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Abstract

We propose an adaptive batch mode active learning algorithm, MABAL (Multi-

Armed Bandit for Active Learning), for classification on heterogeneous infor-

mation networks. Observing the parallels between active learning and multi-

armed bandit (MAB), we base MABAL on an existing combinatorial MAB

algorithm to combine simple strategies to generate query batches. MABAL em-

ploys a novel error expectation measure for network classification that does

not assume assortativity as MAB reward feedback to determine the most fit

strategy for the given task. We provide a preliminary optimality analysis of

MABAL based on performance bounds for combinatorial MAB. A case study

illustrates that MABAL not only converges quickly to the optimal strategy but

also provides insight into the functional roles of the different node types. E-

valuations of MABAL on real world network classification tasks demonstrate

that it achieves performance gains over existing methods independent of the

underlying classification model.
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Chapter 1

Introduction

The indisputable ubiquity of networks engendered an avalanche of research

activities in network analysis in recent years. The broadest definition de-

scribes a network as a collection of entities interconnected by links, which

makes networks an apt description for many systems, e.g. the Internet, a-

cademic collaborations, gene regulations. The term information networks

emphasizes the fact that networks are a constructed concept for organizing

information, and that links are channels for information passage. Since infor-

mation networks are often represented as graphs, we refer to the entities in the

network as nodes. One common task performed over information networks is

classifying constituent nodes by a function learned from existing node label-

s. For example, molecular biologists are interested in classifying proteins by

their functions. Only a fraction of all known proteins have function labels,

but proteins form networks based on interactions and co-occurrence. Net-

work analysis can be used for function classification in lieu of the much more

expensive wet lab experiments.

In the protein function example, costly and time consuming experimen-

tation is required to determine the function label of a protein. The field of

active learning addresses the label acquisition cost problem in classification

tasks with such constraints. Instead of passively learning from a given set of

examples that is supposed to be representative of the underlying distribution,

the active learner examines a large set of unlabeled data and selectively query

for the labels of the most informative examples. Active learning thrives on

the assumption that the unlabeled data contains patterns and information

that can be taken advantage of to study the training objective without la-

bels. Networks, with their rich structures, present an excellent opportunity

for such kind of studies, although active learning on networks has not been

a research focus until recently. Active learning on information networks has

the potential to drive the direction of future scientific research under the e-
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mergent concept of data driven science, due to the ubiquity and prominence

of information networks in many scientific disciplines. In the protein func-

tion example above, the important proteins selected by the active learner can

serve as guidance on the subject of new experimental functional studies.

Active learning on information networks requires many special considera-

tions that are not applicable to the setting that assumes data independence,

i.i.d. for short. Strategies that are effective for i.i.d., such as uncertainty

sampling, fall short for networks, as we need to reason about not only the in-

dividual examples but also how they affect their neighborhoods and the rest

of the network. The node with the highest uncertainty may not gain much

for the rest of the network. In i.i.d. queries affect the classifier separating

the entire feature space, whereas in networks, queries usually only provide

information on a piece of the network we are classifying. When considering

the collective gain of a query set, the i.i.d. assumption often allows it to be

modeled as a linear combination of individual gains. Such linearity cannot

be assumed for networks due to data dependency. Another major challenge

to surmount is identifying the structure that connects nodes in the same

class. As pointed out in [1], many important network classification tasks do

not follow the assortativity assumption, which states that nodes in the same

class are more densely connected.

Researchers in network analysis continuously seek sophisticated tools and

methods for analyzing complex networks. One such methodology that rose to

prominence recently is heterogeneous information networks, which enriches

prior methods for classification, clustering, and ranking on networks with con-

siderations for relation semantics between different types of nodes. Among

the various methodologies for analyzing complex networks, the heterogeneous

information networks formalism provided us the necessary machinery to solve

many of the above challenges. A heterogeneous information network (HIN) is

a network comprised of multiple types of nodes connected via links indicating

semantic relations [2]. An archetypal HIN is the bibliographic network con-

taining nodes of types paper, author, venue, and terms, with links connecting

a paper to its authors, the venue that it was published in, and the terms

it contains. Previous studies on networked active learning typically focused

on networks containing a single type of nodes [1, 3], e.g., the co-authorship

graph linking researchers via publication collaborations. In these homoge-

neous networks, strong assumptions about network structures are embedded
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in the way the links are constructed, limiting the range of analyses that can

be performed over the network. The HIN setting allows us to explore the re-

lations that are pertinent to a given classification task, which is advantageous

when the connectivity pattern between classes of nodes is unknown. To the

best of our knowledge, [4] is the only existing study on HIN active learning.

Unlike in [4], our algorithm does not assume assortativity nor dependency

on any particular classification model.

We propose an effective and flexible active learning strategy on HINs in-

spired by the multi-armed bandit problem, MABAL. We consider the batch

mode active learning setting in which the learner receives labels for multiple

queries at each iteration. MABAL employs a combinatorial MAB algorithm to

construct query batches based on the suggestion of simple strategies, which

are created from the centrality rankings of different types of nodes. Each sim-

ple strategy represents a hypothesis about the type of structure that makes a

node an informative query. MABAL borrows from MAB to handle the tradeoff

between exploration of simple strategies and the exploitation of current best

strategies, and we provide a preliminary study on its performance bounds

based on known MAB results. We evaluate MABAL on a number of classifica-

tion tasks over real world information networks against simple heuristic and

literature baselines. We study the adaptability of MABAL to different classi-

fication tasks over the same network structure as well as its compatibility

with different classification models. A case study demonstrates that MABAL

also offers insight into network structures that are crucial for a given task.
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Chapter 2

Related Work

As we recognize the ubiquity of networks, studies centered around network

analysis have become increasingly popular. One important type of analyses

on networks is collective classification, which accounts for data dependen-

cies when classifying objects in a network (see [5] for an in-depth introduc-

tion). The body of work on collective classification divides into two schools

of thoughts, one that relies on the collective power of local conditional classi-

fiers, and one that views it as a global objective optimization problem, with

numerous algorithms in both categories . In our work, we employed two spe-

cific collective classification methods, Label Propagation[6], which embodies

the second category, and RankClass[7], which is a hybrid of both.

