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ABSTRACT 

 

Ruminococcus albus strains are one of dominant fibrolytic bacteria in the rumen that 

contribute to plant biomass as well as vitamin utilization in host nutrition. To better 

understanding of host-microbe interactions, it is relevant to establish the model for fiber 

degradation and vitamin metabolism of the dominant fibrolytic bacteria and investigate their 

roles in the gut ecosystem. However, the fibrolytic mechanism and vitamin metabolism of 

Ruminococcus albus remain largely unknown. In the current study, comparative genomic and 

transcriptomic analyses of two different strains 7 and 8 of R. albus for plant fiber and folate 

utilization were used to investigate the conserved and differential mechanism between the two R. 

albus strains. 

Through comparative transcriptomic analyses of both strains grown on alkaline peroxide 

hydrogen treated corn stalk (AHPCS), phosphoric acid swollen cellulose (PASC) and wheat 

arabinoxylan (WAX), this research demonstrated that the top 5 highly expressed glycoside 

hydrolase (GH) families, including the versatile GH5, GH9 (Cel9B), GH10, GH11, and GH48 

(Cel48A), are the primary GH enzymes employed by both strains of R. albus for the hydrolysis 

of plant cell wall. In addition, the co-expression of these endoglucanases and endoxylanases in 

response to cellulose and hemicellulose was observed. The previously known adhering 

mechanism of R. albus were transcriptionally analyzed and verified in this research. The genes 

encoding Pil-like protein or a family 37 carbohydrate binding module (CBM37) domain were 

highly expressed in both strains during growth on different polysaccharides. Especially, the 



iii 
 

significant role of CBM37 in the fiber utilization of R. albus was highlighted based on the 

prevalence of CBM37 domain on the highly expressed GH genes as well as hypothetical genes.  

It is notable that distinct strategies between two strains for plant cell wall utilization were 

proposed in this research. Based on phenotypic, genomic, and transcriptomic evidence, wild type 

of R. albus 8 in rumen appears to preferentially utilize hemicellulose rather than cellulose 

embedded in the plant cell wall, while R. albus 7 prefers to utilize cellulose over hemicellulose. 

To support this conclusion, R. albus 8 utilized more hemicellosic sugars derived from the 

hydrolysis of AHPCS than R. albus 7. More CAZyme genes of R. albus 8 responded to WAX 

than PASC, while those genes of R. albus 7 responded to more PASC than WAX. When 

hemicellulose in AHPCS started to decrease in the culture, R. albus 8 down-regulated the 

expression of genes for sugar transporters and intracellular GH. In contrast, R. albus 7 exhibited 

a sequential expression of sugar transporters and intracellular GH genes, as preferred cellulosic 

sugars were released from AHPCS after removal of hemicellulose. Notably, we found the 

putative genes belonging to c-di-GMP regulatory and the accessory gene regulator quorum 

sensing (Agr QS) systems in R. albus 7 and 8. The transcriptional pattern of these genes were in 

accordance with differential transcriptional pattern of GH genes between both strains and the 

preferred planktonic growth of strain 8 on AHPCS as opposed to the substrate adherent growth 

of R. albus 7. These results suggest that c-di-GMP and Agr QS systems are implicated not only 

in biofilm formation of pathogenic bacteria, but also in the fibrolytic systems of commensal 

bacteria. Supported by the fermentation profile and the growth rate on beechwood xylan together 

with genomic and transcriptomic evidence, R. albus 8 was found to possess a predicted unique 

phosphoketolase (PK) pathway, which likely enables R. albus 8 to catabolize pentose rapidly as 
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well as conserve energy and costs for enzyme synthesis required for the lower glycolytic 

sequence. With our proposal for the differential strategies between strains, the co-culture 

experiment demonstrated that despite a similar fibrolytic mechanism, R. albus 7 and 8 could co-

exist on complex substrate containing cellulose and hemicellulose. 

This research on folate metabolism in R. albus 7 and 8 provided genomic evidence for 

three folate utilization pathways (either de novo synthesis, salvage, or both pathways) conserved 

in the Firmicutes including R. albus strains. Through the growth experiments in the presence or 

absence of folate and para-aminobenzoate (pABA), it was shown that R. albus strains 7 and 8 

rely on different folate metabolic pathways, de novo synthesis or salvage pathway, respectively. 

In addition, the results of transcriptomic analysis suggest that the folate autotrophic strain, R. 

albus 7, also has an alternative pathway for pABA synthesis and likewise other Ruminococcus 

species lacking the canonical pABA synthetic pathway are likely autotrophs and not auxotrophs.  

Notably, the potential long non-coding RNA (lncRNA) loci was identified in the 

genomes of R. albus strains. The putative lncRNA loci consisted of four sequence components; 

lncRNA, DUF1292 gene, putative 6S RNA, and alcohol dehydrogenase. Based on their 

transcriptional profiles assessed by RNA-seq and northern blot analyses, it seems likely that the 

lncRNA loci are involved in the regulatory system related to the stationary phase of cells.  

This study provides molecular insight in conserved and differentiated fibrolytic system 

and folate metabolism between R. albus 7 and 8. In addition, the presence of novel lncRNA loci 

was identified, providing more information on the regulatory mechanism in Gram-positive 

Firmicutes. 
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CHAPTER 1. 

LITERATURE REVIEW 

 

1.1 Roles of gut microbiota for utilization of complex carbohydrates in mammals 

Mammalian genomes lack the enzymes required to deconstruct the structural polysaccharides, 

cellulose and hemicellulose, present in the plant cell wall. Instead, mammals rely on symbiotic 

microbes in the gut that are able to degrade dietary plant biomass and convert it to a usable 

energy source by the host. Large herbivores, such as ruminants and horses, rely considerably on 

resident gut microbes to gain energy from their primary diet, forage. The major source of energy 

for ruminants is volatile fatty acids (e.g. acetate, propionate, and butyrate) that are supplied by 

the ruminal microbes during forage fermentation. In addition, the ruminal bacteria are also 

utilized as protein source by ruminants after digestion by host digestive enzyme in the lower gut. 

It has been shown that the metabolic energy produced by gut microbes contributes up to 70 % of 

total dietary energy for large herbivores (1). Omnivores, notably humans, acquire additional 

energy from microbial fermentation of non-digestible dietary substrates in large intestine, but the 

hindgut fermentation products contribute to approximately 10 % of total energy supply to the 

host (2). Moreover, fermentation products of intestinal microbes play an important role in human 

health. For example, butyrate is a microbial fermentation product that is the main energy source 

for the colonic epithelium in human and boosts the intestinal immune system (3, 4). The amounts 

and types of dietary carbohydrates are known to be primary factors that shape microbial 

composition and affect their physiological activities in the human intestine (5, 6). 
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Most of the dietary fiber (plant-derived polysaccharides) enters into the rumen and large 

intestine in insoluble forms. In spite of a diverse community of microbes in the rumen, only a 

few microorganisms are capable of degrading the insoluble plant cell wall (7, 8). Other numerous 

groups of ruminal microbes are non-cellulolytic bacteria that rely on soluble oligosaccharides 

and polysaccharides, released by the primary fiber degrader for growth (9–11). In spite of 

capability of degrading cellulose and hemicellulose, some cellulolytic bacterial species are 

nutritionally specialized to only cellulose (7). For example, one of the predominant cellulolytic 

ruminal bacteria, Fibrobacter succinogenes, breakdown cellulose and hemicellulose in plant cell 

wall, but it does not transport and utilize the hydrolytic products of xylan (12–14). As a result, 

the solubilized hemicellulosic polysaccharides are released into the rumen environment and 

subsequently, utilized by other groups of bacteria. This cross-feeding between microbial species 

is an important metabolic feature in anaerobic microbial communities that involves fermentation 

products, such as lactate, ethanol, and hydrogen (15–18).  

 Recent metagenomic analyses based on 16S rRNA gene sequences have shown a 

diversity of microbial communities in mammalian gut (10, 11). Although there is compositional 

variation depending on diets, Bacteroidetes and Firmicutes are the predominant phyla in humans 

and ruminants. The representative genus in Bacteroidetes phylum is Bacteroides species in the 

human large intestine and Prevotella species in the rumen. The Firmicutes also contain gram-

variable bacteria, but in the gram-positive bacterial group, Clostridial 16S rRNA sequence based 

XIVa, IV, and IX clusters are abundant in the gut microbiome.    

 Despite the fact that numerous microbial species exist in the gut, only a few bacterial 

species are known to be as specialist cellulolytic bacteria. In the rumen, the primary cellulolytic 

species are Fibrobacter succinogenes, Ruminococcus albus, and Ruminococcus flavefaciens (19, 
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20). F. succinogenes belongs to a discrete phylum of gram-negative bacteria and the two species 

of ruminococci are gram-positive Firmicutes belonging to the Clostridial IV cluster. As limited 

strains have been isolated and physiologically characterized, it is still possible that there may be 

unknown, but important cellulolytic species in the gut. Cellulolytic species are closely associated 

with plant surfaces, potentially through biofilm formation (21, 22). From this perspective, the 

tightly attached bacteria to plant fiber are considered to have the highest potential for fiber 

degradation. Molecular surveys have reported that there is spatial variation between two 

dominant phyla, Bacteroidetes and Firmicutes, in the gut. In rumen samples, 16S rRNA genes of 

Firmicutes are more abundant on the insoluble substrate associated fraction than Bacteroidetes 

(23). Similarly, in human feces that reflect microbial events in the distal colon, Firmicutes are 

more abundant in the fiber associated fraction than Bacteroidetes, and those Firmicutes include 

cluster IV Ruminococci showing the most extensive association with plant biomass (24–26). 

Among the insoluble associated species, each phylotype was shown to have a differential 

preference for colonization of particular insoluble polysaccharides in a continuous culture with 

human fecal inocula (25). The 16S rRNA sequence analysis showed that a different community 

attached to each substrate (wheat bran, resistant starch, and porcine mucin), including uncultured 

groups within clostridial cluster XIVa (24). For example, Ruminococcus bromii and 

Bifidobacterium adolescentis were the most abundant species on resistant starch containing 

medium, and Bifidobacterium bifidum and uncultured bacteria related to Ruminococcus lactaris 

were the most abundant on mucin.  

 Based on 16S rRNA gene sequencing, it has been confirmed that the predominant 

cellulolytic species in the rumen are F. succinogenes, R. flavefaciens, and R. albus, and their 

isolated strains have provided detailed information about functional mechanisms of plant cell 
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wall degradation in the gut through genomic, transcriptomic, and biochemical analyses. In 

addition, Ruminococcus species are also present in the human gut, which suggests that the 

cellulolytic mechanism deployed by ruminal species can be applied to closely related species 

inhabiting the human colon (27, 28).  

  

1.2 Plant cell wall degradation by gut microbes 

Plant cell wall structure. Plant cell walls consist of recalcitrant cellulose embedded in a 

hemicellulose matrix and lignin. The major structural component of the plant cell wall is 

cellulose, consisting of linear chains of β-1,4-linked glucose units. The recalcitrant nature of 

cellulose is due to the high degree of crystallinity, resulting from an extensive hydrogen bonding 

network as well as the stability of the glycosidic bonds. The hydrogen-bonds between cellulose 

microfibrils can be disrupted and form amorphous or even partially soluble cellulose. The 

amorphous forms are more accessible to enzymatic attack. Hemicellulose refers to 

polysaccharides of primarily pentose sugars and includes xylan, arabinan, and mannan. The 

dominant component of hemicellulose is xylan, β-1,4-linked xylose monomers substituted with 

arabinose, acetate, feruloyl ester, and glucuronic acid moieties. The substituent proportions vary 

between different xylan sources. For example, wheat arabinoxylan is composed of 66 % xylose 

and 33 % arabinose, whereas birchwood xylan is composed of 89% xylose, 1 % arabinose, and 8 % 

glucuronic acids (29, 30). Other components of hemicellulose can consist of different sugars in 

the backbone, such as xyloglucan (mixed sugar backbone with xylose and glucose) and 

glucomannan (mixed sugar backbone with mannose and glucose) (31).  
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Microbial enzymatic components required for plant cell wall breakdown. Plant biomass 

degradation requires hydrolysis of both cellulose and hemicelluloses and consequently, 

cellulolytic species need to employ a variety of enzymes, including glycoside hydrolases (GHs), 

polysaccharide lyases (PLs), and carbohydrate esterases (CEs) (32, 33). GHs are generally 

composed of catalytic domains and accessory domains that include non-catalytic carbohydrate-

binding modules (CBMs), dockerins, and cell surface adhering modules (e.g. sortase motifs). In 

addition, domains of unknown function are often present in GHs enzymes (34). To date, GHs are 

classified into 133 families based on amino acid sequence similarity, secondary and tertiary 

structure, and catalytic mechanism (33, 35). These classifications are described in the 

Carbohydrate Active enZYme (CAZy) database (http://www.cazy.org/). Most of the GH families 

exhibit a high degree of substrate specificity (e.g. GH10 and 11 endoxylanases), whereas others 

seem to be promiscuous (e.g. GH5 enzymes). Based on cleavage site of the polysaccharide chain, 

GHs are often sorted to two classes, endo- or exo-acting enzymes. Endo-glucanases (EC 3.2.1.4) 

cleave β-1,4 linkages at random sites within glucan chains. Exo-glucanases (EC 3.2.1.91) bind to 

the ends of the glucan chain and processively cleave off repeating units of cellobiose (thus, they 

are often called ‘cellobiohydrolase’). There is a mixed type of endoglucanase between endo- and 

exo-acting enzymes. A processive endoglucanase cleaves β-1,4 linkages anywhere along the 

glucan chain (a feature of endoglucanase) and then continues to cleave off the ends of the glucan 

chain processively, similar to exoglucanase (36, 37). Among total 133 families of GH, 

cellulolytic enzymes are found in GH families 5, 6, 7, 8, 9, 45, 48, 74, and 124 (38). The primary 

product of these cellulases is cellobiose. It has been shown that both exoglucanases and 

endoglucanases or processive endoglucanases are required for efficient and full degradation of 
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cellulose into cellobiose (39). Cellobiohydrolases are generally found in GH6, GH7, or GH48 

families and processive endoglucanases have been primarily found in GH9 and GH5 families.  

 Non-catalytic CBMs are frequently found to be associated with the catalytic CAZyme 

domains (GH, PL, and CE).They are used in conjunction with catalytic domains to improve 

activity of the parent enzyme (40, 41). The typical role of CBMs is binding to substrate, which 

allows the catalytic GH domain to have increased proximity to its target substrate. Another 

function of CBMs is to modulate activity of its parent enzyme. For example, the CBM3 of GH9 

endoglucanases promotes the parent enzyme to cleave the polysaccharide chain processively. In 

addition, some CBMs have been implicated in location of the appended enzyme to the bacterial 

cell wall (42, 43).  

 Compared to cellulose, hemicellulose breakdown requires a more diverse group of 

enzymes due to the complex polysaccharides contained in hemicelluloses. Hemicellulases can be 

categorized into two groups. One group of enzymes cleaves the main backbone of 

polysaccharides, such as xylan, and other group of enzymes cleaves the side chain constituents 

from the main backbone. In substituted xylan (e.g. wheat arabinoxylan), the backbone of xylose 

chain is cleaved by endo-xylanases. Both GH10 and GH11 enzymes hydrolyze long polymers of 

xylan into short oligomers. Subsequently, β -xylosidases cleave xylo-oligosaccharides into 

xylose monomers. Removal of substituents on xylan backbone requires diverse accessory 

enzymes, including α -L-arabinofuranosidases (removal of arabinose units), acetylxylan esterases 

(removal of acetyl groups), α-glucuronidases (removal of glucuronates), and ferulic acid 

esterases (removal of feruloyl esters) (30, 33). All of these enzymes act synergistically to release 

monosaccharides that directly enter into fermentation pathways.  
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Rumen cellulolytic Firmicutes. Two cellulolytic species within ruminal Firmicutes, 

Ruminococcus flavefaciens and Ruminococcus albus are Gram-positive bacteria. Both species 

are able to degrade and ferment both cellulose and hemicellulose in the plant cell wall. Many 

strains of R. flavefaciens show high cellulolytic activity on crystalline cellulose although there is 

some cellulolytic variation between strains for different types of plant cell wall and cellulose (44). 

R. flavefaciens is known to degrade plant cell wall using a cellulosome-type enzyme complex 

(10, 11, 38, 45, 46). The cellulosome paradigm has been established through intensive studies on 

fibrolytic soil bacteria, Clostridium species (45, 47). Numerous polysaccharidases are arranged 

on the surface of C. thermocellum through interaction between dockerin and cohesion domains 

that are present on catalytic enzymes and scaffoldins, respectively. This assembled enzymatic 

complex mediates cell attachment to plant cell wall. Of the gut cellulolytic Firmicutes, R. 

flavefaciens FD-1 harbors more than 10 putative scaffoldins and more than 200 putative 

dockerin-bearing proteins. The genes encoding four types of scaffoldins (ScaA, B, C, and E) and 

cellulose-binding protein (CttA) are clustered together on the genome of R. flavefaciens. Of four 

scaffoldins, ScaA and ScaC contain one or two cohesins that interact with dockerin containing 

catalytic enzymes, including diverse GHs, CEs, and PLs. The multi-cohesion bearing scaffoldin, 

ScaB, functions as a platform for anchoring ScaA and ScaC and also interacts with the cell 

surface anchoring scaffoldin, ScaE. As a result, the enzymatic complex, through dockerin-

cohesin interaction on the scaffoldins, enables the cell to bind to and degrade plant cell wall (Fig. 

1.1).  

 However, this cellulosomal system of R. flavefaciens is unlikely applied to other 

predominant cellulolytic species in the rumen, R. albus. R. albus was isolated together with R. 

flavefaciens as ruminal cocci in 1951. The isolated ruminococci from rumen were classified into 
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R. albus (white strains) and R. flavefaciens (yellow strains) based on the production of yellow 

pigment. Later, R. albus strain 7 was isolated and shown to produce a yellow pigment (48). In 

addition to differential pigmentation between R. albus strains, the yellow strain, R. albus 7, 

exhibited a better capability of degrading cellulose than the white strain, R. albus 8 (44, 49). 

Regarding the cellulosomal system, the genomes of R. albus strains do not possess any putative 

cohesins or scaffoldins that are key components of the cellulosome system, suggesting that this 

species use a different fibrolytic system. To date, it has been known that R. albus adheres to plant 

fiber using three mechanisms, including a Pil-like protein (CbpC), a glycocalyx, and a unique 

carbohydrate binding module 37 family (CBM37) (42, 50–53). Research on the adhesion 

defective mutants of R. albus have shown that the mutant strains lack type IV pilin proteins 

(CbpC for R. albus 8 and GP25 for R. albus 20), suggesting the Pil-like proteins are involved in 

adherence of R. albus species (50, 54). However, the homologous gene of CbpC in R. albus 7 did 

not respond transcriptionally to cellulose in contrast to R. flavefaciens showing strong up-

regulation of the orthologous gene on cellulose (55, 56). Other adhesion defective mutants has 

been isolated from R. albus 8 and the mutant lacks two glycoside hydrolases, Cel9B and Cel48A 

(57). Interestingly, these GHs contain a novel CBM module, which was later classified as the 

CBM family 37 (52). The CBM37 module is conserved within only R. albus species and 

associated with various CAZymes of R. albus. Furthermore, the CBM37 shows a binding affinity 

to a broad range of polysaccharides as well as the bacterial cell wall (42, 52). Thus, it seems that 

the CBM37 functions as a cell surface-binding module as well as a substrate-binding module, 

potentially resulting in the localization of the extracellular catalytic enzymes on the cell surface.   

 In addition to a distinct fibrolytic system from that of R. flavefaciens, R. albus produces 

bacteriocins that likely function in a competitive manner. Both R. albus 7 and 8 are known to 
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produce a bacteriocin, albusin, which has a growth depression effect on R. flavefaciens, which 

likely account for the dominant population of R. albus when it was grown together with R. 

flavefaciens and F. succinogenes on cellulose (58–60).   

Human gut Firmicutes. In the human gut, especially the colon, the two main families of 

Firmicutes, the Lachnospiraceae and Ruminococcaceae, are found, accounting for 20 to 30 % of 

total bacteria (61). Depending on type of non-digestible carbohydrates in diet, there is a variation 

in the relative abundance between those two families of Firmicutes (6, 62). It is known that high 

intake of resistant starch increases the abundance of Ruminococcaceae species including R. 

bromii, while high intake of wheat bran promotes Lachnospiraceae including Roseburia spp. and 

Eubacterium rectale (6). So far, Ruminococcus champanellensis is the only cellulolytic 

Firmicutes isolated from the human gut (27, 63). The genome of R. champanellensis encodes a 

similar array of putative cellulases to those of the cellulolytic ruminococci in rumen, including 

GH5, GH9, GH48, and GH74 CAZymes. In addition, R. champanellensis possesses various 

putative dockerin bearing CAZymes and 11 scaffoldins containing cohesins and dockerins, 

suggesting that it appears to use a cellulosomal system similar to R. flavefaciens (28).     

Rumen Bacteroidetes (Prevotella species). Many highly abundant bacterial species isolated 

from the mammalian gut cannot degrade intact plant cell wall or crystalline cellulose. 

Nevertheless, they produce multiple catalytic enzymes that are capable of degrading 

hemicelluloses (e.g. xylan) and amorphous cellulose. The non-cellulolytic species include 

ruminal Bacteroidetes (Prevotella species) and Firmicutes (Butyrivibrio fibrisolvens, Roseburia 

speices, and Eubacterium rectale) (10). It appears that these microbes utilize dietary soluble 

polysaccharides or solubilized polysaccharides released by other cellulolytic microbes (18, 64). 

The non-cellulolytic Bacteroidetes, Prevotella bryantii, was isolated from the rumen and is able 
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to utilize only soluble xylans and its oligomers (65, 66). It has been known that two gene clusters, 

encoding GH10 endoxylanase and GH43 β-xylosidase, play an important role in the utilization of 

xylan by P. bryantii (67). These two clusters are induced by a hydrid two component regulator in 

response to xylo-oligosaccharides. This transcriptional phenomenon is shown to function in the 

degradation of xylan in Bacteroides ovatus (68). In addition, the bulk of xylanase activity is 

located in the periplasm or membranes, rather than on the cell surface, which is similar to the 

polysaccharide utilization loci (PUL) system of human gut Bacteroides genus within 

Bacteroidetes phylum (66). Taken together, it seems likely that the Bacteroides and Prevotella 

genera within gut Bacteroidetes phylum share a polysaccharide utilizing system (Fig. 1.1).  

Recently, the genome of uncultured Bacteroidetes species has been reconstructed using 

metagenomic analysis from the cow rumen (69). Interestingly, the genome possesses a PUL 

system for cellulose utilization. Through biochemical analyses, it turns out that the cellulolytic 

PUL encodes two cellulases (GH5 and GH9) as well as a putative cellobiose phosphorylase 

(GH94) together with SusCD-like proteins. So far, none of cellulolytic Bacteroidetes species 

have been isolated and their PUL systems have not shown the cellulolytic activities. Thus, it is a 

novel finding showing the diverse bacterial mechanism for cellulose degradation in the gut.     

Human gut Bacteroidetes. The most common and abundant genera of Bacteroidetes in the 

human gut are Bacteroides and Prevotella (70, 71). Because of several isolated strains, their 

available genome sequences, and genetic tools, the mechanisms of carbohydrate utilization have 

been intensively investigated in detail in Bacteroides species, rather than any other microbial 

species in human gut. Bateroides genus demonstrates the capability of utilizing a broad range of 

substrates, including dietary polysaccharides as well as host-derived glucans (72–74). To 

breakdown and utilize those substrates, two polysaccharide utilization systems are employed by 
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Bacteroides species; starch utilization system (Sus) and Sus-like PUL system. The Sus system of 

B. thetaiotaomicron is composed of eight proteins (SusRABCDEFG). SusCDEFG are localized 

on the outer membrane and play roles in binding (SusDEF), degrading (SusG), and importing 

(SusC) of soluble starch into the periplasm (Fig. 1.1). Of those proteins, SusC (a TonB-

dependent transporter) and SusD (functioning as binding substrate to the cell surface) are critical 

components in Sus system because SusC cannot bind the substrate alone and requires SusD to 

initiate.  

 The Sus system has been established as a paradigm for glycan utilization, and further 

expanded to the mechanism for the different polysaccharides utilization in the Bacteroidetes (68). 

B. thetaiotaomicron harbors 88 PULs that contain SusCD like proteins. In addition, the PULs 

contain CAZymes, required to the hydrolysis of the specific polysaccharides and response 

regulators that tune the expression level of the PULs. The transcriptomic analyses showed that 

each PUL is upregulated by specific substrates including xylan, β-glucan, and 

galactoglucomannan. Such specific responses of PULs are mediated by the hybrid two-

component regulators that recognize specific linear oligosaccharides (68). Xylanolytic PULs 

were investigated in B. ovatus, B. intestinalis and ruminal Bacteroidetes such as P. bryantii. In P. 

bryantii, the PUL includes susCD orthologs, two-component regulators, and endoxylanase 

(GH10), which were highly expressed in response to wheat arabinoxylan (67, 75). This 

xylanolytic PUL is found on the genomes of diverse Prevotella species as well as Bacteroides 

species, suggesting that this mechanism is likely to apply to xylan-debranching gut Bacteroidetes 

(67, 76). Similar to P. bryantii, two PULs, encoding xylan debranching enzymes and susCD 

othologs, in B. ovatus and B. intestinalis were strongly up-regulated in response to xylan (68, 75, 

77). Taken together, the detailed organization of xylanolytic PULs varies between Bacteroidetes 
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species, but the overall components of the PULs, such as SusCD-like proteins and hydrolytic 

enzymes, are well conserved within the Bacteroidetes phylum in human gut and rumen.  

Rumen cellulolytic Fibrobacter succinogenes. Fibrobacter succinogenes, a Gram-negative rod-

shaped bacterium, was originally isolated as Bacteroides succinogenes from rumen (78). 

Although F. succinogenes is capable of degrading both cellulose and hemicellulose, this 

bacterium utilizes only cellulosic derived hexose sugars (e. g. cellobiose and cello-

oligosaccharides) released from cellulose hydrolysis (13, 79). Thus, it has been hypothesized that 

the hemicellulolytic activity of this microbe serves as a method to gain access to cellulose 

embedded in hemicellulose matrix. F. succinogenes possesses a large number of GH genes 

including cellulases and hemicellulases on the genome, but it lacks either putative exo-

glucanases (GH6, GH7, or GH48) or processive endo-glucanases (GH5 or GH9), which differ 

from a typical feature of enzymatic mechanism of cellulolytic ruminococci for the fiber 

degradation. Thus, it appears that F. succinogenes employs a novel cellulolytic system, differing 

from other cellulolytic Firmicutes. It has been proposed that the glucan chains are channeled into 

the periplasm and then hydrolyzed into short oligomers in F. succinogenes (Fig. 1.1)(79). 

Neither cellulosomal components (e.g. dockerin and cohesion) nor CBM37 like domains are 

present on the genome of F. succinogenes. Instead, many GH genes including cellulases of F. 

succinogenes contain a highly basic carboxxy-terminal domain (BTD), but its function is 

unknown (80, 81).  
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1.3 Sugar metabolism in gut microbes 

The hydrolysis of a various polysaccharides in plant cell wall generates a mixture of 

hexoses, pentoses, and their derivatives. In general, these sugars are catabolized for the 

generation of energy and conversion to precursors for biosynthetic reactions. There are a variety 

of pathways for sugar catabolism in bacteria. Herein, I discuss the catabolic pathway for glucose 

and xylose that are the most abundant form of hexose and pentose in the plant cell wall. Most 

heterotrophic bacteria, including aerobes and anaerobes, are able to metabolize glucose by the 

glycolytic pathway that converts glucose into pyruvate. During this process, the free energy is 

released and conserved in the form of high-energy compounds, ATP and NADH. The most 

common pathway of sugar metabolism is glycolysis (the Embden-Meyerhof-Parnas pathway; 

EMP pathway), but some bacteria metabolize glucose through unique pathways that are not 

found in eukaryotes (e.g. the Entner-Doudoroff pathway and phosphoketolase pathway).  

Embden-Meyerhof-Parnas (EMP) and Entner-Doudoroff (ED) pathways. In EMP pathway, 

the enzymatic reaction steps are described in Fig. 1.2 and the overall reaction for the EMP 

pathway is given as follows: 

Glucose → 2 Pyruvate + 2 ATP + 2 NADH 

Based on the common and unique steps between the EMP and other pathways (e.g. ED pathway 

and pentose phosphate pathway), the EMP pathway is divided into two parts; the unique part in 

the upper glycolysis (from glucose-6-phosphate to fructose-1,6-bisphosphate) and the common 

part in the lower glycolysis (from glyceraldehyde-3-phosphate to pyruvate). In the upper 

glycolysis pathway, the first step is the phosphorylation of glucose to glucose-6-phosphate using 

ATP. Subsequently, glucose-6-phosphate is isomerized to fructose-6-phosphate and more 
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phosphorylated into fructose-1,6-bisphosphate by phosphofructokinase (PFK). PFK is the key 

enzyme of the EMP pathway. Thus, if a bacterium harbors this enzyme, the bacterium is 

considered to be a EMP pathway harboring organism. Fructose-1,6-phosphate is cleaved by 

fructose-1,6-phosphate aldolase into two molecules of triose-phosphate, glyceraldehyde-3-

phosphate (G-3-P) and dihydroxyacetone-phosphate (DHAP). DHAP is isomerized to G-3-P and 

resulting two molecules of G-3-P enter into the lower glycolysis pathway that generates energy. 

G-3-P is oxidized to 1,3-bisphosphoglycerate coupled with reduction of NAD+ by 

dehydrogenase. ATP is generated through the conversion of 1,3-biophosphoglycerate to 3-

phosphoglycerate by kinase. 3-phosphoglycerate is converted to 2-phosphoglycerate and 

subsequently, converted to phosphoenolpyruvate (PEP) by mutase and enolase. Additional ATP 

is generated through the conversion of PEP to pyruvate by kinase.  

 The Entner-Doudoroff (ED) pathway has only been found in prokaryotes. The ED 

pathway bearing microorganisms, such as Pseudomonas species, do not harbor the key enzyme 

(PFK) of the EMP pathway. Thus, glucose-6-phosphate is converted to 6-phosphogluconate, 

coupled with NADP+ reduction, and dehydrated to 2-keto-3-deoxy-6-phosphogluconate (KDPG). 

Then, KDPG is cleaved by aldolase into pyruvate and G-3-P that is converted into pyruvate 

through the lower glycolysis pathway (Fig. 1.2). As half molecule of glucose bypasses the 

energy generating lower glycolysis pathway, the overall reaction for the ED pathway is as follow: 

Glucose → 2 Pyruvate + 1 ATP + 1 NADH + 1 NADPH 

Compared to the EMP pathway, metabolizing glucose through the ED pathway conserves only 

one ATP per molecule of glucose. Thus, it has been suggested that the primary function of the 

ED pathway is to metabolize not glucose, but rather sugar acids like gluconate (82). This 
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hypothesis seems reasonable, considering that gluconate cannot be metabolized through the EMP 

pathway and the ED enzymes lacking Escherichia coli strains are unable to grow on gluconate 

(83). However, it cannot be applied to the microorganisms that metabolize glucose through the 

ED pathway, including Pseudomonas saccharophilus and Zymomonas mobilis (84). From this 

perspective, Flamholz et al. (2013) suggested that the energy loss through the ED pathway, 

relative to the EMP pathway, can be compensated by saving the cost for protein synthesis (85). 

Through the thermodynamic and kinetic analyses, the authors predicted that the EMP pathway 

requires several fold more catalytic enzyme production to reach the same glucose conversion rate 

to pyruvate, as compared to the ED pathway. Thus, the ED pathway likely enables the cell to 

produce less catalytic enzymes, which allows the ED harboring bacteria to use a similar net 

energy for the growth with the EMP harboring bacteria.  

Pentose phosphate (PP) pathway. Pentose fermenting bacteria can use pentose as energy 

source using the pentose phosphate (PP) pathway (86). In this pathway, pentoses, such as xylose, 

arabinose or ribose, are phosphorylated and then, isomerized to xylulose-5-phosphate and ribose-

5-phosphate (Fig. 1.2). The pentose-5-phosphates are transformed to fructose-6-phosphate (F-6-P) 

and glyceraldehyde-3-phosphate (G-3-P) through carbon rearrangement by transketolase and 

transaldolase. Subsequently, both F-6-P and G-3-P are metabolized through the EMP pathway 

for the energy generation. The PP pathway is not only used to metabolize pentose, but also used 

to synthesize essential compounds for the cell growth. Of the intermediates in the PP pathway, 

ribose-5-phosphate is the precursor for nucleotide synthesis and erythrose-4-phosphate is used to 

synthesize aromatic amino acids (e.g. phenylalanine, tyrosine, and tryptophan) through the 

shikimate pathway. This is why about 28 % of glucose is metabolized through the PP pathway 

when E. coli grows on glucose as the sole carbon source (86).  
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Phosphoketolase (PK) pathway. Phosphoketolases (PK; EC 4.1.2.9, EC 4.1.2.22) are key 

enzymes of the phosphoketolase pathway for energy conservation of heterofermentative 

lactobacilli, Bifidobacterium bifidum, and Clostridium acetobutylicum (86). Depending on 

substrates, three types of phosphoketolases have been biochemically characterized; xylulose-5-

phosphate (Xu-5-P) phosphoketolase, fructose-6-phosphate (F-6-P) phosphoketolase, and 

xylulose-5-phosphate/fructose-6-phosphate phosphoketolase (XFP). Xu-5-P PK enzyme cleaves 

Xu-5-P with inorganic phosphate into glyceraldehyde-3-phosphate (G-3P) and acetyl-phosphate, 

and F-6-P PK enzyme cleaves F-6-P with inorganic phosphate into erythrose-4-phosphate (E-4P) 

and acetyl-phosphate. XFP enzyme is able to cleave both substrates, Xu-5-P and F-6-P.    

PK pathway in heterofermentative lactobacilli. Generally, lactobacilli are classified 

into two groups based on fermentation products; homofermentative (fermenting lactate only) and 

heterofermentative (fermenting acetate, ethanol, and lactate) lactobacilli (86). The former group 

ferments glucose through the EMP pathway, but the latter group uses the PK pathway for 

fermenting glucose. Heterofermentative Lactobacillus species, including L. brevis, L. fermentum, 

and L. mesenteroides, produce lactate, ethanol, and CO2 from glucose via the PK pathway (Fig. 

1.3). These bacteria do not use the EMP pathway. Instead, they oxidize glucose-6-phosphate (G-

6-P) to ribulose-5-phosphate (Ru-5-P), followed by conversion to Xu-5-P by an epimerase. The 

Xu-5-P specific PK enzyme then, splits Xu-5-P into G-3-P and acetyl phosphate. The former 

molecule is used to generate ATP through the lower glycolytic pathway, and the latter molecule 

is reduced to ethanol to regenerate NAD+ that is required for the glucose oxidation steps. From 

this PK pathway, heterofermentative lactobacilli produce only one ATP per molecule of glucose. 

