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ABSTRACT 
 

 

Water, a limited resource even on our hydrous planet, has always been 

inextricably tied to the rise and fall of cities and human infrastructure. Clean, plentiful 

water drives our food and energy production, provides transport, and keeps humans and 

the environment healthy. Integrated urban water modelling and improved geospatial 

databases are allowing water management researchers to analyze the effects of process 

decisions in the water management sector on a broader scale and with higher 

spatiotemporal resolution than ever before. Research is driven by the desire to optimize 

limited resources, respond to changing user patterns, characterize the robustness of the 

system to climate change pressures, and define the downstream effects of new 

technologies. Water management decisions today not only require hydraulic and 

hydrologic knowledge, but also an understanding of energy production systems, 

environmental biochemistry, economics, and regulatory policy. Although integrated 

urban water models started by expanding on simple physical urban drainage models, they 

are now incorporating mechanisms for environmental change, social agents, and 

economic feedback.  

Although originally built to protect public health and the local aquatic 

environment, wastewater treatment utilities have in recent years taken on additional 

objectives including greenhouse gas mitigation, reducing chemical use, and reducing 

long-term environmental impacts due to effluent nutrients and disinfection byproducts. 

National policies on water quality (EU Water Framework Directive, US Clean Water 

Act) and electricity demand (GHG emissions targets) both cover utilities, with the goal of 

improving their environmental sustainability. These multiple objectives may call for 
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conflicting operational decisions, which presents a direct tradeoff to utility decision 

makers—increase electricity use for treatment, or allow worse effluent quality to flow 

into the local environment.  

This thesis seeks to characterize the scale of impacts stemming from energy-water 

tradeoffs and identify sources of uncertainty in making this decision, by placing the 

operational tradeoff in a larger water-energy-environmental system context. The case 

study in Eindhoven, the Netherlands is selected for several reasons. The local water 

management authority has created a well-researched integrated urban water model, 

comprising the urban water system from raindrop through domestic use, sewer collection, 

wastewater treatment, and to the receiving river. The national water and energy policies 

are providing stricter standards for utilities, presenting this tradeoff decision previously 

mentioned. Finally, the local and national datasets for LCA inventory, meteorology, 

energy generation, and ecological response are well documented, allowing us to analyze 

the system from a holistic perspective. 

 The analysis of the energy-water quality tradeoff is completed by different 

modeling methods employed by water managers and regulators, to see if the different 

methods yield improved or conflicting results. First, we use traditional LCA inventory 

accounting which is the current standard for new capital investments in wastewater 

treatment. The LCA considers the impacts of kilowatt hours of electricity and ammonia 

released to the environment in wastewater effluent for four different standards of effluent 

quality. This analysis demonstrated a clear tradeoff between eutrophication and global 

warming (energy production emissions) impacts. Second, the spatiotemporal variation of 

these eutrophication and air emissions impacts is explored using biophysical models. The 
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models include the calibrated integrated urban water system model developed for 

Eindhoven and the Dommel in conjunction with a generalized atmospheric dispersion 

model for emission byproducts of electricity generation. We study the downstream 

transport of ammonium in the river and particulate matter from the power plant 

emissions. The air emissions modeling found that even a single day of electricity demand 

associated with wastewater treatment could affect particulate matter concentrations 

hundreds of kilometers away, crossing international borders. The water quality modelling 

found that marginal improvements in the effluent quality (of 1 mg/L ammonium) could 

improve the worst-case ammonia concentrations downstream by up to 20%. Third, the 

biophysical model results are evaluated using literature-based characterization factors for 

human health exposure and ecosystem tolerances to the aforementioned ammonium and 

particulate matter emissions. These calculations framed our physical models in the 

context of local systems. On the air emissions side, the electricity generated for 

wastewater treatment was found to contribute less than 0.1% of the background 

particulate matter concentration in the region modelled. On the water quality side, the 

wastewater treatment plant significantly reduced the number of ecological exceedances 

compared to a no-treatment control scenario, on the order of about 50%. However, this 

control scenario does not account for the influence of other sources of ammonium in the 

river, such as other wastewater treatment plants or agricultural runoff.   

The outcomes of this work show that energy investment in wastewater treatment 

creates a significant tension in environmental impacts. Our multi-tiered evaluation sought 

to explore the dimensions of these impacts on higher resolution spatial scales, to better 

understand how they fit into environmental systems. Ultimately, the physical modeling 
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showed that energy impacts could cross international borders which might have some 

implication for international policymaking. However, through systems analysis these 

impacts were shown to be negligible in comparison to the water quality consequences for 

local ecosystems.   
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CHAPTER 1: INTRODUCTION 
 

Wastewater treatment utilities, originally established to protect local public and 

environmental health, have in recent years come under additional scrutiny for regional 

and global environmental impacts stemming from electricity consumption, fugitive 

greenhouse gas emissions, chemical use, and long-term societal impacts due to nutrient 

loading and contaminants of emerging concern (Bach et al., 2014). As capital 

investments reach their lifespan limits, operators and designers are looking for novel 

ways to meet these multiple objectives. Among the many other goals, operators want to 

upgrade plants to meet increasingly stringent effluent nutrient requirements. An 

integrated approach is necessary for decision-making as the policymakers behind the EU 

Water Framework Directive and the US Clean Water Act are calling for water 

management on a river-basin wide scale (EPA 1972; European Council 2000).  

In specific cases, these design and operational decisions may introduce a tradeoff 

between two conflicting sustainability objectives. A common example is investing 

additional electricity to improve effluent quality. Often, operators and policymakers will 

turn to life cycle assessment (LCA) to summarize information from all energy and 

material flows into and out of the system boundary and to better understand a decision’s 

impact on different environmental metrics (Pasqualino et al., 2009). Life cycle 

assessment typically aims to present global and long-term consequences of decision 

making, focusing on large spatial and temporal scales (Gallego et al., 2008). This may be 

problematic in the case of wastewater treatment plants, which as point sources of effluent 
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pollution to receiving rivers have high potential for acute, local human health and 

eutrophication impacts (Fu and Butler, 2012).  

Wastewater process decisions can have a significant effect on local urban 

metabolism, which is difficult to evaluate without physical models specific to the local 

environment. While a new suite of modeling tools have been developed to explain these 

mechanisms, scientists are still exploring how to link these results with the more 

generalized models used in LCA.   More LCA software is incorporating sophisticated 

environmental fate and transport models (ranging from TRACI to IMPACT World+) for 

key pollutants (Renou et al., 2008). Several life cycle impact assessment (LCIA) methods 

are seeking to integrate geospatial databases and LCA calculations (Mutel et al., 2012). 

Examples of some innovative approaches coupling local model resources with LCA 

metrics include human health analysis through quantitative microbial risk assessment 

(Harder et al., 2015; Kobayashi et al., 2015), land use analysis through water footprinting 

(Gasparatos et al., 2009; Mekonnen and Hoekstra, 2015), and emergy analysis (Pizzigallo 

et al., 2008). 

However, when using LCA to support decision-making, the scope, resolution, and 

uncertainty of the environmental assessment must be clearly communicated in both 

directions between scientists and decision makers. For example, aggregating impacts 

using LCA from different categories or locations may obscure the actual system influence 

of the process in question by underemphasizing local acute impacts or overemphasizing 

low, distributed impacts (Gasparatos et al., 2009; Mutel et al., 2012; Renou et al., 2008). 

Since the composition of wastewater effluent depends greatly on diurnal patterns and 

hourly storms, a life cycle assessment that considers these quantities as monthly or annual 
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aggregates might obscure the impacts of multiple short-duration peaks on both process 

efficiency and local environmental quality. Spatial heterogeneity is another important 

consequence of adapting LCA to fit local purposes. Characterization factors that convert 

impacts on specific local scales may not be appropriate for larger, heterogeneous land 

areas (Helmes et al., 2012). While scientists continue to work to improve the density and 

accuracy of local characterization factors and aggregation methods, clear communication 

is necessary to establish a policy standard for the scope and depth of LCA required to 

make process tradeoff decisions.  

The objective of this work is to demonstrate how LCA can be used to evaluate 

tradeoffs in operational decision-making, with special focus on adapting the life cycle 

inventory and impact assessment process to the scope of the decision being made. This is 

especially critical when applying the global, long-term focused methods used in LCA to a 

decision with significant local impacts. Our process involves evaluating a multi-objective 

decision that involves a direct tradeoff between electricity use and effluent quality by 

increasing the spatiotemporal resolution and system modeling of environmental impacts 

at different tiers of evaluation. By comparing the results from a traditional aggregate 

LCA, locally calibrated environmental transport models, and a human and ecological 

health impact assessment, we hope to show the complexity of system impacts that can 

result from a process tradeoff decision. The overarching goal of this research is to use the 

questions raised by the Eindhoven case study example to further the discussion toward 

establishing a standard for systemic analysis of policy decisions for integrated urban 

water infrastructure.  
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CHAPTER 2: BACKGROUND 
 

As cities grow, sea waters rise, economies trade, populations urbanize, and climates 

change, it becomes increasingly imperative for modern cities to consider the urban water 

cycle in a holistic, integrated perspective. Initially, urban water problems were solved in a 

piecemeal fashion—stormwater drains were built to relieve flooding lots, drinking water 

treatment plants were placed near new urban centers, and wastewater treatment was 

improved in response to public health outbreaks. The growing complexity of urban water, 

energy, materials, and economic cycles, as well as our growing awareness of urban water 

impacts on the environment, mean that we must begin evaluating and optimizing these 

discrete subsystems in an integrated way. This review first explores the background of 

integrated urban water modelling (IUWM), including motivation and modeling structure. 

