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Abstract

The application of dynamic games to the study of terrorism has the potential

to provide insight for policymakers on the behavior of terrorists and inform

them how best response to terror threats. We studied several applications

of differential games to counter-terrorism and analyzed the usefulness of each

approach. We also discussed possible future research topics.
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Chapter 1

Introduction

Dynamic or differential game theory is the study of strategic decision making

between more than one player where actions are contigent on the information

about the opponents’ actions. First introduced by Isaacs [1] in the 1960s,

differential games concern the decision making of more than one player, each

trying to maximize an objective function, subjected to differential equations.

The study of differential games is very closely related to the theory of

optimal control in that deriving the best strategies (solutions) for each player

in a game is equivalent to deriving control laws for multiple controllers for a

given system. However, unlike optimal control, what constitutes a “solution”

is ambiguous. There exists many different types of solutions, such as Nash,

Stackelberg, Pareto, minimax, that are derivable within certain contexts and

with certain assumptions. As such, the applicability of differential games is

sparse, with subject areas such as aircraft control [2], mobile robotics [3] and

unmanned vehicles [4], having different types of approaches.

In this thesis, we will study one recent area of application of differential

games. Given the increase of worldwide terror incidents, particularly major

events such as 9/11, there have been considerable attention to the study of

counter-terrorism. Among the many issues being studied is the interaction be-
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tween governments and terrorists and how both sides anticipate each other’s

action and develop strategic responses. A natural tool to model the con-

flict between the government and terrorists is differential game theory. Some

applications include examining the terrorist’s choice (e.g., terrorists’ objec-

tive(s)), government’s choice (e.g., deterrence policies and security programs)

and government-terrorist concessionary strategies (e.g., hostage negotiations).

1.1 Outline

The thesis is organized into four chapters. In Chapter 1, we will review the lit-

erature on the dynamics of terrorism. Chapter 2 introduces differential games

by defining the proper notations and preliminaries beginning with optimal

controls and how it relates to the formulation of a differential game. We will

define different solutions approaches in analyzing differential games. We will

study several applicable games to studying counter-terrorism in Chapter 3. We

will conclude with future possible research opportunities in the final chapter.

1.2 Literature Review of Dynamic Models

The application of differential game theory to studying terrorism is scarcer

than the classical game theory literature. The reason is the trade-off between

the characterization of the dynamics of a terrorist organization, the govern-

ment and affecting population and the ability to derive solutions. As games

are formulated as optimal control problems, we would need to solve Hamilton-

Jacobi-Bellman equation or use Pontryagin’s maximum principle in deriving
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optimal strategies. Depending on how we model the dynamics of the game,

deriving solutions is oftentimes very difficult if not impossible.

There are many ways to model the dynamics of a terrorist organization,

such as its operations, political ideology or its methods of recruitment. Like

most mathematical models, these models are imperfect because they must

assume large simplification of the underlying phenomena and their results

oftentimes cannot be validated. This, however, does not mean we cannot gain

practical insights. For example, if we can model and predict recruitment levels

of a terrorist organization on a given time horizon, we can determine when it

is best to deploy counter-terror policies.

The study of the dynamics of conflict was developed well before differen-

tial games was established. One of the first model of conflict was developed

by Lewis Fry Richardson in the 1940s and published posthumously in 1963.

Richardson Arms Race Model is a system of differential equations describing

the weaponry available to multiple countries. The system of differential equa-

tions yield four possible outcomes for this conflict: (1) all trajectory approach

an equilibrium point, (2) all trajectories go to infinity (continuous arms race),

(3) all trajectories go to zero (disarmament) and (4) the trajectory path de-

pends on the initial conditions. Several works in differential games have since

incorporated Richardson’s model [5, 6].

Uwadia et al. [7] provided a system of three nonlinear differential equa-

tions that describe the behavior of terrorists and people who are susceptible

and non-susceptible to terrorists’ influence. They found the conditions under

which non-violent interventions and law enforcement interventions are useful to
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fight terrorism. Faria and Arce [8] used a system of difference equations to de-

scribe the time evolution of public support, terrorist recruitment and terrorist

attacks. Their model found that four counter-terrorist policies (gather infor-

mation, political participation, terrorist opportunity cost and law enforcement)

are effective to reducing terrorism. Faria [9] also used a system of nonlinear

ODEs to describe the dynamics of public support, the government’s counter-

terrorism actions and terrorist attacks. He showed that public support for an

incumbent politician in time of terror attacks is high when the government

overreacts to terror attacks since the unitary cost of counter-terrorist actions

is higher than the marginal impact of terrorist attacks.