While active learning has a deep rooted history in machine learning re-

search, with early work dating back to the 90’s (see [8] for a comprehensive

survey), active learning on networks has not been a research focus until recent

years. The expected error reduction framework for active learning employed

in this work was first proposed in [9] for text classification. [10] presents

an adaptation of this framework to graphs, as we have done in Section 4.4.

However, their formulation fundamentally relies on the assumption that n-

odes with the same labels are in close proximity to each other, a limitation

excluded from our framework to accommodate a wider range of classification

tasks.

Previous work on network active learning without the assortativity as-

sumption include [1, 11]. [1] uses information-theoretic techniques to choose

which nodes to explore, and makes no initial assumptions about how the

groups connect. [11] is able to effectively explore both similarity and dissim-

ilarity simultaneously. Unlike in our work, they do not have a mechanism to

make use of the node type information in the heterogeneous setting. Addi-

tionally, [11] requires a pairwise similarity matrix as input, which may not be

available for some problem settings. This makes it inapplicable to HINs since
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it is hardly sensible to compare nodes of different types. [1] runs in exponen-

tial time for some settings, while our algorithm will always run in linear time

(excluding the computation of centrality). The mutual information query

selection criterion in [1] is similar in spirit to our centrality-based primary

strategies. [3] presents a network active learning framework that employs

both a local classifier based on node attributes and a collective classifier to

account for data dependencies. It relies on clustering on node attributes to

avoid sampling bias, which is ineffective when node attributes are very sparse

or non-existent. In comparison, we avoid bias by directly using the observed

label distributions in the primary strategies.

To the best of our knowledge, [4] is the only other work that has studied

active learning on HINs. In their study, a combination of clustering using

metapaths and uncertainty sampling is used for query selection. We have

learned in our studies that finding clusters that correlate well with class

labels in an HIN is very sensitive to the relations considered, which is why we

opted for an expected error reduction scheme instead. Instead of depending

on user guidance in the form of metapaths for performance, we provide to the

users information about the network structures that are crucial to their task.

Our algorithm not only provides a performance boost over their method but

also insights into the functional roles of the different types of nodes in the

network.

As a resource allocation model, multi-armed bandit lends itself naturally

to the active learning problem. Prior to our work, [12] and [13] have indepen-

dently drawn up analogies between active learning and multi-armed bandit.

Both work explore fully sequential learning, i.e., a single query is made at

every iteration. As seen in our work, the correspondence between AL and

MAB becomes much more complex when we consider batch mode learning.

To this end, we transform the batch mode active learning problem in order

to apply a combinatorial MAB algorithm with a proven regret bound[14].

This allows us to reason about the optimality of our algorithm, which is not

commonly done in the active learning literature.
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Chapter 3

Preliminaries

3.1 Information Networks

We represent an information network as a graph G = (V,E) with V being

the set of n nodes corresponding to the entities in the network and E =

{(n1, n2, w12)|n1, n2 ∈ V } the set of m links between these entities, with w12

denoting the edge weight reflecting the strength of the tie. wij = 1∀(i, j) ∈ E
in an unweighted graph and is therefore omitted. G is often represented by

an adjacency matrix A. An element aij ∈ A equals the edge weight wij if

the edge (i, j) exists and 0 otherwise. Each node n ∈ V is associated with a

feature vector xn ∈ X , the feature space, where dim(X ) ≥ 0. In the simplest

case where dim(X ) = 1, the feature vectors are composed of a single unique

identifier for each node.

In a heterogeneous information network, each node v ∈ V is mapped onto

a specific type t ∈ T via τ : V → T , the set of all types. Let Vt ⊆ V denote

the set of nodes with type t. These subsets do not overlap, i.e., Vt ∩ Vt′ = ∅
∀ t 6= t′ ∈ V and

⋃
t∈T Vt = V . The ordered pair r = (ti, tj), ti, tj ∈ T defines

a relation over G. Let R be the set of all relations over G. The function

φ : E → R maps an edge eij = (vi, vj) onto a relation r = (tk, tl) if and only if

τ(vi) = tk and τ(vj) = tl. For example, the bibliographic network introduced

earlier with T = {paper, author, venue, term} contains the relations {(paper,

author), (paper, venue), (paper, term)}.

3.2 Collective Classification

Given a large information network, a common task is to infer the class label of

all constituent nodes based on the labels provided for a subset. This problem

6



is commonly referred to as collection classification in the literature[5]. For

a specific classification task, let Y denote the set of class labels. We want

to train a classifier f ∗ to approximate the hidden objective f : V → Y that

generated the node labels, given the observations L = {(v, yv)|v ∈ V, yv ∈ Y}.
For notational convenience, we use L to denote both the set of (node, label)

pairs and the set of labeled nodes in V . A trained classifier can either predict

a single label for an input node v or a probability distribution over all labels,

P (y|v), y ∈ Y . We assume the latter in this work.

3.3 Graph Centrality Measures

Graph centrality measures, also known as centrality indices, provide a means

to quantify the importance of nodes in a network based on some definition

of importance. Many centrality measures, such as degree, PageRank[15], and

closeness, were defined over the history of network analysis to serve different

applications, e.g., search engines, community detection in social networks.

The essence of a centrality measure is a function, C : V → R, that maps

nodes inG onto real values that allow nodes to be ranked by their importance.

More formally, the centrality measure C induces a total order on V under ≤C
such that for a pair of nodes v, v′ ∈ V , v ≤C v′ ⇔ C(v) ≤ C(v′). For a node

v, its rank in V under C is defined as rankC|V (v) =
∑

v′∈V I(v ≤C v′), i.e., the

number of nodes with centrality less than that of v. In other words, the most

important nodes based on C have the lowest rankC|V values, which place

them at the head of the sequence listing the nodes by descending centrality.

In this work, we consider the following commonly used centrality mea-

sures: degree, closeness, betweenness, PageRank, eigenvector and Katz. We

refer interested readers to [16] for an in-depth discussion on centrality mea-

sures and their formal definitions. On HINs, previous studies suggest that

higher order network structures can be captured using centrality measures

considering relation semantics, such as metapaths consisting of a sequence

of relations. We defer the investigation of such novel complex centrality

measures to future studies.

