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ABSTRACT

The objective of this research project was to develop a miniaturized DNA am-

plification biosensor for the detection and identification of pathogenic bacte-

ria. Using tailored loop-mediated isothermal amplification (LAMP) and field

effect transistors, we developed a microchip platform for multiplexed screen-

ing of samples querying the presence of multiple pathogenicity genes. In our

platform, ion-sensitive field effect transistors (ISFETs) detect the incorpo-

ration of nucleotides during LAMP by monitoring changes in the solution’s

acidity. Employing transistors as biosensors enables label-free detection of

the reaction, simple multiplexing, and seamless integration with required

electronics for data acquisition. These characteristics of the detection system

and protocols that we developed will make genotyping analysis simple and

readily available for different applications that would benefit from low cost,

portability, and ease-of-use. Here, we present a series of studies performed

in three experimental setups that are related to the multiplexed electrical

detection of LAMP and culminate in a large ISFET sensor array microchip

that monitors DNA amplification reactions. A first chip consisted of 30 nL

silicon oxide wells that were prepared with dried nucleic acid primers for

multiplexed on-chip amplification. This initial study demonstrated the high

specificity and low limit of detection of on-chip parallel LAMP when used for

the detection of E.coli O157, S.enterica, L. monocytogenes, and non O157

Shiga-toxin producing E.coli of the ‘big six’ group. Then, a second chip

with novel individually addressable dual-gated ISFETs was fabricated in col-

laboration with Taiwan Semiconductor Manufacturing Company (TSMC).

These devices were used to evaluate and optimize their pH sensing ability,

develop methods to do label-free detection of LAMP, and study the sensor

performance when biased with polypyrrole quasi-reference electrodes. The

last platform, that demonstrates the impressive scalability of the semicon-

ductor technology, is a chip with over a million ISFET sensors distributed
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in a 7x7 mm2 area. The use of on-chip decoding and routing circuits en-

ables the parallel operation of 1024x1024 sensors in an array for massively

multiplexed biosensing. In this platform we applied methods and systems

developed previously to perform parallel electrical detection of foodborne

pathogens by monitoring DNA amplification reactions in micro-chambers of

250 nL detecting down to 25 copies/reaction in less than 60 min. We demon-

strate that the intrinsic redundancy of the high density ISFET array enabled

clear identification of electrical signals resulting from the amplification reac-

tion. This microchip for the detection of DNA and the related protocols on

reaction miniaturization, parallelism, and electrical detection are poised to

be the basis of new detection systems that bring the impressive advances of

the semiconductor industry into biological applications.
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CHAPTER 1

INTRODUCTION

Recent developments in microelectromechanical systems (MEMS) and semi-

conductor technologies [1, 2, 3, 4], new business models for economies of

scale [5, 6], and challenges faced by the health-care and regulatory industries

[7, 8], are driving the development of new miniaturized biological sensors

that promise to revolutionize diagnostics and screening methods. In the last

decade microfluidic systems have left research environments to become com-

mercial products, the semiconductor industry entered the biosensing mar-

ket, and the ‘dedicated-foundry’ business model gave companies of multiple

backgrounds access to high technology semiconductor manufacturing equip-

ment. In this environment a few devices have already demonstrated that new

technologies can positively impact biosensing applications. For instance, Ab-

bott’s I-stat (an impedance-based point-of-care molecular detector) is now

being used in hospitals to reduce the time to result of assays making the

patient screening more efficient [9], the FilmArray by Biofire (a microfluidic

system for automated viral PCR screening) is used in low resource hospitals

for fast screening of samples [10], and Genalysis (commercialized by U.K.

based DNAe) has penetrated the cosmetic industry selling portable DNA

test kits for personalized formulations [11]. These products have combined

MEMS and electronic technologies to reduce the assay turnaround time, solve

portability issues, or enable new applications.

Despite significant advances in point-of-care and on-site testing, portable

systems that perform nucleic acid-based testing are currently in their infancy,

have not entered important markets, and present significant opportunity for

further development [12]. DNA-based methods such as polymerase chain

reaction (PCR) are considered powerful assays for detection and identifica-

tion of biological entities due to their outstanding specificity and selectivity.

Development of platforms that allow untrained users to perform these as-

says in portable settings could significantly reduce the cost per test, shorten
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time to results, and create new opportunities in a variety of environments

that are currently not accessible to standard laboratory equipment. The

ideal portable nucleic acid testing system would be inexpensive, fast, robust,

and multiplexed. It also needs to be user friendly, minimizing hands-on

work by operators and having an interface that integrates seamlessly with

other electronics [13]. A few DNA analysis systems have attempted to fulfill

all these requirements. Examples include valve-less microfluidics with cus-

tomized photodiode arrays for the detection of an isothermal amplification

reaction [14], droplet microfluidics and flow-through systems to minimize

time and complexity of the equipment [15], and smartphones that are used

for nucleic acid tests [16]. However, none of these systems have fulfilled all

the mentioned ideal features or have not translated to successful commercial

products. Whether it is lack of robustness or complex supportive/operative

equipment, there is room for further improvement of the portable nucleic-

acid amplification systems. The recent convergence of electronic devices and

biological assays brings the opportunity to use 50 years of semiconductor

technology research into the portable nucleic acid testing systems and fulfill

all the desired features of a portable DNA analyzer.

In this work we present methods and systems for portable DNA ampli-

fication based on semiconductor devices. We created a microchip system

for multiplexed genetic screening that monitors an isothermal DNA ampli-

fication reaction known as loop-mediated isothermal amplification (LAMP)

using ion-sensitive field effect transistors (ISFETs). The selection of isother-

mal reactions and field effect sensing was made to fundamentally enhance

portability while minimizing costs. LAMP is considered a better alternative

over PCR for portable applications because it is simpler, less susceptible to

inhibitors, and more specific [17]. On the other hand, ISFETs provide an

alternative sensing method over the commonly used fluorescent dyes. The

transistors can monitor pH changes intrinsic to the reaction without labels

and are fabricated with well-established semiconductor manufacturing pro-

cesses reducing cost and improving yields [18].

The microchip biosensor development was divided into three stages: re-

action miniaturization, electrical detection, and multiplexed electrical detec-

tion. In the first stage we experimented with miniaturized LAMP reactions

on silicon chips. A primer dehydration protocol consists in spotting primers

prior to the introduction of sample in the chip enabling multiplexed assays
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that are necessary for screening processes. We have studied and optimized

this primer-dehydration protocol in silicon oxide wells and have demonstrated

good sensitivity, specificity, and robustness for multiple pathogen targets.

The second stage focused on doing electrical detection of the LAMP reac-

tions. In collaboration with Taiwan Semiconductor Manufacturing Company

(TSMC), we developed and studied transistor architectures that are compat-

ible with reagents and temperatures that are required for the DNA amplifi-

cation reaction. These sensors demonstrated the ability to sense the ampli-

fication reactions and were used to explore strategies to improve their sensi-

tivity. The ISFETs fabricated by TSMC were operated in a complementary

dual-gate mode to enhance their signal-to-noise ratio and were biased with

multiple quasi-reference electrodes, including polypyrrole microelectrodes, to

improve their stability and response to pH changes. The final development

portion of the project couples the miniaturization and electrical detection

stages to create a platform for label-free and multiplexed detection of LAMP

reactions. The semiconductor devices developed in the second stage were

replicated over a million times in an ISFET array that is partitioned by the

silicon wells of the first stage. In the new integrated platform we repeated the

protocols developed for parallel miniaturized reactions but changed the detec-

tion mechanism from fluorescence to semiconductor sensing. With ISFETs

inside the reaction chambers and biased with local quasi-reference electrodes,

the amplification signal is electrically transduced by the semiconductor sen-

sors as current increments. In our platform thousands of transistors moni-

tor independent reactions allowing the implementation of statistical filtering

techniques that enhance the signal-to-noise ratio of the low and variable sig-

nals that are characteristic of the LAMP reactions. These three different

stages are summarized in the block diagram of Figure 1.1 that also describes

a last iterative step of evaluation and optimization.

The platform that we developed is fundamentally a tool for the detection of

genes in a sample and it has many different applications ranging from forensic

recognition, to genotyping, to microorganism identification. However we have

focused on the detection of foodborne pathogens that are estimated to cause

37 million infections every year in the U.S. [19]. The detection of pathogens

in food has been historically done with culturing techniques that suffer from

very low turnaround times that result in infrequent testing and consequent

high infection rates. In addition, the inclusion of new microorganisms in the
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Figure 1.1: Block diagram of project stages and development sections

zero tolerance policy list in combination with heavy increments in food pro-

duction and trade, are overwhelming the inspection services that need new

faster methods to perform screening assays and assure food quality [20]. The

ISFET and LAMP combination of our platform results in a portable, inex-

pensive, and easy to use bio-detection tool that can enhance the enforcing

capabilities of the inspection services [21]. This portable nucleic acid testing

system will enable multiple parties involved in food production and commer-

cialization to detect pathogens, improve food quality controls, and reduce or

eliminate recalls and food related illnesses. The significant impact of portable

nucleic acid testing in food safety and strong collaborations with companies

and other research laboratories that specialize in pathogen detection have

motivated us to develop our system around foodborne pathogenic bacteria

detection, but the system has also been easily adapted to other targets.

This document is divided into eight chapters including this introduction.

Chapter 2 contains a literature review of other approaches for portable DNA

analysis and related microfluidic, electrochemical, and electronic technolo-

gies. It also includes a revision of state of the art methods for foodborne

pathogen detection. Chapter 3 describes protocols and methods used for on-
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chip parallel detection of foodborne pathogens, detailing the silicon micro-

wells fabrication, primer dehydration protocol, and a sensitivity evaluation.

In chapter 4 there is a description of the dual-gated individually address-

able ISFET that was developed in collaboration with TSMC. We present

several experiments for characterization of the new structure and show that

the dual-gate mode has an improved signal-to-noise for specific biasing con-

ditions. Chapter 5 presents studies of on-chip quasi-reference electrodes for

ISFETs. We show that an electrochemically deposited polypyrrole acts as a

reliable reference for ISFET pH experiments with a performance comparable

to that of Ag/AgCl electrodes. In chapter 6 we characterize a 1024x1024

dual-gated ISFET array that has been developed as a massively multiplexed

biosensor and in chapter 7 we use this platform to perform parallel electri-

cal detection of LAMP reactions in micro-chambers detailing data analysis

techniques to improve signal-to-noise ratio. Finally chapter 8 presents con-

clusions and outlines possible future work to improve the detection system,

use it for different applications, and create integrated solutions that exploit

the advantages of semiconductor biosensing.
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CHAPTER 2

BACKGROUND AND LITERATURE
REVIEW

The studies presented in this dissertation aimed to further develop the field of

portable biodetection and diagnosis using DNA amplification reactions. As

background of that work, the first section of this chapter reviews the mecha-

nisms of the polymerase chain reaction and other DNA amplification methods

to provide a brief context of the complex biomolecular interactions that are

used to detect microorganisms and molecules. The second section reviews

multiple novel DNA analysis systems. These new systems have been built to

replace the conventional thermocyclers and employ a variety of engineering

and biochemical strategies to gain specific advantages. In the second section

the multiple strategies for portable DNA analysis are classified based on par-

ticular features, benefits, and limitations. The final section of this chapter

discusses the role of DNA amplification reactions in food safety. DNA anal-

ysis is used in multiple scenarios ranging from forensic testing to complex

healthcare screening. However, as discussed in the introduction, the target

application during our development was food safety. In the final section of

this chapter we describe current protocols for the identification of pathogens

in food samples, explain the use of DNA amplification in screening assays,

and consider the advantages of portable DNA detection systems.

