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ABSTRACT

Retaining rings are an important and most highly stressed component of

the entire turbogenerator system. Arcing in retaining rings is a very serious

problem and could easily escalate to a full–blown failure. In this project we

diagnose arcing in the retaining rings. We determine the most likely mech-

anism by which arcing occurs and the category of events which lead to it.

Specifically, we try to test two different mechanisms which could have led to

the arc marks. The first one is sparking due to high field effects (or high volt-

age gradient across the contact junction) and the other is a make-and-break

contact arcing owing to the presence of inductance in the system. Exper-

iments performed to measure the contact resistance between the retaining

ring and mild iron piece indicate that even very high fault currents cannot

produce the voltage required to cause sparking. Transient 3-D finite element

simulations show that a make-and-break contact can generate localized volt-

age spikes, on account of small contact break, which are high enough to lead

to arcing. Interestingly this can happen at relatively low currents.
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CHAPTER 1

INTRODUCTION

The motivation behind this work stems from the surveys done by EPRI to

evaluate the performance of newly installed 18 Mn-18 Cr retaining rings

nearly a decade ago. The survey identified arcing as the principal damage

mechanism for the retaining rings of turbogenerators. Arcing is an undesir-

able phenomenon as it can quickly progress to full–scale damage in the highly

stressed retaining rings. In this project we diagnose how arcing occurs and

explore the events leading to it.

1.1 Retaining Rings

In a synchronous turbogenerator the rotor windings sit inside the slots ma-

chined on rotor forging and are supported by wedges, which prevent the

windings from moving out when the machine is rotating at high speeds.

However, at either rotor end these windings have to make a turn to go back

into the slots on the other side and wedges cannot be inserted at these loca-

tions. These end turns (or end windings) are thus unprotected against very

high centrifugal forces. To hold these end windings against these forces, steel

based alloys called retaining rings are used to keep them in place. In addi-

tion, the rings also provide a path for any circulating current that may flow

on the rotor surface. Figure 1.1 shows the image of a retaining ring. The

castellations on the inner edge are required to inhibit any axial movement of

the ring on the rotor forging.

There are two retaining rings for the two ends - turbine end and exciter

end - of the generator rotor. Figure 1.2 shows the location of the retaining

rings on a rotor. The inner diameter of the rings is smaller than the outer

diameter of the rotor forging on which the rings are to be mounted. The

rings are expanded by heating and mounted onto the forging. The rings then
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Figure 1.1: Image of retaining ring with castellations for axial restraint. [1]

“shrink” on the forging when they cool down. Such a fit is called a“shrink

fit” or an “interference fit” and the surface of rotor forging in contact with

retaining ring is called the shrink-fit region.

Figure 1.2: Schematic of retaining ring location in a generator rotor. [1]

The retaining rings are under huge stress from a number of sources. The

obvious ones are the loading of copper and its own weight. In addition, the

rings are under considerable stress at rest because of the shrink-fit. When

rotating the underside distribution of the copper loading on the rings is

not completely even and the shrink-fit stiffness from pole to winding face is
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variable—both of which lead to ovalizing effect. Bending stresses come into

play from standstill to operation at speed, as the rotors undergo deformation

in this range. As a result, retaining-rings are subjected to the high-strain low-

cycle effects of start/stops, as well as high-cycle stress modes in operation.

The ring material is very critical because of the high stresses. It is mostly

non-magnetic in nature with almost the same conductivity as rotor forging.

The most common material used is 18% Mn-18%Cr (also called 18Mn-18Cr

or simply 18-18). This material has the additional benefit of being highly

resistant to aqueous stress corrosion pitting and cracking owing to the high

chromium content. Prior to the 18Mn-18Cr rings until the mid–1980s, the

most common nonmagnetic material was 18 Mn-4Cr or 18Mn-5Cr, which had

the problem of stress corrosion cracking (SCC) when moisture contamination

was present.

1.2 EPRI Survey of the Performance of 18-18

Retaining Rings

The industry survey [2] by EPRI assessed operational history of the 18-18

alloy to find problems with these retaining rings. It identified three event-

driven damage mechanisms for 18-18 rings: arcing, fretting and corrosion.

The most prevalent mechanism found was arcing damage between the ring

and either the rotor or the amortisseur winding. Nearly half of the 10% of

the total ring population that had some form of damage was attributed to

arcing. Of the approximately 3% of the total population of rings represented

in the survey that could not be repaired and were subsequently replaced,

nearly three quarters were retired because of arcing damage. The major

regions of arcing damage were identified as the retaining ring shrink seat,

rotor teeth at shrink seat, rotor wedge slots and short slot wedges to rotor

steel. Additionally, many of the arc-damaged rings came from Australia and

New Zealand. Arcing occurred in Australia and New Zealand 10 times more

often than in the rest of the world. Figure 1.3 shows an image of arcing

marks in the retaining ring and Figure 1.4 shows arcing in the rotor teeth.
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Figure 1.3: Arcing marks on retaining rings [3].

Figure 1.4: Arcing marks on rotor teeth [3].
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1.3 Research Methodology

We begin by performing mock-up experiments to extract the contact resis-

tance between an iron piece and 18-18 retaining ring at different contact

pressures and different surface conditions. The resistance values thus ob-

tained will indicate if they are high enough to produce the required voltage

for the breakdown of the medium. Further, 3-D transient FEA simulations

are performed simulating a sudden opening of a small contact area in the

shrink fit region to see if the voltage generated meets the arcing criteria.

1.4 Impact of Research

Thermal power plants produce the majority of power in the world today and

will continue to do so in the near future. While new thermal power plants

are not as likely to be installed, the old power plants need to be more ro-

bust and reliable than before. The retaining ring is the most highly stressed

component of the whole turbogenerator and even a small defect can quickly

translate into a big disaster if undetected. This research will help the ma-

chine designers find ways to reduce the arcing and the power plant operators

make important decisions relating to generator operation. The remainder

of this thesis is organized as follows. In Chapter 2 a brief background is

provided about the structure of the rotor and types and origin of secondary

currents in rotor. A short note is provided about the prerequisites for arc-

ing and the difference between arcing and sparking. Chapter 3 presents the

literature review which includes a review of surveys on arcing in retaining

rings and effects of negative sequence currents on rotors. Chapter 4 details

the experimental methods used in this study. Chapter 5 discusses the re-

sults obtained from the experiments and simulations. Chapter 6 discusses

the possible future work and finally Chapter 7 concludes the thesis.
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CHAPTER 2

THEORY

2.1 Anatomy of the Turbogenerator Rotor

It is important to know about the generator rotor which consists of many

parts in addition to retaining rings. They will be discussed briefly here.

2.1.1 Rotor Forging

The rotor forging is usually a single-piece solid steel forging made of a highly

permeable material as it carries the rotor flux. Very high stresses occur in

the rotor slot tooth-roots, shrink-fit area, and in general where there are

machined radii [1]. It is subjected to high-strain, low-cycle stresses during

start-up and shutdown, torsional stresses in operation and during faults, and

high-cycle fatigue due to rotation and self-weight bending. Many surface

heating effects come into play from AC fluxes arising from cross-slot leakage

flux, negative-sequence operation, motoring and slip, etc. Shaft torsional

oscillations resulting from power system sub-synchronous resonance, sudden

short circuits, and load rejections can cause transient torques in the rotor

and significantly affect forging life. These can stimulate torsional natural

frequencies and cause the rotor to go unstable. Figure 2.1 shows a 2-pole

rotor forging.

2.1.2 Rotor Winding Slot Wedges

The wedges hold the copper winding and its insulation systems in place

at high rotational speeds. The wedges are generally made of lightweight

materials, such as aluminum or brass, in the winding slots. Since this area

does not generally carry the useful magnetic flux, the wedges do not need to

6



Figure 2.1: Rotor forging for a 2 pole machine [1].
.

be made of magnetic material. The wedges do not sit tightly in the slots and

have a relatively loose fit to allow the copper winding underneath to expand

axially during operation [1]. Expansion of the copper winding under load can

create an enormous axial shear force in the winding slots. Figures 2.2 and

2.3 show images of rotor slot wedges with cooling vents machined on them.

2.1.3 Amortisseur Windings

The amortisseur winding, also known as damper winding, is a separate wind-

ing installed under the rotor wedges and retaining-rings that is connected

similar to the squirrel-cage of an induction motor. This is typically in the

form of a copper (one designer uses aluminum) sheet(s) that forms a ring

to conduct the secondary currents into the retaining ring, by passing the

slot wedge ends and shrink seats. It produces an opposing torque when

currents flow in it, thus dampening torsional oscillations and increasing the

stability of the rotor during system stress events. Additionally, it diverts
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Figure 2.2: Short rotor wedge [1].

Figure 2.3: Airgap pickup rotor wedge [1].
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negative-sequence and motoring currents from flowing in the rotor forging

and causing overheating damage. The negative-sequence rating or current-

carrying ability of any rotor design is largely dependent on the arrangement

and effectiveness of the amortisseur winding. Figure 2.4 shows an image of

the amortisseur winding. The larger area of the amortisseur compared to

say the slot wedge ends, is aimed at decreasing the current density per area

flowing into the retaining ring.

Figure 2.4: Amortisseur winding [1].

2.2 Secondary Currents on the Rotor

Secondary currents of different frequencies can flow on the rotor surface due

to a number of events. Some of these events are discussed in the following

subsections.

9



2.2.1 Unexcited Operation (“Loss of Field” Condition)

Operation without field current is potentially dangerous and can occur un-

der a number of circumstances. The following are the two most common

circumstances:

1. Loss of field during operation: If the field current goes to zero

while the generator is connected to the system, the machine starts acting

as an induction generator. The rotor operates at a speed slightly higher

than synchronous speed and slip-frequency currents are developed [1]. These

penetrate deep into the rotor body because of low frequency. The resistance

is low because of large skin depth at low frequencies and as such losses are

low but it can still produce high heating if the condition persists for a long

time.

2. Inadvertent energization: If a generator is at rest and the main

generator three-phase circuit breaker is accidentally closed connecting it to

the power system, large currents are induced on the rotor. The rotor then

starts rotating as an induction motor. The very high currents induced in

the rotor will tend to flow in its surface, in the forging, wedges and retaining

rings. As the rotor accelerates, the currents will penetrate deeper and deeper.

The maximum damage occurs while the speed is low and the large currents

concentrate in a thin cross section around the surface of the rotor (due to

the skin effect). The temperatures generated by the large currents, flowing

in a relatively small cross section of the rotor, create very large temperature

differentials and large mechanical stresses within the rotor. Other areas are

the wedges and in the body-mounted retaining rings, the area where the rings

touch the forging and the end wedges [1].

