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Abstract

We study the implications of using the indexing category of finite sets and injective maps in Goodwillie’s

calculus of homotopy functors. By careful analysis of the cross-effects of a reduced endofunctor of based

spaces, this point of view leads to a monoidal model for the derivatives. Such structure induces operad and

module structures for derivatives of monads and their modules, leading to a chain rule for higher derivatives.

We also define a category through which n-excisive finitary functors to spectra factor, up to homotopy, and

give a classification of such functors as modules over a certain spectral monoid.
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Chapter 1

Introduction

In an effort to understand homotopy types, Goodwillie developed a theory of calculus for homotopy invariant

functors from pointed topological spaces T to the categories of spaces T or spectra Sp in a series of landmark

papers [Goo90, Goo92, Goo03]. He described a way to canonically assign to a functor F a sequence of

“polynomial” (called n-excisive) functors PnF approximating F , which fit into a tower of fibrations analogous

to a Taylor series expanded at the zero object.

Goodwillie’s theory has been extended to more abstract homotopy theoretical settings [BR14, Kuh07,

Per13], and the methods involved in Goodwillie’s calculus have provided new insights in various areas of

topology, including chromatic homotopy theory [AM99, Beh12, Kuh07], algebraic K-theory [DGM13], and

geometric topology [BCKS14, Mal15, Wei99]. For example, analysis of the Taylor tower of the identity functor

of spaces (a surprisingly interesting nonlinear functor) has led to calculations of the periodic homotopy of

odd dimensional spheres [AM99]. Another triumph of Goodwillie calculus is the identification of the trace

map from algebraic K-theory to topological cyclic homology as an isomorphism on differentials, showing

that the difference between the computationally difficult K and the more tractable TC is locally constant

[DGM13].

Goodwillie defines the n-excisive approximation PnF of a homotopy invariant functor F ∶ C → D as the

homotopy colimit of an infinite iteration of intermediate functors TnF :

F (X)
tnF (X)

// (TnF )(X)
(tn(TnF ))(X)

// T 2
nF (X)

(tnT 2
nF )(X) // ⋯

Goodwillie shows that PnF is an n-excisive homotopy functor and there is a natural map pnF ∶ F → PnF .

These functors fit into a tower of fibrations, called the Taylor tower.

F (X) // ⋯ // PnF (X) // Pn−1F (X) // ⋯ // P1F (X) //// P0F (X) ≃ F (∗)

As in function calculus, one wishes to study the functor F by studying its Taylor tower, and this is a

good approximation when F is analytic, which implies F (X) ≃ holimn PnF (X) for sufficiently connected X.
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Many functors are analytic; for example, the identity functor of spaces is analytic. Our work will mainly

focus on analytic functors because of their nice stability properties.

The n-excisive approximations of F are difficult to compute in general, so attention shifts to the homotopy

fibers DnF = fiber(PnF → Pn−1F ), or layers, of the Taylor tower, with the hopes that the polynomial parts

can be reconstructed once the layers are known. Goodwillie showed in [Goo03] that the layers of the Taylor

tower for a finitary functor take the form of infinite loop spaces.

DnF (X) ≃ Ω∞(∂nF ∧X∧n)hΣn

The Σn-spectrum ∂nF is called the nth derivative of F . The symmetric group Σn acts on the smash

product by permuting the factors and (−)hΣn denotes the homotopy orbits. Taken together, the derivatives

form a symmetric sequence in the category of spectra, which is just a sliver of the interesting structure

they have been shown to possess [Joh95, AM99, Chi05]. Utilizing operadic duality, Arone and Ching have a

significant body of work [AC11, AC15, AC] developing which properties permit the derivatives to reconstruct

the Taylor tower of a functor.

This thesis explores the implications of using the indexing category I of finite sets and injective maps

in functor calculus. The use of the category I has already found great success in the areas of algebraic

K-theory [SS13] and representation stability [CEF15], and we’ve found that some unresolved questions in

Goodwillie’s theory have straightforward answers by amending definitions to include the inherent symmetry.

By indexing homotopy colimits over I, we prove our main result in theorem 4.2.3, giving a monoidal model

for the derivatives of reduced endofunctors of spaces, and thus a positive answer to a conjecture posed

by Arone and Ching which streamlines the work in [AC11]. The strategy of including more maps in the

homotopy colimit, inspired by Bökstedt’s definition of topological Hochschild homology, has also led us to a

classification of n-excisive functors from simplicial model categories with a cofibrant generator to spectra, a

reformulation of the results of [JM03a, JM03b] in the topological setting.

This thesis is organized as follows. In Chapter 2, we review our conventions and the definitions of

Goodwillie calculus. In Chapter 3, we define a category PnC through which finitary n-excisive functors

from certain simplicial model categories C to spectra factor, up to homotopy. We prove that such functors

correspond precisely, in the sense of an equivalence of homotopy categories, to modules over the spectrum

of endomorphisms of n + 1 points in the category PnC. This differs from the classification of [AC15] by

considering the polynomial approximations themselves, instead of reconstructing them from the homogeneous

layers of the Taylor tower.
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In Chapter 4, we give a monoidal model for the derivatives of analytic, reduced endofunctors of spaces.

Such structure sidesteps the technical aspects of Arone and Ching’s work and automatically produces a

natural operad structure on the derivatives of the identity functor of spaces, a result which required a foray

into operadic Koszul duality in [Chi05]. The derivatives of a functor also necessarily inherit the structure of

a module over the derivatives of the identity, a hard-earned theorem in [AC11]. We also prove a chain rule

in this setting and indicate ways in which to extend this to functors of other categories.

In appendix A, we give some background on the category I, proving that Goodwillie’s TnF ’s fit into an I

diagram, and giving a proof of Bökstedt’s approximation lemma which gives conditions for when homotopy

colimits over I agree with homotopy colimits over N. In appendix B, we give results analogous to those in

Chapter 3 for functors to spaces and indicate why they do not assemble to form a classification. Finally, in

the last appendix, we give the technical details of the associativity of the monoidal derivative map defined

in section 4.2.
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Chapter 2

Background and conventions

We will start with basic definitions necessary for Goodwillie’s calculus of functors and the use of the category

I of finite sets and injective maps.

2.1 Simplicial objects

Let T denote the category of based topological spaces and let Sp be a good category of spectra, for example,

symmetric spectra.

Definition 2.1.1. We write ∆ for the category whose objects are the totally ordered sets n = {0,1, . . . , n}

for n ≥ 0 and whose morphisms are the order-preserving functions. A simplicial object in a category C is a

functor X● ∶ ∆op → C. More explicitly, a simplicial object in C consists of a sequence of objects Xk ∈ C for

k ≥ 0, along with face maps, di ∶ Xk → Xk−1 for 0 ≤ i ≤ k, and degeneracy maps, si ∶ Xk → Xk+1 for 0 ≤ i ≤ k,

satisfying the simplicial identities.

Definition 2.1.2. If C is the category of sets, spaces, or spectra, then a simplicial object X● has a homotopy

invariant geometric realization, denoted ∥X●∥. This is defined by X● ⊗∆inj ∆●, and is sometimes called the

fat realization of X●, because the coend is taken over only the injective maps of ∆.

Definition 2.1.3. A forward contracting homotopy for an augmented simplicial set X● →X−1 is a collection

of maps s−1 ∶Xn →Xn+1 for n ≥ −1 such that for each x ∈Xn, one has s−1six = sis−1x for 0 ≤ i ≤ n and

dis−1x =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s−1dix if 0 ≤ i < n

x if i = n

For homotopy limits and colimits, we will use the definitions of Bousfield and Kan in [BK72].

Definition 2.1.4. The homotopy limit of a diagram X ∶ J → T , holimJ X , is given by the totalization of

the cosimplicial replacement crep X , which has nth term (crep X)n = ∏
j0→⋯→jn

X(jn).
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Dually, the homotopy colimit of a diagram X ∶ J → T , hocolimJ X , is given by the realization of the

simplicial replacement srep X , which has nth term (srep X)n = ⋁
j0→⋯→jn

X(j0).

2.2 Calculus

Now we will review relevant definitions of the homotopy calculus of functors. In [Goo03], Goodwillie con-

structs the Taylor tower of a functor from topological spaces to spaces or spectra, and Kuhn shows that

Goodwillie’s work extends to functors between model categories [Kuh07].

Definition 2.2.1. Let F ∶ C → D be a functor where C and D are each either Sp or Top. Then we say

• F is reduced if F (∗) ≃ ∗.

• F is continuous if the natural map C(X,Y ) → D(F (X), F (Y )) is a continuous homomorphism.

• F is a homotopy functor if it preserves weak equivalences.

• F is finitary if it preserves filtered homotopy colimits, i.e., for any filtered category I and diagram

X ∶ I → C, hocolimI F (Xα) ≃ // F (hocolimIXα) . We will also say that such functors satisfy the

colimit axiom.

If the objects of C are equivalent to homotopy colimits of filtered diagrams of finite subobjects, then the

colimit axiom allows us to evaluate a finitary functor on an object of C by restricting to the subcategory of

finite objects. For example, in the category of spaces, every object is weakly equivalent to a CW complex,

which is equivalent to a colimit of its finite dimensional subcomplexes.

Lemma 2.2.2. If F is a continuous functor, then F has assembly, a binatural tranformation

αF ∶ Z ∧ F (X) Ð→ F (Z ∧X).

Proof. The assembly map is given by pushing the identity through the following

Hom(Z ∧X,Z ∧X) ≅Hom(Z,Hom(X,Z ∧X))
FÐ→Hom(Z,Hom(F (X), F (Z ∧X)))

≅Hom(Z ∧ F (X), F (Z ∧X))
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Definition 2.2.3. A cubical diagram is a functor X ∶ P(S) → C, where S is a finite set and P(S) is the

poset of all subsets of S. An n-cube will be a functor X where the cardinality of S is n, so 0-cubes are

objects of C, 1-cubes are morphisms of C, 2-cubes are commutative squares, etc.

Definition 2.2.4. Let P0(n) denote the poset of all nonempty subsets of n = {0,1, . . . , n}. An n-cube is

called homotopy cartesian if the map a(X) ∶ X(∅) → holim
P0(S)

X is a weak equivalence (note that a(X) factors

through limP0(S)X ). An n-cube is (homotopy) k-cartesian if a(X) is k-connected. An n-cube X is called

strongly homotopy (co-)cartesian if each face of dimension ≥ 2 is (co-)cartesian. If every two-dimensional

face of X is (co-)cartesian, then X is strongly (co-)cartesian.

We will often omit the word “homotopy” from our pushouts, pullbacks, and (co)cartesian cubes, but it

is always intended, unless noted otherwise.

Definition 2.2.5. A homotopy functor F ∶ C → D is n-excisive if for every strongly cocartesian (n+1)-cubical

diagram X ∶ P(S) → C, the diagram F (X) ∶ P(S) → D is cartesian.

Definition 2.2.6. Let X be an object in a symmetric monoidal category C and let U be a finite set, so

X ×U = ∐∣U ∣X. The join of X and U is given by X ∗U = hocolim (X ←X ×U → U) .

If X is cofibrant, then this model for the join produces a cofibrant object. This defines an associative join

which agrees with the usual join when C is the category of topological spaces. That is, (X∗U)∗V ≅X∗(U∗V )

for X ∈ C and U,V ∈ P(n).

Goodwillie defines the n-excisive approximation PnF of a homotopy functor F as the homotopy colimit

of an infinite iteration of intermediate functors TnF . These functors are defined as follows.

Any object X ∈ C defines an (n + 1)-cubical diagram in C by U ↦ X ∗U , for U ⊂ n. We may then apply

F to this diagram to get an (n + 1)-cube in D. Define a homotopy functor TnF ∶ C → D by TnF (X) =

holim
U∈P0(n)

F (X ∗ U). There is a natural transformation tn ∶ F → TnF because there is a map from the initial

corner F (X ∗ ∅) = F (X) to the homotopy limit of the rest of the cube. The process may be iterated to

produce T knF (X) ≃ holimUi∈P0(n)×k F (X ∗∗k
i=1Ui), where ∗k

i=1Ui denotes the join of the sets U1, . . . , Uk.

Definition 2.2.7. The functor PnF (X) is defined to be the homotopy colimit of the diagram

F (X)
tnF (X)

// (TnF )(X)
(tn(TnF ))(X)

// T 2
nF (X)

(tnT 2
nF )(X) // ⋯
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Example 2.2.8. When n = 1, P(1) forms the pushout square

∅ //

��

{0}

��

{1} // {0,1}

Then U ↦ F (X ∗U) gives the square

F (X ∗ ∅) //

��

F (X ∗ {0})

��

F (X ∗ {1}) // F (X ∗ {0,1})

≃

F (X) //

��

F (CX)

��

F (CX) // F (ΣX)

where CX is the cone on X and ΣX is the suspension of X. So T1F (X) is given by the homotopy limit

of the diagram resulting from removing the initial corner (where ∅ sits in the indexing category). If F is a

reduced functor, then F (∗) ≃ ∗ and

T1F (X) ≃ holim

⎛
⎜⎜⎜⎜⎜⎜
⎝

∗
×××Ö

∗ → F (ΣX)

⎞
⎟⎟⎟⎟⎟⎟
⎠

≃ ΩF (ΣX)

Repeating the process, we see that T 2
1F (X) ≃ Ω2F (Σ2X) and so P1F (X) ≃ hocolimnΩnF (ΣnX) =

Ω∞F (Σ∞X).

When n = 2, P(2) is a 3-dimensional cube; identifying TnF and PnF is much harder to do in practice

when n > 1.

In Theorem 1.8 of [Goo03], Goodwillie shows that PnF is an n-excisive homotopy functor and the natural

map pnF ∶ F → PnF is the universal map from F to an n-excisive functor, up to homotopy.

Definition 2.2.9. The layers of the Taylor tower of F ∶ C → D are the functors DnF ∶ C → D for n ≥ 1 given

by

DnF = hofib(PnF → Pn−1F )

The functor DnF is n-homogeneous, that is, both n-excisive and n-reduced (Pn−1(DnF ) ≃ ∗.)

Definition 2.2.10. Let F ∶ C → D be a homotopy functor. F is stably n-excisive or satisfies stable nth order

excision, if the following condition holds for some numbers c and κ:

En(c, κ): If X ∶ P(S) → C is any strongly co-cartesian (n + 1)-cube such that for all s ∈ S, the map

7



X(∅) → X({s}) is ks-connected and ks ≥ κ, then the diagram F (X) is (−c +Σks)-Cartesian.

Definition 2.2.11. The functor F is ρ-analytic if there is some number q such that F satisfies En(nρ−q, ρ+1)

for all n ≥ 1. (Note that it is the same q for all n.)

Example 2.2.12 ([Goo92] 4.3, 4.5). An analytic functor is one whose deviation from being n-excisive is

bounded in a certain way for all n. The identity functor of spaces is 1-analytic by the higher Blakers-Massey

theorem. The functor Hom(K,−) is k-analytic, where k = dim(K).

Theorem 2.2.13 ([Goo03] 1.13). If F is ρ-analytic and X is (at least) ρ-connected, then the connectivity

of the map F (X) → PnF (X) tends to infinity with n, so that F (X) is equivalent to the homotopy limit

P∞F (X) of the tower. Thus, the number ρ gives a sort of radius of convergence for the Taylor tower.

The following definition will be useful in Lemma 2.3.4. The notation O stands for ‘osculating.’

Definition 2.2.14. A map α ∶ F → G between two functors from C to D satisfies On(c, κ) if, for every k ≥ κ,

for every object X of C such that X → ∗ is k-connected, the map αX ∶ F (X) → G(X) is (−c + (n + 1)k)-

connected.

2.3 I and symmetric sequences

We will exploit the properties of a particular indexing category used by Bökstedt to define topological

Hochschild homology. He attributes the idea to Illusie. More facts about I are given in the appendix.

Definition 2.3.1. Let I denote the (skeleton of the) category of finite sets and injective maps. Let N denote

the category of finite sets with only the standard inclusions (those induced by subset inclusion). Let Σ

denote the category of finite sets with only bijections.

Bökstedt showed that under certain conditions on a functor G ∶ I → T , hocolimNG → hocolimIG is an

equivalence. Essentially, the condition is that maps further in the diagram become more and more connected.

Lemma 2.3.2. ([Bök85]) Let G ∶ I → T be a functor, x ∈ ob I, and let x ↓ I be the full subcategory of I of

objects supporting maps from x. If G sends maps in x ↓ I to n∣x∣-connected maps and n∣x∣ →∞ as ∣x∣ → ∞,

then hocolimNG→ hocolimIG is an equivalence.

A published proof can be found in [DGM13] (Lemma 2.2.2.2), and we provide a version in the appendix.

We also show in the appendix that Goodwillie’s T kn ’s fit into an I diagram, so we can make the following

definition.

8



Definition 2.3.3. Let PnF = hocolimk∈I T
k
nF .

Lemma 2.3.4. When F is stably n-excisive, PnF → PnF is an equivalence.