2.1 PCR and other DNA amplification methods

The development of the polymerase chain reaction in the 1980s changed the

way we interact with and understand biological entities. This method that

has been described in the past as ‘molecular photocopying’ has found mul-

tiple applications and its considered one of the biggest scientific advances

in molecular biology. The technique was initially developed to increase the

number of copies of a DNA sequence because analysis of isolated pieces is
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nearly impossible. Later, lower costs of reagents, larger libraries of targets,

and the development of robust assay development methods brought PCR to

many other applications. For example, PCR was the fundamental tool that

enabled the human genome project and it is a powerful technique in laborato-

ries and clinics where it is used to identify microorganisms, diagnose genetic

disorders, and conduct DNA fingerprinting tasks [22, 23]. PCR reactions

are now performed in many laboratories around the world and represent an

important market estimated at $ 9 billion [24].

PCR is a DNA multiplication reaction that is triggered only when a pair

of shorter DNA strands, known as primers, hybridize to a matching template

[22]. The DNA amplification process starts with the denaturation of the orig-

inal copy or template DNA. The sample is heated to around 95 ◦C to break

the hydrogen bonds holding the double helix and create two single strands.

The sample is then cooled to an annealing temperature that ranges from

50 to 62 ◦C, at which point primers with the complementary sequence bind

to the single-stranded DNA (ssDNA). At this point the sample is normally

heated again to around 72 ◦C, a temperature that favors the polymerase ac-

tivity and the synthesis of a new double-stranded DNA (dsDNA) from the

primer-ssDNA pair formed in the annealing step. In this elongation cycle

the polymerase identifies the unfulfilled 3’ ends of the primer and creates

a complementary strand by incorporating matching nucleotides that are in-

cluded in the reaction mix. At the end of the process two identical dsDNA

molecules have been formed. The 3 step process is summarized in Figure 2.1.

The success of the PCR reaction lies in the fact that the polymerase does

not lose activity after the three temperature steps that were described, allow-

ing the iteration of cycles and exponential replication of DNA. The reaction

is usually performed over 40 cycles potentially creating over a trillion ds-

DNA copies facilitating the detection of entities or the manipulation of the

molecules.

Since its inception, many researchers have developed new technologies to

improve the PCR reaction, enhancing specificity and sensitivity or reducing

cost. For example, the gel-electrophoresis confirmation has been replaced

with fluorescent techniques. The incorporation of intercalating dyes or the

use of the taq-man probes has simplified the assays work-flow, improve its

specificity, and enabled quantitative analysis [25]. Also, thermocycling ma-

chines have been optimized to minimize the reaction time while providing
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Figure 2.1: PCR DNA amplification process

optimized conditions to improve yields and minimize contamination [26]. In

addition, other research has focused on the development of alternative am-

plification reactions that are inspired by PCR and have a similar working

principle, but modify the amplification mechanism to gain certain advan-

tages. The following subsections survey DNA amplification protocols that

have been designed to operate robustly and with simpler equipment mak-

ing them good alternatives for portable and on-chip amplification. Protocols

like loop-mediated isothermal amplification (LAMP), rolling circle amplifica-

tion (RCA), and Recombinase Polymerase Amplification (RPA), have simpler

temperature profiles, higher yields, or more tolerance to inhibitors than the

traditional PCR and are now established as alternative biomolecular assays.

2.1.1 Loop-mediated isothermal amplification (LAMP)

LAMP is a nucleic acid amplification method that uses an auto-cycling strand

displacement DNA synthesis performed by the Bacillus stearothermophilus

(Bst ) polymerase [27]. LAMP has high specificity, sensitivity, and robustness

and many researchers have contributed to its development in the last decade.

In several reports LAMP has been used for the detection of pathogenic mi-

croorganisms and it was the selected method for the detection of pathogenic

entities in our assays [28, 29, 30, 31].

Amplification Process

LAMP uses a displacement polymerase and a group of up to six primers

designed to create DNA loops that initiate the exponential incorporation
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of nucleotides [27]. The reaction takes place at around 65 ◦C when double-

stranded DNA is in ‘dynamic equilibrium.’ At this stage primers can anneal

to their complementary sequence in the template and the polymerase will

perform initial replications. While the displacement polymerase elongates

DNA, it releases a ssDNA that is then used to form more copies and create

loop structures. After six steps of annealing, elongation and displacement, a

structure with stem-loops at each end (dumbbell structure) is created (Fig-

ure 2.2 ). This structure is the starting element for isothermal amplification.

Figure 2.2: Dumbbell DNA structure that initiates LAMP amplification

The amplification with the dumbbell-like DNA structure as template cre-

ates loops of DNA made with copies of the original template when amplicons

self-prime. Afterwards, inner primers anneal to the ssDNA region in the

stem-loop and the polymerase will incorporate nucleotides, displacing and

releasing the previously synthesized strand. The released strands then form

new loop structures and the polymerase continues synthesizing DNA using

self-structures as a template. Other primers in solution continue to create

stem-loop structures and DNA synthesis keeps displacing dsDNA sustaining

the amplification reaction active in an iterative process. The reaction will

stop when concentration of free deoxyribonucleotides is too low, the concen-

tration of dsDNA prevents proper annealing of primers, or the buffer capacity

is reached. As a result of this 20-step process, variously sized DNA structures

(made of concatenated inverted repeats of the target sequence) are formed.

The process is described in (Figure 2.3 ) and detailed videos and schematics

can be found on-line [32].

The fundamental innovation of LAMP is the clever design of primers sets

that result in loop DNA structures for a continuous isothermal amplification.

LAMP employs a group of four carefully selected inner (FIP and BIP) and

outer (F3 and B3) primers. Two other primers, known as loop primers (LF

and LB), can be included in the mix to enhance sensitivity and accelerate

the reaction [33]. The selection of these six primers that are specific to a
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Figure 2.3: Schematic representation of LAMP reaction mechanism [27]
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target gene and do not create primer dimers is a complex task that requires

computer-assisted design.

Eiken Chemical, the company that invented and is commercializing LAMP

products, made available to the public PrimerExplorer

(http://primerexplorer.jp/e/). This is a software that takes user input of a

text file with the target DNA sequence and outputs multiple primer sets that

would amplify the provided sequence. Selection of the appropriate primer

set is done by checking the specificity of primer sequences using sequence

matching calculators and evaluating the CG content for stability. However,

experimental trial and error are required to ultimately select an effective

primer set, in some occasions discarding one or two loop primers to prevent

dimerization or changing the buffering conditions to enhance specificity.

Key features

The complexity of the designed molecular interactions between DNA strands

in LAMP is contrasted by the simplicity of the protocol that does not require

complex laboratory instrumentation or elaborate methods for detection of the

reaction products. The amplification protocol is isothermal and therefore

simple heaters replace the expensive thermocyclers commonly used for PCR.

Also, a high production of dsDNA is correlated with generous generation

of pyrophosphates that allows turbidity assessment of the reaction or also

enhances the signal of fluorescent indicators such as SYBR green.

Isothermality and visual assessment of amplification are the two main fea-

tures of LAMP. But other important characteristics are low detection limit,

high specificity (due to required annealing of 4 different primers to the target

template), and short time to detection.

Overall, LAMP has been proposed as an ideal technique for nucleic acid

amplification for point-of-care devices since it has less demanding equipment

and better sensitivity and specificity than PCR and other amplification meth-

ods [34]. Advantages of LAMP are traded for more complex design of primers

and more expensive reagents which explain the reaction’s slow incorpora-

tion into standard biomolecular assays. However LAMP’s clear benefits over

PCR, especially for miniaturized systems, motivated us to use the isothermal

reaction for on-chip detection of foodborne pathogens and label-free electrical

detection using ISFETs.
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2.1.2 Rolling Circle Amplification (RCA)

RCA is an isothermal process that uses special polymerases to generate copies

of single stranded DNA. Displacement polymerases like ‘Bst ’, ‘Phi29 ’, or

‘Vent exo-’ allow continued nucleotide incorporation at nearly room temper-

ature (37 ◦C) [35]. RCA is capable of achieving single molecule sensitivities

[36] and can be performed on solid substrates [37], and precise design of

probes and templates allows the amplification of customized functional se-

quences [38]. This amplification method has been effective for molecular

diagnostics tasks, cell-free cloning, and the development of DNA origami

structures [39].

For RCA the template has to be circular and the polymerase, usually

Phi29, must have strong displacement activity. The overall process is de-

scribed in Figure 2.4. It starts with the synthesis of the circular DNA tem-

plate. A ligation enzyme (e.g. T4 DNA ligase, or CircLigase) is used to

join ends of the sequence of interest (a). Then regular primers are annealed

to the circular template and the displacement polymerase will start to gen-

erate long linear sequences of single stranded DNA(b). This amplification

process will be continuous generating more single stranded DNA until the

polymerase stops working or the mix runs out of nucleotides. However, in or-

der to achieve exponential amplification it is possible to add complementary

primers that anneal to the replicated DNA (e), introduce restriction enzymes

and new ligation templates to generate more circle DNA sources (f), or in-

corporate nicking endonucleases that in conjunction with specially designed

templates will generate more replication places (g). With these strategies it

is possible to exponentially generate amplicons from the template DNA at

nearly room temperature.

Although RCA is gaining popularity there are technical challenges that

remain to be resolved before it is broadly utilized. First, RCA has a high

tendency of primer dimers formation and nonspecific amplification on even

optimized reaction conditions. At room temperature the likelihood of non-

specific DNA binding increases, augmenting the chances of undesired amplifi-

cation. Even though some studies have demonstrated that the incorporation

of proteins like thermus thermophilus SSB reduces formation of primer dimers

[40], primer amplification still undermines RCA specificity. Second, the ini-

tial ligation is performed on single stranded DNA which requires additional
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Figure 2.4: Schematics of RCA amplification process [35]
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preparation steps. For ligation, it is necessary to denature the template, and

then add and anneal with ligation enzymes. This results in an initial sequence

of temperature profiles and additional reagents. Therefore, RCA is a promis-

ing technique that at nearly room temperature has multiple applications but

preparatory steps and technical difficulties limit its actual application on

portable DNA analyzers.

2.1.3 Recombinase Polymerase Amplification (RPA)

Recombinase polymerase amplification (RPA) is a room temperature isother-

mal method for replication of DNA. This protocol avoids thermal melting

by utilizing a set of enzymes that invade and separate dsDNA to create

space within the strands for a displacement polymerase that replicates the

sequence. A schematic of the protocol is presented in Figure 2.5 [41, 42].

The key elements of this protocol are the ‘nucleoprotein primers’, a com-

bination of a recombinase agent (RecA) with a DNA segment that has the

desired complementary sequence and will invade the dsDNA. Inspired by the

Zarling method [43], the use of nucleoprotein primers, labeled as RecA/ss-

DNA, will create spacers on the dsDNA forming D-loops. Then, a ssDNA

binding protein (SSB) gets incorporated in the formed D-loop and the dis-

placement polymerase finds a 3’ end on which it can replicate the template

sequence. If the process is mirrored in the opposite end of the template, the

replication process will yield 2 new complementary strands like in PCR. In

subsequent cycles of the process, the nucleoprotein primers will re-invade the

new dsDNA and continue the replication process for an exponential amplifi-

cation.