An extension of [9] was presented in Faria and Arce [10] with a discrete

optimal control model in which terrorist support and recruitment is a dynamic

constraint to the government’s optimization problem. A discrete optimal con-

trol approach was also taken by Barros et al. [11]. They formulated a discrete

optimal control problem in which the terrorist organization maximizes attacks

subjected to limited resources are that negatively affected by the law enforce-

ment. Their conclusion is that terror attacks follow a random walk so the the

number of terrorst attacks are not predictable.

A continuous dynamic optimization approach was used in Caulkins et al.

[12]. Their optimal control model consists of the government minimizing the

cost of counter-terrorist operations through the control of operations that pro-

voke and do not provoke terrorist recruitment, called fire and water strategies.

The constraint of the model is the time evolution of the terrorist organization.

The authors found that at levels below a certain threshold, it is optimal to

4



use fire strategies. An extension of this model was presented in [13] with the

addition of a dynamic constraint describing the dynamics of public support

for counterterrorism. They found that DNSS (Dechert-Nishimura-Sethi-Skiba)

points may exist.

Although there has been much research effort in the developing and study-

ing the dynamics of terrorism, there have been little work in formulating them

as optimal control problems or incorporating them into differential games. We

will examine several differential games for the terrorist problem that have been

proposed in the literature.
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Chapter 2

Differential Games

Let us first establish the mathematical foundation for understanding differ-

ential games. We will begin with optimal control and how it relates to the

formulation of games.

2.0.1 Optimal Control

The standard model in optimal control theory states that the state of a system

is represented by x ∈ Rn which evolves in time according to some ordinary

differential equation

ẋ(t) = f(t, x(t), u(t)) t ∈ [0, T ] (2.1)

where u(·) is the control function within a set of admissible control laws U .

We assume f : Rn × U → Rn to be smooth and bounded so the solution will

be defined. For some initial condition x(0) = x0, we wish to find a control

function which maximizes the payoff function

J(u(·)) = φ(x(T ))−
∫ T

0

r(t, x(t), u(t))dt (2.2)
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where r(·) is the running cost and φ(·) is the terminal payoff.

There are two fundamental approaches in optimal control in obtaining a

solution: (1) Bellman’s principle of optimality and (2) Pontryagin’s maximum

principle.

According to Bellman [14], “An optimal policy has the property that what-

ever the initial state and initial decision are, the remaining decisions must

constitute an optimal policy with regard to the state resulting from the first

decision.” That is, if the state-action sequence is optimal then the remaining

sequence is optimal regardless the initial state and action. The solution to

HJB, if it exists, is a value function which gives the minimum cost. Formally,

the value function, defined by,

V (x, t) = min
u
J(u(·)) (2.3)

solves the HJB equation

− Vt = min
u
{r(t, x, u) + Vx · f(t, x, u)} (2.4)

with boundary condition given by the terminal payoff:

V (x, T ) = φ(x(T )) (2.5)

When solved locally, HJB gives a sufficient condition for optimality. When

solved in the entire state space, HJB is a necessary and sufficient condition for

optimality. As it is a partial differential equation, deriving the value function
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is difficult or often not possible.

The other approach is Potryagin’s minimum principle which seeks to find an

admissable control input that minimizes a Hamiltonian function. It provides a

necessary condition for optimality. In the context of differential games, either

approach can be used to derive optimal strategies though it is more common

to use the minimum principle. The formulation of HJB for differential games

is straightforward (i.e., it is essentially of the form (2.4) so let us discuss the

minimum principle in detail.

2.0.2 Two-Player Differential Game

The two-player differential game extends this optimal control model in which

the state x ∈ Rn evolves according to the system

ẋ(t) = f(t, x(t), u1(t), u2(t)) t ∈ [0, T ]. (2.6)

where ui is a measurable mapping or strategy for player i within a set of

admissible control laws Ui for i = 1, 2.

