin signaling through proteinase 5e-3
(57 genes) activated receptors (PARs) (17 genes)
Neural crest cell development 7e-3 2.06x PAR4-mediated thrombin signaling 1e-2
(50 genes) events (15 genes)
Positive regulation of lipid 8e-3 2.20x Signaling by Robo receptor (23 genes) 1e-2
transport (19 genes)
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CHAPTER 4

CONCLUSION

Understanding the evolution of the cis-regulatory elements is an essential

step toward understand the phenotype difference across species, specially for

close related species (Wittkopp and Kalay, 2012). Studies regarding the evo-

lution of TFBS can largely be separated into those emphasize cross-species

conservation of cis-regulatory elements and those highlighting the substan-

tial divergence of TFBS. To some extent, this dichotomy may largely reflect

the difference between experimental methods and in silico methods. Despite

some studies have inferred the lineage-specific evolution of TFBS (Lindblad-

Toh et al., 2011; Lowe et al., 2011; Hiller et al., 2012), all of them are based

on base-by-base details of MSA, which may lead to unreliable predictions

because of the low-quality issue of MSA in non-coding region (McLean et al.,

2011; Chen and Tompa, 2010; Kim and Ma, 2011). There are pressing compu-

tational challenge to understand the history of cis-regulatory element such as

TFBS. In addition, it has long argued that alterations in non-coding regions

are responsible for many, if not most, species-specific traits (Wray, 2007;

Davidson, 2001; King and Wilson, 1975). Thus, in this work we presented an

initial step using in silico methods to model the evolution of cis-regulatory

elements without relying on accurate cross-species alignment.

Applying our method to six human TF ChIP-seq revealed that a high

fraction of TFBSs have origins after human-mouse split (Figure 3.4), which is

consistent with previous in vivo cross-species comparison in a limited number

of species (Odom et al., 2007; Schmidt et al., 2010) and a human-mouse

comparison we did here (Table 3.2). This observation may not be a specific

phenomena because of the six TFs we picked as motifs of those six are among

the most conserved TF motif between human and mouse. The fact that a

motif is conserved does not mean majority of binding sites are conserved

according to our finding. Next, we compared genomic functional patterns

across TFBS with different branch of origin. Younger TFBS have higher
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density of common SNP (Figure 3.5) and their target genes are more enriched

in neural related functions and pathways (Table 3.3). This results can help

understand the roles of lineage-specific TFBS in shaping gene regulation

across different species.

A natural future direction for this work would be as follows. First, we can

expand our analysis to other TFs, since there are an estimated 1700 1900

TFs in the human genome (Vaquerizas et al., 2009) and dozens of them have

ChIP-seq data available in ENCODE project (ENCODE Project Consor-

tium, 2011). Second, it would be interesting if we can determine the specific

regulatory effects of the recently derived TFBSs identified using this method.

For instance, enrichment for within-species variation among recently derived

binding sites raises the intriguing possibility that recently derived TFBSs

most responsible for phenotypic differences across species are also the ele-

ments responsible for within-species variation. Future work will be necessary

to demonstrate whether this is the case and is this pattern still hold to

somatic mutations in cancer patients. Also, our current model needs to be

integrated with gene expression data to understand the interplay between cis-

regulatory element evolution (e.g., binding site turnover and lineage-specific

sites) and gene expression differences across different species (Tirosh and

Barkai, 2011; Tirosh et al., 2008; Romero et al., 2012; Cusanovich et al.,

2014). Next, the whether lineage-specific TFBSs are more tissue-specific

should also to inspected. Last, how to integrate TFBS within enhancer or

promoter together and study the evolution of those large cis-regulatory mod-

ules is also an interesting direction.

Overall, we believed our birth-death probabilistic model would be highly

useful to comprehensively under the evolution of genome-wide TFBS. By add

a time dimension onto the current human genome annotation resources we

could understand human genome better.
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