RPA is a new technique that has been slowly adopted by researchers. It has

a couple of important limitations: First, the nucleoprotein primer is a com-

plex entity, and specific design and efficient synthesis are critical to achieve

a good performance. Up to this point Twistdx (http://www.twistdx.co.uk/)

is offering kits for different foodborne pathogens and a few R&D kits for

user developed assays. Several publications have reported RPA as a detec-

tion method reaction but the formulation of assays is cumbersome, making

the protocol less versatile than other methods like PCR or LAMP. Instead

of simply substituting primer sequences for specific targets, RPA assay de-
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Figure 2.5: Schematics of the RPA amplification process that uses
enzymatic activity to separate dsDNA [41]

velopment requires analysis of enzyme interaction demanding more careful

developing efforts. Second, the enzyme cocktail that is required for this pro-

tocol is expensive and the cost per reaction is around $ 25 [44]. Even though

this reaction is carried out at room temperature, assays with RPA report

good specificity an low formation of primer dimers. Expansion of the avail-

able primers-protein complexes that start RPA and a larger customer base for

better pricing might turn RPA into a powerful isothermal room temperature

technique for on-chip DNA amplification.

2.2 Novel systems for DNA amplification analysis

Many companies produce reagents and equipment to conduct PCR reactions

motivated by the large related market and the reaction’s multiple applica-

tions. The largest laboratory equipment manufacturers sell PCR thermo-

cyclers with different features and price-points. But classical thermocyclers

that perform the temperature profiles and measure fluorescence are limited

to laboratory settings. Therefore a new trend of portable PCR equipment is

emerging and many companies have identified the potential of easy-to-use,

portable, and inexpensive DNA amplification systems. Advances in MEMS,

powerful batteries, and the appetite of the electronics industry to enter the
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expanding field of molecular diagnosis have pushed the effort of portable PCR

systems that aim to meet market needs that cannot be met with the standard

laboratory equipment. Ideally, a portable DNA amplification system should

have the following features [45]:

• Easy-to-use and automated. The system should be operable by un-

trained personnel and be designed to minimize human induced error.

• Portable. Handheld or with a small footprint, the system should be

portable in order to relax facility requirements and allow on-site and

point-of-care diagnosis.

• Multiplexed assays. Given the requirements of screening assays the

system should be able to detect a broad range of genes and perform

multiplexed detection assays.

• Good figures of merit. Despite the added features mentioned above, the

system should sustain the same sensitivity, specificity, precision, and

detection limit of current laboratory methods to be widely adopted.

Various research groups and companies have been working on systems

that reduce assay complexity and facility requirements by creating portable

DNA testing systems. As a result of these efforts, in the last few years

portable DNA amplification systems have been reported and some of them

commercialized. These new systems aim to exploit specific technological ad-

vances to achieve the features described above. Some systems rely on Peltier

heating to quickly achieve the reaction temperatures in small handheld ther-

mocyclers. Other devices use microfluidic circuits to simplify the assays,

minimize reagent consumption, and enable parallel assays with minimal user

input. Also, new systems substitute fluorescence detection with electrochem-

ical methods to assess amplification and amplicon concentration. With these

novel approaches, small and portable systems have been fabricated targeting

multiple samples and objectives. In this section we will briefly review the

reported systems that aim to allow portable, simple, and inexpensive nucleic

acid testing through DNA amplification.
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2.2.1 Handheld & low-cost thermocyclers

Targeting specific applications ranging from plant studies to high-school

teaching, the market already offers a few low-cost portable systems that

can run PCR reactions. Companies have identified the potential of portable

DNA amplification and are currently commercializing small and inexpensive

thermocyclers with some capability of fluorescent detection. For example,

Ahram biosystems offers the Palm PCR Figure 2.6 (a). This is a hand-held

device that can run PCR reactions of 20 µL doing up to 30 thermal cycles in

less than half an hour using a lithium battery. Another related platform is

the thermocycler designed by OpenPCR Figure 2.6 (b). Designed to achieve

the lowest price tag, OpenPCR is a low cost PCR machine for the hobby and

educational markets. This company has experimented with different mate-

rials to create the cheapest machines, and came up with a design that used

Peltier heaters and a wood case to sell a system for $ 599. Finally, LavaAmp

in Figure 2.6 (c) reduces the complexity of traditional PCR machines by re-

placing the heat block with a thermally driven flow mechanism that flows

the sample through different temperature gradients [46]. They have created

a ‘pocket PCR’ device that is powered with 4 regular AA batteries.

All the mentioned devices present interesting design concepts and market-

ing strategies. They have an innovative user interface, highly efficient power

handling systems, and designs to minimize cost of manufacturing. However

they do not provide an integrated solution and require preparatory steps or

extra DNA detection assays (some of them still require gel electrophoresis

for detection), making it difficult to use the portable PCR systems outside a

laboratory.

2.2.2 Nested PCR in microfluidic pouch

Started in the University of Utah in the 1980s, Biofire is a company devoted to

the development of new and more efficient screening apparatus. FilmArray

is a microfluidic approach for multiplexed PCR in what they have named

‘automated nested multiplex PCR system.’ This system is composed of a

polypropylene microfluidic pouch and instrumentation for PCR thermocy-

cling and fluorescence detection.

The FilmArray system has customized pneumatic pumps to flow sam-
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Figure 2.6: Portable PCR systems on the market including Palm PCR by
Ahram Biosystems [47], the low cost OpenPCR system [48], and LavaAmp

pocket PCR system [46]

ple, Peltier heaters to run reactions, and a LED/CMOS system that detects

amplification. The pouch is the key innovation of this system and enables

automated sample treatment in a series of fluidic steps. Figure 2.7 is a

schematic with reservoirs, chambers and connections that are used for PCR

amplification. When the sample is loaded on the pouch it gets mixed with

lysing buffers that release DNA from target organisms. Then a first PCR

amplification takes place in a chamber that has been loaded with multiple

primers for an initial broad-range amplification. The amplified DNA is then

divided in multiple chambers, each one with frozen reagents for specific am-

plification of target genes and intercalating dyes for fluorescent detection.

The sequence of amplifications in the pouch provides automated genetic de-

tection, from sample preparation to result or diagnosis.

Already in the market, FilmArray has demonstrated that the concept of

preloaded primers is useful to reduce the hands-on time on a molecular anal-

ysis instrument. The pouch is stored in vacuum and up to 21 different target

entities (i.e. bacteria or virus) could be identified in a single multiplexed

assay. The company sells panels with reagents for respiratory, gastrointesti-

nal, blood culture, and meningitis/encephalitis pathogenic targets [49]. The

FilmArray system has a price-tag of around $ 40,000 and each microfluidic

pouch that is good for one assay goes for around $ 100 [50]. Despite high

hardware and consumables costs, when compared to standard equipment

FilmArray is the most complete commercial solution for bench-top, fully au-

tomated, nucleic acid detection assays. The company has demonstrated that
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Figure 2.7: Schematic of FilmArray microfluidic pouch [10]

fully automated systems are useful both in low resource settings like African

hospitals where poor laboratory facilities impede proper handling of samples,

or regular laboratories where the work-load of trained personal needs to be

reduced. The proven success of the automated system promotes the research

of technologies that could drive down the cost of both system and equip-

ment. Using label-free detection with field effect transistor could reduce the

complexity of the system by eliminating required optics, and cut cost per

assay by removing some of the consumed reagents and simplifying the pouch

design.

2.2.3 Automation with vacuum-aided loading

Sony also contributed to the development of portable DNA amplification

systems with a point-of-care system for detection of influenza. The system

was comprised of a small laptop computer, a vacuum sealed glass/PDMS

chip with spotted primers, and customized heaters and photo-detectors. The

primers were designed for the amplification of pandemic influenza genes and

consensus primers for influenza A, responding to the 2009 swine flu crisis

that demonstrated the inability of authorities to detect and prevent infection

outbreaks [51].

The system is cleverly designed to integrate fluidic handling and fluores-

cent querying. It also provided a simple user interface and data recording
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with a small laptop. Sony’s chip demonstrated a novel mechanism for sample

loading that drives the fluid with a differential pressure between the vacuum

sealed PDMS and atmosphere without pumps. After the sample is loaded,

the control mini-PC sets temperatures to run DNA amplification using a

Peltier heater. DNA amplification is observed with intercalating dyes like

SYBR green and the fluorescence is detected through photodiodes that are

aligned to each microfluidic chamber. The changes of the photodiode’s elec-

trical resistance / current indicate positive amplification.

The influenza detection tool supported by Sony targeted the market of fast

and inexpensive screening to prevent disease spread. It integrated a system

with a familiar user interface, on-chip handling of sample, and a simple but

robust detection system through fluorescence photodiodes and vacuum-aided

loading.

2.2.4 Multiplexed amplification in microfluidic chips

A similar microfluidic approach to the one from Sony was presented in 2012

by the Environmental Genomics Lab of Michigan State University [14]. Tar-

geting low hardware cost, Gene-Z uses an ipod for operation and user in-

terface in a DNA amplification system. It was presented as a prototype for

point-of-care detection of bacterial pathogens and is composed of:

1. Microfluidics: Polyester micro-channels loaded with dried DNA primers

for amplification.

2. Optical fiber array: For interrogation of fluorescence intensity during

amplification.

3. Aluminum resistive heater: An aluminum block that serves as heat

conductor and optical barrier between chambers.

4. Electronics for control and operation: Microprocessors and electronic

modules to control temperature and communication with an Ipod touch.

With the described components, Gene-Z was able to detect the presence

of up to 4 different entities in a single assay. The microfluidic chip has four

arrays with 15 chambers each. Each chamber has a specific primer that

was dried during the polymer fabrication. Having 4 separated arrays allows
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testing of different samples and the inclusion of positive and negative controls

in the same assay. No pumps are required to flow the sample because capillary

forces push the liquid inside the different chambers. After the sample is

loaded in the chambers the aluminum block is heated to trigger the reaction,

LEDs connected to optical fibers excite the intercalating fluorophores, and

fluorescence is recorded using a CCD sensor. A block diagram of the system

is presented in Figure 2.8.

Gene-Z presents intelligent microfluidic and optical mechanisms to mini-

mize hands-on work and allow multiplexed assays. However it also describes

the challenges of using optical assessment when reactions are conducted in

microfluidic channels. Good optical isolation between chambers was cru-

cial to prevent cross-talk that leads to high noise and false positives. It

was achieved by having a customized aluminum heating block as a barrier

between chambers optically connected only with optical fibers. It demon-

strates fundamental scalability limitations of optical sensors and motivates

further research on electrical label- and optics-free approaches that simplifies

hardware and enables higher multiplexing.

Figure 2.8: Block diagram of Gene-Z system [14]

Gene-Z has many of the elements desired in portable DNA testing sys-

tems. It is portable and multiplexed (allows loading of multiple samples),

and reported characterization experiments demonstrated acceptable figures

of sensitivity and specificity. However, because it uses fluorescence as means
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of detection it has intrinsic limits on miniaturization and scalability.

2.2.5 Using smartphones for DNA analysis

Biological sensing can greatly benefit from smartphone attachments that turn

these ubiquitous devices into pathogen detection systems. Nowadays smart-

phones have outstanding imaging and computing capabilities. They also are

constantly connected to networks, are portable, and have simple and familiar

user interfaces. These are the characteristics that are desired for a portable

DNA analysis platform and therefore researchers have started to use smart-

phones as the core of their DNA amplification systems. Several authors have

already incorporated smartphones into their biosensing systems for contin-

ued health monitoring, detection of molecular binding, and spectrographic

analysis of biological samples [52, 53, 54]. There are clear benefits of us-

ing smartphones as biochemical sensors to meet demands of low-cost and

portability. Using smartphones simplifies the development of portable DNA

amplification systems with the ideal characteristics.