It then discusses the state-of-the-art in understanding the energy-water nexus in an urban 

context, with a particular focus on human and policy pressures. Then, the current 

standard of life cycle assessment (LCA) for environmental impact evaluation is 

discussed, with focus on the many modern applications of LCA and limitations and 

opportunities of the approach. The final section presents a detailed background of the 

Eindhoven case study explored later in this thesis.  
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Figure 1: World population map of 2016 showing at least 30 megacities of at least 10 million people 

(red). Smallest cities shown are light blue, of at least 300,000 inhabitants (The Economist). 

2.1 MOTIVATION FOR INTEGRATED URBAN WATER MODELLING (IUWM) 

 Earth is now home to 30 megacities with human populations over 10 million 

(Figure 1). Over half of the world’s population lives in urban areas as of 2014 (The 

Economist, 2007). The largest wastewater treatment plant in the United States treats 700 

Figure 2: Global water scarcity index. Highest water scarcity (dark red) is felt in many highly 

urbanized, coastal areas.  
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million gallons of water a day—the demand placed by the 2 million people living in its 

service area (MWRD, n.d.). The size of urban water systems, like so many infrastructure 

systems created by humans (Bettencourt et al., 2007), has grown exponentially in the last 

half-century. Over one hundred years ago, engineers first recognized the problem that our 

knowledge of the impacts of our sanitary infrastructure extended no further than “the 

outfalls of our sewers” (Soper 1907). The local service area now covers tens of 

kilometers, while the downstream range of air- and water-shed impacts likely covers 

many hundreds of kilometers. Indeed, the rise of integrated urban water modeling 

(IUWM) first started as an attempt to develop more comprehensive urban drainage 

system models. Much of this research was driven by the objective to better understand 

urban water cycles and help conserve this scarce resource (Figure 2). The INTERURBA I 

conference (Lijklema et al., 1993) marks the start of a community committed to 

understanding the feedbacks and optimization of integrated urban water cycles.  

 In the wake of INTERURBA I, scientists almost immediately began looking to 

IUWM as an opportunity for real-time control of wastewater treatment systems (Bach et 

al., 2014). Water treatment subprocess models (i.e., for individual water bodies or sewer 

systems) had been under development for some time, coupling improved computation 

capacity for environmental fluid dynamics with the increased storage necessary for GIS 

datasets (Bach et al., 2014). However, as individual sectors began to commit to more 

sustainable infrastructure on a subsystem level (Marlow et al., 2013), engineers 

recognized the need to understand system interactions and possible feedbacks.  

Brown et al. identified three institutions that shape our “patterns of practice”: 

cognitive, normative, and regulative (Gessner et al., 2014). While the cognitive 
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Figure 3: Planetary indicators showing 

highest anthropogenic impact on global 

ecosystem services. From Liu, et al.  

institutions—as engineers and research scientists—were shifting approaches from an 

experimental perspective, the regulatory institutions also provided pressure from an 

administrative perspective. The EU Water Framework Directive called for river-basin-

wide management of surface water bodies to maintain their “good ecological and 

environmental quality” (European Council 2000), a novel call to manage environmental 

quality along biophysical boundaries rather than political ones. Finally, the normative 

institutions include social values and leadership. Scientific and political leadership has 

recognized that we have entered a geologic epoch called the Anthropocene, where human 

activity dominates environmental systems (Vidas et al., 2015). Thus, we should not study 

water cycles as solely physical systems—our models must incorporate human 

infrastructure, economic indicators, and ideally social impacts to provide a truly robust 

assessment of water resources (Oki 2006).  
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 Anthropogenic influence doesn’t only dominate water cycles—in the past several 

decades, scientists have begun identifying shifts in natural systems across scales due to 

direct or indirect human impacts. Rockstrom et al identified nine planetary indicators, 

ranging from  freshwater use to aerosol loading, which represent global systems under 

great stress due to human activity. As shown in Figure 3, three of the sectors identified 

(nitrogen & phosphorus cycles, climate change, and biodiversity loss) have already 

crossed a threshold of sustainability which biophysical models suggest is irrecoverable 

(Liu et al., 2015; Rockström et al., 2009). Most human water use is for economic 

activities, including agriculture, power generation, domestic and industrial uses (Lund 

2015). Meanwhile, economies are globalizing and interconnecting. Some economic 

decisions have faraway indirect impacts, such as fertilizer runoff from the American 

breadbasket in the Midwest flowing down the Mississippi and creating an anoxic zone at 

the New Orleans delta (Yaeger et al., 2013). Scientists are also beginning to understand 

the systems of virtual water, or water embodied in economic trade between distant 

communities (Dalin et al., 2012). Thus water systems may be critical for local economies, 

but their impacts extend across global scales.  

 On a local scale, water is the fluid connecting the urban metabolism—the way a 

city converts external resources to products and services, such as food and energy, to 

provide for the livelihood of its citizens (Gessner et al., 2014). This process produces 

various forms of waste (Beck and Walker, 2011), which have become a special interest of 

environmental engineers who seek to improve the balance between human society and its 

environmental impacts. Water as a resource plays a critical role in many sectors including 

agriculture, navigation and transportation, and public health, which have traditionally 
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been viewed separately in sustainability assessments (Grant et al., 2012). However, 

emerging multilateral issues such as water scarcity and environmental quality will require 

communication among these different sectors to achieve effective solutions. 

 Energy is another critical, cross-sector resource which is limited in availability. Its 

provision often requires water, and in reverse the provision of useful water resources 

often requires an energy investment. This coupling is referred to in modern literature as 

the energy-water nexus. The intersection of these two systems is of special interest to 

scientists and policymakers because, just as increasing spatial and temporal scales might 

introduce tradeoffs between local and global optima, considering the energy and water 

systems working in unison presents a problem with multiple objectives and additional 

constraints. These objective functions may not even be based in the same units, such as 

investment decisions, water quality indicators, or resource scarcity (Bach et al., 2014).  

 To understand how the different systems within a city interact, we need to create 

models and designs on a local, rather than mechanistic or process-driven scale. This will 

be especially important to understand the long-range impacts of these technologies if they 

are implemented on a large scale. Collectively, wastewater treatment plants are feeling 

pressure to reduce their energy use and greenhouse gas emissions and become carbon 

neutral (Cabrera Marcet et al., 2014). If plants want to become carbon neutral, the 

electricity mix they consume becomes critical (Larsen 2015), underscoring the relevance 

of the energy-water nexus to this research. Indeed, reducing electricity use and by 

association, greenhouse gas emissions, have become a high policy priority for wastewater 

treatment plant operators (Caffoor 2008). One of the most promising areas of wastewater 

treatment research is resource recovery, or the development methods to capture energy 
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and nutrients from wastewater (Guest et al., 2009). The advent of anaerobic and 

phototrophic technologies could even bring energy positive wastewater treatment to the 

mainstream (Shoener et al., 2014). Although several life cycle assessments and life cycle 

costing evaluations of different technologies have been completed (Iranpour, 1999; Ishii 

and Boyer, 2015; Shoener et al., 2014), these investigations have remained limited to the 

scope of an individual wastewater treatment plant. There remains a knowledge gap in 

how these new technologies can affect the urban-environment ecosystem, which is where 

integrated urban water modeling (IUWM) can play an important role. Some demonstrated 

benefits of IUWM include evaluating the economic and environmental impact of a 

phosphorus removal process (Clauson-Kaas et al., 2004), comparing centralized and 

decentralized treatment system scenarios (Tillman et al., 1998), and investigating the 

capital or production use carbon intensity of new technology (Caffoor, 2008; Rozenberg 

et al., 2015). Advances in computer modeling ability and big data availability in even the 

last five years have made it possible to develop models with high temporal resolution 

(Mitchell et al., 2007) and high reliability through local data calibration (van Loosdrecht 

and Brdjanovic, 2014). 

 In addition to evaluating local impacts of system changes, integrated urban water 

modeling provides the opportunity to see local impacts of global stressors such as climate 

change, population shifts, or policy pressures. Climate change can lead to different 

hydrologic impacts in various regions, such as changes in rainy or dry seasons, 

eutrophication, storm frequency and intensity, or temperature shifts. Integrated urban 

water modeling has been used to explore the local effects of increased eutrophication 

(Havens and Paerl, 2015), water availability (Paton et al., 2014), and storm impacts on 
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water treatment (J. G. Langeveld et al., 2013). Such projects provide the additional 

challenge of coupling urban water models with non-technical scientific fields such as 

economics or sociology. It is certainly important to investigate these impacts, because 

water management serves a critical social need (Lund 2015). The additional complexity 

of these global phenomena increases the uncertainty of any such models.  

   

2.2 CURRENT STATE OF IUWM 

With INTERURBA I, the first conference to recognize the concept of integrated 

urban water modelling occurring over 20 years ago, the field has had its time to widen 

and deepen our understanding of local water systems. Many submodels are developed 

independently, or existing submodels have been adapted for use in IUWM (Bach et al., 

2014). The basic system included in most integrated urban water models includes urban 

drainage, wastewater treatment plants, and the receiving waters.  