The payoff or objective function of a zero-sum game is

J(u1(·), u2(·)) = φ(x(T ))−
∫ T

0

r(t, x(t), u1(t), u2(t))dt. (2.7)

which player 1 wants to maximize and player 2 wants to minimize. That is,

in a zero-sum game, a gain for player 1 represents a loss for player 2.
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In a non-zero-sum game, we represent the payoff as follows

Ji(u1(·), u2(·)) = φi(x(T ))−
∫ T

0

ri(t, x(t), u1(t), u2(t))dt. (2.8)

Both players want to maximize this payoff with controls u1(·) and u2(·), re-

spectively.

2.0.3 Information Structure and Equilibrium

It is important to consider the information available to the players as it may

yield different type of equilibrium solutions to the problem. A player can have

information regarding either the current state of the system or the control of

the other player. If player i can observe the current state of the system then

he can adopt a feedback loop of the form ui = ui(x, t). Otherwise, he can

implement an open-loop of the form ui = ui(t).

In a non-cooperative game involving two or more players, the Nash equilib-

rium is an optimal outcome in which players have no incentive to change his or

her strategy after considering an opponent’s choice. Note, the Nash solution

may not be unique. Formally, we define a Nash equilibrium of our differential

game as follows.

Definition 1 (Open-loop Nash Equilibrium) The pair of controls (u∗1(t), u
∗
2(t))

is a open-loop Nash equilibrium provided

J1(u
∗
1(t), u

∗
2(t)) ≥ J1(u1(t), u

∗
2(t))
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and

J2(u
∗
1(t), u

∗
2(t)) ≥ J1(u

∗
1(t), u2(t))

To obtain a Nash equilibrium, we solve the following optimal control prob-

lem simultaneously for both players.

1. u∗1(t) is a solution to the dynamic optimization problem for Player 1:

maximize J1(u1, u
∗
2)(x) = φ1(x(T ))−

∫ T

0

r1(t, x(t), u1(t), u
∗
2(t))dt

subject to

 ẋ(t) = f(t, x(t), u1(t), u
∗
2(t)) t ∈ [0, T ], u1 ∈ U1

x(0) = x0 ∈ Rn

(2.9)

2. u∗2(t) is a solution to the dynamic optimization problem for Player 2:

maximize J2(u
∗
1, u2)(x) = φ2(x(T ))−

∫ T

0

r2(t, x(t), u∗1(t), u2(t))dt

subject to

 ẋ(t) = f(t, x(t), u∗1(t), u2(t)) t ∈ [0, T ], u2 ∈ U2

x(0) = x0 ∈ Rn

(2.10)

The following are necessary conditions to determine a Nash solution. Define

the Hamiltonian

Hi = ri(x, u1, u2, t) + λif(x, u1, u2, t) (2.11)

where λ is a vector containing the co-states of the system which satisfies the

adjoint equation λ̇i = −Hx
i and λi(T ) = φxi (x(T )).
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The optimal control pair (u∗1, u
∗
2) must satisfy the following conditions

Hi(x
∗, u∗1, u

∗
2, λ, t) ≥ Hi(x

∗, u1, u
∗
2, λ, t) (2.12)

Hi(x
∗, u∗1, u

∗
2, λ, t) ≥ Hi(x

∗, u∗1, u2, λ, t) (2.13)

The Nash equilibrium for a game with feedback is defined as follows.

Definition 2 (Feedback Nash Equilibrium) The pair of controls (u∗1(x, t), u
∗
2(x, t))

is a open-loop Nash equilibrium provided

J1(u
∗
1(x, t), u

∗
2(x, t)) ≥ J1(u1(x, t), u

∗
2(x, t))

and

J2(u
∗
1(x, t), u

∗
2(x, t)) ≥ J1(u

∗
1(x, t), u2(x, t))

Now the controls are dependent on the state variable x, the adjoint equation

is now

λ̇i = −Hx
i − [(Hu1

1 u
∗
1) + (Hu2

1 u
∗
2)] (2.14)

The second term makes deriving the feedback Nash solution complex. Note

that in the two-player zero-sum game the second term in (2.14) is 0 since

H1 = −H2. Note that very rarely do we have games which result in a unique

Nash solution.

If we assume that each player chooses their strategy in a leader-follower

way (i.e., player 1 picks his strategy then player 2 follows), then we have a

Stackelberg model. For a two-player game, Player 1 first chooses some strategy
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û1(t). Player 2 observes this and chooses a strategy u∗2 ∈ U∗
2 (u1), where U∗

2 (u1)

is the set of best responses, to maximizes his own payoff relative to û1(t).