Based in Philadelphia, Biomeme is a company that is working on portable

PCR systems that use an iphone to run DNA amplification reactions

(http://www.biomeme.com/). The company has created a smartphone cra-

dle, shown in Figure 2.9, with a compartment where up to five tubes with

the reaction to be analyzed are loaded for analysis. The cradle aligns the

phone’s camera with the reaction tubes that are also placed in contact with

heating coils and an air cooling mechanism. The cradle has been designed to

be handheld and it is battery operated [55]. In addition to the smartphone

cradle, Biomeme also sells testing kits with multiple pathogens of interest

for agriculture, genetics, and water testing among other fields. The company

has also created an ecosystem that mimics the developer/platform relation-

ship of the popular app stores of Apple and Google attempting to incentivize

development of more assays and expand the potential applications. By lever-

aging the smartphone as detector and user interface, Biomeme has quickly

created a compact and cost-effective system for DNA testing and the pro-

posed models for development of assays may yield a vibrant environment of

biomolecular assay innovation.
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Figure 2.9: Biomeme concept and promotional image [56]

2.2.6 Portable isothermal amplification systems

The isothermal amplification systems that we discussed in the previous sec-

tion are fundamentally simpler and good candidates for portable applications.

Multiple systems have started to use these alternative amplification methods

in their portable devices to make them more robust or less expensive. Both

the loop mediated isothermal amplification (LAMP) and the Recombinase

Polymerase Amplification (RPA) are run in portable systems that can be

fabricated at a reduced cost by discarding thermocyclers. So even though

the systems still require optical elements for fluorescence, their heating mech-

anisms are simpler or even non-existent.

LAMP assays can be performed in the Genie series platforms fabricated by

Optigene [21]. These are portable devices where 8 tube strips can be heated

to the desired temperature for amplification while a dual-channel fluorescence

detector monitors the reaction in two different wavelengths. The system has

been designed for users who want to perform DNA assays in the field or

remote settings and include features like GPS, wireless communication, long

battery life, and built-in LCD display. In multiple publications Optigene

platforms have been used to amplify different targets including Streptococ-

cus [57], phytoplasmas [58], and necrotrophic fungus [59] demonstrating the
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ability to specifically detect genes of interest. In addition, their studies per-

formed in remote locations have revealed how portable DNA analysis plat-

forms enable studies that cannot be performed with standard equipment and

are useful for pathogenic control in plants and animals.

A similar system was built by the company that has developed RPA am-

plification. Twist DX not only offers the reagents and kits for this isothermal

room temperature DNA amplification, but also sells equipment to run their

reactions in a portable setup. The T-8 isothermal device can perform and

monitor reactions in up to 8 standard PCR tubes. The machine includes mag-

netic stirring to automate the mixing processes that are required for RPA

and it can be complemented with other systems and reagents that facilitate

preparatory steps such as DNA extraction. The RPA process and the related

equipment have been fabricated for the detection of bacterial pathogens [60],

viral species [61], and plant pathogens [62]. In addition, researchers have

exploited the fundamental advantage of having room temperature reactions

by miniaturizing them in microfluidic systems [63]. A key challenge of the

miniaturization of reactions that are triggered with temperature controls is

the fast evaporation of small volumes. With RPA researchers have been able

to perform miniaturized reaction in simple setups.

These two examples of portable DNA amplification systems that use al-

ternative methods to PCR show the benefits of incorporating the new pro-

tocols to design devices. Simpler temperature profiles and greater amplicon

yields relax the hardware and software requirements impacting the cost and

complexity of the amplification system. With more researchers working on

these alternative methods it is expected that multiple testing methods will

be developed, increasing the user base of portable systems that employ these

alternative protocols.

2.2.7 Electrochemical detection of amplification

The fluorescence methods that were developed for quantitative PCR (qPCR)

are now commonly used for the detection of DNA amplification. The incor-

poration of intercalating dyes has been used not only for PCR but also for

the alternative methods that have been described previously. However, the

fluorescence detection of amplicons requires optical systems that can be cum-
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bersome or difficult to miniaturize. Therefore electrochemical methods that

detect the amplicon formation purely with electrical signals have been de-

veloped aiming to facilitate the miniaturization of the DNA testing systems.

This is the case with approaches that detect charge from the reaction’s by-

products or that incorporate additional reagents to generate electrochemical

signals upon amplification.

Prof. Toumazou from the imperial college of London pioneered the de-

tection of DNA amplification using ion-sensitive field effect transistors (IS-

FETs). In his early work Toumazou et al. characterized the correlation

between nucleotide incorporation and the pH of the solution. During the

elongation step the polymerase adds a new base to the double stranded DNA

in formation. The incorporation of a new nucleotide yields two by-products,

a free pyrophosphate and a released hydrogen ion (Figure 2.10 ). There-

fore using the pH sensitivity of ISFETs it was possible to electrically track

the amplification reaction without the need of fluorescent labels or optics for

fluorescence quantification [64, 65].

Figure 2.10: Schematic of nucleotide incorporation showing pyrophosphate
and proton by-products

This technology is the essence of DNA Electronics, a company that has

intellectual property rights over methods and systems for detection of DNA

replications using ISFETs (http://dnae.co.uk/). The company has licensed

its technology to DNA sequencing equipment manufacturers like Ion Torrent

and Roche 454 but has also developed instruments for point-of-care DNA
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testing. Their flag product is Genalysis, a three-part kit that is used for

genotyping or detection of specific genes in a sample Figure 2.11. The first

part of Genalysis is a sample preparation device that cleans saliva to have

a usable template. The second part is a cartridge that stores the cleaned

sample and allows transportation and has fluidic connection to the third

component, a device with a USB connection where the sample is thermocy-

cled; the ISFETs are interrogated as a function of reaction time, and data is

transferred and displayed in the host computer [66].

Figure 2.11: Concept of DNA electronics Genalysis kit sample prep and
detection units [66]

DNA Electronics has tailored their system for near-patient testing of phar-

macogenetically relevant single nucleotide polymorphisms (SNPs) for person-

alized medication prescription. Using SNP-specific primers, the Genalysis

system is able to detect SNP variants in saliva in about 30 min. However,
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the company has recently found a new niche market in personalized skin care

products. A partnership with GENEU (http://www.geneu.com/) resulted in

a cosmetic service that tests the DNA of customers to prescribe a person-

alized product for greater cosmetic benefits. The range of applications of

Genalysis demonstrate that DNA amplification systems can be used in many

different fields, and that portable and inexpensive DNA testing systems are

useful in many scenarios.

Other electrochemical methods do not use by-products of the reactions to

electrically detect the incorporation of nucleotides but add new reagents that

mimic the fluorescence methods. The inclusion of molecules with high elec-

trochemical activity like Ru(bpy)3+3 or Os(bpy)3+3 , or DNA binding molecules

like Os[(bpy)2DPPZ]2+ and methylene blue, results in the electrochemical

detection of the formation of dsDNA [67]. These molecules not only create

redox pairs that enhance electrochemical activity in the solution but also in-

teract with DNA. For example, nucleotides were modified with Ru(bpy)3+3 to

report amplification. The free molecule acts as a redox mediator contributing

to the electrochemical current, but once the nucleotide is incorporated into

dsDNA its activity decreases and resulting current changes can be related to

nucleotide incorporation [68]. Similarly molecules like methylene blue lose

their electrochemical activity with higher concentration of dsDNA due to

their affinity to double stranded DNA with mechanisms similar to those of

intercalating dyes [69]. Finally, electrochemical taq-man probes have been

reported to combine the added specificity of sequence specific taq reporters

and electrochemical detection [70]. These methods have been incorporated in

a PCR system known as ELICE (http://www.elice.fr/). The system creates

a series of micro-chambers with printed electrodes to create cartridges for

each reaction to monitor the reactions that have been modified with electro-

chemical labels for an optics-free system.

These electrochemical methods for the detection of DNA amplification fun-

damentally change the requirements of the monitoring device. The switch

from optical to electrical signals opens possibilities of aggressive miniaturiza-

tion and higher parallelism. In addition, bringing the molecular assay into

the electrical domain enables the incorporation of electronic methods and

devices into biological assays. This new combination can result in ground-

breaking devices that achieve the desired portability, simplicity, robustness,

and low cost that create the ideal portable DNA amplification system.
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Table 2.1: List of new DNA amplification devices

Name RXN Detection Prep Multipl Ref
GeneXpert PCR Fluorsc Yes No [71]
Cobas Liat PCR Fluorsc Yes No [72]
PalmPCR PCR Gel No Yes [47]
LavaAmp PCR Gel No No [46]
OpenPCR PCR Gel No Yes [46]
FilmArray nPCR Fluorsc Yes Yes [73]
NAT Sony LAMP Fluorsc Yes Yes [51]

Gene Z LAMP Fluorsc Yes Yes [14]
Genalysis LAMP ISFET No No [74]

Elice LAMP Elec. Chem No Yes [75]
Biomeme PCR Smartphone No Yes [55]
Genie II LAMP Fluorsc No Yes [59]

Twista T-8 RPA Fluorsc Yes Yes [42]
Phaseguided chip RPA Fluorsc Yes No [76]

HNB-LAMP LAMP Naked eye No No [77]
QuantumDx PCR Nanowire Yes Yes [78]

2.2.8 Summary of novel DNA amplification systems

To summarize this section on novel DNA amplification methods and de-

vices, Table 2.1 classifies multiple systems by DNA amplification reaction,

detection mechanism, multiplexing ability, and sample preparation capacity.

Abbreviations used in the table are:

• nPCR: Nested PCR

• Gel: Gel electrophoresis for the identification of amplicons

• Fluorc: Use of intercalating fluorescent dyes

• ISFET: Detection of amplification using ion-sensitive field effect tran-

sistors

• Elec.Chem: Electrochemical detection

• Prep: System includes means for on-site sample preparation

• Multipl: System supports multiplexed analysis of samples
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The list in Table 2.1 is not comprehensive and many new companies and

research groups are constantly reporting novel approaches. This dynamic

research and commercial environment is the result of a large present and

expected market for molecular diagnostics and microorganism identification.

The new devices with special features can find niche applications and despite

many the reported alternatives there is still room to improve the detection

devices. The large number of research groups and companies interested in

PCR shows how the reaction has reached a level of maturity that promotes

its incursion in a myriad of new applications leveraging new engineering

advancements.

2.3 Foodborne pathogenic bacteria and pathogenicity

islands

Water and foodborne pathogenic bacteria destroy cells in the body or produce

toxins that disrupt their normal physiology. The Center for Disease Control

and Prevention (CDC) estimates that each year 1 in 6 Americans (∼ 37

million people) is infected, around five thousand are hospitalized, and eighty

patients die due to related complications [79]. Globally, foodborne bacterial

infections are estimated to cause 1.5 million deaths and are responsible for

over half of all food poisoning incidents [80]. In addition, most events are

tracked to restaurants where food sources and processing are difficult to trace

and control [81].

The Food Safety and Inspection Service (FSIS) is an agency of the United

States Department of Agriculture in charge of regulating food products to

prevent the distribution ofcontaminated goods. It has the authority to order

recalls when infectious agents are detected and it is responsible for sample

screening, implementation of controls, and monitoring adulterants in food.

Currently FSIS normally uses a combination of microbial identification tech-

niques for detection of pathogens that usually take several days [82]. The

screening tests are performed in specialized laboratories and each state has

a few, or even none, of these accredited institutions [83]. Few laboratories

for pathogenic detection in food, and the increasing volume of food trades,

result in a low sampling ratio (many products never get tested) and a long

time to result. Therefore, alternative methods are actively pursued to im-
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prove detection turnaround, cost and complexity to enable more parties to

perform the screening task and expand food sampling. The backbone of

the new screening protocols consists of biomolecular techniques such as PCR

that detect and identify pathogens. The high specificity and sensitivity of

molecular methods resulted in faster and more precise screening methods.