However, during growth on pentose, two molecules of NAD+ are not reduced, which enables the 
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cell to use acetyl phosphate for the energy conservation pathway through acetate production. For 

this reason, heterofermentative bacteria produce one more ATP from pentoses than hexoses.    

Bifidum pathway. Bifidobacterium bifidum has two phosphoketolases, each active on 

fructose-6-phosphate (F-6P) and xylulose-5-phosphate (Xu-5-P)(86). This bacterium ferments 

sugars into acetate and lactate via the bifidum pathway. As shown in Fig. 1.3, F-6-P is cleaved 

into erythrose-4-phosphate (E-4-P) and acetyl-phosphate, and the E-4-P is rearranged with other 

F-6P into Xu-5-P which is further metabolized into lactate and acetate as in heterfermentative 

lactobacilli. From 1 molecule of glucose, B. bifidum produces 2.5 ATP using the bifidum 

pathway, but no energetic advantage from pentose fermentation, which is different from the PK 

pathway of heterofermentative bacteria.  

Phosphoketolase pathway in Clostridium acetobutylicum. Of the known cellulolytic 

bacteria, C. acetobutylicum harbors both PP pathways and PK pathway for pentose metabolism 

(Fig. 1.4) (87–90). In contrast to lactate producing bacteria, the PK pathway is used to 

metabolize pentoses in C. acetobutylicum. The XFP enzyme of C. acetobutylicum cleaves Xu-5-

P, transformed from pentoses, into G-3-P and acetyl-phosphate, bypassing most of the PP 

pathway. This feature of the PK pathway results in less ATP production in catabolizing pentose, 

as compared to the PP pathway. Thus, it was puzzling which pathway is dominant when the cells 

are grown on pentose. Through the metabolic flux analyses, it turns out that when C. 

acetobutylicum grows on xylose as the sole carbon source, up to 40 % of xylose is metabolized 

through the PK pathway, and the PP pathway consumes the remaining 60 %. However, the 

transcriptional analysis showed that the XFP gene was induced by arabinose greater than xylose. 

Accordingly, when feeding arabinose alone or arabinose plus xylose, the PK pathway is more 

dominant than the PP pathway. Interestingly, it seems that the PK pathway provides a growth 
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advantage to the cells. When C. acetobutylicum grows on the mixture of pentoses, the cells 

preferentially utilize arabinose over xylose. Indeed, the growth rate of cells is also higher when 

grown on arabinose, relative to xylose (87, 91). However, it is still unknown why the PK 

pathway is differentially regulated between two pentoses and how the PK pathway provides a 

growth benefit to C. acetobutylicum.  

 

1.4 B-Vitamin metabolism of rumen bacteria 

Together with vitamin C, B-vitamins are a class of water-soluble vitamins composed of 

eight vitamins (B1, B2, B3, B5, B6, B9, and B12). They all are essential micronutrients that play 

important roles in growth metabolism of all living cells. The active form of vitamin B1 (thiamine) 

is the coenzyme named thiamine pyrophosphate (TPP), which is involved in the enzymatic 

conversion of pyruvate to acetyl-CoA. Thus, thiamine plays a critical role in the energy (e.g. 

ATP) generation from carbohydrates. It is also involved in RNA and DNA synthesis, as well as 

nerve function in human (92). Vitamin B2 (riboflavin) is the precursor of flavin mononucleotide 

(FMN) and flavin adenine dinucleotide (FAD). Both are essential cofactors that function as 

electron carriers in energy conservation pathways including the electron transport chain and the 

TCAcycle, as well as the fatty acid catabolism through beta-oxidation (93). Vitamin B3 (niacin) 

is essential precursor for two coenzymes: nicotinamide adenine dinucleotide (NAD) and 

nicotinamide adenine dinucleotide phosphate (NADP). Both coenzymes function as electron 

carriers involved in various metabolic pathways such as the glycolysis, the TCA cycle, nucleic 

acid synthesis, et cetera. (94). Vitamin B5 (pantothenic acid) is an essential precursor for 

coenzyme A that is important for the synthesis of fatty acid, amino acids, ketones, cholesterol, 



19 
 

and phospholipids (95). The active form of vitamin B6 (in three forms of pyridoxine, pyridoxal, 

and pyridoxamine) is pyridoxal 5’-phosphate (PLP), which functions as a cofactor involved in 

amino acid, glucose, and lipid metabolism (96). Vitamin B7 (biotin) is an essential coenzyme of 

four carboxylases: acetyl-CoA carboxylase, propionyl-CoA carboxylase, B-methylcrotonyl-CoA 

carboxylase, and pyruvate-CoA carboxylase. These four enzymes are involved in various 

metabolic pathways including fatty acid synthesis, gluconeogenesis, amino acids and cholesterol 

metabolism (97). The active forms of vitamin B12 (cobalamin) are methylcobalamin and 

adenosylcobalamin. Both coenzymes are required for enzymatic reactions in the cellular 

metabolism of carbohydrates, proteins, and lipids (98). 

Vitamin B9 (Folic acid) is composed of three molecules (pterin, p-aminobenzoate 

(pABA), and glutamate) to which one-carbon units at various oxidation levels can be attached at 

the N5 and N10 positions (99). Tetrahydrofolate (THF), a folate derivative, serves as cofactor in 

one-carbon transfer reaction required for the synthesis of purines, formylmethionyl-tRNA, 

thymidylate, pantothenate, glycine, serine, and methionine (Matthews RG, 1996). Plants, fungi, 

and most bacteria make folates de novo, starting from GTP and chorismate, most animals, 

including humans, lack key enzymes of the synthetic pathway and so folate must be supplied 

through the diet. However, ruminants in which the rumen is fully functioning are independent of 

a dietary supply of folate due to biosynthesis by rumen bacteria (100). The rumen bacteria that 

synthesize folate inside their cells are passed to the abomasum along with digested feed and 

release their vitamin store to host after digestion by host enzymes. For these reasons, folate 

synthesis and salvage pathways have been extensively studied in model organisms, such as 

Escherichia coli and Lactobacilli. 
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The vitamin requirements of the predominant cellulolytic species in the rumen were 

studied by pinoneers of anaerobic microbial ecology decades ago. A total of seven strains of 

Fibrobacter succinogenes have been studied (101) and all except one had an absolute 

requirement for biotin. For the exception, strain growth was also stimulated by biotin. The 

remaining B-vitamins, including folate, did not affect the growth of F. succinogenes. The 

vitamin requirements of Ruminococci were reported by Bryant and Robinson (102) and their 

requirement differ by strain. All three strains of R. flavefaciens had a requirement for biotin and 

no requirement for folate, similar to F. succinogenes. Similarly, all nine strains of R. albus 

studied had an absolute requirement for biotin, but considerable variation in folate requirement 

was found between individual strains. Some R. albus strains, such as R. albus 7 and B199, did 

not require folate for growth, but other strains, such as R. albus 20 and B337, had an absolute 

requirement for preformed folate. As the genomes of both R. albus 7 and 8 have been sequenced, 

a variety of studies have been conducted to determine their fiber degradation mechanism through 

genomic, transcriptomic, and proteomic analysis. However, vitamin metabolism of R. albus 

strains is largely unknown, while the vitamin requirement of R. albus 8 has not been studied yet.     

 The folate de novo synthesis pathway has the same steps in bacteria and plants, consisting 

of a pterin branch and a pABA branch. The first reaction of the pterin branch is the conversion of 

GTP to 7,8-dihydroneopterin triphosphate by GTP cyclohydrolase I (folE) (Green JBPM and 

Matthews RG, 1996). The resulting 7,8-dihydroneopterin is converted into 6-hydroxymethyl-7,8-

dihydropterin in three consecutive steps by a specific pyrophosphatase (folQ), dihydroneopterin 

aldoase (folB), and hydroxymethyldihydropterin pyrophosphokinase (folK) (103). Subsequently, 

dihydropteroate synthase (folP) condenses 6-hydroxymethyl-7,8-dihydropterin with pABA either 

from de novo synthesis or salvage pathway. The resulting dihyropteroate is glutamylated by 



21 
 

dihydrofolate synthase (folC), which is reduced to tetrahydrofolate by dihydrofolate reductase 

(folA) (103). In the pABA branch pathway, chorimate is aminated to amonodeoxychorismate by 

4-amino-4-deoxychorimate synthase (pabAB) and, subsequently, converted to pABA by 4-

amino-4-deoxychorismate lyase (pabC) (104, 105).  

 Three kinds of the folate salvage pathways have been studied. The first pathway is known 

as the intact folate salvage pathway that enables use of dietary or exogenous folate and 

dihydrofolate (DHF), and DHF reductase (DHFR) reduces these oxidized folates to THF (106). 

DHFR activity is also required to recycle the DHF that is produced in the thymidylate synthase 

reaction. The second pathway is known as the pterin salvage pathway studied in Leishmania and 

other tyrpanosomatid parasites. This pathway involves the reduction of fully oxidized pterins to 

the dihydro- and tetrahydro-pterins by pteridine reductase (107). After these reactions, the 

dihydro form is used for folate synthesis and tetrahydro-form is used as cofactors for aromatic 

hydroxylases and other pterin dependent enzymes. In the last salvage pathway, the pterin and 

pABA-glutamate fragments produced by folate breakdown are recycled for folate synthesis (108). 

This pathway is known in some bacteria and plants. However, few studies have been conducted 

and so further biochemical research is required.  

 

1.5 Quorum sensing in Gram-positive bacteria 

Many bacteria are known to communicate with other cells using chemical signal 

molecules- this is termed quorum sensing (109, 110). Quorum sensing (QS) bacteria secrete low 

molecular weight signaling molecules (autoinducers) whose extracellular concentration increases 

as a function of increasing cell population. Bacteria monitor the external level of autoinducer and 
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change behavior by altering gene expression once the concentration of autoinducer reaches at 

threshold level. These QS system allows bacteria to function as a multicellular organism showing 

a synchronized behavior on a population wide scale. However, Gram-negative and Gram-

positive bacteria employ different types of QS systems.  

 In Gram-negative bacteria, most of the autoinducers are N-acyl-homoserine lactones 

(HSLs), but Gram-positive bacteria use generally peptides (autoinducing peptides; AIPs). In 

addition, the extracellular HSL freely diffuses in and out of the cells and binds to the cytoplasmic 

autoinducer receptor protein, a DNA binding transcriptional activator. This binding event results 

in allosteric unfolding of the activator, which allows the dimerization and subsequently, activates 

transcription of the regulated genes (109). In contrast, the extracellular AIPs do not diffuse into 

the cells, but binds to specific receptors, two component type histidine kinases. Signaling 

mediated by a phosphorylation cascade activates or represses the target genes including the AIP 

synthesis genes (110, 111).  

 In general, it is assumed that QS regulation play a biological role, derived from the 

canonical QS system of the bioluminescent marine bacterium, Vibrio fisheri. When the growth of 

symbiotic species reaches at high density in the light organ of the Hawaiian squid, they provide 

the light for the host animal, representing their part of the symbiotic relationship with the host 

animal (112, 113). However, the biological rationale for QS is not very clear with other bacteria 

except for biofilm forming pathogenic bacteria. In this review, I describe the regulatory features 

and biological significance of the well-known agr-based QS system in Gram-positive 

staphylococci.  
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Agr Quorum sensing system in biofilm associated bacteria, staphylococci. Staphylococcus 

aureus is normally a commensal bacterium in human gut, but it becomes a deadly pathogen once 

it penetrates into host tissues (114). S. aureus exhibits a biphasic behavior depending on cell 

density. At low cell density, the bacteria produce proteins required for the cell attachment and 

colonization on surfaces. At high cell density, the bacteria down-regulate these traits and initiate 

secretion of toxins and proteases, which are required for dissemination and consequently, cause 

serious human disease (109, 110). Quorum sensing via the accessory gene regulator (agr) system 

controls this switch in gene expression related to biofilm formation and virulence. The Agr QS 

locus is composed of four genes; autoinducing peptide (agrD), processing and exporting protein 

(agrB), and two-component sensor kinase (agrC) and response regulator (agrA) (110). The AgrD 

peptide is processed and secreted in the form of a thiolactone ring (AIP) by AgrB. The AIP binds 

to and induces phosphorylation of AgrC. Finally, the phosphorylated AgrA binds to the two 

promoters, P2 and P3, and induces the expression of downstream of genes. The agrBDCA is 

under the control of P2 promoter and consequently is autoactivated by AgrD itself. This results 

in an exponential increase of AIP level, ensuring that the whole population is changed from the 

low cell density to high cell density. The other promoter, P3, drives transcription of a regulatory 

RNA termed RNAIII. It is known that the expressed RNAIII represses genes encoding cell 

adhesion factors and induces genes encoding virulence factors.  

 Role of the agr QS system in the biofilm formation of staphylococci has been 

demonstrated in many studies. Two mechanisms for biofilm formation are known to be under the 

control of agr QS system: One mechanism is dependent on the extracellular polysaccharide PIA, 

and the other one is presumably dependent on adhesive proteins rather than PIA (110, 115). In 

both S. epidermidis and S. aureus, defective mutants showed stronger adherence to polystyrene 
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and produce more biofilms than agr positive strains, suggesting that the Agr system down-

regulates the biofilm formation (116). This finding is strongly supported by other studies. During 

biofilm formation, Yarwood et al. (2004) found the local activation of Agr system in the biofilm 

of S. aureus and subsequently detachment of agr-expressing organisms from the biofilm (117). 

Boles and Horswill (2008) demonstrated that the expression of agr genes in S. aureus causes 

dispersion of an established biofilm through the increased production of proteases that have 

negative effects on biofilm maturation (118). In addition to the biofilm formation and virulence 

factors, several hundred genes are also controlled by the RNAIII that is activated by AgrA (119). 

Those genes induced by the RNAIII belong to other transcriptional regulation targets as well as 

cell metabolism, including nucleic acid metabolism, amino acid metabolism, carbon metabolism, 

etc. Thus, the agr QS system is involved in a complex regulatory network in staphylococci.  

 

1.6 Summary and major goal for thesis research 

Mammalian genomes lack the enzymes required to deconstruct the structural 

polysaccharides, cellulose and hemicellulose, present in plant cell wall. Herbivorous animals rely 

on the symbiotic microbes in the rumen, caecum or colon to break down cellulose and 

hemicellulose in their dietary fiber. The resulting productions of short-chain fatty acids and 

microbial proteins from fibrolytic microbial fermentation play a pivotal role in host nutrition. In 

contrast, humans rely less on microbial fermentation in large intestine for the acquisition of 

energy, but their fermentation products from resident microbiota, such as butyrate, play a 

significant role in host physiology related to health. Thus, for better understanding host-microbe 
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interaction, it is important and relevant to establish the model for fiber degradation and 

metabolism of fibrolytic gut microbes.  

In the mammalian gut, the dominant fibrolytic bacteria belong to the Firmicutes and 

Bacteroidetes phyla. Many studies have revealed that the polysaccharide utilization mechanism 

of Bacteroidetes, including human gut Bacteroides and rumen Prevotella genera. Through deep 

genomic, transcriptomic, and biochemical analyses, PUL system has been established as a 

fibrolytic model paradigm for the mammalian gut Bacteroidetes. However, the fibrolytic 

Firmicutes have received far less attention than Bacteroidetes. The well-known mechanism for 

fibrolytic system of Firmicutes is the cellulosomal system. The cellulosomal mechanism has 

been established through intensive studies on fibrolytic soil bacteria, Clostridium species. Recent 

molecular evidence suggests that some Firmicutes in the mammalian gut, including 

Ruminococcus flavefaciens and Ruminococcus champanellensis, also possesses the cellulosomal 

system. Based on these findings, the cellulosome paradigm has been expanded to the fiber 

degradation model for rumen and human gut species from soil species and is considered as a 

representative fibrolytic model for mammalian gut Firmicutes.  

It has been proposed that other predominant fibrolytic species, Ruminococcus albus, has 

alternative mechanisms for plant cell wall degradation rather than the cellulosome, including a 

Pil-like protein, a glycocalyx, and CBM37. As less research have conducted relative to the 

cellulosomal species, R. flavefaciens, it is still insufficient to define the fibrolytic system of R. 

albus and this limits better understanding of their roles in gut ecosystem.  

Another role of rumen microbes in host nutrition is a supply of vitamins to the host. 

Mammals rely on dietary vitamins because they cannot synthesize B vitamins, including folic 

acid that is an essential growth factor for all bacteria, archaea, and eukaryotes. However, 
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ruminants in which the rumen is fully functioning are independent of a dietary supply of folate 

due to biosynthesis by rumen bacteria. Decades ago, the vitamin metabolisms in rumen bacteria 

were studied by several pioneers of rumen microbiology. Although variation among strains 

exists, the predominant cellulolytic ruminococci including R. albus and R. flavefaciens are 

known to be capable of synthesizing folic acid and consequently contribute to host nutrition for 

vitamin. However, due to technological limits, their researches were restricted to phenotypic 

analysis and lacked molecular level information underpinning folate metabolism of rumen 

microbes.  

To date, the many genomes of Ruminococcus species have been sequenced and new 

molecular techniques have developed, which enable us to investigate more fundamental 

mechanisms of ruminococci for fiber degradation and vitamin utilization at the genomic and 

transcriptomic level. Thus, the ultimate goal for the current research is to provide deep insight 

into the mechanisms of the predominant rumen species, Ruminococcus albus, regarding their 

nutritional contribution to host, such as energy and vitamin. Using the distinct strains of R. albus 

for fiber and folic acid utilization reported in previous studies, this research investigates how 

each R. albus strains degrade fiber and utilize folic acid through comparative genomic and 

transcriptomic analyses.  
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1.8 Figures 

 

Fig. 1.1. Polysaccharide utilization systems in the rumen characterized in previous studies.  
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Fig. 1.2. Glycolytic pathway through the EMP, ED, and PP pathways and sugar fermentation pathways in 

anaerobic bacteria. Enzymes: 1. Glucokinase; 2. Glucose-6-phosphate isomerase; 3. Phosphofructokinase; 

4. Fructose-bisphosphate aldolase; 5. Triosephosphate isomerase; 6. Glyceraldehyde3-phosphate 

dehydrogenase; 7. Phosphoglycerate kinase; 8. Phosphoglycerate mutase and enolase; 9. Pyruvate kinase; 

10. Pyruvate ferredoxin oxidoreductase; 11. Ferredoxin dependent hydrogenase; 12. Acetaldehyde 

dehydrogenase; 13. Alcohol dehydrogenase; 14. Phosphotransacetylase; 15. Acetate kinase; 16. Lactate 

dehydrogenase; 17. Glucose-6-phosphate dehydrogenase; 18. 6-phosphogluconate dehydratase; 19. 2-

keto-3-deoxy-phosphogluconate aldolase; 20. Xylose isomerase; 21. Arabinose isomerase; 22. Xylulose 

kinase; 23. Ribulose kinase; 24.  Epimerase; 25. Isomerase; 26. Transketolase; 27. Transaldolase. 
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Fig. 1.3. The phosphoketolase pathway in heterofermentative lactobacillus and bifidobacillus species. 

1.glucokinase; 2. glucose-6P dehydrogenase; 3. 6-phosphogluconate dehydrogenase; 4. ribulose-5P-3-

epimerase; 5. xylulose-5P phosphoketolase; 6. enzymes of EMP pathway and lactate dehydrogenase; 7. 

phosphotransacetylase; 8. acetaldehyde dehydrogenase; 9. alcohol dehydrogenase; 10. acetate kinase; 11. 

xylose isomerase and xylulose kinase; 12. Glucose-6P isomerase; 13. F-6P phosphoketolase; 14. 

transaldolase; 15. transketolase; 16. ribose-5P isomerase.   
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Fig. 1.4. The GMP, PP and XFP pathway in C. acetobutylicum during acidogenic growth. Arrows for 
phosphoketolase reactions are green. Enzymes: 1. Glucokinase; 2. Glucose-6P isomerase; 3. 
Phosphofructokinase; 4. Fructose-bisphosphate aldolase and triosephosphate isomerase; 5. 
Glyceraldehyde-3P dehydrogenase; 6. Phosphoglycerate kinase; 7. Phosphoglycerate mutase and enolase; 
8. Pyruvate kinase; 9. Pyruvate ferredoxin oxidoreductase; 10. Ferredoxin dependent hydrogenase; 11. 
NAD+/NADH oxidoreductase; 12. Phosphotransacetylase; 13. Acetate kinase; 14. Thiolase; 15. 
Hydroxybutyryl-CoA dehydrogenase; 16. Crotonase; 17. Butyryl-CoA dehydrogenase; 18. 
Phosphotransbutyrylase; 19. Butyrate kinase;  20. Xylulose-5P/fructose-6P phosphoketolase; 21. Xylose 
isomerase; 22. Xylulose kinase; 23. Epimerase; 24. Isomerase; 25. Arabinose isomerase; 26. Ribulose 
kinase; 27. Transketolase; 28. Transaldolase. 
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CHAPTER 2. 

COMPARATIVE WHOLE GENOME TRANSCRIPTIONAL RESPONSES OF 

RUMINOCOCCUS ALBUS STRAINS 7 AND 8 GROWN ON COMPLEX 

POLYSACCHARIDES AND DEFINED POLYSACCHARIDES 

 

2.1 Introduction 

The mammalian genomes lack the enzymes required to deconstruct the structural 

polysaccharides, cellulose and hemicellulose, present in plant cell wall. Herbivorous animals rely 

on the symbiotic microbes in the rumen, caecum or colon to break down cellulose and 

hemicellulose in their forage based diet. The resulting production of short-chain fatty acids and 

microbial proteins from fibrolytic microbial fermentation play a pivotal role in host nutrition. 

Omnivorous animals, including humans, rely less on microbial fermentation in the large-intestine 

for the acquisition of nutrients, but their fermentation products from resident microbiota, such as 

butyrate, play a significant role in host physiology related to health (1–3). Thus, for better 

understanding of host-microbe interactions, it is relevant to establish the model for fiber 

degradation and metabolism of fibrolytic gut microbes.  

In mammalian gut, although there is compositional variation depending on diet, the 

dominant fibrolytic bacteria belong to the Bacteroidetes and Firmicutes phyla (4–6). In the 

human gut, many studies have revealed that the Bacteroides species are able to degrade a broad 

range of polysaccharides, including diet-derived plant polysaccharides (e.g. hemicelluloses and 

cellulose) and host-derived carbohydrates (e.g. mucin glycans) (7–9). Through deep genomic and 

biochemical analysis, Polysaccharide Utilization Loci (PULs) has been established as a model 

paradigm for the fibrolytic mechanism within the Bacteroidetes phylum (10–12). Despite that the 
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Firmicutes are more abundant than Bacteroidetes in the fiber associated fraction in the human gut, 

the fibrolytic Firmicutes have received far less attention than Bacteroidetes, and their fibrolytic 

mechanisms have been inferred from the predominant fibrolytic Firmicutes in the rumen, 

Ruminococcus species (13–15). One of the predominant fibrolytic bacteria in the rumen, 

Ruminococcus flavefaciens, is known to degrade plant cell wall using a cellulosome-type enzyme 

complex (4, 5, 16–18). The cellulosome paradigm has been established through intensive studies 

on fibrolytic soil bacteria, Clostridium species (16, 18, 19). Numerous polysaccharidases are 

arranged on the surface of C. thermocellum through interaction between dockerin and cohesion 

domains that are present on catalytic enzymes and scaffoldins, respectively. This assembled 

enzymatic complex mediates cell attachment to plant cell wall. In R. flavefaciens, cohesion- and 

dockerin-containing proteins have been characterized through genomic, transcriptomic, and 

biochemical analyses (4, 5, 16, 17). In addition, a recent study reported that the cellulolytic 

human gut species, Ruminococcus champanellensis, harbors cellulosomal components including 

dockerin and cohesion (20, 21). Consequently, the cellulosome paradigm has been expanded to 

the fiber degradation model for rumen and human gut species from soil species.  

However, the fibrolytic mechanism for R. albus, a predominant rumen species, is not well 

studied. Of the two key components for cellulosome system, only dockerin encoding genes have 

been found in R. albus, suggesting that this species use other fibrolytic mechanism instead of 

cellulosome (22, 23). Despite a similar repertoire of glycoside hydrolase (GH) families between 

R. albus and R. flavefaciens, the cellulose adhering mechanism of R. albus is known to be 

distinct from cellulosome bearing ruminococci, which include three mechanisms; a Pil-like 

protein (CbpC), a glycocalyx, and carbohydrate binding module 37 family (CBM37) that is 

found only within R. albus species (24–28, 22, 23). Although many carbohydrate-active enzymes 
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(CAZymes) of R. albus species have been biochemically characterized (29–41), it is still 

insufficient to define the fibrolytic system of R. albus. Little molecular evidence has supported 

how R. albus species respond to plant cell wall consisting of hemicellulose and cellulose, what 

genes are involved in their fibrolytic system, and how they metabolize end products from the 

hydrolysis of plant cell wall. Various strains of R. albus are able to utilize a variety of plant 

polysaccharides, including cellulose and hemicelluloses. However, cellulolytic capability and 

pigmentation varies between strains (42–44). Among three strains for which genome sequences 

are publicly available, the yellow pigmented strain, R. albus 7, is known to degrade cellulose 

better than the non-pigmented strain, R. albus 8 (44). Thus, comparison of cellulolytic and 

hemicellulolytic capability between two distinctive strains, R. albus 7 and 8, may unravel the 

representative fibrolytic system and sugar metabolic pathways employed by R. albus species.  

Herein, we describe the representative fibrolytic system of one of predominant fibrolytic 

species, R. albus, through comparative genomic, phenotypic, and transcriptomic analyses 

between R. albus 7 and 8. Furthermore, we also proposed that R. albus has developed strain 

specific strategies for fiber degradation and sugar metabolism as a result of differential gene 

regulation and a unique metabolic enzyme for pentose. 

 

2.2 Materials and methods 

Comparative genomic analysis of R. albus strain 7 and 8. Genomic sequences of R. albus 7 

(GenBank accession numbers: NC_014833 for chromosome and NC_014824 to NC_014827 for 

plasmids) and R. albus 8 (NZ_ADKM020000001 to NZ_ADKM02000136) were used for 

comparative genomic analysis between both strain 7 and 8. Genes were assigned to 
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Carbohydrate-Active enZYmes (CAZy) families (GHs, PLs, and CEs) if they exhibited 

significant similarity (e-value < 1 × 10-5) to biochemically characterized proteins already 

cataloged in a CAZy family (45), and the dbCAN server was used to verify the CAZy 

annotations (46). Other catalytic functions of genes were predicted using both the Pfam (47) and 

the conserved domain database (48) using e-value cutoff of 1× 10-5. Signal peptides were 

predicted using SignalP v4.0 (49). To determine the homologs of CAZy genes in between R. 

albus strain 7 and 8, reciprocal blast was performed and homologs were assumed if two genes 

each in a different genome of strain find each other as the best hit in the other genome.   

Growth of R. albus strain 7 and 8 on defined substrates and complex substrate, AHPCS. R. 

albus 7 and 8 were cultured anaerobically at 37 °C in butyl rubber-stoppered Balch tubes using a 

previously reported defined medium (Table A.1; Kim et al., 2014). The medium was modified to 

contain 0.4 % (w/v) of defined substrates including cellobiose (Sigma-Aldrich, St. Louis, MO), 

phosphoric acid swollen cellulose (PASC; Wood, 1971), wheat arabinoxylan (WAX; Megazyme, 

Bray, Ireland), sugar beet debranched arabinan (Megazyme), Beechwood xylan (Sigma-Aldrich), 

or 0.5 % (w/v) of complex substrate, alkaline hydrogen peroxide treated corn stalk (AHPCS; 

Kerley et al., 1985), as the sole carbohydrate source. To determine crystalline cellulolytic 

activity, 0.4 % (w/v) of Whatman No.1 filter paper was used together with 0.1 % (w/v) of 

cellobiose as carbohydrate source for both strains. Cellobiose was used to stimulate bacterial 

growth at initial growth phase and the depletion of cellobiose was measured using high-

performance liquid chromatography (HPLC) system described below.  

For the single culture experiments, we used the modified 500 ml Corning glass bottles 

(Pyrex; Corning Glass Works) with 25ml Balch tube (Bellco Glass) attached to neck and side of 

a glass bottle, which enabled to grow cells in a large volume as well as measure the absorbance 
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at 600 nm (A600nm) of culture. For the growth experiment with complex substrate, the medium 

was prepared in 150 ml serum bottle. The cells were adapted to the respective media by culturing 

for 48 hours three times in succession. Inoculum volume of preculture was 5 % of a total volume 

of fresh medium and the A600nm values of the medium containing soluble substrates (cellobiose 

and wheat arabinoxylan) were monitored using a Spectronic 21D spectrophotometer (Milton Roy) 

and 1 ml of sample was collected anaerobically at each sampling time, followed by 

centrifugation at 13,000 g for 20 minutes. The resulting pellets were used to quantify the total 

protein concentration for insoluble substrate containing media (PASC, filter paper, and AHPCS) 

and supernatants were used to quantify the fermentation products during growth with all 

different substrates. For the total protein quantification, cell pellets were washed twice with 1% 

(w/v) KCl and, sequentially, boiled in 1% of CHAPS (3-[(3-cholamidopropyl)-

dimethylammonio]-1-propanesulfonate) solution for 20 min. Then, total protein was measured 

using the Bradford method with bovine serum albumin as a standard (53). To measure the A600nm 

values in liquid fraction of AHPCS containing medium, we used a 25 ml of Balch tube. The 

insoluble AHPCS completely settled down at the bottom of tube within 30 minute after 

inoculation. Then, the absorbance value was measured using a Spectronic 21D 

spectrophotometer. The cellobiose and fermentation products in supernatant were quantitated by 

Shimadzu HPLC system (Shimadzu, Kyoto, Japan) using an Aminex HPX-87H column (Bio-rad, 

Hercules, CA, USA) with a refractive index detector (RID-10A).   

Quantitative PCR in co-culture experiment. For the co-culture experiment, 20 ml of each 

strain grown on 0.4 % (w/v) of AHPCS containing medium for 24 hours was mixed together in 

the anaerobic serum bottles and the mixed pre-culture was inoculated into the fresh medium (0.4 % 

of AHPCS, w/v). The growth of each strain in co-culture medium was measured using 
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quantitative PCR (qPCR). Genomic DNA from each time points was used as a template and 

specific primers were designed to amplify a unique gene that is found in either R. albus strain 7 

or 8 (Table A.2). The qPCR was performed using the LightCyclerR480 (Roche Diagnostics, 

Mannheim, Germany) and the SYBR green PCR kit (Qiagen, Hilden, Germany). The 

thermocycling reaction was performed under the following conditions: 95℃ for 30 s and 40 

cycles of 30 s at 95 ℃ and 30 s at 59 ℃. To convert the copy number of gDNA of each strain to 

the relative absorbance value, the following standard curves were generated (Fig. 2.1). 

Sugar analysis of culture medium and substrate residue. The AHPCS (0.4 %, w/v) containing 

media were prepared in triplicates of Balch tubes. During the bacterial growth, the 10ml of 

whole culture medium was collected by centrifuging at 13,000g for 20 minutes at different time 

points. The supernatant was carefully transferred to new 15 ml tubes and the residue was washed 

five times with ddH2O and oven-dried at 60 ℃. The water soluble sugars in culture supernatant 

were displayed by thin layer chromatography (TLC) assay with a mobile phase composed of 

ethyl acetate, acetic acid, and water (3:2:1) and visualized by spraying with methanolic orcinol 

and heating at 120 ºC for 5 min. A 600 µl volume of ethanol was added to the 400 µl of 

supernatant, and the mixture was evaporated through a Savant DNA 120 SpeedVac® 

concentrator (Savant; Ramsey, MN). The dried product was resuspended in 20 µl of ddH2O, and 

1 µl of each sample was spotted on Silica Gel 60 Å TLC plates (Whatman).  

For quantitative analysis of the mono- and oligo-saccharides in the supernatant and dried 

residue, both liquid and solid samples were hydrolyzed with sulfuric acid (72 %, w/v) according 

to a previously described method (54). Briefly, 700 µl of each supernatant was mixed with 25 µl 

of sulfuric acid (72 %, w/v) and the mixture was autoclaved for 1 h. A sugar recovery standard 

(SRS) comprising the monosaccharides (glucose, xylose, mannose, arabinose, and galactose) was 
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prepared in the similar way; one aliquot autoclaved with the samples and another aliquot left at 

room temperature. The solid samples were ball-milled, and incubated with 500 µl of sulfuric acid 

(72 %, w/v) for 1 h. Then, 14 ml of ddH2O was added, and subsequently, the diluted mixture was 

autoclaved for 1 h. A SRS for solid sample was prepared in a similar way. The monosaccharides 

in sulfuric hydrolysates were quantitated by an ICS-5000+ HPIC system (Thermo Fisher 

Scientific, Sunnyvale, CA, USA) using CarboPac PA20 column (Thermo Fisher Scientific, 

Sunnyvale, CA, USA) with a pulsed-amperometric detector (PAD). 

RNA extraction and transcriptomic analysis using RNA sequencing. For RNA extraction 

experiments, the cells grown on defined substrates were harvested at mid-log phase and the cells 

grown on AHPCS were harvested at five different growth phases (lag, early-log, mid-log, late-

log, stationary phase, inferred from the growth curves), by combining the culture with 2 volumes 

of RNAprotect® bacterial reagent (Qiagen), followed by centrifugation at 13,000 × g for 10 min 

at room temperature. The resulting cell pellets were stored at – 80 °C until RNA extraction. In 

the subsequent steps, the cell pellets were treated with lysis buffer (200U/ml of mutanolysin, 

150µg/ml of proteinase K, 25mM EDTA, and 0.5% (w/v) SDS) for 30 minute at 55 °C. The total 

RNA was extracted with the RNeasy mini kit (Qiagen) with the optional on-column DNase 

treatment step. Then, the total RNA was eluted with DEPC-treated nuclease-free water and 

stored at – 80 °C until RNA sequencing. 

For RNA-Seq analyses, RNA isolated from two biological replicates were used for each 

growth condition. Bacterial ribosomal RNAs were removed from 10 µg of total RNA with the 

MicrobExpress kit (LifeTechnologies). The enriched mRNA fraction was converted to RNA-Seq 

libraries using the TruSeq Stranded RNA Sample Prep kit from Illumina. The barcoded libraries 

were pooled in equimolar concentration and the pool was analyzed by quantitative PCR and 
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sequenced on one lane for 101 cycles on a HiSeq2000 using a TruSeq SBS sequencing kit 

version3. Fastq files were generated and demultiplexed with the bcl2fastq v1.8.4 Conversion 

Software (Illumina, Inc.). RNAseq library statistics are shown in Table A3 to A.5.  