2.2.2 Negative Sequence Currents

A three-phase balanced supply generates a constant-magnitude rotating flux

in the airgap of the machine, which rotates at synchronous speed. In a

synchronous machine under normal operation, the rotor rotates in the same

direction and speed as the main (fundamental) flux. When the supply volt-

age or currents are unbalanced, an additional flux of fundamental frequency

appears in the airgap of the machine. However, this flux rotates in the oppo-

site direction from the rotor. This flux is induced in the rotor windings and
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Figure 2.5: Schematic representation of a turbogenerator rotor and the
areas most prone to be damaged by the skin-currents generated during
inadvertent energization event [1].

body voltages and currents with twice the fundamental frequency. These

are called negative-sequence currents. The negative sequence terminology

derives from the vector analysis method of symmetrical components. This

method allows an unbalanced three-phase system to be represented by pos-

itive, negative, and zero sequences. The larger the unbalance, the higher

the negative-sequence component. Due to very low skin depth of rotor steel

at high frequency, these currents tend to flow on the surface of the rotor.

The high effective resistance owing to low skin depth produces tremendous

heat leading to damage of end-rings and wedges of round rotors as shown in

Figures 2.5 and 2.6.

Negative Sequence currents induced on the rotor surface move from the

rotor body out towards the rotor ends [3]. The current path is typically

from the rotor body to a slot wedge and then the retaining ring, or from the

rotor body to the retaining ring via the rotor tooth (shrink seat). Where

there are multiple slot wedges per wedge slot, the current may pass from

wedge to rotor back to wedge. Consequently some designs use coatings on

the retaining ring shrink area that will enhance conductivity or silver plate

the ends of the slot wedges in an attempt to direct any arcing away from the
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Figure 2.6: Temperature rise measured at the end of the rotor body during
short-term unbalanced load operation. (I2 given in per unit) [1].

highly stressed shrink seat area of the retaining rings.

2.3 Arcing and Its Prerequisites

In 1889, Friedrich Paschen empirically discovered the equation that gives the

breakdown voltage—voltage necessary to start a discharge or electric arc—

between two electrodes in a gas as a function of product of pressure and gap

length [4]. He found that for constant gas pressure as the gap between the

electrodes was reduced, the breakdown voltage also decreased but only to

a certain point after which it increased at even higher rate. Similarly for

a given gap length, reducing the gas pressure showed a similar trend. The

curve he found of voltage versus the pressure-gap length product is called

Paschen’s curve.

The two gas environments commonly seen inside the turbogenerators are

hydrogen and air. As can be seen from Figures 2.7 and 2.8, the breakdown

voltage required in both the mediums is greater than 300 V.
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Figure 2.7: Paschen curves obtained for helium, neon, argon, hydrogen and
nitrogen using the expression for the breakdown voltage [4].
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Figure 2.8: Paschen curve for air [5].

2.4 Contact Arcing vs. Sparking

The arc marks found in the retaining rings and other generator rotor auxil-

iaries can be the result of either contact arcing or sparking or both. As such

it is important to differentiate between the two seemingly similar phenom-

ena. Sparking is a high–voltage phenomenon, which occurs when the voltage

between the electrodes is high enough to cause the electrical breakdown of

the medium. Arcing, on the other hand, can occur at low voltages as well.

It occurs when there is a contact break in a current–carrying circuit and the

inductance in the system tries to maintain the current flow and arcs in the

process. Both the processes follow the Paschen law. These two mechanisms

of arcing will be explored in this thesis.
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CHAPTER 3

LITERATURE SURVEY

The problem of arcing in retaining rings and other rotor parts is not new

and has been discussed in the literature before. In [1], the author cited an

incidence of arcing in the contact area between the rotor and retaining ring.

It was suggested that the area should be checked for electric pitting or discol-

oration, indicating current flow. The images of arcing can be seen in Figures

3.1 and 3.2.

Figure 3.1: The photo shows a “weld” spot formed between the wedge and
the retaining ring (not shown–already removed). The “weld” was formed by
arcing from surface currents flowing on the surface of the rotor, due to an
abnormal operating event [1].

In the survey done by EPRI [2] it was found that arcing was the predom-

inant mechanism of damage in retaining rings. Of the 788 18-18 retaining

15



Figure 3.2: Excessive asynchronous motoring developed arcs between
wedges and between wedges and tooth, damaging the wedges and the teeth.
The excessive heat generated during the abnormal operation also made the
paint discolor and flake [1].

rings inspected all over the world, 82 rings had some kind of damage. Of

these 82 rings, 39 had arcing problems contributing to 48% of total damage.

The detailed survey results are shown in Table 3.1. It can be seen from the

table that Australia and New Zealand experienced a much higher damage

incident rate than the overall population with a damage rate of 33.3% com-

pared to 10.4% overall. The more revealing statistic, however, is that of 22

rings found to have some sort of damage, 19 had arcing damage due to cir-

culating currents. This represents 28.8% incident rate for arcing damage, a

factor of 10x compared to rest of the world.

Based on the peculiar predominance of arcing to a particular geographic

location, another survey (see [3]) was done by EPRI in the Australia and New

Zealand region. A total of 172 generator rotors were considered in the survey

and information was gathered since 1995. A large number of variables were

considered to see if they influence extent of arcing damage. The presence

of industry that involves large load shifts appeared to have an effect on the

16



Table 3.1: EPRI Survey Results for 18-18 Retaining Rings [2]

North
America

European
Union

Aus/
NZ

Other
Survey
Total

Responses
(# of Rings)

506 166 66 50 788

Pitting 11 5 2 18
Arcing 14 3 19 3 39
SCC 2 1 1 4

Fretting 5 5
Mechanical 6 4 10

Inherent 2 2
Other 4 4

extent of arcing. Another factor that was deemed responsible for the degree

of arc damage was operator training/experience. Arc damage was found all

along the current path. It included the rotor wedge slots and rotor teeth at

the shrink seat, load bearing surfaces of the slot wedges, wedge ends, and

retaining ring shrink seat where arcing occurs either over the location of the

end of the slot wedge if arcing was from the slot wedge tongue or at the rotor

shrink seat location if arcing was from the rotor tooth. Figures 3.3, 3.4 and

3.5 show some of the images of the arcing from the survey.

17



Figure 3.3: An example of circumferentially oriented point indications of
arc damage on a retaining ring shrink seat as seen during a fluorescent dye
inspection and one of the point locations as seen by a low–power digital
microscope. As the arcing occurred between two surfaces in close contact,
the arcing is level with the adjacent surface of the retaining ring [3].
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Figure 3.4: An example of extreme arcing where the rotor teeth have been
welded to the retaining ring [3].
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Figure 3.5: A series of images showing different forms of arc damage on a
shrink seat, ranging from the large fully molten area (top left), to a heat
affected band (top right blue arrow), to aligned pitting of varying degrees of
intensity (lower left), to a second linear arc groove adjacent to the main
deep damaged area (lower right) [3].

In [6] the authors performed simulations to understand the secondary

current flow and distribution in the shrink fit region. They introduced an

impedance surface between the rotor and the retaining ring and varied its

resistance to see the effect on the current flow. The contact between ring

and rotor was assumed to be smooth and continuous, although in reality

the contact between two hard surfaces is limited to a few points. Figure

3.6 shows the current path with the ideal contact over the entire region. It

20



can be seen that current stays very close to the rotor surface due to very

small skin depth, taking the shortest possible path into the ring. Instead of

spreading out under the shrink fit area, the current crowds into the ring as

close as possible to the inboard edge. In Figures 3.7 and 3.8 the impedance

surface layer starts slightly away from corner junction. The corner junction

still provides a low resistance path and a high current density can be seen

there. In Figure 3.9 the impedance effect was seen over the complete surface

between ring and rotor. The effect of such geometry is to spread the current

across the junction, reducing the current density in the vicinity of the corner.

Figures 3.6–3.9 show that as the resistance of the layer increases the current

is shifted further from the junction. In the extreme case, where an open

circuit develops, the current path would be through the slot material and a

sharp discontinuity would exist. In this case, sparking is likely due to the

strong field effects.

Figure 3.6: Rotor, retaining ring, and slot with ideal surface contacts [6].
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Figure 3.7: Partial impedance surface extending from slot, ρ = 2.4e−7/m
[6].

Figure 3.8: Partial impedance surface extending from slot, ρ = 1e5/m [6].
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Figure 3.9: Impedance surface from slot to corner, ρ = 1.0e−6/m. [6].

In [7] the authors argued that observed arcing should be due to low values

of negative sequence currents, i.e. 100s of amps as compared to 1000s of

amps. This is because 1000s of amps would have evaporated material in the

order of cubic centimeters per cycle at the fault initiation. Since this has not

been observed and most machines have pitting in the range of fractions of a

cubic millimeter, it was concluded that erosion occurred during incidents of

relatively low negative sequence currents. The authors cited several reasons

as to why this might be the case. The faults of very high currents, which

result from close-in unbalanced faults, either do not occur or are rapidly

tripped by the circuit breaker. The faults resulting in lower currents may

persist longer and produce the observed damage.

However, authors of [7] could not figure out how the arc initiates for these

low current events. For the high currents, the contact resistance may be

high enough to produce a voltage which exceeds the breakdown voltage. For

short gaps this is on the order of 300 V from Paschen’s curve. For the low

current values they suggested two different mechanisms. It is possible that

the contact area is very small and a high enough current density exists to

create a potential drop large enough to cause a spark. It is also possible that

it is arcing and not sparking. During a negative sequence event, the rotor

23



experiences pulsating torque due to negative sequence currents and signifi-

cant vibration resulting from this torque. There is also a double frequency

radial force on the wedges and the retaining ring shrink fit region. If there

is a make-and-break contact at the retaining ring or the wedges, then even

a very low current would produce an arc. There is also thermal expansion

of the wedges during the negative sequence incident. This may be enough

to cause a motion of the wedge as it slips along the tooth. This motion

could also be the cause of an arcing event as it touches the retaining ring

and recedes.

In [7] the authors analyzed the effects of negative sequence currents on a

generator rotor. They explained how stator negative sequence current from

a fault can be represented as an equivalent sheet current in air gap. This

current was then reflected on rotor body and thermal and mechanical stress

analysis was carried out in a finite element software. They introduced a

decision–making process for power plant operators so that they can determine

if they should go for an inspection of the generator rotor following a negative

sequence event. They also discussed the possibility of arcing in the retaining

ring.