Studies on bacteria recovered from infected patients had led to the identifi-

cation of the pathogenicity islands for different microorganisms. For example,

E.coli is pathogenic when it produces Shiga-toxin and has the ability to at-

tach to enterocyte linings of the intestinal tract. Genes associated with the

proteins responsible for toxins and attachment mechanisms are: shiga-toxin

genes (stx1 or stx2), intimin (eae), intimin receptor (tir), and surface proteins

(esp) [84]. Similar gene groups have been recognized for other common food-

borne pathogens such as L. monocytogenes [85] and S.enterica [86]. These

characteristic genes of pathogenic microorganisms led to the development

of detection techniques based on DNA replication that have improved food

screening methods.

2.3.1 Current standard for detection of foodborne pathogens
and the role of portable tools

Figure 2.12 presents a typical flow chart of the protocol for detection of

shiga-toxin producing E.coli in meat samples [87]. Similar protocols are em-

ployed to screen other samples and detect different pathogens like S.typhi,

L.monocytogenes, or C.jejuni [88]. The process starts with incubation of

the sample in specific enrichment broths to augment the bacteria count and

simplify detection assays. Then PCR tests are used as an initial indicator

of contamination and are followed by confirmation assays based in immune-

capture or traditional plating techniques. In the best case scenario the full

process takes a few days, requires specialized equipment and dedicated space,

and it is performed by trained personnel. In this section we briefly describe

the USDA protocol and identify how a portable and easy-to-use DNA am-

plification system will improve screening methods.

The FSIS guidebook for detection and isolation of pathogens describes

equipment, quality control measurements, and consensus protocols to detect

bacterial contaminants in food. The process begins with the homogenization
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and filtering of at least 325 g of sample followed by a primary enrichment.

An incubation of 15-22 hours will increase the colony forming units (CFU)

count allowing PCR screening tests. This sample preparation and enrichment

steps need to be also performed for positive and negative samples to assure

quality of measurements. After the inoculation, an initial PCR test aims

to detect the presence of pathogenicity genes related to the target pathogen

(i.e. stx and eae for E.coli ). If the detected genes match a pathogenicity

island, the sample is tested for serotype specific genes, plated for culture

confirmation, and inoculated in specific media for isolation. Bacterial cells

are separated with immune-magnetic separation (IMS) that uses magnetic

beads functionalized with antibodies to capture the detected pathogen. After

magnetic beads specifically bind to the target pathogen, separation magnets

isolate the agent of interest. Washing steps and acid treatments will eliminate

background flora for a final incubation with only the suspected infectious

agent.

Lysate from the isolated bacteria strand is used to confirm the pathogen

presence and identity. In this final step, VIKTEK R© and PCR assays are

used as complementary detection techniques. VIKTEK R© performs biochem-

ical identification by observing agglutination of colonies that are cultured in

sheep blood agar (SBA). PCR is used to amplify for a second time virulence

genes, estimate concentration, and detect the presence of antigens specific

to the suspected pathogen. If both biochemical and biomolecular assays are

positive, the sample is considered contaminated and recall orders are issued.
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Portable DNA amplification systems will facilitate biomolecular assays

that are used multiple times during the screening process. These new de-

vices will simplify the creation of more control points in the food production

chain and provide tools to perform fast and on-site molecular assays. How-

ever, they will not significantly improve the time to the detection. As the flow

chart and other publications have discussed previously [89], most of the de-

tection time is spent in the incubation and enrichment of samples. The DNA

amplification systems cannot improve these sample enrichment steps because

it requires bacterial concentrations that provide at least one pathogen in the

25 µL reaction that is normally analyzed. Other equipment and filtration

strategies are designed specifically to improve bacterial growth steps and re-

duce the enrichment time. The use of lateral flow filtration [90] or dielectric

concentration [91] has demonstrated that it can concentrate pathogens and

significantly reduce enrichment periods. The portable DNA detection will

need to pair with these other enrichment or concentration systems to create

integrated solutions. When both the DNA screening equipment and sample

preparation mechanisms are portable, the screening assays will be signifi-

cantly improved. The flow chart in Figure 2.12 is not showing that the time

to result is heavily affected by queue waiting and transportation times. With

only a few laboratories handling samples in each state, the logistics to ship

samples while sustaining judicial validity are complex and expensive. There-

fore the portable systems can reduce the transportation cost and significantly

increase the ratio of tested samples. Portable PCR systems are a crucial el-

ement to have portable detection of pathogens, but they will need to be

complemented with other concentration and sample preparation techniques

to provide full solutions that can be easily adopted by regulatory agencies or

food producers.
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CHAPTER 3

ON-CHIP PARALLEL DETECTION OF
FOODBORNE PATHOGENS USING LAMP

An avenue to achieve all the desired features of portable DNA analysis sys-

tems is to incorporate semiconductor transducers as sensors of the reaction.

The combination of semiconductor devices and isothermal amplification re-

actions promises to yield simple and powerful devices for nucleic acid testing

that can be miniaturized for portable applications. In this chapter we report

a study that used a microinjection system and silicon micro-wells to test

protocols for multiplexed on-chip detection of bacterial foodborne pathogens

using loop-mediated isothermal amplification (LAMP). After passivation of

the silicon surface with Sigmacote (Sigma-Aldrich. St. Louis, MO), the mi-

croinjection system creates nano-droplet arrays on the wells where the am-

plification reaction takes place. Primers for amplification of virulence genes

hlyA (L. monocytogenes ), stx2 (E. coli O157), and invA (S.enterica ) are

dried in the micro-wells prior to the injection of a primer-less LAMP mix

[92, 93, 29]. This technique allows parallel screening of multiple pathogens

in a single assay. In this chapter we also report characterization experiments

to quantify sensitivity, specificity and robustness of on-chip LAMP amplifi-

cation.

3.1 LAMP assays in silicon oxide micro-wells

3.1.1 Fabrication of micro-wells

Figure 3.1 (a) shows cross-sectional schematics of the fabrication of silicon

wells. Undoped silicon wafers (University Wafers, South Boston, MA) are

used as the substrate. After a short piranha clean (1:1 H2O2-H2SO4, 8

mins) a 160 nm layer of silicon oxide is thermally grown at 800 ◦C for 20

min (Lindberg/Tempress Model 8500). AZ1518 photoresist (AZ Electronic
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Materials, Branchburg, NJ) is spin-coated to form a 2 µm layer on the un-

polished side of the wafer, followed by an 8 min soft-bake on a hotplate at

110 ◦C. The process is repeated on the polished side of the wafer where

the photoresist is patterned using a Quintel aligner with a high resolution

transparency mask (FineLine Imaging, Colorado Springs, CO) defining the

wells openings. Exposed regions are developed in MIF AZ300 (AZ Electronic

Materials, Branchburg, NJ) for 2 min and exposed silicon oxide is etched in

10:1 buffered oxide etchant (VWR, Chicago, IL) for 10 min. The photoresist

is stripped in Remover PG (MicroChem, Newton, MA) warmed to 70 ◦C for

30 min, leaving a hard silicon oxide mask in the polished side of the wafer

and a protective oxide layer on the wafer’s back side. Then, the patterned

wafer is immersed in hot TMAH bath 80 ◦C (1:1 TMAH: DI) for 18 hours to

anisotropically etch inverted square pyramids. To prevent inhibitory effects

on biomolecules, a 10 nm layer of silicon oxide is then thermally grown (2

min, 800 ◦C). Finally, a photoresist protective layer is spin-coated and soft-

baked before the wafer is diced into 1x1 cm chips. Figure 3.1 (b) shows a

chip with 6x6 arrays of silicon wells and Figure 3.1 (c) presents a scanning

electron micrograph of a well’s cross-section.

Figure 3.1: Silicon oxide micro-well chip and experimental protocol
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3.1.2 Micro-injection operation

Experiments were performed using a microinjector IM-300 (Narishige Scien-

tific Instrument Lab. Tokyo, JP). This systems was used for dehydration

of primer mix and injection of the primer-less LAMP solution in the silicon

micro-wells. An Eppendorf VacuTip (Eppendorf. Hamburg, De) with an

internal diameter of 15 µm is connected to the microinjector output and is

loaded with ∼ 1 µL of reagents. Reagents in the tip are dispensed for 20

ms at 60 psi to form droplets of around 30 nL. The tip position is controlled

with a 3D micromanipulator (MCL-D331) from World Precision Systems,

Sarasota, FL. After the initial alignment to two reference points, a Mat-

lab script (MatWorks, Natick, MA) coordinates the position system and the

microinjector to fill the array of wells.

3.1.3 Micro-wells silanization

Silicon and silicon-based materials undermine polymerase activity and inhibit

nucleic acid amplification [94, 95]. To prevent inhibition of amplification,

the silicon wells were passivated with Sigmacote to create a silane layer that

neutralized surface adsorption of biomolecules [96]. Sigmacote is a solution of

chlorinated organopolysiloxane in heptane; it reacts with the surface silanol

groups and binds covalently to the substrate. To deposit the silane, the silicon

wells chip is submerged for 5 min in Sigmacote followed by isopropanol and

DI water rinses to remove any excess.

3.1.4 Primer-less LAMP reaction mix

For each experiment, 30 µL of primer-less LAMP solution was prepared with

the following components: Betaine (800 mM), mix of dNTPs (1.4 mM),

isothermal buffer (1x, New England Biolabs, Ipswich, MA), magnesium sul-

fate (8 mM), bacillus stearothermophilus (Bst ), 2.0 WarmStart polymerase

(0.64 unit/µL), Evagreen fluorescent dye (20 µM), and Template DNA (vari-

able concentrations). Instead of the wild-type Bst we used Bst 2.0 Warm-

Start polymerase (New England Biolabs, Ipswich, MA). This is an ‘in-silico’

designed homologue developed as a robust alternative with higher thermal

stability and salt tolerance (New England Biolabs, 2012). The template for
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amplification is genomic DNA extracted from overnight E.coli O157:H7 and

L. monocytogenes cultures in bovine-brain heart infusion (Sigma-Aldrich. St.

Louis, MO) reaching estimated concentrations of 109 CFU/ml for E.coli and

108 CFU/ml for L.monocytogenes. After incubation, 1 ml of cultured bac-

teria is centrifuged at 8600 RCF for 3 min to pellet the bacteria. Bacterial

cells are re-suspended in nuclease-free water (Invitrogen, Grand Island, NY)

and heat-lysed at 95 ◦C for 15 min in at 300 RPM in a Thermomixer R (Ep-

pendorf. Hamburg, De). A final centrifugation is performed at 12400 RCF

for 10 min, which pellets undesired cell debris, leaving template DNA in the

supernate.

3.1.5 Primers dehydration

The primer sequences used for amplification of pathogenic genes of bacterial

targets are listed in Table 3.1. The primer mix was prepared with custom

DNA oligomers (Integrated DNA technologies, Coralville, IA) and mixed

in the following concentrations: FIP/BIP (19 µM), F3/B3 (2.4 µM), and

LF/LB (9.6 µM). Primers are spotted in the wells after chip silanization

using the microinjector with a 10 ms pulse to dispense around 15 nL. The

dispensed volume quickly dries at room temperature, leaving dehydrated

primers in wells prior to mineral oil encapsulation. For multiplexed screening

experiments, each well was prepared with a specific primers.

3.1.6 On-chip amplification experiments

A schematic illustrating the detection experiment sequence is presented in

Figure 3.1 (d). Silanized chips with dehydrated primers are covered with

mineral oil to prevent evaporation of droplets during amplification. The

microinjector is then used to load silicon wells with 30 nL of the primer-less

LAMP solution that includes the target template. Next, the chip is heated

to 65 ◦C with an mK1000 heated stage (Instec, Boulder, CO). Fluorescence

changes related to greater dsDNA concentration are observed on a Nikon

Eclipse FN-1 fluorescence microscope (Nikon Instruments Inc. Melville, NY)

that captures images every minute.
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Table 3.1: LAMP primers used in this study. Target genes were stx2 & eae
for E.coli, hlyA for L.monocytogenes, and invA for S.enterica.