The RNA-Seq data were analyzed using CLC genomics workbench version 5.5.1 from 

CLC Bio (Cambridge, MA). The genomic sequences of R. albus 7 and 8 were used as the 

reference genome, and RNA-Seq reads were mapped onto the reference sequences using the 

CLC software. Reads were only assembled if the fraction of the read that aligned with the 

reference genome was greater than 0.9 and if the read matched other regions of the reference 

genome at less than 10 nucleotide positions. Then, the RNA-Seq output files were analyzed for 

statistical significance by using the proportion-based test of Baggerly (55). 

Cloning, expression, and purification of the putative GH genes of R. albus 7. In this study, 

the highly expressed genes in R. albus 7 that encode putative GH domains were amplified by the 

Phusion high-fidelity DNA polymerase and cloned into the pET-46b vector (Ek/LIC; Novagen). 

The ligation product was transformed into E. coli JM109 using heat-shock method. After 

selection on lysogeny broth (LB) plates supplemented with ampicillin at 100 µg/ml, the colony 

was picked and cultured in LB medium with same antibiotics at the same concentration. The 

plasmids were purified from each culture using a QIAprep Spin Miniprep kit (Qiagen), and 

sequenced to confirm the integrity of the cloned gene at W. M. Keck center for comparative and 

functional genomics in the University of Illinois at Urbana-Champaign.   

For gene expression, the plasmid construct was transformed into E. coli BL21-CodonPlus 

(DE3) RIPL competent cells using the heat shock method, and cells were grown on LB agar 

plates supplemented with ampicillin (100µg/ml) and chloramphenicol (50µg/ml). After 16 h 
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incubation, five colonies were picked and inoculated into LB medium (10 ml) containing 

ampicillin (100µg/ml) and chloramphenicol (50µg/ml). The cells were grown for 5 to 6 hours at 

37 °C with vigorous shaking, and then transferred to 1 liter of LB medium containing ampicillin 

and chloramphenicol at the same concentrations described above. When the optical density at 

600 nm of the LB culture reached 0.5, isopropyl-β-D-thiogalactopyranoside (IPTG) (final 

concentration 0.1 mM) was added into the LB culture to induce gene expression, and the culture 

was incubated at 16 °C for 16 h.  

The cells were harvested by centrifugation, and the cell pellets were resuspended in 30 ml 

lysis buffer (100 mM HEPES, 500 mM NaCl, 10% glycerol, 0.5 mM Tris(2-chloroethyl) 

phosphate (TCEP), pH 8.0) and lysed using a French pressure cell (American Instrument Co., 

Inc., Silver Spring, Md). The cell debris was separated by centrifugation (35,000 g, 30 min, 4 °C). 

Of ten putative GH genes cloned in this study, the product of Rumal_2606 gene encoding a 

putative GH48 domain was insoluble and consequently, it was excluded following purification 

steps and functional assignments. The recombinant proteins were purified by Talon metal 

affinity resin with binding buffer (100 mM HEPES, 500 mM NaCl, 10% glycerol, 0.5 mM TCEP, 

10 mM imidazole, pH 8.0), washing buffer (50 mM HEPES, 500 mM NaCl, 10% glycerol, 0.5 

mM TCEP, 10 mM imidazole, pH 7.5), and elution buffer (50 mM HEPES, 500 mM NaCl, 10% 

glycerol, 0.5 mM TCEP, 300 mM imidazole, pH 7.5). The purified proteins were analyzed by 

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and staining with 

Coomassie brilliant blue G-250 (Fig. 2.2). Then, the proteins were concentrated and dialyzed 

into a storage buffer (50 mM HEPES, 300 mM NaCl, 10% glycerol, 0.5 mM TCEP, pH7.5) 

using Amicon Ultra-15 centrifugal filter units. The concentration of each purified protein was 

determined using the NanoDrop 1000 apparatus from Thermo Fisher Scientific Inc. (Waltham, 
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MA), based on the molecular mass and extinction coefficients of Rumal_2447 (109 KDa; 

248,440 M-1cm-1), Rumal_0896 (71 KDa; 159,630 M-1cm-1), Rumal_1049 (74 KDa; 213,140 M-

1cm-1), Rumal_2448 (98 KDa; 246,950 M-1cm-1), Rumal_2946 (58 KDa; 94,770 M-1cm-1), 

Rumal_3757 (99 KDa; 204,440 M-1cm-1), Rumal_1601 (44 KDa; 77,810 M-1cm-1), Rumal_2906 

(78 KDa; 76,210 M-1cm-1), and Rumal_0076 (73 KDa; 123,190 M-1cm-1).  

Enzymatic activities of nine glycoside hydrolases on various polysaccharides. The enzymatic 

activities of the nine CAZymes were determined at 37 °C in 50 mM sodium phosphate buffer 

(pH6.5) and 150 mM NaCl. Each protein (500nM) was incubated with 0.5 % (w/v) of soluble 

polysaccharide substrates purchased from Megazyme (Bray, Ireland) or 2 % (w/v) of insoluble 

polysaccharide substrates. Soluble substrates include carboxymethyl cellulose, barley β-glucan, 

lupin galactan, larch arabinogalactan, carob galactomannan, konjac glucomannan, tamarind 

xyloglucan, and wheat arabinoxylan. Insoluble substrates include phosphoric acid swollen 

cellulose, curdlan (Megazyme), ivory nut mannan (Megazyme), and beechwood xylan (BWX; 

Sigma-Aldrich, St. Louis, MO). After 16 hours incubation, the reducing ends were quantified 

using a para-hydroxybenzoic acid hydrazide (PAHBAH) assay with glucose as a standard (56).  

 

2.3 Results 

Comparative genomic analysis suggests different substrate preferences between R. albus 7 

and 8. To estimate genotypic variation for fiber degradation between R. albus 7 and 8, we 

analyzed the predicted carbohydrate-active enzymes (CAZymes) encoded by the genomes of 

both strains, including glycoside hydrolases (GHs), polysaccharide lyases (PLs), and 

carbohydrate esterases (CEs). The genomes of both strains possess a similar repertoire of 
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predicted GHs, PLs, and CEs, in terms of the number and variety of CAZy families (Table A.6). 

Of the well-known cellulase domains, including GH5, GH8, GH9, GH44, GH48, and GH74, 

both strains possess the same number of these total GH domains on the genome. However, we 

identified that R. albus 8 possesses three more genes encoding GH43 domain for which 

homologs are not present on the genome of R. albus 7 (Fig. 2.3A). The functions of the unique 

GH43 genes in R. albus 8 are predicted as extracellular and intracellular endoarabinanases. In 

addition, these GH43 genes in R. albus 8 are clustered with putative sugar transporters, the 

intracellular α-L-arabinofuranosidase (Ara51A), and L-arabinose isomerase, which are required 

for utilization of the end products of arabinan hydrolysis. Considering that the genome sequence 

of R. albus 7 is complete, it is reasonable to conclude that R. albus 7 harbors only the ortholog of 

Ara51A gene (Fig. 2.4). These results suggest that R. albus 8 has a potential to utilize a broader 

range of hemicelluloses, including arabinan, than R. albus 7. 

R. albus 7 and 8 have different capability for utilizing cellulose and hemicelluloses. To 

determine the phenotypic variation between R. albus 7 and 8 on different defined substrates, both 

strains were cultured in a defined medium containing 0.4 % (w/v) of microcrystalline cellulose 

(Whatman filter paper), debranched arabinan, cellobiose, phosphoric acid-swollen cellulose 

(PASC), or wheat arabinoxylan (WAX). R. albus 7 was able to grow on filter paper, while R. 

albus 8 was unable to grow (Fig. 2.5). Conversely, when debranched arabinan used as the sole 

carbohydrate source, R. albus 8 enabled to utilize, but not R. albus 7, which is in accordance with 

our prediction based on comparative genomic analysis (Fig. 2.3B). Next, we tested soluble 

substrates (cellobiose and WAX) and amorphous cellulose (PASC) that could be utilized by both 

strains. Both strains were able to grow on cellobiose and PASC with similar growth pattern and 

production of fermentation products, inferred from the value of standard deviation (Fig. 2.6). 
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However, when grown on WAX, R. albus 7 produced less acetate (12.9 mM) and more ethanol 

(13.1 mM) than R. albus 8 that produced 17.8 mM of acetate and 11.4 mM of ethanol (Fig. 2.6H-

I). 

To investigate the phenotypic variance between two strains for complex polysaccharides 

like plant cell wall, both strain 7 and 8 were cultured in a defined medium containing alkaline 

hydrogen peroxide treated corn stalk (AHPCS). The AHPCS was mainly composed of cellulose 

(53.7 %) and hemicellulose (23.1 %), which allows both strains to utilize either cellulose or 

hemicellulose, or both (Table A.7). To examine bacterial growth and adherence to substrates, we 

quantified the total protein concentration and measured the absorbance values (A600nm) in liquid 

fraction of bacterial culture once insoluble AHPCS had settled down to the bottom of the Balch 

tubes. The growth curve of each strain using total cell protein shows that cell number in the R. 

albus 7 culture would be higher than or similar to that in the R. albus 8 culture at early and 

stationary growth phase (Fig. 2.7A). However, the R. albus 8 culture had a higher A600nm value 

than the R. albus 7 culture at lag to early-log phases and stationary phase (Fig. 2.7B). Especially, 

the difference of absorbance between two strains increased after 20 hours (late-log) (A600nm: 

0.282 for R. albus 7 and 0.693 for R. albus 8). Compared to the total protein concentration, the 

different values of A600nm suggest the preferred planktonic growth of R. albus 8 as opposed to the 

substrate adherent growth of R. albus 7.  

Similar with the fermentation profile on WAX, R. albus 7 produced less acetate (15.2 

mM) and more ethanol (13.4 mM) than R. albus 7 that produced 15.9 mM of acetate and 11.8 

mM of ethanol during growth on AHPCS for 48 hours (Fig. 2.7C-D). In addition, R. albus 8 

produced formate as one of the fermentation products during growth on AHPCS, but not R. albus 

7. These differential profiles of fermentation products on hemicellulose and hemicellulose 



52 
 

containing plant cell wall suggest that pentose sugars released from hemicellulose hydrolysis 

were differently metabolized through each strain specific fermentation pathway.   

Differential AHPCS degradation and utilization between R. albus 7 and 8. To determine the 

differences in hydrolysis and utilization of individual sugar components in the AHPCS by R. 

albus 7 and 8, each fraction of AHPCS residue and culture supernatant were hydrolyzed using 

sulfuric acid, and the hydrolyzed monosaccharides in both fractions were quantified. The major 

monosaccharides in the AHPCS residue were glucose, mainly derived from cellulose, and xylose, 

derived from hemicellulose. During initial growth for 12 hours, R. albus 7 hydrolyzed both 

cellulose and xylan in AHPCS, while R. albus 8 mostly hydrolyzed xylan fraction in AHPCS 

(Table A.8). Although glucose was the predominant monosaccharide in AHPCS residue, xylose 

was more abundant than glucose in the culture supernatant, indicating that both strain 7 and 8 

prefer to utilize cellulosic sugar than hemicellulosic sugars (Table A.8). During growth for 48 

hours, most of xylan in AHPCS was hydrolyzed by both strains as compared to initial amount of 

xylan at 0 hour (92.4 % in R. albus 7, 93.8 % in R. albus 8, respectively). However, less xylose 

was accumulated in the culture supernatant of R. albus 8 than R. albus 7 (75.2 µM in R. albus 7, 

54.2 µM in R. albus 8, respectively), suggesting more utilization of xylan by R. albus 8 than R. 

albus 7 during growth for 48 hours (Table A.8). Consistently, the soluble sugar profiles analyzed 

by thin layer chromatography (TLC) assay suggest that inferred from sugar standards, the 

hemicellulosic mono- or di-saccharides were more accumulated in the culture of R. albus 7 than 

R. albus 8 (Fig. 2.8).  

Comparative transcriptomic analyses of CAZyme genes in R. albus 7 and 8 grown on 

AHPCS and defined substrates. To identify cellular mechanism of R. albus 7 and 8 for the 

utilization of plant cell wall and its major polysaccharide components, cellulose and xylan, we 
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examined the transcriptomes of both strains at five different growth phases during growth on 

AHPCS (late-lag; 4h, early-log; 8h, mid-log; 12h, late-log; 20h, and stationary; 36h) and mid-log 

phase during growth on cellobiose, PASC or WAX. The normalized expression value of each 

gene is reported as RPKM (reads per kilo base per million mapped reads). During growth on 

AHPCS, both R. albus 7 and 8 expressed a variety of CAZyme genes, including GH, PL, and CE 

genes. Among a total of the extracellular CAZyme genes predicted by the presence of signal 

peptide at N-terminus, the predicted or characterized endoglucanases and endoxylanases were 

predominantly co-expressed (> 2000 RPKM) in both strain during early- to mid-log phases. The 

top five highly expressed genes encoded GH5, GH9, GH10, GH11, and CE4 domains in R. albus 

7 and GH5, GH9, GH11, GH48, and CE5 domains in R. albus 8, respectively (Fig. 2.9 and 

2.10A-B). Interestingly, all of those highly expressed CAZyme genes in both strains encode 

CBM37 domain only found in the genome of R. albus strains, suggesting that R. albus species 

employ a CBM37 dependent hydrolyzing mechanism for plant cell wall, unlike other fibrolytic 

species. 

Of those cellulases (GH5, GH9, and GH48) highly expressed on AHPCS, the GH5 gene 

in R. albus 7 (Rumal_0896) and its homologs in R. albus 8(CUS_6389) were constitutively 

highly expressed on defined polysaccharides, PASC and WAX (Fig. 2.11). We characterized the 

enzymatic activities of Rumal_0896 on a variety of defined polysaccharides. Based on reducing 

sugar profiles, the purified gene product of Rumal_0896 showed the hydrolysis activities on both 

cellulose and hemicellulose, including PASC, ß-glucan, glucomannan, xyloglucan, WAX, and 

beechwood xylan (Fig. 2.12). These results suggest that both strains rely on the versatile GH5 

endoglucanase capable of hydrolyzing cellulose and hemicelluloses during growth on plant cell 

wall. However, the other cellulase genes encoding GH9 (Rumal_2447) or GH48 (GH2606) in R. 
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albus 7 were induced greater than 2 fold by only PASC, while those homologs (CUS_6909 and 

CUS_8076) in R. albus 8 were induced by both PASC and WAX. Together with highly 

expressed endoxylanase (Xyl11D; CUS_6323) and its homolog (Rumal_0908), R. albus 7 co-

expressed the primary cellulases (GH9 and GH48) and hemicellulases (GH11) in response to 

PASC, whereas R. albus 8 displayed this co-expression pattern on only WAX. Among CAZyme 

genes induced greater than 2 fold on PASC relative to WAX, R. albus 7 had 21 more genes 

transcriptionally responding to PASC than R. albus 8 (Fig. 2.13B). However, when we compared 

CAZyme genes induced by WAX to PASC (> 2 fold), R. albus 8 had 17 more genes 

transcriptionally responding to WAX than R. albus 7 (Fig. 2.13D). These distinct transcriptional 

features of CAZyme genes between two strains suggest that each fraction of cellulose and 

hemicellulose in plant cell wall induce different array of CAZyme genes employed by R. albus 7 

and 8. Therefore, each strain would have a different target in plant cell wall for the hydrolysis 

and utilization. 

Transcriptional features of sugar transporters between strains. To elucidate time dependent 

end product utilization of AHPCS hydrolysis by R. albus 7 and 8, we sought to identify the 

potential transporters for cellobiose, cellooligosaccharides, and xylooligosaccharides through our 

transcriptomic analysis. Among the predicted sugar ABC transporter genes that highly expressed 

during growth on AHPCS, we identified candidate genes, based on which had the highest 

expression level on their predicted substrate, cellobiose, PASC, and WAX (Fig. 2.10C). The 

predicted xylooligosaccharide transporter genes were highly expressed at lag phase and down-

regulated in both strains, as cells grew. Subsequently, the cellobiose transporter genes were up-

regulated at early log phase and down-regulated in later growth phases. R. albus 7 exhibited 

sequential expression pattern for the putative cello-oligosaccharides transporter after the 
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cellobiose transporter, whereas in R. albus 8, the cello-oligosaccharides transporter genes were 

up-regulated together with cellobiose transporter genes at early log-phase and then, down-

regulated at later growth phases.  

The intracellular GH genes had a similar expression pattern with their cognate substrate 

transporters (Fig. 2.14). The hemicellulosic sugar processing GH genes, including β-xylosidase, 

α-L-arabinofuranosidase, and α-glucuronidase, were highly expressed at lag phase and down-

regulated later growth phases. Cellobiose phosphorylase gene was highly expressed during lag to 

early-log phase and down-regulated as cells grew, in agreement with transcriptional responses of 

the predicted xylooligosaccharide and cellobiose transporters. However, the gene encoding cello-

oligosaccharide phosphorylase in R. albus 7 was constitutively expressed during growth on 

AHPCS, whereas in R. albus 8, the expression pattern of cellooligosaccharide phosphorylase 

gene was consistent with cellobiose phosphorylase gene. These results suggest that R. albus 7 

and 8 utilize xylooligosaccharides at initial cell growth and subsequently, utilize cellobiose, 

presumably derived from amorphous cellulose region, at early-log phase. Inferred from the sugar 

analysis of AHPCS residue, the cello-oligosaccharides were likely released from cellulose after 

early-log phase for R. albus 7 and mid-log phase for R. albus 8. Accordingly, the genes for 

cellooligosaccharides utilization in R. albus 7 were up-regulated in response to the availability of 

cellulosic sugars. However, those genes in R. albus 8 were not responded to the 

cellooligosaccharides.  

Taken together with comparative genomic, phenotypic and transcriptomic analyses on 

complex and defined substrates, it seems likely that in spite of similar cellulolytic capability, R. 

albus 8 prefers to utilize hemicellulose, unlike a cellulolytic strain, R. albus 7 that utilizes 

hemicellulose until it can utilize cellulose.  
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R. albus 8 harbors dual pentose metabolic pathways, the PP and PK pathways. When grown 

on WAX, R. albus 7 produced acetate and ethanol in a ratio of 1.0, while R. albus 8 produced 

acetate and ethanol in a ratio of 1.6. This result led us to examine sugar metabolism of R. albus 7 

and 8. Both strains harbor all of the genes required to sugar fermentation pathways, including the 

Embden-Meyerhof-Parnas (EMP) pathway, pentose phosphate (PP) pathway, acetate and ethanol 

fermentation pathways. Notably, we identified a gene encoding a putative xylulose-5-

phosphate/fructose-6-phosphate phosphoketolase (XFP; EC 4.1.2.9, EC 4.1.2.22) on the genome 

of R. albus 8 (Fig. 2.15), which is orthologous to the biochemically characterized XFP (Genbank 

ID: NP_347971) in the soil cellulolytic bacterium, Clostridium acetobutylicum ATCC 824, with 

73 % similarity of amino acid sequence (Table A.9). The XFP enzyme catalyzing a xylulose-5-

phosphate into glycealdehyde-3-phosphate and acetyl phosphate is a key component of the 

phosphoketolase (PK) pathway in C. acetobutylicum (57, 58). Based on the stoichiometry of the 

PP pathway and PK pathway for pentose fermentation, the ratio of acetate to ethanol is 1.0 for 

the PP pathway and 3.0 for the PK pathway (Table A.10). Thus, the profile of fermentation 

products and the presence of XFP gene in R. albus 8 suggests that pentose was metabolized 

through the PP pathway in R. albus 7, while in R. albus 8, both PP and PK pathways were used 

for pentose fermentation with the dominance of PP pathway over PK pathway. To examine the 

metabolic effect of PK pathway relative to the PP pathway on the growth kinetics of R. albus 7 

and 8 on pentose, we tried to use homogenous pentose (xylose or arabinose) as a growth 

substrate, but none of strains were able to use mono-pentose sugar (data not shown). When 

Beechwood xylan (>90 % xylose residue) was alternatively used in the culture medium, R. albus 

8 had a higher growth rate than R. albus 7 (Fig. 2.16).  
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Transcriptional pattern of the sugar fermentation pathways. As both strains appeared to 

metabolize pentose through different pathways, we examined the transcriptional evidence to see 

which pathway becomes dominant for different substrates. Each pathway contains a unique 

enzyme, but also shares the entire reaction steps from glyceraldehyde-3-phoshate to acetate 

fermentation. The XFP is a unique enzyme to the PK pathway, while the transketolase (TK) and 

transaldolase (TA) are unique to the PP pathway. In addition, the XFP and transketolase enzymes 

share the substrate, xylulose-5-phosphate. Thus, we postulate that the transcriptional abundance 

of each XFP and transketolase genes reflects the distribution of metabolic flux of pentose into 

each pathway. In R. albus 7, the putative transketolase and transaldolase genes were up-regulated 

on WAX (2 fold and 621 fold, respectively), relative to cellobiose, and highly expressed at lag-

phase during growth on AHPCS (Fig. 2.17A; Table A.11). In R. albus 8, the XFP gene was up-

regulated greater than 6 fold, while the transketolase gene was 1.9 fold up-regulated, when 

grown on WAX, relative to cellobiose (Table A.11). Despite dampened transcriptional response 

to WAX, the transketolase gene was 3 times more dominant than the XFP gene in the 

transcriptome of R. albus 8, which is in accordance with our prediction based on the profile of 

fermentation products. However, when R. albus 8 was grown on AHPCS, the PK pathway was 2 

times more dominant at initial cell growth phase, suggesting that R. albus 8 relies on the PK 

pathway when the cells begin to grow on the plant biomass.  

 Next, we examined the transcriptional level of genes related to formate fermentation, 

including the putative pyruvate formate lyase (PFL), PFL activase (AE), pyruvate ferredoxin 

oxidoreductase (PFOR), hydrogenases (ferredoxin dependent HydA2 and electron-bifurcating 

HydABC). During growth on AHPCS, R. albus 8 had a higher expression level of PFL activate 

(AE) and higher expressional ratio of PFL: PFOR than R. albus 7, in accordance with formate 
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production profile (Fig. 2.17B). The PFOR reduces the oxidized ferredoxin (Fdox) and the 

resulting reduced ferredoxin (Fdred) is used as electron donor for hydrogen production by either 

HydA2 at high level of hydrogen or HydABC at lower level of hydrogen. During growth on 

AHPCS, R. albus 7 had a higher expression level of both HydA2 and HydABC than R. albus 8, 

with exception of HydA2 at early-log phase (Fig. 2.17B). To support, we measured hydrogen 

production of both strains and confirmed that R. albus 7 produced more hydrogen than R. albus 8 

during growth on AHPCS (Fig. 2.17C). However, it is unclear why R. albus 7 did not produce 

formate, in spite that the putative PFL genes were highly expressed after mid-log phase.  

Co-culture of both R. albus 7 and 8 on AHPCS. With less cellulolytic capability, R. albus 8 is 

unlikely to compete with other cellulolytic species, including R. albus 7. However, if R. albus 8 

targets for hemicellulose less preferred by cellulolytic species in the plant cell wall, it seems 

feasible that R. albus 8 is able to survive and co-exist with R. albus 7. We grew both strain 7 and 

8 together in a defined medium containing 0.5% (w/v) of AHPCS for 48 hours. To determine the 

growth of each strain 7 and 8 in co-culture, we performed quantitative PCR (qPCR) that 

specifically amplified a unique gene present on either strain 7 or 8 genome. After co-incubation, 

both strains started to grow together on AHPCS, but R. albus 7 became more abundant than R. 

albus 8 in the total cell population, composed of the substrate adherent cells and planktonic cells 

(Fig. 2.18A). In addition, fermentation profile of co-culture was similar with those profiles of R. 

albus 7 single culture on AHPCS, in terms of the acetate: ethanol ratio and formate production 

(Fig. 2.18B). However, during early growth (0 to 12 hours), the cell number of R. albus 8 was 

increased in liquid fraction and the short length of soluble sugars were less accumulated in the 

culture, compared to the profile on later growth after 12 hours or on single culture of R. albus 7 

on AHPCS (Fig. 2.18C-D). After 12 hours, the number of R. albus 8 cells in liquid fraction 
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began to decrease and the short oligosaccharides and monosaccharides started accumulating in 

the culture. These results suggest that the planktonic cells of R. albus 8 utilize soluble sugars 

derived from the hydrolysis of AHPCS and consequently, R. albus 8 could grow together with 

other cellulolytic stain, R. albus 7 on AHPCS.  

Differential expression of global gene regulators, cyclic di-GMP and Agr quorum sensing 

system, in R. albus 7 and 8. Since distinct strategies for plant cell wall degradation were 

identified in between strain 7 and 8, we sought to find a regulatory mechanism on the genomes 

of both strains underlying two strategies. Based on differential phenotypes between two strains 

for the substrate attachment during growth on AHPCS, we examined global regulators known to 

be involved in biofilm formation of bacteria: the bacterial second messenger, cyclic-di-GMP (c-

di-GMP), regulatory system and the accessory gene regulator (Agr) quorum sensing system. The 

cellular level of c-di-GMP is regulated by diguanylate cyclases (DGCs) encoding a GGDEF 

domain and phosphodiesterses (PDEs) encoding an EAL domain (59). We identified that both 

strain 7 and 8 possess thirty-eight genes encoding predicted GGDEF, EAL, or both domains 

(Table A.12). When comparing strains across different growth phases, our transcriptional 

analysis showed that R. albus 7 had more up-regulated (> 2-fold) c-di-GMP regulatory genes and 

GH genes than R. albus 8 throughout growth on AHPCS (Fig. 2.19A-B). When comparing 

strains across defined substrates, c-di-GMP regulatory genes in R. albus 7 were more responded 

(> 2-fold) to their preferential substrate, cellulose, while c-di-GMP regulatory genes in R. albus 8 

were more responsive to hemicellulose (Fig. 2.19C-D). These transcriptional patterns were 

similar to patterns of transcriptional responses of GH genes in both strains, suggesting that there 

is a correlation between c-di-GMP and GH gene expression. Next, we analyzed the 

transcriptional level of putative Agr quorum sensing genes, agrABCD, in both strains. R. albus 8 
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expressed agrD and argB genes, encoding autoinducing peptide (AIP) and AIP processing 

transporter, respectively, dramatically higher than R. albus 7 from early to late growth phase (Fig. 

2.20; Table A.13). For example, during early-log to stationary phase, R. albus 8 expressed agrB 

from 25 to 62 times higher than R. albus 7, which is in accordance with phenotypic evidence 

showing more abundant planktonic cells of R. albus 8, relative to R. albus 7. Taken together, it 

seems that there is a strong correlation between transcriptional responses of c-di-GMP and Agr 

quorum sensing systems.  

 

2.4 Discussion 

Plant cell wall degradation by mammalian gut bacteria has been highlighted as a primary 

contribution to ruminant nutrition and a pivotal role in human health (60, 1, 2, 4, 5). Thus, 

intensive research has been conducted to identify the fibrolytic mechanism employed by two 

dominant phyla, Firmicutes and Bacteroidetes. Through deep molecular analyses, the PULs of 

Bacteroides genus has been established as the representative fibrolytic system of Bacteroidetes 

phylum, while the fibrolytic system of gut Firmicutes is still unclear, except for the cellulosomal 

paradigm propagated from the soil cellulolytic bacteria, Clostridium species (4, 17–19, 61). 

Recently, it has been reported that the ruminal Firmicutes, Ruminococcus flavefaciens, as well as 

human gut Firmicutes, Ruminococcus champanellensis harbors cellulosomal system for fiber 

degradation, supported by the genomic, transcriptomic, and biochemical analyses (4, 21, 18, 62). 

Thus, the cellulosomal paradigm seems to be expanded to the mammalian gut from the soil. 

However, the representative fibrolytic system of other predominant Rumincoccus species, R. 

albus, is still unclear due to little molecular evidences that are comparable between R. albus 

strains. In addition, the pentose metabolism of R. albus species, has received less attention than 
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the hexose metabolism, related to interest on their cellulolytic capability. Thurston et al. reported 

that R. albus B199 possessed functional pentose metabolic enzymes, including pentose 

isomerases, xylulokinase, ribulokinase, transketolase, but not phosphoketolase (63). Accordingly, 

R. albus species is thought to utilize pentose through the PP pathway. As the genome sequences 

of R. albus strains are available, it enables deeper understanding of their sugar metabolism at 

genomic and transcriptomic levels. Thus, through the comparative genomic, phenotypic, and 

transcriptomic analyses between R. albus strains, we seek to find whether two phenotypically 

distinct strains, R. albus 7 and 8, possess a shared fibrolytic system and sugar metabolism. If so, 

it would be a representative mechanism of R. albus species, or if not then, it would enable us to 

identify the strain specific fibrolytic mechanism, which likely account for the phenotypic 

variance between strains and ecological role in gut microbial community at strain level.  

Once R. albus 7 and 8 started growing on AHPCS, both strains co-expressed a specific 

array of extracellular hemicellulases and cellulases, encoding GH5, GH9, GH10, GH11, or 

GH48 domain. Together with the biochemical evidences in the current and previous studies, 

these five GH families are likely to be primary GH enzymes employed by two strains of R. albus 

for the hydrolysis of plant cell wall. Our transcriptomic data is in accordance with the previous 

metagenomic research. Dai et al. reported that the top 3 abundant transcripts of cellulases and 

hemicellulases in cow rumen included GH9, GH5, GH48 and GH10, GH11, GH26, respectively, 

and these transcripts were primarily synthesized by Ruminococcus and Fibrobacter genera (64).  

Since the adherence of cells to their insoluble substrate is a critical feature as cellulolytic 

species, we examined the known adhering mechanism of R. albus species including Pil-like 

protein (CbpC), glycocalyx, and CBM37, by a transcriptomic comparison between AHPCS 

attached strain, R. albus 7 and less associated strain, R. albus 8, phenotypically demonstrated in 



62 
 

our study. Through an adherence lacking mutant study, the CbpC protein has been implicated in 

cellulose adherence of R. albus 20 (25, 26, 65). In addition, Vodovnik et al. suggested that the 

orthologs of CbpC is also involved in cellulose attachment of the cellulosomal rumen species, R. 

flavefaciens, by showing up-regulation of a Pil-like protein when grown on cellulose (61). We 

found that both R.albus 7 and 8 harbor the homologs of CbpC, which was highly expressed 

(>10,000 RPKM) during growth on AHPCS (Table A.14). However, the Pil-like protein seems 

unlikely to involve direct attachment of cells to cellulose, based on the transcriptome of R. albus 

8 when grown on AHPCS. We observed that R. albus 8 increased planktonic cells after 20 h 

hours (late-log), but the CbpC homologous gene in R. albus 8 was expressed greater at late-log 

and later growth phases than at early- and mid-log phases (Table A.14). In addition, the 

homologous genes in both strain 7 and 8 were not significantly induced (< 2 fold) in response to 

cellulose relative to cellobiose, which is consistent with the transcriptome of R. albus 7 grown on 

Avicel in continuous culture (22). Rakotoarivonina and his colleagues reported that the 

transcriptional level of CbpC homologous gene in the adhesion-defective mutant strain tended to 

be even higher than the wild type strain, R. albus 20 (66). Taken together with previous studies, 

our findings suggest that a Pil-like protein may serve as an accessory appendage in adhesion 

mechanism of R. albus species.  

We also examined transcriptomic evidence for the role of glycocalyx in cell attachment 

to the plant cell wall. To date, it has not been identified which genes are involved in the 

glycocalyx synthesis. Based on the sugar composition in the glycocalyx of R. albus 7, it has been 

proposed that hexose-1-phosphate uridylyltransferase may be one of the candidates for 

glycocalyx synthetic genes, which was not up-regulated on cellulose, relative to cellobiose (28, 

22). We found a gene encoding the putative hexose-1-phosphate uridylyltransferase in both 
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strains, but its expression level was very low (RPKM < 50) and not responsive to any specific 

substrates, which was consistent with a previous study (Table A.15-A.16; Christopherson et al., 

2014). As glycoside transferases (GTs) are required for the exopolysaccharide biosynthesis of 

biofilm forming bacteria, it is possible that GT genes may be involved in the synthesis of the 

glycocalyx (67–70). We identified the putative GT genes in both strains, but none of them were 

significantly induced by any polysaccharides (Table A.15-A.16). Thus, the adhering system 

mediated by a glycocalyx seems not to be regulated at the transcriptional level in both R. albus 

strains.   

It is important to note that in both strains, most of highly expressed extracellular GH 

genes on PASC, WAX, and AHPCS encode CBM37 domains rather than dockerins. In addition, 

both strains harbor unknown function of CBM37 (UF-CBM37) genes that do not encode any 

known catalytic domains, and those genes were also highly expressed during growth on AHPCS 

(Fig. 2.21; Table A.17-A.18). More than 80 % of UF-CBM37 genes were predicted to encode 

extracellular proteins, inferred from the presence of a signal peptide (28 out of 35 genes in R. 

albus 7 and 20 out of 23 genes in R. albus 8), suggesting that together with CBM37 bearing GHs, 

the UF-CBM37 protein may work together outside of cells. Of the top 3 most highly expressed 

UF-CBM37 genes, we cloned and expressed the Rumal_0897 gene to determine catalytic 

activity for different polysaccharides, but it displayed no catalytic activity (data not shown). The 

CBM37 domain has shown a binding affinity to a broad range of polysaccharides, including 

cellulose and xylan, and even to cell surface (24), which leads to two existing theories for the 

role of CBM37 in fiber adhesion of R. albus. One is that CBM37 may work as a shuttle 

conveying the CBM37 bearing protein between bacterial cell surface and its target substrate (24). 

Some of UF-CBM37 genes in R. albus 7 contain leucine rich repeat (LRR) domains and it has 
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been proposed that the extracellular CAZymes may be complexed by UF-CBM37 protein via 

protein-protein interaction mediated by LRR domains (22). Later hypothesis is also supported by 

our findings that LRR containing UF-CBM37 genes were highly expressed in both strains during 

growth on AHPCS (>1000 RPKM at mid-log phase; Fig. 2.22). Interestingly, we also found that 

some of the highly expressed UF-CBM37 genes on AHPCS did not contain LRR domains, but 

contains only tandem CBM37 domains. In tandem CBM37 modules, proximal and distal 

modules are phylogenetically classified into different groups (24, 27). Xu et al. reported that 

distal CBM37 in tandem CBM37s exhibited a binding affinity to a variety of polysaccharides, 

whereas the proximal CBM37 bound to the putative ribosomal protein in the cell extract of R. 

albus 8 instead of polysaccharides (27). These results suggest that the proximal CBM37 may 

function as binding module with other protein. Thus, the UF-tandem CBM37 proteins, together 

with LRR containing UF-CBM37 proteins, may mediate protein-protein interaction between 

other extracellular CAZymes, leading to the localization of the CAZymes on the cell surface.  