Proof. We will show that the functor Θ ∶ I→ Fun(T ,T ) defined by Θ(k) = T ∣k∣n F satisfies the hypotheses of

Bökstedt’s lemma (2.3.2) when F satisfies En(c, κ). By Proposition 1.4 of [Goo03], if F satisfies En(c, κ),

then TnF satisfies En(c − 1, κ − 1) and tnF ∶ F → TnF satisfies On(c, κ). By induction on i, T inF satisfies

En(c − i, κ − i), and T inF → T i+1
n F satisfies On(c − i, κ − i). By the definition of On, all the maps T inF (X) →

T i+1
n F (X) are (i−c+(n+1)`)-connected for ` ≥ κ, where ` is the connectivity of X → ∗. Since (i−c+(n+1)`)

increases as i increases, Θ satisfies the condition of Bökstedt’s lemma.

Definition 2.3.5. Let C be a category. A symmetric sequence in C is a functor A ∶ Σ → C. This is a

sequence {A(n)} of objects of C with a Σn-action on A(n) for each n ≥ 1. A morphism of symmetric

sequences f ∶ A → B is a natural tranformation of functors or, explicitly, a sequence of Σn-equivariant

morphisms f(n) ∶ A(n) → B(n).

Definition 2.3.6. If C is a cocomplete closed symmetric monoidal category with monoidal product denoted

∧ and if A,B are symmetric sequences in C, then the composition product or ○-product of A and B is the

symmetric sequence A ○B defined by

(A ○B)(n) = ⋁
unordered partitions of {1,...,n}

A(k) ∧B(n1) ∧ ⋯ ∧B(nk).

The Σn action on (A○B)(n) is not immediately obvious. We give a quick description using the definition

of symmetric sequences on the category of all finite sets and isomorphisms. For a finite set T , (A ○B)(T ) =

⋁T=∐i∈I Ti A(I) ∧ (∧i∈IB(Ti)) for nonempty subsets Ti. A bijection σ ∶ T → T ′ induces a bijection on

partitions ∐i∈I Ti → ∐i∈I′ T
′
i and there are induced maps σ∗ ∶ I → I ′ so Ti → T ′σ∗(i). Following this through

for the finite sets T = {1,2} and T ′ = {a, b} with the map σ(1) = b, s(2) = a shows that there are two types

of action maps.

A({i}) ∧B({1,2})⋁A({j, k}) ∧B({1}) ∧B({2})

��

A({i′}) ∧B({a, b})⋁A({j′, k′}) ∧B({a}) ∧B({b})

Essentially, the map on the first summand is id ∧Σ2 and the map on the second summand is Σ2∧ block

permute. So we need to account for both of these types of actions when we consider equivariance of maps

of symmetric sequences.
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The composition product defines a monoidal product on the category of symmetric sequences in C. If

the unit of C is S, the unit object of [Σ,C] is given by

1(n) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S if n = 1

∗ else

Definition 2.3.7. An operad in C is a monoid under the composition product; that is, an operad is a

symmetric sequence O with a composition map γ ∶ O ○ O → O and a unit map η ∶ 1 → O satisfying

associativity and unitality diagrams.

Definition 2.3.8. Let O be an operad in C. A right O-module is a symmetric sequence M with an action

map M ○ O →M satisfying associativity and unitality diagrams. A left O-module is a symmetric sequence

M with map O ○M →M again satisfying associativity and unit.

Definition 2.3.9. A functor F ∶ C → D between monoidal categories (C,⊗C ,1C) and (D,⊗D,1D) is monoidal

if there is a morphism ε ∶ 1D → F (1C) and a natural tranformation µX,Y ∶ F (X) ⊗D F (Y ) → F (X ⊗C Y )

satifying associativity and unitality diagrams.
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Chapter 3

A classification of n-excisive functors
to spectra

In [JM04], Brenda Johnson and Randy McCarthy developed an algebraic version of calculus for functors

to chain complexes that produces “n-additive” approximations, and in [JM03a, JM03b], they defined a

category PnC classifying degree n functors. In this chapter, we mimic these results in the topological setting

by constructing a category C′ through which n-excisive functors F factor and use this to classify n-excisive

functors:

C′

  

C

??

F // Sp

To define PnC, Johnson and McCarthy consider the composition rule for morphisms in C:

HomC(X,Y ) ×HomC(Y,Z) → HomC(X,Z)

Applying their algebraic intermediate functors to Hom(X,−) and taking colimits yields a map

PnHomC(X,Y ) × PnHomC(Y,Z) → PnPnHomC(X,Z)

In their algebraic setting, there is a map PnPnHomC(X,Z) → PnHomC(X,Z), so defining the morphism

set PnC(X,Y ) as PnHom(X,−)(Y ) gives the category PnC an associative composition.

If we try to mimic this with Goodwillie’s definitions in the topological setting, we get a map

hocolim
k∈N

T kn Hom(X,−)(Y ) × hocolim
`∈N

T `nHom(Y,−)(Z) → hocolim
(k,`)∈N×N

T knT
`
nHom(X,−)(Z)

and we would be forced to find a map N × N → N that induces a map T knT
`
n → Tmn giving an associative

composition rule. This is not possible. One could choose a path as in Adams’ handicrafted smash product,

but this will not be associative on the nose.

Our solution changes the indexing category of the homotopy colimit to I, the category of finite sets
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with injective maps. This technique was used by Bökstedt to define topological Hochschild homology before

spectra were known to have a strictly associative smash product, because it fixes this problem of combining

homotopy colimits in an associative way. The map hocolimI×I → hocolimI is induced by the disjoint union

of sets (U,V ) ↦ U∐V . This is essentially the reason that symmetric spectra have an associative smash

product; the extra symmetry provides more room. In some sense, indexing over I is choosing all paths at

once, instead of picking one.

Let C be a simplicial model category with a cofibrant generator c such that all objects of C are equivalent

to the realization of the simplicial object built from a resolution by the cotriple Hom(c,−)⊗ c. For example,

C could be the category of based spaces with generator S0 or a category of spectra with generator S. In

section 3.1, we define a category PnC through which n-excisive functors F ∶ C → Sp factor up to homotopy

and define an evaluation map PnC(X,Y ) ∧ PnF (X) → PnF (Y ). We show in section 3.2 that n-excisive

functors to spectra are determined by their value on n + 1 points or the n-fold coproduct of the generator

of C. In section 3.3, we prove that the derived evaluation map is an equivalence, thus giving the desired

factorization of n-excisive functors through PnC. Finally, in section 3.4, we show that n-excisive functors

to spectra which preserve filtered homotopy colimits correspond precisely, in the sense of an equivalence of

homotopy categories to modules over the spectrum of endomorphisms of n + 1 points in the category PnC.

3.1 The category

In this section, we define a category, PnC, through which n-excisive functors with domain C will be shown

to factor up to homotopy and define other maps which will allow for the classification.

Proposition 3.1.1. For a simplicial category C, there is a well-defined category, PnC, whose objects are the

objects of C and whose morphisms are given by

PnC(X,Y ) = PnΣ∞ HomC(X,−)(Y ) = hocolimU∈I T
U
n Σ∞ HomC(X,−)(Y )

for objects X and Y in C. That is, the morphisms are given by applying the construction from Definition

2.3.3 to the simplicial Hom functor.

Because C is simplicial, HomC(X,−) ∶ C → T is functor to spaces thus PnΣ∞ HomC(X,−);C → Sp lands

in the category of spectra, so PnC is enriched in Sp. There is a natural functor pn ∶ C → PnC, given by the

identity on objects and by the natural transformations F → Σ∞ ○ F → Pn(Σ∞ ○ F ) on morphisms.

This construction is analogous to Theorem 4.8 of [JM03b].
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Proof. The categorical composition is a map PnC(X,Y ) ⊗ PnC(Y,Z) → PnC(X,Z) given by the following

composition:

PnC(X,Y ) ⊗ PnC(Y,Z) =hocolim
U∈I

TUn Σ∞ Hom(X,Y ) ⊗ hocolim
V ∈I

TVn Σ∞ Hom(Y,Z)

⊗↔hocolimÐÐÐÐÐÐ→hocolim
U∈I

hocolim
V ∈I

TUn Σ∞ Hom(X,Y ) ⊗ TVn Σ∞ Hom(Y,Z)

(holimX)⊗Y→holim(X⊗Y )ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→hocolim
U∈I

hocolim
V ∈I

holim
Ui∈P0(n)k

holim
Vj∈P0(n)`

Σ∞ Hom(X,Y ∗
k∗Ui) ⊗Σ∞ Hom(Y,Z ∗

`∗Vj)

fubini for ho(co)limsÐÐÐÐÐÐÐÐÐÐÐ→hocolim
(U,V )∈I×I

holim
(Ui,Vj)∈P0(n)k+`

Σ∞ Hom(X,Y ∗
k∗Ui) ⊗Σ∞ Hom(Y,Z ∗

`∗Vj)

Σ∞↔⊗ÐÐÐÐ→hocolim
(U,V )∈I×I

holim
(Ui,Vj)∈P0(n)k+`

Σ∞[Hom(X,Y ∗
k∗Ui) ⊗Hom(Y,Z ∗

`∗Vj)]

id⊗(∗Ui)ÐÐÐÐÐÐ→hocolim
(U,V )∈I×I

holim
(Ui,Vj)∈P0(n)k+`

Σ∞[Hom(X,Y ∗
k∗Ui) ⊗Hom(Y ∗

k∗Ui, Z ∗
`∗Vj ∗

k∗Ui)]

composition in CÐÐÐÐÐÐÐÐÐ→hocolim
(U,V )∈I×I

holim
(Ui,Vj)∈P0(n)k+`

Σ∞[Hom(X,Z ∗
`∗Vj ∗

k∗Ui)]

defn of TnÐÐÐÐÐÐ→hocolim
(U,V )∈I×I

TU∐Vn Σ∞ Hom(X,Z)

induced by ∐ÐÐÐÐÐÐÐ→hocolim
I

TU∐Vn Σ∞ Hom(X,Z)

=PnC(X,Z)

This composition is strictly associative by the associativity of the disjoint union of sets. The identity

of this composition is the image of the identity under the composite natural transformation F → Σ∞F →

PnΣ∞F , which can be verified using naturality.

The spectrum of endomorphisms of any object in the category PnC has a strict monoidal structure

induced by composition. That is, if Y is an object of C, the endomorphisms of Y in PnC form a monoid,

PnC(Y,Y ) = PnΣ∞ Hom(Y,−)(Y ).

The other hom spectra inherit module structures over these monoids using the composition of PnC. For

example, the map

PnC(Y,Y ) ⊗ PnC(Y,Z) → PnC(Y,Z)

exhibits a left action of PnC(Y,Y ) on PnC(Y,Z).

We will now show that the n-excisive approximation of an analytic functor is a module over one of

these monoids. For functors landing in a simplicial category of spectra, Sp, there is a continuous map

Hom(X,Y ) → Hom(F (X), F (Y )) whose adjoint, F (X) ∧ Hom(X,Y ) → F (Y ), we call evaluation. This
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evaluation structure descends to the category PnC, producing natural maps

PnC(X,Y ) ⊗ PnF (X) → PnF (Y ) and PnF (X) ⊗ PnC(X,Y ) → PnF (Y )

which exhibit PnF (X) as both a left and a right module over PnC(X,X).

Note that given a space X and a spectrum A, the monoidal product of spectra, (Σ∞X)⊗SpA, is equivalent

to the smash product X ∧A, which is the levelwise smashing of X with A, (X ∧A)n =X ∧An. This can be

seen using adjunctions and the Yoneda lemma:

Hom((Σ∞X)∧A,B) ≅ Hom(Σ∞X,HomSp(A,B)) ≅ Hom(X,Ω∞ Hom(A,B)) ≅ Hom(X,Hom(A,B)) ≅ Hom(X∧A,B)

Due to the difficulty in showing that PnF defines a functor PnC → Sp, we will describe the evaluation map

explicitly. The left module evaluation map is given by the following composition, and the right module map

is defined similarly. We refer to the composition map PnC(X,Y )⊗PnC(Y,Z) → PnC(X,Z) from Proposition

3.1.1 as ♡, and the isomorphism Hom((Σ∞X) ∧A,B) ≅ Hom(X ∧A,B) as equation ♢.

PnC(X,−) ⊗ PnF (X) =hocolim
U∈I

TUn Σ∞ Hom(X,−) ⊗Sp hocolim
V ∈I

TVn F (X)

as in ♡ÐÐÐÐ→hocolim
U∈I

hocolim
V ∈I

holim
Ui∈P0(n)k

holim
Vj∈P0(n)`

Σ∞ Hom(X,− ∗
k∗Ui) ⊗Sp F (X ∗

`∗Vj)

ho(co)limsÐÐÐÐÐÐ→hocolim
(U,V )∈I×I

holim
(Ui,Vj)∈P0(n)k+`

Σ∞ Hom(X,− ∗
k∗Ui) ⊗Sp F (X ∗

`∗Vj)

by eqn ♢ÐÐÐÐÐ→hocolim
(U,V )∈I×I

holim
(Ui,Vj)∈P0(n)k+`

Hom(X,− ∗
k∗Ui) ⊗ F (X ∗

`∗Vj)

as in ♡ÐÐÐÐ→hocolim
(U,V )∈I×I

holim
(Ui,Vj)∈P0(n)k+`

Hom(X ∗
`∗Vj ,− ∗

k∗Ui ∗
`∗Vj) ⊗ F (X ∗

`∗Vj)

evaluationÐÐÐÐÐ→hocolim
(U,V )∈I×I

holim
(Ui,Vj)∈P0(n)k+`

F (− ∗
k∗Ui ∗

`∗Vj)

defn of TnÐÐÐÐÐÐ→hocolim
(U,V )∈I×I

TU∐Vn F (−)

U∐V→WÐÐÐÐÐÐ→hocolim
W ∈I

TWn F (−)

= PnF (−).

In section 3.3, we will show that if F ∶ C → Sp is n-excisive, then F factors through PnC up to homotopy.

C F //

pn
  

Sp

PnC
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In the situation above, the homotopy left Kan extension of F along pn is the realization of the simplicial

object defined by

[m] ↦ ∐
c0,c1,...,cm∈C

(PnΣ∞ Hom(cm,−) × C(cm−1, cm) ×⋯ × C(c0, c1)) ⊗ F (c0).

Later, in our classification, we will restrict our attention to a subcategory of PnC and consider the left

Kan extension of PnF along the inclusion of this subcategory. Since we have not shown that PnF is a functor

on PnC, we need to use the module maps described above to make sense of this construction. This will be

described further in section 3.3.

3.2 An n-excisive functor is determined by its value on points

In this section, we classify n-excisive functors which satisfy the colimit axiom as functors determined by

their value on n + 1 points. This is in direct analogy with the fact that real-valued degree n polynomial

functions are determined by their value on n + 1 points.

Let C be a simplicial model category. We will assume that C has a cofibrant generator c, and that

all objects of C are equivalent to the realization of the simplicial object built from a resolution by the

cotriple Hom(c,−) ⊗ c. For C = T , the generator is S0 and a space X is equivalent to the realization of the

singularization of X, ∥Sing●X∥, where Sing●X = Hom(S0,X) as a simplicial set. These ideas are spelled

out in more detail in section 2 of [JM03a] and section 6 of [McC].

Definition 3.2.1. We say that c is a generator if every object X ∈ C is equivalent to the homotopy colimit

of a filtration Xn

X ≃ hocolim (X0 →X1 →X2 → ⋯)

such that the cofibers Xn/Xn−1 are equivalent to ∐Sn ⊗ c.

Note that for pointed spaces, c = S0, for unpointed spaces, c = ∗, and for spectra, c = S.

Definition 3.2.2. Let ∅ denote the initial object of C and ∗ the final object; when C is based, these agree

and we use ∗ for the initial object. If C is based, define nc =
n

∐
∗
c, with 0c = ∅. That is,

nc = colim( ∗
ww ~~ !! ''

c c ⋯ c c
) .

If C is unbased, define nc =
n+1

∐
∅
c
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For pointed spaces, nc = ⋁n S0, the space of n + 1 points, for unpointed spaces, nc = ∐n+1 ∗, the space

of n + 1 points, and for spectra, nc = ⋁n S, the wedge sum of n sphere spectra (which levelwise is the n-fold

wedge sum of k-spheres.)

The main result of this section is the following theorem, which we will prove for C = T first, then indicate

the generalization to simplicial model categories with cofibrant generator c at the end of this section.

Theorem 3.2.3. Let F,G ∶ C → Sp be two finitary, n-excisive functors; that is, F and G preserve filtered

homotopy colimits and take strongly cocartesian n + 1-cubes in C to cartesian cubes of spectra. If a natural

transformation η ∶ F → G is an equivalence on nc, then it is an equivalence on all objects of C.

Example 3.2.4. Here is an example demonstrating that this theorem does not hold for functors to spaces,

although a modified version of this theorem holds (see appendix B). Let F = ΩΩ∞(HZ ∧ −) and G =

ΩΩ∞(HZ/2 ∧ −). There is a natural transformation η ∶ F → G. Both F and G are linear, reduced,

finitary functors, and η is an equivalence on all discrete sets, but F (S1) /≃ G(S1) since π0F (S1) = Z and

π0G(S1) = Z/2.

We will prove Theorem 3.2.3 through a series of lemmas. The first says that the value of a finitary,

n-excisive functor on discrete sets is determined by its value on the space nc = ⋁n S0.