The solution approach to the Stackelberg problem is backward induction

in that we first solve the Player 2’s optimal control problem given the control

chosen by Player 1. We then substitute Player 2’s response to Player 1’s

problem and solve. The Stackelberg equilibrium is defined as follows.

Definition 3 (Open-Loop Stackelberg Equilibrium) The pair of controls (u∗1(t), u
∗
2(t))

is a open-loop Stackelberg equilibrium, if it exists, provided the following

1. u∗2 ∈ U∗
2 (u1) when u1 = u∗1

2. J1(u
∗
1(t), u

∗
2(t)) ≥ J1(u1(t), u2(t))

Given Player 1 plays û1, Player 2’s optimal control problem is as follows

maximize J2(û1, u2)(x) = φ2(x(T ))−
∫ T

0

r2(t, x(t), û1(t), u2(t))dt

subject to

 ẋ(t) = f(t, x(t), u1(t), u
∗
2(t)) t ∈ [0, T ], u1 ∈ U1

x(0) = x0 ∈ Rn

(2.15)

Let us derive the necessary conditions using a maximum principle argument.

Player 2’s Hamiltonian is

H2(t, x, λ, u1, u2) = r2(t, x, u1, u2) + λ2f(t, x, u1, u2) (2.16)
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where λ2, again, is the vector satisfying the adjoint equation

λ̇2 =
∂HT

2

∂x
(t, x, û1, u2, λ2)

λ2(T ) = φx2(x(T ))

(2.17)

We wish to obtain an optimal response function for Player 2 as u∗2 =

argmaxu2{H2} = û2(t, x, λ2, u1), such that if u∗2 is an interior solution, we have

the following first order condition

∂H2(t, x, λ2, u1, û2)

∂u2
= 0 (2.18)

Given the optimal response function for Player 2, û2, we can derive the

problem for Player 1:

maximize J1(u1, u
∗
2)(x) = φ1(x(T ))−

∫ T

0

r1(t, x(t), u1(t), û2(t, x, λ2, u1))dt

subject to



ẋ(t) = f(t, x(t), u1(t), û2(t, x, λ2, u1)) t ∈ [0, T ], u1 ∈ U1

λ̇2 =
∂HT

2

∂x
(x, û1, û2, λ, t)

λ2(T ) = φx2(x(T ))

x(0) = x0 ∈ Rn

(2.19)

Assumming that all functions are continuously differentiable, we can apply
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the maximum principle. Player 1’s Hamiltonian is given as

H1(t, x, λ2, λ1, γ1, u1) =r1(t, x, u1, û2(t, x, λ2, u1))

+ λ1f(t, x, u1, û2(t, x, λ2, u1))

+ γ1

(
∂HT

2

∂x
(x, û1, û2, λ, t)

) (2.20)

where the vectors must satisfy the following adjoint equations:

λ̇1 =
∂HT

1

∂x
(t, x, u1, û2(t, x, λ2, u1), λ2, λ1, γ1)

γ̇1 =
∂HT

1

∂λ2
(t, x, u1, û2(t, x, λ2, u1), λ2, λ1, γ1)

λ1(T ) = φx1(x(T ))

(2.21)

The necessary condition for the Stackelberg game is obtained when

u∗1 = argmax
u1

{H1(t, x, λ2, λ1, γ1, u1)} (2.22)

2.1 Special Case: Linear Quadratic Games

A special case of differential games are games in which the state equations

are linear and the payoff function is quadratic. Linear quadratic differential

games have been well-studied and are very popular in application due to the

fact that analytical solutions are more easily attained. Let us examine a two-

player zero-sum game.
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Suppose we have state equation given by

ẋ(t) = Ax(t) +Bu1(t) + Cu2(t) (2.23)

with x(0) = x0 and a quadratic payoff function given by

J(u1, u2) =

∫ T

0

(
xTQx+ uT1Ru1 − γuT2 u2

)
dt+ xT (T )Mx(T ) (2.24)

where A,B,C,Q,QT , R, γ are constant matrices/values and Q,QT , R, γ > 0.

Assume also that each player have perfect information. Let us derive the

open-loop Nash equilibria for this game.