It is very important to note that both strains 7 and 8 apparently have a different capability 

of degrading crystalline cellulose, despite that both strain 7 and 8 possess all components of 

fibrolytic system described above. The phenotypic variation between two strains grown on 

crystalline cellulose implies that additional components must be implicated in the cellulolytic 

system of R. albus 7. One of the potential candidate components is the yellow pigments 

produced from R. albus 7, not R. albus 8. The yellow pigment is a distinct phenotypic feature of 

some cellulolytic microorganisms in the rumen and soil (43, 71, 72). Although the gene encoding 

the yellow pigment has been yet identified, the role of yellow pigments in cellulose degradation 

has been reported in rumen bacterium Ruminococcus flavefaciens, soil bacterium Clostridium 

thermocellum, and rumen fungi Orpinomyces joyonii (72–76). The yellow pigments produced by 



65 
 

those three species showed a strong affinity to both microcrystalline cellulose and 

endoglucanases. Considering that the highly expressed endoglucanases in R. albus possess 

CBM37 domains, the yellow pigments likely interact with cellulose and CBM37 bearing 

endoglucanases on the cell surface, resulting in tight adhesion of the yellow pigmenting strains to 

cellulose. 

Considering the different cellulolytic capability between two strains, it seems unlikely 

that R. albus 8 is able to thrive in the rumen where a competition runs on plant biomass between 

the cellulytic bacteria, including R. flavefaciens, F. succinogenes, and even R. albus 7. Although 

relatively less abundant than other strains, R. albus 7 and SY3, R. albus 8 is still detected in the 

rumen by metagenomics analysis, meaning that R. albus 8 co-exists with other cellulolytic 

species and plays a role as one of member in the microbial community in the rumen (77). 

Therefore, we explored the growth strategy of R. albus 8 in the complex polysaccharide enriched 

environment, rumen. Our comparative genomic and transcriptomic analyses suggest that R. albus 

8 intent to utilize hemicellulose less preferred by other cellulolytic species and metabolize 

pentose sugars rapidly through PK pathway that is absent in other cellulolytic species.  

In spite of cellulolytic capability in the pure culture, wild type of R. albus 8 in rumen 

appears to preferentially utilize hemicellulose and amorphous cellulose region rather than 

cellulose embedded in the plant cell wall. To support, R. albus 8 utilized more hemicellosic 

sugars derived from the hydrolysis of AHPCS than R. albus 7 in the current study. Odenyo et al. 

reported that R. albus 8 preferred hemicellulose over cellulose when grown on alkaline hydrogen 

peroxide-treated wheat straw, whereas R. flavefaciens FD-1 did not show any sugar preference 

(78). Our conclusion is supported by the transcriptomic evidence of cells grown on different 

polysaccharides. More CAZyme genes, including hemicellulases as well as even cellulases, of R. 
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albus 8 responded to WAX than PASC, while those genes of R. albus 7 responded to more 

PASC than WAX. When both strains were grown on AHPCS, R. albus 8 down-regulated the 

expression of genes for sugar transporters and intracellular GH genes after early-log phase when 

hemicellulose in the culture started to decrease. In contrast, R. albus 7 exhibited a sequential 

expression of sugar transporters and intracellular GH genes, as preferred cellulosic sugars were 

released from AHPCS after removal of hemicellulose. Taken together, although R. albus 8 was 

able to utilize both hemicellulose and cellulose in the pure culture, its transcriptomic system 

appears to target hemicellulose rather than cellulose, while the transcriptomic system of R. albus 

7 responds to hemicellulose until the cells gain access to cellulose embedded in the plant cell 

wall.  

Despite a similar genotype for the fiber utilization, how do both strains run two distinct 

strategies? Based on the preferred planktonic growth of R. albus 8 on AHPCS as opposed to the 

substrate adherent growth of R. albus 7, we focused on two regulation mechanisms which have 

been intensively studied in biofilm forming bacteria: the accessory gene regulator (Agr) quorum 

sensing system and the cyclic-di-GMP (c-di-GMP) regulation system. The Agr quorum sensing 

(QS) system has been implicated in biofilm-associated function of gram-positive bacteria (79). 

This system is controlled by an operon composed of agrABCD genes. AgrD peptide is processed 

and secreted by AgrB. These autoinducing peptides are recognized by AgrC and AgrC activates 

the transcriptional factor (AgrA). Subsequently, AgrA binds to its target promoters. Agr QS is 

known to control the swich between biofilm formation and virulence behaviors (e.g. toxin 

secretion and motility). In Staphylococcus species, the high level of autoinducing peptides (AgrD) 

inhibits biofilm formation and stimulates virulence genes, resulting in dispersal of cells from the 

biofilm (79). Another regulatory system involved in the biofilm formation is C-di-GMP 
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regulation. C-di-GMP is known as a second messenger in bacteria. C-di-GMP is produced from 

two molecules of GTP by diguanylate cyclases (DGCs) encoding a GGDEF domain and is 

broken down by phosphodiesterses (PDEs) encoding an EAL domain (59). Thus, the level of c-

di-GMP in the cytoplasm is regulated by these two enzymes. Based on bioinformatical prediction, 

the c-di-GMP is present in 85 % of all bacteria (80). The role of c-di-GMP has been intensively 

studied in biofilm associated pathogenic bacteria including Psuedomonas aeruginosa, 

Salmonella enterica, and Vibrio cholerae (81). Similar with Agr QS, c-di-GMP is also known to 

control the switch between biofilm formation and motily. In addition, c-di-GMP also controls a 

broad array of other behaviors including cell cycle propagation, development, fimbrial synthesis, 

type III secretion, RNA modulation, stress response and virulence (82). For example, the high c-

di-GMP level stimulates various biofilm-associated functions, such as the biosynthesis of 

adhesins and exopolysaccharide matrix in Pseudomonas species (59). Taken together, it seems 

reasonable to postulate that high c-di-GMP and low AgrD stimulate cell attachment and low c-

di-GMP and high AgrD level stimulate cell detachment, which would be the potential regulators 

employed by R. albus 7 and 8 for adherence, colonization, and subsequent plant cell wall 

degradation. In accordance with our prediction, our transcriptional analyses showed that c-di-

GMP regulatory genes had a similar transcriptional pattern with CAZyme genes in response to 

cellulose and hemicellulose. In addition, the Agr QS genes, especially agrBD, were highly 

expressed in the preferred planktonic strain, R. albus 8. Taken together, it seems that there is a 

strong correlation between transcriptional responses of c-di-GMP and Agr quorum sensing 

systems and the differential strategies employed by R. albus 7 and 8 for plant cell wall utilization. 

With preference of hemicellulose over cellulose, R. albus 8 has achieved the capability of 

utilizing the second most abundant polysaccharide in the hemicellulose of forages, arabinan (83). 
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Of predominant cellulolytic ruminal species capable of degrading hemicellulose, F. succinogenes 

and some R. flavefaciens strains do not utilize the breakdown products of hemicellulose or utilize 

them with a low efficiency during growth on the plant cell wall (84–87). Taken together with the 

inability of R. albus 7 to degrade arabinan, R. albus 8 preferentially utilizes a broad range of 

hemicelluloses that are not preferred by other cellulolytic species in order to survive in the rumen. 

To compensate less energy yield from pentose relative to hexose through glycolysis, R. 

albus 8 has evolved to catabolize pentose faster than other competitors using the PK pathway. 

We found that both PP and PK pathways were functional for hemicellulose utilization and the 

PK pathway became dominant during the initial growth of R. albus 8 on AHPCS. The distinct 

feature of the PK pathway is that pentose bypasses three steps of the PP pathway and two 

carbons of pentose to bypass the entire EMP pathway to generate one ATP. Thus, it seems 

feasible that catabolizing pentose through the PK pathway may provide rapid catabolic rate of 

pentose to R. albus 8. In accordance with our hypothesis, R. albus 8 had a higher growth rate on 

beechwood xylan than R. albus 7. This result is also supported by previous research on the PK 

pathway bearing microorganisms. The ruminal fungus, Aspergillus nidulans, is known to harbor 

the PK pathway (88, 89). The mutant strain that over-expressed the PK pathway enhanced a 

growth rate on xylose (Td:  219 min) as compared to the wild type (Td: 260 min), but the growth 

rate on glucose was not changed between the mutant and wild type strain, suggesting that the PK 

pathway allows to grow at faster growth rate (90). We were unable to find the putative XFP gene 

in the available genomes of other cellulolytic strains within Ruminococcus and Fibrobacter 

species. Notably, we found the orthologs in the hemicellulolytic Firmicutes in the rumen and 

human gut, including Butyrivibrio hungatei, Butyrivibrio fibrisolvens, and Roseburia intestinalis 

(A.A. sequence similarity > 76 %; Table A.19). In accordance with our results, the maximum 
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growth rate of B. fibriosolvens was higher on xylose (Td: 92 min) than on glucose (Td: 107 min) 

in the previous research (91). Therefore, the survival strategy of R. albus 8 using the PK pathway 

would be conversed in the gut Firmicutes that utilize exclusively hemicellulose for growth.  

However, considering energy (e.g. ATP) loss through the PK pathway, as compared to 

the PP pathway, it can be argued that using the PK pathway actually provides a growth 

advantage to R. albus 8. We propose that the general mechanism of the PK pathway, relative to 

the PP pathway, seems to be similar with the Entner-Doudoroff (ED) pathway, relative to the 

EMP pathway. In the ED pathway, glucose is converted into 2-keto-3-deoxy-6-

phosphogluconate (KDPG) and subsequently, KDPG is cleaved into G-3-P and pyruvate (92). 

Similar with the PK pathway, one molecule of glucose bypasses a conversion step of 

dihydroxyacetone phosphate (DHAP) to G-3-P and half of the carbons of glucose bypass the 

lower EMP pathway (from G-3-P to pyruvate). As a result, the ED pathway generates one less 

ATP per glucose than the EMP pathway. However, Flamholz et al. suggested that this ATP loss 

could be compensated by saving the cost for enzyme synthesis required for the lower EMP 

pathway (93). Through both thermodynamic and kinetic analysis, they predicted that the EMP 

pathway needs to synthesize several fold more enzymes than the ED pathway to catabolize the 

same amount of glucose at the same rate. From this perspective, the PK pathway likely 

compensates the ATP loss by saving the cost for glycolytic protein synthesis. Furthermore, the 

PK pathway generates fewer reducing equivalents (e.g. NADH) than the PP pathway due to less 

oxidation of carbon to CO2 (57, 58). As a result, demands for re-oxidation of electron carriers 

through ethanol and hydrogen fermentation would be decreased, which enables R. albus 8 to 

change the metabolic flux of acetyl-CoA towards acetate fermentation (1 ATP produced) and 
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save more cost for the production of enzymes, including electron-bifurcating hydrogenase 

complex (HydABC) and acetaldehyde/ethanol dehydrogenases.  

R. albus 8 appears to rapidly metabolize hemicellulose and then dissociate from plant cell 

wall to find another hemicellulose. In the current study, we observed an intriguing phenomenon 

during growth of R. albus 8 on insoluble AHPCS. After log phase, R. albus 8 increased 

planktonic cells, while R. albus 7 was still attached to the substrate, which is in accordance with 

the expression pattern of Agr QS genes. Through sugar analysis, we found that after late-log 

phase, the hemicellulosic sugars in the residue of AHPCS and in the culture medium became 

depleted. R. albus 8 may sense the level of hemicellulose in the plant cell wall and once depleted, 

the cells repress the expression of genes required for substrate attachment and utilization, which 

accounts for the increase in planktonic cells. The resulting planktonic cells are able to find new 

substrate and rapidly metabolize intact hemicellulose. Therefore, R. albus 8 may serve as a 

helper for deconstruction of outer membrane of plant cell wall and consequently, cooperate with 

the cellulolytic members of the community, such as R. albus 7, R. flavefaciens, and F. 

succinogenes (Fig. 2.23).  

 

2.5 Conclusion 

In the current study, we demonstrate the phenotypic differences for plant cell wall utilization at 

the strain level. Through the comparative genomic analyses and biochemical enzyme analysis, 

we found that both strains share a similar mechanism for adherence and fiber deconstruction, 

which can be a representative fibrolytic system of R. albus species. Nevertheless, they displayed 

distinctly different transcriptional profiles of CAZymes and other metabolic pathways when 
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grown on polysaccharides (cellulose, hemicellulose, and plant biomass). Our findings strongly 

indicate that the cellular strategy for plant cell wall utilization varies at strain level of R. albus 

and both strains can be non-competitive, but likely cooperative. Therefore, they are functionally 

different and non-redundant in the gut ecosystem. This is a strong case for bacterial 

specialization and niche differentiation that cautions against interpretation of rumen and other 

gut system at the population and metagenomics level.   
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2.7 Figures 

 

Fig. 2.1 Standard curve for the relative absorbance of each R. albus 7 and 8 in co-culture. To 
convert the copy number of each strain to the relative value, the standard curves were generated 
from the copy number at different absorbance values.  
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Fig. 2.2 Cloning of glycoside hydrolases from Ruminococcus albus 7. (A) Domain architecture 
of the cloned glycoside hydrolases from R. albus 7. (B) Purification of 9 proteins was performed 
by Cobalt affinity chromatography, followed by gel filtration. The highly purified proteins were 
analyzed by 12 % SDS-. Numbers on the left are molecular weights.  
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Fig. 2.3 Unique putative arabinan utilization cluster present on R. albus 8 genome. (A) Putative 
arabinan utilization cluster present on the R. albus 8 genome. Genes were assigned to CAZy 
families (GHs, PLs, and CEs) if they exhibited significant similarity (E-value < 1 × 10-5) to 
biochemically characterized proteins already cataloged in a CAZy family. The dbCAN server 
was used to verify the CAZy annotations, and additional domains were predicted using both 
Pfam database and the CDD database. Signal peptides were predicted using SignalP v4.0. 
Arabinofuranosidase activity of Ara51A (CUS_7025) was biochemically reported by Moon and 
his colleagues (Moon et al., 2011). Determining orthologs of the arabinan utilization cluster in R. 
albus 8 against R. albus 7 was conducted using reciprocal BLAST, and no orthologs of genes in 
the clusters (from Cus_7027 to Cus_7042) are present on R. albus 7 genome. (B) Growth curve 
of R. albus 7 and 8 on debrached arabinan. Both strain 7 and 8 were grown in a defined medium 
with 0.4 % (w/v) of debranched arabinan. Data are reported as means ± SD. 
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Fig. 2.4 GH51 gene cluster on the genome of R. albus 7. The genes are shown as locus tag 
number. None of genes encoding L-arabinose isomerase, sugar transporters, and GH43 domain 
are present on the genome of R. albus 7. 
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Fig. 2.5 Growth of R. albus 7 and 8 on filter paper. Both strains were grown in a defined medium 
containing 0.1 % of cellobiose and 0.4 % of filter paper as the sole carbohydrate source. (A) The 
protein quantification using the Bradford method was performed to measure the growth of both 
strains. (B) Cellobiose was used to increase cell numbers at the initial growth phase and the 
concentration of cellobiose in the medium was measured using HPLC. After 10 hours, the 
cellobiose was completely depleted in the media of both strain 7 and 8, suggesting that later 
growth of R. albus 7 resulted from utilization of filter paper. (A and B) Data are reported as 
means ± SD from three biological replicates.   
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Fig. 2.6 Growth of R. albus 7 and 8 on cellobiose, amorphous cellulose and soluble xylan. Both 
strain 7 and 8 were grown in a defined medium with 0.4 % (w/v) of either cellobiose, phosphoric 
acid swollen cellulose (PASC) or wheat arabinoxylan (WAX). Growth curves of R. albus 7 and 8 
were assessed by measuring absorbance at 600 nm for soluble cellobiose (A) and WAX (C) or by 
total protein concentration quantified using the Bradford method for insoluble PASC (B). The 
fermentation products, acetate and ethanol, were measured during growth on cellobiose (C and 
D), PASC (E and F), and WAX (H and I). Error bars represent SD for three biological replicates. 
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Fig. 2.7 Growth curve and VFA analysis of R. albus 7 and 8 on AHPCS. (A) Growth curves of R. 
albus 7 and 8 grown on insoluble substrate were assessed by total protein quantification using 
the Bradford method. (B) Growth curve of R. albus 7 and 8 on AHPCS assessed by reading the 
absorbance value at 600nm. The insoluble substrates completely settled down at the bottom 30 
minute after inoculation. Then, the absorbance in liquid medium was measured by spectrometer. 
(C and D) The fermentation products, acetate, ethanol, and formate, of R. albus 7 and 8 were 
measured using HPLC. Data are reported as means ± SD from three biological replicates.  
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Fig. 2.8 Soluble sugars produced during growth of R. albus 7 and 8 on AHPCS. The soluble 
sugars in supernatant were resolved by thin layer chromatography, followed by staining with 
methanolic orcinol. Mixture of each monosaccharides (mannose: M1, glucose: G1, and xylose: 
X1) and their oligomers (manno-oligosaccharides: M2 to M4, cello-oligosaccharides: G2 to G5, 
xylo-oligosaccharides: X2 to X5), and of galactose (Gal), arabinose (Ara), and galacturonic acid 
(GalT) were used as standards (S1, S2, and S3). 
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Fig. 2.9 Integrative transcriptional profiles of GH genes in R. albus 7 and 8 to utilize 
polysaccharides in plant cell wall. Schematic view of the degradation of major polysaccharide 
components in AHPCS by GHs is illustrated. Either putative or biochemically characterized GH 
genes are shown as their locus tag number (Rumal_# for strain 7 and CUS_# for strain 8, 
respectively). NS means the fold change in means for two independent experiments was not 
significantly different (p≥0.05), as compared with expression level at 4 hour. Asterisks denote 
genes for which biochemical activities have been demonstrated for their cognate gene products 
in previous studies or confirmed in this study.    
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Fig. 2.10 Expression of genes encoding extracellular GHs and putative sugar transporters during 
growth on AHPCS. During growth on AHPCS, the top five GH genes among highly expressed 
GH genes (>1000 RPKM) in strain 7 (A) and strain 8 (B) were plotted. Asterisks denote genes for 
which biochemical activities have been demonstrated for their cognate gene products in previous 
studies or confirmed in this study.    
The expression pattern of predicted sugar transporters are shown as hitmap (C). NS means that 
the fold change in means for two independent experiments was not significantly different (p 
value ≥ 0.05). 
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Fig. 2.11 Top ten highly expressed GHs during growth of R. albus 7 and 8 with PASC, or WAX. 
The fold changes were calculated using expression value (RPKM) on either PASC or WAX as 
compared with expression value on cellobiose (G2). (A and B) Genes highly expressed during 
growth of R. albus 7 with either PASC (A) or WAX (B) and listed by magnitude of expression 
value as RPKM. (C and D) Genes highly expressed during growth of R. albus 8 with either 
PASC (C) or WAX (D) and listed by magnitude of expression value as RPKM. Asterisks denote 
genes for which biochemical activities have been demonstrated for their cognate gene products 
in previous studies or for which enzymatic activities on polysaccharides were confirmed in this 
study. 
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Fig. 2.12 Characterization of nine glycoside hydrolases of Ruminococcus albus 7. Specific 
activities (nmol products released per minute per nmol enzyme) with eight different soluble  
polysaccharide substrates, including carboxymethyl cellulose (CMC), beta-glucan, galactan, 
arabinogalactan (AraGT), galactomannan (GalMan), glucomannan (GluMan), xyloglucan (XG), 
and wheat arabinoxylan (WAX) present at 0.5% (w/v), and four different insoluble 
polysaccharide substrates, including phosphoric acid swollen cellulose (PASC), curdlan, mannan, 
and beechwood xylan (BWX), present at 2% (w/v), were reported for nine GH proteins. 
Reducing sugars released from polysaccharide substrate by GH protein were determined by the 
para-hydroxybenzoic acid hydrazide (PAHBAH) assay using glucose as the reducing end 
standard. Data are reported as means ± SD from three independent experiments. 
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Fig. 2.13 The genes regulated by either PASC or WAX during growth of R. albus 7 and 8 with 
either PASC or WAX. Both strain 7 and 8 were grown in a defined medium containing either 
cellobiose, PASC or WAX. The total RNA was extracted from the cells at mid log growth phase 
and used for RNA-seq experiments. The fold changes were calculated using expression value 
(RPKM) on PASC as compared with expression value on WAX. Each R. albus 7 (A and B) or R. 
albus 8 (C and D) gene that was induced or repressed greater than 2 fold by PASC relative to 
WAX is plotted as red dot or green dot, respectively. The CAZyme encoding genes that were 
induced or repressed at least 2 fold by PASC relative to WAX are shown in (B) and (D). 
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Fig. 2.14 Expression of intracellular GH genes on AHPCS. (A and B) Expression level of 
intracellular GH genes of R. albus 7. (C and D) Expression level of intracellular GH genes of R. 
albus 8. The intracellular GH genes that further process xylo-oligosaccharides and cello-
oligosaccharidesinto monosaccharides were plotted with their normalized RPKM value on 
AHPCS and expressional fold changes when grown on defined substrate, either cellobiose (C), 
phosphoric acid swollen cellulose (P), or soluble wheat arabinoxylan (W).  
a Both strain 7 and 8 were grown in define medium with either cellobiose, phosphoric acid 
swollen cellulose, or soluble wheat arabinoxylan as the sole carbohydrate source. RNA was then 
extracted at mid-log growth phase, and RNA-seq experiments were performed as described 
under “Experimental Procedures”. NS means that the fold change in means for two independent 
experiments was not significantly different (p value ≥ 0.05). 
Asterisks denote genes for which biochemical activities have been demonstrated for their cognate 
gene products in previous studies or for which enzymatic activities on polysaccharides were 
confirmed in this study.    
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Fig. 2.15 R. albus 8 possesses a unique gene encoding xylulose-5-phosphate/fructose-6-
phosphate phosphoketolase (XFP). XFP domains in CUS_7954 gene were predicted using both 
Pfam (Finn et al., 2014) and the Conserved Domain Database (CDD; Marchler-Bauer et al., 
2013). The gene encoding xylulose-5-phosphate/fructose-6-phosphate phosphoketolase (xfp) is 
only present on the genome of R. albus 8 within R. albus species. A. Domain architecture of XFP 
gene. B. XFP gene locus on the genome of R. albus 8 shown as locus tag number (CUS_#). 
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Fig. 2.16 Growth rate of R. albus 7 and 8 with Beechwood xylan. Both strains were grown in a 
defined medium containing 0.4 % (w/v) of Beechwood xylan (BWX). Beechwood xylan 
obtained from Sigma-Aldrich was composed of mainly xylose residue (> 90% xylose). The 
growth rate was caluculated using the following equation: µ = ln(At2/At1)/(t2-t1). Data are 
reported as means ± SD from three biological replicates. 
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Fig. 2.17 Integrative transcriptional profiles of genes in mono- and di-saccharide utilization 
pathway of R. albus 7 and 8. (A) Schematic view of the utilization of monosaccharides through 
EMP, PP, and XFP pathways is illustrated. The catalytic genes that convert sugars into the 
intermediates of each EMP, PP, and XFP pathways are shown with their fold changes during 
growth on AHPCS. Both R. albus 7 and 8 possess a gene encoding for L-fucose isomerase 
domain that was induced greater than 32 fold in R. albus 7 and 18 fold in R. albus 8, relative to 
cellobiose. Compared to other putative xylose isomerase genes in R. albus 7 (no xylose 
isomerase domains has been identified in R. albus 8), the putative fucose isomerase gene was 
expressed greater than 55 ~ 2331 fold on WAX.  
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Fig. 2.17 (Cont.) 
In other study, the orthologous gene annotated as L-fucose isomerase in C. acetobutylicum was 
induced by D-xylose so that it has been proposed as xylose isomerase (Grimmler et al., 2010). 
Taken together, we postulate a putative fucose isomerase gene would be a xylose isomerase as 
shown in this figure. NS means the fold change in means for two independent experiments was 
not significantly different (p≥0.05), as compared with expression level at 4 hour.  
(B) Expression level of genes involved in conversion of pyruvate to acetyl-CoA shown as RPKM 
value. 
a Expression ratio of total RPKM of PFL genes and PFOR gene. Two PFL genes (Rumal_1173, 
Rumal_1175 and CUS_4465, CUS_4467) and one PFOR gene (Rumal_0032 and CUS_6517) 
are present on both genomes.  
b A sum of RPKM of each HydA, HydB, and HydC gene in the HydABC cluster. 
(C) The amount of H2 in the headspace of each R. albus 7 and 8 culture after 48 hours incubation 
with AHPCS. Data are reported as means ± S. D. from three biological replicates. 
Abbreviations: GK, glucokinase; PGI, glucose-6P isomerase; XI, xylose isomerase; AI, arabinose 
isomerase; XFP, xylulose-5P/fructose-6P phosphoketolase; TK, transketolase; PFL, pyruvate 
formate lyase; PFOR, pyruvate ferredoxin oxidoreductase; AE, PFL activating enzyme. 
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Fig. 2.18 Co-culture of R. albus 7 and 8 on AHPCS. Both strain 7 and 8 were grown together 
with AHPCS as the sole carbohydrate source, and the supernatants and substrate residues of 
bacterial culture were collected at 0, 4, 8, 12, 16, and 24 h after inoculation. To measure the 
population of each strain, the qPCR was performed, and the resulting copy number was 
converted into the relative absorbance value by standard curve. (A) Growth curve of each strain 7 
and 8 on AHPCS in the whole culture (B) The accumulation of fermentation products during co-
growth of R. albus 7 and 8. (C) The relative absorbance of each strain in liquid fraction. (D) 
Profile of soluble sugars in co-culture medium of R. albus 7 and 8. The soluble sugars in 
supernatant were resolved by thin layer chromatography. Mixture of each monosaccharides 
(mannose: M1, glucose: G1, and xylose: X1) and their oligomers (manno-oligosaccharides: M2 
to M4, cello-oligosaccharides: G2 to G4, xylo-oligosaccharides: X2 to X4) were used as 
standards (S1, S2, and S3).  
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Fig. 2.19 Transcriptional pattern of cyclic di-GMP regulatory genes and GH genes during 
growth of R. albus 7 and 8 on AHPCS and defined substrates, cellobiose (Cel), PASC, or WAX. 
Each red and blue colored proportion means the percentage of genes up- or down- regulated 
greater than 2 fold in total number of c-di-GMP regulatory genes and GH genes. 
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Fig. 2.20 RNA-seq coverage of Agr quorum sensing operon in R. albus 7 and 8 grown on 

AHPCS. 
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Fig. 2.21 Unknown function of CBM37 genes encoded on the genome of R. albus 7 and 8.     
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Fig. 2.22 Top 3 highly expressed genes among unknown function of CBM37 genes in R. albus 7 
and 8 during growth on AHPCS. 
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Fig. 2.23 Proposed plant cell wall degrading mechanisms of rumen bacteria. 
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CHAPTER 3. 

COMPARATIVE GENOMICS-DRIVEN ANALYSIS OF FOLATE AND  

p-AMINOBENZOATE METABOLISM IN RUMINOCOCCUS STRAINS 

 

3.1 Introduction 

Folate (vitamin B9) is an essential growth factor for animals, plants, and microorganisms. 

Tetrahydrofolate (THF), a folate derivative, serves as cofactors in one-carbon transfer reactions 

required for the synthesis of purines, formylmethionyl-tRNA, thymidylate, pantothenate, glycine, 

serine, and methionine (1). Plants, fungi, and most bacteria make folates de novo, starting from 

GTP and chorismate, and most animals, including humans, lack key enzymes of the synthetic 

pathway and therefore folate must be supplied through the diet. However, ruminants in which the 

rumen is fully functioning are independent of a dietary supply of folate due to biosynthesis by 

rumen bacteria (2, 3). The rumen bacteria that synthesize folate pass into the abomasum along 

with digested feed and release their vitamins into the host intestine.  

The vitamin requirements of Ruminococcus albus, one of the predominant cellulolytic 

and hemicellulolytic rumen bacteria, were reported by Bryant and Robinson (4). All nine strains 

studied had an absolute requirement for biotin, but considerable variation in folate requirement 

existed between individual strains. Some R. albus strains, such as R. albus 7 and B199, did not 

require folate for growth, but other strains, such as R. albus 20 and B337, had an absolute 

requirement for exogenous folate. The genomes of both R. albus 7 and 8 have been sequenced, 

and various studies have been conducted to determine their fiber degradation mechanism through 

genomic, transcriptomic, and proteomic analyses (5–10). However, vitamin metabolism of R. 
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albus strains remains largely unknown, while the vitamin requirements of R. albus 8 have not 

been studied.     

The folate de novo synthesis and salvage pathways have been extensively studied in 

model organisms, such as Escherichia coli and Lactobacilli. Folate is composed of three 

components; a pterin core converted from GTP, p-aminobenzoate (pABA), and a glutamate 

moiety. In the canonical pathway, a total of ten catalytic enzymes are required for the de novo 

synthesis of folate, FolEQBK for the pterin branch, PabABC for the pABA branch, and FolPCA 

for the synthesis of tetrahydrofolate (THF) using three precursors (GTP, pABA, and glutamate). 

For the folate uptake or salvage pathway, some bacterial species require FolT, a folate-binding 

protein that interacts with the energy-coupling factor (ECF) transporter for folate (11, 12). This 

unique ECF transport system is found mainly in Firmicutes that salvage rather than synthesize 

folate. 

The first reaction of the pterin branch is the conversion of GTP to 7,8-dihydroneopterin 

triphosphate by GTP cyclohydrolase I (FolE) (13). The resulting 7,8-dihydroneopterin is 

converted into 6-hydroxymethyl-7,8-dihydropterin in three consecutive steps by a specific 

pyrophosphatase (FolQ), dihydroneopterin aldolase (FolB), and hydroxymethyldihydropterin 

pyrophosphokinase (FolK) (13). Subsequently, dihydropteroate synthase (FolP) condenses 6-

hydroxymethyl-7,8-dihydropterin with pABA either from the de novo synthesis or the salvage 

pathway. The resulting dihydropteroate is glutamylated by dihydrofolate synthase (FolC), which 

is reduced to tetrahydrofolate by dihydrofolate reductase (FolA) (13). In the pABA branch 

pathway, chorismate produced from the shikimate pathway is aminated to 4-

aminodeoxychorismate by 4-amino-4-deoxychorimate synthase (PabAB) and, subsequently, 

cleaved into pABA and pyruvate by 4-amino-4-deoxychorismate lyase (PabC) (14, 15). Other 
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alternative or atypical synthesis pathways for folate in bacteria, archaea, and protozoa have been 

reported (16–18), but little research has been conducted with rumen bacteria. Thus, it is relevant 

to establish whether the folate synthesizing mechanism in model bacteria is applicable to rumen 

bacteria.  

In this paper, we performed a comparative genomic analysis for folate metabolism in 

Ruminococcus species as well as other Firmicutes whose genome sequences have been deposited 

in the publicly available databases. Next, we examined the vitamin requirement of R. albus strain 

7 and 8, and showed that this was in agreement with our prediction based on genomic analysis. 

Then, we demonstrated that the predicted genes in the folate biosynthetic pathway of R. albus 7 

responded transcriptionally to the demand for folate. In addition, we report the transcriptional 

responses of global genes for folate biosynthesis in R. albus 7 and suggest that non canonical 

Ruminococcus species have a potential for de novo synthesis of pABA through an alternative 

pathway.  

 

3.2 Materials and methods 

Comparative genomic analysis for folate metabolism between R. albus 7 and 8. Genomic 

sequences of R. albus 7 (GenBank accession numbers: NC_014833 for chromosome and 

NC_014824 to NC_014827 for plasmids), R. albus 8 (NZ_ADKM020000001 to 

NZ_ADKM02000136), and R. albus SY3 (JEOB01000001 to JEOB01000004) were used for 

comparative genomic analysis among R. albus strains. Initial identification of the putative genes 

in the folate biosynthetic pathway in Ruminococcus species and other THF riboswitch bearing 

bacterial strains was performed using the RAST server (19). Annotation of the predicted genes 
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was verified using the Conserved Domain Database (CDD) (20), Pfam database (21), and the 

Enzyme Function Initiative server (EFI) that assigns the predicted function of genes (22), based 

on the amino acid similarity of a query gene (E-value < 1 × 10-5) to biochemically characterized 

proteins in the Protein Data Bank (PDB) (23). The tetrahydrofolate (THF) riboswitches present 

on the genomes of R. albus strains and other bacterial strains were predicted by Rfam database 

(24).  

Growth of R. albus 7 and 8 with different vitamins. R. albus 7 and 8 were cultured 

anaerobically at 37 °C in butyl rubber-stoppered Balch tubes using a previously reported 

chemically defined medium with a 100 % CO2 gas phase (25). The medium contained 0.4 % 

(w/v) of cellobiose as the sole carbohydrate source and ammonium sulfate 0.4 % (w/v) as the 

sole nitrogen source (Table 3.1). To determine folate and pABA requirement of R. albus 7 and 8, 

either 10 µg of filter sterilized folate or pABA was separately added into 10 ml of fresh medium 

after autoclaving.  To exclude the transfer of vitamin residue from the seed inoculum, the cells 

were grown in the respective medium for 24 hours and successively transferred to fresh medium 

three times. Subsequently, 0.2 ml of pre-grown culture was inoculated into 10 ml of fresh 

medium. After inoculation, the absorbance at 600 nm was monitored every hour using a 

Spectronic 21D spectrophotometer (Milton Roy, Warminster, PA). During log growth phase, the 

growth rate (µ) and doubling time (G) was calculated using the following equation: µ = 

ln(At2/At1)/(t2-t1) and G = ln(2)/µ, respectively (A: absorbance value at 600nm, t: incubation 

time).  

RNA extraction and transcriptional analysis by RNA sequencing. For transcriptional analysis, 

R. albus 7 cells grown with different vitamins were harvested at log phase (A600nm of 0.5 for 

cultures containing pABA and folate and A600nm of 0.2 for cultures lacking pABA and folate), 
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followed by centrifugation at 13,000 × g for 10 min at 4 °C. The resulting cell pellets were stored 

at –80 °C until RNA extraction. In the subsequent steps, the cell pellets were treated with lysis 

buffer (200U/ml of mutanolysin, 200 µg/ml of lysozyme, 150µg/ml of proteinase K, 25mM 

EDTA, and 0.5% (w/v) SDS) for 30 minute at 55 °C (26). The total RNA was extracted with the 

RNeasy mini kit (Qiagen) with the optional on-column DNase treatment step. Then, the total 

RNA was eluted with DEPC-treated nuclease-free water and stored at –80 °C until RNA 

sequencing. For RNA-Seq analyses, RNA isolated from two biological replicates were used for 

each growth condition. Bacterial ribosomal RNAs were removed from 10 µg of total RNA with 

the MicrobExpress kit (LifeTechnologies). The enriched mRNA fraction was converted to RNA-

Seq libraries using the TruSeq Stranded RNA Sample Prep kit from Illumina. The barcoded 

libraries were pooled in equimolar concentration and the pool was analyzed by quantitative PCR 

and sequenced on one lane for 101 cycles on a HiSeq2000 using a TruSeq SBS sequencing kit 

version3. Fastq files were generated and demultiplexed with the bcl2fastq v1.8.4 Conversion 

Software (Illumina, Inc.). RNAseq library statistics are shown in Table 3.2. The RNA-Seq data 

was analyzed using CLC genomics workbench version 5.5.1 from CLC Bio (Cambridge, MA). 