In [8], the authors presented a multifield and multiscale theory for the

interface between two rough surfaces in contact, activated by mechanical

load and electric current. At the macroscale a multifield coupling of con-

duction and induction currents was indicated with heat conduction induced

by joule heating. At the mesoscale and microscale, the theory contains a

Weierstrass-Mandelbrot description of the rough contact surface profilome-

try and an asperity-based comprehensive model respectively. Their results

indicate dependence of the derived properties such as resistivity on the sur-

face characteristics, external load, and electric current. The electric contact

resistance (ECR) at each microcontact between two conductors separated by

thin resistive layers consists of several components. First is the constriction

resistance due to the convergence and divergence of current flow through the

main equivalent conductor and the corresponding constriction resistance of

the thin layers, as well as its tunnel resistance due to the presence of an

insulating film that introduces a potential barrier that impedes the flow of

electrons. The tunnel and the constriction resistances of the thin layer are

connected in parallel, while their resultant is connected in series with the

constriction resistance of the asperity.
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CHAPTER 4

EXPERIMENTAL METHODS

As mentioned in previous chapters, the method of research involved hard-

ware experimentation and software analysis. The hardware experiment was

directed towards measuring the contact resistance between an actual sample

of 18-18 retaining ring taken from a turbo-generator and an AISI 1018 mild

steel, pressed together at very high pressures typical of the shrink-fit region.

The mild steel was chosen because an original sample of rotor forging could

not be obtained. However, since the electrical and magnetic properties of the

two are quite similar, it is believed that the resistance values obtained will be

in the same ballpark. These resistance values were then fed to a simulation

model which was analyzed in a finite element analysis (FEA) software to

measure the steady state and the transient voltage, which develops when a

contact opening is simulated. This chapter describes the experiment set-up

and the simulation model used in the study.

4.1 Test Plan for the Contact Resistance Experiment

This test plan details the test objectives, configuration, procedure, and data-

extraction.

4.1.1 Test Goals

The test aims to achieve following goals:

a. To determine the value of contact resistance between a sample of 18-18

retaining ring and a mild iron under different stress and surface conditions.

b. To obtain any additional parameters such as ambient temperature and

humidity for model verification. This model will be used for simulation in

software to better understand the phenomenon.
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Figure 4.1: Schematic of experimental setup.

4.1.2 Test Configuration

In the configuration shown in Figure 4.1, a retaining ring sample is pressed

against a mild steel iron piece at high pressure (up to 20 ksi) and high current

(up to 600 A RMS at 120 Hz) is being passed through them. The 120 Hz

frequency is twice the nominal operating frequency in the US and signifies

the double frequency negative sequence currents flowing in the rotor which

are induced from the unbalanced stator currents.

In the actual setup shown in Figure 4.2 a hydraulic compressive test ma-

chine is used to apply compressive forces to achieve required pressure values.

The current is injected in the retaining ring through a copper crimp that

is bolted onto it and is taken out from the iron piece (referred to as steel

in the figure) through a similar arrangement as shown in Figure 4.3. Two

thermocouples are placed close to the contact region to measure the contact

temperature (Figure 4.4). To measure the contact voltage, two wires are

taped close to the contact, one on the ring and the other on the iron piece.

These wires carry the voltage signals to an oscilloscope. There is a measuring

current transformer (Flexcore 7RL-102 1000:5 35VA Current Transformer)

which measures and steps down the high current flowing through the samples.
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Figure 4.2: Actual test setup showing compressive test machine and the
specimens with measuring probes and instruments.

This CT is terminated in a 1 Ω, 100 W power resistor, the voltage across

which is also fed to the oscilloscope. Another clamp-on current measuring

device (Amprobe) is used to directly measure the amount of current flowing

through the samples. Two G-10 plates are used to insulate the anvils of the

compressive test machine from the high current. The bottom G-10 plate also

acts like a cradle for the retaining ring and provides stability to the overall

setup (see Figure 4.5).

G-10 is chosen because of its excellent compressive strength and insulation

properties. Figures 4.6 and 4.7 show the setup based on this configuration

without the compressive test machine.

4.1.3 Production of High Current

To produce high current (∼600 A) at 120 Hz, a smart power supply (see

Figure 4.8) is used with a current transformer. The smart supply used is

Pacific Smart Power Supply, and it can provide 2000 kVA, with max 300 V

rms and 14 A at any frequency.
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Figure 4.3: Current injection spots in iron piece (steel) and retaining ring.

Figure 4.4: Placement of thermocouples close to contact region.
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Figure 4.5: The use of G-10 material for insulation and support.

Figure 4.6: Experiment setup without compressive test machine.
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Figure 4.7: Side views of the test set-up.

Figure 4.8: Power supply feeding the current transformer in the experiment.
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Figure 4.9: Current transformer made by connecting 4 7RL-162 1600:5
45VA CTs in series.

The current transformer consists of 4 Flexcore 45VA 1600:5 current trans-

formers stacked and taped together and connected in series to produce high

flux (see Figure 4.9). Four CTs are used to provide sufficient core to the

transformer so that it does not saturate.

4.1.4 Measurements

The measurements will be taken in the explained manner. The test will be

repeated for 3 different surface conditions. For each surface condition, the

test will begin with no external contact pressure (or contact pressure due

to just specimens weight) and the pressure will be gradually increased to

20 ksi. The typical nominal contact pressure at the shrink-fit in a generator

rotating at rated speed is 10 ksi. For each contact pressure value, the current

will be gradually increased from 0 to 600 A at 120 Hz. For each current

value, primary voltage, primary current, primary power, voltage between the

contacts, secondary current and phase angle between secondary voltage and

current will be measured.
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4.1.5 Data Extraction

After all the observations have been recorded, meaningful data will be ex-

tracted from them. For each value of electric current, contact resistance will

be calculated in the following manner:

Contact Impedance =
Contact Voltage

Current through contact

Contact Resistance = Contact Impedance ∗

cosine (angle between voltage and current waveform)

To get the surface roughness value of the iron piece, a small sample (0.5

inches cube) will be taken out from the surface and will be taken to the

Materials Research Lab for surface profilometry.

4.2 FEA (Finite Element Analysis) Simulation

In this section the simulation model and the analysis strategy will be de-

scribed. The software used for the finite element analysis was FLUX 12.1.

A 3-D transient analysis was done to better visualize the current density

distribution and eddy currents path.

4.2.1 Simulation Model

The simulation model tries to imitate the hardware experiment described in

the previous section. As such, it consists of a retaining ring block, a rotor

forging block and a contact region in between to model the properties of

the contact surface. The model also needs to have around itself an infinite

box which permits the user to calculate physical quantities in the air region

outside the studied device on different spatial supports. But, as explained

later, in this simulation an air region has been used instead, which essentially

performs the same function as an infinite box. The model can be seen in

Figure 4.10.

These four solid regions are described as volume regions with different

magnetic and electrical properties. The contact region is actually made of 9
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Figure 4.10: Simulation model showing retaining ring, rotor forging,
contact and air regions.
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Figure 4.11: Summary of the material properties of the different materials
used.

different symmetrical regions. On a surface level, these can be viewed as 9

different patches of contact. To simulate a localized contact break some of

these patches will be opened (electrically their resistivity will be increased

to a very high value). These patches of contact, which are opened later,

are given a different name. So the contact region consists of 2 different

groups of regions: Contact and Contact2. They both have the same electrical

properties up to a certain time, after which the resistivity of the Contact2

region is given a step increase. These material properties are summarized in

Figure 4.11.

Material1 is the material used for Contact2 region. It uses a time varying

resistivity, RHO TIME whose description can be seen in Figure 4.12.

A mapped meshing was used for meshing the 3-D model. This, in contrast

to the aided meshing of the FLUX Software, is simple and leads to fewer

elements and hence is less computationally complex. It is user–defined and

customized to fit user needs. In addition, an air region was used instead

of an infinite box so that the same mapped meshing can be extended to

the air region. Coupled to the above model is an electrical circuit (Figure

4.13) which describes how current will flow through the above setup. All the

aforementioned 3 regions are described as one solid conductor in the electrical

circuit. A current source supplies the current to the solid conductor. The
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Figure 4.12: Time–dependent variation of resistivity parameter,
RHO TIME.

current value being supplied is

I = 1414 ∗ sin(2 ∗ π ∗ 120 ∗ t)

4.2.2 Method of Analysis

The transient simulation will take place for 3 electrical cycles. For a 120 Hz

signal, this corresponds to 0.025 secs. The time–dependent electrical resis-

tivity of contact region Contact2 increases by almost 8 orders of magnitude

signifying opening of a small patch of contact. The rest of the contact region

Contact, still has small resistivity and carries the bulk of the current after

Contact2 opens up. The main parameter of interest is the voltage across the

Contact2 region. Getting the voltage drop is not straightforward in FLUX

software, so an indirect route was chosen to calculate the voltage. In this

indirect method, first the power loss in the volume region Contact2 was cal-

culated and then it was divided by the amount of current flowing through

the region. To calculate the amount of current flowing through Contact2, the

normal component (i.e. normal to the surface and in the direction of current

flow) of the current density vector was integrated over the Contact2 surface.

The PyFlux code given in Appendix D shows how this is carried out. The

code also generates all the required plots.
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Figure 4.13: Electric circuit coupled to the simulation model. A current
source is connected to a 2 terminal solid conductor.
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CHAPTER 5

RESULTS AND DISCUSSION

This chapter presents and discusses the results obtained from the hardware

and software experiments described in the previous chapter.

5.1 Contact Resistance Experiment Results

This experiment was performed and repeated for 3 different surface condi-

tions of the mild iron piece. First it was made smooth and then sandblasted

for a rough texture and finally the rough surface was left to rust. The surface

of the retaining ring was kept same throughout the different experiments. Af-

ter each experiment a small section of the iron piece was cut out and taken

to the lab for surface profilometry.

5.1.1 Contact Resistance of Smooth Surface

The external contact pressure between the ring and the iron piece was varied

from 0 to 20 ksi in steps of 5 ksi, and for each of those pressure values the

current was slowly increased until the transformer saturated. The contact

resistance values obtained for different pressure values are plotted in Figure

5.1 and 5.2. The recorded data for this experiment is shown in Appendix A.

A small section was cut out from the iron piece and taken to the Ma-

terials Research Lab for surface profilometry in a DEKTAK 3030 Surface

Profilometer. This profilometer measures the roughness in a linear profile.

The roughness was measured in two orthogonal directions. For each direc-

tion, the measurement was done for 3 different lines, all parallel to the chosen

direction. The points measured by the DEKTAK were further analyzed in

MATLAB’s curve fitting tool to get rid of any surface curvature. The surface

plots for the smooth iron piece in the 2 directions is shown in Figures 5.3
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Figure 5.1: Resistance (in ohms) and contact temperature (in deg C) vs.
current (in amps) at different contact pressures for smooth iron piece.