Lemma 3.2.5. Let F,G ∶ T → Sp be two finitary, n-excisive functors such that the natural transformation

η ∶ F → G is an equivalence on the space nc. Then η is an equivalence on all discrete sets.

Proof. Since the functors are finitary and uncountable sets are filtered colimits of their finite subsets, we

need only check that F ≃ G on finite sets. For all n > 0, n − 1c is a retract of nc, because the maps

n−1

⋁ S0 � � //
n

⋁S0 //
n−1

⋁ S0

compose to the identity. The first map is inclusion into the first n − 1 summands while the second map is

the identity on the first n − 1 summands and folds the nth summand with the n − 1st.

Then we can apply F and G to this sequence to get:

F (
n−1

⋁ S0)

ηn−1c
��

// F (
n

⋁S0)

ηnc≃
��

// F (
n−1

⋁ S0)

ηn−1c
��

G(
n−1

⋁ S0) // G(
n

⋁S0) // G(
n−1

⋁ S0)

Now ηn−1c is a retract of ηnc because both horizontal composites are the identity (F (id) = id = G(id)).
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Since weak equivalences are preserved under retracts and ηnc is an equivalence, ηn−1c is also a weak equiva-

lence.

So inductively η is an equivalence on the space kc where 0 ≤ k ≤ n. To show that η is an equivalence on

kc for k > n, we will use the excisiveness of F and G.

Let n = 1. Consider the cocartesian diagram

∗ //

��

S0

��

S0 // S0 ∨ S0

Since F and G are 1-excisive, the front and back squares of the following cube of spectra are cartesian

and thus also cocartesian:

F (∗) //

��

≃
&&

F (S0)

��

≃
))

G(∗) //

��

G(S0)

��

F (S0) //
≃
&&

F (S0 ∨ S0)
))

G(S0) // G(S0 ∨ S0)

The three labelled diagonal maps are equivalences by the above argument, and so the map η2c on the

final corners is also an equivalence by the homotopy invariance of homotopy colimits.

Similarly for higher dimensions, we can form the strongly cocartesian (n + 1)-cube U ↦
∣U ∣
⋁ S0. Applying

F and G yield cartesian (and thus cocartesian) cubes which are equivalent on all U except the final corner,

but these are also equivalent by homotopy invariance of the homotopy colimit. Thus η is an equivalence on

kc for all finite k. The colimit axiom assures us that F and G agree on all collections of points (infinite or

finite).

The generalization of Lemma 3.2.5 to a simplicial category C with cofibrant generator is straightforward,

but we’d like to point out that for C unbased, we can recover the initial object ∅ (the empty coproduct of

c’s) as the homotopy limit of the cosimplicial object ∐n+1
∅ c. Since η is an equivalence on every object of the

diagram, F (∅) ≃ G(∅).

Definition 3.2.6. If X● is a simplicial object in C, we say that F commutes with realization if

∥F (X●)∥
≃Ð→ F (∥X●∥).

As long as the category sC of simplicial objects in C has a decent notion of realization, we can extend a
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functor F ∶ C → Sp by applying it levelwise to an object in sC. This yields an object in sSp which can be

realized in Sp. We could also apply F to the realization of the object of sC, and compare the results. That

is, a functor F ∶ C → Sp commutes with realization if the following diagram commutes

C F // Sp

sC

∥−∥

OO

F∆op

// sSp

∥−∥

OO

Lemma 3.2.7. If two functors F,G ∶ T → Sp commute with realization, then a natural transformation

η ∶ F → G which is an equivalence on discrete sets is an equivalence on all spaces.

Proof. By the singularization/realization adjunction of spaces and simplicial sets, there is a weak equivalence

∥Sing(X)●∥
≃Ð→ X, which the homotopy functor F preserves. For all k, Sing(X)k is a simplicial (discrete)

space, and since F commutes with realization, for all spaces X,

∥F (Sing(X)●)∥
≃Ð→ F (∥Sing(X)●∥)

≃Ð→ F (X).

We have assumed that F
ηÐ→ G is an equivalence on discrete sets, so η● ∶ F (Sing(X)k)

≃Ð→ G(Sing(X)k) for

all k. By Segal’s realization lemma ([Seg74] Lemma A.1.ii), simplicial spaces which are levelwise equivalent

by a natural transformation have equivalent realization; Proposition X.1.2 of [EKMM97] gives the analogous

result for simplicial spectra. Thus, for all X, η is an equivalence.

∥F (Sing(X)●)∥ ≃ //

≃η●

��

F (X)

η

��

∥G(Sing(X)●)∥ ≃ // G(X)

McCarthy’s argument in Corollary 6.5 of [McC] for endofunctors of spectra generalizes to functors F ∶ C →

Sp from a simplicial model category C with cofibrant generator c by building the c-cellular replacement of

an object X ∈ C. To prove lemma 3.2.7 for such categories, one needs to note that objects of C are equivalent

to the realization of a simplicial object of C, and levelwise, these are sets tensored with the generator c, so

are discrete c-elements, kc for some k.

The next lemma shows that n-excisive functors to spectra commute with realization. Together with the

previous two lemmas, this completes the proof of Theorem 3.2.3 for functors F ∶ T → Sp.
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Lemma 3.2.8. An n-excisive functor to spectra commutes with realization.

This is proven as Corollary 6.4 of [McC] for functors with domain spectra and as Corollary 5.11 of [MO02]

for domain spaces. We offer a proof similar to McCarthy’s.

Proof. The proof is by cases and induction. Let F ∶ T → Sp be an n-excisive functor.

Case 0: Suppose F is 0-excisive, so F is constant. Clearly constant functors commute with realization.

Case 1: F is n-homogeneous, so F ≃DnF . By Goodwillie’s classification in [Goo03], DnF (X) ≃ (∂nF (∗)∧

X∧n)hΣn . The realization is a homotopy colimit construction, so commutes with homotopy orbits, smashing

with a fixed spectrum, and smash products. Thus DnF commutes with realization.

Case 2: Suppose F is n-excisive, but not necessarily n-reduced, so F ≃ PnF . The fiber sequence DnF →

PnF → Pn−1F is also a cofiber sequence in spectra, and applying realization (a homotopy colimit) pre-

serves this, so ∥DnF (X●)∥ → ∥PnF (X●)∥ → ∥Pn−1F (X●)∥ is a fibration. By induction ∥Pn−1F (X●)∥ ≃

Pn−1F (∥X●∥), and by case 1, ∥DnF (X●)∥ ≃DnF (∥X●∥), so the result follows.

For functors with simplicial domain C, one can use the results of [Kuh07] to write DnF as composition of

constructions which commute with homotopy colimits for Case 1, and Case 2 goes through as written.

3.3 Evaluation is an equivalence

In this section, we will show that the natural evaluation map (defined in section 3.1) is an equivalence when

F is n-excisive:

PnF (nc) ⊗L
PnC(nc,nc) PnC(nc,−)

evaluationÐÐÐÐÐÐ→ PnF (−).

We use the superscript L to denote that this is a derived tensor product, given by the bar construction.

That is,

Definition 3.3.1. Let

LnF =PnF (nc) ⊗L
PnC(nc,nc) PnC(nc,−)

=
XXXXXXXXXXXXXXX
[m] ↦ PnF (nc) ⊗ (

m times
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
PnC(nc,nc) ×⋯ × PnC(nc,nc)×PnΣ∞ Hom(nc,−))

XXXXXXXXXXXXXXX
.

where the PnC hom sets are defined as in section 3.1:

PnC(nc,nc) = hocolimI T
k
nΣ∞ Hom(nc,−)(nc).
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We will show that the natural evaluation LnF → PnF is an equivalence on all objects of C. We’ll focus

on functors F ∶ C → Sp with C a simplicial model category with cofibrant generator c. In particular, C can

be the category of pointed topological spaces with generator S0.

We will start by showing that each level of the simplicial functor LnF is n-excisive, then that levelwise

n-excisive functors realize to n-excisive functors. By applying Theorem 3.2.3, we will obtain the desired

equivalence LnF
≃Ð→ PnF .

We first show that (LnF )m = PnF (nc) ⊗ PnC(nc,nc)⊗m ⊗ PnC(nc,−) is n-excisive for m ≥ 0.

Lemma 3.3.2. PnΣ∞ Hom(X,−) ∶ T → Sp is n-excisive when X is cofibrant and finite dimensional.

Proof. If C is the category of based spaces, then Goodwillie shows (in Example 4.5 of [Goo92]) that

Σ∞ Hom(X,−) is ρ-analytic when X is finite of dimension ρ. Thus the I-functor [k] ↦ T k+1
n Σ∞ Hom(X,−)

satisfies the conditions of Bökstedt’s lemma (2.3.2)), because the connectivity increases as k increases. Then

there is an equivalence

PnC(X,−) = hocolimN T
k
nΣ∞ Hom(X,−) ≃Ð→ hocolimI T

k
nΣ∞ Hom(X,−) = PnC(X,−).

Since PnC(X,−) is n-excisive, so is PnΣ∞ Hom(X,−).

Note that nc is cofibrant when c is a cofibrant generator of C.

Lemma 3.3.3. If G is an n-excisive functor to spectra, then for any spectrum Y , Y ∧G(−) is also n-excisive.

Proof. Let G ∶ C → Sp be an n-excisive functor. For any strongly cocartesian (n+1)-cube X , the cube G(X)

of spectra is cartesian, thus also cocartesian. When C has functorial cofibrant replacement, smashing means

applying the derived tensor, so Y ∧ − is a homotopy left adjoint and Y ∧ G(X) is also cocartesian, thus

cartesian, and so Y ∧G(−) is n-excisive for any spectrum Y .

Levelwise, LnF is the product of an n-excisive functor with finitely many spectra, so we have shown that

LnF is levelwise n-excisive.

Remark 3.3.4. Note that these lemmas are exactly why we have chosen to enrich PnC in spectra. If we

had used the simplicial enrichment of C as the enrichment of PnC, we would need a map Sp⊗T → Sp that

preserves n-excision, but the following example shows that this does not always exist.

Example 3.3.5. The functor Ω∞Σ∞ ∶ T → T is linear, but upon tensoring with the spectrum S, one gets
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the functor Σ∞Ω∞Σ∞, which is not linear by the Snaith splitting

Σ∞Ω∞Σ∞(X) ≃ ⋁
j≥1

Σ∞(X∧j)hΣj .

Given a simplicial functor [k] ↦ Fk to spectra such that each Fk is an n-excisive functor, the next lemma

shows that the realization ∣∣F●∣∣ is n-excisive. That is, given a strongly cocartesian (n + 1)-cube X , the map

∣∣F●(X∅)∣∣ → holim
U∈P0(n)

∣∣F●(XU)∣∣ is an equivalence.

Lemma 3.3.6. ([MO02] 5.4) The realization of a levelwise n-excisive functor to spectra is n-excisive.

Proof. If [k] ↦ Fk is a simplicial functor to spectra such that Fk is n-excisive for all k, then Fk ≃ PnFk for

all k ≥ 0. Let X be a strongly cocartesian (n+ 1)-cube, then PnFk(X) is cartesian for all k. In the category

of spectra, this is also cocartesian. Since fat realization commutes with homotopy colimits, ∥PnFk(X)∥ is

also cocartesian and thus cartesian. Then ∥PnFk∥ is n-excisive.

Thus, LnF is an n-excisive functor, because it is levelwise n-excisive.

Finally, we can show that the evaulation map is an equivalence when F is n-excisive and finitary.

Corollary 3.3.7. The natural map PnF (nc) ⊗L
PnHom(nc,nc) PnHom(nc,−)

evaluationÐÐÐÐÐÐ→ PnF (−) defined in

section 3.1 is an equivalence when F is n-excisive and finitary.

Proof. We have shown in the previous section that LnF is n-excisive. When F is n-excisive, PnF ≃ PnF ≃ F ,

where the first equivalence is by Bökstedt’s lemma ([Bök85]) and the second is due to Goodwillie ([Goo03],

Prop 1.5). Then PnF is also n-excisive and satisfies the colimit axiom. We see that LnF satisfies the colimit

axiom, since realization, finite monoidal products, and Hom(X,−) commute with filtered colimits when X

is compact.

To apply Theorem 3.2.3, we must show that the natural transformation LnF → PnF is an equivalence

on nc, i.e., on n + 1 points. At nc, there is a map s ∶ PnF (nc) → PnF (nc) ⊗ PnHom(nc,nc) defined by

x↦ (x, [id]), where [id] is the image of id ∈ Hom(nc,nc) in PnΣ∞ Hom(nc,nc). Clearly, ev ○ s = 1PnF (nc).

The other composition s ○ ev is simplicially homotopic to the identity. That is, the map s allows us to

build a contracting simplicial homotopy (Definition 2.1.3) by defining an extra degeneracy map at each stage

which inserts the identity [id] in the last spot.

Explicitly, let PnF (nc) be denoted by A. Note that the map d0 ∶ A ⊗ P → A ∶ (a, p) ↦ a ⋅ p coequalizes

d0, d1 ∶ A⊗ P ⊗ P → A⊗ P , so A⊗L
PnC(nc,nc) PnC(nc,−)(nc) is augmented by A. We will consider A as the

−1 object of the simplicial object LnF . There is a map s−1 ∶ A→ A⊗ P ∶ a→ (a, id).
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We’ll denote the simplicial complex A⊗L
PnC(nc,nc) PnC(nc,nc) by X●, so

Xn = A⊗ PnC(nc,nc) ⊗⋯⊗ PnC(nc,nc)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n+1

with si including an identity in the ith spot and

di(a, p0, . . . , pn) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(a ⋅ p0, p1, . . . , pn) if i = 0

(a, p0, . . . , pi−1 ⋅ pi, . . . , pn) if 1 ≤ i < n

Let s−1 ∶ Xn → Xn+1 be defined by (a, p0, . . . , pn) ↦ (a, p0, . . . , pn, id), and note that s−1 satisfies the

identities of a contracting homotopy (definition 2.1.3). Thus ∣X ∣ → A is a homotopy equivalence, and

LnF → PnF is an equivalence on all spaces.

3.4 Classification

Let F ∶ C → Sp be a functor where C is a simplicial model category with cofibrant generator c. In a series of

papers in the 90’s, Kuhn classifies degree n functors of vector spaces by modules over matrix rings, which

he calls generic representations. For reasons explained in remark 3.4.3, we adopt Kuhn’s terminology from

[Kuh00].

Definition 3.4.1. A rank n generic representation, A, is a spectrum equipped with a continuous monoid

map of spectra PnC(nc,nc) → Hom(A,A).

By adjunction, this is the data of a right module over PnC(nc,nc), i.e., an object A ∈ Sp with a unital,

associative, and continuous action map: A⊗ PnC(nc,nc) → A, and so a morphism of rank n generic repre-

sentations f ∶ A → B is a map respecting this module structure, i.e., a morphism of spectra such that the

following commutes:

A⊗ PnC(nc,nc) //

f⊗id
��

A

f

��

B ⊗ PnC(nc,nc) // B

Two rank n generic representations, A and B, are called equivalent if there is a map of representations

A→ B which is an equivalence of spectra.

Recall that two functors F,G ∶ C → Sp are equivalent if there is a natural transformation η ∶ F → G that is

an equivalence on each object of C. We have shown that n-excisive functors which satisfy the colimit axiom

(i.e., finitary functors) are equivalent if η is an equivalence on nc.
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Theorem 3.4.2. The homotopy category of rank n generic representations is equivalent to the homotopy

category of finitary n-excisive functors F ∶ C → Sp.

Proof. Consider the functors

Funn-exc(C,Sp)
Pn−(nc)

// Mod -PnC(nc,nc)
−⊗L

PnC(nc,nc)PnC(nc,⋆)oo

Let F be a finitary, n-excisive functor and let A be a rank n generic representaiton. The bottom functor

takes F to PnF (nc), and the top functor sends A to the realization of the simplicial functor A ⊗L
PnC(nc,nc)

PnC(nc,−) ∶ C → Sp, which is levelwise n-excisive. We have shown in section 3.1 that PnF (nc) is a right

PnC(nc,nc)-module, so the bottom functor is well-defined; by lemma 3.3.6, the top functor produces an

n-excisive functor so is also well-defined.

We will show that the functors preserve weak equivalences. Given two equivalent n-excisive functors

η ∶ F ≃Ð→ G, we have

F
≃ //

≃
��

G

≃
��

PnF // PnG

Thus PnF (nc) ≃ PnG(nc) so the functor Pn − (nc) is a homotopy functor.

Given two equivalent rank n generic representations A
≃Ð→ B, it is clear (using the homotopy invariant

tensor product) that the functors agree objectwise

A⊗ PnC(nc,nc) ⊗⋯⊗ PnC(nc,−)
≃Ð→ B ⊗ PnC(nc,nc) ⊗⋯⊗ PnC(nc,−).

By homotopy invariance of the homotopy colimit, the functors are equivalent. Thus the top map also

preserves weak equivalences.

Finally, we will show that the two compositions are equivalent to the identity.

Starting on the left with n-excisive functor F , the composition yields

− ⊗L
PnC(nc,nc) PnC(nc,⋆) ○ Pn − (nc)(F ) = PnF (nc) ⊗L

PnC(nc,nc) PnC(nc,−) = LnF.