RNA-Seq reads were mapped onto the genome of R. albus 7 as the reference sequence using 

CLC software. Reads were only assembled if the fraction of the read that aligned with the 

reference genome was greater than 0.9 and if the read matched other regions of the reference 

genome at less than 10 nucleotide positions. Then, the RNA-Seq output files were analyzed for 

statistical significance by using the proportion-based test of Baggerly (27). 

Potential candidates for pABA biosynthesis in R. albus 7. Phenylpropionic acid (PPA), 

phenylacetic acid (PAA), benzoic acid (BA), L-tyrosine, 4-hydroxylbenzoic acid, and 3-(4-

hydroxyphenyl)propionic acid were individually prepared in distilled water at a concentration of 
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5 mM. After filter-sterilization, 50 µl of each solution was added into 10 ml of medium lacking 

folate, pABA, PPA, and PAA to provide a final concentration of 25 µM. To determine the effect 

of carbon source on the cell aggregation of R. albus 7 in the presence of folate or pABA, 0.4 % 

(w/v) of wheat arabinoxylan (WAX) was used as the sole carbohydrate source in the defined 

medium described above.  

 

3.3 Results 

Genomic analysis for folate metabolism of Ruminococcus species and other Firmicutes. We 

performed genomic analysis for folate metabolism of R. albus strain 7, 8, and SY3 for which 

genome sequences were available in the NCBI database. We sought orthologous genes to the 

folEQBKPCA genes of the canonical folate biosynthetic pathway in these genomes. The closed 

genome of R. albus 7 was predicted to encode the putative THF biosynthetic genes, 

folEQBKPCA (Table 3.3; Fig. 3.1A). However, the folT gene required in the folate salvage 

pathway was absent from the genome. In contrast, the orthologous genes to folQBKPA with the 

exception of folE were missing on the draft genome sequence of R. albus 8 and instead, the 

putative folT gene was present (Table 3.3; Fig. 3.1B). R. albus SY3 harbors both the folate 

biosynthetic and salvage pathway on the draft genome sequence (Table 3.3; Fig. 3.1C). These 

results suggest that there is likely to be considerable variation for folate metabolism at the strain 

level of R. albus (Fig. 3.2). Here, we expanded our comparative genomic analysis to the 

Ruminococcus genus level by analyzing the available genome sequences of Ruminococcus 

species isolated from the rumen and human gut. All strains analyzed in this study were predicted 

to possess either folate biosynthetic genes (folEQBKPCA) or salvage gene (folT) or both (Fig. 

3.3). However, all Ruminococcus species that harbor a putative folate biosynthetic pathway lack 
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orthologs for the canonical pABA synthetic genes, i.e., pabABC, suggesting that the potential 

folate biosynthetic species of Ruminococcus possess non-orthologous genes to pabABC or 

require preformed pABA for folate biosynthesis.   

As the THF riboswitch is known to sense THF level and regulate the transcription and 

translation of down-stream genes, we performed genomic analysis to identify the predicted THF 

riboswitch and their down-stream genes in the 13 genomes of Ruminococcus strains and 45 

complete genomes of Firmicutes in the Rfam database. We found that 52 of 58 genomes 

possessed predicted THF riboswitches, which are mostly located upstream of folT and only 4 of 

52 sequences are present upstream of folE or folC genes (Fig. 3.3). The prevalence of THF 

riboswitch sequence upstream of folT suggests that most THF riboswitch-bearing organisms 

would sense THF level and subsequently regulate the folate salvage pathway through a THF 

riboswitch. Interestingly, despite having similar potential for folate biosynthesis, the genes 

regulated by the THF riboswitch in R. albus and R. flavefaciens vary at the strain level (Table 3.4; 

Fig. 3.3). For example, all R. albus strain 7 and SY3 and R. flavefaciens strains FD-1 and 007c 

were predicted to possess the folate biosynthetic pathway. The THF riboswitches were present 

upstream of folT genes in R. albus SY3 and R. flavefaciens 007c, while in the genomes of R. 

albus 7 and R. flavefaciens FD-1 the riboswitches are upstream of the folC genes. This positional 

difference of the THF riboswitch between strains suggests that each strain differs in their 

transcriptional response to the THF level.   

Growth studies confirm that R. albus 7 is folate autotroph, while R. albus 8 is a folate 

auxotroph. To determine the folate and pABA requirements for growth, we cultured both strains 

in a defined medium containing either folate, pABA or without the additions. R. albus 7 grew on 

either folate or pABA containing medium at a similar growth rate (Fig. 3.4A and C), indicating 
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that R. albus 7 is able to synthesize folate via the de novo synthetic pathway. Interestingly, R. 

albus 7 was able to grow on the medium lacking even pABA in the absence of folate although it 

grew slower and to a lower absorbance value (600nm) than when either folate or pABA was 

supplied. This result suggests that R. albus 7 can synthesize pABA de novo through an 

undetermined pathway or folate through an alternative pABA independent pathway. R. albus 8 

was unable to grow on the medium lacking folate, but grew on the medium containing folate or 

folate with pABA (Fig. 3.4B and C). These results confirm that R. albus 8 is unable to synthesize 

folate de novo using pABA and consequently, R. albus 8 has an absolute requirement for 

preformed folate in the medium, which is in accordance with our prediction based on the 

genomic analysis.  

Transcriptional responses of folate biosynthetic genes to a lack of folate and pABA. To 

investigate if the predicted folate metabolic pathways are transcriptionally functional and to 

understand the potential mechanism for the growth without exogenous folate and pABA, a whole 

genome RNA sequencing (RNA-seq) approach was used in this study. The autotrophic strain, R. 

albus 7, was grown in the presence or absence of both folate and pABA. Total RNA was 

extracted from cells at the mid-exponential phase. The normalized expression value of each gene 

is reported as RPKM (reads per kilo base per million mapped reads). During growth of R. albus 

7 with both folate and pABA relative to the absence of both vitamins in the medium, a total of 

672 genes were induced greater than 2 fold, and 199 genes were repressed greater than 2 fold (p 

< 0.05; Table 3.5). Of those up-regulated genes, only 13 genes were significantly up-regulated 

greater than 10 fold, which included genes related to not only folate related metabolism, but also 

an antioxidant defense system (Table 3.6). We examined the specific transcriptional responses of 

genes related to folate metabolism in R. albus 7. Of seven genes in the folate synthetic pathway, 
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genes in the folate synthetic cluster including folQ, folP, folK, and folA did not respond 

transcriptionally, while the putative folE and one of two folC genes were up-regulated greater 

than 3 fold (Table 3.7; Fig. 3.5). Although both Rumal_1336 and Rumal_2417 encode a putative 

folC domain, the THF riboswitch controlled gene (Rumal_1336) was 15.7-fold up-regulated, 

while the non-riboswitch controlled folC gene (Rumal_2417) did not respond transcriptionally to 

a lack of both folate and pABA, suggesting that gene expression is controlled by the THF 

riboswitch in response to the exogenous level of folate and pABA.  

The de novo synthesis of folate requires three precursors, GTP, glutamate, and pABA. A 

variety of metabolic pathways, such as glycolysis, pentose phosphate (PP) pathway, TCA cycle, 

ammonium assimilation, and purine synthesis pathways, are required for the synthesis of those 

precursors from cellobiose and ammonia used as the main carbon and nitrogen sources by the 

Ruminococci. We determined the transcriptional responses of the metabolic genes related to 

folate synthesis. During exponential growth without exogenous folate and pABA, in general, the 

metabolic pathways tended to be up-regulated toward the supply of precursors for folate 

synthesis (Table 3.8-3.10; Fig. 3.5). Transcriptional analysis showed the up-regulation of genes 

in the central sugar metabolic pathways connecting to glutamate and GMP synthesis through the 

purine metabolic pathway and ammonia assimilation. Consistently, genes involved in one carbon 

metabolism that are required for purine metabolism were up-regulated (Table 3.11). Based on 

our transcriptomic analysis, it seems likely that folate was synthesized through the canonical 

synthetic pathway, thereby requiring pABA as one of precursors.  

Potential precursor for pABA de novo synthesis in R. albus 7. We sought to find the potential 

biosynthetic pathway for pABA, based on our transcriptional data. The shikimate pathway 

produces chorismate, the precursor for the canonical synthesis pathway for pABA and aromatic 
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amino acids. Three genes in this pathway were up-regulated greater than 2 fold, including 

putative aroA, aroD, and aroE (Table 3.12; Fig. 3.6). In the downstream of the shikimate 

pathway, we also found that the genes required for the synthesis of the aromatic amino acids 

including tyrosine and phenylalanine, but not tryptophan, were also up-regulated (Table 3.13; 

Fig. 3.6). If chorismate was used to synthesize pABA, the potential non-orthologous genes to 

pabABC would be required to have glutamine amidotransferase and lyase activities. However, all 

predicted amidotransferase genes that we identified had a very low expression level and were not 

significantly (p ≥ 0.05) induced in response to a lack of both vitamins, suggesting that the 

chorismate would be unlikely the precursor for pABA. As the synthetic genes for tyrosine and 

phenylalanine were up-regulated, we postulated that R. albus 7 might have an alternative pABA 

synthesis pathway using a tyrosine or benzene ring bearing compound as precursor. Since 

phenylpropionic acid (PPA) and phenylacetic acid (PAA) that contain a benzene ring are known 

as essential micronutrients for R. albus to utilize cellulose and therefore, these two compounds 

were supplied in the medium for growth of cells in this study (28–31). We reasoned that it was 

biochemically feasible that tyrosine, PPA, or PAA could be converted into pABA through a beta-

oxidation reaction at the side carbon chain (Fig. 3.7). To examine these hypothetical pathways, 

we tested six compounds as pABA precursors, including PPA, PAA, L-tyrosine, 3-(4-

hydroxyphenyl)propionate, benzoate, and 4-hydroxybenzoate. R. albus 7 was able to grow on the 

folate and pABA lacking medium in the absence of both PPA and PAA (Fig. 3.8A-C right panel). 

Interestingly, when cells were grown on the cellobiose medium, a lack of PPA caused the cells to 

form aggregates in liquid medium (Fig. 3.8i-iii left panel). However, when the sole carbon 

source in the medium was substituted with hemicellulose, wheat arabinoxylan (WAX), R. albus 

7 did not aggregate in the absence of PPA (Fig. 3.8D left panel and iv right panel). Next, we 
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cultured R. albus 7 on cellobiose plus PPA containing medium with the other test compounds. 

However, there was no growth stimulatory effect of tyrosine, 3-(4-hydroxyphenyl) propionate, 

benzoate, and 4-hydroxybenzoate on R. albus 7 (Fig. 3.8E left panel).  

 

3.4 Discussion 

Folate and its derivatives are essential cofactors because the reduced form, 

tetrahydrofolate, is involved in one carbon unit transfer reaction in purine and amino acid 

synthesis in all organisms (13, 32, 33). Thus, folate should be supplied to the cell through either 

de novo synthesis or uptake of extracellular folate.  Mammals, including humans, cannot 

synthesize folate de novo and consequently rely on the dietary folate, while ruminants are 

independent of the dietary folate due to a supply from rumen bacteria (2, 3). Ruminococcus 

species are predominant fibrolytic bacterial species in the rumen and other gut ecosystem and 

have been studied primarily for their fibrolytic mechanism (34). However, their contribution to 

the vitamin nutrition of the host, especially folate, has received far less attention, relative to the 

carbohydrate nutrition of host. In previous studies, R. albus and R. flavefaciens showed 

considerable variation in folate requirement between strains, indicating that each strain within 

Ruminococcus genus possesses a differential capability of folate synthesis and consequently 

makes a different contribution to the folate nutrition of host (4, 35). Although genome sequences 

are now available for several strains of Ruminococcus species, the molecular mechanisms for 

their folate metabolism are still unknown.  

Based on our comparative genomic analyses for Ruminococcus species and other THF 

riboswitch bearing Firmicutes, we predicted that two major distinct pathways for folate 
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utilization are conserved in these bacterial genomes, folate de novo synthetic and salvage 

pathways, or both. Despite the presence of the folate biosynthetic pathway, most of THF 

riboswitch controlled genes in those genomes are involved in the transport of exogenous folate 

(folT). Only four strains in this study encode the THF riboswitch upstream of genes in the folate 

biosynthetic pathway. It has been reported that the THF riboswitch either terminates 

transcription or initiates translation of downstream mRNA in response to THF or pABA binding 

(36, 37). Our transcriptomic work showed that only the THF riboswitch bearing folC gene was 

up-regulated in R. albus 7, while the non-THF riboswitch bearing folC gene did not respond to a 

lack of folate and pABA. Thus, the level of THF or pABA is likely sensed by THF riboswitch 

and consequently would control either the folate synthesis pathway or salvage pathway of THF 

riboswitch-bearing Firmicutes, including Ruminococcus species. 

In this study, we demonstrated that R. albus 7 was able to grow with pABA as well as 

folate and R. albus 8 was able to grow only with folate addition. Interestingly, all isolated species 

within the Ruminococcus genus lack the canonical pABA biosynthetic pathway, but our results 

demonstrate that R. albus 7 is independent of even dietary pABA for the growth in the absence 

of dietary folate. It is possible that R. albus 7 circumvents the folate requirement for growth or 

synthesize folate through a pABA independent pathway. It has been reported that the addition of 

the purines (e.g. guanine, adenine, xanthine, or inosine) restored growth of Streptococcus 

faecalis R and Lactococcus lactis in the absence of folate (38, 39). However, our chemically 

defined growth medium did not contain any purines. In addition, the genes involved in the folate 

synthesis pathway composed of pterin branch, glutamate synthesis, and GMP synthesis, were up-

regulated during growth in the absence of both vitamins. Thus, it seems likely that R. albus 7 

synthesizes folate through the canonical pathway and consequently must possess an alternative 
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pABA synthetic pathway. In the canonical pathway conserved in many bacteria and eukaryotes, 

pABA is synthesized from chorismate in two steps. The hybrid PabAB or individual PabA and 

PabB proteins convert chorismate to 4-amino-4-deoxychorismate (ADC) through glutamine 

amidotransferase and aminase reactions. The resultant ADC is cleaved into pABA and pyruvate 

by ADC lyase (PabC). We were unable to find any orthologous genes to pabABC in the available 

genomes of the Ruminococcus genus. In R. albus 7, the best BLAST hits of the reference PabAB 

proteins of E. coli K012 and L. lactis MG1363 are the tryptophan synthesis genes, anthranilate 

phosphoribosyltransferase (trpD) and anthranilate synthase (trpE/G). Thus, it is possible to 

assume that in Ruminococcus species, the tryptophan synthase is mis-annotated and functions as 

pABA synthase because both enzymes require the same substrate (chorismate) and perform 

similar enzymatic reactions. In the tryptophan synthetic pathway, chorismate is converted to 2-

aminobenzoic acid (anthranilate) by TrpEG enzymes, while the chorismate is converted to 4-

aminobenzoic acid (4-ABA) by PabABC in pABA synthetic pathway (14, 40). It has been 

reported that the folate synthetic operon contains a glutamine amidotransferase (PabA/TrpG) 

which is involved in both biosynthesis of pABA and anthranilate (41, 42). However, both 

putative trpD and trpE/G genes in R. albus 7 were not induced in response to a lack of 

exogenous pABA and the ortholog of pabC gene, essential for the final pABA synthesis reaction 

step, is still missing in the complete genome sequence of R. albus 7. R. albus 7 possesses a gene 

encoding a putative YceG domain (Rumal_1954), which is annotated as 4-amino-4-

deoxychorismate lyase (PabC) by genome sequence uploader group to NCBI database. However, 

there is no biochemical evidence for the lyase activity of YceG protein and in addition it did not 

respond to a lack of exogenous folate and pABA. In support of this possibility, Pfam (PF02618) 

and Interpro (IPR003770) database report that a number of genes encoding YceG have been mis-



117 
 

annotated as the PabC protein due to proximity to PabC (21, 43). Taken together, it seems 

unlikely that R. albus 7 possesses orthologs to the canonical pABA synthesis genes.  

Other alternative pathways for pABA synthesis have been suggested in some bacterial 

species and archaea that do not possess the orthologs of the pabABC genes. A single enzyme of 

the COG5424 family (pyrroloquinoline quinone biosynthesis protein C; PqqC) in C. trachomatis 

and N. europaea showed the capability of pABA synthesis using an unknown substrate (44, 45). 

In the methanogenic archaeon, Methanococcus maripaludis, pABA is derived from an 

intermediate in the shikimate pathway, 3-dehydroquinate, and not from chorismate (16). 

However, we were unable to find an orthologous gene to the PqqC gene in Ruminococcus 

species and downstream of shikimate pathway, while aromatic amino acid (phenylalanine and 

tyrosine) synthesis pathway were up-regulated in the absence of pABA. Thus, we postulated that 

R. albus 7 possesses an alternative pABA synthesis pathway using phenolic ring compounds, 

such as tyrosine and PPA. Phenylalanine has a similar molecular structure to tyrosine. However, 

we excluded phenylalanine since it has no side chain at fourth carbon in benzene ring, making 

the pABA synthetic reaction much less favorable than tyrosine. In addition, if phenylalanine is 

used as a precursor for the pABA synthesis, PPA and benzoate tested in this study would have a 

similar stimulatory effect on the growth of R. albus 7, since both compounds are predicted as 

intermediates in our hypothetical pathway. Although none of the six compounds had a growth 

stimulatory effect like pABA, it is possible that the tested compounds are not transported into 

cells or the potential pathway for pABA synthesis would be independent of the six compounds.  

It is notable that a lack of PPA in R. albus 7 culture caused the cells to form aggregates in 

the cellobiose medium. PPA has been reported to improve cellulose utilization by R. albus 7 and 

8 (28, 29, 31, 46). Later, PPA was shown to increase transcription of the pilA1 gene that is 
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involved in the attachment of R. albus 8 to cellulose (47). When cellobiose was substituted with 

WAX, the aggregation phenomenon was not observed, suggesting that PPA would be implicated 

in extracellular matrix that is induced by the end product of cellulose hydrolysis, cellobiose (8, 

48), but not pentose based polysaccharide such as WAX. Future work is still required to define 

the biological role of PPA in fibrolytic gut bacteria.  

An additional intriguing feature of the transcriptome of R. albus 7 was the high induction 

of an antioxidant enzyme cluster, consisting of peroxiredoxin, a transcriptional regulator, 

thioredoxin, and thioredoxin-disulfide reductase. The putative peroxiredoxin and thioredoxin 

genes were highly up-regulated (57 and 11 fold, respectively) in this study (Fig. 3.9). 

Peroxiredoxins are ubiquitous peroxidase enzymes identified in many bacteria, archaea, and 

eukaryotes (49, 50). After reduction of hydrogen peroxide by peroxiredoxin, resulting oxidized 

peroxiredoxin is regenerated by thioredoxin (49, 51). Thus, both enzymes, together with 

superoxide dismutase and catalase, have been known as components of a redox system involved 

in balancing redox state and extensively studied for their role in defense mechanism against 

oxidative stress (49, 52). It has been reported that folate deficiency induces oxidative stress and 

subsequently antioxidant enzymes in animal cells (53–55). However, the effect of folate 

deficiency on the oxidative stress is still unknown in bacteria. To our knowledge, this is the first 

transcriptional analyses result showing folate deficiency-induced oxidative stress response in the 

anaerobic bacterium, R. albus 7. It is unclear why the oxidative stress response genes were 

strongly induced under anaerobic growth condition. A possible explanation is that the deficiency 

of folate and pABA would generate an abnormal redox state, such as imbalance of 

NAD(P)+/NAD(P)H or FAD+/FADH involved in the folate and one carbon metabolism 

pathways, and subsequently, the abnormal redox state would be controlled by the transcriptional 
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regulator in the peroxiredoxin operon. This explanation is supported by the highly up-regulated 

genes in one carbon pool metabolism in the absence of folate and pABA, including NAD(P)H 

dependent 5,10-methylenetetrahydrofolate reductases. The highly up-regulated peroxiredoxin 

operon contains a putative transcriptional regulator gene, which is predicted as MarR family 

protein. The MarR type regulators are found in many bacteria and archaea (56–58). It is known 

that MarR protein regulates gene expression required for resistance to antibiotics, organic 

solvents, and oxidative stress agents (56–58). Taken together with the transcriptional evidence, it 

appears that the MarR type regulator would be a strong candidate for the transcriptional regulator 

in response to stress induced by folate deficiency.  

In this study, we demonstrated that differences in folate metabolism (either de novo 

biosynthesis, salvage, or both pathways) are present at the species level and even at the strain 

level of bacterial species, leading us to address a fundamental question; why does folate 

metabolism in Fimicutes vary with species and strains during bacterial evolution? Many cases of 

the prevalence of auxotrophs for essential metabolites such as vitamins and amino acids have 

been reported between species and strains within the bacterial and eukaryotic kingdoms (59–61). 

According to the “Black Queen” hypothesis proposed by Morris and colleagues, where members 

of a community lose the ability to perform functions whose products are available from the 

environment, auxotrophs presumably arise from autotrophic ancestors as a result of the loss of 

essential biosynthetic function to reduce the metabolic burden when the corresponding 

metabolite is available in their habitat or produced by neighboring commensal  organisms (62, 

63). This hypothesis is supported by empirical observations showing that inactivation and/or 

deletion of certain metabolic biosynthetic genes provide an increase in fitness to the engineered 

bacterial strains (60, 64). Applying this concept to the variation of folate metabolic pathways in 
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R. albus species, strain 7, 8, and SY3 possessing either of the three folate utilization pathways 

would have evolved from an autotrophic ancestor harboring a complete folate biosynthetic 

pathway.  Considering the potential saving of biosynthetic costs for synthesis of GTP, glutamate 

and production of the long (six enzymatic steps) biosynthetic pathway, it seems reasonable that 

in the rumen where exogenous folate is present in sufficient amounts (rumen fluid level 80-186 

ng/ml; Ragaller et al., 2009), auxotrophic strains subsequently arise to utilize exogenous folate 

by acquisition of the transport or salvage pathway (folT). For comparison, levels of folate in the 

synthetic growth medium (1 ug/ml) are ca. 10 fold higher. As a result of this selection, the 

lineage capable of actively transporting folate lost the redundant genetic material for folate 

biosynthesis. This loss of genetic material or adaptive genome streamlining is thought to occur 

more frequently in nutrient rich or constant environments such as the intestinal tract (60, 63, 66). 

Indeed, the presence of three different folate utilization pathways in the strains of R. albus 

suggests that at least the metabolic differentiation for folate in R. albus species would have 

occurred following the speciation event.  

 

3.5 Conclusion 

This study provides the first integrative analysis of genomic, phenotypic, and 

transcriptomic results for folate and pABA metabolism of the mammalian gut species, 

Ruminococcus albus. We provide genomic evidence for three folate utilization pathways (either 

de novo synthesis, salvage, or both pathways) conserved in the Firmicutes including R. albus 

strains. We demonstrated that at the strain level, R. albus strains 7 and 8 rely on different folate 

metabolic pathways, de novo synthesis or salvage pathway, which would imply a differential role 
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of each bacterial strain in the gut and host nutrition as either autotroph or auxotroph, respectively. 

In addition, our findings suggest that the folate autotrophic strain, R. albus 7, has an alternative 

pathway for pABA synthesis and likewise other Ruminococcus species lacking the canonical 

pABA synthetic pathway could not be pABA auxotrophs, but autotrophs. Taken together, our 

findings provide molecular insight in folate metabolism of R. albus 7 and 8, which contributes to 

an understanding and functional model for vitamin metabolism of the microbial community in 

the mammalian gut. 
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3.7 Tables and figures 

Table 3.1 Anaerobic medium for culturing Ruminococcus albus strains 7 and 8 

Ingredients Concentration in Medium 
(mg/L) 

Cellobiose 4000 
(NH4)2SO4 4000 
Resazurin (0.1% w/v solution) 1 ml 
Sodium bicarbonate 4000 
Hemin 0.1 
p-Aminobenzoic acid (pABA)a 1 
Folic acida 1 
Mineral Solution             K2HPO4 300 
          KH2PO4 300 
          NaCl 600 
          CaCl2·2H2O 60 
          MgSO4·7H2O 60 
Pfennig's Trace Elements Solution             EDTA 0.5 
          ZnSO4·7H2O 0.1 
          MnCl2·4H2O 0.03 
          H3BO3 0.03 
          CoCl2·6H2O 0.2 
          CuCl2·2H2O 0.01 
          FeCl2·4H2O 1.5 
          NiCl2·6H2O 0.02 
          Na2MoO4·2H2O 0.03 
          Na2SeO3 0.01 
Basic vitamin B Solution             Thiamine-HCl 5 
          Ca-D-pantothenate 10 
          Nicotinamide 10 
          Riboflavin 5 
          Pyridoxine-HCl 10 
          Biotin 0.5 
          Vitamin B12 0.5 
VFA Solution             Acetic acid (99.7% w/v) 0.137 ml 
          Propionic acid (99.5% w/v) 0.06 ml 
          Butyric acid (99% w/v) 0.04 ml 
          Isobutyric acid (99% w/v) 0.01 ml 
          2-methylbutyric acid (98% w/v) 0.01 ml 
          n-valeric acid (99% w/v) 0.01 ml 
          Isovaleric acids (99% w/v) 0.01 ml  
          3-Phenylpropionic acid (99% w/v) 3.75 
          Phenylacetic acid (99% w/v) 3.40 
Cysteine Sulfide Solution            Cysteine-HCl 500 
         Na2S·9H2O 500 

a Either folic acid, pABA, or none was added to the basic vitamin-containing medium.  
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Table 3.2 RNA-seq mapping table 

RNAseq 
Sample ID 

Total reads 
(avg. 

length) 

Reads after 
Trimminga 

(avg. length) 

Uniquely mapped 
readsb 

(%) 

Non-specifically mapped 
reads 
(%) 

Unmapped 
reads 
(%) 

Both Vit-1 13,884,440 
(100 nt) 

13,849,013 
(95 nt) 

10,871,957 
(78.5 %) 

245,864 
(1.8 %) 

2,731,192 
(19.7 %) 

Both Vit-2 13,271,722 
(100 nt) 

13,232,202 
(95 nt) 

10,297,173 
(77.8 %) 

188,137 
(1.4 %) 

2,746,892 
(20.8 %) 

None-1 24,502,587 
(100 nt) 

24,344,150 
(99 nt) 

19,944,552 
(81.9 %) 

361,000 
(1.5 %) 

4,038,598 
(16.6 %) 

None-2 34,633,184 
(100 nt) 

34,470,450 
(99 nt) 

28,653,325 
(83.1 %) 

488,248 
(1.4 %) 

5,328,877 
(15.5 %) 

a Sequencing reads were trimmed using the CLC genomics Workbench program (ver. 6.5.1) with a 
quality score limit of 0.05 and a maximum number of ambiguities of 2. 
b The trimmed reads were mapped to the R. albus 7 genome with annotation using the CLC genomic 
Workbench program with a minimum length fraction of 0.9, a minimum similarity fraction of 0.8, a 
maximum number of 0.8, and a maximum number of hits for a read of 10.   
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Table 3.3 The putative folate synthesis genes on the genome of R. albus 7 and 8 

R. albus 7      
Locus # 
(Rumal) 

Predicted 
functiona 

GenBank 
Accession 

EFI server 
(E-value) 

Pfam 
(E-value) 

CDD 
(E-value) 

0212 folE ADU20769 6.90E-22 6.30E-58 7.68E-77 
1922 folQ ADU22416 0.008 1.30E-09 4.71E-06 
1923 folP ADU22417 7.60E-53 1.20E-64 1.50E-108 

1924 Bifunctional 
folB/folK ADU22418 2.30E-38 5.70E-41 3.19E-62 

1336 folC ADU21851 6.60E-37 1.40E-10 2.22E-105 
2417 folC ADU22897 1.50E-38 1.70E-10 5.48E-133 
1925 folA ADU22419 8.90E-19 6.70E-47 8.57E-57 

R. albus 8         
Locus # 
(Cus_) Gene name GenBank 

Accession 
EFI server 
(E-value) 

Pfam 
(E-value) 

CDD 
(E-value) 

5138 folE EGC04024 7.70E-24 7.60E-60 3.86E-77 
5042 folC EGC02520 4.70E-35 6.10E-11 1.98E-112 
5043 folT EGC02525 3.70E-04 1.20E-11 9.65E-33 
6073 folT EGC02818 7.20E-06 1.10E-18 2.86E-16 

R. albus SY3      
Locus # 

(RaSY3_) Gene name GenBank 
Accession 

EFI server 
(E-value) 

Pfam 
(E-value) 

CDD 
(E-value) 

11620 folE EXM38954 3.6E-23 4.2E-59 4.13E-76 
16765 folQ EXM37958 N/A 1.8E-10 1.16E-04 
16760 folP EXM37957 1.5E-53 4.8E-81 2.03E-93 

16755 Bifunctional 
folB/folK EXM37956 9.18E-32 2.5E-30 7.4E-42 

07295 folC EXM39633 5.7E-36 2.5E-07 2.37E-129 
00625 folC EXM40435 9.2E-36 2.2E-09 8.17E-120 
16750 folA EXM37955 9.6E-18 1.5E-46 1.57E-59 
00620 folT EXM40434 2.3E-4 4.4E-18 2.06E-28 

a The function of genes was predicted using the Conserved Domain Database (CDD) and Pfam database if 
they exhibited significant amino acid sequence similarity (E-value < 1 × 10-5) to biochemically 
characterized proteins in the Protein Data Bank (PDB). The EFI server was used to verify the CDD and 
Pfam annotations.  
b No matches of query sequence found. 
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Table 3.4 Variation in the THF riboswitch controlled genes among Ruminococcus strainsa 

Species Genome ID 
/ location site 

Downstream gene 
(Locus tag ID) Genbank ID Predicted Annotation 

(CDD) 

R. albus 7 CP002403 
/1531889-1531987 Rumal_1336 ADU21851 Folypolyglutamate synthase 

(FolC) 

R. albus SY3 JEOB01000001 
/150490-150602 RaSY3_00620 EXM40434 ECF transporter S component, 

folate family (FolT) 

R. albus 8 ADKM02000092 
/26627-26516 CUS_5043 EGC02525 ECF transporter S component, 

folate family (FolT) 

R. albus 8 ADKM02000086 
/59361-59461 CUS_6073 EGC02818 ECF transporter S component, 

folate family (FolT) 
R. flavefaciens 
FD-1 

ACOK01000004 
/41711-41613 

RflaF_ 
010100001289 WP_009982980 Folypolyglutamate synthase 

(FolC) 
R. flavefaciens 
007c 

ATAX01000028 
/265603-265718 RF007C_15165 EWM52951 ECF transporter S component, 

folate family (FolT) 
a Tetrahydrofolate (THF) riboswitches were predicted by Rfam database.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



132 
 

Table 3.5 Whole genome transcriptional response in R. albus 7 when grown on folate and pABA 

lacking medium compared to both vitamins supplied in the medium 

Global gene expression Number of gene 
Total number of gene  4032 
Significantly up- or down-regulated genes (p<0.05) 1624 
Up-regulated genes greater than 2 fold 672 
Down-regulated genes greater than 2 fold 199 
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Table 3.6 Genes induced greater than 10-fold in R. albus 7 during growth in the absence of 

folate and pABA, compared to the presence of folate and pABA 

Locus tag # Predicted Annotation Fold 
change p-value 

Rumal_0454 hypothetical protein 186.5 3.40E-11 
Rumal_2402 hypothetical protein 74.1 3.66E-04 
Rumal_3171 Peroxiredoxin 56.8 3.20E-04 
Rumal_0673 hypothetical protein 45.2 8.88E-15 
Rumal_3172 MarR family transcriptional regulator 35.4 6.95E-05 
Rumal_2909 hypothetical protein 24.6 0 
Rumal_1440 pseudo gene 20.5 1.01E-03 

Rumal_2444 5- methyltetrahydropteroyltriglutamate 
/homocysteine S-methyltransferase 18.6 0 

Rumal_2445 5,10-methylenetetrahydrofolate reductase 18.4 0 
Rumal_1280 AMP-dependent synthetase and ligase 16.0 0 
Rumal_1336 FolC bifunctional protein 15.7 0 
Rumal_2896 degV family protein 13.9 0 
Rumal_2104 family 1 extracellular solute-binding protein 12.9 1.65E-13 
Rumal_3173 thioredoxin 11.1 9.55E-15 
Rumal_2686 hypothetical protein 11.1 1.66E-03 
Rumal_1541 hypothetical protein 10.4 3.50E-11 
Rumal_0132 hypothetical protein 10.2 3.67E-05 
Rumal_3854 dTDP-4-dehydrorhamnose 3,5-epimerase 10.0 5.12E-04 
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Table 3.7 Transcriptional response of the folate biosynthetic pathway in R. albus 7 to a lack of 

exogenous folate and pABA, compared to the presence of folate and pABA 

   Normalized RPKM 
Locus tag 
(Rumal_#) Annotation Fold 

Change Both None 

1922 Metal dependent phosphohydrolase (folQ) -1.7 373.1 220.9 
1923 Dihydropteroate synthase (folP) 1.8 159.3 283.8 

1924 2-amino-4-hydroxy-6- hydroxymethyldihydropteridine  
pyrophosphokinase (folK) 1.4 134.7 189.5 

1925 Dihydrofolate reductase region (folA) NSa 254.9 241.7 
0212 GTP cyclohydrolase I (folE) 3.4 36.3 124.7 
1336 FolC bifunctional protein (folC) 15.7 26.0 406.5 
2417 FolC bifunctional protein (folC) 1.8 53.5 98.4 

a NS means fold change was not statistically significant (p ≥ 0.05).  
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Table 3.8 Transcriptional response of genes involved in the central sugar metabolism to a lack of 

exogenous folate and pABA in R. albus 7 

   Normalized RPKM 
Locus tag 
(Rumal_#) Predicted function Fold 

Change Both None 

EMP pathway    
2867 Glucokinase NSa 229.7 181.8 
2138 Glucose-6-phosphate isomerase 1.5 558.4 808.1 
0431 6-phosphofructokinase NS 371.5 300.3 
1631 6-phosphofructokinase 3.2 69.9 223.0 
2486 6-phosphofructokinase 1.2 1158.7 1415.6 
2608 Fructose-bisphosphate aldolase 2.3 814.8 1871.9 
0090 Triosephosphate isomerase NS 712.1 937.6 
627 Glyceraldehyde-3-phosphate dehydrogenase NS 5465.6 5102.5 
1028 Phosphoglycerate kinase NS 1549.2 1550.5 
0087 phosphoglycerate mutase 1.5 283.4 411.9 
0088 Phosphoglycerate mutase -2.0 876.8 449.2 
2834 Enolase NS 38.1 24.8 
3948 Pyruvate kinase 4.6 58.0 265.1 

PP pathway    
2948 Ribulose-phosphate 3-epimerase NS 437.6 449.7 
2220 Ribose-5-phosphate isomerase 4.4 147.0 652.0 
1983 Transketolase, N-terminal section 1.4 442.4 603.5 
1982 Transketolase, C-terminal section NS 564.5 651.3 
1602 Transaldolase NS 9.4 5.1 

TCA cycle    
0561 Citrate synthase 3.7 359.5 1318.6 
3111 Aconitate hydratase 2.2 215.1 479.3 
3116 Isocitrate dehydrogenase, NADP-dependent 1.5 554.0 816.1 
0456 Malate dehydrogenase 1.7 199.8 331.1 
0350 Fumarase, alpha subunit 1.9 42.9 81.7 
3058 Fumarase, beta subunit NS 933.1 976.5 
2250 Fumarate reductase/succinate dehydrogenase NS 3.3 5.6 
2347 Fumarate reductase/succinate dehydrogenase NS 88.4 100.8 
3120 Fumarate reductase/succinate dehydrogenase 2.6 61.3 159.7 

Anaplerotic pathway    
0626 Oxaloacetate decarboxylase 2.2 590.6 1282.2 
1789 PEP carboxykinase NS 2834.7 2591.2 

a NS means fold change was not statistically significant (p ≥ 0.05).  
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Table 3.8 (Cont.) 