The definition of a centrality measure describes a structural function of

nodes in the network, and the centrality value for a given node quantifies

its suitability for serving that function. Two measures are very unlikely
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Figure 3.1: a) Nodes in a lollipop graph colored by betweenness. b) Nodes
in a lollipop graph colored by closeness.

to produce the same ordering on V . Take betweenness and closeness for

example. By definition, a node v has high betweenness if it acts as a bridge

in the graph, i.e., the shortest path between any pair of nodes in G tends to

go through v. Closeness, on the other hand, measures the average distance

between a node to all other nodes in V . Figure 3.1 shows a graph with

different node rankings under betweenness and closeness. Thus, different

centrality measures present different hypotheses about what makes a node

important in the network.

3.4 Batch Mode Active Learning

Active learning can be conducted in many different modes based on the

constraints of the specific application. [8] provides a comprehensive survey

of active learning scenarios. In this work we focus on batch mode learning

in which the learner starts with a set of unlabeled instance, U , and issues

queries, Q ⊆ U , to the oracle O, such as a human annotator. When applied

to learning on information networks, U ⊆ V . In this study, we assume that

O provides a single label yq ∈ Y ∪ ∅ (∅ when the label is not available)

for each query q and is stable, i.e., it always provides the same label for q

whenever queried. This assumption implies zero utility in re-querying the

same instance, which allows us to safely remove an instance from U once it

has been queried.

As labeling cost is prohibitive in tasks targeted by active learning, batch

mode active learning is parameterized by the budget B, the upper bound

on the total number of queries, and the batch size b, the number of queries
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to issue at each iteration over dB/be iterations [8]. The learner can choose

to exhaust the budget in a single iteration in what is referred to as one-

shot learning, or issue a single query over ≤ B iterations in fully sequential

learning. With the labels received from O, the learner updates U = U \ Q,

L = L∪Q and then its strategy for selecting future queries based on L. Since

the compositions of U and L are time dependent, we use Ui and Li to denote

the two sets after the update at time i for clarity. Batch mode allows the

learner to better adapt to the classification task from incremental changes

in the observed label distribution. Strategy update often involves retraining

the classification model on L. We have one-shot learning when b = B and

fully sequential learning when b = 1. We assume uniform labeling cost over

all instances in P . Works such as [17, 18, 19] address queries with varying

costs.

3.5 Multi-armed Bandit

The multi-armed bandit (MAB) problem models the exploration v. exploita-

tion tradeoff in sequential allocation tasks [20]. In the classic setting, at each

iteration i a player makes a play pi, by pulling one of the K arms on a bandit,

or slot machine, and received a reward r(pi). The objective is to maximize

the cumulative reward R =
∑T

i=1 r(pt) earned over T rounds. This is often

modeled as minimizing a player’s regret, the difference between R and ROPT

achieved by the optimal strategy. Each arm has a reward distribution, mod-

eled as a random variable Xi with E[Xi] = µi unknown to the player, who

has to make decisions based on empirical rewards from past actions in each

round. Let µ̄tk be the player’s expectation of reward from arm k in round

t. The player can either choose to exploit his knowledge about the payoffs

by playing argmaxk={1,...,K} µ̄
t
k or to explore arms whose reward distribution

he is less certain about, where the definition of certainty varies based on the

player’s belief about the reward distribution. Exploration often entails play-

ing a currently suboptimal strategy in the hope of maximizing cumulative

gain over the remaining rounds.

In combinatorial multi-armed bandit (CMAB), the player at each round

plays multiple arms, or a super arm S ∈ 2[K], and receives feedback for S.

There are three types of feedback in CMAB for playing S: 1) full information:
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a reward is observed for all arms in the bandit; 2) semi-bandit : a reward is

observed for individual arms in S; 3) bandit : a single reward value is observed

for S[21]. In this work we make use of the algorithm proposed in [14], which

assumes semi-bandit feedback and achieves a regret of O(log(T )).
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Chapter 4

The Algorithm

In this section we formally describe MABAL, our proposed active learning al-

gorithm on information networks. MABAL combines primary learners using

an existing CMAB algorithm, CUCB [14], to compute expected rewards of

the primary learners. We first define and motivate our choice for primary

learners in Section 4.1 and then establish a straightforward correspondence

between components of MAB and AL in Section 4.2 to enable the applica-

tion of CUCB for combining primary learners. CUCB requires a function for

computing super arm rewards and a method for creating super arms given

reward estimates. We describe and motivate our choices for these two com-

ponents in our application in Section 4.4 and 4.5. At a high level, CUCB

estimates expected rewards based on the empirical rewards and the number

of times an arm is explored. It boosts the reward expectations for arms

that have not been explored much in order to prevent us from dismissing a

potentially optimal strategy without much evidence.

4.1 Centrality by Type as Primary Learners

Intuition: Suppose we are given an HIN constructed from customer reviews

for businesses as in Figure 4.1a). Consider two potential classification tasks

on this example HIN: 1. classifying businesses by customer satisfaction, as

in Figure 4.1b); 2. classifying businesses by geographic location, as in Figure

4.1c). Clearly, the term nodes “terrific” and “terrible” are central to the

satisfactory and unsatisfactory classes respectively for the first task, whereas

the customer nodes “Andy” and “April” are the key connections between all

businesses in Town E. An effective active learning algorithm should be able

to prioritize salient term nodes for the first task and key users in the second.

It not only needs to identify the node types that are the most pertinent to
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Figure 4.1: a) HIN with customers (�), businesses (©), and keywords (5).
b) Businesses classified by customer satisfaction. c) Businesses classified by
geographic location.

the classification task but also important nodes within the identified types.

Since the two tasks are performed on the exact same network structure, the

learner needs to adapt its query strategy to the task at hand once it has seen

some labels.

Based on the observations above, we create simple query strategies from

centrality rankings for each type of nodes. A primary learner, λCt is con-

structed from the ordering induced on Vt by the centrality measure C. We

denote the unlabeled set for type t as Ut = U ∩ Vt. When queried in batch

mode with batch size b, λCt will return QλCt = {v|v ∈ Ut, rankC|Ut(v) ≤ b},
i.e., the top b unlabeled nodes of type t with the highest centrality C. Note

that λCt ’s with the same t share the same candidate pool Ut but prioritizes

nodes in the pool differently for querying. C, the set of centrality measures

used in MABAL, can be any arbitrary combination of existing or novel central-

ity measures.