By Corollary 3.3.7, LnF ≃ PnF and PnF ≃ F by n-excision. Thus the composition is equivalent to the

identity.
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Starting on the right with generic representation A, the composition yields

Pn − (nc) ○ (− ⊗L
PnC(nc,nc) PnC(nc,⋆))(A)

= Pn (A⊗L
PnC(nc,nc) PnC(nc,−)) (nc)

≃ A⊗L
PnC(nc,nc) PnC(nc,−)(nc)

where the last equivalence is by n-excision. Now A⊗L
PnC(nc,nc) PnC(nc,nc)

≃Ð→ A by a (forward) contracting

simplicial homotopy (as in corollary 3.3.7). So the composition is equivalent to the identity.

Thus we have an equivalence of homotopy categories.

Remark 3.4.3. When C = Sp, n-excisive functors are equivalent to modules over the monoid Pn Sp(nc,nc) ≃

PnΣ∞Ω∞Mn(S), where Mn(R) is the matrix ring spectrum on R, defined by Mn(R) = Hom(n+,n+ ∧ R)

with n+ = {0,1, . . . , n} ([Bök85, Sch07]). This is why we have chosen the terminology of Kuhn to describe

n-excisive functors as generic representations. This is a reformulation of the case of endofunctors of spectra

which was considered in [McC].
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Chapter 4

Monoidal Derivatives

The n-excisive approximations of a functor are hard to compute, and so we turn to the n-homogeneous layers

of the Taylor tower

DnF = hofib(PnF → Pn−1F )

One can consider the fiber as a difference of the nth polynomial approximation from the n− 1st. Indeed,

this analogy is justified by Goodwillie’s classification of the layers, which look like the n-homogeneous pieces

of the Taylor series, f(n)(∗)⋅xn
n!

.

Theorem 4.0.4 ([Goo03]).

DnF (X) ≃ Ω∞ (∂nF ∧X∧n)hΣn

where ∂nF is a spectrum with Σn-action called the n-th derivative of F .

Thus the layers of the Taylor tower correspond to Σn-spectra associated to F , and Goodwillie went

further to identify the homotopy type of these derivatives.

Theorem 4.0.5 ([Goo03]). The n-th derivative of F is equivalent to the multilinearization of the nth cross

effect.

(Ω∞)∂Gn F ≃ hocolim
k1,...,kn→∞

Ωk1⋯ΩkncrnF (Σk1S0, . . . ,ΣknS0)

The Σn-action is induced by permuting the variables of crnF ; in the multilinearization, this also permutes

the loops. The nth cross effect is a functor of n variables which can be thought of as a measurement of the

failure of F to be degree n− 1 (in an additive sense). For example, cr1F (X) = hofib(F (X) → F (∗)), so if F

is degree 0 (or constant), cr1F is trivial.

If we consider all the derivatives of a functor together, we see a symmetric sequence in spectra. Thus we

may think of the derivatives as a functor

∂∗ ∶ [Top∗, T op∗] → [Σ,Sp]
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This point of view leads to a question posed by Arone and Ching in the introduction of [AC11].

Question 1. Is ∂∗ (lax) monoidal?

Specifically, this asks for a natural transformation ∂∗F ○ ∂∗G → ∂∗(F ○G) and a map S → ∂1Id, where

the first ○ is the composition product of symmetric sequences and the second is composition of functors.

It is easy to construct a composition map which is associative and unital up to homotopy, but strict

associativity requires a different model for the derivatives.

If ∂∗ is monoidal, some immediate consequences would be that if F is a monad and G is a module over

F , then ∂∗F is naturally an operad and ∂∗G is a ∂∗F -module. For the monad F = Id, these consequences

have been proven. The first is due to work of Johnson [Joh95], Arone-Mahowald [AM99], and Ching [Chi05],

and the second is work of Arone-Ching [AC11]. Arone and Ching went on to show that the derivatives have

an even nicer property, a chain rule.

Theorem 4.0.6 ([AC11]). For reduced, finitary functors F ○G ∶ C → D → E, where C,D,E are either T or

Sp,

∂∗F ○∂∗IdD ∂∗G ≃ ∂∗(F ○G).

Taking the composition product over ∂∗Id is a derived product, i.e., the left hand side is a two-sided bar

construction. The equivalence is given as a zigzag of equivalences, and there is no direct map for the chain

rule.

In this chapter, we give a monoidal model for the derivatives of a reduced endofunctor of spaces, using

the indexing category I of finite sets and injective maps. In the first section, we define our models for the

cross effects of a functor and show that they form something like a functor operad. In section 4.2, we define

the new model for the derivatives and show that it is monoidal. Finally, in section 4.3, we prove a chain rule

in this setting.

4.1 Key properties of cross effects

We will start with the definition of the cross effects of an endofunctor F of spaces. It is important to choose

our model for the homotopy fiber carefully so that the desired maps exist.

Definition 4.1.1. ([May99] 8.6) The homotopy fiber of a map f ∶X → Y is given by the strict limit

hofib f = lim

⎛
⎜⎜⎜
⎝

X

f

��

Y I
ev1 // Y

⎞
⎟⎟⎟
⎠

26



where Y I is the pointed path space of Y . This diagram is a fibrant replacement for the diagram with the

terminal object ∗ in the place of Y I , so the homotopy limit agrees with the strict limit.

Definition 4.1.2. Let ⊔n ∶ Cn → C be defined by ⊔n(X1, . . . ,Xn) =X1 ∨⋯ ∨Xn.

Definition 4.1.3. The 1st cross effect of F on the space X is given by

cr1F (X) = hofib[F (X) → F (∗)]

The nth cross effect of F on the spaces X1, . . . ,Xn is given by

crnF (X1, . . . ,Xn) = cr(n)1 ⋯cr(1)1 (F ○⊔n)(X1, . . . ,Xn)

where cr
(i)
1 G denotes the first cross effect applied to the ith variable of the multifunctor G.

Traditionally, crnF is defined as the total fiber of a cube constructed from coproducts of the inputs

[Goo03], but we will now demonstrate that the given model is equivalent to the usual cubical model, crGn .

The second cross effect is given by

crG2 F (X,Y ) = tothofib

⎛
⎜⎜⎜⎜⎜
⎝

F (X ∨ Y ) //

��

F (Y )

��

F (X) // F (∗)

⎞
⎟⎟⎟⎟⎟
⎠

It is well known that the total homotopy fiber of a cube is equivalent to any of the iterated homotopy

fibers (see [BJM15] for detailed definitions) so we can start with taking horizontal fibers to get

cr
(1)
1 (F ○ ⊔2)(X,Y )

��

= hofib [F (X ∨ Y ) → F (∗ ∨ Y )]

��

cr
(1)
1 (F ○ ⊔2)(X,∗) = hofib [F (X ∨ ∗) → F (∗ ∨ ∗)]

Then the vertical fiber hofib[cr(1)1 (F ○ ⊔2)(X,Y ) → cr
(1)
1 (F ○ ⊔2)(X,∗)] is equivalent to cr

(2)
1 cr

(1)
1 (F ○

⊔2)(X,Y ), so our model of iterated first cross effects is equivalent to the standard cubical model, crG2 F (X,Y ) ≃

cr2F (X,Y ). The generalization to higher cubes is straightforward.

Note that if F is reduced, cr1F is also reduced, and the choice of model for the homotopy fiber yields

isomorphisms

cr
(1)
1 cr

(2)
1 (F ○⊔2)(X,Y ) ≅ cr(2)1 cr

(1)
1 (F ○⊔2)(X,Y ).
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Lemma 4.1.4. crnF has assembly maps in each variable.

Proof. Since crnF is continuous and reduced in each variable, the assembly map is given by following the

identity through the maps

Hom(Z ∧X,Z ∧X) ≅Hom(Z,Hom(X,Z ∧X))
cr2F (−,Y )ÐÐÐÐÐÐ→Hom(Z,Hom(cr2F (X,Y ), cr2F (Z ∧X,Y )))

≅Hom(Z ∧ cr2F (X,Y ), cr2F (Z ∧X,Y ))

Lemma 4.1.5. If F is stably n-excisive, then crkF is stably n-excisive in each variable.

Proof. If F is stably n-excisive, then F satisfies En(c, κ) for some c and κ. That is, for any strongly

cocartesian (n + 1)-cube X such that X(∅) → X({s}) is ks-connected with ks ≥ κ, the diagram F (X) is

(Σks − c)-cartesian.

We will show that crGk F is stably n-excisive in each variable by showing that crGk F (−, Y2, . . . , Yk) is. Let

X be a strongly cocartesian (n + 1)-cube such that X(∅) → X({s}) is ks-connected with ks ≥ κ. Then

crGk F (X , Y2, . . . , Yk) is given by the homotopy fiber of cubes (so is of the form to apply Proposition 1.18 of

[Goo92])

V ↦ tfib(F ○⊔k)(X(V ), Y2, . . . , Yk) = hofib

⎡⎢⎢⎢⎢⎣
F (X(V ) ∨ Y2 ∨⋯ ∨ Yk) → holim

U∈P0(k−1)
F

⎛
⎝
X(V )δU ∨ ⋁

j∉U
Yj

⎞
⎠

⎤⎥⎥⎥⎥⎦

where δU =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if 1 ∈ U

1 if 1 /∈ U
, i.e. X(V ) is in the last sum if 1 ∉ U . This last term can be viewed as an

(n+1)-cube of homotopy limits of punctured k-cubes. By Proposition 1.22 of [Goo92], this cube is `-cartesian

where ` =min{1− ∣U ∣ + `U}, and `U is the cartesianness of the (n+ 1)-cube at U . If 1 ∉ U , this cube is given

by (F ○⊔2) (X ,⋁j∉U Yj), which gives `U = Σks − c. If 1 ∈ U , the (n+ 1)-cube is constant, so cartesian. Then

the largest that U can be (where the cube at U is not cartesian) is k − 1, so ` = Σks − c − k + 2.

The (n+1)-cube (F ○⊔k)(X , Y2, . . . , Yk) is (Σks−c)-cartesian, so by Proposition 1.6 (and 1.18) of [Goo92],

the cube of fibers crGk F (X , Y2, . . . , Yk) is (Σks − c−k+1)-cartesian. Thus crGk F satisfies En(c+k−1, κ), and

is stably n-excisive. By equivalence, crkF is also stably n-excisive in each variable.

The following proposition shows that the cross effects form a sort of functor operad. We prove it by

induction after a series of lemmas.
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Proposition 4.1.6. Let F ,G ∶ T → T be functors. For natural numbers k, j1, . . . jk and spaces {Xi,`}1≤i≤k
1≤`≤ji ,

there are natural associative maps

γcr∗ ∶ crkF (crj1G(X1,1, . . . ,X1,j1), . . . , crjkG(Xk,1, . . . ,Xk,jk)) → crj1+⋯+jk(F ○G)(X1,1, . . . ,Xk,jk).

Lemma 4.1.7. There is a map F ○ cr1G→ cr1(F ○G).

Proof. F ○ cr1G(X) fits into the following commuting diagram

F ○ cr1G(X) //

��

FG(X)

��

F (G(∗)I) // FG(∗)

There is a map from F ○ cr1G(X) to the strict limit of the rest of the diagram. A map from this limit

to cr1(F ○G) is induced by the map of diagrams

FG(X)

��

FG(X)

��

F (G(∗)I)
F (ev1)

//

αI
''

FG(∗)

FG(∗)I ev1 // FG(∗)

where αZ is the natural transformation given by the adjoint of the composite

Z ∧ F (Hom(Z,G(∗))) assemblyÐÐÐÐÐ→ F (Z ∧Hom(Z,G(∗))) F (evaluation)ÐÐÐÐÐÐÐÐ→ FG(∗)

with the evaluation map Z ∧Hom(Z,G(∗)) → G(∗) given by the adjoint of the identity Hom(Z,G(∗)) →

Hom(Z,G(∗)).

The map of diagrams commutes by viewing the evaluation at 1 map as Hom(I, Y ) → Hom(S0, Y ) ≅ Y ,

and using naturality. That is, we use the commutativity of

F (Hom(I,G(∗)))
F (ev1)

//

αI

��

F (Hom(S0,G(∗)))

αS0

��

Hom(I,FG(∗)) ev1 // Hom(S0, FG(∗))

Thus, there is a map F ○ cr1G→ cr1(F ○G).
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Lemma 4.1.8. The composite cr1F ○ cr1G→ F ○ cr1G→ cr1(F ○G) is associative.

Proof. Consider the diagram

cr1F ○ cr1G ○ cr1H //

��

cr1F ○G ○ cr1H //

��

cr1F ○ cr1(G ○H)

��

F ○ cr1G ○ cr1H //

��

F ○G ○ cr1H // F ○ cr1(G ○H)

��

cr1(F ○G) ○ cr1H // F ○G ○ cr1H // cr1(F ○G ○H)

The top two squares commute by naturality of the map cr1F → F , and the bottom two commute by

naturality of β, which is given by the composite

F

⎛
⎜⎜⎜⎜⎜
⎝

lim

⎛
⎜⎜⎜⎜⎜
⎝

G(X)

��

G(Y )Z // G(Y )

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟
⎠

→ lim

⎛
⎜⎜⎜⎜⎜
⎝

FG(X)

��

F (G(Y )Z) // FG(Y )

⎞
⎟⎟⎟⎟⎟
⎠

→ lim

⎛
⎜⎜⎜⎜⎜
⎝

FG(X)

��

FG(Y )Z // FG(Y )

⎞
⎟⎟⎟⎟⎟
⎠

Letting (Y,Z) = (∗, I) or (X,S0) shows that the vertical maps of the bottom row are instances of β.

Now we will use induction to show the existence of the maps of proposition 4.1.6.

Proof of proposition 4.1.6. To keep notation at bay, we’ll prove the case k = 2 and note that the general case

follows easily; that is, we will show existence of natural maps

cr2F (crj1G(X1, . . . ,Xj1), crj2G(Y1, . . . Yj2)) → crj1+j2(F ○G)(X1, . . . ,Xj1 , Y1, . . . Yj2).

The map is given by the following composition.

cr2F (crj1G(X1, . . . ,Xj1), crj2G(Y1, . . . Yj2))

defn
≅ cr2F (cr(1)1 ⋯cr(j1)1 (G ○⊔j1

)(X1, . . . ,Xj1), crj2G(Y1, . . . Yj2))

= cr2F (cr(1)1 ⋯cr(j1−1)
1 −, crj2G(Y1, . . . Yj2)) ○ cr

(j1)
1 (G ○⊔j1

)(X1, . . . ,Xj1)
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4.1.7ÐÐ→ cr
(j1)
1 cr2F (cr(1)1 ⋯cr(j1−1)

1 (G ○⊔j1
)(X1, . . . ,Xj1), crj2G(Y1, . . . Yj2))

4.1.7⋯ÐÐÐ→ cr
(j1)
1 ⋯cr(1)1 cr2F ((G ○⊔j1

)(X1, . . . ,Xj1), crj2G(Y1, . . . Yj2))

defn
≅ cr

(j1)
1 ⋯cr(1)1 cr2F ((G ○⊔j1

)(X1, . . . ,Xj1), cr
(1)
1 ⋯cr(j2)1 (G ○⊔j2

)(Y1, . . . Yj2))

4.1.7⋯ÐÐÐ→ cr
(j2+j1)
1 ⋯cr(1+j1)1 cr

(j1)
1 ⋯cr(1)1 cr2F ((G ○⊔j1

)(X1, . . . ,Xj1), (G ○⊔j2
)(Y1, . . . Yj2))

univÐÐ→ cr
(j2+j1)
1 ⋯cr(1+j1)1 cr

(j1)
1 ⋯cr(1)1 F ((G ○⊔j1

)(X1, . . . ,Xj1) ∨ (G ○⊔j2
)(Y1, . . . Yj2))

univÐÐ→ cr
(j2+j1)
1 ⋯cr(1+j1)1 cr

(j1)
1 ⋯cr(1)1 (F ○G ○⊔(j1+j2))(X1, . . . ,Xj1 , Y1, . . . Yj2)

defn
≅ crj1+j2(F ○G)(X1, . . . ,Xj1 , Y1, . . . Yj2)

4.2 Main theorem

Definition 4.2.1. Let

∂nF = hocolim
U1,...Un∈I

Ω∐UicrnF (ΣU1S0, . . .ΣUnS0).

The Σn-action is induced by permuting the n inputs of crnF , which also permutes the loops in the

multilinearization. For example, the Σ2-action on ∂2F is the conjugate action which block swaps the sphere

coordinates of the loops and variables, given by sending f ∈ ΩUΩV cr2F (SU , SV ) to the composite

SV ∧ SU
χ−1
U,VÐÐÐ→ SU ∧ SV fÐ→ cr2F (SU , SV ) cr2F (τ)ÐÐÐÐ→ cr2F (SV , SU)

Lemma 4.2.2. If F is stably 1-excisive, then the natural map ∂Gn F → ∂nF is an equivalence.