   Normalized RPKM 
Locus tag 
(Rumal_#) Predicted function Fold 

Change Both None 

Conversion of pyruvate to acetyl-coA    
1173 Pyruvate formate-lyase 1.3 1179.1 1582.7 
1175 Pyruvate formate-lyase -2.1 6496.2 3123.2 
0032 Pyruvate ferredoxin oxidoreductase 2.2 1220.4 2705.6 
3407 HydA2, ferredoxin-dependent hydrogenase NSa 2163.1 2021.4 
2964 HydA, electron-bifurcating hydrogenase 1.4 1272.1 1720.3 
2965 HydB, electron-bifurcating hydrogenase 1.2 690.1 837.9 
2966 HydC, electron-bifurcating hydrogenase -1.6 1149.1 707.7 

Fermentation pathway    
0279 Phosphate acetyltransferase 2.0 349.9 696.2 
1651 Acetate kinase 2.6 478.0 1257.1 

3401 Acetaldehyde dehydrogenase 
/Alcohol dehydrogenase 1.3 1810.8 2343.5 

3118 Alcohol dehydrogenase 2.7 24.7 67.1 
3178 Acetaldehyde dehydrogenase 1.3 1559.4 2096.6 

a NS means fold change was not statistically significant (p ≥ 0.05).  
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Table 3.9 Transcriptional response of genes involved in the purine metabolism to a lack of 

exogenous folate and pABA in R. albus 7 

   
Normalized 

RPKM 
Locus tag 
(Rumal_#) Annotation Fold 

Change Both None 

IMP synthesis 
1783 Ribose-phosphate pyrophosphokinase 2.4 282.8 667.0 
2632 Phosphoribosyltransferase NSa 10.0 49.9 
0259 Amidophosphoribosyltransferase NS 460.0 362.3 
3942 Amidophosphoribosyltransferase NS 6.6 3.8 
0267 Phosphoribosylamine/glycine ligase 1.6 352.7 553.8 
0265 Phosphoribosylglycinamide formyltransferase NS 56.0 42.5 
1739 Phosphoribosylformylglycinamidine synthase 1.3 351.6 467.1 
0260 Phosphoribosylformylglycinamidine cyclo-ligase NS 700.1 512.2 

0256 Phosphoribosylaminoimidazole carboxylase,  
catalytic subunit -3.9 398.9 102.3 

0258 Phosphoribosylaminoimidazole-succinocarboxamide 
synthase NS 398.6 502.5 

2935 Adenylosuccinate lyase 2.9 119.3 348.7 

0271 Phosphoribosylaminoimidazolecarboxamide 
formyltransferase NS 441.9 428.0 

0277 Inosine monophosphate cyclohydrolase-like protein 1.8 220.4 403.3 
GTP synthesis 

3203 Inosine-5-monophosphate dehydrogenase 5.1 355.9 1827.8 
1611 GMP synthase large subunit 2.3 397.2 896.3 
1808 Guanylate kinase 1.2 269.4 320.9 
3948 Pyruvate kinase 4.6 58.0 265.1 

ATP synthesis 
1765 Adenylosuccinate synthetase 1.6 503.5 792.5 
2935 Adenylosuccinate lyase 2.9 119.3 348.7 
0057 Adenylate kinase -2.3 2748.3 1217.1 
3948 Pyruvate kinase 4.6 58.0 265.1 

a NS means fold change was not statistically significant (p ≥ 0.05).  
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Table 3.10 Transcriptional responses of genes involved in the nitrogen metabolism to a lack of 

exogenous folate and pABA in R. albus 7 

   Normalized RPKM 
Locus tag 
(Rumal_#) Annotation Fold 

Change Both None 

2461 Glutamate dehydrogenase (gdh) 3.0 275.8 824.7 
2615 Glutamine synthetase catalytic subunit (glnA) 1.2 77.1 90.6 
0216 Glutamine synthetase catalytic subunit (glnN) 1.6 337.1 529.8 
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Table 3.11 Transcriptional responses of genes involved in the one carbon pool metabolism by 

folate in R. albus 7 to a lack of exogenous folate and pABA, compared to the presence of folate 

and pABA 

   Normalized RPKM 
Locus tag 
(Rumal_#) Annotation Fold 

Change Both None 

2224 Formate-tetrahydrofolate ligase 2.1 262.5 553.9 
3726 Homocysteine S-methyltransferase 1.4 200.8 272.1 
2050 Glycine hydroxymethyltransferase 2.0 773.5 1540.4 
1959 Thymidylate synthase, flavin-dependent 1.1 298.6 327.0 
3207 Methylenetetrahydrofolate dehydrogenase (NADP(+)) 1.4 189.2 254.7 
2445 5,10-methylenetetrahydrofolate reductase 18.4 142.3 2617.4 
2778 5,10-methylenetetrahydrofolate reductase 7.2 97.8 700.8 
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Table 3.12 Transcriptional response of the Shikimate pathway to a lack of exogenous folate and 

pABA in R. albus 7 

   Normalized RPKM 
Locus tag 
(Rumal_#) Annotation Fold 

Change Both None 

0234 DAHP synthase (aroA) 2.6 37.5 99.0 
0379 DHQ synthase-I (aroB) 1.8 22.1 38.8 
0442 Dehydroquinate dehydratase (aroC) 1.5 97.8 143.7 
0018 Shikimate dehydrogenase (aroD) 3.8 45.2 172.6 
0139 Shikimate kinase (aroEI) 2.2 36.3 80.3 
0380 EPSP synthase (aroF) NSa 36.6 31.7 
0386 Chorimate synthase (aroG) 1.9 198.7 383.7 

a NS means fold change was not statistically significant (p ≥ 0.05).  
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Table 3.13 Transcriptional responses of the biosynthesis pathways for aromatic amino acids to a 

lack of exogenous folate and pABA in R. albus 7 

   Normalized RPKM 
Locus tag 
(Rumal_#) Annotation Fold 

Change Both None 

Trytophan synthesis 
1716 Anthranilate phosphoribosyltransferase NS 168.0 127.5 
1717 Anthranilate synthase component I NS 187.2 167.6 
1862 Phosphoribosylanthranilate isomerase -3.1 132.1 42.6 
1715 Indole-3-glycerol-phosphate synthase NS 153.5 65.9 
1717 Anthranilate synthase component I NS 187.2 167.6 
1712 Tryptophan synthase subunit alpha NS 509.2 254.9 
1713 Tryptophan synthase subunit beta NS 165.3 158.8 

Tyrosine synthesis 
3158 Chorismate mutase 3.0 152.1 454.8 
1172 Prephenate dehydrogenase 1.8 146.3 265.5 
0224 Histidinol-phosphate aminotransferase 2.0 62.4 124.2 

Phenyl-alanine synthesis 
3158 Chorismate mutase 3.0 152.1 454.8 
2960 Prephenate dehydratase 2.1 128.8 265.3 
0224 Histidinol-phosphate aminotransferase 2.0 62.4 124.2 

a NS means fold change was not statistically significant (p ≥ 0.05).  
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Fig. 3.1 Genes involved in either the folate biosynthetic or salvage pathways of R. albus strain 7 
(A), strain 8 (B) and strain SY3 (C). Four tetrahydrofolate (THF) riboswitches were predicted in 
R. albus strains (one upstream of folC gene in strain 7, two upstream of folT genes in strain 8, 
and one upstream of folT gene in strain SY3, respectively). 
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Fig. 3.2 Schematic diagram of de novo folate biosynthetic and salvage pathways. The yellow line 
presents the predicted folate biosynthetic pathway by condensation of the pterin branch with 
pABA and glutamate in R. albus 7, while the blue line presents the predicted direct folate salvage 
pathway through FolT dependent ECF transporter in R. albus 8. In this Figure, genes present on 
the strain 7 genome are shown in red, while genes present on the strain 8 genome are shown in 
blue. ‘Abbrev’ defines the chemical names described in the figure above.  
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Fig. 3.3 Presence of putative genes for the folate biosynthetic and salvage pathways in isolated 
strains of Ruminococcus and other bacterial strains encoding a THF riboswitch. A THF 
riboswitch controlled gene on bacterial genome sequences was predicted using the Rfam 
database. Among the strains on Rfam database except Ruminococcus strains, only strains that 
have complete genome sequences were analyzed and shown in order of the presence of each 
folate biosynthesis, salvage, and pABA synthesis pathways. ‘C’ means the genome sequences of 
strains possessing complete biosynthetic pathway, ‘P’ means the genome sequences of strains 
possessing partial biosynthetic pathway, and ‘I’ means the genome sequences of strains missing 
most of genes in the pathway. Red cross represents the genes bearing a THF riboswitch at 
upstream region. ǂ Denotes draft genome sequence.  
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Fig. 3.4 Growth curve of R. albus 7 and 8 grown in defined medium supplemented with either 
folate, pABA or both.  Absorbance at 600 nm (A600nm) values were measured every hour. Growth 
curves of R. albus 7 and R. albus 8 are shown in panel (A) and (B), respectively. Error bars 
represent standard deviations for three biological replicates. The maximum absorbance value, 
growth rate and doubling time of R. albus 7 and 8 are presented in panel (C).  
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Fig. 3.5 Integrative transcriptional profiles of the central sugar metabolic pathways and folate biosynthesis pathway 
in R. albus 7 grown in the presence or absence of folate and pABA. The locus tag number and the expression level 
of predicted catalytic genes in the pathway are shown in Table 3.8 to 3.10. The precursors for the shikimate and 
folate synthesis pathways are highlighted in green and orange, respectively. The genes up-regulated greater than 2 
fold in the absence of both vitamins, relative to the presence of both vitamins, are shown as red arrows. Enzyme 
name: 1. Glucokinase and phosphoglucomutase; 2. Glucose-6-phosphate isomerase; 3. 6-phosphofurctokinase; 4. 
Fructose-bisphosphate aldolase; 5. Triosephosphate isomerase; 6. Glyceraldehyde-3-phosphate dehydrogenase; 7. 
Phosphoglycerate kinase; 8. Phosphoglycerate mutase; 9. Enolase; 10. Pyruvate kinase; 11. Transketolase; 12. 
Ribulose-5-phosphate 3-epimerase; 13. Ribose-5-phosphate isomerase; 14. Pyruvate formate lyase; 15. Pyruvate 
ferredoxin oxidoreductase; 16. Citrate synthase; 17. Aconitate hydratase; 18. Isocitrate dehydrogenase; 19. Fumarate 
reductase/succinate dehydrogenase; 20. Fumarase; 21. Malate dehydrogenase; 22. PEP carboxykinase; 23. 
Oxaloacetate decarboxylase; 24. Glutamate dehydrogenase; 25. Glutamine synthetase; 26. Adenylosuccinate 
synthetase; 27. Adenylosuccinate lyase; 28. Inosine-5-monophosphate dehydrogenase; 29. GMP synthase.  
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Fig. 3.6 Integrative transcriptional profiles of the biosynthesis pathway for chorismate, 
phenylalanine and tyrosine in R. albus 7 grown in the presence or absence of folate and pABA. 
The locus tag number and the expression level of predicted catalytic genes in the pathway are 
shown in Table 3.12 and 3.13. The precursors for the shikimate and folate synthesis pathways are 
highlighted in green and orange, respectively. The genes up-regulated greater than 2 fold in the 
absence of both vitamins, relative to the presence of both vitamins, are shown as red arrows.  
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Fig. 3.7 Hypothetical pathways for de novo synthesis of pABA using 3-phenylpropionate or 
tyrosine as precursor. Red highlighted molecules were exogenously added to a bacterial culture 
medium and tested for the growth stimulating effects on R. albus 7 in the absence of folate and 
pABA. 
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Fig. 3.8 Growth curve of R. albus 7 in a defined medium with a potential precursor for pABA 
synthesis. R. albus 7 was grown in a defined medium containing either 0.4 % (w/v) of cellobiose 
(A, B, C, and E) or 0.4 % (w/v) of wheat arabinoxylan (WAX; D) as the sole carbohydrate source 
in the absence of folate and pABA. After autoclaving, filter-sterilized potential precursor for 
pABA synthesis was added in the medium, bringing the final concentration to 25 µM. 
Abbreviation: phenylpropionic acid (PPA), phenylacetic acid (PAA), benzoic acid (BA), tyrosine, 
hydroxylbenzoic acid (hydroxyBA), and hydroxyphenypropionic acid (HydroxyPPA)  
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Fig. 3.9 RNA-seq coverage and fold change for the putative peroxiredoxin cluster in R. albus 7. 
(A) A detailed view of the nucleotide coverage for the putative peroxiredoxin cluster in R. albus 
7 is shown. (B) The fold change and expression levels (RPKM: reads per kilo base per million 
mapped reads) of the cluster were calculated from two biological replicates in each experimental 
group (both folate and pABA supplied or none supplied).  
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CHAPTER 4. 

IDENTIFICATION OF LONG NON-CODING RNA LOCI CONSERVED IN 

RUMINOCOCCUS ALBUS STRAINS: A POTENTIAL TRANSCRIPTIONAL 

REGULATOR RELATED TO STATIONARY PHASE 

 

4.1 Introduction 

Many transcriptional studies based on RNAseq have identified a significant number of 

transcripts that do not code for proteins in bacteria and eukaryotes, including mammals (1–5). In 

bacteria, non-coding RNAs (ncRNAs) are generally small (50-250 nucleotides; nt)(6), and 

therefore they are often termed small RNAs (sRNAs). To date, many sRNAs have been 

characterized with diverse regulatory functions. The most-studied class of regulatory sRNAs 

activate or repress translation or the stability of their target transcripts by base pairing, in 

response to various environmental signals (reviewed in reference 7). Bifunctional sRNAs 

regulate their targets through base pairing interaction as well as production of a small protein 

encoded downstream of the base-pairing region (8). The last class is protein-binding sRNAs that 

sequester transcriptional or translational regulators and subsequently inhibit their activities. 

Unlike small sized ncRNAs in bacteria, considerably longer ncRNAs between 200 nt to even 118 

kb in length have been exclusively found in eukaryotes, including mammals (5, 9). The functions 

of long ncRNAs (lncRNAs) are still unclear in eukaryotes and are relatively unknown and 

undocumented in bacteria. Most of lncRNAs are transcribed by RNA polymerase II, like 

messenger RNA (mRNA); however, they do not go through the subsequent translation steps. To 

date, lncRNAs have been known to regulate their target genes through generally five different 

interactions depending on the association sites of lncRNAs with their target gene (i.e. promoter, 
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gene body, enhancer or intervening regions vs sense or antisense). In bacteria, some 

characterized sRNAs are longer than general sRNAs (e.g. CsrB RNA: 350 nt and RNase P RNA: 

400 nt)(5, 10). Nevertheless, to our knowledge ncRNAs longer than 1 kb have yet to be reported 

in bacteria, while lncRNAs longer than 1 kb are commonly found in eukaryotes (5). As a result, 

the roles of lncRNAs in the regulatory system of eukaryotes have received extensive attention. It 

is, therefore, important to identify the potentially functional lncRNAs in bacteria. Such an 

analysis will help determine whether the lncRNAs mediated regulatory systems are exclusively 

employed by eukaryotes, and furthermore provide a better understanding of ncRNAs mediated 

regulatory systems in bacteria. Herein, we report the unique lncRNA loci conserved in R. albus 

strains and their growth dependent expression pattern based on integrated genomic and 

transcriptomic analyses. 

 

4.2 Material and methods 

Identification of conserved long noncoding RNA in R. albus strains. Genomic sequences of R. 

albus 7 (GenBank accession numbers: NC_014833 for chromosome and NC_014824 to 

NC_014827 for plasmids), R. albus 8 (NZ_ADKM020000001 to NZ_ADKM02000136), and R. 

albus SY3 (JEOB01000001 to JEOB01000004) were used for comparative genomic analysis of 

conserved long noncoding RNA (lncRNA) in R. albus strains. The functional prediction of the 

neighboring genes of lncRNA was performed using the RAST server (11), Pfam database (12), 

and Rfam database (13). To identify the lncRNA expressed in R. albus 7 and 8 during growth on 

alkaline hydrogen peroxide treated corn stalk (AHPCS), the unmapped RNA-seq reads to the 
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annotated reference genome were re-mapped onto the reference sequence without annotation 

using the CLC genomics workbench version 5.5.1 from CLC Bio (Cambridge, MA). 

Computational analysis of lncRNA region. Tandem repeats in lncRNA region in R. albus 

strains 7, 8, and SY3 were analyzed using an online software, Tandem repeats finder (14). 

Transcription promoters and terminators of lncRNA region were predicted using the PePPER 

and ARNold webservers, respectively (15, 16). 

RNA extraction and Northern blot hybridization. R. albus strains 7 and 8 were grown in a 

biochemically defined medium containing AHPCS. When both strains reached stationary phase 

(24 hours incubation), inferred from previous experiments, the cells of strain 7 and 8 were 

harvested by centrifugation at 13,000 × g for 10 min at 4°C. The resulting cell pellets were stored 

at – 80 °C until RNA extraction. In the subsequent steps, the cell pellets were treated with lysis 

buffer (200U/ml of mutanolysin, 200 µg/ml of lysozyme, 150µg/ml of proteinase K, 25mM 

EDTA, and 0.5% (w/v) SDS) for 30 minute at 55 °C (17). The total RNA was extracted with the 

RNeasy mini kit (Qiagen) with the optional on-column DNase treatment step. Then, the total 

RNA was eluted with DEPC-treated nuclease-free water and stored at – 80 °C until RNA 

sequencing.  

Total RNA (1µg per lane) of R. albus 7 or strain 8 was separated in 1.2 % (w/v)  of 

agarose/formaldehyde gels, followed by transfer onto BrightStar®-Plus membranes (Ambion, 

Austin, Texas, USA) by capillary transfer using the NorthernMax® blotting and hybridization kit 

(Ambion). The RNA probe for the detection of lncRNA was synthesized and biotinylated using 

the MAXIscript® kit (Ambion) with primers listed in Table 4.1. After overnight hybridization 

with a biotin-labelled probe, the targeted lncRNA was visualized using the Biotin Chromogenic 
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Detection kit (Fermentas, Burlington, Ontario, Canada) according to the manufacturer’s 

instructions.   

Computational analysis of DUF1292 domain in R. albus strains 7, 8, and SY3. In order to 

obtain a better functional prediction of the DUF1292 domain, the structures of the DUF1292 

encoding proteins were modeled by the Phyre2 protein fold recognition server (18) using amino 

acid sequences of Rumal_3117 in strain 7, CUS_6629 in strain 8, and RASY3_05270 in strain 

SY3. Pfam database was used to identify the orthologous genes within the bacterial kingdom.  

 

4.3 Results and discussion 

The novel ncRNA region highly expressed in R. albus 7 and 8 during growth on AHPCS. 

After mapping the RNA sequencing (RNA-seq) reads of strain 7 and 8 grown on AHPCS to the 

annotated region of the reference genome, we found that non-mapped reads were highly 

abundant (> 35 % of a total transcripts) in the transcriptomes of R. albus 7 and 8 at late-log and 

stationary phases (Table 4.2). It is possible that this was the results of a contaminant RNA during 

bacterial culture or library preparation. However, when we re-mapped those non-mapped RNA-

seq reads to the reference sequence without annotation, most of reads mapped onto the reference 

sequence (> 93 % of a total non-mapped reads) (Table 4.3), showing high expression of non-

coding RNAs (ncRNA) in R. albus 7 and 8 during late-log to stationary phase on AHPCS. 

Interestingly, we found that the abundant ncRNAs were primarily expressed from a specific 

region on the genomes of R. albus strain 7 and 8 (Fig. 4.1-4.2). The long ncRNA (lncRNA), 

inferred from the size of the non-coding region (> 500 nt), was clustered together with the 

DUF1292 gene, a non-coding region and a putative alcohol dehydrogenase in R. albus strains 7 
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and 8. The non-coding region in strain 7 is annotated as 6S RNA (Rumal_R0067; Gene ID: 

10079406) in the NCBI database based on Rfam prediction (Score: 37.67). The 6S RNA (or SsrS 

RNA) is a ncRNA that binds Eσ70 and consequently inhibits RNA polymerase during stationary 

phase of Escherichia coli (19, 20). In accordance with the predicted function of 6S RNA, the 

expression pattern of Rumal_R0067 gene in strain 7 and its homologous region in strain 8 

responded in a growth dependent manner, similar to the lncRNA (Fig. 4.3). Since the lncRNA 

loci, composed of lncRNA, DUF1292 gene, 6S RNA, and alcohol dehydrogenase, was 

conserved in strains 7 and 8, we sought to find the homologous region in R. albus strain SY3 

based on its genome sequence in the NCBI database. As shown in Fig. 4.4, all three strains 

possess a very similar lncRNA loci arranged in the same gene order, suggesting that the lncRNA 

loci is conserved in R. albus strains.  

Sequence feature of the lncRNAs in R. albus strains. The transcription of lncRNA in R. albus 

8 terminated at the end of contig00066 (Accession: ADKM02000093); therefore, we sought to 

find the missing region in the draft genome sequence of R. albus 8 by gap sequencing. The 

lncRNA region in strain 7 contained three repeat sequences that are of 216 bp size. Since we 

found that the beginning of contig00128 (Accession: ADKM02000120) in strain 8 contained a 

long non-coding region of four repeat sequences (Fig. 4.5), we designed primers to amplify the 

region between the end of contig00066 and the beginning of contig00128 (Fig. 4.6A). The 

amplicon size was approximately 3.5kb (Fig. 4.6B), which is larger than the size of the lncRNA 

region in strains 7 and SY3 (~ 2 kb). After sequencing the amplicon, it was discovered that the 

intergenic region between CUS_6629 and CUS_5685 genes in strain 8 contains a predicted 

transposase (0.8 kb) (Fig. 4.7), suggesting that the insertion event of the transposable element 

into the genome of strain 8 occurred after speciation. It is notable that the lncRNA regions of 
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strains 7, 8, and SY3 possessed similar genomic architecture characterized by tandem repeat 

sequences. The tandem repeat sequences in lncRNA is considered to be one of distinct features 

from other ncRNA (21, 22). In mammalian genomes, tandem repeat sequences together with 

transposon elements are more commonly found in lncRNA sequences compared to protein-

coding genes (21, 22). It has been proposed that these elements assist the function of lncRNA 

potentially through base pairing with other RNAs bearing similar repeat sequences or through a 

yet unknown mechanism (23, 24). Taken together, it seems that these elements of lncRNA are 

conserved not only in eukaryotes, but also in bacteria. 

Transcriptionally functional lncRNAs in R. albus 7 and 8. In addition to the RNAseq based 

transcriptomic analysis, we verified the presence of transcripts of lncRNA in R. albus 7 and 8 

grown on AHPCS using northern blot analysis with probes that either detected the tandem repeat 

sequence or the predicted promoter region in lncRNA (Fig. 4.7). To determine the direction of 

the transcription of lncRNA, either sense or antisense probe was hybridized with total RNA 

extracted from strains 7 and 8 grown for 24 hours on AHPCS. The lncRNA in strain 7 was 

hybridized with a sense probe while the lncRNA in strain 8 was hybridized with an antisense 

probe (Fig. 4.8), which is in accordance with the predicted transcriptional direction based on the 

location of their cognate promoters. The predicted transcript sizes from the transcription 

promoter to the terminators in strain 7 and 8 were 1715 bp and 1593 bp, respectively. The 

northern blot analysis showed that the detected sizes of transcript in strain 7 by all three probes 

were similar to the predicted transcript size of the lncRNA. Interestingly, the size of lncRNA 

transcript in strain 8 differed from those in strain 7. In strain 8, the detected size of transcript by 

the probe binding to promoter region upstream of the transposase was similar to the predicted 

size of transposase containing non-coding region (1.7 kb), while the tandem repeat detecting 
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probe hybridized to a shorter size of transcript (0.8 kb), which is similar in size to the total length 

of the four tandem repeat sequences downstream of the transposase. This result suggests that the 

intergenic region between CUS_6629 and CUS5685 is transcriptionally partitioned by the 

integrated transposase and that the transcript of lncRNA downstream of transposase is likely 

processed to small transcripts containing the tandem repeat elements.  

A potential ncRNA regulator, DUF1292 protein. Inferred from the expression pattern of the 

lncRNA loci throughout the growth on AHPCS, it seems likely that the lncRNA loci are 

involved in the transcriptional regulation of cell metabolism related to stationary phase. Of two 

protein-coding genes in lncRNA loci, the DUF1292 gene was the most highly expressed in both 

strains at early-log phase (8h) and subsequently repressed as cells grew. However, the putative 

alcohol dehydrogenase gene had a low transcriptional level throughout the growth on AHPCS 

(Table 4.4), and ethanol was accumulated in both strains cultures during stationary phase in the 

previous experiment. Taken together, the putative alcohol dehydrogenase gene in the lncRNA 

loci appears not to be transcriptionally functional. To gain a better insight into the function of the  

lncRNA loci, we investigated the highly expressed DUF1292 gene in the lncRNA loci. Since 

none of protein encoding DUF1292 has been characterized to date, we predicted the protein 

structure of DUF1292 gene using the Phyre2 server. The Phyre2 server generates a protein 

structure model based on the amino acid sequence and matches it with the known protein 

structures in their library (18). The predicted structures of DUF1292 gene in strains 7, 8, and 

SY3 consisted of two alpha-helices and two beta-sheets (Fig. 4.9). Despite low confidence score 

and sequence identity, the best hit protein structure for DUF1292 predicted by the Phyre2 was a 

double-strand RNA binding domain (Fig. 4.9 left panel). Since the neighboring putative 6S RNA 

gene was predicted to contain several stem-loop structures (Fig. 4.10), it seems possible that the 
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DUF1292 interacts with the transcript of the putative 6S RNA. However, the expression pattern 

of DUF1292 genes during growth of R. albus 7 and 8 on AHPCS were opposite to the increased 

pattern of the neighboring ncRNAs (Table 4.4), suggesting that the DUF1292 protein interacts 

and inhibits the transcription and/or function of the neighboring lncRNA and/or putative 6S 

RNA. Since ncRNA-mediated regulatory mechanism, in relation to the stationary phase of 

growth, is poorly understood in Gram-positive Firmicutes, we sought to find a reference 

mechanism in Gram-negative bacteria that have been relatively well-characterized for ncRNA 

regulation. In E. coli, the Csr (carbon storage regulator) system is known to regulate carbon 

metabolism and diverse traits including motility, quorum sensing, and biofilm development 

(reviewed in references 7 and 25). The central component of the Csr system, CsrA, is an RNA-

binding protein that represses metabolic processes related to stationary phase, such as glycogen 

synthesis and gluconeogenesis, and facilitates metabolic processes related to exponential phase, 

such as glycolysis and motility. The CsrA activity is antagonized by two ncRNAs, i.e., CsrB and 

CsrC. The CsrD protein mediates the degradation of CsrB and CsrC by RNase E (26). Thus, the 

decrease in activity of CsrD results in facilitating the functions of CsrB and CsrC, leading to the 

stimulation of pathways related to stationary phase. The orthologous genes to Csr regulatory 

genes in Gram-negative bacteria are not found in R. albus strains. In addition, DUF1292 genes 

are predominantly present in the genomes of Gram-positive Firmicutes, and not in the organisms 

known to possess the Csr system, including E. coli, Pseudomonas aeruginosa, and Vibrio 

cholerae (Fig. 4.11). It is possible that the protein encoding DUF1292 domain may function as a 

unique regulator of Firmicutes targeting ncRNAs that are highly expressed during late log-

stationary phase.  
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In summary, we have determined that lncRNA loci, consisting of four sequence 

components (lncRNA, DUF1292 gene, putative 6S RNA, and alcohol dehydrogenase), is 

conserved in R. albus strains. Based on their transcriptional profiles assessed by RNA-seq and 

northern blot analyses, it seems likely that the lncRNA loci are involved in the regulatory system 

related to the stationary phase of the R. albus cells. The predicted protein model for the 

DUF1292 gene suggests that the DUF1292 is a unique ncRNAs regulator exclusively employed 

by Firmicutes. To the best of our knowledge, this is the first report that demonstrates the lncRNA 

in bacteria with a growth dependent transcriptional pattern. For better understanding of the 

regulatory mechanism in bacteria, more research is required to determine the functional 

characterization of lncRNAs.  
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4.5 Tables and figures 

 

Table 4.1 Primers used in this study 
Name Probe direction  Sequence (5' to 3')a 
PCR amplification of DNA templates for biotinylated RNA probe generation 
R. albus 7 

  Ra7_Rep_For Sense TAATACGACGACTCACTATAGGGTATGCCATTGGAACCTTTTCCTTTCGGTAGATTAACGC 
Ra7_Rep_Rev AATTGGTTTGACTGACGTCAATAATGTACGGCAGGAAATGCCGCATATCTTATAATAGGGAG 
Ra7_Ext_For Sense 

TAATACGACGACTCACTATAGGGGCTCCGGAACTAAGCTGTATTTATCTTCGGGATCAC 
Ra7_Ext_Rev GCAGCTTAGCTTCCGAGCTAAAGGGAGCGTCC  
Ra7_Prmt_For 

Sense TAATACGACTCACTATAGGGTCTTTCAAGATCTCCACGAGCCCTG 
Ra7_Prmt_Rer CGTTGTTATCGCCGGGTCTTGGTAATAAAGCTGATAGTTCCTTAAAATGAG 
R. albus 8 

  Ra8_Rep_For Antisense GGTTCGCCGCACAAATTATATAAGGAGTGGTGCATTATGGTAATGC 
Ra8_Rep_Rev TAATACGACTCACTATAGGGCACCGCCGAAAAGTCGGGATAAAAAACC 
Ra8_Prmt_For Antisense GCACGTTGTTACCGTTGGGTCTTGATATTAAAGCCGATAGTTCC 
Ra8_Prmt_Rev TAATACGACTCACTATAGGGCAAGAAATGTACGAGCCCTGAACACTC 
Primers for gap sequencing between contig_66 and contig_128 in the draft genome sequence of R. albus 8 
Contig_66_For 

 
CAACATTCTCCCCCAGAAGTCAAGTAGC 

Contig_128_Rev 
 

GTAACTCGGCAACCCTCTTACGATCC 
a Underlined sequence denotes additional sequence for T7 transcription 
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Table 4.2 RNA-seq mapping results of R. albus 7 and 8 during growth on AHPCS 
RNAseq 

Sample ID 
Unmapped reads  

(%)a  RNAseq 
Sample ID 

Unmapped reads  
(%) 

Ra7_1_4h  15.8 %  Ra8_1_4h 16.8 % 

Ra7_2_4h 16.0 %  Ra8_2_4h 19.1 % 

Ra7_1_8h 21.0 %  Ra8_1_8h 16.3 % 

Ra7_2_8h 17.6 %  Ra8_2_8h 15.8 % 

Ra7_1_12h 36.0 %  Ra8_1_12h 26.4 % 

Ra7_2_12h 34.7 %  Ra8_2_12h 29.6 % 

Ra7_1_20h 48.6 %  Ra8_1_20h 36.2 % 

Ra7_2_20h 49.3 %  Ra8_2_20h 41.5 % 

Ra7_1_36h 49.8 %  Ra8_1_36h 36.3 % 

Ra7_2_36h 47.4 %  Ra8_2_36h 40.4 % 
a Percentage proportion of unmapped reads in a total sequencing reads to annotated region of 
genome sequences of R. albus 7 and 8 
b Reads were trimmed using CLC Genomics Workbench v5.5.1 with a quality score limit of 0.05 
and maximum number of ambiguities of 2 
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Table 4.3 Mapping of non-mapped reads in RNAseq mapping against reference genome without 
annotation 

RNAseq 
Sample ID Total reads Mapped  

reads (%)a 

Not 
mapped 

reads (%) 

RNAseq 
Sample ID 

Total 
reads 

Mapped  
reads (%) 

Not 
mapped 

reads (%) 

Ra7_1_4h 3,738,738 3,559,663 
(95.2 %) 

179,075 
(4.8 %) Ra8_1_4h 3,839,000 3,631,065 

(94.6 %) 
207,935 
(5.4 %) 

Ra7_2_4h 3,945,463 3,761,329 
(95.3 %) 

184,134 
(4.7 %) Ra8_2_4h 4,525,628 4,242,075 

(93.7 %) 
283,553 
(6.3 %) 

Ra7_1_8h 4,950,471 4,831,568 
(97.6 %) 

118,903 
(2.4 %) Ra8_1_8h 3,734,229 3,676,794 

(98.5 %) 
57,435 
(1.5 %) 

Ra7_2_8h 4,504,867 4,379,632 
(97.2 %) 

125,235 
(2.8 %) Ra8_2_8h 3,556,735 3,517,143 

(98.9 %) 
39,592 
(1.1 %) 

Ra7_1_12h 8,390,257 8,286,494 
(98.8 %) 

103,763 
(1.2 %) Ra8_1_12h 6,059,752 5,995,916 

(99.0 %) 
63,836 
(1.0 %) 

Ra7_2_12h 7,599,086 7,496,731 
(98.6 %) 

102,355 
(1.4 %) Ra8_2_12h 6,206,911 6,145,019 

(99.0 %) 
61,892 
(1.0 %) 

Ra7_1_20h 11,050,452 10,972,893 
(99.3 %) 

77,559 
(0.7 %) Ra8_1_20h 8,187,565 8,148,485 

(99.5 %) 
39,080 
(0.5 %) 

Ra7_2_20h 11,004,157 10,904,852 
(99.1 %) 

99,305 
(0.9 %) Ra8_2_20h 9,886,491 9,838,202 

(99.5 %) 
48,289 
(0.5 %) 

Ra7_1_36h 11,534,590 11,450,714 
(99.3 %) 

83,876 
(0.7 %) Ra8_1_36h 8,049,230 8,008,819 

(99.5 %) 
40,411 
(0.5 %) 

Ra7_2_36h 10,442,988 10,345,198 
(99.1 %) 

97,790 
(0.9 %) Ra8_2_36h 9,032,114 8,962,841 

(99.2 %) 
69,273 
(0.8 %) 

a Unmapped reads from RNAseq mapping to the reference genome with annotation were re-
mapped to the R. albus 7 and 8 genome without annotation using CLC Genomics Workbench 
v5.5.1 with a minimum length fraction of 0.9, a minimum similarity fraction of 0.8, and 
maximum number of hits for a read of 10. 
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Table 4.4 Transcriptional profile of genes in lncRNA loci in R. albus 7 and 8 during growth on AHPCS 

  Normalized RPKM p-value 
Feature ID Annotation 4h 8h 12h 20h 36h 8 vs 4 h 12 vs 4 h 20 vs 4 h 36 vs 4 h 
R.albus 7                     

Rumal_3117 Hypothetical protein (DUF1292) 1503.9 1598.3 971.6 925.0 862.2 7.3E-01 0.0E+00 0.0E+00 0.0E+00 
Rumal_3118 Alcohol dehydrogenase 91.2 61.5 35.1 24.8 25.4 7.7E-04 2.3E-13 0.0E+00 0.0E+00 

R. albus 8           
CUS_6628 Alcohol dehydrogenase 97.7 78.3 68.8 34.5 27.6 2.0E-02 8.3E-04 0.0E+00 0.0E+00 
CUS_6629 Hypothetical protein (DUF1292) 652.8 760.8 690.7 444.9 396.5 5.0E-01 8.3E-01 3.0E-02 7.9E-03 
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Fig. 4.1 Expression of ncRNA during growth of R. albus 7 on AHPCS. 
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Fig. 4.2 Expression of ncRNA during growth of R. albus 8 on AHPCS. 
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Fig. 4.3 RNA coverage of predominantly expressed ncRNA region in R. albus 7 and 8 during 
growth on AHPCS. 
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Fig. 4.4 Conserved long ncRNA region in R. albus strains 7, 8, and SY3.  
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Fig. 4.5 Tandem repeat sequences in the lncRNA region of R. albus strains 7, 8, and SY3. The 
top and bottom underlined sequences denote predicted transcription promoter and terminator, 
respectively. The red, green, gray or blue colored regions denote the tandem repeat sequences in 
the lncRNA region.  
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Fig. 4.6 Gap sequencing between contig00066 and contig00128 in the draft genome sequence of 
R. albus 8. A. Primer binding sites for contig00066 and contig00128. B. The PCR amplification 
size using the primer set above.  
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Fig. 4.7 Predicted transcription promoters, terminators, and tandem repeat sequences in lncRNA 
region of R. albus strains 7, 8, and SY3. Probes for northern blot analysis were designed to bind 
to either downstream of promoter (Prmt), tandem repeat sequence (Rep), or extended tandem 
repeat (Ext) in the transcripts of strain 7 and 8.  
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Fig. 4.8 Detection of the transcripts of lncRNAs in R. albus 7 and 8 using Northern blot 
hybridization. Sense probes were used to detect lncRNA of strain 7, while antisense probes were 
used to detect lncRNA of strain 8. The probe binding sites to the transcripts are illustrated in Fig. 
6.  
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Fig. 4.9 Predicted model for DUF1292 genes in R. albus strains 7 (Rumal_#), 8 (CUS_#), and 
SY3 (RASY3_#). The Phyre2 server was used for protein modeling of DUF1292 genes in three 
strains (26). The ‘Confidence’ represents the probability that the match between the query 
sequence and the template sequence is a true homology. Best hit domain of DUF1292 genes 
were a double-stranded RNA-binding domain (dsRBD) shown in left panel. 
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Fig. 4.10 Predicted secondary structure of 6S RNA in R. albus 7 and 8. The secondary structure 
for Rumal_R0067 gene in strain 7 (left panel) and its homologous gene in strain 8 (right panel) 
were predicted using the RNAfold server (27). 
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Fig. 4.11 Prevalence of DUF1292 domain in the genomes of Firmicutes. Among 488 bacterial 
sequences encoding DUF1292 in Pfam database, 432 sequences are present on the genome 
sequences of Firmicutes. 
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CHAPTER 5. 