Figure 5.2: Resistance (in ohms) vs. current (in amps) at different contact
pressures for smooth iron piece.
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Figure 5.3: Surface plot of the smooth iron piece in X direction. The
bottom plot filters out slight curvature in the top plot.

and 5.4.

The surface plots for the retaining ring in the 2 directions are shown in

Figures 5.5 and 5.6.

The rms roughnesses, also known as Rk, obtained for retaining ring and

the smooth iron piece are as follows:

RRMS(forging) (in horizontal direction) = 6262.87 Å

RRMS(forging) (in longitudinal direction) = 4020.00 Å

RRMS(ring) (in horizontal direction) = 6378.43 Å

RRMS(ring) (in longitudinal direction) = 43678.00 Å

5.1.2 Contact Resistance of Rough Surface

The smooth iron piece used in the previous experiment was made rough

by sandblasting the top surface. The experiment was then performed in the

same manner and the same post–processing was done. The contact resistance

values obtained for different pressure values are plotted in Figures 5.7 and
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Figure 5.4: Surface plot of the smooth iron piece in Y direction. The
bottom plot filters out the convex curvature in the top plot.

Figure 5.5: Surface plot of the retaining ring in X direction. The bottom
plot filters out the curvature in the top plot.
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Figure 5.6: Surface plot of the retaining ring in Y direction. The bottom
plot filters out the curvature in the top plot.

5.8. The recorded data can be found in Appendix B.

The surface plots in the 2 directions are shown in Figures 5.9 and 5.10.

The rms roughnesses, also known as Rk, obtained for the rough iron piece

are as follows:

RRMS(forging) (in horizontal direction) = 18818.67 Å

RRMS(forging) (in longitudinal direction) = 19194.00 Å

5.1.3 Contact Resistance of Rough Rusted Surface

The rough surface of the iron piece in the previous experiment was rusted

quickly in about 2 hours by using muriatic acid and copper solution. The

experiment was performed in the same manner as before and the same post–

processing was done. The contact resistance values obtained for different

pressure values are plotted in Figures 5.11 and 5.12. The recorded data for

this experiment is shown in Appendix C.

The surface plots in the 2 directions are shown in Figures 5.13 and 5.14.

The rms roughnesses, also known as Rk, obtained for the rough iron piece

are as follows:

41



Figure 5.7: Resistance (in ohms) and contact temperature (in deg C) vs.
Current (in amps) at different contact pressures for rough iron piece.

Figure 5.8: Resistance (in ohms) vs. Current (in amps) at different contact
pressures for rough iron piece.
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Figure 5.9: Surface plot of the rough iron piece in X direction. The bottom
plot filters out slight curvature in the top plot.

Figure 5.10: Surface plot of the rough iron piece in Y direction. The
bottom plot filters out convex curvature in the top plot.
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Figure 5.11: Resistance (in ohms) and contact temperature (in deg C) vs.
current (in amps) at different contact pressures for rough rusted iron piece.

Figure 5.12: Resistance (in ohms) vs. current (in amps) at different contact
pressures for rough rusted iron piece.
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Figure 5.13: Surface plot of the rough rusted iron piece in X direction. The
bottom plot filters out slight curvature in the top plot.

Figure 5.14: Surface plot of the rough rusted iron piece in Y direction. The
bottom plot filters out the convex curvature in the top plot.
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RRMS(forging) (in horizontal direction) = 28872.67 Å

RRMS(forging) (in longitudinal direction) = 31751.33 Å

5.1.4 Discussion on the Contact Resistance Test Results

From the plots of the contact resistances (Figures 5.2, 5.8 and 5.12) it can be

seen that as the external contact pressure is increased, the contact resistance

decreases. Moreover from Figures 5.1, 5.7 and 5.11, a somewhat inverse rela-

tion between the contact temperature and contact resistance is evident. This

can be due to the asperity melting in the contact region leading to increased

surface area resulting in reduced contact resistance [8]. Numerically, the con-

tact resistance values obtained from the contact resistance test for all three

different surface conditions are very low. The highest contact resistance at

rated pressure (10 ksi) was around 400 ∗ 10−6 Ω for the rusted iron piece.

This implies that even if a very high fault current of say 100 kA were to

flow through the contact, the voltage developed across it would be just 40 V,

which is much less than the minimum voltage required for arcing, i.e. 300 V.

This means that sparking cannot be the mechanism which leads to the arc

marks in the retaining ring.

5.2 Transient FEA Simulation Results

The transient FEA simulation was run for 3 electrical cycles and the resistiv-

ity of the Contact2 region was changed at the instant t = 0.01041666666 sec

from 4000∗10−6 Ω–m to 50 Ω–m. The plot data from FLUX was exported to

Microsoft Excel and the curves were plotted again in Excel for a clear plot.

The voltage (VC2) across and current (IC2) through the Contact2 region

were plotted as shown in Figure 5.15. Figure 5.16 zooms in on the plot of

Figure 5.15 near the time of opening of contact (i.e. 10.41666666 ms). Figure

5.17 shows the current through the two contact regions, Contact and Con-

tact2. The current density distribution before and after opening the contact

can be seen in Figures 5.18 and 5.19. The skin effect due to high frequency

is evident in these figures.
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Figure 5.15: Voltage, VC2, across and current, IC2, through Contact2
region.

Figure 5.16: Zoomed-in voltage, VC2, across and current, IC2, through the
Contact2 region near the instant of contact opening.
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Figure 5.17: Current passing through Contact2 and Contact region (shown
as surface S1).

Figure 5.18: Current distribution in the whole contact region before
Contact2 was opened. Due to the skin effect, the majority of current
remains in the periphery.
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Figure 5.19: Current distribution in the whole contact region after
Contact2 was opened.

Figure 5.20: Voltage of the whole contact region (Contact+Contact2).
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5.2.1 Discussion on the FEA Simulation Results

From Figures 5.15 and 5.16 it can be seen that when the resistance of the

Contact2 region changes, the contact2 voltage increases to around 390 V. It

is important to note that this is just a localized increase in the voltage of the

Contact2 region. The voltage of the complete region ((Contact + Contact2)

region) increases by a small amount comparatively, as shown in Figure 5.20.

This voltage increase is because of the inherent inductance of the system,

which tries to maintain the flow of the same amount of current as before

and in the process produces a large transient voltage rise (equal to Ldi/dt).

The voltage rise is well above 300 V and this will lead to the breakdown

of the medium as per Paschen’s law (Figure 2.7). This minimum value of

breakdown voltage for hydrogen medium corresponds to a P*d (pressure

times distance) value of around 2 torr–cm. The typical hydrogen pressure

inside the generator is around 4 kg/cm2, which for 2 torr–cm corresponds to

6.8 µm, which is the typical size of asperities in the contact region and also

the gap between the two surfaces in that region [8]. Thus a make-and-break

contact does have the possibility to arc even when relatively little current is

flowing through the contact region (in this case it was demonstrated that 1

kA is enough for arcing).
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CHAPTER 6

SCOPE OF FUTURE WORK

An experiment can be performed to recreate arcing in the laboratory. The

vibration will be a periodic motion at 120 Hz frequency simulating the 120 Hz

pulsating torque present in the machine. This will provide hard evidence that

arcing in the retaining ring is mostly a make-and-break contact phenomenon.

The hardware tests performed to measure the contact resistance can be

reperformed with actual rotor forging sample from the generator. This will

give a more realistic values for contact resistance.

In the simulation the rotor steel and the retaining ring were assumed to

be magnetically linear and as such saturation of the steel was ignored. This

was done to get the first–order approximation and simplify the simulation.

Saturation of the non-linear steel will lead to additional losses inside the

rotor. However, this will not affect the losses in the contact region much,

which is what is used for voltage drop calculation across the air-gap. The

simulation can be performed again with modified material properties taking

non-linearity into account for more accuracy.

Arcing in the retaining ring also occurs with the slot wedges. Wedges carry

almost 90% of the current induced on the rotor because their materials have

higher conductivity [7]. As such, wedge to retaining ring contact resistance

is an important parameter which can provide important information about

wedge and ring arcing. An experiment similar to what has been performed

in this study can be performed involving retaining ring, rotor forging and

slot wedges.

The peculiar predominance of arcing in Australia and New-Zealand has

not been explored in this study. Further work is needed to pinpoint the

exact reasons for the same.
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CHAPTER 7

CONCLUSION

Retaining rings are the most highly stressed component of the entire turbo-

generator system. As such, the tolerances for any defects or flaws are very

small. Any small crack in the ring can lead quickly to full blown damage.

The older 18-5 retaining rings were highly prone to stress corrosion cracking

(SCC) and were consequently replaced by corrosion–resistant 18-18 rings in

most of the generators around the world nearly 2 decades ago.

An industry survey assessing performance of these newly installed 18-18

rings identified arcing as a major problem. Arcing was found mostly in the

retaining ring shrink fit region with teeth and wedge. Arcing was also found

to be peculiarly predominant in certain geographic locations. In this thesis

work, we analyzed different possible mechanisms which can lead to arcing and

determined which mechanism is most likely based on hardware experiment,

simulation and industry survey data.

The hardware experiment was performed to get contact resistance values

typical in the shrink fit region between the retaining ring and the rotor forging

at different contact pressure values. The resistance values obtained were

very low and indicated that even very high fault currents cannot possibly

produce the minimum voltage required for the voltage breakdown of the

surrounding medium. This ruled out sparking or high voltage arcing as a

possible mechanism.

Following the hardware experiment we tried to see if a make-and-break

contact type arcing could be possible in the retaining ring. To explore this, a

finite–element simulation was done in which a localized contact opening was

simulated while the current was passing through contact region. This led to

a localized voltage increase sufficient to cause arcing in the contact region.

This voltage increase was the result of the inherent inductance in the system,

leading to L*di/dt rise. It was interesting to note that a voltage increase of

about 400 V was observed even though the current value was relatively small,
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about 1000 A.

The making and breaking of contact can occur due to the slippage of

the retaining ring over the rotor forging. The negative sequence currents

resulting from the negative sequence component of the unbalanced stator

current flow on the surface of the rotor forging due to the small skin depth.