Urban drainage models have been under development since the first designs of urban 

sanitary networks in the late 20
th

 century (Rauch et al., 2002). In the current state of the 

art, urban drainage modeling is using advanced environmental flow models to evaluate 

the impacts of green infrastructure improvements on water quality and quantity (Casal-

Campos et al., 2015). In this field, there is special emphasis on using a robust approach 

rather than optimization, because the uncertainty around flow parameters and water 

quality metrics is still quite high.  

The Benchmark Simulation Model, originally developed for only activated sludge 

modeling by the IWA in 1999 (Jeppsson et al., 2013), has been extended to cover a range 

of pre- and post-treatment processes used in wastewater treatment plants. The uncertainty 
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around the chemical kinetics of wastewater treatment is also still quite high, as found by 

the latest IWA task group on benchmarking control strategies of wastewater treatment 

plants. This group found that although the use of wastewater treatment process models, 

especially GPS-X (Hydromantis Environmental Software Solutions, Inc, 2016) and 

WEST (MIKE by DHI, 2016), is widespread among designers and operators alike, there 

remain several areas to improve. Namely, most wastewater treatment process simulators 

take inputs of constant model parameters, treating the process deterministically when due 

to the uncertainty around, for example, influent fractionation, sensor dependability, and 

chemical kinetics it would be more appropriate to use a stochastic approach (Jeppsson et 

al., 2013). Model runs using global sensitivity analysis have shown that it is not only the 

mechanistic models that require improvement, but uncertainty could be greatly reduced 

through more accurate sensing of influent fraction parameters (Sin et al., 2011). Both the 

model calibration and ultimate predictions depend on improved monitoring of water 

quality parameters throughout the water cycle (J. G. Langeveld et al., 2013).  

The final, and possibly most critical for environmental impact assessment, component 

of many integrated urban water models is the receiving water. Receiving water often 

refers to a river, but may also include lakes and other surface waters or even 

groundwater. On the water quantity side, support from global climate modeling and GIS 

sensing and a drive to understand the impacts of flooding and storms has developed 

sophisticated systems for physical hydraulic analysis that can be directly linked to the 

effluent from wastewater treatment (Muschalla et al., 2014). Incorporating water quality 

in these models is more challenging for a series of factors, mostly due to a lack of 

monitoring data and uncertainty around biochemical parameters of reactions in receiving 
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water. The most common used tanks-in-series models of receiving rivers are DuFlow 

(Rauch et al., 1998), originally developed by Wageningen University in 1996, and River 

Water Quality Model 1 (Shanahan et al., 2001) developed by an IWA task group in the 

early 2000s. DuFlow was originally focused on analyzing the environmental impacts 

covered by Dutch pollution permits, so it focused primarily on the dynamics of dissolved 

oxygen, organic matter, and ammonia. It is available in commercial software like WEST 

and SIMBA. It includes both biological processes like organic substrate degradation, 

nitrification, and photosynthesis, and physical processes like re-aeration, sedimentation, 

and diffusion. On the other hand, River Water Quality Model 1 (RWQM1) was 

developed in order to cover the missing gaps in industry models and is focused on a 

comprehensive, conservation of matter approach to track carbon, hydrogen, oxygen, 

phosphorus, and nitrogen (Saagi, n.d.).  

The main challenges of integrating urban water models include the uncertainty of 

model parameters, setting system-wide objective functions, and connecting submodels. 

System models can suffer from both input uncertainty, where input values are either 

miscalculated or misrepresented as fixed values when they should be variable, or 

parameter uncertainty which is inherent to how the model mechanisms function 

(Schellart et al., 2010). A common source of uncertainty in large IUWMs is the 

simplified representation of spatial and temporal scales, done to reduce computing time 

(Blumensaat et al., 2012). Although it is important to match input and output scales when 

linking submodels, sometimes averaging or aggregating submodel output can lead to 

excluding important, acute results. This is because movement of water, solutes, and 
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energy through a water system is characterized by steep gradients and high reaction rates 

(Gessner et al., 2014).  

Another common problem is setting system-wide objective functions. The goals of 

sewer system designers, wastewater treatment operators, and environmental policy 

makers (to name a very few stakeholders) are very different and may depend on cost, 

environmental indicators, or process efficiency. Some scientists have even suggested that 

a true global optimum does not exist for integrated water systems (Bertrand-Krajewski, 

2007; Khu and Madsen, 2005).  

  The final common challenge in integrated urban water modeling is developing a 

method to properly link submodels. Although it is possible to build a supermodel tailored 

to the specific plant and its parameters, this can be a very time- and capital-intensive 

process. It is often faster to adapt models used for other plants to new purposes. However, 

this approach, often called “interfaces”, carries its own challenges because different 

submodels may handle certain parameters (COD fractionation, the description of organic 

nitrogen, the definition of pH, and the definition of inert materials, to name some of the 

most common ones) differently (Grau et al., 2009). It is very important to keep the big 

picture in mind when constructing an integrated model, focusing on keeping the system 

dynamics, spatial scale, and paradigms coherent (Voinov and Shugart, 2013). A 

particularly relevant quote states, 

 

“A complex model may be more realistic, yet more uncertain.” –(Oreskes, 2003) 
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 Some of the more common approaches to successfully integrating these models 

include Petersen matrices (Vanrolleghem et al., 2005) and including data set modules 

(Voinov and Shugart, 2013). Still, scientists point out that much more monitoring is 

necessary both to calibrate and initialize models, and to validate the results of models 

across the entire urban water cycle (J. G. Langeveld et al., 2013).  

Of course, integrated urban water models can be adapted and coupled to other models 

to facilitate different types of decisions making and planning purposes. Since the 

integrated urban water model allows for the propagation of effluent through the water 

cycle, scientists can connect wastewater process models to sustainability indicators like 

materials, energy, and costs for more comprehensive life cycle assessments (Fagan et al., 

2010). Including submodels that have the ability to model micropollutants has helped 

explore the fate of these particles propagating downstream (Plósz et al., 2012; Vezzaro et 

al., 2014). On the water quantity side, nations like Australia which are highly concerned 

about water scarcity may include agent-based modeling and social metrics to evaluate 

water availability across a basin-wide water system, as well as the impacts of novel 

water-saving technologies (Welsh et al., 2013). And finally, studying system dynamics 

allows us to explore the life cycle impacts of individual material flows, rather than 

location-based processes. For example, a French group recently completed a LCA of 

urban water treatment from initial pumping station through to the wastewater treatment 

plant, essentially studying the life cycle of a kilogram of water through its lifespan in the 

city (Lassaux et al., 2007). 

 

 



16 

2.3 USING IUWM TO EVALUATE THE ENERGY-WATER NEXUS  

Although integrated urban water modeling may have its roots in the design and 

operation of urban water systems, it has since prompted scientists to take a closer look at 

the interactions of the water cycle with other flows in the urban metabolism such as 

energy, nutrients, and materials. The Water Environment Research Federation completed 

a quantitative analysis of the tradeoffs between eutrophication and electricity 

consumption for different wastewater treatment levels. Although wastewater treatment 

does produce some methane and greenhouse gas byproducts, the study found that the 

three largest contributors to greenhouse gas emissions were all energy related: aeration,  

pumping and mixing, and deep well injection. The study found that after a certain 

threshold of nutrient removal was achieved, electricity consumption increased 

exponentially to reduce additional eutrophication potential (Falk et al., 2013). 

Figure 4: Results of a WERF study showing tradeoffs between effluent quality (levels 1-5) 

causing eutrophication (kg algae produced) vs. electricity used (GHG emissions). From 

Falk, et al.  
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Another team at Wageningen University has recently developed the “urban harvest 

approach”, which combines modeling of the integrated urban water cycle on short 

timesteps with an LCA-type assessment of water and energy fluxes through the city-wide 

system. They found that new water technologies benefit from a detailed analysis of their 

spatiotemporal impacts, because new technologies are often locally focused in contrast 

with traditional centralized treatment approaches (Leusbrock et al., 2015). 

Finally, many separate scientific groups have combined these novel quantitative 

modeling approaches with LCA to develop “hybrid LCA” approaches. Traditional LCA 

establishes a method and characterization factors to facilitate the comparison of different 

processes for environmental impacts ranging from ecotoxicity to global warming 

potential. The goal of various hybrid LCA approaches is to layer on additional metrics of 

interest not covered by LCA libraries, which may include location-specific risk 

assessment or human health impacts. For example, scientists might evaluate pathogen 

risk using a quantitative microbial risk assessment with the output of disability-adjusted 

life years (DALYs), which provide a basis for indirect comparison with environmental 

impacts (Kobayashi et al., 2015). The biggest challenge of hybrid LCA lies in 

qualitatively assessing the tradeoffs from quantitative technical models when those 

models use environmental, economic, or social impact metrics (Harder et al., 2015). For 

example, it can be difficult to directly compare disability-adjusted life years against 

kilograms of greenhouse gases emitted, although both have human health implications. 

Some hybrid LCAs, therefore, try to integrate the economic or social models within the 

environmental system. For example, the THEMIS model couples LCA with regional 
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electricity markets and climate change scenarios to constantly update the demand and 

impacts of different technological mitigation approaches (Gibon et al., 2015).  