Let Λ be the set of primary learners in MABAL. To account for the possibility

that none of the centrality based primary learners serve as adequate active

learning strategies, we add to Λ Random, a primary learner constructed from

a random ordering of the nodes, equivalent to a passive learner. Including

Random in Λ also serves as a mechanism to regulate the active learner from

overfitting to the centrality-based strategies. This prevents MABAL from doing
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worse than the passive learner when none of the centrality-based strategies

prove to be effective. However, increasing the number of learners can slow

the convergence of MABAL, which is dependent on |Λ|. We explore the effect

of adding Random in Section 5.3.1.

4.2 Correspondence between AL and MAB

We define the utility of a query q given the labeled set L as

u(q|L) = acc(f ∗|L ∪ q)− acc(f ∗|L) (4.1)

where f ∗|X is the classifier f ∗ trained on the observations X, and acc(f ∗) =∑
v∈V I(f ∗(v) == yv)/|V | is the classification accuracy of f ∗ on V , where yv

is the true label for v. The utility of a L is simply

u(L) = acc(f ∗|L) (4.2)

Given the label budget B, the objective of the active learner is to find

LOPT = argmax
L∈PB(V )

u(L) (4.3)

Suppose for the time being that u(q|L) can be acquired after q is labeled byO.

This allows us to establish a natural correspondence between the objectives

of active learning and multi-armed bandit in the following fashion. Each arm

in the bandit corresponds to a primary learner λ ∈ Λ. Let’s first consider

the fully sequential setting, i.e., b = 1. At each iteration i, some λ ∈ Λ is

picked to issue the query qi, which corresponds to a play pi in MAB. The

label budget B corresponds to T , the number of rounds played in MAB.

With (q1, . . . , qB) being the sequence of queries such that L = {q1, . . . , qB},
acc(f ∗|L) corresponds to the cumulative reward R in MAB earned by the

sequence of plays (p1, . . . , pT ). Thus, finding the sequence of optimal plays

that maximizes R is equivalent to (4.3). �

The simplest adaptation for b > 1 is to choose a single primary learner

λ ∈ Λ as done above and use Qλ as the query set Q. However, this strategy

can severely limit the diversity of Q and thus reduce L’s coverage of G and Y .

We cannot adequately learn a classifier over G if there is a lack of examples
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for some y ∈ Y or major components of G. We propose Batch, a function

that computes Q by selectively taking advice from the primary learners based

on their expected rewards {µ̄(λ)}. In brief, Batch combines the advice Qλ

from λ weighted by its expected reward µ̄(λ) to form Q in a way that also

promotes diversity. We describe Batch in detail in Section 4.5.

In establishing the correspondence between AL and MAB we assumed

knowledge of the utility of query q, u(q|L), which can be used as feedback

for µ̄(λ) to directly optimize for (4.3). However, acc(f ∗) cannot be computed

without the ground truth labels for all nodes, which are not available to the

learner. Additionally, we need to define u(Q|L) for the query set Q in batch

mode. While it is tempting to think of u(Q|L) as the sum of u(q|L) for

q ∈ Q, u is not additive due to data dependencies in a network. Consider a

Q made up of two nodes v1, v2 connected by an edge. While v1 and v2 may

have high utility individually, u(Q) is not a sum of their utilities due to the

coverage overlap between two adjacent nodes. We propose a novel network-

based expected error reduction measure, ∇, as a proxy for u to address these

issues. We define ∇ and µ̂(λ), the empirical mean reward of λ, in Section

4.4.

Algorithm 1 MABAL

1: procedure MABAL(G = (V,E), B, b, Λ)
2: i← 0, L ← ∅, U ← V
3: Tλ ← 0 ∀λ ∈ Λ . Num. of queries from λ
4: µ̂(λ)← 1 ∀λ ∈ Λ . Empirical reward for λ
5: while i · b < B do
6: b′ = min(b, B − t · b)
7: for all λ ∈ Λ do

8: µ̄(λ) = µ̂(λ) +
√

3 ln i
2Tλ

9: Q = Batch(G, b′, Λ, U , {µ̄(λtC)})
10: L ← L ∪O(Q)
11: U ← U \Q
12: Tλ ← Tλ + |Q ∩Qλ| ∀λ ∈ Λ
13: Train classifier on L
14: update µ̂(λ) ∀λ ∈ Λ using (4.8)
15: i← i+ 1

16: return L

We present MABAL, our proposed algorithm for active learning on networks,

in Algorithm 1. MABAL takes an information network represented by G, the
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label budget B, the batch size b, and the set of primary learners Λ as input.

µ̂(λ) is the empirical reward of learner λ ∈ Λ, and Tλ is the number of nodes

nominated by λ that were labeled, analogous to the number of a times an

arm is played in MAB. In line 8, we use CUCB to compute µ̄(λ), the expected

reward of λ, which is then used to compute the query set Q by Batch. We

then query the oracle O for the labels of nodes in Q and update L, U and

Tλ’s accordingly. To update the empirical rewards of the λ’s, we retrain the

classifier on L and recompute µ̂(λ) using (4.8). MABAL assumes no seed nodes

at the beginning of the algorithm, although it can be easily adapted to make

use of seeds.

4.3 Connection Patterns via Edge Weights By

Relations

We capture the importance of semantic relations by assigning weights to

edges based on relations. Let Wri,j ∈ [0, 1] denote the weight for the relation

rij ∈ R and W = {Wri,j}, the set of weights over all relations. Let ωW : E →
W be the function that maps each edge onto a weight value in W based on

its type. Intuitively, the weights indicate the strength of each relation. A

specific W produces a representation of the network that leads to certain

conclusions about its structure.

4.4 Entropy Reduction as MAB Reward

In the expected error reduction framework for active learning, queries are

selected to minimize the generalization error over U [8]. Strategies in this

framework are known to be computationally expensive, since finding the

optimal query requires retraining on all possible queries. In batch mode, this

becomes combinatorially more expensive.