The small skin depth also leads to very high resistance, which leads to high

resistive losses. The heat produced due to these losses in the shrink fit region

leads to reduction in the shrink-fit pressure which loosens the shrink fit. In

addition, these double frequency currents generate pulsating torque, which

leads to vibration in the retaining ring. This vibration, combined with the

heat, leads to small slippage of the retaining ring over the rotor forging. The

fretting marks observed in the shrink fit region in the retaining ring survey

[3] provide evidence of such slippage. This slippage leads to loss of some of

the current–carrying contacts and cause a transient localized voltage shoot

which can produce arcing.

More hardware experiments need to be done to get hard evidence of arcing

due to make-and-break contact in the shrink fit region. More research is

needed to pinpoint the exact reasons of peculiar predominance of arcing in

the Australasian region.
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APPENDIX A

MEASUREMENT DATA FOR CONTACT
RESISTANCE TEST WITH SMOOTH IRON

SURFACE

Table A.1: Experimental data for contact resistance test with smooth iron
surface at 0 external pressure

EXPERIMENT SET 1: NO PRESSURE APPLIED, AMBIENT 22.1 DEG C, HUMIDITY 59% (OUTSIDE THE LAB),

ALL VOLTAGES IN VOLTS, CURRENTS IN AMPS, ANGLES IN DEGREES AND TEMPERATURES IN DEG C

S. No.
VOLTAGE

TO UPC

I/P

VOLTAGE

I/P

CURRENT

CONTACT

VOLTAGE

CONTACT

CURRENT

PHASE

DIFF

O/P

CT

VOLTAGE

TEMP1 TEMP2

1 10 10.177 1.79E-02 3.02E-02 3.6 LOW SIGNAL 20.22 E-3 22.1 22.1

2 20 20.176 3.26E-02 5.99E-02 7.3 1 3.90E-02 2.22E+01 2.22E+01

3 30 30.172 4.77E-02 8.94E-02 11.4 1.2 5.80E-02 2.22E+01 2.23E+01

4 40 40.18 7.74E-02 1.13E-01 20.2 1.6 9.86E-02 2.24E+01 2.27E+01

5 50 50.19 1.35E-01 1.34E-01 38 3 1.84E-01 2.28E+01 2.38E+01

6 60 60.22 2.29E-01 1.48E-01 66.9 0.4 3.21E-01 2.32E+01 2.60E+01

7 70 70.25 3.26E-01 1.61E-01 97.4 1.6 4.68E-01 2.43E+01 2.82E+01

8 80 80.24 4.28E-01 1.71E-01 129.3 1 6.18E-01 2.59E+01 3.04E+01

9 90 90.26 5.31E-01 1.82E-01 161 2 7.73E-01 2.84E+01 3.34E+01

10 100 100.27 6.32E-01 1.93E-01 192 2 9.22E-01 3.06E+01 3.56E+01

11 110 110.32 7.30E-01 2.06E-01 227 3 1.06E+00 3.25E+01 3.85E+01

12 120 120.32 7.58E-01 2.33E-01 237 3 1.10E+00 3.42E+01 4.20E+01

13 130 130.3 8.10E-01 2.57E-01 250 2.5 1.16E+00 3.57E+01 4.39E+01

14 140 140.31 9.00E-01 2.79E-01 265 2 1.23E+00 3.78E+01 4.69E+01

15 150 150.3 1.27E+00 2.98E-01 287 3 1.34E+00 4.00E+01 5.08E+01
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Table A.2: Experimental data for contact resistance test with smooth iron
surface at 0 external pressure

EXPERIMENT SET 2: 27.8KIPS FORCE APPLIED, AMBIENT 22.1 DEG C, HUMIDITY 59% (OUTSIDE THE LAB),

ALL VOLTAGES IN VOLTS, CURRENTS IN AMPS, ANGLES IN DEGREES AND TEMPERATURES IN DEG C

S. No.
VOLTAGE
TO UPC

I/P
VOLTAGE

I/P
CURRENT

O/P
VOLTAGE

O/P
CURRENT

PHASE
DIFF

O/P
CT

VOLTAGE
TEMP1 TEMP2

1 20 20.158 2.57E-01 5.54E-03 78.9 -143.2 3.93E-01 3.15E+01 2.90E+01

2 30 30.15 3.77E-01 8.60E-03 116.6 -146 5.61E-01 3.13E+01 2.89E+01

3 40 40.15 4.99E-01 1.14E-02 155 -149.5 7.45E-01 3.12E+01 2.89E+01

4 50 50.15 6.23E-01 1.39E-02 194.3 -150 9.32E+02 3.12E+01 2.89E+01

5 60 60.19 7.50E-01 1.62E-02 241 -151 1.12E+00 3.13E+01 2.90E+01

6 70 70.21 8.77E-01 1.84E-02 283 -151.3 1.32E+00 3.15E+01 2.90E+01

7 80 80.2 1.00E+00 2.10E-02 325 -151.6 1.52E+00 3.18E+01 2.91E+01

8 90 90.22 1.14E+00 2.30E-02 367 -151.4 1.71E+00 3.21E+01 2.93E+01

9 100 100.24 1.27E+00 2.48E-02 410 -151.5 1.90E+00 3.25E+01 2.95E+01

10 110 110.29 1.40E+00 2.50E-02 453 -151.7 2.11E+00 3.31E+01 2.96E+01

11 120 120.28 1.54E+00 2.91E-02 495 -152.2 2.30E+00 3.44E+01 3.00E+01

12 130 130.26 1.69E+00 3.07E-02 537 -152 2.51E+00 3.50E+01 3.03E+01

13 140 140.24 1.87E+00 3.04E-02 579 -152.2 2.70E+00 3.59E+01 3.07E+01

14 150 150.22 2.33E+00 3.01E-02 621 -151.6 2.92E+00 3.69E+01 3.11E+01

Table A.3: Experimental data for contact resistance test with smooth iron
surface at 10 ksi external pressure

EXPERIMENT SET 3: 55.1 KIPS FORCE APPLIED, AMBIENT 22.1 DEG C, HUMIDITY 59% (OUTSIDE THE LAB),

ALL VOLTAGES IN VOLTS, CURRENTS IN AMPS, ANGLES IN DEGREES AND TEMPERATURES IN DEG C

S. No.
VOLTAGE
TO UPC

I/P
VOLTAGE

I/P
CURRENT

O/P
VOLTAGE

O/P
CURRENT

PHASE
DIFF

O/P
CT

VOLTAGE
TEMP1 TEMP2

1 10 10.166 1.39E-01 2.30E-03 41.8 LOW SIGNAL 2.03E+02 3.52E+01 3.08E+01

2 20 20.158 2.58E-01 4.20E-03 79.3 49.9 3.90E-01 3.49E+01 3.06E+01

3 30 30.15 3.78E-01 6.36E-03 117.2 42 5.68E-01 3.48E+01 3.09E+01

4 40 40.152 4.99E-01 8.30E-03 155.6 38 7.49E-01 3.47E+01 3.08E+01

5 50 50.163 6.23E+02 9.92E-03 194.9 3.77E+01 9.35E-01 3.47E+01 3.06E+01

6 60 60.2 7.49E-01 1.20E-02 242 34 1.13E+00 3.47E+01 3.09E+01

7 70 70.225 8.77E-01 1.47E-02 284 33.5 1.32E+00 3.48E+01 3.08E+01

8 80 80.22 1.00E+00 1.77E-02 325 34 1.51E+00 3.50E+01 3.11E+01

9 90 90.24 1.14E+00 1.87E-02 367 34 1.72E+00 3.52E+01 3.09E+01

10 100 100.26 1.26E+00 2.05E-02 410 34.2 1.91E+00 3.55E+01 3.11E+01

11 110 110.31 1.40E+00 2.30E-02 452 32 2.11E+00 3.58E+01 3.13E+01

12 120 120.32 1.54E+00 2.25E-02 494 34.5 2.31E+00 3.64E+01 3.15E+01

13 130 130.3 1.69E+00 2.24E-02 536 34.5 2.51E+00 3.70E+01 3.16E+01

14 140 140.3 1.87E+00 2.39E-02 578 33 2.72E+00 3.76E+01 3.20E+01

15 150 150.27 2.33E+00 2.58E-02 621 35.5 2.92E+00 3.85E+01 3.24E+01
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Table A.4: Experimental data for contact resistance test with smooth iron
surface at 15 ksi external pressure

EXPERIMENT SET 4: 82.7 KIPS FORCE APPLIED, AMBIENT 22.1 DEG C, HUMIDITY 59% (OUTSIDE THE LAB),

ALL VOLTAGES IN VOLTS, CURRENTS IN AMPS, ANGLES IN DEGREES AND TEMPERATURES IN DEG C

S. No.
VOLTAGE
TO UPC

I/P
VOLTAGE

I/P
CURRENT

O/P
VOLTAGE

O/P
CURRENT

PHASE
DIFF

O/P
CT

VOLTAGE
TEMP1 TEMP2

1 10 10.16 1.38E-01 1.85E-03 41.8 LOW SIGNAL 2.07E-01 3.74E+01 3.25E+01

2 20 20.16 2.57E-01 3.90E-03 79.1 48 3.83E-01 3.73E+01 3.25E+01

3 30 30.15 3.76E-01 6.20E-03 116.7 42 5.60E-01 3.72E+01 3.25E+01

4 40 40.15 4.97E-01 8.00E-03 155 39 7.43E-01 3.72E+01 3.25E+01

5 50 50.158 6.20E+02 1.05E-02 194 3.50E+01 9.30E-01 3.72E+01 3.26E+01

6 60 60.199 7.47E-01 1.26E-02 241 35 1.13E+00 3.72E+01 3.22E+01

7 70 70.22 8.75E-01 1.40E-02 283 35 1.32E+00 3.73E+01 3.23E+01

8 80 80.22 1.00E+00 1.46E-02 324 35 1.52E+00 3.74E+01 3.27E+01

9 90 90.23 1.13E+00 1.62E-02 367 34.6 1.71E+00 3.76E+01 3.28E+01

10 100 100.26 1.27E+00 1.85E-02 410 33 1.91E+00 3.79E+01 3.30E+01

11 110 110.31 1.40E+00 2.24E-02 451 33 2.11E+00 3.84E+01 3.30E+01

12 120 120.31 1.53E+00 2.29E-02 492 33 2.31E+00 3.90E+01 3.35E+01

13 130 130.28 1.68E+00 2.50E-02 534 34 2.51E+00 3.95E+01 3.38E+01

14 140 140.26 1.86E+00 2.61E-02 576 34 2.70E+00 4.02E+01 3.39E+01

15 150 150.23 2.33E+00 2.92E-02 619 34 2.91E+00 4.10E+01 3.44E+01

Table A.5: Experimental data for contact resistance test with smooth iron
surface at 20 ksi external pressure