The challenge, from a wastewater treatment expert’s perspective, is accurately 

capturing the impacts of the complex urban energy system. Most traditional wastewater 

treatment LCAs use a historical electricity mix to evaluate the electricity use impacts of a 

particular process, but researchers have established that this is not sufficient for capturing 

the impacts of local supplies or changing economic markets (Gibon et al., 2015; Lane et 

al., 2015). Mitigating water scarcity impacts by diversifying local supplies has been 

shown to increase the energy intensity of water provision by a factor of 2.3 (Lane et al., 

2015). Properly accounting for electricity generation impacts is therefore critical to 

understanding urban water systems. However, most sources of electricity are highly 

location-dependent, which would require researchers to develop additional models of 

electricity generation to improve system understanding (Romero‐Lankao et al., 2014; 

Stokes and Horvath, 2010). For example, the previously mentioned THEMIS model 

calculated the environmental impacts of 1 kwh of electricity using a linked 

environmental-economic market model, but the results showed significant variation due 

to regional differences in manufacturing (Gibon et al., 2015). Still, since policy directives 

such as the EU Water Framework Directive will require significant increases (60-100%) 

in energy consumption to meet more stringent effluent requirements (Caffoor 2008), 

incorporating accurate electricity generation models remains a high research priority.  
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2.4 USING IUWM FOR LIFE CYCLE ASSESSMENT (LCA) 

Wastewater treatment plant designers and operators can choose from among many 

different technologies based on varying effluent quality requirements, biochemical 

processes, and hydraulic demand. LCA has been used to evaluate different parts of the 

urban water system since the late 1990s (Loubet et al., 2014). Although initial LCAs 

focused on evaluating individual processes, especially in wastewater and drinking water 

treatment, the early 2000s brought more critical, system-wide analyses of urban water 

treatment. As LCA has been applied to new fields and increasingly broad decision-

making objectives, it is important to critically re-examine its potential and limitations. In 

the past two decades, LCA of urban water systems has been used to clarify economic 

implications of process decisions, evaluate new technology, and study interactions of 

different system subcomponents. 

After water treatment processes meet their permitting standards, cost often becomes 

the most significant factor in making design decisions. Since most components of urban 

water treatment have lifespans on the order of decades, life cycle costing provides an 

opportunity to include the costs of operation, as well as the initial capital investment, in 

decision-making. It creates a life-cycle based approach to evaluate the economic viability 

of a product (Rebitzer and Seuring, 2003). Scientists have become more creative in 

incorporating economic principles in engineering design evaluations. For example, the 

principle of opportunity costs has also been incorporated as some IUWM evaluations use 

a “regret based approach” to determine the most robust system configuration that can 

weather a variety of environmental and economic scenarios (Casal-Campos et al., 2015). 

One of the most promising research fields in impact assessment of IUWM is in risk 
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management of financial and infrastructural assets in various urban planning scenarios 

(Lund, 2015).  

Of course, life cycle assessment can also be used in a comparative method to evaluate 

new technologies. The incorporation of integrated urban water models allows scientists to 

look at the impacts of decentralizing water provision and treatment systems (Tillman et 

al., 1998). One of the most common areas of research is in water recycling (Tangsubkul 

et al., 2005), which  may include such technologies as desalination (Ortiz et al., 2007) or 

struvite precipitation (Ishii and Boyer, 2015).  

The IUWMs can be leveraged to compare the life cycle impacts of different control 

strategies and scenarios. For example, a robust analysis was performed of a single 

treatment subsystem, the activated sludge section, incorporating a multiobjective 

evaluation of the various life cycle impacts of subsystem controllers (Flores-Alsina et al., 

2010). The WaLa model calculated the impact to service ratios of providing water 

treatment to different groups of end users in the Parisian metropolitan area (Loubet 

2015). The life cycle assessment of an Australian catchment showed that life cycle 

impacts were dominated by the operations phase, and within that by energy consumption, 

across a variety of technology and control scenarios (Lane et al., 2015).  

As scientists apply life cycle assessment methods to larger and more complex urban 

water system models, it becomes important check the scale and scope of the LCA method 

used. The data available from urban water models can improve the resolution and scope 

of LCA on both spatial and temporal scales. However, an overload of data provides its 

own problems (e.g., signal to noise ratios), so scientists must frame the model data in the 

context of the system they are working with. The main motivators for higher resolution 
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LCA of urban water systems include location-specific impact factors, assessing local 

versus global environmental impacts, and comprehensively evaluating risk.  

Although life cycle assessment often focuses on global impacts such as greenhouse 

gas emissions, the processes studied in urban water systems are bound to the local 

environment with which they interact (Kobayashi et al., 2015). This means that the 

downstream impact models must be carefully tuned to local parameters, which can vary 

widely between cases. A recent study of freshwater eutrophication due to phosphorus in 

Europe showed that output uncertainty depended more on the variance of local 

characterization factors than on the model mechanics (Azevedo et al., 2013). This 

suggests that data verification of local impact factors is critical when constructing models 

of urban water systems, and when assessing the downstream life cycle impacts of local 

decision-making. Another study, of nitrogen loading to world rivers, showed that 75% of 

nutrient loading to rivers comes from diffuse sources and can vary widely between river 

sections (Mekonnen and Hoekstra, 2015). This means that monitoring must have not only 

high accuracy but high density to capture the spatial variability of water quality 

conditions. Some scientists are calculating “fate factors” for specific nutrients and 

pollutants which characterize, per spatial location, how long certain molecules remain in 

that environment (Helmes et al., 2012). This can help when assessing acute or chronic 

impacts per location, and also simplify the calculation of downstream impacts without 

incorporating complex environmental flow models. Since many life cycle assessments 

find that the operations phase of wastewater treatment, and specifically the electricity 

used by wastewater treatment plants, is the major contributor to environmental impacts, it 

is also important to verify the characterization factors for electricity use (Kobayashi et al., 
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2015). Integrated system models have been leveraged to connect the water system with 

an economically responsive energy system which provides more accurate feedback-based 

impact assessment (Gibon et al., 2015). 

Life cycle assessment is traditionally based on aggregating sums of environmental 

impacts over the entire lifespan of the system in question, and comparing those volumes 

between different options (Gasparatos et al., 2009). Although this may make sense for 

binary decision-making on a global scale, it may not be optimal for local, multiobjective 

decisions. This is because local environmental systems do not respond linearly to external 

impacts, but rather change due to thresholds for concentrations and frequencies being 

exceeded (Mitchell et al., 2007). Indeed, some small amount of system variance may 

make the ecosystem more robust to external stressors. Bode’s Law states that controlling 

the short-term variance of a system can increase variance on longer timescales (Carpenter 

et al., 2015). This system characteristic confronts a major shortcoming of LCA, which is 

based on accumulating and averaging impacts over the lifespan of a process as a basis for 

comparison (Blumensaat et al., 2012). Many life cycle assessments of wastewater 

effluent include errors such as summing the impacts of discrete discharges, or failing to 

consider high frequencies of moderate events, or ignore the effects of positive feedback 

or hysteresis in the downstream system. It is critical for modelers to understand the 

characteristics of their datasets and systems before applying life cycle methodology, 

which may over- or under-estimate impacts so drastically as to not provide any useful 

output (Gasparatos et al., 2009). 

 Finally, higher resolution life cycle assessment and modeling is necessary to 

evaluate the risks associated with emerging pollutants in the urban water system. As 
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water is a conveyor of many processes used in our daily lives, we continue to find new 

components and interactions with environmental systems downstream. Most modern 

treatment systems focus on eliminating pathogens, heavy metals, and nutrient pollution 

which contribute to eutrophication and ecotoxicity. However, an analysis of a Spanish 

wastewater treatment plant found that personal care products and pharmaceuticals were 

the main contributors to ecotoxicity of wastewater effluent (Muñoz et al., 2008). 

Improved environmental flow models and geospatial data are also allowing for better data 

collection and modeling of micropollutants on regional scales (Vezzaro et al., 2014).  

2.5 EINDHOVEN CASE STUDY BACKGROUND 

The International Water Association organizes communities of scholars called 

“working groups” whenever it sees a particularly significant new area of research on the 

horizon. In this way the Modeling of Integrated Urban Water Systems (MIUWS) working 

group was established in 2012 with the goal of gathering information on the current state 

of the art of IUWM and necessary areas of research. Through participation in this 

working group we found an opportunity to work with a calibrated integrated urban water 

model of the wastewater treatment process of the city of Eindhoven in the Netherlands.  

The model was originally developed by Waterschap de Dommel as part of the 

KALLISTO project (Weijers, 2012) for real time control of this highly sensitive local 

water system. The Waterschap de Dommel is one of 24 regional water boards in the 

Netherlands responsible for the water supply, sanitation, flood mitigation, and water 

quality health of all waters in its service boundary. The service area covers roughly 1,500 

square kilometers and one million people and can be seen in the orange section of Figure 

5. Although the Waterschap de Dommel was founded in the 19
th

 century with the goal of 
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flood mitigation, the region did not commit to water quality efforts until over a century 

later. Up until the 1950s, the large city of Eindhoven discharged all its wastewater 

effluent directly to the Dommel, the largest river in the service region. Built in 1963, the 

Eindhoven wastewater treatment plant (Dutch: rioolwaterzuiveringsinstallatie, RWZI), 

serves an equivalent population of about 750,000 individuals.  