Target Primer Sequence Source
(Gene) (5’-3’)

E.coli F3 GAGATATCGACCCCTCTTG [14]
(stx2) B3 AATCTGAAAAACGGTAGAAAGT

FIP TCCACAGCAAAATAACTGCCCA
ACATATATCTCAGGGGACCA

BIP GATGTCTATCAGGCGCGTTTTGC
CGTATTAACGAACCCGG

LF TGT GGTTAATAACAGACACCGATG
LB ACCATCTTCGTCTGATTATTGAGC

E.coli F3 AGCTCTAACAATGTACAGCT [93]
(eaeA) B3 AGTTGCAGTTCCTGAAACA

FIP GTCTTATCCGCCGTAAAGTCCG
CCGTTCTGTCGAATGGTC

BIP CTAAAGCGGATAACGCCGATACCC
AGGGACATTAGCCTGAG

LF CCCAACCTGGTCGACAACTT
LB ATTACTTATACCGCGACGGTGAA

L. monocytogenes F3 TTGCGCAACAAACTGAAGC [92]
(hlyA) B3 GCTTTTACGAGAGCACCTGG

FIP CGTGTTTCTTTTCGATTGGCGTCT
TTTTTTCATCCATGGCACCACC

BIP CCACGGAGATGCAGTGACAAATGTT
TTGGATTTCTTCTTTTTCTCCACAAC

LF TAGGACTTGCAGGCGGAGATG
LB GCCAAGAAAAGGTTACAAAGATGG

S.enterica F3 CGGCCCGATTTTCTCTGG [29]
(invA) B3 CGGCAATAGCGTCACCTT

FIP GCGCGGCATCCGCATCAATA
TGCCCGGTAAACAGATGAGT

BIP GCGAACGGCGAAGCGTACTG
TCGCACCGTCAAAGGAAC

LF GGCCTTCAAATCGGCATCAAT
LB GAAAGGGAAAGCCAGCTTTACG
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3.1.7 Analysis of fluorescence images

Fluorescence images are analyzed in ImageJ (http://rsb.info.nih.gov/ij/).

Each well’s fluorescence was individually measured using Raw Integrated

density ‘RawIntDen’, the stack-measurement plugin, and the rectangular se-

lection. Data is imported to Matlab where data for each well is normalized

to the first recorded value. A well is considered to exhibit positive amplifica-

tion when its intensity increases by 20%, significantly above the noise level

observed in negative controls. The threshold is defined as the reaction time

to achieve the 20% increment.

3.2 Evaluation of on-chip LAMP

3.2.1 Primers rehydration and assay reproducibility

To evaluate DNA amplification on silicon oxide micro-wells after silanization

and primer dehydration initial experiments aimed to confirm that primers re-

suspend in the injected LAMP solution and then anneal to target template

for amplification. In addition, we were interested in measuring intra-chip am-

plification efficiency and the rate of false negatives and positives. Figure 3.2

shows an experiment where primers for E.coli O157 were dehydrated in all

36 wells of the array. After mineral oil encapsulation the primer-less LAMP

solution, with template extracted from a 109 CFU/ml culture, was spotted

in the bottom 18 wells. The top 18 wells were spotted with a solution with-

out template (the template was replaced with DI water) to create on-chip

negative controls.

The initial and final fluorescence images are presented in Figure 3.2 (a)

and 3.2 (b). Real-time fluorescence intensity curves for all wells are shown

in Figure 3.2 (c). Figure 3.2 (d) shows the fluorescence increase for negative

and positive controls and the average threshold time (time when fluores-

cence increased by 20%) for the positive control samples. The real-time data

shows that amplification was observed in all wells where the injected solution

contained E.Coli O157 template. The coefficients of variation for threshold

times and fluorescence increments in positive controls were 25% and 4% re-

spectively. The variation is higher than that observed in other reports using
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Figure 3.2: Amplification of stx2 gene of E.coli O157 after primer
dehydration
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similar primer dehydration strategies (Stedtfeld, 2012). Volume inconsisten-

cies on smaller samples and stronger interaction between molecules and the

chip with high surface to volume ratios may explain the higher observed

intra-chip amplification variability. The false negative ratio (defined as the

rate of wells where amplification was expected but not observed over the total

number of positive control wells) is zero at this concentration. Furthermore,

none of the negative controls presented amplification, for zero false positives

and full specificity. These results indicate that primers in the prepared chip

will rehydrate when LAMP reagents are injected and participate in specific

amplification for the detection of pathogens.

3.2.2 Sensitivity of on-chip reactions

The concentration of template used in the LAMP solution was serially diluted

and then spotted on the silicon wells to evaluate the detection limit of LAMP

with dehydrated primers in a silicon chip. Figure 3.3 shows the threshold time

and false negative ratio for experiments with multiple template concentra-

tions of E.Coli O157 and stx2 dehydrated primers. The number of CFU per

reaction is computed from the measured plated CFU/ml and scaled to 30nL

of the reaction volume. The lowest detected concentration was 105 CFU/ml

which translates to 3 CFU/reaction. The false negative ratio increases as

the template concentration decreases and it approaches 1/2 for experiments

performed with the minimum detectable bacterial concentration. However,

we observed amplification in most of the wells in experiments with low tem-

plate concentration demonstrating an acceptable detection limit. This agrees

with other reports that show the ability of LAMP to detect single copies in

miniaturized platforms [97].

A hypothesis for the higher number of false negatives is an incomplete

surface passivation by the Sigmacote treatment. According to the Poisson

distribution the probability of having at least one copy in each well at the

lowest concentration of 3 CFU/reaction is 95%, effectively assuring that each

well will have at least one template for amplification. However the few copies

present in the well could be adsorbed by silicon oxide areas with poor coverage

by the silane. The probability of having all template molecules inactive

during the reaction due to exposed silicon increases at lower concentrations.
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Figure 3.3: Sensitivity experiments on silicon oxide wells
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The Sigmacote treatment was selected for this study due to its simplicity, but

further studies using other passivation and deposition methods that improve

coverage and uniformity may lead to single copy amplification for on-chip

digital LAMP [98].

3.2.3 Concurrent screening of multiple pathogens

On-chip LAMP amplification after primer dehydration is sensitive and re-

producible. However, the main advantage of this technique is that it enables

multiplexed screening in one single assay when primers for multiple pathogens

are dried in the same chip. There are 31 identified foodborne pathogens that

cause hospitalizations in the United States and it is necessary to screen for

all those pathogens to assure that food is not contaminated. Therefore, it is

very desirable that a screening method is capable of multiplexed detection of

several pathogens in a single assay to avoid labor-intensive protocols.

For experiments shown in Figure 3.4 primers for S.enterica invA, L. mono-

cytogenes hlyA and E.coli O157 stx2 were dehydrated in different positions

of the array. In Figure 3.4 (a) the two left columns had primers for hlyA

(L.monocytogenes ), the middle columns for invA (S.enterica ) and the right

columns for stx2 (E.coli O157). After primer dehydration and mineral oil

encapsulation, a primer-less LAMP solution with template extracted from

culture of 108 CFU/ml L. monocytogenes was injected in the top 30 wells.

The bottom row was set as a negative control injecting a primer-less solution

without template. The same experiment was executed with a different chip

using a primer-less LAMP solution with template from 108 CFU/ml E.coli

O157culture.

Figure 3.4 (d) and 3.4 (e) show that the method is specific and amplifi-

cation is observed only in the wells where the template and primers match.

Figure 3.4 (d) shows data from an experiment with L.monocytogenes tem-

plate. We observed that only wells with dried primers for L.monocytogenes

hlyA amplified. On the other hand in Figure 3.4 (e), experiment with E.coli

template, only wells with primers for E.coli stx2 amplified. Data from the

two experiments is summarized in Figure 3.4 (c). The plot shows the average

increase in fluorescence for each group of wells with common primers in ex-

periment 1 (with L.monocytogenes template) and experiment 2 (with E.coli
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Figure 3.4: Multiplexed on-chip identification of foodborne pathogens
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template). Only the wells where primers find a complementary had increased

fluorescence intensity after amplification demonstrating specific amplifica-

tion. The variability in fluorescence signals and threshold times between E.

coli O157 and L. monocytogenes experiments could be due to different primer

efficiency. It has been shown previously that the LAMP reaction speed is

a function of the primer length, GC content, melting temperature, free en-

ergy of hybridization, and especially 3’- and 5’- ends availability [99]. Given

that the concentration of template and the DNA extraction protocol is the

same in both experiments, the variability of threshold time and fluorescence

increase can be attributed to a difference in primer activity and affinity.

3.2.4 Amplification with raw lysate template

Successful development of portable DNA testing requires simplified systems

that allow inexpensive and simple miniaturization. The DNA extraction step,

done regularly for LAMP and PCR experiments, is performed to remove cel-

lular components that could potentially inhibit the polymerase activity or the

assay specificity (Headman and Radstrom, 2013). However, this step involves

reagents and laboratory equipment that increase the overall process complex-

ity. For the experiment presented in Figure 3.5, E.coli O157 stx2 primers

were dehydrated in all wells. After mineral oil encapsulation, 3 primer-less

solutions were spotted. In Figure 3.5 (a) the LAMP solution injected in the

left columns contained extracted DNA from a 108 CFU/ml culture of E.coli.

In the middle columns, the template is raw lysate (no centrifugation steps

after lysis) from the same culture, and in the right columns LAMP solution

has no template (as negative control). Figure 3.5 (c) shows real time fluores-

cence intensity of each well. Figure 3.5 (d) quantifies fluorescence intensity

and threshold time, indicating that wells where the template is raw lysate

have lower amplification efficiency. The detection times are slightly longer

and fluorescence changes are smaller in the raw template samples when com-

pared to the ones with extracted DNA. These results are consistent with

expectations of reduced yield from non-purified template. In addition, we

observed a false negative in one of the ‘raw-lysate’ wells while all wells for

extracted DNA template amplified. From this experiment it is possible to

conclude that amplification can be carried out without DNA extraction but
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with lower amplification efficiency and a slightly higher probability of false

negatives. However, the use of larger arrays would mitigate robustness issues

that arise from the raw lysate template. With more wells the probability of

observing amplification statistically increases and compensates for possible

false negatives.

Figure 3.5: On-chip amplification without DNA extraction

3.2.5 Dehydrated primers shelf life

Spotting of primers on a microchip for multiplexed detection must be done

using laboratory equipment like the microinjector or ink-jet printers [100].

The multiple solutions that are dispensed (one per target pathogen) and

alignment to the chip demand highly specialized equipment. Therefore, it is

important to know for how long the primers can be stored after dehydration,

without losing affinity to the complimentary sequence and ability to generate

the loop structures for LAMP amplification. Primers for E.coli O157 stx2
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Figure 3.6: Frozen on-chip dried primers shelf life
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were dehydrated in silicon wells and then refrigerated at −20 ◦C for 1, 3,

and 10 days. These chips were then used for E.coli O157 detection experi-

ments using template extracted from a 108 CFU/ml culture. Once again the

threshold time and the false negative ratio were recorded. Figure 3.6 shows

that primers can be used for amplification after having been frozen for up to

10 days. However, after 10 days of refrigeration the threshold time and the

false negative ratio are higher, indicating that frozen primers lose their abil-

ity to anneal with complementary sequences and create structures required

for LAMP with storage time. Previous studies have shown a progressive

degradation of dehydrated DNA. The molecule loses molecular weight and

supercoil content as a function of time [101, 102] explaining the observed

performance loss.