EXPERIMENT SET 5: 110.2 KIPS FORCE APPLIED, AMBIENT 22.1 DEG C, HUMIDITY 59% (OUTSIDE THE LAB),

ALL VOLTAGES IN VOLTS, CURRENTS IN AMPS, ANGLES IN DEGREES AND TEMPERATURES IN DEG C

S. No.
VOLTAGE
TO UPC

I/P
VOLTAGE

I/P
CURRENT

O/P
VOLTAGE

O/P
CURRENT

PHASE
DIFF

O/P
CT

VOLTAGE
TEMP1 TEMP2

1 10 10.16 1.37E-01 2.00E-03 41.5 LOW SIGNAL 2.05E-01 3.88E+01 3.43E+01

2 20 20.15 2.56E-01 4.40E-03 78.6 47 3.70E-01 3.85E+01 3.43E+01

3 30 30.14 3.74E-01 7.14E-03 116 41 5.59E-01 3.84E+01 3.42E+01

4 40 40.14 4.94E-01 9.59E-03 153.7 39 7.39E-01 3.82E+01 3.42E+01

5 50 50.145 6.17E-01 1.19E-02 192.5 3.70E+01 9.24E-01 3.82E+01 3.42E+01

6 60 60.18 7.41E-01 1.37E-02 239 37 1.12E+00 3.81E+01 3.41E+01

7 70 70.2 8.68E-01 1.61E-02 280 37 1.31E+00 3.82E+01 3.40E+01

8 80 80.2 9.96E-01 1.79E-02 322 34 1.50E+00 3.82E+01 3.40E+01

9 90 90.21 1.12E+00 1.97E-02 363 33 1.70E+00 3.84E+01 3.43E+01

10 100 100.23 1.25E+00 1.99E-02 405 34.29 1.89E+00 3.87E+01 3.45E+01

11 110 110.28 1.39E+00 2.03E-02 446 33 2.10E+00 3.91E+01 3.45E+01

12 120 120.28 1.52E+00 2.40E-02 488 37 2.21E+00 3.95E+01 3.47E+01

13 130 130.25 1.67E+00 2.63E-02 530 33 2.50E+00 3.99E+01 3.49E+01

14 140 140.25 1.85E+00 2.79E-02 572 34.33 2.70E+00 4.04E+01 3.51E+01

15 150 150.21 2.31E+00 2.83E-02 615 35 2.90E+00 4.10E+01 3.52E+01
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APPENDIX B

MEASUREMENT DATA FOR CONTACT
RESISTANCE TEST WITH ROUGH IRON

SURFACE

Table B.1: Experimental data for contact resistance test with rough iron
surface at 0 external pressure

EXPERIMENT SET 1: NO PRESSURE APPLIED, AMBIENT 22.1 DEG C, HUMIDITY 59% (OUTSIDE THE LAB),

ALL VOLTAGES IN VOLTS, CURRENTS IN AMPS, ANGLES IN DEGREES AND TEMPERATURES IN DEG C

S. No.
VOLTAGE

TO UPC

I/P

VOLTAGE

I/P

CURRENT

O/P

VOLTAGE

O/P

CURRENT

PHASE

DIFF

O/P

CT

VOLTAGE

TEMP1 TEMP2

1 10 10.17 6.35E-02 2.00E-02 18.6 0 9.00E-02 36.2 39.4

2 20 20.166 1.21E-02 3.94E-02 36 1 1.76E-01 3.61E+01 3.93E+01

3 30 30.15 1.75E-01 5.94E-02 52.3 1.6 2.60E-01 3.62E+01 3.93E+01

4 40 40.16 2.26E-01 8.00E-02 68 1.4 3.34E-01 3.63E+01 3.93E+01

5 50 50.17 2.72E-01 1.02E-01 82.1 1.3 4.00E-01 3.66E+01 3.95E+01

6 60 60.217 3.20E-01 1.24E-01 96.5 1 4.80E-01 3.68E+01 3.97E+01

7 70 70.24 3.82E-01 1.42E-01 115.6 2 5.77E-01 3.72E+01 3.99E+01

8 80 80.23 4.18E-01 1.66E-01 126.4 2 6.22E-01 3.76E+01 4.04E+01

9 90 90.25 4.88E-01 1.83E-01 148 1 7.30E-01 3.84E+01 4.13E+01

10 100 100.26 5.57E-01 1.99E-01 169 2 8.40E-01 3.91E+01 4.24E+01

11 110 110.31 6.17E-01 2.19E-01 187 1 9.29E-01 3.99E+01 4.38E+01

12 120 120.32 6.80E-01 2.39E-01 211 1.5 1.02E+00 4.05E+01 4.48E+01

13 130 130.3 7.60E-01 2.59E-01 230 1.8 1.10E+00 4.15E+01 4.63E+01

14 140 140.31 7.70E-01 2.99E-01 225 1.2 1.08E+00 4.25E+01 4.84E+01

15 150 150.3 1.20E+00 3.11E-01 253 1.1 1.23E+00 4.32E+01 5.06E+01
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Table B.2: Experimental data for contact resistance test with rough iron
surface at 5 ksi external pressure

EXPERIMENT SET 2: 27.8KIPS FORCE APPLIED, AMBIENT 22.1 DEG C, HUMIDITY 59% (OUTSIDE THE LAB),

ALL VOLTAGES IN VOLTS, CURRENTS IN AMPS, ANGLES IN DEGREES AND TEMPERATURES IN DEG C

S. No.
VOLTAGE
TO UPC

I/P
VOLTAGE

I/P
CURRENT

O/P
VOLTAGE

O/P
CURRENT

PHASE
DIFF

O/P
CT

VOLTAGE
TEMP1 TEMP2

1 20 20.157 2.40E-01 3.30E-03 74.4 17 3.70E-01 3.20E+01 3.35E+01

2 30 30.14 3.53E-01 5.37E-03 110.1 15 5.50E-01 3.19E+01 3.33E+01

3 40 40.13 4.67E-01 7.45E-03 146 13 7.31E-01 3.18E+01 3.32E+01

4 50 50.14 5.82E-01 9.46E-03 182.3 13 9.05E-01 3.18E+01 3.31E+01

5 60 60.17 6.98E-01 1.14E-02 226 12 1.09E+00 3.17E+01 3.31E+01

6 70 70.19 8.14E-01 1.32E-02 263 11 1.25E+00 3.17E+01 3.32E+01

7 80 80.18 9.32E-01 1.50E-02 301 12 1.45E+00 3.18E+01 3.33E+01

8 90 90.2 1.05E+00 1.67E-02 340 10 1.64E+00 3.19E+01 3.34E+01

9 100 100.22 1.18E+00 1.84E-02 380 10 1.84E+00 3.20E+01 3.37E+01

10 110 110.26 1.30E+00 2.01E-02 419 10 2.03E+00 3.20E+01 3.40E+01

11 120 120.25 1.43E+00 2.17E-02 459 9.5 2.23E+00 3.23E+01 3.44E+01

12 130 130.23 1.57E+00 2.32E-02 499 10 2.43E+00 3.25E+01 3.49E+01

13 140 140.22 1.75E+00 2.48E-02 539 10 2.63E+00 3.28E+01 3.55E+01

14 150 150.23 2.25E+00 2.64E-02 581 8 2.85E+00 3.31E+01 3.60E+01

Table B.3: Experimental data for contact resistance test with rough iron
surface at 10 ksi external pressure

EXPERIMENT SET 3: 55.1 KIPS FORCE APPLIED, AMBIENT 22.1 DEG C, HUMIDITY 59% (OUTSIDE THE LAB),

ALL VOLTAGES IN VOLTS, CURRENTS IN AMPS, ANGLES IN DEGREES AND TEMPERATURES IN DEG C

S. No.
VOLTAGE
TO UPC

I/P
VOLTAGE

I/P
CURRENT

O/P
VOLTAGE

O/P
CURRENT

PHASE
DIFF

O/P
CT

VOLTAGE
TEMP1 TEMP2

1 10 low signal low signal low signal low signal low signal low signal low signal low signal

2 20 20.159 2.43E-01 2.70E-03 74.9 19 3.70E-01 3.27E+01 3.51E+01

3 30 30.147 3.56E-01 4.70E-03 110.2 19 5.48E-01 3.26E+01 3.50E+01

4 40 40.145 4.67E-01 6.72E-03 145.7 15 7.30E-01 3.26E+01 3.50E+01

5 50 50.15 5.82E-01 8.60E-03 181.8 1.50E+01 9.00E-01 3.26E+01 3.50E+01

6 60 60.18 6.98E-01 1.04E-02 225 12.5 1.09E+00 3.26E+01 3.50E+01

7 70 70.2 8.15E-01 1.21E-02 262 12 1.28E+00 3.26E+01 3.50E+01

8 80 80.2 9.32E-01 1.37E-02 300 12 1.46E+00 3.26E+01 3.50E+01

9 90 90.21 1.05E+00 1.51E-02 339 10 1.64E+00 3.27E+01 3.52E+01

10 100 100.23 1.17E+00 1.67E-02 377 10 1.83E+00 3.29E+01 3.53E+01

11 110 110.28 1.29E+00 1.81E-02 417 10 2.02E+00 3.30E+01 3.56E+01

12 120 120.28 1.42E+00 1.96E-02 456 10 2.21E+00 3.31E+01 3.58E+01

13 130 130.25 1.56E+00 2.09E-02 496 10.5 2.41E+00 3.34E+01 3.63E+01

14 140 140.25 1.74E+00 2.22E-02 536 10 2.61E+00 3.35E+01 3.67E+01

15 150 150.24 2.24E+00 2.36E-02 577 10 8.30E-01 3.39E+01 3.73E+01
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Table B.4: Experimental data for contact resistance test with rough iron
surface at 15 ksi external pressure

EXPERIMENT SET 4: 82.7 KIPS FORCE APPLIED, AMBIENT 22.1 DEG C, HUMIDITY 59% (OUTSIDE THE LAB),

ALL VOLTAGES IN VOLTS, CURRENTS IN AMPS, ANGLES IN DEGREES AND TEMPERATURES IN DEG C

S. No.
VOLTAGE
TO UPC

I/P
VOLTAGE

I/P
CURRENT

O/P
VOLTAGE

O/P
CURRENT

PHASE
DIFF

O/P
CT

VOLTAGE
TEMP1 TEMP2

1 10 low signal low signal low signal low signal low signal low signal low signal low signal