By definition, the Hamiltonian is given as

H = xTQx+ uT1Ru1 − γuT2 u2 + 2xTP (Ax+Bu1 + Cu2) (2.25)

We can compute the controls from the Hamiltonian to be

∂H

∂u1
= 2Ru1 + 2BTPx = 0

=⇒ û1 = −R−1BTPx

(2.26)

and
∂H

∂u2
= 2γu2 − 2CTPx = 0

=⇒ û2 = γ−1CTPx

(2.27)

Substituting these controls back into the Hamiltonian, we obtain the Riccati
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equation

Ṗ = Q− PBR−1BTP + PA+ ATP +
1

γ
PCCTP (2.28)

If there exists a solution P (t) > 0 to the Riccati equation with boundary

condition P (T ) = M , then (û1, û2) is the saddle-point solution.

Note, there is an alternative approach in deriving the open-loop Nash equi-

librium similar to what we had discussed in the general case of the previous

section. Instead of solving the Riccati equation, we can characterize the open-

loop Nash equilibrium for the linear quadratic game by explicitly solving the

linear canonical system in the state and co-state variables. That is, instead of

substituting (2.26) and (2.27) into the Hamiltonian, we substitute the controls

into the state equation (2.23) and formulate the adjoint equations for both

players. The solution for this canonical system of linear differential equations

will yield the open-loop Nash equilibrium.
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Chapter 3

Applications to
Counter-Terrorism

In this chapter we will discuss several applicable differential games that is

applicable to counter-terrorism in detail. We will formulate several different

games within the context of studying terrorism and will derive solution strate-

gies either numerically or analytically.

3.1 Resource-Allocation Games

The modeling of terrorism as a resource or stock is quite common in the

economics and policy literature [15, 16, 17]. Such modeling approach allows for

the application of game theory in the form of resource-allocation games where

the government’s and terrorist organization’s (TO) decisions affect how much

capital stock is available for the terrorist. We refer to [18] for the application

of the resource-allocation game to the terrorist problem with the classical

game theory approach. A differential game approach was studied in [19]. The

authors modeled terror stock as a state variable and analyzed a two-player

non-zero sum differential game. Under the assumption of state-separability,

they explicitly derived Nash and Stackelberg solutions.

Let us consider a resource-allocation game which exhibits a Nash solution
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using a simple single-state model. Assume that TO is seeking to maximize

its members through recruitment and the government is seeking to how to

best response. TO has a cap for how many members it can sustain given its

resources.

Example 3.1.1 (Nash Game) Let the state variable x represent the number

of terrorists which changes according to

ẋ = αx(t)

(
1− x(t)

M

)
+ u1x(t)− u2x(t) (3.1)

where α is the intrinsic growth rate, M is the maximum number of terrorists

TO can support, u1 is the intensity of recruitment and u2 is the intensity

of government action. Assume the initial condition is x(0) = x0. This is

an example of the Verhulst growth model. Let us assume the payoff (3.2)

for the government and (3.3) for the terrorist. Compute the open-loop Nash

equilibrium.

We wish to determine the pair of controls (u∗1, u
∗
2) such that J1(u

∗
1, u

∗
2) ≥

J1(u1, u
∗
2) and J2(u

∗
1, u

∗
2) ≥ J2(u

∗
1, u2). This will require solving the TO’s and

the government’s problems simultaneously. Recall from the previous section

that the optimal controls are determined in terms of the adjoints.

u∗1(t) = argmax
u1

{λ1u1 + β1ln(u1x)} = −β1
λ1

u∗2(t) = argmax
u2

{−λ2u2 + β2ln(u2)} =
β2
λ2

(3.2)

Noticed that we do not have to solve one player’s problem and then use it

to determine the other’s optimal strategies like the Stackelberg problem. The
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state and the adjoints λ1 and λ2 are determined by the following boundary

value problem:

ẋ = αx(t)

(
1− x(t)

M

)
+ u∗1x(t)− u∗2x(t)

λ̇1 = −λ1
(
−α
(

1− 2x

M

))
+ (u∗1 − u∗2) +

β1
x

λ̇2 = −λ2
(
−α
(

1− 2x

M

))
+ (u∗1 − u∗2)

x(0) = x0

λ1(T ) = α

λ2(T ) = 1

(3.3)

Substituting in the values for (u∗1, u
∗
2) into equation (3.3), we obtain the fol-

lowing:

ẋ = αx(t)

(
1− x(t)

M

)
+

(
−β1
λ1
− β2
λ2

)
x(t)

λ̇1 = αλ1

(
1− 2x

M

)
+

(
−β1
λ1
− β2
λ2

)
+
β1
x

λ̇2 = αλ2

(
1− 2x

M

)
+

(
−β1
λ1
− β2
λ2

)
x(0) = x0

λ1(T ) = α

λ2(T ) = 1

(3.4)

In Figure 3.1, we provide a numerical solution for the nonlinear system

(3.4) with parameters x0 = 1, α = 0.25,M = 200, β1 = 3, and β2 = 5. We can

determine the optimal controls for the government and TO as both depends on

the adjoint variables, λ1 and λ2, respectively. We have determined the rate of
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which TO would want to recruit and how the government’s response. Neither

players have the incentive to deviate from this strategy.