The Dommel River faces water quality challenges from many different fronts, 

including the large urban drainage area, domestic population, local zinc industry, and 

intensifying agriculture. The Dommel itself discharges about 1.5 m
3
/s and runs about 85 

km from the Netherlands-Belgium border to the larger Meuse river (Benedetti et al., 

2013b). Urban runoff presents both a hydraulic problem as it intensifies and shortens the 

runoff peaks from particular rainfall patterns, relative to the natural norm, and a water 

Figure 5: The complex urban drainage system of the Dommel River around the urban 

area of Eindhoven (orange). From Weijers, et al 2012.  
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quality problem as it can flush metals, particulate matter, and other toxins off paved roads 

and to the receiving waters. Stormwater from the Eindhoven and surrounding urban areas 

discharges to the Dommel through some 200 combined sewer outflows (Benedetti et al., 

2013b; J. Langeveld et al., 2013). The local metal industry, especially focused on zinc 

smelting has contributed to significantly elevated levels of zinc and cadmium in regional 

soils and sulfur dioxide emissions to the atmosphere (Petelet-Giraud et al., 2009). About 

62% of the catchment is covered by agricultural lands (Rozemeijer and Broers, 2007). In 

the past two decades, agriculture in this region has shifted from dairy farming to intensive 

livestock farming, which results in the spreading of manure with high nitrogen, 

phosphorus, and metal contents (Petelet-Giraud et al., 2009). Since the groundwater table 

is generally within 1-3 meters of the surface, fertilizer use can greatly contribute to 

escalated levels of nutrients in river discharge (Rozemeijer and Broers, 2007). Although 

the impact is expected to be significant, the quantified impact of these nonpoint sources 

of nutrient pollution has not yet been compared to the known impact of the effluent from 

the Eindhoven wastewater treatment plant and linked CSOs.  

The impact of the Eindhoven wastewater treatment plant and linked CSO effluent has 

become a matter of great concern for the municipality especially in the face of rising 

quality standards through the EU Water Framework Directive and Dutch national surface 

water goals(Benedetti et al., 2013a). In 2006 the city budgeted and began installing a 

large monitoring network comprising of rain gauges and radar, sewer system flow and 

water depth sensors, UV-VIS and ammonium sensors at the WWTP influent, WWTP 

reactor sensors testing ammonium, phosphate, nitrate, and dissolved oxygen levels, and 

ammonium and dissolved oxygen sensors along several kilometers of the Dommel River 
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both up- and down-stream of the treatment plant discharge (J. Langeveld et al., 2013). 

This extensive monitoring campaign has yielded unprecedented amounts of data that 

allowed the calibration of a full integrated urban water system model (IUWM) used in 

this project. This integrated urban water model was one of the first efforts to bridge two 

EU water quality directives on opposite ends of the spatiotemporal spectrum: the EU 

Urban Waste Water Treatment Directive, which regulates point source emissions from 

wastewater treatment plants, and the EU Water Framework Directive, which specifies 

water quality standards and management of river basins (European Council, 2000).  The 

KALLISTO project identified the need for both higher-quality resolution water system 

models to understand how to design wastewater treatment plants to comply with both 

objectives, and the critical importance of monitoring campaigns to develop these models 

(Benedetti, Langeveld, Comeau, et al.).  

     The Eindhoven wastewater treatment plant, as mentioned, treats an average of 

200,000 m
3
 of domestic effluent per day from about 750,000 individuals. This is 

approximately 5% of the population of the Netherlands, which makes the Eindhoven 

system a significantly sized case study to explore policy-compliant design options for the 

rest of the nation. The Eindhoven wastewater treatment plant (Eindhoven RWZI) uses a 

modified UCT process to biologically treat influent in three parallel lines. The maximum 

hydraulic load for treatment is 26,000 m
3
/hr. A separate stormwater settling tank bumps 

up the maximum hydraulic load to 35,000 m
3
/hr. After passing through a primary settling 

tank, the effluent enters one of the three biological reactors which are shaped like rings, 

as shown in Figure 6. The concentric rings function like plug-flow reactors, with the 

initial inner ring functioning for the anaerobic treatment, the central ring switching 
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between anoxic and aerobic treatment depending on the weather and seasonal conditions. 

The outer ring functions fully as an aerobic plug-flow reactor and is the last stage before 

the effluent moves on to the secondary settling tank.  

 

The software WEST (MIKE by DHI, 2016) was used by the KALLISTO project to 

model the Eindhoven wastewater treatment plant. Although the river model was initially 

built using DuFlow and a detailed sewer model was developed in InfoWorks, these 

subsystems were simplified and integrated into the WEST-based model of the wastewater 

treatment plant. This required simplifying some of the geometry and most significant 

physical processes of these subsystems, but ultimately yielded a fast-functioning, highly 

accurate integrated model for the analysis of the impacts of process design decisions on 

Figure 6: Above, a Google Maps overview of the Eindhoven WWTP showing 3 parallel treatment lines 

leading to a cluster of secondary settlers. Below left, a sketch of a circular primary settler treatment 

system. Below right, the process model of the modified UCT process used by the wastewater treatment 

plant (Weijers et al 2012). 
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receiving water quality (Benedetti et al., 2013b). This is an example of a “standard 

supermodel”, which uses a general software package to model the entire integrated water 

system (Grau et al., 2009). The sewer and receiving river models were likely simplified 

to preserve the general spatial scale of the model, which is critical when developing a 

useful integrated model (Voinov and Shugart, 2013). The WEST model uses blocks in 

series to model both the plug-flow reactors of the wastewater treatment plant and the 

separate river sections of the receiving river, as can be seen in Figure 7.  

 

 

To critically examine the design decisions of investing additional energy into the 

wastewater treatment process, a spatiotemporally discrete model of the emissions 

associated with electricity generation was necessary. This model was built in-house, and 

Figure 7: Integrated model of the Eindhoven urban water system in WEST (Mike by DHI). 

The urban drainage blocks and sewer system are on the upper left, the wastewater 

treatment plant process blocks in the lower left, and the river submodel is on the right.  
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the data collection for the calculations of the electricity emissions are described in greater 

detail in the methods section. The open-source HYSPLIT model (NOAA, 2016) was 

selected for the calculation of the dispersion of air-borne emissions for its efficiency, 

simple interface, and meteorological data integration. HYSPLIT is typically used for 

general meteorology studies or air pollution studies using back-trajectory calculation to 

determine the source of some pollution. Based on NOAA’s guidelines and the European 

Environmental Agency data on significant emissions factors of particulate matter from 

fossil fuel and biomass-based power plants, a regional model of particulate matter 

concentration was developed to assess the environmental impacts of electricity 

investment design decisions. Figure 8 below shows the ability of HYSPLIT to utilize 

open-source meteorology data and user inputs of geospatial locations of particle 

emissions to calculate the trajectories of individual particles moving across a region and 

also through the atmosphere (Cohen, 2011; Heinzerling et al., 2005).  

 

Figure 8: Example of HYSPLIT trajectory calculations for single particles emitted from 

Dutch power plants (original content).  
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CHAPTER 3: METHODS AND RESULTS 
 

3.1 METHODS 

3.1.1 POLICY CONTEXT 

With the 2008 Water Framework Directive, the European Union has committed to 

improving the ecological and chemical quality of its surface water bodies using an 

intergovernmental, river-basin-wide management approach. According to a 2011 

European Environment Agency report (EEA 2012), 50% of Dutch rivers are classified as 

“poor “ecological quality unfit to support wildlife habitats. In this research, we analyze 

the way a local water authority in Eindhoven, the Netherlands responds to these national 

policies and trajectories when tasked with mitigating electricity consumption while 

protecting the quality of the water in its highly sensitive receiving Dommel River. The 

Waterschap de Dommel, the public company responsible for storm- and waste-water 

management in the city of Eindhoven and surrounding areas (Overzichtskaart Waterschap 

de Dommel, 2015), made its mission to provide “clean, sufficient, and safe” water for its 

regulatory region (Waterschap de Dommel 2010). To support this objective, the 

KALLISTO project was established to develop a sophisticated integrated model of the 

urban water system in Eindhoven (STOWA 2012), including a 20-kilometer stretch of the 

downstream receiving river. On the energy use side, the water utilities in Eindhoven 

share a commitment made by the European Environment Agency and World Water 

Forum to reduce electricity use by 20% by 2020 (European Environment Agency, World 

Water Forum).   
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3.1.2 OPERATIONAL DECISION-MAKING 

The multiple policy objectives of reducing utility electricity demand while 

improving surface water quality present a dilemma for wastewater treatment plant 

operators. In the Eindhoven case, wet weather events temporarily intensify the load of 

ammonium through the treatment system and can cause high ammonium loadings to the 

receiving river. To mitigate this effect, additional fine bubble aerators were installed in 

the anoxic tanks of the biological treatment system to reduce ammonium in the effluent. 

The additional aeration capacity can be activated at different setpoints measured by an 

ammonium sensor in the plant effluent. In this project, we characterize the impacts of 

increasing the setpoint of this sensor, varying it in four levels through 7.5, 8.5, 9.5, and 

10.5 mg/L. This incrementally reduces aeration demand and thereby the electricity 

demand of the plant over extended timeseries. The evaluation of this tradeoff can be 

viewed as a microcosm of large-scale policy decisions that must be made to satisfy the 

dual objectives of local water quality and regional electricity demand.  