For a given query q, the expected log-loss over U with θ trained on L ∪ q
is ∑

y∈Y

P (y|q)

(
−
∑
v∈U

∑
y∈Y

Pθ(y|v) logPθ(y|v)

)
(4.4)

Since H(Y|v) = −
∑

y∈Y P (y|v) log(P (y|v)) is the entropy in the label dis-
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tribution of v, the above is equivalent to finding a query that minimizes the

expected entropy over U . In our setting where each query receives a single

label from O, we can simply drop the factor for marginalizing q over Y . That

is to say, (4.4) reduces to
∑

v∈U H(Y|v) when the oracle provides single labels

for queries.

Based on the expected log-loss, we propose a graph specific error reduction

measure to distinguish queries by their ability to reduce generalization errors

from the results of a single training. The r-order neighborhood of a node v

is defined as Nr(v) = {v′|d(v, v′) ≤ r}, where d(v, v′) is the distance between

v and v′. v ∈ Nr(v) since d(v, v) = 0. At iteration i, let θi be the model

trained on L, which includes labels received from the oracle up to i. We

define ∇i(q), the local error reduction due to query q at time i as

∇i(q) =
∑

v∈Nr(q)

Hθi−1
(Y|v)−Hθi(Y|v) (4.5)

For a query set Q, we have

∇i(Q) =
∑

v∈Nr(Q)

Hθi−1
(Y|v)−Hθi(Y|v) (4.6)

where Nr(Q) =
⋃
q∈QNr(q). ∇i(Q) 6=

∑
q∈Q∇i(q) when there are overlaps

in the neighborhoods of nodes in Q. We use (4.5) to approximate u(q|L),

the reward for the query q, and (4.6) to approximate u(Q|L), the reward for

the query set Q.

The reward of playing λ at time i is thus defined as

∇i(λ) = exp

(
∇i(Q

λ)

|∇i(V )|
− 1

)
(4.7)

To avoid a large reduction in a single round from biasing the algorithm

towards any particular λ for the remainder of the query budget, we normalize

∇i(Q
λ) by |∇i(V )|, the absolute value of total entropy reduction incurred in

the ith iteration. We use the absolute value of the global reduction for

normalization to avoid a false positive reward signal as an artifact of global

entropy increase. We transform the ratio via e(x−1) so the reward for any λ

is always positive and mostly in the [0, 1] range. We allow ∇i(λ) > 1 since

it does not interfere with CUCB or our convergence analysis later on. The
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empirical reward mean for λ at time i can be computed as

µ̂i(λ) =
(i− 1) · µ̂i−1(λ) +∇i(λ)

i
(4.8)

4.5 Query Batch Selection

Algorithm 2 Query batch selection

1: procedure Batch(G, b, Λ, U , {µ̄i(λ)})
2: Q∗ ←

⋃
λ∈Λ

Qλ

3: st ← 1− b
|Vτ(q)∩U|+1

∀t ∈ T
4: µ′(λ)← sτ(λ) ·H(Y|λ) · µ̄(λ) ∀λ ∈ Λ
5: for all q ∈ Q∗ do
6: µ̄(q)←

∑
λ∈Λ(q)

µ′(λ) · vλ(q)

7: S = sortdesc(Q
∗, {µ̄(q)})

8: return S[: b]

Let MABC be the super learner comprised of an ensemble of primary learn-

ers {learnertC |t ∈ T,C ∈ C}. At each iteration i, MABC solicits advice from

the primary learner by asking each of them to submit their top k candidates,

Q
(i)
tC . Clearly, |Qi| > k since {Pt} partitions V , where Q∗i =

⋃
t∈T,C∈C

Qi
Ct.

MABC needs to determine the top k most informative queries in Q∗i to form

the final query set Qi, |Qi| = k, submitted to O. We make a simple transfor-

mation on MABC in order to use existing CMAB algorithms to find Qi. For

each primary learner learnertC , we create k arms, learner
t(1)
C , . . . , learner

t(k)
C ,

for each of the k candidate slots. Note that multiple arms could represent the

same node at time i if centrality rankings coincide at that node. Finding the

optimal Qi now boils down to the problem of finding an optimal super arm

whose union contains k distinct nodes. [14] provides an algorithm, CUCB,

with theoretical guarantees that makes very little assumption on the reward

structure and the process by which super arms are picked.

We present Batch in Algorithm 2, the subroutine in MABAL for selecting

the optimal query batch once the expected rewards for the primary learners

are computed. Recall that the objective of AL is to select queries that re-

sult in the largest reduction in classification error. As previously observed in
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Section 4.2, an optimal query set should yield good coverage both in terms

of the network and the classes in Y . Batch adjusts the expected rewards of

the primary learners to account for these two factors via type bias correction

st and label diversity H(Y|λ). Based on the adjusted primary learner expec-

tations, Batch computes the expected reward of each query node as the sum

of votes weighted by the rewards of the primary learners. It then selects the

top b nodes with the highest votes as the query batch to be used by MABAL.

We first present two alternatives for computing the expected query reward

µ̄(q) in line 6 of Algorithm 2 and then formally introduce the two adjustment

factors.

4.5.1 Expected Query Reward

The objective of Batch is to find a query set QOPT of size b that yields the

highest reward expectation, i.e.,

QOPT = argmax
Q∈Pb(U)

E[u(Q|L)] (4.9)

Note that we do not need to know the exact value of the true maximum

reward, which is uncomputable as explained in Section 4.2, in order to find

the optimal set. Therefore, we can instead use (4.6) to search for QOPT .

Computing QOPT then boils down to finding a query set that would effect

the largest entropy reduction in its immediate neighborhood, a quantity that

is dependent on the underlying collective classification model. In order to be

classification-model-agnostic, Batch approximates expected entropy reduc-

tion via the expected rewards for the primary learners, which are functions

of observed entropy reductions.