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
-10

-5

0

5

10

15

x
l1
l2

Figure 3.1: Numerical solution for Example 3.1.1 with x0 = 1, α = 0.25,M =
200, β1 = 3, and β2 = 5

Now, let us examine a Stackelberg game. In this game, the terrorist or-

ganization will choose how much of it’s resource to use in an attack. The

government will observe this action and response. As there is no longer a

resource cap, we will use a different growth model than the previous example.

Example 3.1.2 (Stackelberg Game) Consider a resource game in which

TO utilizes its resource (e.g., financial capital, weaponry, etc.) to carry out
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an attack. Let x(t) describe the total resource stock at time t. Let us assume

that this quantity evolves according to

ẋ(t) = rx(t)− u1x(t)− u2 (3.5)

where r is some constant growth rate, u1 is a terror attack and u2 is a gov-

ernment counter-terror response. This can be thought of as a simple economic

growth model in which we can think of u1 as a tax which depletes the terror

stock and u2 as instantaneous consumption. The payoffs for the government

and terrorist, respectively, are:

J1 = αx(T ) +

∫ T

0

β1ln(u1(t)x(t))dt (3.6)

J2 = x(T ) +

∫ T

0

β2ln(u2(t))dt (3.7)

Let us assume an open-loop information structure where both players cannot

observe the current resource stock and TO is the leader. TO will announce

an attack û1 and the government, as followers, must respond appropriately.

Derive the Stackelberg solution for this game.

The Hamiltonian for the government is given as

H2(u1, u2, x, t, λ2) = β2ln(u2) + λ2(rx− u1x− u2) (3.8)
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where λ2 is the adjoint variable satisfying the equation

λ̇2 = −∂H2(u1, u2, x, t, λ2)

∂x
= −λ2(r − u1)

λ2(T ) =
∂(x(T ))

∂x
= 1

(3.9)

Also, the necessary condition for the government’s optimal control is

u∗2(t) = argmax
u2

{−λ2u2 + β2ln(u2)} =
β2
λ2

(3.10)

Now, we can formulate TO’s optimal control problem as follows:

maximize αx(T ) +

∫ T

0

β1ln(u1(t)x(t))dt

subject to



ẋ(t) = rx− u1x− β2
λ2

λ̇2 = −λ2(a− u1)

λ2(T ) = 1

x(0) = x0

(3.11)

Using the maximum principle, we will derive a Stackelberg solution. Solving

∂H1

∂u1
= −γ2u1 + γ1λ2 + γ0β1

1
x

= 0, we obtain the solution for TO:

u∗1(t) = argmax
u1

{γ2(−u1x) + γ1λ2u1 + γ0β1ln(u1x)} =
γ0β1

γ1x− γ2λ2
(3.12)

Given the pair of controls (u∗1, u
∗
2), we need to solve the system of ODEs
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consisting of the state and adjoints

ẋ = rx− γ0β1
γ1x−γ2λ2x−

β2
λ2

λ̇2 = −λ2
(
r − γ0β1

γ1x−γ2λ2

)
γ̇1 = −γ0 β1x − γ1

(
γ0β1

γ1x−γ2λ2

)
γ̇2 = −γ1 β2λ2 + γ2

(
γ0β1

γ1x−γ2λ2

)
x(0) = x0

λ2(T ) = 1

γ1(T ) = γ0b

γ2(0) = 0

(3.13)

to obtain the Stackelberg solution. Given the terminal conditions, it is very

difficult to solve this system of ODEs, even numerically. However, we can

still gather some insights about the game based on the optimal control for the

players without explicitly deriving the solution. Novak, Feichtinger & Leit-

mann [19] found that both players are more cautious in the Stackelberg game

in comparison to the Nash game which leads to a lower resource utilization.