Proof. By lemma 4.1.5, if F satisfies Ek(c, κ), then crnF satisfies Ek(c + n − 1, κ) in each variable. By

Proposition 1.4 of [Goo03], T1F satisfies E1(c − 1, κ − 1) and T j1F → T j+1
1 F satisfies O1(c − j, κ − j). Thus
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the natural transformation T j1 crnF → T j+1
1 crnF satisfies O1(c+n− j, κ− j) in each variable, so evaluated on

S0 in one variable the map is (j − c − n + 1)-connected. Thinking of the cross-effect as a functor in variable

i, for each (U1, . . . , Un), the maps

Ω∐`≠i U`T j1 crnF (SU1 , . . . ,−,⋯, SUn)(S0) → Ω∐`≠i U`T j+1
1 crnF (SU1 , . . . ,−,⋯, SUn)(S0)

are (j −Σ`≠i∣U`∣ − c − n + 1)-connected. As j goes to infinity, so does the connectivity of this map. Thus for

each (U1, . . . , Un), the map of homotopy colimits induced by the inclusion N↪ I is an equivalence.

hocolim
Ui∈N

Ω∐U`crnF (SU1 , . . . , SUn) ≃Ð→ hocolim
Ui∈I

Ω∐U`crnF (SU1 , . . . , SUn) (♡)

We proceed by (reverse) induction on the indexing set. For the base case, let i = n in (♡), and

note that the equivalence is preserved by taking the homotopy colimit over U1, . . . , Un−1 ∈ N. Let H =

Ω∐U`crnF (SU1 , . . . , SUn) and assume that

hocolim
U1,...,Ui+1∈N

hocolim
Ui+2,...,Un∈I

H ≃ hocolim
U1,...,Ui∈N

hocolim
Ui+1,...,Un∈I

H.

Then

hocolim
U1,...,Ui−1∈N

hocolim
Ui∈N

hocolim
Ui+1,...,Un∈I

H

≃ hocolims commute

��

hocolim
U1,...,Ui−1∈N

hocolim
Ui+1,...,Un∈I

hocolim
Ui∈N

H

≃ by ♡

��

hocolim
U1,...,Ui−1∈N

hocolim
Ui+1,...,Un∈I

hocolim
Ui∈I

H

≃ hocolims commute

��

hocolim
U1,...,Ui−1∈N

hocolim
Ui∈I

hocolim
Ui+1,...,Un∈I

H

Note that analytic functors are, in particular, stably 1-excisive, so this lemma holds for all analytic

functors.

Theorem 4.2.3. The model for ∂∗ ∶ [T ,T ]red → [Σ,T ] given in Definition 4.2.1 is monoidal.

Proof. Recall from Definition 2.3.9 that we must define a morphism ε ∶ 1→ ∂∗Id and a natural tranformation

µF,G ∶ ∂∗F ○ ∂∗G → ∂∗(F ○ G). First, we define the morphism ε. Since the unit of T Σ is the symmetric

sequence with S0 in level 1 and the trivial space elsewhere, ε is determined by the map S0 → ∂1Id, given by
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the inclusion of the first object in the homotopy colimit S0 → hocolimk∈I Ωkcr1Id(Sk).

The natural transformation ∂∗F ○ ∂∗G → ∂∗(F ○ G) is a map of symmetric sequences, so a levelwise

equivariant map. On level j, this is

⋁
partitions of {1,...,j}

∂kF ∧ ∂j1G ∧⋯ ∧ ∂jkGÐ→ ∂j(F ○G)

which boils down to defining maps

∂kF ∧ ∂j1G ∧⋯ ∧ ∂jkGÐ→ ∂j(F ○G) for all j = j1 +⋯ + jk.

We start by defining the map for the first level ∂1F ∧∂1G→ ∂1(F ○G). Recall that the homotopy colimit

and loops functors are both continuous, so by lemma 2.2.2 have assembly maps which we denote with α.

hocolim
U∈I

ΩUcr1F (SU) ∧ hocolim
V ∈I

ΩV cr1G(SV )

αhocolim, αΩ

��

hocolim
U∈I

hocolim
V ∈I

ΩUΩV cr1F (SU) ∧ cr1G(SV )

αcr1

��

hocolim
U∈I

hocolim
V ∈I

ΩUΩV cr1F (cr1G(SU ∧ SV ))

4.1.7

��

hocolim
(U,V )∈I×I

ΩU∐V cr1(F ○G)(SU∐V )

∐∗

��

hocolim
W ∈I

ΩW cr1(F ○G)(SW )

Remark 4.2.4. The last step is the key reason for using I; if the homotopy colimit is defined over N, the

map can be defined, but it will not be strictly associative on homotopy colimits. This is similar to the reason

naive spectra do not have a good smash product, but symmetric spectra have enough extra structure to

encode the smash product in an associative way.

To define the composition map in general, we will first define a map

ΩUF (SU) → Ω∐j UF (S∐j U) (4.1)

given by the diagonal inclusion. For example, ΩS1 → Ω2S2 sends f to the perpendicular suspension of f on
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the diagonal copy of S1 in S2. This is equivariant with respect to the action which permutes the coordinates

of S2. We denote this map with U ↦ ∐j U even though it does not arise from a set map. If a set map

is desired, one could consider the indexing category of finite dimensional inner product spaces with linear

isometric inclusions and take the actual diagonal map in that setting. The derivatives can be defined in this

more general context and perhaps some equivariant information can be gained from this point of view, but

we do not require it now.

Remark 4.2.5. The map U ↦ ∐j U is associative. If U ↪ V ↪ W are inclusions, then write V = U∐V ′

and W = U∐V ′∐W ′, where V ′ and W ′ represent the orthogonal complements of U and U∐V ′ inside

of V and W , respectively. The map ΩUSU → ΩV SV is given by f ↦ idV ′ ∧ f and so the composition

ΩUSU → ΩV SV → ΩWSW is given by f ↦ idW ′ ∧ idV ′ ∧ f = idW ′∐V ′ ∧ f and thus is associative.

To define the appropriate map for the crosseffects, we must follow the map above with an assembly

map. That is, f in ΩUF (SU) maps to the composite below, which is associative by the associativity of the

assembly maps.

SU⊥ ∧ SU
SU⊥ ∧fÐÐÐ→ SU⊥ ∧ F (SU) αFÐÐ→ F (SU⊥ ∧ SU).

We will introduce new notation to save some ink in the definition of the general µF,G. If U,V1, . . . , Vk

are finite sets, let SV denote the k-tuple of spheres (SV1 , . . . , SVk) and let SU∐V = (SU∐V1 , . . . , SU∐Vk).

Then we may define the map

hocolim
U1,...Uk∈I

Ω∐UicrkF (SU) ∧ hocolim
V 1

1 ,...,V
1
j1
∈I

Ω∐V
1
i crj1G(SV

1

) ∧ ⋯ ∧ hocolim
V k1 ,...V

k
jk
∈I

Ω∐V
k
i crjkG(SV

k

)

↓ αhocolim

hocolim
U1,...Uk∈I

hocolim
V 1

1 ,...,V
1
j1
∈I
⋯ hocolim
V k1 ,...V

k
jk
∈I

Ω∐UicrkF (SU) ∧Ω∐V
1
i crj1G(SV

1

) ∧⋯ ∧Ω∐V
k
i crjkG(SV

k

)

↓ αΩ

hocolim
U1,...Uk,V 1

1 ,...,V
k
jk
∈I

Ω∐UiΩ∐V
1
i ⋯Ω∐V

k
i crkF (SU) ∧ crj1G(SV

1

) ∧⋯ ∧ crjkG(SV
k

)

↓ Ui ↦∐
ji

Ui

hocolim
Ui,V 1

1 ,...,V
k
jk
∈I

Ω∐∐ji UiΩ∐V
1
i ⋯Ω∐V

k
i crkF (S∐j1 U1 , . . . , S∐jn Uk) ∧ crj1G(SV

1

) ∧⋯ ∧ crjkG(SV
k

)

↓ αcrkF
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hocolim
Ui,V 1

1 ,...,V
k
jk
∈I

Ω∐∐ji UiΩ∐V
1
i ⋯Ω∐V

k
i crkF (S∐j1 U1 ∧ crj1G(SV

1

), . . . , S∐jn Uk ∧ crjkG(SV
k

))

↓ αcrjiG

hocolim
Ui,V 1

1 ,...,V
k
jk
∈I

Ω∐(U1∐V 1
i )⋯Ω∐(Uk∐V

k
i )crkF (crj1G(SU1∐V 1

), . . . , crjkG(SUk∐V
k

))

↓ γcr

hocolim
W1,...,Wj∈I

Ω∐Wicrj(F ○G)(SW1 , . . . , SWj))

Note that the assembly maps are equivariant and associative, as is the map described in (4.1), the

crosseffect map from proposition 4.1.6 is also equivariant with respect to permuting the variables, so the

map defined is equivariant and associative.

The rest of this section is dedicated to defining a spectrum level description of the derivatives which

agrees with Goodwillie’s definition and maintains monoidicity.

Definition 4.2.6. Let ∣∂nF be the spectrum defined in level ` by

(∣∂nF )` = hocolim
U1,...Un∈I

Ω∐UiΣ`crnF (ΣU1S0, . . .ΣUnS0).

Lemma 4.2.7. If F is analytic, Ω∞ ∣∂kF ≃ ∂kF .

Proof. Since Ω∞∣∂kF = hocolimN Ω` hocolimIk Ω∐i ViΣ`crkF (SV ), and F is analytic, we may consider the

homotopy colimits over N, so we can interchange loops and directed homotopy colimits. Thus we want to

show that the following map is an equivalence

hocolim
Nk

ΩΣivicrkF (SV ) → hocolim
Nk+1

ΩΣiviΩ`Σ`crkF (SV )

Suppose F is analytic and satisfies Ek−1(c, κ). The k-cube X ∶ U ↦ ⋁j/∈U Svj is strongly cocartesian with

vs-connected maps X(∅) → X({s}), so F (X) is Σivi − c-cartesian, and the total homotopy fiber of F (X) is

Σivi − c − 1-connected, that is, crkF (Sv1 , . . . , Svk) is Σivi − c − 1-connected.

By the Blakers-Massey theorem, the map crkF (SV ) → ΩΣcrkF (SV ) is 2(Σivi − c − 1) − 1-connected, so

the map crkF (SV ) → Ω`Σ`crkF (SV ) is also 2(Σivi − c − 1) − 1-connected.

Thus the map ΩΣivicrkF (SV ) → ΩΣiviΩ`Σ`crkF (SV ) is Σivi +2(−c−1)−1-connected, so as vi →∞, the

map on homotopy colimits becomes an equivalence.

Lemma 4.2.8. If F is analytic, ∂Gk F ≃ ∣∂kF .
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Proof. Recall from [Goo03] that Goodwillie defines the `th level of ∂Gk F to be

(∂Gk F )` = ΩVk`crkF (S`, . . . , S`) ≅ Ω(k−1)`crkF (S`, . . . , S`)

where Vk is the reduced standard representation of Σk, so has dimension k − 1. The equivalent associated

Ω-spectrum is given in level ` by

hocolim
u∈N

ΩuΩ(k−1)(`+u)crkF (S`+u, . . . , S`+u) ≅ hocolim
u∈N

Ωk(`+u)Ω−`crkF (S`+u, . . . , S`+u)

Reindexing by t = ` + u and using the Blakers-Massey argument of Lemma 4.2.7, this is equivalent to

hocolim
t∈N

ΩktΣ`crkF (St, . . . , St)

Finally, the diagonal map and lemma 4.2.2 show that this is equivalent to (∣∂nF )`.

Theorem 4.2.9. The model for ∣∂∗ ∶ [T ,T ] → [Σ,Sp] given in Definition 4.2.6 is monoidal.

Proof. This is an easy modification of the proof of Theorem 4.2.3.

We take a moment now to reiterate some consequences of this theorem, compare it with existing work

in the area, and discuss its limits. The derivatives of a monad, for example the identity functor, have the

structure of an operad and derivatives of other functors (or modules over monads) inherit a module structure

over the derivatives of the identity (respectively, the monad). In particular, there is an operad structure on

the derivatives of the monad associated to any operad. The operad structure is explicit; this differs from

the proof that ∂G∗ IdT forms an operad in the literature ([Joh95, AM99, Chi05]), which utilizes a cooperad

structure on dual spectra.

We hope to generalize theorem 4.2.9 to functors between other categories to get natural operad and

module structures in new settings. For example, the derivatives of the identity functor in the category of

algebras over an operad are conjectured to be equivalent to the operad itself, but this has not been shown

explicitly (see [Per13] for the proof of equivalence as symmetric sequences). It is interesting that we have

found a simple solution for endofunctors of spaces, while the easier case in [AC11] was endofunctors of

spectra, and the results for spaces were acheived using adjunctions. Because of our heavy use of assembly

maps, we do not expect this theorem to transfer as is to endofunctors of spectra; the only spectral functors

with assembly are linear. We will also use adjunctions to extend to other settings (see the comments at the

end of section 4.3).
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4.3 Chain rule

In this section, we will prove a chain rule for reduced, finitary, analytic endofunctors of spaces. This has

advantages to the chain rule of [AC11], in that the monoid map ∂∗F ○ ∂∗G→ ∂∗(F ○G) defines a spectrum

level map on the derived composition product ∂∗F ○∂∗Id ∂∗G → ∂∗(F ○G) instead of having a map only in

the homotopy category.

We will need the following technical lemma in the proof of the chain rule.

Lemma 4.3.1. ∣∂k preserves fiber sequences of analytic functors.

Proof. Let F → G → H be a fiber sequence of analytic endofunctors of spaces. Then F (Sn) → G(Sn) →

H(Sn) is a fiber sequence for all Sn, and if V = (v1, . . . , vk) ∈ Nk and SV = (Sv1 , . . . , Svk), then (F ○

⊔k)(SV ) → (G ○ ⊔k)(SV ) → (H ○ ⊔k)(SV ) is again a fiber sequence. Since crk is a total fiber (and a right

adjoint), crkF (SV ) → crkG(SV ) → crkH(SV ) is still a fiber sequence. It remains a fiber sequence after

looping as many times as desired and taking a filtered colimit; that is, the following is a fiber sequence for

any V ′ ∈ Nk

hocolim
V ∈Nk

ΩΣivicrkF (SV
′

) → hocolim
V ∈Nk

ΩΣivicrkG(SV
′

) → hocolim
V ∈Nk

ΩΣivicrkH(SV
′

)

Consider the assembly map for the kth cross effect in the first variable ΣjcrkF (SV ) → crkF (SV ′),

where v′1 = v1 + j and v′i = vi for 1 < i ≤ k. We will show that this map induces a weak equivalence in

the homotopy colimit. The assembly map in the first variable, α1, is part of a factorization of the map

crkF (SV ) → ΩjcrkF (SV ′). That is,

ΩjΣjcrkF (SV )
Ωj(α1)

((

crkF (SV )

unit

77

tj1(crkF )
// ΩjcrkF (SV ′)

If F is analytic satisfying Ek−1(c, κ), then crkF (SV ) is (Σivi − c − 1)-connected and as above, the unit

map is (2(Σivi − c − 1) − 1)-connected by Blakers-Massey theorem. By applying crkF (−, Sv2 , . . . , Svk) to

the cocartesian diagram ∗ ← Sv1 → ∗ and using that crkF satisfies En(c + k − 1, κ) for all n, we get that

t1(crkF )(SV ) is 2v1−(c+k−1)-connected. The iterations increase in connectivity, so the map tj1(crkF )(SV )

is also 2v1 − (c + k − 1)-connected. Thus Ωj(α1) is min(2Σivi − 2c − 3,2v1 − c − k + 1)-connected, or 2v1 −C-

connected.

Then ΩΣiviΩj(α1) is v1−(v2+⋯+vk)−C-connected, and the homotopy colimit over V1 →∞ gives an equiv-
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alence. Since the homotopy colimit is a homotopy functor, hocolimV ΩΣiviΣjcrkF (SV ) → hocolimV ΩΣivicrkF (SV ′)

is an equivalence.

Since F,G, and H are analytic, the filtered colimit is equivalent to the homotopy colimit over I, so we have

shown in the following diagram that the top row is a fiber sequence and the vertical maps are equivalences,

so the bottom row is also a fiber sequence (where here v′1 = v1 + `).

hocolim
V ∈Nk

ΩΣivicrkF (SV ′) // hocolim
V ∈Nk

ΩΣivicrkG(SV ′) // hocolim
V ∈Nk

ΩΣivicrkH(SV ′)

hocolim
V ∈I

ΩΣiviΣ`crkF (SV ) //

≃
OO

hocolim
V ∈I

ΩΣiviΣ`crkG(SV ) //

≃
OO

hocolim
V ∈I

ΩΣiviΣ`crkH(SV )

≃
OO

(∣∂kF )` //

≃
OO

(∣∂kG)` //

≃
OO

(∣∂kH)`

≃
OO

Note that if ∣∂ preserves fiber sequences of functors, then it also preserves finite products of endofunctors

of spaces, using the fiber sequence F → F ×G→ G.

For the rest of this chapter, we drop the ∣∂ notation, and let ∂∗F denote the new definition of the

derivatives presented here, and we denote Goodwillie’s definition by ∂G∗ F .

Theorem 4.3.2. Let F,G ∶ T → T be reduced, analytic, finitary functors. The natural map ∂∗F ○∂∗Id ∂∗G→

∂∗(F ○G) is an equivalence.