2 20 low signal

3 30 30.145 3.52E-01 4.44E-03 109.2 20 5.33E-01 3.38E+01 3.68E+01

4 40 40.14 4.64E-01 6.34E-03 144.4 16 7.13E-01 3.37E+01 3.68E+01

5 50 50.14 5.77E-01 8.22E-03 180.1 1.40E+01 8.90E-01 3.37E+01 3.68E+01

6 60 60.17 6.93E-01 9.92E-03 223 14 1.08E+00 3.37E+01 3.67E+01

7 70 70.19 8.10E-01 1.15E-02 261 12 1.27E+00 3.38E+01 3.67E+01

8 80 80.18 9.28E-01 1.30E-02 298 1.20E+01 1.45E+00 3.38E+01 3.68E+01

9 90 90.19 1.05E+00 1.45E-02 337 12 1.64E+00 3.38E+01 3.69E+01

10 100 100.22 1.16E+00 1.60E-02 375 12 1.84E+00 3.40E+01 3.70E+01

11 110 110.26 1.28E+00 1.73E-02 414 11 2.02E+00 3.42E+01 3.73E+01

12 120 120.25 1.42E+00 1.87E-02 454 11 2.20E+00 3.43E+01 3.78E+01

13 130 130.24 1.55E+00 2.00E-02 493 11 2.40E+00 3.46E+01 3.81E+01

14 140 140.24 1.73E+00 2.14E-02 533 11 2.60E+00 3.48E+01 3.85E+01

15 150 150.24 2.23E+00 2.26E-02 575 11 2.82E+00 3.51E+01 3.92E+01

Table B.5: Experimental data for contact resistance test with rough iron
surface at 20 ksi external pressure

EXPERIMENT SET 5: 110.2 KIPS FORCE APPLIED, AMBIENT 22.1 DEG C, HUMIDITY 59% (OUTSIDE THE LAB),

ALL VOLTAGES IN VOLTS, CURRENTS IN AMPS, ANGLES IN DEGREES AND TEMPERATURES IN DEG C

S. No.
VOLTAGE
TO UPC

I/P
VOLTAGE

I/P
CURRENT

O/P
VOLTAGE

O/P
CURRENT

PHASE
DIFF

O/P
CT

VOLTAGE
TEMP1 TEMP2

1 10 low signal

2 20 low signal

3 30 30.15 3.50E-01 4.45E-03 108.6 18 5.30E-01 3.53E+01 3.89E+01

4 40 40.14 4.60E-01 6.35E-03 143.6 17 7.00E-01 3.53E+01 3.89E+01

5 50 50.15 5.74E-01 8.10E-03 179.2 1.50E+01 8.90E-01 3.52E+01 3.89E+01

6 60 60.18 6.90E-01 9.80E-03 222 15 1.08E+00 3.52E+01 3.89E+01

7 70 70.2 8.06E-01 1.15E-02 260 14 1.26E+00 3.53E+01 3.89E+01

8 80 80.19 9.24E-01 1.29E-02 298 12 1.45E+00 3.53E+01 3.89E+01

9 90 90.21 1.04E+00 1.44E-02 336 12 1.64E+00 3.54E+01 3.90E+01

10 100 100.23 1.16E+00 1.58E-02 374 12 1.83E+00 3.55E+01 3.92E+01

11 110 110.27 1.28E+00 1.72E-02 413 11 2.00E+00 3.57E+01 3.94E+01

12 120 120.27 1.41E+00 1.84E-02 452 12 2.19E+00 3.58E+01 3.97E+01

13 130 130.25 1.55E+00 1.97E-02 491 12.3 2.39E+00 3.60E+01 4.00E+01

14 140 140.25 1.73E+00 2.10E-02 531 12 2.60E+00 3.62E+01 4.04E+01

15 150 150.24 2.23E+00 2.22E-02 573 11 2.81E+00 3.66E+01 4.10E+01

16 152 152.23 2.54 2.25E-02 580 11 2.85 36.9 41.5
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APPENDIX C

MEASUREMENT DATA FOR CONTACT
RESISTANCE TEST WITH ROUGH AND

RUSTED IRON SURFACE

Table C.1: Experimental data for contact resistance test with rough and
rusted iron surface at 1 ksi external pressure

EXPERIMENT SET 1: 1 ksi PRESSURE APPLIED, AMBIENT 22.1 DEG C, HUMIDITY 59% (OUTSIDE THE LAB)

ALL VOLTAGES IN VOLTS, CURRENTS IN AMPS, ANGLES IN DEGREES AND TEMPERATURES IN DEG C

S. No.
VOLTAGE

TO UPC

I/P

VOLTAGE

I/P

CURRENT

O/P

VOLTAGE

O/P

CURRENT

PHASE

DIFF

O/P

CT

VOLTAGE

TEMP1 TEMP2

1 10 10.176 1.40E-05 6.40E-02 5.3 178 2.60E-02 22.3 22.3

2 20 20.189 4.14E-02 8.20E-02 10.7 178 5.40E-02 2.22E+01 2.23E+01

3 30 29.454 6.22E-02 9.70E-02 16.4 179.7 8.20E-02 2.23E+01 2.23E+01

4 40 40.2 8.50E-02 1.22E-01 23 179.5 1.16E-01 2.23E+01 2.24E+01

5 50 50.18 1.35E-01 1.45E-01 35 179.6 1.75E-01 2.22E+01 2.26E+01

6 60 60.22 1.90E-01 1.56E-01 53.5 179.7 2.65E-01 2.22E+01 2.32E+01

7 70 70.19 2.75E-01 1.72E-01 80.3 179.2 3.95E-01 2.23E+01 2.39E+01

8 80 80.18 3.92E-01 1.77E-01 117.4 179 5.54E-01 2.23E+01 2.52E+01

9 90 90.18 5.35E-01 1.82E-01 161 178 7.90E-01 2.24E+01 2.68E+01

10 100 100.19 6.62E-01 1.81E-01 207 177.7 1.00E+00 2.25E+01 2.85E+01

11 110 110.22 7.77E-01 1.84E-01 245 179.1 1.15E+00 2.27E+01 2.97E+01

12 120 120.21 9.00E-01 1.90E-01 282 178 1.34E+00 2.28E+01 3.09E+01

13 130 130.19 1.00E+00 1.96E-01 318 176 1.53E+00 2.29E+01 3.23E+01

14 140 140.18 1.16E+00 2.00E-01 354 176 1.71E+00 2.29E+01 3.38E+01

15 150 150.31 1.54E+00 2.06E-01 390 175 1.87E+00 2.31E+01 3.52E+01
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Table C.2: Experimental data for contact resistance test with rough and
rusted iron surface at 5 ksi external pressure

EXPERIMENT SET 2: 27.8KIPS FORCE APPLIED, AMBIENT 22.1 DEG C, HUMIDITY 77% (OUTSIDE THE LAB),

ALL VOLTAGES IN VOLTS, CURRENTS IN AMPS, ANGLES IN DEGREES AND TEMPERATURES IN DEG C

S. No.
VOLTAGE
TO UPC

I/P
VOLTAGE

I/P
CURRENT

O/P
VOLTAGE

O/P
CURRENT

PHASE
DIFF

O/P
CT
VOLTAGE

TEMP1 TEMP2

1 10 10.158 0.013 1.68E-02 24 172.2 0.118 27.5 35.8

2 20 20.153 1.57E-01 3.28E-02 45.8 173 2.23E-01 2.94E+01 3.55E+01

3 30 30.143 2.24E-01 5.00E-02 67.1 171.2 3.30E-01 2.79E+01 3.55E+01

4 40 40.13 2.93E-01 6.67E-02 88.9 172 4.43E-01 2.91E+01 3.56E+01

5 50 50.11 3.64E-01 8.27E-02 111.8 171.4 5.59E-01 2.56E+01 3.57E+01

6 60 60.14 4.44E-01 9.62E-02 137 171.4 6.86E-01 2.92E+01 3.59E+01

7 70 70.15 5.25E-01 1.09E-01 163.5 171 8.12E-01 2.92E+01 3.62E+01

8 80 80.14 6.12E-01 1.23E-01 189.8 170 9.45E-01 2.95E+01 3.68E+01

9 90 90.15 7.05E-01 1.31E-01 225 170 1.00E+00 2.78E+01 3.74E+01

10 100 100.17 8.04E-01 1.42E-01 256 170 1.25E+00 2.77E+01 3.82E+01

11 110 110.21 9.02E-01 1.51E-01 288 169.8 1.41E+00 2.82E+01 3.90E+01

12 120 120.2 1.02E+00 1.64E-01 323 170 1.58E+00 3.17E+01 4.01E+01

13 130 130.18 1.13E+00 1.61E-01 359 170 1.75E+00 3.18E+01 4.45E+01

14 140 140.17 1.27E+00 1.69E-01 392 170 1.90E+00 3.20E+01 4.54E+01

15 150 150.15 1.66E+00 1.75E-01 426 170 2.08E+00 3.24E+01 4.62E+01

Table C.3: Experimental data for contact resistance test with rough and
rusted iron surface at 10 ksi external pressure

EXPERIMENT SET 3: 55.1 KIPS FORCE APPLIED, AMBIENT 22.1 DEG C, HUMIDITY 59% (OUTSIDE THE LAB),

ALL VOLTAGES IN VOLTS, CURRENTS IN AMPS, ANGLES IN DEGREES AND TEMPERATURES IN DEG C

S. No.
VOLTAGE
TO UPC

I/P
VOLTAGE

I/P
CURRENT

O/P
VOLTAGE

O/P
CURRENT

PHASE
DIFF

O/P
CT
VOLTAGE

TEMP1 TEMP2

1 10 low signal

2 20 20.148 1.95E-01 2.36E-02 58.3 164.3 2.83E-01 2.66E+01 3.13E+01

3 30 30.134 2.81E-01 3.70E-02 85.4 166 4.24E-01 2.67E+01 3.13E+01

4 40 40.11 3.68E-01 5.00E-02 113.1 166 5.80E-01 2.66E+01 3.14E+01

5 50 50.1 4.58E-01 6.29E-02 141.5 1.66E+02 7.07E-01 2.66E+01 3.14E+01

6 60 60.13 5.52E-01 7.50E-02 170.8 166 8.58E-01 2.66E+01 3.18E+01

7 70 70.14 6.47E-01 8.67E-02 207 167 1.00E+00 2.65E+01 3.23E+01

8 80 80.12 7.45E-01 9.64E-02 238 166 1.16E+00 2.66E+01 3.28E+01

9 90 90.13 8.45E-01 1.01E-01 271 167 1.32E+00 2.68E+01 3.31E+01

10 100 100.15 9.50E-01 1.16E-01 305 166.7 1.46E+00 2.65E+01 3.38E+01

11 110 110.19 1.06E+00 1.24E-01 340 166 1.66E+00 2.71E+01 3.50E+01

12 120 120.18 1.17E+00 1.34E-01 374 166 1.83E+00 2.68E+01 3.58E+01

13 130 130.16 1.29E+00 1.42E-01 409 165.3 1.99E+00 2.70E+01 3.65E+01

14 140 140.14 1.44E+00 1.49E-01 444 165 2.16E+00 2.65E+01 3.74E+01

15 150 150.14 1.82E+00 1.56E-01 479 165 2.34E+00 2.70E+01 3.83E+01
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Table C.4: Experimental data for contact resistance test with rough and
rusted iron surface at 15 ksi external pressure