In addition, in a Stackelberg game, the follower have a lower value while the

leader has a higher value compared to their respective values in the Nash game.

3.2 Information Accumulation Game

Linear quadratic games are widely used in the macroeconomics literature. The

common application is that the state and/or control variables describe some

type of deviation from economic indicators. These deviation are penalized by
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quadratic cost functions and it is the goal of the decision makers to minimize

these quadratic deviations from a target value. Often, it is very difficult to

model the underlying economic system and so the assumption of linearity in

quite common. We refer the reader to the text [20] for a survey of differential

games in the economic literature.

A common game used in macroeconomics is the capital accumulation type

of game where players invest in a public stock such as knowledge. In the con-

text of the counter-terrorism, [18] discussed the mechanisms to foster inter-

national counter-terrorism cooperation between governments and law enforce-

ment agencies. The author also discuss the sharing of information between

terrorist organizations. Let us look at a game of information accumulation.

Let the state variable, x(t), denote the stock of knowledge which accumu-

lates according to:

ẋ(t) = u1(t) + u2(t)− αx(t) (3.14)

Here, u1 and u2 can be considered either governments or terrorist organizations

who wish to increase information stock. As information can become obsolete

over time, let us define α as some constant depreciation rate.

Let us assume that each player’s utility function is linear from the con-

sumption of information and so the payoff is given by:

Ji =

∫ T

0

e−rt[x(t)− Ci(ui)]dt+ e−rTQix(T ) (3.15)

where r is a discount rate, Qi is the terminal value of information for player

i and Ci is the cost of getting that information for player i. Let us assume
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that the cost is quadratic, given by Ci(ui) = 1
2
u2i . Given this linear quadratic

game, let us now derive the open-loop Nash equilibrium.

It is possible to solve accumulation games using an HJB approach (see [20]

and [21]) by assuming the general form of the value function to be:

Vi(x, t) = ai(t)x+ bi(t) (3.16)

Therefore, let us attempt to derive the Nash equilibrium using by solving the

HJB equation. The HJB equations for this game is given by:

r(ai(t)x+bi(t))−(ȧi(t)x+ḃi(t)) = max
ui

{
x− Ci(ui) +

∂Vi(x, t)

∂x

(∑
ui − αx

)}
(3.17)

with the boundary condition given by the terminal payoff, Vi(x, T ) = Qix(T ).

Assuming the general form of the value function to be (3.16), the right-hand

side of (3.17) is given by

∂Ci(ui)

∂ui
= ui = ai(t) (3.18)
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We substitute (3.18) into (3.17),

r(ai(t)x+ bi(t))− (ȧi(t)x+ ḃi(t)) = max
ui

{
x− Ci(ui) +

∂Vi(x, t)

∂x

(∑
ui − αx

)}
(3.19)

= max
ui

{
x− 1

2
u2i + ai(t)(u1 + u2(t)− αx)

}
(3.20)

= max
ui

{
(1− αai(t))x−

1

2
u2i + a(i)(t)(u1 + u2)

}
(3.21)

Collecting terms and equation the coefficients of the powers to 0, we obtain

the following system of differential equations:

ȧi(t) = −1 + (r + α)ai(t) (3.22)

ḃ(t) = rbi(t) + ai(t)− ai(t)(a1(t) + a2(t)) (3.23)

Note, the boundary condition depends on the terminal payoff so ai(T ) = Qi

and bi(T ) = 0. We solve this first-order ODE analytically to obtain the Nash

equilibrium solutions:

u∗i = ai =
1

r + α
+

(
Qi −

1

r + α

)
e(r+α)(t−T ) (3.24)

It is interesting to note the limiting behavior of this solution (i.e., going from

a finite-horizon game T to an infinite horizon game). As t → ∞, we have

u∗i = 1
r+α

which implies that the strategies of the players in the finite horizon
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eventually converges to the strategies of the infinite horizon game which is to-

tally dependent on the discount rate and the depreciation rate of information.

3.3 Search Games

One type of differential games that is used to model search and capture oper-

ations is called a search game. A search game is a two-person non-zero sum

game in which a searcher chooses continuous trajectories to find a hider who

seeks cover within a certain area which the searcher is aware of. The goal of

the hider is to maximize capture time whereas the searcher wants to minimize

it.