3.3 On-chip detection of non O157 shiga-toxin

producing E.Coli

Shiga toxin-producing E.coli (STEC) strains are virulent agents responsible

for thousands of illnesses in the United States [103]. The most common and

notorious STEC serotype is O157:H7; however, other serotypes, such as the

O104:H4 strand that was responsible for the May 2011 HUS outbreak in

Germany [104], account for one third of STEC-related illnesses. Beginning

in June of 2012, the U.S. Department of Agriculture initiated a zero tolerance

policy for six non-O157 STEC groups (the ‘big six’) that cause over 70% of

total non-O157 illnesses. In order to detect these 6 serotypes (O26, O45,

O103, O111, O121, and O145) the food safety and inspection service has

outlined a detection protocol that requires two steps of quantitative PCR

(qPCR). The new requirements make the screening process more expensive

and labor intensive [105]. Utilizing the methods described in this chapter for

on-chip amplification it is possible to reduce complexity and cost of the ‘big

six’ detection and identification process.

Using the array of silicon oxide micro-wells described in previous sections

of this chapter, and the same primer dehydration technique that was used to

target E.coli, L.monocytogenes and S.enterica, we have demonstrated paral-

lel detection and identification of the ‘big six’ group serotypes. Simply by

changing the primers that are dehydrated we can use the same materials and
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protocols to detect and identify the non-O157 STECs.

Figure 3.7 (a) shows the layout for primer dehydration in the 6x6 silicon

micro-well array. In each column a primer targeting a specific serotype is

dehydrated [105] and later the rest of the LAMP reaction is microinjected.

The first row of wells is reserved for a no-template control microinjection that

is used to discard false positives due to primer-dimer amplification. The rest

of the wells are filled with a LAMP reaction containing the sample that will

be analyzed. Therefore, as shown in Figure 3.7 (b), for each primer there

are 5 replicates along with one negative control for a truly multiplexed DNA

interrogation.

Figure 3.7: Chip layout and amplification demonstration for ‘big-six’ non
O157 Shiga-toxin producing E.coli

All six different pathogens were used as templates for specificity experi-

ments. Results are summarized in Figure 3.8, showing that despite variations

in threshold voltages and final fluorescence intensity, in all 6 cases only wells

where there is matching primer and template presented amplification. In Fig-

ure 3.9 we present titration experiments where the template concentration

per reaction is decreased. Similarly to results presented for other pathogens,

as the template concentration decreases the threshold time and number of

false negatives increase. However, the sensitivity is still down to a few copies

per well.
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Figure 3.8: Specificity experiments for the ‘big-six’ non O157 Shiga-toxin
E.coli
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Figure 3.9: Sensitivity studies of on-chip amplification for 2 serotypes of the
‘big-six’ STECs

3.4 Summary of on-chip LAMP amplification

For portable DNA-based diagnostic tools it is necessary to simplify the instru-

mentation that is required to perform assays to enable simple, inexpensive,

and miniaturized detection. Isothermal amplification strategies like LAMP

do not require temperature controllers needed in conventional strategies like

PCR simplifying protocols and devices to run the reaction [51]. In addition,

semiconductor devices can be used to electrically monitor amplification re-

actions without the need for optics that measure fluorescence [106], locally

heat samples to reaction temperatures removing bulky heaters [107], and

lyse cells through electroporation to locally extract DNA [108]. Therefore,

it is possible to develop a simplified portable nucleic acid diagnostic system

incorporating both LAMP and semiconductors.

This chapter describes protocols to conduct LAMP reactions on a silicon

oxide well array. The silicon surface had to be passivated with a silane treat-

ment to prevent adsorption of biomolecules, and primers were dehydrated

prior to running the assay to enable multiplexed screening. We demonstrated

that on-chip amplification is reproducible, sensitive down to a few copies/re-

action, and specific allowing multiplexed identification of pathogens in a sin-

gle assay. In addition, our experiments indicate that it is possible to perform

amplification without DNA extraction protocols and that dehydrated primers
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can be frozen for up to 10 days for future detection experiments. Overall,

our results indicate that LAMP can be reliably performed in silicon wells,

enabling further integration of bio-molecular assays and semiconductor tech-

nologies for portable genetic based diagnosis.
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CHAPTER 4

DETECTION OF LAMP REACTIONS
WITH DG-ISFETS OPTIMALLY BIASED

Ion-sensitive field effect transistors (ISFETs) have become effective trans-

ducers of biochemical reactions into electrical signals [109, 2]. In an ISFET,

the gate region is exposed to an electrolyte, making the drain-source cur-

rent sensitive to charged molecules and chemical reactions in the solution

[110]. These devices promise to enable parallel, label-free, inexpensive, and

portable diagnostic tools by translating advances of the semiconductor in-

dustry to health-care and biological applications [111]. Different studies have

applied the concept of electrical biosensing through field effect and capaci-

tive coupling for different purposes. Silicon nanowire transistors have been

used for the detection of proteins and nucleic acids in low concentrations

[112, 113, 114], carbon nanotubes and graphene FETs are being used as gas

and molecular sensors [115, 116], and ISFETs made with metal oxides and

polymers are used to monitor biological activity [117, 118, 119]. The po-

tential advantage of having label-free, multiplexed, and miniaturized sensors

incentivizes research in ISFETs and its multiple variations [120, 121]. The

portable DNA amplification system that we are developing leverages these

advantages of FET biosensing. In this chapter we describe a dual-gate ISFET

that has been fabricated to detect pH changes triggered by LAMP reactions.

We describe the fabrication of the semiconductor device, optimization of its

operation, and the label-free detection of nucleotide incorporation.

4.1 Sensitivity above Nernst limit in DG-ISFETs and

benefits of individual gates

Detection of biomolecules at low concentrations and analysis of biomolecular

reactions that give small signals have driven research toward signal enhance-

ment techniques for ISFET sensing. Researchers have labeled analytes with
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particles or enzymes [122, 123], utilized surface treatments to the sensor’s

active layer to control wettability [124], and used complementary electroki-

netic structures [125], all to enhance the biological signals and enable more

sensitive electrical measurements. For studies where the measured variable

is the solution’s acidity, a number of publications demonstrated the use of

coupled transistors for signal enhancement. Couples of sensors connected in

parallel yield a ‘super-Nernstian’ pH sensitivity that exceeds the 59 mV/pH

limit defined by the Nernst equation [126]. This method is particularly rel-

evant for semiconductor DNA sequencing [127], label-free gene detection

[128], or electrochemical diagnostics [129], where accurate measurement of

small pH changes is important to reduce error rates, lower detection limits,

and improve throughput. Our group has reported coupling of nanowire and

nanoplate transistors with different W/L ratios to amplify pH signals [130],

but the most common and notable coupling mechanism is the dual-gated

field effect transistor (DG-FET)[131, 132, 133]. Transistors fabricated from

silicon-on-insulator (SOI) wafers have a top gate that is formed by depositing

a dielectric on the active silicon layer, and a back-gate where the dielectric is

the SOI’s buried oxide. When the active silicon is considerably thicker than

the maximum depletion layer, there is no charge coupling between gates, and

the bottom and top transistors can be treated as independent parallel de-

vices [134]. When the top and bottom transistors are coupled in a dual-gate

mode operation, their geometrical and electrical properties will produce an

amplification of the pH sensitivity [135].

A new process developed by Taiwan Semiconductor Manufacturing Com-

pany (TSMC) resulted in double-gated ISFETs that have individually ad-

dressable back-gates, overcoming limitations of the single back node of stan-

dard SOI fabrication. In a regular SOI process all transistors have a com-

mon back-gate that is biased through the bulk silicon. Having a common

back-gate prevents tailored biasing of individual transistors that is impor-

tant to operate in optimum conditions [136]. In addition, the buried ox-

ide quality and its variations across the wafer produce DGFETs with non-

uniform electrical characteristics which undermine scalability and optimiza-

tion [137, 138, 139]. These limitations can be overcome with a new structure

of dual-gate ISFETs with individually addressable or ‘true’ back-gates fab-

ricated by TSMC in a 0.18 µm SOI technology. The new transistor is made

in a two-stage process. First, the transistor is formed as a standard SOI
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metal-oxide-semiconductor FET (MOSFET). Then, the SOI wafer is flipped

upside down and is attached to a new substrate. After removing the bulk

silicon from the original SOI wafer, an opening is formed through the buried

oxide to expose the back of the silicon, and a hafnium oxide film is deposited

to form the ISFET’s sensing layer. The resulting device then has two gates,

the fluid-gate biased with a reference electrode in solution and the back-gate

which is the a standard foundry fabricated MOSFET. A schematic illus-

trating a cross section of the new device is presented in Figure 4.1. The

full fabrication is performed in a standard semiconductor foundry leverag-

ing high-quality materials and automated processes of CMOS manufacturing

that enable traceable reliability with very high yields at a low cost. Further-

more, the devices have been integrated with control and read-out circuitry

making the full process amenable for immediate commercialization.

Figure 4.1: Schematic of the fabricated dual-gated ISFET

Besides enabling true back-gates, the new architecture improves electri-
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cal robustness and enables higher transistor density. Electrical interconnects

(metals 1 and onwards in a foundry process) are well isolated from the fluid

with the original SOI buried oxide preventing leakage current from the metal

leads to the fluid, which can be a crippling problem for thin deposited di-

electric layers [131]. In addition, the new structure does not have a floating

sensing gate preventing accumulation of charges and reducing the probability

of sudden threshold voltage changes due to electrostatic discharge [140, 141].

This novel device architecture also simplifies routing and increases possible

transistor density because interconnect leads are in a different layer from the

sensing regions. Figure 4.2 compares the cell footprint of single-gate transis-

tors with the new structure. Since node connections are in a different layer

and the extended gate is not used in the new structure, the true dual-gate

transistors only occupy ∼ 25% of the area of the single-gate device which

will impact transistor count. For sensing purposes, the new devices enable a

tailored dual-gated operation that allows improvement of the signal-to-noise

ratio (SNR). For defined pH ranges, increments in sensitivity overcome aver-

age noise resulting in enhanced pH resolution. This characteristic is used to

improve the sensor accuracy and decrease detection times when monitoring

biological reactions. Using a loop mediated isothermal DNA amplification

[27], we demonstrate that these devices enhance signals of biological reactions

when operated in dual-gate mode enabling more accurate control and assess-

ment. Due to the increased resolution of the configuration, the dual-gate

mode yields a larger output signal in shorter detection times.

4.2 Individually addressable DG ISFETs and tailored

LAMP reactions

4.2.1 DG ISFET fabrication

The proposed dual-gate ISFET is manufactured on SOI wafers and was

totally fabricated at TSMC. Using standard complementary metal-oxide-

semiconductor (CMOS) processing, the transistors are formed in the device

layer. At this initial instance devices are composed of a gate dielectric made

of thermal silicon dioxide, a poly-silicon gate, and source drain regions formed

56



Figure 4.2: Image from the GSDII (Graphic Database system) file of the
cell layout for single- and dual-gate

in a well with opposite doping. The formation of transistors is followed by

deposition and patterning of multi-layer interconnects (MLI) on the device

substrate that create electrical connections to source, drain, and gate. The

MLI structures comprise aluminum / copper conductive lines and tungsten

vias, and are isolated with silicon dioxide inter-layer dielectric (ILD).

Following the MLI definition, a silicon handling wafer is bonded to the

front side (exposed MLI and ILD layers) of the device substrate and the

wafer is flipped upside down. The bulk silicon layer of the original SOI wafer

is then removed using a chemical mechanical polish (CMP) process that uses

the buried silicon oxide as an etch-stop layer. The now exposed buried oxide

is etched in specific regions using standard photolithography and a wet etch

to create windows that expose the back of the active silicon layer between the

drain and source regions. It is then necessary to form the top-gate dielectric

that will act as the sensing interface between the transistor and electrolyte.