DISCUSSION AND CONCLUSION 

5.1 Introduction 

Herbivorous animals such as ruminants rely on the symbiotic microbes in the rumen to 

break down cellulose and hemicellulose contained in their dietary fiber. The resulting production 

of short-chain fatty acids from carbohydrate microbial fermentation and microbial protein 

synthesized in the rumen play a pivotal role in host nutrition (1–3). Another role of rumen 

microbes in host nutrition is the supply of water-soluble vitamins (especially B group vitamins) 

to the host. Despite a lack of biosynthetic pathways for B vitamins in the host genome, they are 

independent of a dietary supply of B vitamins due to biosynthesis by rumen bacteria (4, 5). Thus, 

for better understanding of host-microbe interactions, it is important and relevant to establish the 

model for fiber degradation and vitamin metabolism of fibrolytic gut microbes and investigate 

their roles in the gut ecosystem.  

Of the dominant fibrolytic Firmicutes in the rumen, the fibrolytic mechanism of 

Ruminococcus albus is less well known than the other dominant Ruminococcus species, R. 

flavefaciens that is known to possess the cellulosomal system (6, 7). Furthermore, even species 

harboring the well-known cellulosomal or PULs system display differential fibrolytic activities 

at the strain level (8–10), which raises the question: can these fibrolytic models characterized 

in some specific strains be applied to the other strains within the cognate species and even 

to other species based on similarity of genome sequence? To explore this fundamental 

question, this research was conducted using integrated comparative genomic, phenotypic, and 
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transcriptomic analyses of two strains of R. albus, R. albus 7 and 8, focusing on the conservative 

and strain specific mechanisms for fiber and folate utilization between strains.  

 

5.2 Conservative fibrolytic system in two distinct strains, R. albus 7 and 8. 

 Bacterial fibrolytic systems generally consist of two components; cell attachment to 

insoluble substrate and substrate degradation by carbohydrate active enzymes (CAZymes). The 

previous genomic analysis reported that three strains of R. albus (7, 8, and SY3) possess a 

similar repertoire of CAZyme genes, in terms of the number (122 domains in strain 7, 114 

domains in strain 8, and 124 domains in strain SY3) and variety (46 families in strain 7, 43 

families in strain 8, and 42 families in strain SY3) of CAZy families (11). In addition to the 

similar genetic profile of CAZymes, this research also identified that both strains possess same 

number of genes encoding Pil-like protein (CbpC; n=1), Cel9B (n=1) and Cel48A (n=1), and that 

both strains possess similar number of CBM37 bearing CAZyme genes as well as hypothetical 

genes. Despite a variety of CAZyme families present on both genomes, the five CAZyme genes 

encoding the versatile GH5, GH9 (Cel9B), GH10, GH11, and GH48 (Cel48A) domains were 

transcriptionally predominant (>1000 RPKM) in both strain 7 and 8 during growth on alkaline 

hydrogen peroxide treated corn stalk (AHPCS), phosphoric acid swollen cellulose (PASC), and 

wheat arabinoxylan (WAX). These results suggest that these five GH families are likely to be the 

primary GH enzymes employed by two strains of R. albus for the hydrolysis of plant cell wall 

polysaccharides. Consistently, Dai et al. (2015) reported that the top 3 abundant transcripts of 

cellulases and hemicellulases in cow rumen included GH9, GH5, GH48 and GH10, GH11, 

GH26, respectively, and these transcripts were predicted to be primarily synthesized by 

Ruminococcus and Fibrobacter genera (12).  
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It is important to note that in both strains of R. albus, most of highly expressed 

extracellular GH genes on PASC, WAX, and AHPCS encode CBM37 domains rather than 

dockerins. In addition, unknown function of CBM37 (UF-CBM37) genes that do not encode any 

known or predictable catalytic domains were also highly expressed in both strains. These 

catalytic or non- catalytic CBM37 genes were predicted to be extracellular proteins, inferred 

from the presence of a signal peptide, suggesting that together with CBM37 bearing GHs, the 

UF-CBM37 protein may work together after secretion to the external medium. The CBM37 

domain has been shown to bind a broad range of polysaccharides, including cellulose and xylan, 

and even to the cell surface (13). Some of UF-CBM37 genes in R. albus 7 contain leucine rich 

repeat (LRR) domains and it has been proposed that the extracellular CAZymes may be 

complexed by UF-CBM37 protein via protein-protein interaction mediated by LRR domains (14). 

Their concept is also supported by our findings that LRR containing UF-CBM37 genes were 

highly expressed in both strains during exponential growth on AHPCS. Interestingly, we also 

found that some of the highly expressed UF-CBM37 genes on AHPCS did not contain LRR 

domains, but contains only tandem CBM37 domains (Fig. S15). In tandem CBM37 modules, 

proximal and distal modules are phylogenetically classified into different groups (13, 15). Xu et 

al. (2004) reported that distal CBM37 in tandem CBM37s exhibited a binding affinity to a 

variety of polysaccharides, whereas the proximal CBM37 bound to the putative ribosomal 

protein in the cell extract of R. albus 8 instead of polysaccharides (15). These results suggest that 

the proximal CBM37 may function as a binding module with other proteins. Thus, the UF-

tandem CBM37 proteins, together with LRR containing UF-CBM37 proteins, may mediate 

protein-protein interaction between other extracellular CAZymes, leading to the localization of 

the CAZymes on the surface of R. albus, unlike the cellulosomal system. 
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5.3 Proposed additional component in the cellulolytic system of the yellow pigmented strain 

of R. albus  

The research described in this thesis demonstrates that both strains 7 and 8 apparently 

have a different capability of degrading crystalline cellulose, despite the findings that both strain 

7 and 8 possess all the components of the fibrolytic system described above. The differential 

phenotypic variation exhibited between the two strains grown on crystalline cellulose implies 

that additional components must be implicated in the cellulolytic system of R. albus 7. One of 

the potential candidate components is the yellow pigment produced by R. albus 7, but not R. 

albus 8. The yellow pigment is a distinct phenotypic feature of some cellulolytic microorganisms 

in the rumen and soil (16–18). Although the gene encoding the yellow pigment has been yet 

identified, the role of yellow pigments in cellulose degradation has been reported in the rumen 

bacterium Ruminococcus flavefaciens, soil bacterium Clostridium thermocellum, and rumen 

fungi Orpinomyces joyonii (18–22). The yellow pigments produced by those three species 

showed a strong affinity for both microcrystalline cellulose and endoglucanases. Considering 

that the highly expressed endoglucanases in R. albus possess CBM37 domains, the yellow 

pigments likely interact with cellulose and CBM37 bearing endoglucanases on the cell surface, 

resulting in tight adhesion of the yellow pigmenting strain of R. albus species to cellulose. This 

mechanism could apply to other cellulolytic Firmicutes that produce the yellow pigment, so it is 

still relevant to explore the role of yellow pigment in the cellulolytic system of bacteria. 

 

5.4 Distinct strategy for fiber utilization between strains of R. albus 

 In addition to the similar genomic potential for fiber degradation, nine most highly 

expressed GH genes in strain 7 grown on PASC and WAX were cloned, expressed, and 
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characterized for the enzymatic activities on different polysaccharides. Compared to the 

homologous GHs that were biochemically characterized in the previous studies (23, 24), the 

catalytic activities of those nine GHs in strain 7 were similar to their homologs in strain 8, in 

terms of the substrate range and the amount of reducing sugars, suggesting that both strains 7 and 

8 possess a similar genetical and catalytical potential for the fiber degradation. However, the 

genes encoding CAZymes or substrate adhering components transcriptionally differ between 

strains in response to cellulose and hemicellulose. In strain 7, genes encoding predicted 

CAZymes were more transcriptionally responsive to PASC than WAX, while strain 8 had more 

genes transcriptionally responsive to WAX than PASC. Together with their differential ability 

for degrading filter paper and arabinan between strains, this research proposes that strain 7 likely 

prefers cellulose, while strain 8 prefers hemicellulose contained in the plant cell wall. To support 

our hypothesis, both strains were grown on AHPCS (delignified corn stalk) composed of 

cellulose and hemicellulose. During growth on AHPCS, strain 7 had more substrate adherent 

cells and utilized less hemicellulosic sugars than strain 8 that exhibited preferred planktonic 

growth and hemicellulosic sugar. In addition to this phenotypic variation, the time dependent 

transcriptomic analyses suggest that R. albus 7 subsequently responds to and utilizes 

xylooligosaccharides, cellobiose, and cellooligosaccharides as the degradation process from 

outside hemicellulose to inside cellulose core in plant cell wall takes place, while R. albus 8 

preferentially responds to and utilizes hemicellulose over cellulose. Taken together, it is 

reasonable to conclude that despite similar genomic contents, each strain of R. albus uses a 

different strategy for the utilization of cellulose and hemicellulose in the plant cell wall through 

differential regulatory mechanism. With this model for the differential strategies between strains, 

it is possible for both strains to co-exist and co-grow on complex substrate containing 
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hemicellulose and cellulose. To support, this research demonstrates that R. albus 7 and 8 grew 

together on AHPCS, especially at late-log to early log phases when hemicellulose in AHPCS is 

abundant in the culture.  

 

5.5 Potential regulatory system for fiber degradation in R. albus strains 

In addition to distinct strategies for plant cell wall degradation between strain 7 and 8, 

the research presented in this thesis identifies the potential regulatory systems underlying the 

strategies used by strain 7 and 8. Based on differential phenotypes between two strains for 

substrate attachment during growth on AHPCS, we examined global regulators known to be 

involved in biofilm formation of bacteria: the bacterial second messenger, cyclic-di-GMP (c-di-

GMP), regulatory system and the accessory gene regulator (Agr) quorum sensing system. The 

high level of c-di-GMP and the low level of autoinducing peptide in the accessory gene regulator 

(Agr) quorum sensing system are known to facilitate biofilm formation of some pathogenic 

bacteria (reviewed in reference 25). The putative c-di-GMP regulatory genes (diguanylate 

cyclase and phosphodiesterase) and Agr genes (agrABCD) were identified in both strain 7 and 8. 

Intriguingly, those c-di-GMP regulatory genes identified in this research were conserved with 

CAZyme genes in both strains of R. albus as well as other cellulolytic Ruminococci, including R. 

flavefaciens and R. champanellensis. Transcriptomic analyses showed that there was a strong 

correlation between those two regulatory system and fibrolytic system in R. albus 7 and 8. Strain 

7 had more c-di-GMP regulatory genes transcriptionally responsive to cellulose, while strain 8 

had more c-di-GMP regulatory genes transcriptionally responsive to hemicellulose, which was 

similar to the transcriptional pattern with CAZyme genes in response to cellulose and 
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hemicellulose. In addition, the Agr QS genes, especially agrBD, were highly expressed in R. 

albus 8 that preferred the planktonic niche compared to the adherent phenotype preferred R. 

albus 7. Taken together, these findings suggests that both the c-di-GMP regulatory and Agr 

quorum sensing system could be potential regulators for the fibrolytic system in R. albus 7 and 8 

and furthermore, that c-di-GMP and Agr QS systems are implicated not only in biofilm 

formation of pathogenic bacteria, but also in adherence to insoluble fibrous substrate and the 

fibrolytic system of commensal fiber degrading bacteria. 

 

5.6 Unique phosphoketolase pathway potentially conferring competitive fitness to 

hemicellulolytic strains in the gut 

 Through the glycolysis and pentose phosphate (PP) pathways bacteria can conserve more 

ATP from hexose than pentose per molecule. Furthermore, considering more energy 

conservation through phosphorolytic cleavage of cellooligosaccharides relative to pentose 

polymers, the hemicellulose preference seems unlikely to confer competitive fitness to R. albus 8 

against other cellulolytic bacteria, including R. flavefaciens, F. succinogenes, and even R. albus 

7. Although relatively less abundant than R. albus 7 and SY3, R. albus 8 is still detected in the 

rumen by metagenomics analysis (26), meaning that R. albus 8 co-exists with other cellulolytic 

species and plays a role as a member of the microbial community in the rumen. Notably, this 

research identified that the hemicellulose preferring strain, R. albus 8, possessed a unique 

phosphoketolase (PK) pathway, while the cellulose preferring strain, R. albus 7 did not contain 

the PK pathway. Strain 8 possesses a putative xylulose-5-phosphate/fructose-6-phosphate 

phosphoketolase (XFP) gene, which is orthologous to the biochemically characterized XFP gene 
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in Clostridium acetobutylicum ATCC 824 (27, 28). The XFP enzyme catalyzes the conversion of 

xylulose-5-phosphate into glyceraldehyde-3-phosphate and acetyl phosphate, which is a key 

component of the phosphoketolase (PK) pathway in C. acetobutylicum. Based on the profiles of 

fermentation products and the XFP gene expression on during growth on PASC, WAX, and 

AHPCS, pentose is likely to be metabolized through the PP pathway in R. albus 7, while in R. 

albus 8, both PP and PK pathways are used for pentose fermentation with the transcriptionally 

dominance of the PK pathway over the PP pathway in late-log phase on AHPCS. This finding 

raised the question of how can the PK pathway confer competitive fitness to R. albus 8? 

Flamholz et al. (2013) proposed that although the Entner-Doudoroff (ED) pathway generates one 

less ATP per glucose than the glycolysis pathway, this ATP loss could be compensated by saving 

the cost for enzyme synthesis required for the lower glycolysis pathway (29). In the ED pathway, 

half of the carbons of glucose bypass the lower glycolytic sequence (from glyceraldehyde-3-

phosphate to pyruvate), which is similar to the PK pathway in which two carbons of pentose 

bypass the lower glycolysis and fermentation pathways (from glyceraldehyde-3-phosphate to 

acetyl-phosphate). Using this rationale, the PK pathway may enable R. albus 8 to catabolize 

pentose rapidly as well as conserve energy and costs for enzyme synthesis required for the lower 

glycolytic sequence, which could confer competitive fitness to R. albus 8 in comparison to other 

cellulolytic bacteria, including R. albus 7. In supporting this concept it was shown that strain 8 

had a higher growth rate than strain 7 when grown on beechwood xylan consisting of mostly 

xylose residues (>90%). We also identified that some strains belonging to other characterized 

hemicellulolytic bacterial groups in the gut, such as Butyrivibrio fibrisolvens and Roseburia 

intestinalis, also possess the putative PK pathway, suggesting that the PK pathway is likely to be 
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a unique sugar metabolic pathway conferring competitive fitness to hemicellulolytic bacteria, 

including R. albus 8.  

 

5.7 Folate and pABA metabolism in R. albus strains 

The vitamin metabolism of R. albus strains remains largely unknown, while the vitamin 

requirements of R. albus 8 have not been studied. Our research on folate metabolism in R. albus 

7 and 8 provided genomic evidence for three folate utilization pathways (either de novo synthesis, 

salvage, or both pathways) conserved in the Firmicutes including R. albus strains. Through the 

growth experiments in the presence or absence of folate and para-aminobenzoate (pABA), this 

research demonstrated that at the strain level, R. albus strains 7 and 8 rely on different folate 

metabolic pathways where we show that R. albus 7 is a folate autotroph while R. albus 8 is a 

folate auxotroph. These findings indicate that each strain performs a different ecological role in 

ruminal folate metabolism. In addition, the results of transcriptomic analysis suggest that the 

folate autotrophic strain, R. albus 7, also has an alternative pathway for pABA synthesis and 

likewise other Ruminococcus species lacking the canonical pABA synthetic pathway are likely 

autotrophs and not auxotrophs. It is important to note that the variation in folate metabolic 

pathways between strains is not only present in R. albus species, but also in other Gram-positive 

Firmicutes, which leads us to address a fundamental question about this functional diversity for 

folate metabolism observed in microbial ecology. According to the “Black Queen” hypothesis 

proposed by Morris and colleagues (2012, 2015), where members of a community lose the 

ability to perform functions whose products are available from the environment, auxotrophs 

presumably arise from autotrophic ancestors as a result of the loss of essential biosynthetic 

function to reduce the metabolic burden when the corresponding metabolite is available in their 
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habitat or produced by neighboring commensal organisms (30, 31). Applying this concept to the 

variation of folate metabolic pathways in R. albus species, strain 7, 8, and SY3 possessing either 

of the three folate utilization pathways would have evolved from an autotrophic ancestor 

harboring a complete folate biosynthetic pathway.  Considering the potential saving of 

biosynthetic costs for synthesis of GTP, glutamate and production of the long (six enzymatic 

steps) biosynthetic pathway, it seems reasonable that in the rumen where exogenous folate is 

present in sufficient amounts, auxotrophic strains subsequently arise to utilize exogenous folate 

by acquisition of the transport or salvage pathway. As a result of this selection, the lineage 

capable of actively transporting folate lost the redundant genetic material for folate biosynthesis. 

This loss of genetic material or adaptive genome streamlining is thought to occur more 

frequently in nutrient rich or constant environments such as the intestinal tract (31–33).  

 

5.8 Identification of long non-coding RNA loci in R. albus strains 

Through transcriptomic analyses assessed by RNA sequencing, we identified a potential 

long non-coding RNA (lncRNA) loci in the genomes of strain 7 and 8. The putative lncRNA loci 

consisted of four sequence components (lncRNA, DUF1292 gene, putative 6S RNA, and alcohol 

dehydrogenase), which is conserved in R. albus strains 7, 8, and SY3. Based on their 

transcriptional profiles assessed by RNA-seq and northern blot analyses, it seems likely that the 

lncRNA loci are involved in the regulatory system related to the stationary phase of cells. 

Furthermore, the orthologous genes to the DUF1292 gene were predominantly present in the 

Firmicute genomes. The protein structure of DUF1292 was predicted to be similar to double 

strand RNA-binding protein, which imply that the DUF1292 may be a unique ncRNAs regulator 

exclusively employed by Firmicutes. To the best of our knowledge, this is the first report that 
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demonstrates a transcriptionally functional lncRNA in bacteria with a growth dependent 

expression pattern.    

 

5.9 Conclusion  

In closing, our findings provide molecular insight into conserved and differentiated 

fibrolytic system and folate metabolism demonstrated by R. albus 7 and 8. These findings 

strongly indicate that the cellular strategy for plant cell wall and folate utilization varies at strain 

level of R. albus, which means that each strain can be assigned to different niches and different 

ecological function in the rumen. Therefore, each strain within this bacterial species can be non-

competitive, but likely cooperative by playing different ecological roles in the gut. This is a 

strong case for bacterial specialization and niche differentiation, and suggests that interpretation 

and functional model construction of rumen and other gut system at the population and 

metagenomics level is oversimplified and incorrect. In addition, this research provides molecular 

evidence for the presence of lncRNA in Gram-positive Firmicutes. For better understanding of 

the regulatory mechanism in bacteria, more research is required to determine the functional 

characterization of lncRNAs.  

  

5.10 References 

1.  Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. 2001. Molecular 
analysis of commensal host-microbial relationships in the intestine. Science 291:881–884. 

2.  Nicholson J, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Petttersen S. 2012. 
Host-gut microbiota metabolic interactions 1262. 

3.  Thomas LV, Ockhuizen T, Suzuki K. 2014. Exploring the influence of the gut 
microbiota and probiotics on health: a symposium report. Br J Nutr 112 Suppl :S1–S18. 



188 
 

4.  Wolin MJ, Miller TL, Stewart CS. 1997. The Rumen Microbial Ecosystem, p. 467–491. 
In Hobson, PN, Stewart, CS (eds.), Second edi. Blackie Academic & Professional, 
London. 

5.  McDowell LR. 2000. Folacin, p. 480–521. In Vitamins in animal and human nutrition. 
Second edi. Iowa State University Press, Ames. 

6.  Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. 2008. Polysaccharide utilization 
by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 
6:121–131. 

7.  Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. 2012. Microbial degradation of 
complex carbohydrates in the gut. Gut Microbes 3:289–306. 

8.  Krause DO, Bunch RJ, Smith WJM, McSweeney CS. 1999. Diversity of Ruminococcus 
strains: A survey of genetic polymorphisms and plant digestibility. J Appl Microbiol 
86:487–495. 

9.  Robert C, Chassard C, Lawson PA, Bernalier-Donadille A. 2007. Bacteroides 
cellulosilyticus sp. nov., a cellulolytic bacterium from the human gut microbial 
community. Int J Syst Evol Microbiol 57:1516–1520. 

10.  McNulty NP, Wu M, Erickson AR, Pan C, Erickson BK, Martens EC, Pudlo NA, 
Muegge BD, Henrissat B, Hettich RL, Gordon JI. 2013. Effects of diet on resource 
utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, 
a symbiont with an extensive glycobiome. PLoS Biol 11:e1001637. 

11.  Dassa B, Borovok I, Ruimy-Israeli V, Lamed R, Flint HJ, Duncan SH, Henrissat B, 
Coutinho P, Morrison M, Mosoni P, Yeoman CJ, White BA, Bayer EA. 2014. Rumen 
cellulosomics: divergent fiber-degrading strategies revealed by comparative genome-wide 
analysis of six ruminococcal strains. PLoS One 9:e99221. 

12.  Dai X, Tian Y, Li J, Luo Y, Liu D, Zheng H, Wang J, Dong Z, Hu S, Huang L. 2015. 
Metatranscriptomic analyses of plant cell wall polysaccharide degradation by 
microorganisms in the cow rumen. Appl Environ Microbiol 81:1375–86. 

13.  Ezer A, Matalon E, Jindou S, Borovok I, Atamna N, Yu Z, Morrison M, Bayer EA, 
Lamed R. 2008. Cell surface enzyme attachment is mediated by family 37 carbohydrate-
binding modules, unique to Ruminococcus albus. J Bacteriol 190:8220–8222. 

14.  Christopherson MR, Dawson JA, Stevenson DM, Cunningham AC, Bramhacharya S, 
Weimer PJ, Kendziorski C, Suen G. 2014. Unique aspects of fiber degradation by the 
ruminal ethanologen Ruminococcus albus 7 revealed by physiological and transcriptomic 
analysis. BMC Genomics 15:1066. 



189 
 

15.  Xu Q, Morrison M, Nelson KE, Bayer EA, Atamna N, Lamed R. 2004. A novel family 
of carbohydrate-binding modules identified with Ruminococcus albus proteins. FEBS Lett 
566:11–6. 

16.  Hungate RE. 1950. The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 14:1–
49. 

17.  Hungate RE. 1957. Microorganisms in the rumen of cattle fed a constant ration. Can J 
Microbiol 3:289–311. 

18.  Ljungdahl LG, Pettersson B, Eriksson KE, Wiegel J. 1983. A yellow affinity substance 
involved in the cellulolytic system of Clostridium thermocellum. Curr Microbiol 9:195–
199. 

19.  Lamed R, Kenig R, Setter E, Bayer EA. 1985. Major characteristics of the cellulolytic 
system of Clostridium thermocellum coincide with those of the purified cellulosome. 
Enzyme Microb Technol 7:37–41. 

20.  Ljungdahl LG, Coughlan MP, Mayer F, Mori Y, Hon-nami H, Hon-nami K. 1988. 
Macrocellulase complexes and yellow affinity substance from Clostidium thermocellum., 
p. 483–500. In Wood, WA, Kellogg, ST (eds.), Methods in Enzymology. Part B, Biomass: 
Cellulose and Hemicellulose. Academic Press, New York. 

21.  Kopecný J, Hodrová B. 1997. The effect of yellow affinity substance on cellulases of 
Ruminococcus flavefaciens. Lett Appl Microbiol 25:191–196. 

22.  Hodrová B, Kopečný J, Káš J. 1998. Cellulolytic enzymes of rumen anaerobic fungi 
Orpinomyces joyonii and Caecomyces communis. Res Microbiol 149:417–427. 

23.  Moon YH, Iakiviak M, Bauer S, Mackie RI, Cann IKO. 2011. Biochemical analyses of 
multiple endoxylanases from the rumen bacterium Ruminococcus albus 8 and their 
synergistic activities with accessory hemicellulose-degrading enzymes. Appl Environ 
Microbiol 77:5157–69. 

24.  Iakiviak M, Mackie RI, Cann IKO. 2011. Functional analyses of multiple lichenin-
degrading enzymes from the rumen bacterium Ruminococcus albus 8. Appl Environ 
Microbiol 77:7541–50. 

25.  Srivastava D, Waters CM. 2012. A tangled web: Regulatory connections between 
quorum sensing and cyclic Di-GMP. J Bacteriol 194:4485–4493. 

26.  Rozman Grinberg I, Yin G, Borovok I, Berg Miller ME, Yeoman CJ, Dassa B, Yu Z, 
Mizrahi I, Flint HJ, Bayer EA, White BA, Lamed R. 2015. Functional phylotyping 
approach for assessing intraspecific diversity of Ruminococcus albus within the rumen 
microbiome. FEMS Microbiol Lett 362:1–10. 



190 
 

27.  Liu L, Zhang L, Tang W, Gu Y, Hua Q, Yang S, Jiang W, Yang C. 2012. 
Phosphoketolase pathway for xylose catabolism in Clostridium acetobutylicum revealed 
by 13C metabolic flux analysis. J Bacteriol 194:5413–5422. 

28.  Servinsky MD, Germane KL, Liu S, Kiel JT, Clark AM, Shankar J, Sund CJ. 2012. 
Arabinose is metabolized via a phosphoketolase pathway in Clostridium acetobutylicum 
ATCC 824. J Ind Microbiol Biotechnol 39:1859–1867. 

29.  Flamholz A, Noor E, Bar-Even A, Liebermeister W, Milo R. 2013. Glycolytic strategy 
as a tradeoff between energy yield and protein cost. Proc Natl Acad Sci U S A 
110:10039–10044. 

30.  Morris JJ, Lenski RE, Zinser ER. 2012. The Black Queen hypothesis: Evolution of 
dependencies through adaptive gene loss. MBio 3:e00036–12–e00036–12. 

31.  Morris JJ. 2015. Black Queen evolution: The role of leakiness in structuring microbial 
communities. Trends Genet 31:475–482. 

32.  Wolf YI, Koonin E V. 2013. Genome reduction as the dominant mode of evolution. 
BioEssays 35:829–837. 

33.  D’Souza G, Waschina S, Pande S, Bohl K, Kaleta C, Kost C. 2014. Less is more: 
Selective advantages can explain the prevalent loss of biosynthetic genes in bacteria. 
Evolution (NY) 68:2559–2570.  