Proof. First, consider the case when X is a finite CW complex and F = Hom(X,−). We may filter X by its

skeleta X0 ⊆X1 ⊆ ⋯ ⊆Xn =X, and Hom(X,−) = Hom(Xn,−).

The skeletal filtration of X gives cofiber sequences Xi →Xi+1 → ⋁Si+1, and these yield fiber sequences

Hom(⋁Si+1,−) → Hom(Xi+1,−) → Hom(Xi,−).

Since ∂∗ preserves fiber sequences (by lemma 4.3.1), we have fiber sequences in spectra:

∂k Hom(⋁Si+1,−) → ∂k Hom(Xi+1,−) → ∂k Hom(Xi,−)

Taken together (for all k), the derivatives form a fiber sequence of symmetric sequences in spectra.

Since the derivatives land in spectra, each level is also a cofiber sequence, so together they also form a

cofiber sequence of symmetric sequences in spectra. The bar construction B(−, ∂∗Id, ∂∗G) preserves cofiber
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sequences, and thus the following is a fiber sequence of symmetric sequences in spectra:

∂∗ Hom(⋁Si+1,−) ○∂∗Id ∂∗GÐ→ ∂∗ Hom(Xi+1,−) ○∂∗Id ∂∗GÐ→ ∂∗ Hom(Xi,−) ○∂∗Id ∂∗G

Similarly, since Hom(⋁Si+1,−) ○ G → Hom(Xi+1,−) ○ G → Hom(Xi,−) ○ G is a fiber sequence, we get

another fiber sequence of symmetric sequences in spectra and the maps µF,G described in Theorem 4.2.3

yield a map of fiber sequences:

∂∗ Hom(⋁Si+1,−) ○∂∗Id ∂∗G //

µHom(∨Si+1,−),G

��

∂∗ Hom(Xi+1,−) ○∂∗Id ∂∗G //

µHom(Xi+1,−),G

��

∂∗ Hom(Xi,−) ○∂∗Id ∂∗G
µHom(Xi,−),G

��

∂∗(Hom(⋁Si+1,−) ○G) // ∂∗(Hom(Xi+1,−) ○G) // ∂∗(Hom(Xi,−) ○G)

First, we will show that the left vertical map is an equivalence. Recall that ⋁β Si → ∗ → ⋁β Si+1 is a

cofiber sequence of spaces, so again we get a map of fiber sequences

∂∗ Hom(⋁Si+1,−) ○∂∗Id ∂∗G //

��

∂∗ Hom(∗,−) ○∂∗Id ∂∗G //

��

∂∗ Hom(⋁Si,−) ○∂∗Id ∂∗G

��

∂∗(Hom(⋁Si+1,−) ○G) // ∂∗(Hom(∗,−) ○G) // ∂∗(⋁Hom(Si,−) ○G)

The middle terms are trivial, so the middle map is an equivalence.

We will show that the right map is an equivalence in the base case, i = 0. When i = 0 and β = 1,

Hom(S0,−) = Id, and we can build a contracting simplicial homotopy ∂∗G
≃Ð→ ∂∗Id ○∂∗Id ∂∗G. For β > 1,

Hom(⋁β S0,−) ≅ ∏β Id, so we want to show an equivalence

∂∗(∏ Id) ○∂∗Id ∂∗G→ ∂∗(∏ Id ○G) = ∂∗(∏G).

The identity functor is analytic, as are products of the identity, so ∂G∗ (∏β Id) ≃ ∂∗(∏β Id). The cross-

effect functors and Ω commute with products, and filtered homotopy colimits commute with finite limits,

so ∂G∗ (∏β Id) ≃ ∏β ∂
G
∗ (Id). Similarly, when G is analytic, ∏G is also analytic, so ∂∗(∏G) ≃ ∂G∗ (∏G) ≃

∏∂G∗ G ≃ ∏∂∗G.

We now show that the bar construction of symmetric sequences in spectra commutes with finite products

(∏∂∗Id) ○∂∗Id ∂∗G
≃Ð→∏(∂∗Id ○∂∗Id ∂∗G).
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Since the product of symmetric sequences is defined levelwise, we can consider the product in spectra,

so we have the cartesian cocartesian square

∂∗Id × ∂∗Id //

��

∂∗Id

��
∂∗Id // ∗

Since the square is cocartesian, it remains cocartesian after applying the bar construction so we have the

cartesian square

(∂∗Id × ∂∗Id) ○∂∗Id ∂∗G //

��

∂∗Id ○∂∗Id ∂∗G

��
∂∗Id ○∂∗Id ∂∗G // ∗

Thus (∂∗Id × ∂∗Id) ○∂∗Id ∂∗G ≃ (∂∗Id ○∂∗Id ∂∗G) × (∂∗Id ○∂∗Id ∂∗G).

Finally, we use the equivalence ∂∗Id○∂∗Id ∂∗G
≃Ð→ ∂∗G given by contracting homotopy on each factor. We

have shown

∂∗(∏ Id) ○∂∗Id ∂∗G ≃ (∏∂∗Id) ○∂∗Id ∂∗G ≃∏(∂∗Id ○∂∗Id ∂∗G) ≃∏(∂∗G) ≃ ∂∗(∏G).

Thus the base case i = 0 for the right vertical map is an equivalence. A map of fiber sequences in spectra

in which two maps are equivalences yields an equivalence on the third map. Thus induction shows that

µHom(∨Si,−),G is an equivalence for all i.

In the original map of fiber sequences, we have that the left map is an equivalence and by induction the

right map is an equivalence (the base case is taken care of by the base case for spheres) and so induction

yields the chain rule for representable functors

∂∗ Hom(Xi+1,−) ○∂∗Id ∂∗G
≃Ð→ ∂∗(Hom(Xi+1,−) ○G).

Arone and Ching show in [AC15] that a cofibrant model for the derivatives of representable functors can

be extended to a model for all functors.

By Proposition 4.23 of [Kel05], any cofibrant functor is equivalent to its left Kan extension along the

identity functor, so we may rewrite F (−) ≃ Hom(X,−) ∧X∈Top F (X).

Then

∂∗F ○∂∗Id ∂∗G ≃ (∂∗ Hom(X,−) ○∂∗Id ∂∗G) ∧X∈Top F (X) ≃ ∂∗ Hom(X,G(−)) ∧X∈Top F (X) ≃ ∂∗(F ○G).
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Thus the chain rule extends to all (analytic, finitary) functors built out of representable functors.

We have recovered the results of [AC11], but just for endofunctors of spaces. To extend to functors F ∶

C → D between the categories of spaces and spectra, we can use the adjunction Σ∞ ∶ T //
Spoo ∶ Ω∞. The

derivatives of a functor as defined by Goodwillie are equivalent as a symmetric sequence to the derivatives of

the associated endofunctor of spaces. For G ∶ Sp→ T , for example, ∂G∗ G ≃ ∣∂∗(GΣ∞) as symmetric sequences.

Similarly, for functors G ∶ T → Sp, the derivatives ∂G∗ G ≃ ∣∂∗(Ω∞G) are equivalent as symmetric sequences.

For this model of the derivatives to work, we need a category of spectra with all objects fibrant (we could

use EKMM spectra), and a category of spaces with all objects cofibrant (we could use simplicial sets). Using

simplicial sets would require checking that all maps in chapter 4 are simplicial maps. Once this is done, any

simplicial category C with fibrant objects which has an adjunction with spaces c∧− ∶ T // Coo ∶ Hom(c,−)

for c ∈ C will have a monoidal model for derivatives of its endofunctors and a chain rule for functors built

from representables.
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Appendix A

More on I

A.1 Some lemmas about I

In these appendices, we will give conditions on an endofunctor that ensure that its iterates receive a functor

from the category I. We will also show that Goodwillie’s string of Tn’s actually fits into an I diagram.

Finally in the last section, we give a proof of Bökstedt’s lemma 2.3.2.

Let I be the category with objects given by finite ordered sets n = {0,1, . . . , n} and with morphisms

given by injective maps. Let N be the (“wide”) subcategory with the same objects but only the standard

inclusions in−1 ∶ n − 1↪ n. Let Σ denote the wide subcategory of I consisting of all the isomorphisms. (Σ is

the groupoid ∐Σn.)

We like to visualize the category I as follows, where the category N is the subcategory with only the

horizontal arrows:

∅ // 0
i0 // 1

Σ2

�� i1 // 2

Σ3

�� i2 // 3

Σ4

�� i3 // ⋯

Since I has all inclusions, there are two maps 0→ 1 given by i0 ∶ 0↦ 0 and the map 0↦ 1, but this infor-

mation is encoded by the Σ2 action τ on 1 = {0,1}, because the map 0↦ 1 is a composition τi0 ∶ 0↦ 0↦ 1.

(This should give some intuition for why we need to include the empty set for BI to be contractible.)

Let F ∶ C → C be an endofunctor on a category C. We will give conditions for when there is a well-defined

functor from the category I to the iterates of F , which we denote by F ●.

Id // F
i0 // F ○ F

Σ2

�� i1 // F ○3

Σ3

��
i2 // F ○4

Σ4

��
i3 // ⋯

First, we would like to define a Σn-action on F ○n, or equivalently, give a functor Ψ ∶ Σ → F ● which

sends n to the functor F ○∣n∣ = F ○(n+1) and sends each morphism s ∈ Σ∣n∣ to a natural transformation

Ψ(s) ∶ Fn+1 → Fn+1. The following lemma shows that by functoriality, such a functor is generated by a well
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chosen Ψ((12)), where (12) is the nontrivial element of Σ2. This choice, σ, can be used to define images of

the other transpositions in Σn, for example, σF ∶ F 3 → F 3 swaps the first two copies of F . Thus σ will also

need to satisfy the braiding condition, which essentially says that the images of the two ways of writing (13)

as a product of transpositions are equal.

Lemma A.1.1. Let F ∶ C → C be an endofunctor on C. Let σ ∶ F ○ F → F ○ F be a natural transformation

such that σ ○ σ = id and F (σ) ○ σF ○ F (σ) = σF ○ F (σ) ○ σF (the braiding condition is satisfied). Then there

is a well-defined functor Ψ ∶ Σ→ F ●

Proof. Recall that the transpositions τk = (k, k + 1) generate Σn for 0 ≤ k < n − 1, with relations

(τi)2 = id

τiτj = τjτi if j ≠ i ± 1

τiτi+1τi = τi+1τiτi+1

We will define Ψ(τk) ∶ F ○n → F ○n by using only a Σ2-action. Let σ ∶ F ○ F → F ○ F be a natural

transformation such that σ ○ σ = id, so σ defines an action of Σ2 on F ○ F . We can define symmetric

group actions on F ○ F ○ F by F (σ) and σF where σF (X) ∶ F ○ F (F (X)) → F ○ F (F (X)) is the natural

transformation σ applied to F (X). These are analogous to the transpositions (01) and (12) of Σ3.

For n > 1, define:

Ψ(τk) ∶= Fn−k−2σFk for 0 ≤ k ≤ n − 2

So when n = 2, Ψ(τ0) = σ. We will show that Ψ preserves the relations, so Ψ defines a functor. For the

rest of the proof, we’ll drop Ψ from the notation.

First, σ2 = id so we can see that (τn−2)2 = (σFn−2)2 = id for all n > 1. Since F is a functor, we have

(τi)2 = Fn−i−2(σF i)Fn−i−2(σF i) = Fn−i−2((σF i)2) = Fn−i−2(id) = id for 0 ≤ i < n − 2 and for all n > 2.

The proof of the second relation uses functoriality of F and naturality of σ. Let j > i + 1. Then

τiτj = Fn−i−2σF i ○ Fn−j−2σF j = Fn−j−2F j−iσF i ○ Fn−j−2σF j = Fn−j−2(F j−iσF i ○ σF j)

∗= Fn−j−2(σF j ○ F j−iσF i) = Fn−j−2σF j ○ Fn−i−2σF i = τjτi
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The starred equality holds by naturality of σ, displayed in the following diagram:

F j+2
σFj //

F j−iσFi
��

F j+2

F j−iσFi
��

F j+2
σFj // F j+2

Finally, we need to show the braiding condition, that is, τiτi+1τi = τi+1τiτi+1.

τiτi+1τi = Fn−i−2σF i ○Fn−i−3σF i+1 ○Fn−i−2σF i = Fn−i−3(FσF i ○σF i+1 ○FσF i) = Fn−i−3(F (σ)○σF ○F (σ))(F i)

∗= Fn−i−3(σF ○F (σ)○σF )(F i) = Fn−i−3(σF i+1○FσF i○σF i+1) = Fn−i−3σF i+1○Fn−i−2σF i○Fn−i−3σF i+1 = τi+1τiτi+1

The starred equality is the only thing we could not prove without assumption; that is, F (σ)○σF ○F (σ) =

σF ○ F (σ) ○ σF does not come for free. This amounts to saying that the two ways of swapping the first and

third functor are equal.

Let ∆ be the category of finite ordered sets with order-preserving maps. Let ∆inj be the (wide) subcat-

egory of finite ordered sets with order-preserving injections. Any morphism in this category can be uniquely

written as a composition di1⋯dik such that i1 ≤ i2 ≤ ⋯ ≤ ik.

Lemma A.1.2. Let η ∶ Id→ F be a natural transformation. Then there is a well defined functor Φ ∶ ∆inj →

F ●.

Proof. Again, since ∆ is generated by di, we will define the image of Φ on these generators and show that

the cosimplicial identity didj = djdi−1 for i > j holds.

Define:

Φ(di) = Fn−iηF i ∶ Fn → Fn+1 for 0 ≤ i ≤ n

If i > j, then

didj = Fn+1−iηF i ○ Fn−jηF j = Fn+1−i(ηFi ○ F i−j−1ηF j)

∗= Fn+1−i(F i−jηF j ○ ηF i−1) = Fn+1−jηF j ○ Fn−i+1ηF i = djdi−1

We have the starred equality because the following commutes by naturality for i > j:
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F i−1
F i−j−1ηFj //

ηFi−1

��

F i

ηFi

��

F i
F i−jηFj // F i+1

Suppose we have σ and η as above (satisfying the hypotheses of lemmas 1 and 2), and they interact such

that the following diagram commutes:

F ○ Id
F (η)

// F ○ F
σ
��

F
44

**
Id ○ F ηF // F ○ F

That is, σ ○ F (η) = ηF and so then also F (η) = σ ○ ηF ; we will call this condition ⋆. The next lemma

shows that this is enough to define a functor I to the iterations of the functor F .

Lemma A.1.3. If there are natural transformations σ ∶ F 2 → F 2 and η ∶ 1→ F such that

• σ2 = id

• the braid condition F (σ) ○ σF ○ F (σ) = σF ○ F (σ) ○ σF holds

• the star condition σ ○ F (η) = ηF holds

then there is a well-defined functor Θ ∶ I→ F ●.

Proof. Let α ∶ n→m be a morphism of I, so α is an injection. Any set map can be factored as a surjection

onto its image followed by an inclusion of the image into the codomain, so there is a canonical factorization

of α into a bijection followed by an injection. Since α is injective, the surjection onto its image is also

injective, so we may think of the bijection a straightening out of α so that the injection into the codomain

is an order-preserving map, that is, a morphism of ∆inj . We may write α = iα ○ sα uniquely, where sα is a

permutation and iα is an order-preserving injection.

If `
αÐ→m

βÐ→ n are injections then we may factor each as a permutation followed by an ordered inclusion.

Then there is an injection γ ∶ im(sα) → im(sβ) which factors as a permutation followed by an ordered

inclusion, as shown with the dotted arrows in the following diagram.
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`
α //

≅
sα

��

m
β

//

≅
sβ

��

n

`
0�

○
iα

@@

≅
sγ

��

� � γ
// m
0�

○
iβ

@@

`
0�

○
iγ

@@

So there is a unique map ` → n which is the composition of a permutation sβα = sγ ○ sα followed by an

order-preserving injection iβα = iβ ○ iγ . We will define a functor Θ ∶ I → F ● which takes n to the functor

Fn+1. To an injection α = iα ○ sα ∶ m→ n, the functor Θ will assign the composition Θ(α) = Φ(iα) ○Ψ(sα) ∶

Fm+1 → Fn+1.

The functor Θ preserves the identity morphism because it is a composition of functors. To show that Θ

preserves composition, by functoriality, we must only check the questionable equality below:

Θ(βα) = Φ(iβα) ○Ψ(sβα) = Φ(iβiγ) ○Ψ(sγsα) = Φ(iβ)Φ(iγ)Ψ(sγ)Ψ(sα)

???= Φ(iβ)Ψ(sβ)Φ(iα)Ψ(sα) = Θ(β)Θ(α)

We may write Ψ(sγ) as a composition of Ψ(τj)’s and Φ(iγ) as a composition of Φ(di)’s. In I, we have

the following relations for moving transpositions past ordered inclusions for 0 ≤ i ≤ n, 0 ≤ j ≤ n − 2:

diτj =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

τjd
i if i > j + 1

τj+1d
i if i ≤ j

τjτj+1d
j if i = j + 1

We will show that these hold for Ψ(τj)’s and Φ(di)’s; that is, we can move the transpositions past the

ordered inclusions. Again, we will drop Ψ and Φ from the notation.