EXPERIMENT SET 4: 82.7 KIPS FORCE APPLIED, AMBIENT 22.1 DEG C, HUMIDITY 59% (OUTSIDE THE LAB),

(ALL VOLTAGES IN VOLTS, CURRENTS IN AMPS, ANGLES IN DEGREES AND TEMPERATURES IN DEG C)

S. No.
VOLTAGE
TO UPC

I/P
VOLTAGE

I/P
CURRENT

O/P
VOLTAGE

O/P
CURRENT

PHASE
DIFF

O/P
CT
VOLTAGE

TEMP1 TEMP2

1 10 10.15 0.117 8.40E-03 33.9 157 0.17 27.8 34.4

2 20 20.15 2.11E-01 1.76E-02 63.7 156 3.10E-01 2.71E+01 3.42E+01

3 30 30.135 3.03E-01 2.84E-02 93 159 4.00E-01 2.80E+01 3.42E+01

4 40 40.14 4.00E-01 3.88E-02 123 159 6.12E-01 2.81E+01 3.41E+01

5 50 50.1 4.95E-01 4.89E-02 153.6 1.60E+02 7.68E-01 2.81E+01 3.41E+01

6 60 60.13 5.95E-01 5.86E-02 185.1 161 9.30E-01 2.75E+01 3.43E+01

7 70 70.14 6.97E-01 6.80E-02 223 161 1.08E+00 2.76E+01 3.44E+01

8 80 80.13 8.00E-01 7.72E-02 257 1.61E+02 1.25E+00 2.82E+01 3.46E+01

9 90 90.13 9.04E-01 8.60E-02 290 162 1.42E+00 2.83E+01 3.50E+01

10 100 100.15 1.01E+00 9.44E-02 325 163 1.58E+00 2.70E+01 3.54E+01

11 110 110.29 1.12E+00 1.02E-01 360 162.7 1.74E+00 2.82E+01 3.59E+01

12 120 120.18 1.23E+00 1.09E-01 395 164 1.91E+00 2.80E+01 3.66E+01

13 130 130.16 1.36E+00 1.17E-01 430 164 2.08E+00 2.80E+01 3.74E+01

14 140 140.15 1.50E+00 1.24E-01 464 162 2.24E+00 2.81E+01 3.81E+01

15 150 150.12 1.89E+00 1.31E-01 500 162 2.42E+00 2.83E+01 3.90E+01

16 153 153.12 2.45 1.33E-01 511 161 2.455 28.8 40.1

Table C.5: Experimental data for contact resistance test with rough and
rusted iron surface at 20 ksi external pressure

EXPERIMENT SET 5: 110.2 KIPS FORCE APPLIED, AMBIENT 22.1 DEG C, HUMIDITY 59% (OUTSIDE THE LAB),

(ALL VOLTAGES IN VOLTS, CURRENTS IN AMPS, ANGLES IN DEGREES AND TEMPERATURES IN DEG C)

S. No.
VOLTAGE
TO UPC

I/P
VOLTAGE

I/P
CURRENT

O/P
VOLTAGE

O/P
CURRENT

PHASE
DIFF

O/P
CURRENT
VOLTAGE

TEMP1 TEMP2

1 10 low signal

2 20 20.14 2.14E-01 1.63E-02 64.6 155 3.15E-01 2.92E+01 3.66E+01

3 30 30.12 3.10E-01 2.56E-02 95 155 4.70E-01 2.93E+01 3.66E+01

4 40 40.1 4.06E-01 3.51E-02 125.4 157.7 6.24E-01 2.96E+01 3.64E+01

5 50 50.07 5.05E-01 4.44E-02 156.7 1.59E+02 7.84E-01 2.83E+01 3.64E+01

6 60 60.1 6.06E-01 5.33E-02 188.7 160 9.45E-01 2.87E+01 3.65E+01

7 70 70.12 7.10E-01 6.19E-02 228 160 1.10E+00 2.82E+01 3.66E+01

8 80 80.1 8.14E-01 7.02E-02 261 160 1.27E+00 2.85E+01 3.68E+01

9 90 90.11 9.20E-01 7.80E-02 296 161 1.44E+00 2.98E+01 3.69E+01

10 100 100.13 1.03E+00 8.58E-02 331 160 1.62E+00 2.88E+01 3.73E+01

11 110 110.16 1.14E+00 9.22E-02 366 160 1.77E+00 2.90E+01 3.78E+01

12 120 120.16 1.25E+00 9.92E-02 401 160.3 1.94E+00 2.95E+01 3.84E+01

13 130 130.13 1.38E+00 1.06E-01 437 162 2.11E+00 2.96E+01 3.88E+01

14 140 140.12 1.52E+00 1.13E-01 473 161 2.20E+00 3.00E+01 3.93E+01

15 150 150.11 1.92E+00 1.20E-01 510 161.2 2.48E+00 3.00E+01 4.05E+01
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APPENDIX D

PYFLUX CODE FOR SIMULATION

#! Flux3D 12 .1

l a s t I n s t a n c e = SensorPrede f inedLosse s (name=’ Senso r Los s e s ’ , support=

ComputationSupportLossesVolumeRegion ( r eg i on=[RegionVolume [ ’CONTACT’ ] ,

RegionVolume [ ’CONTACT2’ ] ] ) )

l a s t I n s t a n c e = SensorPrede f inedLosse s (name=’SENSOR LOSSES contact ’ , support=

ComputationSupportLossesVolumeRegion ( r eg i on=[RegionVolume [ ’CONTACT’ ] ] ) )

l a s t I n s t a n c e = Senso r In t eg ra lFace (name=’ SENSOR current contact s1 ’ ,

spat ia lFormula=’ j ’ ,

support=Support Integra lFace ( f a c e s =[Face [ 9 9 ] ,

Face [ 1 1 5 ] ,

Face [ 1 1 9 ] ,

Face [ 1 2 3 ] ,

Face [ 1 2 7 ] ,

Face [ 1 3 3 ] ,

Face [ 1 3 9 ] ,

Face [ 1 0 7 ] ] ,

regionVolume=’CONTACT’ ) )

l a s t I n s t a n c e = Senso r In t eg ra lFace (name=’SENSOR CURRENT CONTACT S2 ’ ,

spat ia lFormula=’ j ’ ,

support=Support Integra lFace ( f a c e s =[Face [ 2 3 2 ] ,

Face [ 2 4 0 ] ,

Face [ 2 4 2 ] ,

Face [ 2 4 4 ] ,

Face [ 2 4 6 ] ,

Face [ 2 4 9 ] ,

Face [ 2 5 2 ] ,

Face [ 2 3 6 ] ] ,

regionVolume=’CONTACT’ ) )

l a s t I n s t a n c e = Senso r In t eg ra lFace (name=’SENSOR CURRENTCONTACT2 ’ ,

spat ia lFormula=’ j ’ ,

support=Support Integra lFace ( f a c e s =[Face [ 1 4 5 ] ] ,

regionVolume=’CONTACT2’ ) )

l a s t I n s t a n c e = SensorPrede f inedLosse s (name=’SENSOR losses CONTACT2 ’ , support

=ComputationSupportLossesVolumeRegion ( r eg i on=[RegionVolume [ ’CONTACT2’ ] ] )

)
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eva lua t eSenso r s ( )

EvolutiveCurve2D (name=’ Losses2 ’ , evo lut ivePath=Evolut ivePath ( parameterSet=[

SetParameterXVariable ( paramEvol=Variat ionParameter [ ’TIME ’ ] ,

formula=[ ’SENSOR LOSSES ’ ,

’SENSOR LOSSES CONTACT ’ ,

’SENSOR LOSSES CONTACT2 ’ ] )

EvolutiveCurve2D (name=’ EvolutiveCurve2D 32 ’ , evo lut ivePath=Evolut ivePath (

parameterSet=[SetParameterXVariable ( paramEvol=Variat ionParameter [ ’TIME ’

] ,

formula=[ ’Comp(3 ,SENSORCURRENTCONTACT2) ’ ,

’Comp(3 ,SENSOR CURRENT CONTACT S1) ’ ,

’Comp(3 ,SENSOR CURRENT CONTACT S2) ’ ] )

l a s t I n s t a n c e = VariationParameterFormula (name=’ Current ’ , formula=’Comp(3 ,

SENSORCURRENTCONTACT2)+Comp(3 ,SENSOR CURRENT CONTACT S1) ’ )

EvolutiveCurve2D (name=’ EvolutiveCurve2D 41 ’ , evo lut ivePath=Evolut ivePath (

parameterSet=[SetParameterXVariable ( paramEvol=Variat ionParameter [ ’TIME ’

] ,

formula=[ ’ cur r ent ’ ] )

l a s t I n s t a n c e = VariationParameterFormula (name=’ vo l tage ’ , formula=’

SENSOR LOSSES/ cur rent ’ )

EvolutiveCurve2D (name=’ Contact vo l tage1 ’ , evo lut ivePath=EvolutivePath (

parameterSet=[SetParameterXVariable ( paramEvol=Variat ionParameter [ ’TIME ’

] ,

formula=[ ’ vo l t age ’ ] )

l a s t I n s t a n c e = VariationParameterFormula (name=’ IC2 ’ , formula=’

SENSORCURRENTCONTACT2 ’ )

Variat ionParameter [ ’ IC2 ’ ] . formula=’Comp(3 ,SENSOR CURRENTCONTACT2) ’

l a s t I n s t a n c e = VariationParameterFormula (name=’ vc2 ’ , formula=’

SENSOR LOSSES CONTACT2/ i c 2 ’ )

EvolutiveCurve2D (name=’ EvolutiveCurve2D 71 ’ , evo lut ivePath=Evolut ivePath (

parameterSet=[SetParameterXVariable ( paramEvol=Variat ionParameter [ ’TIME ’

] ,

formula=[ ’ vc2 ’ ,

’ i c 2 ’ ] )

voltage contact.py
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