 

3.1.3 ESTIMATION OF AGGREGATE ENVIRONMENTAL IMPACTS 

To understand the long-term impacts of the tradeoff between additional electricity 

use and releasing additional ammonium to the local environment, a life cycle assessment 

was performed on these specific cross-boundary flows. Because this is purely an 

operational decision (infrastructure construction, equipment needs, etc., do not change as 

a result of this decision), the system boundary excludes construction and demolition of 

the treatment plant. The functional unit evaluated was one day’s worth of water treatment 

by the Eindhoven plant based on the average treatment flow of 200,000 m
3
/day. This 
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allowed us to test the kilowatt hours of electricity consumed, versus kilograms of 

ammonium released at each of the four treatment levels. The inventory data for medium-

voltage electricity in the Dutch market comes from the Ecoinvent database, while the 

ammonium and biochemical oxygen demand (BOD) characterization factors come from 

the ReCiPe database in SimaPro software. ReCiPe midpoint (H) is used as the impact 

assessment method because it was developed by Dutch consultants and the midpoint 

indicators can be best compared to later physical model results.  

 

 3.1.4 INTEGRATED URBAN WATER SYSTEM MODELING 

The KALLISTO project created an integrated urban water system model 

simulating the entire storm- and waste-water collection and treatment system of the 

Eindhoven municipality, including an ASM2d-based wastewater treatment system 

process model and a DuFlow-based receiving river model (Weijers 2012).  

This model was run with one-year dynamic hydrologic input based on 

precipitation data measured for the KALLISTO project (J. Langeveld et al., 2013). To 

examine the spatiotemporal variation of water quality impacts in the downstream river 

solely due to wastewater treatment plant operation, the influence of CSO inflows from 

Eindhoven to the river was removed.  

 

 3.1.5 WATER QUALITY AND ECOLOGICAL IMPLICATIONS 

The integrated urban water system model calculates the water quality conditions 

based on concentrations of ammonium, dissolved oxygen, and BOD in 20 kilometers of 

the Dommel River downstream of the wastewater treatment plant. Certain thresholds of 
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ammonium and dissolved oxygen concentration, when exceeded for particular lengths of 

time within a certain recurrence interval, can highly stress the local ecosystem. The 

Urban Pollution Management Manual (Urban Pollution Management Manual (3rd 

Edition) 2012) provides fundamental intermittent standards matrices specifying these 

thresholds, durations, and recurrence intervals. These matrices were used by the 

KALLISTO project to calculate the total number of ecological exceedances in the 

Dommel River due to the wastewater plant effluent. In this project, the number of 

exceedances are calculated for the four ammonium setpoints with a high degree of spatial 

resolution. 

 

 3.1.6 AIRBORNE EMISSIONS AND HUMAN HEALTH IMPLICATIONS 

To further investigate the spatiotemporal dimension of electricity consumption 

impacts, a model of air emissions combining open-source energy grid data and the 

HYSPLIT atmospheric transmission model was created. The Eindhoven wastewater 

treatment plant purchases electricity from Essent utility (Lako, 2015), but the grid is 

maintained by TenneT B.V., a government-owned distributor. Individual power plant 

locations, generating capacity, type, and efficiency were sourced from Enipedia 

(Netherlands/Power Plants 2010), an open-source energy industry wiki published by T.U. 

Delft. The air pollution effects of Dutch domestic biomass, natural gas, and coal plants 

were modeled, as they contribute 49.9% of the local utility’s electricity mix (Stroometiket 

2014 Essent, 2014). Particulate matter exposure based on local concentrations was 

selected as a proxy for long-term health effects. Emissions factors for particulate matter 

were sourced from the European Environmental Agency, separated by fuel type 
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(EMEP/EEA air pollutant emission inventory guidebook, 2013). The Hybrid Single-

Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used for modeling the 

particulate matter emissions from individual plants over a one-month period in May 2015 

(Draxler, 2000). The model was run as a concentration calculation (hycs_std.exe) with 

Gaussian-plume horizontal, particle vertical motion as suggested by the NOAA emissions 

modeling guidelines (NOAA Air Resources Laboratory, 2009a). Meteorological data for 

May 2015 was sourced from the NOAA Global Data Assimilation System archive on a 3-

hourly, 0.5 degree global grid (NOAA Air Resources Laboratory, 2015). From the 

Enipedia archives, 215 coal, natural gas, or biomass burning plants were identified to be 

included in the calculations. Each plant’s particulate matter emissions rate was calculated 

based on plant type and its proportional contribution to the national electricity generation. 

Concentration data were then calculated at 10, 100, and 500 meters above ground in 6-

hour time intervals over the course of the month. According to the NOAA guidelines, this 

yielded a good representation of the particle spread in space and time without requiring 

excessive computing capacity (NOAA Air Resources Laboratory, 2009b). Finally, the 

human health impacts of the local particulate matter concentrations were calculated using 

population density data (CIESIN and CIAT, 2005) and literature-based concentration-

response curves (Krewski et al., 2010). 

 

 3.1.7 UNCERTAINTY AND SENSIVITY ANALYSES 

The largest source of uncertainty in the electricity generation life cycle 

assessment has been identified as variability in the national electricity production mix 

(Gibon et al., 2015; Lund 2015). In the Netherlands, the amount of fossil fuels in the mix 
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have fluctuated by about 5% over the past 10 years (The World Bank 2016). The 

transport mechanism of ammonium in the local environment also varies greatly on spatial 

timescales, with recent literature on fate factors of phosphorus worldwide (Helmes et al., 

2012) showing that the retention time of nutrients in Dutch watersheds varies by as much 

as 75%. In the aggregate life cycle assessment, these impacts are implicit in the impact 

assessment methodologies because most include generalized environmental transport 

models. In the physical modelling approach, the WEST model allows for greater 

discretization of spatiotemporal scales. However, the WEST model was run 

deterministically in this project because varying the inputs and model parameters was 

deemed too computationally burdensome for the scope of this study, without contributing 

meaningful details to the tradeoff decision being made.. Published uncertainties about the 

HYSPLIT trajectory model (Draxler 2000) and the GDAS meteorological dataset 

(NOAA Air Resources Laboratory 2015) are significantly smaller than the uncertainties 

associated with our electricity mix assumptions. Finally, in converting the physical model 

data to quantifiable human health and ecological system impacts, it is critical to consider 

the appropriateness of local characterization factors. The ecological indicators used here 

were also previously used to characterize Eindhoven effluent impact in the KALLISTO 

project (STOWA 2012). The concentration-response curves carry a human health impact 

uncertainty explained in detail in various review literature (Krewski et al., 2010). 
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3.2 RESULTS 

 3.2.1 AGGREGATE ENVIRONMENTAL IMPACTS 

The plant used for this review uses additional aeration energy to compensate for 

increased ammonium levels during wet weather flows. When analyzing the tradeoff using 

a traditional life cycle analysis approach, the electricity consumption and effluent quality 

are quantified as flows within the system boundary. The flow of electricity used by the 

plant is measured in kilowatt hours, which is then converted using LCA characterization 

factors to specific impact categories of interest: eutrophication and global warming. The 

impacts of ammonium in the wastewater effluent are calculated based on the total 

quantity of ammonia in kilograms released per day at different setpoint treatment levels. 

The models used to calculate the environmental flows and transformations of the 

electricity production process outputs to soil, water, and air are included in the LCA 

inventory which means they are standardized across all cases in which the LCA 

characterization factors are applied.  

Figure 9 shows the output of the traditional LCA metrics for the Eindhoven 

wastewater treatment plant, considering the endpoint indicators of global warming and 

eutrophication. Although other impact categories are affected, especially by electricity 

production, the global warming impacts were selected to show a representative trend 

across varying treatment levels. The impacts are normalized to the highest impact 

treatment level to better show trends. There is a clear tradeoff showing that as the 

treatment standard increases, the aggregate level of eutrophication impact decreases 

while the total global warming impact increases.  
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However, this LCA output gives no information about the spatial or temporal 

spread of these impact factors. The processes, which in an environmental flow model 

would be considered as concentrations and fluxes, are now measured in absolute and 

volumetric terms. Such reductionist quantities make it difficult to determine if critical 

environmental thresholds have been crossed, or if impacts are localized to a specific area 

or time period. This means that the actual enduring influence of the processes on human 

wellbeing and the environment cannot be assessed, so the approach does not meet Water 

Framework Directive requirements. 

 

  

 

 

Figure 9: Normalized LCA output of ammonium and electricity generation processes, 

showing clear tradeoff at different effluent treatment standards.  
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3.2.2 SPATIAL ENVIRONMENTAL QUALITY IMPACTS 

To better assess the spatial and temporal distribution of electricity and water 

quality impacts, two models were used to separately study the flows of electricity- and 

wastewater effluent- associated pollutants away from the wastewater treatment plant. The 

electricity production model calculated particulate matter concentrations caused by the 

electricity generation necessary to operate the wastewater treatment plant. The top half of 

Figure 10 shows the distribution of particulate matter concentration at the measurable 

level of at least 1 picogram per cubic meter for the daily electricity generation emissions 

associated with powering the aeration of the wastewater treatment process. For most 

scenarios, the impact of particulate matter concentration extends far beyond the local 

utility boundaries of Eindhoven, across Holland and into Germany and Belgium. 