Search games were first introduced by Isaacs [1] with the classical Princess-

Monster. In the Princess-Monster game, a monster tries to capture a princess

in a dark room D of arbitrary shape. The original problem has the monster

moving along continuous trajectories at a set speed and the princess mov-

ing along continuous trajectories at arbitrary speed. Capture happens if the

distance between the monster and princess is smaller than some threshold.

Although they draw many similarities, search games different from pursuit-

evasion games in that there is no direct visual contact between the players

(i.e., a pursuer sees where the evader is going while a searcher does not).

Search games have extensive applications in operations research, graph theory

and computer science (see [22] for a survey). Fokkink and Lindelauf [23]

provided several applications of search games to the study of counter-terrorism.

In particular, they discussed the solution approach for single-agent (i.e., one
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searcher) discrete and differential games.

Let us describe a single-agent moving fugitive game which will give us

insight on how to best formulate a capture strategy for a hidden terrorist.

Example 3.3.1 (Moving Fugitive) A terrorist, denoted H, attempts to hide

in a finite number of locations. The authorities, S, are aware of when H moves

but does not know to which location. The value of the game is the probability

that capture occurs. Let Q(t) be the probability distribution function of the

capture time τ . Whenever H moves, a new stage of the game begins and the

probability of capture changes according to

Q̇(t) = g(t)(1−Q(t)) (3.25)

with initial condition Q(0) = 0 and g(·) is any unbounded strictly increasing

function. Here, g(·) can be viewed as a search function. What can we conclude

about the terrorist’s behavior?

We can solve this differential equation directly to obtain

Q(t) = 1− exp
{
−
∫ t

0

g(s)ds

}
(3.26)

The terrorist H will need to determine the time h to start a new stage of

the game (i.e., when to move). Let Q(h) be the probability that H is captured

before time h so 1 − Q(h) is the probability that a new stage will begin. So,
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the problem of H is

max
h

(1−Q(h))(h+ τ) +

∫ h

0

tQ̇(t)dt (3.27)

where τ is the expected capture time. Differentiating, we find that τ =

(1−Q(h)

Q̇(h)
= 1

g(h)
so the optimal time for h must satisfy

h = g−1(1/τ) (3.28)

We see that the expression in (3.27) is equal to τ upon plugging (3.25) and

(3.26). Since g(·) is strictly increasing and unbounded, an interesting con-

clusion can be drawn about the terrorist’s behavior. If the capture time τ is

small, then the time the terrorist will remain dormant is long. Otherwise, if τ

is large, then the terrorist’s resting time is short.

Since the hider will remain dormant as long as necessary , a natural exten-

sion of this game is to look at the incetives which will cause a hider to move.

Such extension can be found in [24]. One approach is to view Q(·) as the

probability of capture by betrayal. Then, if we define Q̇(t) to be increasing

with time, the hider will have an incentive to move to avoid capture.

Another approach is to introduce a better search for when the searcher is

looking in the correct location. That is, suppose there exists some f(·) such

that f(t) > g(t) for all t. This will make the expected capture time depend on

the choice of the hider as well as the searcher at the start of each stage. Owen

and McCormick [24] proved that the expected capture time of this stochastic

game will converge as the number of moves by the hider approaches infinity.
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Chapter 4

Conclusions

We have discussed some applications of differential games to the study of

counter-terrorism. From our examples, we’ve found that we can gather much

insight on government-terrorist behavior despite sometime not being able to

derive an explicit solution.

For resource-allocation and search games, a natural extension of these

games is to include multiple players, say multiple TOs and incorporate co-

operative behavior. Terror groups such as Islamic State of Iraq and Syria

(ISIS) and Al-Qaeda have formed elaborate cooperative networks and pooled

resources. They share intelligence, operatives, logistics and training facilities

as well as a common enemy. The resource-allocation dynamics can incorporate

multiple inputs which either drain or increase the resource stock. On the other

hand, government agencies such as Interpol and the CIA also share resources

and so search games with multiple searchers with differing dynamics could be

considered.

Another possible extension is to examine the time horizon of the game.

Terrorist leaders often do not face a time constraint whereas government lead-

ers are faced with term limits. Time horizon can also be randomized by making

T a random variable with some probability distribution Ω. Each player’s opti-
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mization problem would then be to maximize the expected value of the payoff

function. It turns out that games with random time horizon can be recast as

a discounted game over the inifinite time horizon [25]. An interesting appli-

cation would be to use real terrorist data to estimate the density of Ω for the

problem.
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