For each q ∈ Q∗ =
⋃
λ∈Λ Q

λ, let Λ(q) be the set of primary learners that

selected q as a candidate. The expected reward of q under weighted centrality

vote is defined as:

µ̄C(q) =
∑

λCt ∈Λ(q)

µ̄(λCt )C(q) (4.10)

The expected reward of q under weighted Borda count is:

µ̄b(q) =
∑

λCt ∈Λ(q)

µ̄(λCt )(b− rank
C|Qλ

C
t

(q)) (4.11)
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A primary learner λCt submits vC
λCt

(q) = C(q) as its centrality vote for

q. Although C(v) ∈ [0, 1] ∀v ∈ V,C ∈ C, the typical range of different

centrality measures can be very different based on their definitions. For

example, in Figure 3.1, the average betweenness of a node is much lower than

the average closeness in the same graph. To counter any negative effects of

this artifact, we devised the second vote counting strategy using the Borda

count, a positional voting system that dates back to 1770 [22]. As seen in

(4.11), the number of votes q receives from λCt under Borda count, vB
λCt

(q), is b

minus its centrality rank in QλCt , which allows for a fair comparison between

the learners without being affected by the range difference intrinsic in the

centrality definitions. We compare the performance of vC(q) and vB(q) in

Section 5.3.1. We define the expected reward of Q as a function of µ̄(λ) as

follows,

µ̄(Q) =
∑
q∈Q

∑
λ∈Λ(q)

µ̄(λ) · µ̄(q) (4.12)

(4.12) makes an important assumption about the additivity of query rewards,

namely, if a node is in the neighborhood of multiple queries, the effects of all

queries on its expected entropy reduction are additive. For specific collective

classification models and tasks this may not be the case. This assumption

allows us to derive a fast greedy approximation of (4.9), which proved to

be effective in empirical evaluations. We reason about the optimality of

Batch in Section 4.6. And we consider two more factors before making the

final selection of k nodes based on ranking, which are discussed in details as

follows.

4.5.2 Type Bias Correction

Learners of type t1 are much more likely to produce overlapping query sets

than learners of type t2 when |Vt1| � |Vt2|. In this scenario, a type t1 node

will on average receive more votes than a type t2 node simply because type

t1 learners have a much smaller candidate pool. We correct for type bias by

discounting nodes with type t by

st = 1− b

|Vt ∩ U|+ 1
(4.13)
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where b
|Vt∩U| is the probability that a node is included in a size b random

sample. We add 1 to the denominator for smoothness.

4.5.3 Label Diversity

We enforce label coverage in the query set by promoting learners that have

suggested queries with diverse labels. Let Lλ be the set of labeled nodes that

were nominated by λ. We compute the label diversity of λ as the entropy in

Lλ,
H(Y|λ) = −

∑
y∈Y

P (y|Lλ) logP (y|Lλ) (4.14)

(4.14) achieves the highest value when Lλ contains an equal number of n-

odes with each label. This scheme is preferable to distance based coverage

enforcement since we do not assume assortativity. Without assortativity,

nodes with dissimilar labels are not necessarily far apart, which implies re-

quiring a minimum distance between queries does not lead to guaranteed

coverage. Furthermore, H(Y|λ) is much cheaper to compute than a set with

a minimum distance.

The Kullback-Leibler divergence can be used instead for datasets with

skewed label distributions. If n were included in Qi, all primary learners in

M i(n) receives a partial reward observation for n. This introduces depen-

dency between the different primary learners.

This formulation presents an interesting opportunity for us to simulta-

neously optimize for the utility of Qi and the number of primary learners

explored. The intuition is to select nodes that are popular among primary

learners with high empirical rewards.

4.6 Optimality Analysis

In MAB, the player is constantly faced with the choice to exploit, i.e., make an

optimal play based on current reward observations, or to explore options with

uncertain rewards. The player is incentivized to explore by the possibility

that uncertain options might yield higher rewards than the current best in

the long run. In the analogy we have constructed between MAB and AL,

this translates into selecting queries using current optimal primary learners
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vs. exploring candidate nodes from learners that have resulted in very few

actual queries. In both problems, our goal is to minimize regret, the difference

between the realized and the optimal rewards incurred by over-exploration

and myopic plays.

In our setting, the regret, as defined by (4.2) and (4.3), is the difference

between u(LOPT ) and u(L). Since LOPT is infeasible to compute, we instead

consider the pseudo-regret

u(Qλ∗)− u(L) (4.15)

where Qλ∗ is the labeled set produced by the best primary learner λ∗ =

argmaxλ∈Λ µ̂T (λ), T = dB/be. Based on our usage of CUCB in MABAL, results

in [14] imply that (4.15) is bounded by O(log T ) if the following conditions

are satisfied:

• Monotonicity: given two sets of expected primary learner rewards

µ̄′(λ) ≥ µ̄(λ)∀λ ∈ Λ, µ̄′(Q) ≥ µ̄(Q).

• Bounded smoothness: ∃ a strictly increasing function f such that

|µ̄(Q)− µ̄′(Q)| ≤ f(A) if maxλ∈Λ |µ̄(λ)− µ̄′(λ)| ≤ A.

Additionally, the regret bound holds as long as Q computed by Batch is an

(α− β) approximation of QOPT , i.e. P (E[u(Q|L)] ≥ α · E[u(QOPT |L)]) ≥ β.

Monotonicity is trivially satisfied by the definition of µ̄(Q) because the

reward expectation of Q is a simple sum of the expected rewards of nodes

in Q, which are nonnegative linear combinations of µ̄(λ). Since |µ̄(Q) −
µ̄′(Q)| =

∑
q∈Q
∑

λ∈Λ |µ̄(λ) − µ̄′(λ)| · µ̄(q), the function that satisfies the

bounded smoothness requirement is simply f(x) = b · x.

We base the optimality analysis of Batch on the assumption that µ̄(q)

serves as an α-approximation of utility expectation for the classification mod-

el F , i.e.,

µ̄(q) ≥ α · E[u(q|L)] (4.16)

for some α ∈ [0, 1]. First, observe that the result returned by Batch is

trivially argmaxQ∈Pb(U) µ̄(Q). Let β be the probability that the additivity
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assumption in (4.12) holds for F . Under the assumption, we have

µ̄(Q) =
∑
q∈Q

µ̄(q) ≥
∑
q∈Q

α · E[u(q|L)]

= α · E

[∑
q∈Q

u(q|L)

]
= α · E[u(Q|L)]

Thus, with probability β, Batch finds a query set with expected reward

≥ α · E[u(QOPT |L)]. �
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Chapter 5

Experiments

We wish to substantiate the following claims about our active learning algo-

rithm via empirical evidence:

1. Our algorithm is independent of the underlying classification model.

2. Our algorithm is able to reduce label cost without compromising clas-

sification accuracy.