However, because of the large spatial distribution of emissions, the concentration of 

particulate matter is quite low in most locations. Scenario A, with the strictest treatment 

standard, affects the largest spatial region with its air-emissions impacts. On the other 

hand, the air emission impacts of Scenario D, the most lax treatment standard, are 

localized to a much smaller area. 
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The spatial distribution of water quality impacts was assessed using an integrated 

urban water system model developed by the Waterschap de Dommel for the city of 

Eindhoven and surrounding areas, implemented in the WEST simulator (MIKE by DHI, 

2016). The model output calculates the water quality in the receiving river, the Dommel, 

as “tanks in series”, essentially dividing the river into separate blocks in space. The 

bottom half of Figure 10 shows the worst case impacts for all river sections over the 10-

year time period studied, for different levels of water quality treatment. Improving the 

spatial distribution by using physical modelling allows policymakers to see explicit 

downstream impacts, possibly allowing regulators to demarcate how far downstream 

Figure 10: Biophysical model outputs showing particulate matter concentrations (top) 

and worst-case ammonium concentrations (bottom) at four different treatment standards. 
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engineers must consider when designing water quality improvements. Figure 10 shows 

the percent reduction in NH4 concentration from a “do-nothing” control scenario. 

Scenario D, when the treatment standard is at 10.5 mg/L NH4, shows almost no 

difference in the worst-case ammonium concentrations. On the other hand, there is 

significant improvement in Scenario A, where the worst case has been reduced in most 

river sections by about 40%.  
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Figure 11: The human (top) and ecosystem (bottom) impacts of different treatment levels. The 

number of individuals exposed to different levels of PM2.5 concentration are shown, compared with 

the environmental baseline of 5.8 micrograms per cubic meter. At right, the ecological exceedances 

calculated using FIS matrices are shown for different sections of the river.  The control scenario is 

based on no additional aeration treatment being provided in the anoxic zone of the treatment system, 

although other biological processes continue to run. In this way, the quantitiative spatial impacts of 

varying ammonium standards on human and ecological systems can be compared.  

3.2.3 HUMAN AND ECOLOGICAL HEALTH IMPACTS 
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While the Tier 2 physical model outputs can be useful for defining the system 

boundary more specifically, the objective of LCA is to connect design decisions with 

their environmental and human impacts. To achieve this goal, we use separate methods 

for the air and water emissions that account for local system characteristics. Our goal is to 

determine the spatial scales and intensities of human and ecological system effects, and 

compares those with the results of the aggregate LCA performed in Tier 1. In the case of 

the water emissions, we used literature-based FIS matrices to determine the exposure of 

local ecosystem fauna to significant levels of ammonium or oxygen deprivation. For air 

emissions, we considered important thresholds for human health exposure to particulate 

matter and overlaid our physical model data onto a population density map.   

In the air pollution case, the average particulate matter concentration due to each 

treatment tier is calculated as well as the number of people exposed to concentrations 

above certain thresholds of particulate matter. This presents an opportunity to decision 

makers to choose to “flatten the curve”, by decreasing the number of individuals exposed 

to the highest concentration thresholds. Scenarios which use less electricity or different 

combinations of power plants can be tested through Tier 2 and Tier 3 methods to provide 

alternatives to decision makers. Figure 11 shows the millions of individuals exposed to 

particular concentrations of particulate matter, as well as the average background 

concentration of 58 μg/m
3

 (Van Dingenen et al., 2004).  

In the water pollution case, fundamental intermittent standards (FIS) matrices 

describing the critical threshold intensities of specific pollutants sorted by event duration 

and recurrence interval, allow us to determine how many acute events that could cause 

significant ecosystem damage occur at each treatment level. These factors are taken from 
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the industry standard Urban Pollution Manual, which considers system resilience and 

hysteresis in order to account for the impacts of both acute and chronic poor water 

quality. The spatial resolution offered by the model in Tier 2 analysis remains, as it is 

possible to see in which geospatial sections of the river ecosystems might be especially 

vulnerable to high-frequency intense emissions. However, the FIS matrices allow us to 

convert the water quality metrics directly to quantified ecological impacts. Here, again, 

there is an opportunity to select a lower-impact curve across the spatial region of interest, 

or to compare tradeoffs with the air emissions impacts curves. Figure 11 shows the 

summation of all exceedance events with a 1-year return period. The results are displayed 

per river block starting at the point of the WWTP outlet and ending approximately 20 km 

downstream. It is evident that the worst treatment threshold would have a worse impact at 

the point of the wastewater effluent. However, the impact continues far downstream, 

where with each additional 1 g/m
3
 ammonium allowed in the effluent, the chance of 

exceedance events increases by about 15%.  

 

 

  



44 

CHAPTER 4: DISCUSSION 
 

New policy goals are calling for water treatment authorities to plan on a river-

basin level scale. As decision makers are confronted with the task of evaluating these 

larger and more complex systems, they will look to use geospatial data to develop more 

comprehensive life cycle evaluations of their options. This can yield high-resolution 

valorization of environmental flows resulting from specific processes. While our 

understanding of the linkages between economic, environmental, and social systems 

continues to grow, we must be careful to develop a standard for decision-making based 

on multilevel environmental impact assessment. Traditional LCA impact methods are 

rooted in a global, long-term perspective, but impacts on human health and ecosystems 

may need to be evaluated on a range of spatiotemporal scales. It is important for decision 

makers and researchers to coordinate the goals and scope of a LCA with the information 

available for environmental impact assessment.  

In some highly localized or self-contained systems, LCA analysis using the 

traditional, “first-tier” methods presented in this paper may suffice for the decisions being 

made. For example, determining whether hydraulic piping should be made from PVC or 

cast iron would only involve looking at the sourcing and construction processes of these 

pipes. Since there is no difference in energy usage or efficiency between these two 

options, full physical modeling of the energy use or water quality impacts would not 

yield any meaningful results. The Tier 1 metrics presented in this paper are sufficient for 

design decisions that do not affect process performance or effluent quality. 
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However, if engineers find that there is some sort of reaction between the cast 

iron material and the water influent, which perhaps creates pollutants whose dispersion 

and impact cannot be measured using traditional LCA metrics, the second-tier approach 

used in this paper might be helpful. Bilateral communication among stakeholders, 

especially between policymakers and those conducting the LCIA, is crucial to defining 

which pollutants are critical to examine and clarifying the limitations of transport models. 

Engineers can then determine if the amount of pollutants produced by the cast iron choice 

provides a considerable threat to local environmental function, and compare the results 

with LCA analysis to create a more robust environmental analysis. These Tier 2 metrics 

are useful for assessing spatiotemporal scale impacts beyond the boundaries of 

wastewater treatment operation. 

Finally, if engineers find that the micropollutants do present a quantifiable 

environmental impact and want to determine how broadly they affect human or 

ecological systems, they can supplement the Tier 3 approach presented in this paper. This 

approach requires additional data about characterization factors, those LCA parameters 

which convert system outputs to standardized environmental impacts. For the approach to 

provide additional insight, the characterization factors must be locally specific and 

validated. This connects the environmental process studied to its larger social and 

ecological system impacts, the core goal of LCA. This approach has been implemented 

using other modeling tools as well, such as quantitative microbial risk assessment 

(Kobayashi et al., 2015), water footprinting for water quantity analysis (Mekonnen and 

Hoekstra, 2015), and social life cycle impact assessment (Lund, 2015). 
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Reviewing the environmental impact assessment across the three tiers of analysis 

used in this paper, we found that the traditional LCA analysis showed a clear tradeoff 

between global warming and eutrophication impacts in the four scenarios with no 

discernable optimal choice. In the biophysical modeling completed for the Tier 2 

analysis, it seemed that on the eutrophication side, each incremental improvement in 

effluent standard had a drastic effect on the worst-case ammonium levels in the receiving 

river, with a 50% increase in effluent treatment standard leading to river ammonium 

levels comparable with no wastewater treatment at all. However, the air emissions 

impacts also seemed to be significant, with particulate matter emissions associated with 

the treatment process’s typical electricity use crossing international borders. In the Tier 3 

analysis, these environmental quality impacts were put in a human and ecosystem frame 

of reference. The electricity demand was found to contribute a negligible amount, far 

below the human health impact threshold, to regional particulate matter concentrations. 

Alternatively, the eutrophication due to effluent produced a large number of local 

“ecological exceedance” events that could be dramatically reduced with marginal 

improvements in treatment levels.  

Wastewater treatment operators target a hierarchy of objectives in accordance 

with our historical understanding of the impact of effluent on local ecosystems. The top 

priority is to protect public health through wastewater treatment. Thereafter, policy 

objectives on long-term human health or climate change mitigation are now encouraging 

plants to choose processes that reduce chemical use (like disinfection byproducts) and 

electricity use (and greenhouse gas emissions). There is little operational or political 

priority for the local ecosystem at the point of effluent discharge, which absorbs the brunt 
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of acute process impacts. A conservative sustainability perspective would flatten this 

hierarchy, considering that all aspects of the environmental system are interconnected. 

However, our understanding of ecosystem-human-system links remains too limited to 

make decisions in that manner with confidence. As we develop our decision-making 

standard based on comprehensive environmental impact assessment methods, this may be 

a goal to work toward. 