If i > j + 1, then we are proving the commutativity of the following where τj ∶ Fn+1 → Fn+1 is given by

Fn−j−1σF j .

Fn
τj
//

di

��

Fn

di

��

Fn+1
τj
// Fn+1

diτj = Fn−iηF i ○ Fn−j−2σF j = Fn−i(ηF i ○ F i−j−2σF j)
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∗= Fn−i(F i−j−1σF j ○ ηF i) = Fn−j−1σF j ○ Fn−iηF i = τjdi

The starred equality is given by commutativity of the following (because η is a natural transformation

and misses the transposition since i > j + 1.)

F i
F i−j−2σFj //

ηFi

��

F i

ηFi

��

F i+1
F i−j−1σFj // F i+1

If i ≤ j, then

diτj = Fn−iηF i ○ Fn−j−2σF j = Fn−j−2(F j−i+2ηF i ○ σF j)

∗= Fn−j−2(σF j+1 ○ F j−i+2ηF i) = Fn−j−2σF j+1 ○ Fn−iηF i = τj+1d
i

Where again the starred equality is by commutativity of the following (because σ is a natural transfor-

mation and misses η since i < j):

F j+2
σFj //

F j−i+2ηFi
��

F j+2

F j−i+2ηFi
��

F j+3
σFj+1

// F j+3

Finally, by naturality of σ, σF ○ F 2η = F 2η ○ σ, then the ⋆ condition implies that Fσ ○ F 2η = FηF , so

dj+1τj = Fn−j−1ηF j+1 ○ Fn−j−2σF j = Fn−j−2(FηF ○ σ)(F j)

⋆= Fn−j−2(Fσ ○ σF ○ F 2η)(F j) = Fn−j−1σF j ○ Fn−j−2σF j+1 ○ Fn−jηF j = τjτj+1d
j

Thus Φ(iγ)Ψ(sγ) = di1⋯dikτa1⋯τam = τa′1⋯τa′m′
di

′
1⋯di′k′ and the result must agree with Ψ(sβ)Φ(iα) by

the uniqueness of the decompositions.

A.2 Tn and I

Now, we will show that the iterates of Goodwillie’s Tn’s fit into an I diagram.

Proposition A.2.1. There is a well defined functor I→ T ●nF .

Proof. Let the natural tranformation σ ∶ TnTn → TnTn be defined by the composite:
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TnTnF (X) = holim
V ∈P0(n)

holim
U∈P0(n)

F ((X ∗ V ) ∗U)

φÐ→ holim
V ∈P0(n)

holim
U∈P0(n)

F (X ∗ (V ∗U))

ψÐ→ holim
(V,U)∈P0(n)×P0(n)

F (X ∗ (V ∗U))

σÐ→ holim
(U,V )∈P0(n)×P0(n)

F (X ∗ (U ∗ V ))

ψ−1

ÐÐ→ holim
U∈P0(n)

holim
V ∈P0(n)

F (X ∗ (U ∗ V ))

φ−1

ÐÐ→ holim
U∈P0(n)

holim
V ∈P0(n)

F ((X ∗U) ∗ V )

= TnTnF (X)

where φ and ψ are the natural isomorphisms given by associativity of the join and consolidation of limits.

We will define the map σ for categories C and D for clarity, but we will need C = D = P0(n) to make sense

of the functor.

Recall that given a map on indexing categories D × C α // C ×D G // E , there is an induced map

holim
C×D

G
α∗Ð→ holim

D×C
Gα. If G is a bifunctor which is symmetric in its arguments, then there is a natural

transformation Gα → G, and thus a map holim
D×C

Gα → holim
D×C

G. We will define σ to be the composition

holim
C×D

G
α∗Ð→ holim

D×C
Gα → holim

D×C
G. The join of two sets is symmetric, so if G(U,V ) = U ∗ V , there is a map

σ ∶ holim
(V,U)∈P0(n)2

F (X ∗G(V,U)) → holim
(U,V )∈P0(n)2

F (X ∗G(U,V )) as desired.

We may see what σ is actually doing with a picture. It swaps the roles of the U and V variable positions.

As U changes, the color changes and as V varies, the suit varies. Then the resulting map is

holim
U∈P0(1)

holim
V ∈P0(1)

F ((X ∗ V ) ∗U) → holim
U∈P0(1)

holim
V ∈P0(1)

F ((X ∗U) ∗ V )

hl

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

hl

⎛
⎜⎜⎜⎜⎜⎜
⎝

♠
×××Ö

♣ → ⧫

⎞
⎟⎟⎟⎟⎟⎟
⎠

⇓

hl

⎛
⎜⎜⎜⎜⎜⎜
⎝

♠
×××Ö

♣ → ⧫

⎞
⎟⎟⎟⎟⎟⎟
⎠

⇒ hl

⎛
⎜⎜⎜⎜⎜⎜
⎝

♠
×××Ö

♣ → ⧫

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

σÐ→ hl

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

hl

⎛
⎜⎜⎜⎜⎜⎜
⎝

♠
×××Ö

♠ → ♠

⎞
⎟⎟⎟⎟⎟⎟
⎠

⇓

hl

⎛
⎜⎜⎜⎜⎜⎜
⎝

♣
×××Ö

♣ → ♣

⎞
⎟⎟⎟⎟⎟⎟
⎠

⇒ hl

⎛
⎜⎜⎜⎜⎜⎜
⎝

⧫
×××Ö

⧫ → ⧫

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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Goodwillie has already defined η for us: the natural transformation tn ∶ Id→ Tn. This map exists by the

universal map from F (X ∗ ∅) = F (X) to TnF (X) = holim
U∈P0(n)

F (X ∗U).

We will show that the star condition of lemma A.1.3 holds. There are two evident maps Tn → TnTn given

by Tn(tn) and (tn)Tn and we will show that these differ by σ; that is, the following triangle commutes:

TnTn

σ

��

Tn

(tn)Tn
77

Tn(tn)

''

TnTn

We can picture tn as mapping the empty set into the initial corner, depicted below by placing ∅ in the

initial position with weird arrows (because it should actually be mapping to the homotopy limit as a result

of mapping to everything in the diagram):

⎛
⎜⎜⎜⎜⎜
⎝

∅ ⇀ ●

⇃ ↓

● → ●

⎞
⎟⎟⎟⎟⎟
⎠

To verify the star condition, one can picture the maps into T 2
n . The two natural transformations are shown

by including ∅ in the diagrams. Notice that including in the U variable gives one large empty set mapping

into the upper left which can be written as the homotopy limit of a diagram of empty sets. The two maps

clearly differ by σ.

hl

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

hl

⎛
⎜⎜⎜⎜⎜
⎝

∅

↓

∅ → ∅

⎞
⎟⎟⎟⎟⎟
⎠

⇀ hl

⎛
⎜⎜⎜⎜⎜⎜
⎝

♠
×××Ö

♣ → ⧫

⎞
⎟⎟⎟⎟⎟⎟
⎠

⇃ ⇓

hl

⎛
⎜⎜⎜⎜⎜⎜
⎝

♠
×××Ö

♣ → ⧫

⎞
⎟⎟⎟⎟⎟⎟
⎠

⇒ hl

⎛
⎜⎜⎜⎜⎜⎜
⎝

♠
×××Ö

♣ → ⧫

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

σÐ→ hl

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

hl

⎛
⎜⎜⎜⎜⎜⎜
⎝

∅ ⇀ ♠

⇃
×××Ö

♠ → ♠

⎞
⎟⎟⎟⎟⎟⎟
⎠

⇓

hl

⎛
⎜⎜⎜⎜⎜⎜
⎝

∅ ⇀ ♣

⇃
×××Ö

♣ → ♣

⎞
⎟⎟⎟⎟⎟⎟
⎠

⇒ hl

⎛
⎜⎜⎜⎜⎜⎜
⎝

∅ ⇀ ⧫

⇃
×××Ö

⧫ → ⧫

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

We will show that σ2 = id so we can use the lemma to define transposition maps on the Tn’s. If σ2 = id,

σ2 = φ−1ψ−1σψφφ−1ψ−1σψφ = φ−1ψ−1σ2ψφ = id
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We may see why σ2 = id by considering the following diagram.

C ×D
α

��

Gαα

''D × C
α

��

Gα // E

C ×D

G

77

So on homotopy limits, we get the following:

holim
C×D

G
α∗ //

(α2)∗
%%

holim
D×C

Gα //

α∗

��

holim
D×C

G

α∗

��

holim
C×D

Gαα //

%%

holim
C×D

Gα

��

holim
C×D

G

The maps along the top and right compose to be σ2 and the maps along the diagonal compose to id.

The triangles and square commute by naturality. Then σ2 = id.

We showed above that η and σ satisfy the star condition of lemma A.1.3.

Finally we must verify the braiding condition, that is, that Tn(σ)σTnTn(σ) = σTnTn(σ)σTn . This could be

confused in an enormous diagram, but it is easier to think of the essential quality of σ that made everything

so far work. We knew that G(U,V ) = U ∗V had a natural Σ2-action because it is symmetric in its variables.

Similarly, G(U,V,W ) = U ∗V ∗W has a natural Σ3-action, so there is only one map U ∗V ∗W →W ∗V ∗U

so the two (0,2) shuffles must be the same map. This guarantees that the braid condition will hold.

A.3 Bökstedt’s lemma

A published proof of Bökstedt’s approximation lemma may be found as lemma 2.2.2.2 of [DGM13].

Lemma A.3.1. Let G ∶ I → T be a functor, x ∈ ob I, and let x ↓ I be the full subcategory of I of objects

supporting maps from x. If G sends maps in x ↓ I to n∣x∣-connected maps and n∣x∣ → ∞ as ∣x∣ → ∞, then

hocolimNG→ hocolimIG is an equivalence.

Proof. Fix k. We will show that for some x, the diagonal maps in the following diagram are k-connected,

so the natural map hocolimNG→ hocolimIG is k-connected. Letting k →∞ recovers the desired result.
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hocolimNG

��
G(x)

33

++

hocolimIG

We can find an N such that ∣x∣ ≥ N implies n∣x∣ ≥ k so let ∣x∣ ≥ N for the rest of the proof. By cofinality,

hocolimx↓NG→ hocolimNG is an equivalence, so the top map is morally seen to be k-connected. Everything

in G∣x↓I is at least k-connected (that is, isomorphisms on homotopy up to level k) for ∣x∣ ≥ N , so the

standard inclusions G(y) → G(y + 1) are all k-connected for y ≥ x. Thus the map G(x) → hocolimx↓NG is

k-connected. Similarly, it is morally evident that the map G(x) → hocolimx↓IG is at least k-connected by

the same argument. The actual proof of these requires a form of Quillen’s theorem B which we discuss after

the rest of the proof. We have reduced to showing that the map i∗ ∶ hocolimx↓IG → hocolimIG induced by

the inclusion of the subcategory i ∶ x ↓ I→ I is a weak equivalence.

Define µx ∶ I → I by µx(y) = x ∐ y, sending a set to its disjoint union with x so that µx factors through

the subcategory x ↓ I of objects supporting maps from x. The inclusion y ↪ x ∐ y defines a natural

transformation ηx from the identity to µx, which induces a homotopy from the identity to the composite

hocolimIG
Gηx // hocolimIGµx

(µx)∗
// hocolimIG.

We will first show that i∗ is a split surjection in the homotopy category, i.e., that it has a right homotopy

inverse. The factorization of µx as the composite i ○ µx ∶ I → x ↓ I → I gives a factorization on homotopy

colimits to yield the diagram:

hocolimIG

Gηx

��

(µx)∗○Gηx

((

id∗

��

hocolimx↓IG

i∗
''

hocolimIGµx (µx)∗
//

(µx)∗
66

hocolimIG

The dotted map in the diagram composed with i∗ is homotopic to the identity, and in the homotopy

category this is a right inverse.

Following through the same argument for the natural transformation ηx restricted to x ↓ I produces a
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homotopy commutative diagram:

hocolimx↓IG

Gηx

��

id∗

((

hocolimx↓IG

hocolimx↓IGµx

(µx)∗

66

The following shows that the same map, (µx)∗○Gηx , is also a left homotopy inverse of i∗. (We’ve included

the diagram above as the lower triangle for clarity.)

hocolimx↓IG

Gηx

��

i∗

((

id∗

��

hocolimIG

Gηx

��

(µx)∗○Gηx

((

hocolimx↓IGµx (µx)∗
// hocolimx↓IG

''

hocolimIGµx

(µx)∗

66

// hocolimIG

This demonstrates that i∗ ∶ hocolimx↓IG → hocolimIG is a weak equivalence, thus proving the lemma

(modulo Quillen’s theorem B). Below is an explanation of how Quillen’s theorem applies. We record the

version given in the appendix of [DGM13].

Proposition A.3.2. Let I be a small category, let λ be a natural number, and let G ∶ I → S be such that for

any f ∶ i→ j ∈ I the induced map G(i) → G(j) is λ-connected. Let hocolimI G→ hocolimI ∗ ≅ BI be induced

by the natural transformation G(i) → ∗. Given any object i in I, the map from G(i) to the homotopy fiber

of hocolimI G→ BI over the vertex i ∈ B0I is λ-connected.

The entire argument of the lemma above can be repeated for the constant functor ∗ ∶ I → T , so there

is a weak equivalence B(x ↓ I) ≅ hocolimx↓I ∗ → hocolimI ∗ ≅ BI. The latter is contractible (I has an initial

object), so B(x ↓ I) is also contractible, although it does not have an initial object (for x ≠ ∅).

Because B(x ↓ I) is contractible, the homotopy fiber of hocolimx↓IG → B(x ↓ I) is equivalent to

hocolimx↓IG. We also know that all the maps of G∣x↓I are k-connected, so by the proposition, the map

G(x) → hocolimx↓IG is k-connected. Similarly, B(x ↓ N) is contractible, so G(x) → hocolimx↓NG is k-

connected.
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Appendix B

Partial results for functors to spaces

Although the results in this appendix do not assemble to give a classification of n-excisive functors to spaces,

we offer proofs of results analogous to those that gave the classification for spectra in chapter 3 in the hopes

that my failure can be instructive or useful. Let [n] = ⋁n Sk+1.

Definition B.0.3. A space X is k-connected if πjX = 0 for 0 ≤ j ≤ k. A map f ∶ X → Y is k-connected if

πjf ∶ πjX → πjY is an isomorphism for 0 ≤ j < k and a surjection for j = k.

Theorem B.0.4. Let F,G ∶ T → T be two finitary, n-excisive functors which satisfy En(ρn − q) for all n

and π0F (∗) = π0G(∗) = 0. If a natural transformation η ∶ F → G is an equivalence on [n] = ⋁n Sk+1, where

k =max(ρ,−q), then η is an equivalence on all k-connected spaces.

That is, n-excisive functors are determined in their radius of convergence by their values on spheres.

Note that we are requiring a strong analyticity by asking F to be stably n-excisive for all n ≥ 0, not

just for n ≥ 1 as in Goodwillie’s definition. This requires F to take α-connected maps to (α − q)-connected

maps. This condition was used by Mauer-Oats in [MO02], and thus to utilize his results, we make the same

assumptions. We will prove theorem B.0.4 through a series of lemmas.

Lemma B.0.5. The value of an n-excisive functor on wedges of k-spheres is determined by its value on the

space ⋁n Sk.

Proof. Replace ⋁S0 with ⋁Sk in the proof of lemma 3.2.5.

To prove the theorem, we apply the lemma for k + 1-spheres. The following lemma is an easy adaptation

of a result in section 6 of [MO02].

Lemma B.0.6. Let F ∶ T → T be a finitary functor such that F (∗) is connected and F satisfies En(ρn− q)

for all n, then F commutes with realizations of simplicial k-connected spaces, where k ≥max(ρ,−q).

Proof. Let X● be a simplicial k-connected space with k ≥ max(ρ,−q). We will show that all layers in the

Taylor tower commute with the realization of X●, and then use induction to show that all PnF commute

with the realization also. We will use analyticity to conclude that it is also true of F .
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Recall DnF (X) ≃ Ω∞(∂nF∧X∧n)hΣn . If Xi is k-connected, then smashing with Xi increases connectivity

by k + 1, and smashing with X∧m+1
i raises connectivity by (m+ 1)(k + 1). Since ∂m+1F has bottom nonzero

homotopy in dimension q − ρm (thm 6.1 [MO02]), we see that ∂m+1F ∧X∧m+1
i is k + q + (k − ρ)m +m + 1-

connected. Since k ≥max(ρ,−q), both k + q ≥ 0 and k − ρ ≥ 0, so this is always connected. Taking homotopy

orbits does not lower connectivity, and Ω∞ commutes with the realization of simplicial connective spectra

(thm 6.9 [MO02]), thus Dm+1F commutes with realization of X● for all m ≥ 0.