3. Our algorithm can adapt to different classification objectives on infor-

mation networks.

We evaluate MABAL on three classification tasks over two real world datasets

against simple heuristic and literature active learning baselines. To demon-

strate that MABAL is not dependent on any particular collective classification

method, we measure its gain on two different network classification models,

RankClass[7] and Label Propagation[6]. RankClass is designed to specifically

handle classification on HINs, whereas Label Propagation does not give spe-

cial consideration to node types and handles all nodes equally. Both produce

probability distributions for label predictions, which are compatible with our

entropy reduction framework. Note that centrality values only need to be

computed once for each network and can be shared across classification tasks.

5.1 Datasets

We evaluate our algorithm on HINs constructed from the DBLP1 database

and the MovieLens database[23]. DBLP is a bibliographic database of com-

puter science publications. The DBLP HIN contains node types author,

1http://dblp.uni-trier.de/
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paper, venue, and term, connected via three relations: (paper, author), (pa-

per, venue), (paper, term). The DBLP network used in our experiments

contains 14,376 papers, 20 conferences, 14,475 authors and 8,920 terms, with

a total of 170,794 links. The MovieLens HIN contains nodes of type movie,

crew, origin, tag, user, with crew being actors and directors associated with

a movie, origin being a movie’s country of origin, and tag being a user anno-

tated phrase for a movie. In addition to the relations (movie, crew), (movie,

origin), (movie, tag), the (user, movie) relation connects users to movies

they have rated. Our MovieLens network contains 3415 movies, 14,692 ac-

tor/directors, 2113 users, 2678 tags and 42 countries, with a total of 434,861

links.

5.2 Baselines

We compare against the following baseline strategies:

• Random: b nodes are randomly selected from U .

• Single centrality strategies: nodes in V are queried in descending order

by a single centrality measure. We consider the following centrality

measures: degree, PageRank, eigenvector, Katz, betweenness, close-

ness.

• Alfnet [3]: a cluster-based active learning algorithm on homogeneous

networks with node features. Alfnet first clusters nodes based on

their features to avoid sampling bias. It incorporates two classification

models, CO, trained solely on the node features, and CC, trained on both

node features and neighbor labels, and uses the disagreement between

CC and CO as criterion for selecting queries within each cluster.

• MI [1]: an active learning algorithm on homogeneous networks that

does not assume assortativity. Its query selection criterion is mutual

information (MI) between a node’s label and labels in the rest of the

network according to the Gibbs distribution.

• HINAL[4]: an active learning algorithm on heterogeneous networks,

which first performs clustering using metapahts and then selects queries

within each cluster based on uncertainty sampling.
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5.3 Experiments and Results

For the DBLP network, we consider the task of classifying nodes by their

associated research area. Authors, papers and venues in the network are

classified into one of the four areas {Data Mining, Database, Machine Learn,

Artificial Intelligence}, with ground truth labels obtained in the same fashion

as in [7]. We consider two classification tasks over the MovieLens network: 1)

genre classification of movies and actors, 2) domestic vs. foreign classification

for movies and actors. The network in our experiments contains three genres:

{Action, Romance, Thriller} and about twice as many domestic films as

foreign films.

For fairness of comparison, we perform classification using the same mod-

els, RankClass and Label Propagation, on all active learning strategies in

the experiments. For Alfnet and MI, which are designed for homogeneous

networks, we discard the node type information and use the same network

topology for input to avoid loss in structural information due to any projec-

tion. Additionally, we created a view of the DBLP network in which the term

nodes are removed and a binary term vector is created for every remaining

node as input for Alfnet. The term vector for each paper node indicates

the term nodes it directly links to, whereas the term vectors for the authors

and conferences are a superposition of all term vectors for papers they link

to.

Figure 5.1 shows the classification accuracies achieved in each AL algo-

rithm by the number of input labels for the three classification tasks. For

readability, we only include the best and worse centrality-based strategies

to provide reference on the range of performance for MABAL. Note that the

centrality baselines are not exactly the primary learners used in MABAL, since

each learner only contains a single type of nodes. Due to this fact, MABAL

may not fully converge to the best centrality baseline for some tasks. On the

other hand, it also leads to MABAL outperforming all centrality baselines in

tasks that contains one type of nodes that is much more informative than

the others, as in Figure 5.1(e).

In the DBLP task, the initial strategy in MABAL underperforms most base-

lines on RankClass. However, it quickly converges to the optimal strategy,

PageRank in this case, in just a few aggressive steps. Although closeness

briefly surpasses the accuracy of PageRank, which caused the change in con-
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Figure 5.1: Classification accuracy v. number of labels.

vergence rate from 6 to 8, MABAL quickly adjusted the learner rewards to avoid

a catastrophic performance decline had it continued to rely on closeness. In

Figure 3(b), it is evident that the network structures used in all active learn-

ers fail to adequately capture the underlying classification model. However,

unlike MI and Alfnet, MABAL provides a safety net against underperforming
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Random.

As one would suspect, the centrality-by-type primary learners are more ef-

fective when performing classification with RankClass instead of Label Prop-

agation, which disregards types. The slow convergence rate in (d) and (f)

are largely due to the fact that all types of nodes receive equal treatment in

Label Propagation, while MABAL does not contain a single strategy that ranks

all types of nodes (other than Random). It can be easily remedied by using

simple centrality primary learners instead of separating the nodes by types

when working with homogeneous classification algorithms. (e) presents an

interesting case in which node types play an extremely important role in the

classification task. The large disparity between the performance of MABAL

and the rest of the algorithms is due to MABAL’s ability to quickly recognize

the importance of the “origin” nodes for the “Domestic/Foreign” task, which

testifies to the cruciality of node types in active learning algorithms on HINs.

5.3.1 Hyperparameters

Figure 5.2: MABAL performance by batch size.