The operational decision considered in this paper may seem to have relatively low 

system impacts, when considering the particulate matter concentration relative to the 

baseline or the ecological exceedances for one small, highly sensitive river. However, 

this approach is not only intended to be used for evaluating local operational decisions 

but also high-level policy structures. The Eindhoven WWTP treats water for 

approximately 4% of the Dutch population, so the tradeoff decisions made here would 

have compound effects if all wastewater treatment operators were to align themselves 

along the same policy rationale. Therefore, with a growing abundance of geospatial data 

and understanding of human-environmental-system interactions, we need to establish a 

standard for making these tradeoff decisions based on comprehensive environmental 

impact assessment.   
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CHAPTER 5: ENGINEERING AND POLICY 

SIGNIFICANCE 
 

This thesis studied the various levels of environmental impact modeling that 

could be employed by scientists and engineers tasked with evaluating the sustainability of 

certain operational and policy decisions made in the wastewater treatment sector. The 

significance of this work must be seen bilaterally in how it helps to build the bridge of 

communication between engineers and policy decision makers. In this chapter, the most 

insightful portions of the research are discussed as well as potential avenues for future 

investigation. 

 

5.1 MAJOR INSIGHTS 

The major themes explored in this thesis include the complementary use of 

biophysical models and life cycle assessment methods, the importance of local 

characterization factors to understand human and ecological impacts of environmental 

transport models, and the role that wastewater utilities play in urban environmental 

impacts.  

 

 Traditional LCA approaches can be augmented with biophysical modeling. 

Traditional LCA approaches—using standardized inventories and characterization 

factors—are inherently long-term and global in scope. This is led by the core value 

that rigid sustainability flattens the hierarchy of spatial and temporal impacts, so that 
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ecological or human impacts felt far away in time or space carry the same weight as 

those close by. On the other end of the spectrum, biophysical modeling is based on 

concretely characterizing the environmental transport of pollutants in a specific local 

region. Those impacts are quantified and often, the most critical areas are identified 

for further research. This is often valuable to local regulators and businesses who 

respond to the demands of current, local stakeholders. As mentioned in the 

background literature review, many other researchers are trying to bridge this gap by 

making LCA more inclusive of local human and ecological health priorities. This 

thesis attempts to contribute to the discussion by simultaneously evaluating a case 

study using traditional LCA and extensive modeling approaches.  

 

 Even in simple case studies, spatial models and local characterization factors can be 

used to understand interactions with human-ecological systems. 

The growth of integrated urban water models has allowed research, including that 

presented in this thesis, to become more creative in linking process decisions to 

external systems including energy demand, resource use, and economic impacts. 

Datasets in sectors important to sustainability research are also increasingly open-

source. This permits increased innovation and collaboration on case studies with local 

information and characterization factors. For human and ecological systems impacts, 

which are nonlinear and highly uncertain, analyzing a large set of these simple case 

studies would go a long way to developing our understanding of system mechanics 

and feedbacks.  
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 Wastewater treatment plant operations strongly influence the environmental impacts 

of urban water systems.  

Through its link with energy and food systems, wastewater treatment is a complex 

inflection point in the analysis and management of the urban water cycle. The 

evaluation in this thesis showed that the electricity demand of modern biological 

wastewater treatment is significant and, when coming from an electricity production 

sector focused on fossil-fuel based sources, can have direct human health and 

environmental impacts in regions far beyond the water treatment plant’s service area.  

 

5.2 MITIGATION STRATEGIES 

As discussed previously, it is vital for both scientists and policymakers to 

contribute to the bilateral discussion that allows us to incorporate environmental impact 

assessment to make informed choices toward a sustainable future. This communication 

requires effort on both sides to understand the other’s values, uncertainty, and 

consequences driving data-informed decision-making. The roadmap established in 

Chapter 4 for evaluating the use of piping material at different tiers shows one path that 

lets policymakers make strategic investments in researching the environmental impacts of 

a specific policy based on interpreting the results presented by scientists at lower tiers of 

evaluation.  

However, this project was very limited in scope in that it only analyzed the human 

health impacts of particulate matter emissions and the ecological impacts of nutrient 

pollution, based on a single tradeoff decision between energy investment and nutrients in 



51 

the effluent. In values-driven policymaking, a more comprehensive Tier 1 study would 

have to be completed to enumerate all the potential consequences of a process decision. 

Further analysis using modeling and characterization factors might then show the 

sensitivity of certain consequences to the process decision being made. Then the 

engineering task becomes limiting the most sensitive constraint of the multiobjective 

problem. This is simply a multi-variable or multi-constraint extension of the two-

constraint tradeoff presented in this thesis. 

 

5.3 POTENTIAL FUTURE WORK 

As our ability to model the long-term impacts of decision-making and our data 

resolution continues to improve, it is important to guide future research in a direction that 

will support our understanding and application of these model outputs. With that aim in 

mind, the following research areas seem interesting to pursue in continuation of the work 

presented here: 

 Improved local spatial and temporal resolution of standardized LCA-type 

characterization and impact factors. Even though this work focused on a tradeoff 

among different processes happening in a singular location, other projects may look 

to tradeoffs among different locations or timepoints. This work highlighted the 

relevance of local characteristics (for example, the highly sensitive receiving river) in 

impact evaluation. Research should continue to improve the spatial and temporal 

discretization of impact factors. 
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 Understanding wastewater effluent pollution in context of local diffuse pollutions 

sources like agriculture. The dramatic increase in agricultural intensity in this 

watershed likely overpowers any effluent mitigation attempts made by the local water 

management authority. At the same time, the research here showed that the existing 

background concentration of particulate matter was far beyond the production 

associated with generating electricity for this plant’s wastewater treatment. If the 

water management authority is responsible for the water quality in the entire region, it 

should focus on placing individual subsystem (i.e. the wastewater treatment plant, or 

the agricultural sector) in appropriate context relative to the state of the full system. 

This way, it can prioritize policies and resources to projects that have the most 

significant sustainability impact (low hanging fruit).  

 

 Explore interactions of wastewater operation with food and energy systems, 

potentially through energy and resource positive wastewater treatment. Wastewater 

treatment plants are a critical link between the urban water cycle and energy and food 

systems. Rather than having the wastewater treatment operation sink resources from 

these other systems, recent research has made significant advances in energy- and 

resource-positive wastewater treatment. This could potentially make wastewater 

treatment a source for energy and food systems. The application of these new 

technologies will have to be evaluated within human and environmental system 

contexts, potentially using some of the approaches outlined in this thesis.  
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APPENDIX A: Sample HYSPLIT control file 

 

The MATLAB code used to generate these files is available at 

https://github.com/smashkia/MSThesis2016.git.  

HYSPLIT control files are very sensitive to spacing and newline characters. Best practice 

is to copy the files from sample tutorials and insert your own parameters as necessary. 

 

00 00 00 00  %starting time in {yy mm dd hh} format 

1    %number of starting locations 

53.5 5.7 150 %latitude, longitude, and height (m) of starting 

location 

24   %total run time (hours) 

0   %vertical motion option (0: data, 1:isob, etc) 

10000   %top of model domain (MAGL) 

1   %number of input meteorological data grids 

C:/hysplit4/working/meteofile %meteo data file location 

 

1   %number of pollutants being emitted 

HgII   %4-character pollutant ID name (mercury in this case) 

1.0   %emissions rate (mass/hr) 

24.0   %hours of emission 

00 00 00 00 00 %starting time in {yy mm dd hh mm} format 

 

1   %number of concentration grids  

52.0  5.0  %grid center {lat lon} 

0.3  0.3  %grid spacing {lat lon} [degrees] 

20.0  20.0  %grid extent {lat lon} [degrees] 

./test1  %directory for grid output file 

Cdump   %name of grid output file 

4   %number of vertical levels 

0 100 500 1000 %elevations of these output levels (MAGL) 

00 00 00 00 00 %sampling start time {yy mm dd hh mm} 

00 00 01 00 00 %sampling end time {yy mm dd hh mm} 

00 06 00  %sampling interval {rate hh mm} (rate: avg=0, now=1, 

max=2) 

 

1   %number of deposition parameters defined (same as 

# of pollutants) 

0.0 2.0 1.0 %particle diameter (microns), density (g/cc), 

shape 

0.0 271.5 1.0 2.0 1400000 %deposition velocity (m/s), pollutant 

molecular weight (g/mole), surface reactivity ratio, diffusivity 

ratio, effective Henry’s constant 

140000 40000 0.00005 %wet removal: actual Henry’s constant, in-

cloud (L/L), below-cloud (l/s) 

0.0   %radioactive decay half-life [days] 

0.0    %pollutant resuspension factor [1/m] 
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Appendix B: FIS Matrices for ecosystem responses 

 

 

DO concentration limits for salmonid ecosystem (when NH4 also below 0.02 mg/L) 

 Dissolved Oxygen Concentrations (mg/L) 

Return Period 1 hour 6 hours 24 hours 

1 month 5.0 5.5 6.0 

3 months 4.5 5.0 5.5 

1 year 4.0 4.5 5.0 

 

DO concentration limits for cyprinid ecosystem (when NH4 also below 0.02 mg/L) 

 Dissolved Oxygen Concentrations (mg/L) 

Return Period 1 hour 6 hours 24 hours 

1 month 4.0 4.5 5.0 

3 months 5.5 6.0 6.5 

1 year 5.0 5.5 6.0 

 

 