 

 

 

 

 

 

 

 



191 
 

APPENDIX A: Supplemental tables for Chapter 2 

Table A.1 Anaerobic medium for culturing R. albus strain 7 and 8 
Ingredient Concentration in stock  

(per liter) 
Concentration in Media  

(per liter) 
Carbohydrate source                            4 g or 5 ga 
Ammonium sulfate                           4 g 
Hemin                   0.25 mg 
Resazurin  0.1% (w/v)                        1 ml 
Sodium carbonate                           4 g 
Mineral Solution  

 
                     50 ml 

          K2HPO4                              6 g         
          KH2PO4 6 g  
          NaCl 12 g  
          CaCl2·2H2O 1.2 g  
          MgSO4·7H2O 1.2 g  
         (NH4)2SO4 12 g  
Pfennig's Trace Elements Solution                         1 ml 
          EDTA 0.5 g  
          ZnSO4·7H2O 0.1 g  
          MnCl2·4H2O 0.03 g  
          H3BO3 0.03 g  
          CoCl2·6H2O 0.2 g  
          CuCl2·2H2O 0.01 g  
          FeCl2·4H2O 1.5 g  
          NiCl2·6H2O 0.02 g  
          Na2MoO4·2H2O 0.03 g  
          Na2SeO3 0.01 g  
Schaefer Vitamin B Solution                        10 ml 
          Thiamine-HCl 20 mg  
          Ca-D-pantothenate 20 mg  
          Nicotinamide 20 mg  
          Riboflavin 20 mg  
          Pyridoxine-HCl 20 mg  
          Para-aminobenzoic acid 1 mg  
          Biotin 0.5 mg  
          Folic acid 0.125 mg  
          Vitamin B12 0.2 mg  
          Tetrahydrofolic acid 0.125 mg  
VFA Solution (ml/L)                        10 ml 
          Acetic acid  13.7 ml  
          Propionic acid  6 ml  
          Butyric acid  3.68 ml  
          Isobutyric acid  1.1 ml  
          2-methylbutyric acid  0.94 ml  
          n-valeric acid  1.1 ml  
          Isovaleric acids  1.1 ml  
          Phenylacetate 340 mg  
          Phenylpropionate 375 mg  
Cysteine Sulfide Solution (ml/L)                         20 ml 
          NaOH 1.25 g  
          Cysteine-HCl 5 g  
          Na2S.9H2O 5 g   

a Either cellobiose (4g) or PASC (4g) or WAX (4g) or AHPCS (5g) was added into medium as defined carbohydrate 
sources. 
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Table A.2 Primer list for qPCR in co-culture experiment 

Target gene Type Sequence Size 
(bp) 

Tm 
(°C) 

GC  
(%) 

Amplicon 
size 

R. albus 7 
Rumal_2649 (GH39) 

Forward 5' CGATGCTGAGTGGATACAGAAG 3' 22 62.2 50 100 bp Reverse 5' CTCGGGAAATTCAACGGTATAGT 3' 23 62.2 43.5 
R. albus 8 

CUS_6296 (GH105) 
Forward 5' GGCACTACAGCGGAAAGTTA 3' 20 62.1 50 

103 bp 
Reverse 5' CTGCCGCTTTGTTTGCATAG 3' 20 62.2 50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



193 
 

Table A.3 RNAseq table of R. albus strain 7 and 8 grown on defined substrates, cellobiose (G2), phosphoric acid swollen cellulose 
(PASC), and wheat arabinoxylan (WAX) 

RNAseq Sample ID 
(R. albus 7) 

Total reads Reads after 
Trimminga Uniquely mapped readsb 

(%) 
Non-specifically  

mapped reads (%) 
Unmapped reads 

(avg. length) (avg. length) (%) 

G2_1 13884440 
(100 nt) 

13884423 
(95.4 nt) 

10884216 
(78.4%) 

246422 
(1.8%) 

2753785 
(19.8%) 

G2_2 13271722 
(100 nt) 

13271697 
(95.3 nt) 

10310290 
(77.7%) 

188779 
(1.4%) 

2772628 
(20.9%) 

PASC_1 14248635 
(100 nt) 

14248606 
(95 nt) 

9474246 
(66.5%) 

209414 
(1.5%) 

4564946 
(32.0%) 

PASC_2 19983757 
(100 nt) 

19983724 
(95 nt) 

12899129 
(64.5%) 

315624 
(1.6%) 

6768971 
(33.9%) 

WAX_1 14312298 
(100 nt) 

14312281 
(95.5 nt) 

11083337 
(77.4%) 

229221 
(1.6%) 

2999723 
(21.0%) 

WAX_2 13335050 
(100 nt) 

13335026 
(95.3 nt) 

10002369 
(75.0%) 

243412 
(1.8%) 

3089245 
(23.2%) 

RNAseq Sample ID 
(R. albus 8) 

Total reads Reads after 
Trimminga Uniquely mapped readsb 

(%) 
Non-specifically  

mapped reads (%) 
Unmapped reads 

(avg. length) (avg. length) (%) 

G2_1 11101424 
(100 nt) 

11101400 
(93.8 nt) 

8491613 
(76.5%) 

14498 
(0.1%) 

2595289 
(23.4%) 

G2_2 9900094 
(100 nt) 

9900078 
(94.1 nt) 

7409361 
(74.8%) 

13543 
(0.1%) 

2477174 
(25.0%) 

PASC_1 12321261 
(100 nt) 

12321234 
(93.9 nt) 

8307217 
(67.4%) 

13340 
(0.1%) 

4000677 
(32.5%) 

PASC_2 7949411 
(100 nt) 

7949398 
(94.2 nt) 

5601618 
(70.5%) 

9009 
(0.1%) 

2338771 
(29.4%) 

WAX_1 11742722 
(100 nt) 

11724707 
(93.9 nt) 

8820790 
(75.2%) 

16627 
(0.1%) 

2905290 
(24.8%) 

WAX_2 7101989 
(100 nt) 

7101976 
(93.9 nt) 

5324747 
(75.0%) 

10066 
(0.1%) 

1767163 
(24.9%) 

a Reads were trimmed using CLC Genomics Workbench v5.5.1 with a quality score limit of 0.05 and maximum number of ambiguities of 2 
b Reads were mapped to the Ruminococcus albus genome using CLC Genomics Workbench v5.5.1 with a minimum length fraction of 0.9, a minimum similarity 
fraction of 0.8, and maximum number of hits for a read of 10. 
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Table A.4  RNAseq mapping results of R. albus 7 grown on AHPCS 

RNAseq 
Sample ID 

Total reads 
(avg. length) 

Reads after  
Trimminga 

(avg. length) 

Uniquely 
mapped readsb 

(%) 

Non-specificall 
mapped reads  

(%) 

Unmapped 
reads  
(%) 

Ra7_1_4h 23,671,352 
(100 nt) 

23,647,170 
(99.9 nt) 

19,607,620 
(82.9 %) 

300,812 
(1.3 %) 

3,738,738 
(15.8 %) 

Ra7_2_4h 24,664,042 
(100 nt) 

24,620,534 
(99.9 nt) 

20,360,774 
(82.7 %) 

314,297 
(1.3 %) 

3,945,463 
(16.0 %) 

Ra7_1_8h 23,645,746 
(100 nt) 

23,617,412 
(99.9 nt) 

18,182,125 
(77.0 %) 

484,816 
(2.1 %) 

4,950,471 
(21.0 %) 

Ra7_2_8h 25,673,585 
(100 nt) 

25,636,165 
(99.9 nt) 

20,539,769 
(80.1 %) 

591,529 
(2.3 %) 

4,504,867 
(17.6 %) 

Ra7_1_12h 23,357,375 
(100 nt) 

23,335,851 
(99.9 nt) 

14,382,676 
(61.6 %) 

562,918 
(2.4 %) 

8,390,257 
(36.0 %) 

Ra7_2_12h 21,945,634 
(100 nt) 

21,920,175 
(99.9 nt) 

13,796,122 
(62.9 %) 

524,967 
(2.4 %) 

7,599,086 
(34.7 %) 

Ra7_1_20h 22,780,551 
(100 nt) 

22,758,649 
(99.9 nt) 

11,256,046 
(49.5 %) 

452,151 
(2.0 %) 

11,050,452 
(48.6 %) 

Ra7_2_20h 22,344,255 
(100 nt) 

22,315,496 
(99.9 nt) 

10,802,576 
(48.4 %) 

508,763 
(2.3 %) 

11,004,157 
(49.3 %) 

Ra7_1_36h 23,203,443 
(100 nt) 

23,156,864 
(99.9 nt) 

11,161,208 
(48.2 %) 

461,066 
(2.0 %) 

11,534,590 
(49.8 %) 

Ra7_2_36h 22,082,227 
(100 nt) 

22,047,210 
(99.9 nt) 

11,157,394 
(50.6 %) 

446,828 
(2.0 %) 

10,442,988 
(47.4 %) 

a Reads were trimmed using CLC Genomics Workbench v5.5.1 with a quality score limit of 0.05 and maximum 
number of ambiguities of 2 
b Reads were mapped to the R. albus 7 genome with annotation using CLC Genomics Workbench v5.5.1 with a 
minimum length fraction of 0.9, a minimum similarity fraction of 0.8, and maximum number of hits for a read of 10. 
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Table A.5 RNAseq mapping results of R. albus 8 grown on AHPCS 

RNAseq 
Sample ID 

Total reads 
(avg. length) 

Reads after  
Trimminga 

(avg. length) 

Uniquely  
mapped readsb 

(%) 

Non-specifically  
mapped reads  

(%) 

Unmapped 
reads 
 (%) 

Ra8_1_4h  22,833,478 
(100 nt)  

 22,812,422 
(99.9 nt)  

18,915,697 
(82.9 %) 

57,725 
(0.3 %) 

3,839,000 
(16.8 %) 

Ra8_2_4h  23,773,956 
(100 nt)  

 23,751,750 
(99.9 nt)  

19,164,964 
(80.7 %) 

61,158 
(0.3 %) 

4,525,628 
(19.1 %) 

Ra8_1_8h  22,957,201 
(100 nt)  

 22,936,311 
(99.9 nt)  

19,155,817 
(83.5 %) 

46,265 
(0.2 %) 

3,734,229 
(16.3 %) 

Ra8_2_8h  22,539,094 
(100 nt)  

 22,516,573 
(99.9 nt)  

18,914,245 
(84.0 %) 

45,593 
(0.2 %) 

3,556,735 
(15.8 %) 

Ra8_1_12h  23,018,947 
(100 nt)  

 22,993,203 
(99.9 nt)  

16,896,712 
(73.5 %) 

36,739 
(0.2 %) 

6,059,752 
(26.4 %) 

Ra8_2_12h  20,983,054 
(100 nt)  

 20,958,924 
(99.9 nt)  

14,718,875 
(70.2 %) 

33,138 
(0.2 %) 

6,206,911 
(29.6 %) 

Ra8_1_20h  22,622,493 
(100 nt)  

 22,594,984 
(99.9 nt)  

14,385,901 
(63.7 %) 

21,518 
(0.1 %) 

8,187,565 
(36.2 %) 

Ra8_2_20h  23,861,439 
(100 nt)  

 23,832,809 
(99.9 nt)  

13,923,593 
(58.4 %) 

22,725 
(0.1 %) 

9,886,491 
(41.5 %) 

Ra8_1_36h  22,197,689 
(100 nt)  

 22,170,057 
(99.9 nt)  

14,100,963 
(63.6 %) 

19,864 
(0.1 %) 

8,049,230 
(36.3 %) 

Ra8_2_36h  22,369,699 
(100 nt)  

 22,345,394 
(99.9 nt)  

13,295,059 
(59.5 %) 

18,221 
(0.1 %) 

9,032,114 
(40.4 %) 

a Reads were trimmed using CLC Genomics Workbench v5.5.1 with a quality score limit of 0.05 and maximum 
number of ambiguities of 2 
b Reads were mapped to the R. albus 8 genome with annotation using CLC Genomics Workbench v5.5.1 with a 
minimum length fraction of 0.9, a minimum similarity fraction of 0.8, and maximum number of hits for a read of 10. 
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Table A.6 Comparison of the predicted GHs, PLs, and CEs genes of R. albus strain 7 and 8 

 
The grey color means that same numbers of CAZy genes are present on the genomes of both strains. The orange color means that more genes are present on the 
genome of R. albus 7, and the blue color means that more genes are present on the genome of R. albus 8. 
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Table A.7 Chemical analysis of alkaline hydrogen peroxide treated cornstalk (AHPCS) 

total glucan 
[%] 

cellulosic glucan 
[%] 

hemicellulosic glucan 
[%] 

xylan 
[%] 

arabinan 
[%] 

acetyl 
[%] 

Klason lignin 
[%] 

58.30 53.708 4.587 17.18 1.22 0.16 2.02 

Polysaccharides composition of AHPCS was determined by a previously described method (Ibáñez and Bauer, 
2014).  
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Table A.8 Monosaccharides composition of dry residue and culture supernatant in culture during growth on AHPCS 

  Monosaccharides in dry residue (mM ± SD) 

 
Incubation 

time (h) Glucose Disappearance Xylose Disappearance Arabinose Disappearance 

R. albus 
7 

0 16.27 ± 0.51 0.0 % 4.49 ± 0.26 0.0 % 0.31 ± 0.00 0.0 % 
12 13.20 ± 0.67 18.9 % 2.86 ± 0.15 36.3 % 0.16 ± 0.02 48.4 % 
24 5.92 ± 0.31 63.6 % 0.93 ± 0.07 79.3 % 0.06 ± 0.01 80.6 % 
48 2.53 ± 0.11 84.4 % 0.34 ±0.02 92.4 % 0.04 ± 0.00 87.1 % 

R. albus 
8 

0 15.37 ± 0.49 0.0 % 4.38 ± 0.17 0.0 % 0.30 ± 0.01 0.0 % 
12 15.30 ± 0.51 0.5 % 3.60 ± 0.12 17.8 % 0.21 ± 0.01 30.0 % 
24 7.09 ± 0.65 53.9 % 1.39 ± 0.16 68.3 % 0.08 ± 0.00 73.3 % 
48 2.12 ± 0.07 86.2 % 0.27 ± 0.02 93.8 % 0.05 ± 0.00 83.3 % 

  Monosaccharides in supernatant (µM ± SD) 

 Incubation 
time (h) Glucose Disappearance Xylose Disappearance Arabinose Disappearance 

R. albus 
7 

0 13.19 ± 0.44 0.0 % 74.90 ± 2.17 0.0 % 11.12 ± 0.28 0.0 % 
12 14.07 ± 1.45 -6.7 % 91.14 ± 22.23 -21.7 % 14.51 ± 0.88 -30.5 % 
24 26.88 ± 0.47 -103.8 % 89.38 ± 3.31 -19.3 % 15.83 ± 0.32 -42.4 % 
48 30.11 ± 0.24 -128.3 % 75.21 ± 1.65 -0.4 % 15.45 ± 0.51 -38.9 % 

R. albus 
8 

0 11.71 ± 0.88 0.0 % 64.32 ± 5.11 0.0 % 10.73 ± 0.79 0.0 % 
12 9.97 ± 0.20 14.9 % 78.10 ± 1.80 -21.4 % 13.84 ± 0.48 -29.0 % 
24 14.26 ± 0.38 -21.8 % 54.84 ± 1.87 14.7 % 14.21 ± 0.44 -32.4 % 
48 18.64 ± 0.13 -59.2 % 54.22 ± 3.76 15.7 % 14.07 ± 0.52 -31.1 % 

Values are reported from the mean for three biological replicates. Disappearance value was calculated using comparison of sugar amount measured at 0 h with 
disappeared sugar amount in each fraction at each sampling time.    
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Table A.9 PSI-blast results of XFP gene of R. albus 8 to previously characterized XFP genes 
 

Bacterial species Genbank ID AA seq. 
identity 

AA seq. 
identity (%) E-value 

Clostridium acetobutylicum  
ATCC 824 NP_347971 

Pubmed ID: 22922942, 22865845 
                     25527534 73 0 

Bifidobacterium breve ADF97524 Pubmed ID: 20693675 49 0 
Bifidobacterium longum 3AI7_A Pubmed ID: 20674574 48 0 
Bifidobacterium lactis CAC29121 Pubmed ID: 11292814 46 0 
Lactobacillus pentosus XPKA_LACPE Pubmed ID: 11823225 58 0 
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Table A.10 Predicted metabolic output during glucose and pentose metabolism via the EMP, 
PPP, and XFP pathway in R. albus 7 and 8 

Catabolic 
pathway Strain H2 level G-3-P 

formed 
NADH 
- EMP 

Reduced 
ferredoxina 

Acetate 
production 

Ethanol 
production 

CO2 
production 

H2 
production 

Max 
net ATPb 

5 Glucose 
-EMP 

R. albus 
7 and 8 

Very low 10 10 10 10 0 10 20 20 
Very high 10 10 10 5 5 10 10 15 

6 Pentose 
-PPP 

R. albus 
7 and 8 

Very low 10 10 10 10 0 10 20 20 
Very high 10 10 10 5 5 10 10 15 

6 Pentose 
-XFP R. albus 8 Very low 6 6 6 12 0 6 12 18 

Very high 6 6 6 9 3 6 6 15 
a Theoretical maximum number was calculated, based on the assumption that all generated pyruvates are converted 
to acetyl-CoA by pyruvate ferredoxin oxidoreductase.  
b Maximum yield of net ATP from sugar fermentation was calculated, based on the assumption that all reduced 
ferredoxins were re-oxidized by electron-bifurcating hydrogenase at low hydrogen level and ferredoxin-dependent 
hydrogenase at high hydrogen level (Zheng et al., 2014). 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



201 
 

Table A.11 The expression of unique genes in each PP and PK pathways during growth of R. 
albus 7 and 8 on AHPCS 

  Normalized RPKM on AHPCS Normalized RPKM at mid-log phase 
Annotated function Pathway 4h 8h 12h 20h 36h Cellobiose PASC WAX 

R. albus 7                   

Transketolasea PP pathway 2002 930 629 364 278 539 424 1078 

Transaldolase PP pathway 2589 1642 1371 625 490 10 200 6241 
R. albus 8          
D-xylulose 5-phosphate 
/D-fructose 6-phosphate phosphoketolase XFP pathway 2241 820 174 66 54 41 24 266 

Transketolasea PP pathway 985 1088 728 396 298 426 403 808 

Transaldolase PP pathway 5257 3188 2328 1636 2105 7 32 2473 
A ratio of XFP to Transketolase:   2.3 0.8 0.2 0.2 0.2 0.1 0.1 0.3 

a Both strains possess two genes encoding N-terminal section of transketolase and C-terminal section of 
transketolase, respectively. The RPKM value of transketolase is shown as the average of RPKM between two genes.   
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Table A.12 The number of predicted diguanylate cyclases (encoding GGDEF domain), diguanylate phosphodiesterases (encoding 
EAL domain), and diguanylate cyclae/phosphodiesterase (encoding both GGDEF and EAL domain) on the genome of Ruminococcus 
species and other plant cell wall degrading bacteria 

Phylum Genus species strain GGDEF EAL GGDEF 
& EAL total Genome 

status 
Size 
(Mb) 

GC 
(%) Gene 

Firmicutes Ruminococcus albus  7 24 6 8 38 Complete  4.49 41.2 3872 
  albus  8 29 9 0 38 draft  4.05 46.6 3899 
  albus  SY3 27 5 0 32 draft  4.29 44.7 3790 
  flavefaciens FD-1 20 0 4 24 draft  4.57 45.0 3722 
  flavefaciens 17 3 0 0 3 draft  3.45 44.9 2934 
  champanellensis 18P13 9 0 0 9 draft  2.57 53.3 2154 
  torques  L2-14 5 0 0 5 draft  3.34 41.1 2838 
    bromii L2-63 1 0 0 1 draft  2.25 41.4 1852 

Firmicutes Blautia obeum A2-162 9 2 0 11 draft  3.76 42.6 3200 
 Ruminiclostridium thermocellum ATCC27405 6 0 1 7 Complete  3.84 39.0 3363 
  thermocellum DSM1313 8 0 1 9 Complete  3.56 39.1 3102 
 Clostridium cellulolyticum H10 3 0 1 4 Complete  4.07 37.4 3569 

Fibrobacteres Fibrobacter succinogenes S85 22 1 4 27 Complete  3.84 48.1 3188 
Bacteroidetes Prevotella ruminicola 23 0 0 0 0 Complete  3.62 47.7 2860 
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Table A.13 The expression level of Agr quorum sensing genes in R. albus 7 and 8 during growth 
on AHPCS 

 
Time 

R. albus 7 (RPKM) R. albus 8 (RPKM) 
agrB agrD agrB agrD 

4h (lag) 106 87 2,976 1,251 

8h (early-log) 941 1,638 23,298 7,134 

12h (mid-log) 1,104 8,318 43,196 11,181 

20h (late-log) 560 2,973 35,328 10,794 

36h (stationary) 397 2,521 22,444 8,262 
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Table A.14 The expression of a Pil-like protein cluster in R. albus 7 and 8 during growth on AHPCS and defined substrates 

   Normalized RPKM mean between two replicates 

Function 
R. albus 7 

Annotation 4h 8h 12h 20h 36h Cellobiose PASC WAX 
locus # 

Pilin 
locus 

Rumal_0365 type IV pilin (CbpC homolog) 19,053 38,939 46,646 36,007 31,786 27,101 48,934 36,501 
Rumal_0366 type IV pilin (Cus_7104 homolog) 224 409 653 794 850 463 829 665 
Rumal_0367 protein-export membrane protein SecD 1,208 977 447 261 201 1,154 670 1,361 
Rumal_0368 protein-export membrane protein SecF 1,269 1,147 532 291 260 2,121 1,250 2,399 

   Normalized RPKM mean between two replicates 

Function 
R. albus 8 

Annotation 4h 8h 12h 20h 36h Cellobiose PASC WAX 
locus # 

Pilin 
locus 

CUS_7103 pilA protein (CpbC) 10,671 10,243 24,755 40,960 29,870 18,802 18,695 63,844 
CUS_7104 type IV pilin 663 557 1,308 1,646 1,475 1,196 2,089 1,952 
CUS_7105 export membrane protein SecD 840 775 339 179 173 972 333 378 
CUS_7106 export membrane protein SecF 1,098 972 475 230 225 1,282 439 626 
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Table A.15 Transcriptional level of genes encoding putative glycoside transferase and hexose-1-P uridylyltransferase in R. albus 7 

   Normalized RPKM Normalized RPKM p-value 

Locus tag # Predicted 
annotation 

Genbank 
ID 4h 8h 12h 20h 36h Cellobiose 

(G2) PASC WAX 8 vs 
 4 h 

12 vs 
 4 h 

20 vs 
 4 h 

36 vs 
 4 h 

PASC 
vs G2 

WAX 
vs G2 

Rumal_0027 GT2 ADU20590 58 66 96 85 85 87 110 96 0.38 0.00 0.01 0.01 0.04 0.47 
Rumal_0300 GT2 ADU20857 78 134 202 157 134 51 81 63 0.00 0.00 0.00 0.00 0.00 0.08 
Rumal_0395 GT2 ADU20950 362 256 141 101 91 108 47 106 0.03 0.00 0.00 0.00 0.00 0.95 
Rumal_0396 GT2 ADU20951 361 243 124 82 73 111 55 101 0.04 0.00 0.00 0.00 0.00 0.59 
Rumal_0436 GT2 ADU20990 4 2 3 4 18 2 1 1 0.26 0.50 0.81 0.28 0.54 0.24 
Rumal_2484 GT2 ADU22964 120 128 85 70 58 114 76 69 0.45 0.00 0.00 0.00 0.00 0.00 
Rumal_2820 GT2 ADU23289 333 323 216 175 149 168 126 179 0.70 0.00 0.00 0.00 0.00 0.38 
Rumal_3528 GT2 ADU23970 52 54 50 51 48 33 23 27 0.84 0.55 0.53 0.28 0.04 0.23 
Rumal_3607 GT2 ADU24048 132 173 241 109 128 247 182 331 0.50 0.00 0.05 0.55 0.00 0.03 
Rumal_3858 GT2 ADU24282 4 5 5 2 8 4 7 6 0.69 0.55 0.29 0.42 0.12 0.44 
Rumal_3861 GT2 ADU24285 3 4 4 2 5 3 5 3 0.58 0.63 0.63 0.51 0.47 1.00 
Rumal_0397 GT4 ADU20952 394 254 144 104 83 149 80 126 0.00 0.00 0.00 0.00 0.00 0.19 
Rumal_0398 GT4 ADU20953 320 195 121 87 73 106 49 85 0.00 0.00 0.00 0.00 0.00 0.15 
Rumal_0404 GT4 ADU20959 188 269 271 164 148 221 255 168 0.00 0.00 0.01 0.00 0.15 0.01 
Rumal_3595 GT4 ADU24036 196 151 100 60 62 120 96 125 0.01 0.00 0.00 0.00 0.09 0.81 
Rumal_3599 GT4 ADU24040 188 223 236 100 116 266 108 433 0.67 0.01 0.00 0.00 0.00 0.07 
Rumal_3852 GT4 ADU24276 3 5 5 3 8 3 3 3 0.20 0.33 0.75 0.19 0.90 0.72 
Rumal_3862 GT4 ADU24286 4 4 4 2 6 2 5 2 0.70 0.92 0.34 0.55 0.12 0.72 
Rumal_0248 GT5 ADU20805 116 150 279 213 170 33 92 53 0.20 0.00 0.00 0.00 0.00 0.00 
Rumal_1847 GT5 ADU22345 165 202 250 209 181 188 278 249 0.01 0.00 0.02 0.84 0.00 0.01 
Rumal_3052 GT28 ADU23517 316 214 182 186 149 257 206 267 0.00 0.00 0.00 0.00 0.00 0.55 
Rumal_0466 GT35 ADU21019 181 215 191 171 145 79 83 70 0.36 0.86 0.12 0.00 0.82 0.32 
Rumal_2782 GT35 ADU23251 124 136 121 104 89 61 63 57 0.71 0.47 0.01 0.00 0.92 0.69 
Rumal_1775 GT51 ADU22273 469 402 394 308 329 1444 962 1876 0.30 0.00 0.00 0.00 0.00 0.04 

Rumal_2095 Galactose-1-P  
uridylyltransferase ADU22584 124 100 95 92 87 38 39 37 0.03 0.00 0.00 0.00 0.95 0.93 
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Table A.16 Transcriptional level of genes encoding putative glycoside transferase and hexose-1-P uridylyltransferase in R. albus 8 

   Normalized RPKM Normalized RPKM p-value 

Locus tag # Predicted 
GT family 

Genbank 
ID 4h 8h 12h 20h 36h Cellobiose 

(G2) PASC WAX 8 vs 
 4 h 

12 vs 
 4 h 

20 vs 
 4 h 

36 vs 
 4 h 

PASC 
vs G2 

WAX 
vs G2 

CUS_4414 GT2 EGC04861 115 107 213 112 57 0 0 0 0.29 0.00 0.59 0.00 1.00 1.00 
CUS_5984 GT2 EGC02360 227 303 237 109 101 231 230 358 0.00 0.69 0.00 0.00 0.26 0.00 
CUS_6070 GT2 EGC02770 185 124 93 55 51 137 118 154 0.00 0.00 0.00 0.00 0.02 0.11 
CUS_6174 GT2 EGC04758 55 50 32 18 16 31 25 42 0.31 0.00 0.00 0.00 0.16 0.05 
CUS_6341 GT2 EGC01683 188 181 93 51 35 113 70 63 0.46 0.00 0.00 0.00 0.00 0.00 
CUS_6342 GT2 EGC01665 221 201 110 52 39 120 40 59 0.23 0.00 0.00 0.00 0.00 0.00 
CUS_6523 GT2 EGC03906 41 49 59 51 40 30 23 22 0.37 0.09 0.40 0.19 0.10 0.18 
CUS_7423 GT2 EGC04606 50 44 40 13 11 69 47 89 0.24 0.09 0.00 0.00 0.00 0.02 
CUS_4803 GT4 EGC04484 588 505 446 200 124 702 337 505 0.04 0.00 0.00 0.00 0.00 0.00 
CUS_4804 GT4 EGC04498 527 485 336 154 115 537 382 313 0.26 0.00 0.00 0.00 0.00 0.00 
CUS_4806 GT4 EGC04503 361 311 244 115 95 538 511 356 0.02 0.00 0.00 0.00 0.11 0.00 
CUS_5332 GT4 EGC04381 92 114 114 44 26 25 16 16 0.13 0.23 0.00 0.00 0.03 0.07 
CUS_6333 GT4 EGC01659 314 342 304 142 117 188 180 105 0.57 0.60 0.00 0.00 0.33 0.00 
CUS_6339 GT4 EGC01644 251 235 110 62 45 138 72 77 0.21 0.00 0.00 0.00 0.00 0.00 
CUS_6340 GT4 EGC01650 233 217 104 55 46 130 67 61 0.26 0.00 0.00 0.00 0.00 0.00 
CUS_5970 GT5 EGC02409 51 123 218 175 113 92 122 152 0.00 0.00 0.01 0.05 0.05 0.00 
CUS_7757 GT5 EGC01898 121 124 121 76 61 192 241 100 0.87 0.80 0.00 0.00 0.08 0.00 
CUS_4341 GT27 EGC02980 98 106 243 117 54 0 0 0 0.66 0.00 0.68 0.00 1.00 1.00 
CUS_6554 GT28 EGC03406 308 327 241 151 115 218 156 247 0.71 0.00 0.00 0.00 0.00 0.04 
CUS_5705 GT35 EGC01563 508 390 176 71 61 342 156 200 0.00 0.00 0.00 0.00 0.00 0.00 
CUS_6587 GT35 EGC03478 144 199 123 62 49 69 54 48 0.01 0.17 0.00 0.00 0.02 0.01 
CUS_7775 GT51 EGC01901 1016 859 830 515 388 1336 933 1076 0.00 0.00 0.00 0.00 0.00 0.00 
CUS_4474 GT81 EGC01942 348 250 185 99 89 260 127 228 0.00 0.00 0.00 0.00 0.00 0.06 

CUS_6182 UDP-Hexose-1-P uridylyl 
transferase EGC04839 165 130 87 60 60 29 43 36 0.00 0.00 0.00 0.00 0.05 0.23 
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Table A.17 The expression of unknown function of CBM37 genes in R. albus 7 during growth 
on AHPCS 

   Normalized RPKM 
CBM 
family Locus tag Accession 

# 4h 8h 12h 20h 36h 

37 Rumal_0405 ADU20960 1428.9 3591.8 3132.8 1722.8 1276.1 
37 Rumal_0897 ADU21424 485.3 1451.1 1092.3 658.8 505.5 
37 Rumal_0909 ADU21435 589.2 776.7 486.3 344.7 273.0 
37 Rumal_1155 ADU21675 1074.5 653.8 274.6 137.7 120.7 
37 Rumal_2745 ADU23214 262.9 645.1 617.3 453.1 367.4 
37 Rumal_2457 ADU22937 292.9 440.9 548.3 469.9 455.7 
37 Rumal_1044 ADU21570 213.8 423.6 281.8 150.9 108.2 
37 Rumal_0777 ADU21311 127.7 384.9 328.4 270.4 214.9 
37 Rumal_2543 ADU23018 168.3 311.1 172.9 95.0 75.5 
37 Rumal_3740 ADU24175 106.2 271.9 225.7 116.6 99.2 
37 Rumal_2536 ADU23011 98.4 238.8 280.5 224.3 187.5 
37 Rumal_3382 ADU23841 56.3 231.6 210.6 125.5 122.1 
37 Rumal_0330 ADU20887 212.8 217.2 182.5 124.2 111.0 
37 Rumal_1442 ADU21950 56.5 211.0 180.8 129.3 102.5 
37 Rumal_2456 ADU22936 186.6 209.6 139.3 79.9 68.7 
37 Rumal_0814 ADU21345 78.3 196.6 175.2 176.6 153.2 
37 Rumal_1452 ADU21958 152.7 184.9 101.0 34.2 34.0 
37 Rumal_2706 ADU23178 356.4 176.1 78.8 26.6 29.3 
37 Rumal_2018 ADU22511 44.7 176.1 120.0 52.1 44.2 
37 Rumal_3360 ADU23820 81.0 172.7 191.2 110.5 102.4 
37 Rumal_0778 ADU21312 74.2 162.9 92.6 59.2 48.8 
37 Rumal_1951 ADU22444 69.2 155.6 167.2 133.9 143.4 
37 Rumal_0406 ADU20961 57.8 128.3 118.4 68.8 57.9 
37 Rumal_2377 ADU22857 50.0 103.5 1399.3 1754.2 1529.7 
37 Rumal_3358 ADU23819 74.9 83.2 49.3 50.3 58.6 
37 Rumal_0892 ADU21419 30.1 68.7 67.5 55.3 49.6 
37 Rumal_0746 ADU21284 39.4 54.3 51.0 38.4 41.7 
37 Rumal_1446 ADU21954 14.3 18.3 14.2 9.6 11.0 
37 Rumal_0743 ADU21281 14.1 17.9 21.6 16.6 27.3 
37 Rumal_1157 ADU21677 13.4 10.1 8.4 4.1 8.0 
37 Rumal_0150 ADU20712 12.9 9.7 6.8 4.1 11.3 
37 Rumal_0515 ADU21067 7.7 4.4 6.8 4.1 10.8 
37 Rumal_0747 ADU21285 4.0 1.1 1.7 0.9 3.2 
37 Rumal_0326 ADU20883 1.0 0.4 1.2 1.5 5.3 

13, 37 Rumal_3330 ADU23792 37.1 50.2 40.0 27.6 29.9 
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Table A.18 The expression of unknown function of CBM37 genes in R. albus 8 during growth 
on AHPCS 

   Normalized RPKM 
CBM 
family Locus tag Accession # 4h 8h 12h 20h 36h 

37 CUS_4476 EGC01945.1 7.1 46.9 448.2 254.4 80.6 
37 CUS_4934 EGC04726.1 1010.3 1995.1 1649.6 694.8 622.9 
37 CUS_5144 EGC04022.1 13.4 5.2 8.7 1.8 1.6 
37 CUS_5145 EGC04014.1 219.9 369.2 499.4 243.0 169.4 
37 CUS_5322 EGC04411.1 436.7 482.8 373.8 215.3 152.5 
37 CUS_5392 EGC01068.1 106.0 180.5 254.5 110.5 80.0 
37 CUS_5426 EGC02492.1 0.0 0.0 0.0 0.0 0.0 
37 CUS_5429 EGC02463.1 0.0 0.0 0.0 0.0 0.0 
37 CUS_5567 EGC04257.1 142.0 258.6 178.6 81.8 82.7 
37 CUS_5662 EGC02136.1 0.0 0.0 0.0 0.0 0.0 
37 CUS_5760 EGC02255.1 62.7 55.8 61.3 21.5 12.0 
37 CUS_5801 EGC02252.1 114.4 38.9 30.0 13.4 8.7 
37 CUS_6025 EGC02760.1 81.1 105.6 84.6 33.1 31.4 
37 CUS_6027 EGC02784.1 82.0 83.9 50.4 16.2 20.9 
37 CUS_6258 EGC04131.1 1324.7 2490.8 1580.2 627.0 552.7 
37 CUS_6331 EGC01667.1 1890.6 3331.2 2378.5 1115.7 1218.4 
37 CUS_6332 EGC01693.1 247.2 208.6 133.2 56.2 85.0 
37 CUS_6393 EGC01673.1 168.0 226.5 255.5 157.1 95.3 
37 CUS_6570 EGC03432.1 386.2 371.0 211.0 111.5 105.4 
37 CUS_6856 EGC03160.1 54.3 18.0 20.8 5.5 5.0 
37 CUS_7056 EGC01237.1 22.8 15.3 44.9 18.7 9.9 
37 CUS_7085 EGC02602.1 869.9 1092.1 780.6 460.2 380.4 
37 CUS_7780 EGC01841.1 18.4 34.4 81.3 22.2 7.6 
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Table A.19 PSI-blast result of XFP gene of R. albus 8 

Bacterial species Genbank 
ID 

AA seq. 
identity (%) E-value 

Ruminococcus albus 8 EGC03698 100.0 0 

Ruminococcus sp. N15.MGS-57 WP_046439888 90.8 0 

Ruminococcus sp. CAG:579 CDA72973 86.7 0 

Eubacterium sp. CAG:248 CDB66887 82.8 0 

Firmicutes bacterium CAG:41 CDB94315 82.3 0 

Eubacterium sp. CAG:252 CDB69115 82.8 0 

Eubacterium sp. CAG:86 CCX84702 82.4 0 

Eubacterium sp. CAG:76 CDF09696 82.7 0 

Eubacterium sp. CAG:38 CDE36108 81.9 0 

Clostridium sp. CAG:122 CCZ41637 81.2 0 

Roseburia sp. CAG:18 CCZ79117 80.1 0 

Roseburia intestinalis L1-82 EEV01821 80.0 0 

Roseburia CDA56372 80.0 0 

Lachnospiraceae bacterium AC2014 WP_034219286 79.0 0 

Butyrivibrio WP_026656520 78.6 0 

Butyrivibrio sp. LB2008 WP_026514362 78.4 0 

Butyrivibrio hungatei WP_027209225 78.4 0 

Lachnospiraceae bacterium NK4A179 WP_022784606 79.0 0 

Clostridium sp. KLE 1755 ERI66602 80.3 0 

Firmicutes bacterium CAG:94 CDD29974 78.5 0 

Clostridiales bacterium VE202-27 WP_025488577 80.1 0 

Ruminococcus sp. CAG:9 CDD78970 78.5 0 

Subdoligranulum variabile DSM 15176 EFB77568 78.4 0 

Subdoligranulum variabile WP_040917362 78.4 0 

Dorea longicatena WP_028087269 78.4 0 

Pseudobutyrivibrio ruminis WP_028243311 77.3 0 

Dorea longicatena CAG:42 CDE17103 78.2 0 

Lachnospiraceae bacterium AC2031 WP_027440906 77.1 0 

Dorea longicatena EDM62349 78.2 0 

Coprococcus CDB85317 78.3 0 

Oscillibacter ruminantium WP_040663351 77.3 0 

Eubacterium xylanophilum WP_026835763 79.2 0 

Pseudobutyrivibrio sp. MD2005 WP_028234503 76.7 0 

Clostridium sp. CAG:7 CCY43738 77.5 0 

Butyrivibrio sp. CAG:318 CDC38768 76.9 0 

Oscillibacter valericigenes BAK98480 76.6 0 

Firmicutes bacterium CAG:227 CDC91934 76.6 0 
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Table A.19 (Cont.) 
Bacterial species Genbank 

ID 
AA seq. 

identity (%) E-value 

Roseburia sp. CAG:380 CDC94423 76.0 0 

Roseburia sp. CAG:309 CDD35913 77.9 0 

Clostridium sp. CAG:277 CDE68000 75.5 0 

Firmicutes bacterium CAG:114 CCY25958 75.2 0 

Clostridium sp. CAG:75 CCZ52238 75.4 0 

Roseburia sp. CAG:197 CDA25989 75.6 0 

Clostridium viride WP_035139223 75.2 0 

Butyrivibrio sp. NC3005 WP_026504437 75.5 0 

Butyrivibrio fibrisolvens WP_022754901 76.7 0 

Butyrivibrio fibrisolvens WP_027205600 76.6 0 

Firmicutes bacterium CAG:238 CDA90055 75.0 0 

Butyrivibrio fibrisolvens WP_022757821 76.3 0 

Clostridium sp. CAG:307 CDE26872 74.7 0 
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