MABAL contains a number of hyperparameters that are intended to boost

performance with prior knowledge on the classification task. In the “De-

fault” setting, MABAL uses the Borda count vB(q), a neighborhood radius of
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1, the label diversity factor without the Random learner. Table 4 shows the

effect of these hyperparameters on the tasks we studied, with the top two

options in bold for each task. Overall, the “Default” setting produced the

optimal results for most tasks. The fact that label diversity slightly lowered

performance for IMDB Genre with RankClass is due to label imbalance in

the dataset, which can be addressed by using the K-L divergence instead of

entropy. We can either use a prior distribution provided by the user or the

overall observed label distribution as the prior in K-L divergence.

The results in Table 1 suggests that the Borda count is a strictly better

strategy than centrality vote, and the first degree neighbors are sufficient

for most tasks. In fact, since our HINs are bipartite, increasing the neigh-

borhood radius to 2 introduces adverse effects on performance. Adding a

single Random learner containing all nodes into the set of primary learners

significantly hampered performance in the some settings. We intuit that this

issue can be resolved by introducing a Random learner for each type of nodes

instead.

We also investigated the effect of batch size on the convergence of our

algorithm. As seen in Figure 5.2, batch mode with b > 1 provides signifi-

cant gain over fully sequential learning, i.e., b = 1 because it avoids being

pigeonholed into a subgraph and losing coverage. While a smaller batch size

leads to faster convergence to λOPT , it also requires more frequent retraining.

The choice for batch size thus involves consideration for the tradeoff between

label cost and the cost of model training.

5.3.2 A Case Study

To better understand the behavior of MABAL, we examine its adaptation of

query strategy based on observed labels for classifying the DBLP network by

research area using RankClass. Table 2 shows the query order in the different

active learning strategies whose performances can be found in Figure 5.1(a).

The ranking of primary learners in MABAL at each iteration is shown in Table

3, with the top centrality in bold for each node type. The fact that the

top queries are all conferences in PageRank, the optimal strategy, suggests

that labels for conference nodes are the most informative for research area

prediction in our network.
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Table 5.1: Effect of Hyperparameters

Task Default vC(q)
Add Ran-
dom

N2(n)
No Label
Diversity

DBLP:
RankClass

0.924844 0.590474 0.357587 0.922451 0.900191

DBLP: La-
belProp

0.456917 0.454284 0.460747 0.454284 0.456438

IMDB
Genre:
RankClass

0.884394 0.885248 0.897950 0.875854 0.903822

IMDB
Genre:
LabelProp

0.829419 0.530102 0.585397 0.708262 0.684351

IMDB US:
RankClass

0.997921 0.997921 0.949579 0.997193 0.997401

IMDB US:
LabelProp

0.933049 0.879093 0.858405 0.933985 0.911841

Table 5.2: Query orders for DBLP with b = 2

i MABAL PageRank Alfnet MI

1
Jiawei Han,

IJCAI
IJCAI, AAAI

B. T. Low, A.
Sasturkar

WWW, CIKM

2
Philip S. Yu,

AAAI
VLDB, ICDE

E. Hunt, X.
Yuan

A. Bandyopad-
hyay, B.

Rea

3
Christos

Faloutsos,
VLDB

SIGIR,
SIGMOD

R. J. Peters, B.
Smyth

P7561, P5848

4 ICDE, P4986 KDD, CIKM
C. Kellogg, A.

Dasgupta
P13374, H.

Wang

5
SIGIR,

SIGMOD
ICML, ICDM

D. Plexousakis,
D. Kelly

P6993, P3480

6 KDD, CIKM
PODS,

PAKDD
K. Ali, O. Y.

de Vel

P13458,
Hans-Peter

Kriegel

7 ICML, ICDM WWW, EDBT
B. I. Blum, M.

Yannakakis
P2353, Q.

Yang
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Table 5.3: Primary learners reward evolution: DBLP with RankClass

Primary Learner T1 T2 T3 T4 T5
Paper:PageRank 7 7 7 9 9
Paper:Betweenness 8 8 8 10 10
Paper:Closeness 5 5 5 11 11
Paper:Katz 6 6 6 12 12
Author:Pagerank 9 9 9 5 5
Author:Betweenness 10 10 10 6 6
Author:Closeness 11 11 11 8 8
Author:Katz 12 12 12 7 7
Conf:Pagerank 1 1 1 1 1
Conf:Betweenness 2 2 2 3 3
Conf:Closeness 3 3 3 2 2
Conf:Katz 4 4 4 4 4

MABAL started with the belief that reputable conferences and authors are

equally important. Although primary learners for papers are on average

more highly ranked than authors at the beginning, author nodes were queried

because there was more overlap between learners for authors after type bias

correction. Note that a single paper query in iteration 4 was sufficient for

MABAL to recognize uninformativeness of paper labels, which explains the

poor performance of MI that mainly queried for papers. We can clearly see

that starting in iteration 5, MABAL has switched over to the optimal strategy.

The fact that Alfnet, which only queried for author labels, performed better

than MI implies that authors are more informative than papers, which agrees

with the ranking of primary learners in MABAL since T4. Thus, in addition

to high performance, MABAL also provides insights into the functional roles of

node types in the overall network.
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Chapter 6

Conclusion and Future Work

In this work, we presented a novel and effective active learning algorithm for

heterogeneous information networks. We focused on batch mode learning,

which we have shown to be more effective on information networks than ful-

ly sequential learning. By establishing a correspondence between batch mode

active learning on information networks and combinatorial multi-armed ban-

dit, we proposed an expected error reduction based algorithm that combines

simple strategies we dubbed primary learners to form query sets. Our algo-

rithm employs a novel error expectation measure on networks that is highly

adaptable to different classification tasks. Results for classification tasks on

real world HINs demonstrated that our algorithm outperforms existing meth-

ods when applied to both homogeneous and heterogeneous network classifi-

cation models. In addition to being adaptable and performant, our algorithm

also provides insight into the network structures that are important for the

given classification task.

The primary learners employed in this study were different types of nodes

ranked by various common centrality measures computed over the whole

network. While this choice yielded good performance for our tasks, we con-

jecture that more complex centrality measures that advantage of relation

semantics, such as one using metapaths instead of direct links, could achieve

even better performance on more sophisticated tasks. Additionally, a more

rigorous study on performance bounds can be carried out by exploring the

submodularity in the error expectation objective.
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