Clearly, P0F commutes with realizations, because it is constant. We have also assumed that P0F ≃ F (∗)

is connected. Assume for induction that Pn−1F is connected and commutes with the realization of X●. Note

that PnF (Xi) is connected for all i, by analyzing the fiber sequence DnF → PnF → Pn−1F . (The fiber is

0-connected if and only if the map is 1-connected, so π0PnF (Xi) → π0Pn−1F (Xi) is an isomorphism.) Then

all PnF (Xi) are connected and we may apply Waldhausen’s lemma to the above fiber sequence to get the

following map of fiber sequences

∥DnF (X●)∥ //

≃
��

∥PnF (X●)∥ //

��

∥Pn−1F (X●)∥

≃
��

DnF (∥X●∥) // PnF (∥X●∥) // Pn−1F (∥X●∥)

By the 5-lemma, we get that πi∥PnF (X●)∥ → πiPnF (∥X●∥) is an isomorphism for all i ≥ 1. Since both

are connected, we also have an isomorphism when i = 0 and so PnF commutes with the realization of X●.

Finally, the connectivity of the map F → PnF grows as n gets larger as long as X is in the radius of

convergence of F , that is, when X is at least ρ-connected. We have assumed such, so F also commutes with

the realization of X●.

Lemma B.0.7. If X is a k-connected space, then X ≃ ∥Y●∥ for some simplicial levelwise k-connected space

which is levelwise a wedge of spheres.

This result can be found in section 2 of [Sto90].

Proof. Given a connected pointed CW complex X, define VX as the following pushout:

⋁n≥1⋁h∈Hom(Dn+1,X) S
n
h∣Sn

//

��

⋁n≥1⋁h∈Hom(Dn+1,X)D
n+1
h

��

⋁n≥1⋁f∈Hom(Sn,X) S
n
f

// VX

where the maps are induced by the inclusions Sn ↪ Dn+1. That is, VX is a wedge of spheres Snf indexed
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by all maps f ∶ Sn → X with a disk Dn+1
h attached to Snf for every null homotopy h ∶ Dn+1 → X of

f . The construction V is functorial and forms a cotriple along with the natural maps ε ∶ VX → X and

β ∶ VX → V2X, where ε sends Snf into X by the indexing map f and sends Dn+1
h into X by h, and β takes

Snf homeomorphically to the copy of Sn in V2X that is indexed by the inclusion Snf → VX and similarly for

Dn+1
h .

By standard methods, the cotriple V produces a cellular simplicial space Y● augmented by X such that

Yp = Vp+1X for all p ≥ 0 with face and degeneracy maps given by ε and β.

We will show that each space Yp has the homotopy type of a wedge of spheres by showing that there are

contractible subcomplexes Cp ⊂ Yp, p ≥ 0 such that for all p ≥ 0, the quotient Yp/Cp is a bouquet of spheres

of positive dimensions, sjcp ∈ Cp+1 for all degeneracy maps and all points cp ∈ Cp, and for all 0 ≤ j ≤ p, the

induced maps sj ∶ Yp/Cp → Yp+1/Cp+1 are inclusions of bouquets.

Let C0 be the subcomplex of VX that is obtained by choosing, for each sphere Snf whose index map f is

null homotopic, exactly one of the disks Dn+1
h that are attached to Snf . The quotient VX/C0 is a bouquet

of two types of spheres: those of the form Dn+1
h /Snh∣Sn where Dn+1

h is not in C0, and those of the form Snf

where f is not null homotopic. Since Y● is cellular, induction shows that we can choose C1 ⊂ Y1, etc. so that

the degeneracy conditions are satisfied.

When X is not connected (−1-connected), we can use the usual singular complex to show that X is

equivalent to the realization of a simplicial space which is levelwise a wedge of zero-spheres. Note that when

X is k-connected, all maps Sn → X are nullhomotopic for n ≤ k, so the spheres Snf of the latter type in the

wedge VX/C0 have n ≥ k + 1 and the spheres of type Dn+1
h /Snh∣Sn must also have dimension greater than k.

Then we can write X ≃ ∥Y●∥, where Yp ≃ ⋁n>k⋁in Sn.

Even better, we can reduce the dimension of these spheres to k + 1.

Lemma B.0.8. A k-connected wedge of spheres is equivalent to the realization of a simplicial space which

is levelwise a wedge of k + 1-spheres.

Proof. Take, for example, the simplicial model ∆1/∂∆1 for S1 given levelwise by [k] ↦ ∨kS0 which can be

seen as the (coproduct) bar construction applied to S0. Now similarly,

S2 ≃ S1 ∧ S1 ≃ S1 ∧B.∨S0 ≃ B.∨(S1 ∧ S0) ≃ B.∨S1.

By induction, we see that Sn ≃ B.∨Sn−1.

Using that the realization of a bisimplicial space is the realization of its diagonal [Qui73], we see that

any sphere Sn with n > k is equivalent to the realization of a simplicial space which is levelwise ∨Sk+1. That
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is, Sn ≃ (B.∨)n−k−1Sk+1. Thus the wedge of spheres Yp ≃ ∨n>k ∨in Sn from lemma B.0.7 is equivalent to the

realization of a simplicial space Y(p,●) which is levelwise Y(p,q) ≃ ∨Sk+1.

Example B.0.9.

S3 ≃ B.∨B.∨S1 ≃ ∥∗ S2ks S2 ∨ S2jt ⋯∥

≃ hocolim

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

∗


�
∗

��
∗

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

⇐

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

S1 ∨ S1


�
S1

��
∗

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

⇚

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

∨4S1


�
S1 ∨ S1

��
∗

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

≃ hocolimdiag

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗


�

S1 ∨ S1


�

ks ⋁4 S1


�

jt

∗

��

S1

��

ks S1 ∨ S1

��

jt

∗ ∗ks ∗jt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

≃ ∥∗ S1ks ∨4S1jt ⋯∥

Lemma B.0.10. If F,G commute with realizations of simplicial k-connected spaces, then a natural trans-

formation η ∶ F → G which is an equivalence on [n] = ∨nSk+1 is an equivalence on all k-connected spaces.

Proof. Let X be a k-connected space. Using that the realization of a bisimplicial space is the realization of

its diagonal together with lemmas B.0.7 and B.0.8, we get that X ≃ ∥Z●∥ where Zm = Y(m,m) ≃ ⋁im Sk+1. F

and G are homotopy functors so F (X) ≃ F (∥Z●∥) and G(X) ≃ G(∥Z●∥). Consider the diagram

∥F (Z●)∥ ≃ //

∥η●∥
��

F (∥Z●∥)

��

≃ // F (X)

η

��

∥G(Z●)∥ ≃ // G(∥Z●∥) ≃ // G(X)

By lemma 3.2.5, η is an equivalence on wedges ∨Sk+1, so η● is a levelwise equivalence. Then ∥η●∥ is an

equivalence by the realization lemma, so F (X) ≃ G(X).

This completes the proof of theorem B.0.4, thus we know that n-excisive analytic functors to spaces

are determined, in their radius of convergence, by n + 1 “points” or spheres, but this was only half of

the classification argument. We showed that LnF was n-excisive and thus the map LnF → PnF was an

equivalence, so now we need LnF to be n-excisive and analytic to feed into this theorem. We showed in 3.3.6

that a levelwise n-excisive functor to spectra realizes to an n-excisive functor, so we now give the analogous

results for functors to spaces, which are much harder.

Lemma B.0.11. Let [p] ↦ Fp be a simplicial functor such that each Fp ∶ T → T is n-excisive, finitary,

satisfies En(ρn−q) for all n, and Fp(∗) is connected. Then the realization ∥F●∥ is n-excisive on k-connected

spaces.
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Proof. Again we will use induction on n as in the proof of lemma B.0.6.

Case 0: Let n = 0. Then Fp is 0-excisive and thus constant for each p. If Fp(Y ) = Xp for all objects Y of

T , then for all Y , ∥F●(Y )∥ is also constant with value

∥F●(Y )∥ = ∥ X0 X1
ks X2

jt ⋯ ∥ .

Case 1: Suppose each Fp is n-homogeneous, that is, n-excisive and n-reduced. Then Fp
≃Ð→ PnFp

≃←Ð DnFp

for all p ≥ 0. By Segal’s realization lemma ([Seg74]), ∥F●∥ ≃ ∥DnF●∥. So to show that ∥F●∥ is n-excisive, we

will show ∥DnF●∥ is n-excisive.

Recall from [Goo03] that DnF ∶ T → T factors through spectra as an n-homogeneous functor D′
nF

followed by the right adjoint Ω∞ back to spaces

T
D′
nFÐÐÐ→ Sp

Ω∞

ÐÐ→ T .

Let X be a strongly cocartesian (n + 1)-cube of k-connected spaces. Then D′
nFp(X) is a cartesian cube

of spectra by n-excision and thus also cocartesian. The fat realization is a homotopy colimit so preserves

cocartesian cubes, thus ∥D′
nF●(X)∥ is also homotopy cocartesian. As a cube of spectra, it is also cartesian.

As a homotopy right adjoint, Ω∞ preserves homotopy limits, so Ω∞∥D′
nF●(X)∥ is cartesian.

By an induction argument on skeleta, Mauer-Oats ([MO02] Theorem 6.9) shows that the map ∥Ω∞A●∥ →

Ω∞∥A●∥ is an equivalence for simplicial connective spectra A●. By chapter 6 of [MO02], D′
nFp is connective

on k-connected spaces, so ∥DnF●(X)∥ = ∥Ω∞D′
nF●(X)∥ is homotopy cartesian when X is made up of k-

connected spaces. Thus if Fp is n-homogeneous for all p, ∥F●∥ is n-excisive.

Case 2: If Fp is n-excisive but not n-reduced, then Fp
≃Ð→ PnFp, and we will show that ∥PnF●∥ is n-excisive.

Consider the levelwise fibration

DnFp → PnFp → Pn−1Fp.

A lemma of Waldhausen ([Wal78] Lemma 5.2) states that if X● → Y● → Z● is a levelwise fibration up

to homotopy of simplicial spaces and each Zn is connected, then ∥X●∥ → ∥Y●∥ → ∥Z●∥ is a fibration up to

homotopy. By chapter 6 of [MO02], PnFp is connected on k-connected spaces, thus the resulting diagram of

fat realizations ∥DnF●(X)∥ → ∥PnF●(X)∥ → ∥Pn−1F●(X)∥ is a homotopy fibration, and by proposition 1.7
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of [Goo03], Tn preserves fibrations, so there is a map of fiber sequences

∥DnF●∥ //

��

∥PnF●∥ //

��

∥Pn−1F●∥

��

Tn∥DnF●∥ // Tn∥PnF●∥ // Tn∥Pn−1F●∥

The outside two vertical maps are homotopy equivalences (by the induction hypothesis and case 1,

respectively), and since both rows are fibrations, they induce long exact sequences in homotopy:

⋯ // π1A //

≅
��

π1B //

��

π1C //

≅
��

π0A //

≅
��

π0B //

��

π0C

≅
��

⋯ // π1A // π1TnB // π1C // π0A // π0TnB // π0C

Since A and C are connected, we reduce to the map of exact sequences

⋯ // π1A //

≅
��

π1B //

��

π1C //

≅
��

0 //

≅
��

0 //

��

0

≅
��

⋯ // π1A // π1TnB // π1C // 0 // π0TnB // 0

By a diagram chase, we see that π0B ≅ π0TnB = 0. The five lemma gives the necessary isomorphisms

πkB → πkTnB for k ≥ 1, so Tn∥PnF●∥ ≃ ∥PnF●∥ and thus ∥PnF●∥ is n-excisive on k-connected spaces. This

finishes the proof that ∥F●∥ is n-excisive.

To use theorem B.0.4 for a classification, we would also need the realization to be analytic.

Lemma B.0.12. If [p] ↦ Fp is a simplicial functor and each Fp ∶ T → T is a strongly analytic functor

(satisfying En(ρn − q) for all n) and Fp(∗) is connected for all p, then ∥F●∥ is analytic on k + 1-connected

spaces, where k =max(ρ,−q).

Proof. We will prove this by induction on n. First, recall that the fiber of a k-connected map is a k − 1-

connected space.

Suppose Fp is levelwise analytic satisfying En(nρ − q) and that Fp(∗) is connected for all p. For a

strongly cocartesian (n + 1)-cube X of (k + 1)-connected spaces with initial maps of connectivities ks, the

map Fp(X∅) → holimU∈P0(n) Fp(XU) is (Σks − (ρn − q))-connected. Realization preserves connectivity, so

if ∥holimU∈P0(n) Fp(XU)∥ → holimU∈P0(n) ∥Fp(XU)∥ is an equivalence, ∥Fp(X)∥ will be (Σks − (ρn − q))-

cartesian, so ∥Fp∥ will be analytic.
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Let n = 1, and let the following be a strongly cocartesian square of k-connected spaces.

X //

��

Y

��

W // Z

Then consider the following levelwise cartesian square

holimp
//

��

Fp(Y )

��

Fp(W ) // Fp(Z)

Since each Fp satisfies En(ρn− q) for all n, each satisfies E0(−q). This means that Fp takes α-connected

maps to (α + q)-connected maps. Since Y is k-connected, the map Y → ∗ is (k + 1)-connected, so the map

Fp(Y ) → Fp(∗) is (k+1+q)-connected. As long as the map is at least 1-connected and Fp(∗) is 0-connected

for all p, Fp(Y ) will be connected. Since k + q ≥ 0, we have the desired connectivity on the map. We have

assumed that Fp(∗) is connected for all p. Similarly, Fp(Z) is connected, so by the Bousfield-Friedlander

theorem, the realization square below is cartesian.

∥holimp ∥ //

��

∥Fp(Y )∥

��

∥Fp(W )∥ // ∥Fp(Z)∥

Let n = 2 and let X ∶ P(2) → Top∗ be a 3-cube of (k + 1)-connected spaces, so all the maps are (k + 1)-

connected. Suppose Fp(∗) is connected for all p, so π0Fp(XU) = 0 (for U = 0,2,02,01,12,012 in particular).

Replace Fp(X∅) with holimU∈P0(2) Fp(XU) and call this cartesian cube Yp. Now since X2 → X02 is (k + 1)-

connected, Fp(X2) → Fp(X02) is (k+1+q)-connected and since k+q ≥ 0, the fiber of this map is 0-connected.

Similarly for X12 →X012. Then we may consider the fiber of the cube Yp, that is, the square below

fib(holim→ F (X0))

��

,,

holim

��

//

&&

F (X0)

��

''

fib(F (X2) → F (X02))

��

F (X2)

��

// F (X02)

��

fib(F (X1) → F (X01))
,,

F (X1)
&&

// F (X01)
''

fib(F (X12) → F (X012)) F (X12) // F (X012)

59



We have denoted connected spaces in blue and 1-connected maps in green.

Since the cube is cartesian, the fiber square is also cartesian, and since both (blue) fibers are connected,

this square satisfies the conditions of the Bousfield-Friedlander theorem, so the realization square is also

cartesian. By Waldhausen’s lemma, the realized fibers are equivalent to the fibers of the realizations, so

the realized cube ∥Y∥ is also cartesian. That is, ∥holimU∈P0(2) F●(XU)∥ ≃ holimU∈P0(2) ∥F●(XU)∥, so the

realization satisfies En(c).

Let n = 3 and let X ∶ P(3) → Top∗ be a 4-cube of (k+1)-connected spaces. Again, let Fp(∗) be connected

for all p, so that Fp(XU) is connected. Again, morphisms are (k + 1)-connected, so the maps in Y are

1-connected. The fiber cube of Y will need to satisfy the conditions necessary of the n = 2 case, so we need

two maps of fibers to be 1-connected. This is equivalent to asking that the squares be 1-cartesian. Consider

fib(X →X ′)

f

��

X //

��

X ′

��

fib(Y → Y ′) Y // Y ′

Note that the fiber of f is the total fiber of the square S. The map f is 1-connected if and only if the total

fiber is 0-connected. The total fiber is also the fiber of the map X → holim, so this is also 1-connected, and

S is 1-cartesian. Now, Fp is analytic, satisfying E1(ρ − q), and the initial maps of S are (k + 1)-connected,

so Fp(S) is 2(k + 1) − ρ + q-cartesian, and this is ≥ 2. (We only need ≥ 1.)

This raises the question of what is necessary for a simplicial cartesian n-cube to still be cartesian upon

realization, i.e., is there a higher Bousfield Friedlander theorem? We have outlined why it would be sufficient

to have 2 1-cartesian (n − 2)-cubes, 6 1-cartesian (n − 3)-cubes, 12 1-cartesian (n − 4)-cubes, etc., in the

appropriate places.

That is, if every level of the simplicial cartesian n-cube has 2i−23 1-cartesian (n − i)-faces, for 2 ≤ i < n,

and 2n−23 0-connected objects in the appropriate spots, then the realization is cartesian. An (n− i)-face is a

cube X which we can apply the En−i−1 condition to. That is, Fp satisfies En−i−1(ρ(n− i−1)−q) and since all

initial maps of the (n− i)-cube X are (k + 1)-connected, Fp(X) is ((n− i)(k + 1) − ρ(n− i− 1) + q)-cartesian.

Since k − ρ ≥ 0 and k + q ≥ 0, this quantity is ≥ n − i. Perhaps one could generalize Rezk’s generalization of

the π∗-Kan condition to give weaker conditions, but we leave this pursuit to the interested reader.

Herein lies the problem with the classification. The analyticity of the realization requires k+1-connected

spaces, but we are feeding in k-spheres, leaving us with the wrong analyticity for theorem B.0.4. We were

unable to rectify this, so we have not found a classification for functors to spaces.
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