A seed layer of silicon dioxide followed by a thicker layer of hafnium oxide

serves as the fluid-gate dielectric and sensing interface. The micro-fabrication

process culminates with etching steps that reveal the connection pads for de-

vice probing. Cross-sectional schematics of a summarized fabrication process

are presented in the supplementary material (Figure 4.3 ).
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Figure 4.3: Cross-sectional schematics of the fabrication process of true DG
ISFETs
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4.2.2 Device measurements on Keithley 4200 scs

The electrical characterization of the fabricated dual-gated ISFETs was per-

formed in a Keithley 4200 SCS with a filter factor of 1, Delay factor of 1.3,

and an automatic settling of the A/D aperture. These are the parameters

of the ‘Quiet’ acquisition mode and different settings will change the mea-

surement’s noise. The device was probed in the configuration described in

schematic of Figure 4.1, having independent SMUs for fluid-gate, back-gate,

and drain nodes, with all potentials referenced to a grounded source. A

polydimethylsiloxane (PDMS) well is plasma-bonded to the front side of the

transistor to act as a reservoir of the electrolyte that is biased with a leak-free

reference electrode (Warner Instruments, Hamden, CT) connected to one of

the SMUs to sweep or fix the fluid potential. The well is filled with a 10

mM PBS solution at different pH values or LAMP solution, Vds is set at 100

mV, and the two gates have specific biases depending the desired operation

mode.

4.2.3 pH Sensitivity quantification method

The pH sensitivity is evaluated for both the dual- and single-gate modes

measuring changes of the surface potential as a function of pH. Solutions of

10 mM PBS are titrated with HCl and NaOH, and measured with an Orion

3 star pH meter (Thermo Scientific, Pittsburgh PA) to have five electrolytes

of known pH. As will be discussed later in the results section, the dual-gate

amplification mode limits the range of pH that can be measured. Therefore

the five testing electrolytes have pH values in the 6-9 range.

The prepared PBS solutions are manually pipetted in the PDMS well.

After 5 min of stabilization, transfer characteristics are obtained in both

the single- and dual-gate modes. For single-gate measurements, the MOS

transistor is turned off by applying a negative potential to the back-gate and

the electrolyte potential is swept (0 to 2 V). For the dual-gate mode the

top transistor is turned on applying an inversion bias while the back-gate is

swept (-1 to 1 V). The drain current vs. gate voltage transfer characteristic

is measured five times. The solution is then changed to the following pH

value, and the procedure is repeated.
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Table 4.1: Primers mix targeting wzy gene of Shiga-toxin producing E.coli
serotype O111

Pathogen PrimerSequence Source
(Gene) (5’-3’)

E.coli O111 F3 AAGGCGTAACTTTTTTTGAAC [105]
(wzy) B3 TCATGAGGGTCATTAGGAATT

FIP TCACCAAGCTGTGAAACCAAA
CTACAGCAAGTAATATTGAACGT

BIP TCCATGGTATGGGGACATTAAATTT
TGATGGAAGTCCATATAACGT

LB CTTAAATAACGGCGGACAAT

4.2.4 Pseudo real-time DNA amplification reaction

To test the benefits of the improved sensitivity and resolution, the dual-gate

ISFETs were used to monitor a LAMP reaction. For each measurement,

100 µL of LAMP solution was prepared with the following components: 800

mM of betaine (Sigma-Aldrich. St. Louis, MO), 1.4 mM of dNTP mix

(New England BioLabs, Ipswich, MA), 5 mM of magnesium sulfate (Sigma-

Aldrich), 0.1x isothermal buffer, 50 mM potassium chloride, 0.64 unit/mL

of bacillus stearothermophilus (Bst ) 2.0 WarmStart polymerase (New Eng-

land BioLabs), and 20 µM EvaGreen (Biotium, Hayward, CA). Addition-

ally, the LAMP solution contains the primers for the wzy gene of Shiga

toxin-producing E.coli (STEC) O111 specified in Table 4.1 with the follow-

ing concentrations: 1.9 µM FIP/BIP, 0.24 µM F3/B3, and 0.96 µM Loop-B

primers [142, 105]. The positive samples had DNA extracted from an STEC

O111 18 h culture (Plating count of 9.1x108 CFU/ml) while the negative

controls had no template DNA.

For a pseudo real-time study, identical LAMP solutions are heated to 63 ◦C

for different time intervals in a Thermomixer R (Eppendorf. Hamburg, De).

The solutions are cooled down in an ice bath for 1 min to stop the am-

plification reaction before electrical and optical measurements to quantify

amplification are performed. Changes of the solution pH are measured with

an Orion 3 star meter, fluorescence changes related to increased binding sites

for the intercalating dye are observed on a Nikon Eclipse FN-1 microscope

(Nikon Instruments Inc. Melville, NY), and the transistor threshold voltage

is obtained from transfer characteristics taken for the dual- and single-gate
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modes. All three measurements are performed for each time interval for both

negative and positive samples.

4.2.5 Sensitivity, resolution, and statistical analysis

The reported sensitivity is the derivative of the surface potential to pH func-

tion. For the single-gate mode, as it is usually done with ISFETs, the sen-

sitivity is the slope ‘b’ of the linear regression f(x) = a + bx to the pH

response, where f(x) is the surface potential and ‘x’ the pH value. Therefore

the sensitivity remains constant for the different pH points. However, for

the dual-gate operation the surface potential to pH function is approximated

with an exponential fit and an asymptotic regression f(x) = a− b ∗ cx. The

derivative of the model f ′(x) = −bcxln(c) is the sensitivity function that is

evaluated for different pH values.

The pH resolution is defined as the ratio of noise over sensitivity [135].

Then, resolution in pH units is calculated as ∆pHmin = σψs/S , where σψs

is the standard deviation of the measured surface potential and ‘S’ is the

sensitivity quantified as it was described above.

Finally, to compare the performance of dual- and single-gate operation

modes for monitoring DNA amplification, a two tail paired P-value was cal-

culated comparing surface potential changes in positive samples with the

respective negative controls. The potential changes compared are accumu-

lated with reaction time, differentiating only initial measurements for P-value

at 5 min and comparing the total number of points for the 60 min P-value.

The P-value threshold is set at 0.01 that translates into a ‘very strong pre-

sumption’ against a null hypothesis of having two identical samples.

4.3 Characterization of DG ISFET performance

4.3.1 Electrical characteristics

Figures 4.1 and 4.4 present the device structure and basic electrical charac-

terization. The schematic in Figure 4.1 describes the layers that compose

the transistors including the attached PDMS well and the leak-free refer-

ence electrode. The nomenclatures for potentials are: Vds for drain-source,
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Vpgs for the back-gate, and Vfgs for the fluid-gate. Figure 4.4 (a) shows

the IdsVpgs transfer characteristics of the double-gate operation sweeping

the back-gate from -1 to 1V and having several Vfgs. The same informa-

tion is plotted in the contour heat map (Figure 4.4 (b)) that summarizes

the dependence of the drain current as a function of the fluid and back-gate

biases. In Figure 4.4 (c) and (d) Vds is swept from 0 to 2 V for different gate

biases showing typical resistive FET characteristics for the isolated top and

bottom transistors. To isolate the transistors, the opposite gate is biased so

it does not contribute to the drain current. This means that for back-gate

transistor testing (Figure 4.4 (c)) the fluid-gate is set to Vfgs = 0 V and for

fluid-gate testing (Figure 4.4 (d)) the back-gate is set to a slight negative

potential of Vpgs= -0.4 V. Figure 4.4 (b) shows that at 0 V the conductivity

of the bottom transistor is at tens of nano-amps implying that at 0 V there

are already inversion carriers in the back-gate side. Therefore, a negative

potential is applied to the back-gate for completely shutting off the bottom

current isolating the fluid-gate transistor.

Overall the back-gate has better electrical characteristics than the fluid-

gate side of the DGFET. The on/off ratio and saturation current are higher,

while sub-threshold swing and threshold voltage are lower for the back-gate

side. Electrical characterization of top- and back-gates of multiple devices is

presented in Figure 4.5. Measurements and extracted distributions show that

noise and threshold variations are low at the back-gate but their variability

is larger for the fluid-gate. This is expected since the gate dielectric on the

back-gate side experiences highly optimized annealing steps that reduce oxide

charge while the fluid-gate’s high-k dielectric is difficult to properly anneal

at the end of processing. Furthermore, the fluid-gate is biased through the

electrolyte where the capacitive coupling has a greater variability than in the

back-gate [143]. Despite having the mentioned short-comings, the fluid-gate

transistors have a near Nernstian sensitivity and high repeatability (mean

threshold variation was only 10mV in a stress test of 50 consecutive Id-Vg

sweeps) for pH sensing.

62



Figure 4.4: Electrical characterization of the transistor for fluid- and
back-gate operations
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Figure 4.5: Electrical characterization of top- and back-gate for 10 different
transistors in a stress test of 50 consecutive Id-Vg plots
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4.3.2 Response to pH changes

Sensitivity to pH changes was measured for dual- and single-gate modes as

surface potential changes. For the fluid-gate mode, the electrolyte potential

is swept while the back-gate has a slight negative potential. On the other

hand, in dual-gate operation the fluid potential is set to create an inver-

sion channel in the front side of the DGFET while the back-gate is swept.

Figure 4.6 (a) shows the single-gate Ids-Vfgs transfer characteristics for elec-

trolytes with different pH values. The inset magnifies the region of voltages

for a threshold current of 5 µA. Similarly, Figure 4.6 (b) shows the Ids-Vpgs

transfer characteristics for the dual-gate mode and an inset with magnifi-

cation at threshold voltages. Figures 4.6 (c) and 4.6 (d) show the surface

potential changes as a function of pH with pH 7.32 as the origin or reference

acidity. Each point in the figure is the average of five measurements and

error bars are one standard deviation their standard deviation. The insets in

Figures 4.6 (c) and 4.6 (d) are schematics illustrating that in the single-gate

mode only the front side transistor is inverted (Figure 4.6 (c)) while in the

dual-gate mode both sides are conducting (Figure 4.6 (d)).

Figure 4.6 (c) shows the typical linear response of the ISFET surface po-

tential to pH changes, demonstrating a sensitivity of 52.9 mV/pH. On the

other hand, Figure 4.6 (d) shows a nonlinear response to pH for the dual-gate

operation. The nonlinear behavior is due to the relation between sensitiv-

ity to pH changes and the drain current ratio of the coupled transistors

[∆Itop/∆Ibottom]. Since for a fixed electrolyte potential the current ratio is

a function of pH, the sensitivity is also a function of the solution’s acidity.

For instance, at a fixed potential, higher pH values will reduce the drain

current in an N-type ISFET. Higher pH values are correlated with higher

OH− concentrations which will reduce the number of inversion carriers in an

N-type ISFET modifying the ratio of bottom / top transistor currents and

in consequence changing pH sensitivity.

In addition, the surface potential to pH relation in the dual-gate mode

shows an asymptotic behavior (Figure 4.6 (d)). As the pH increases, the top

transistor current decreases and the back-gate side is forced to contribute

more current to achieve the threshold that is used to extract the surface

potential. The MOS side of the device is not sensitive to the electrolyte pH,

so the device loses sensitivity as the bottom transistor becomes the dominant
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source of drain current. Since at large pH values the top current is minimal,

most of the drain current is coming from the bottom transistor, and therefore

the sensitivity approaches zero explaining the asymptotic trend.

Figure 4.6 (d) also shows that the dual-gate mode has sensitivities above

the Nernstian limit for certain range of pH values. For example, the sensi-

tivity (or derivative of the asymptotic model) at pH 7.32 is 107.65 mV/pH

and it increases for more acidic electrolytes. However, a greater sensitivity

is also accompanied by larger noise. This is observed in Figure 4.6 (d) by

the larger error bars for lower pH values. Therefore the ideal signal-to-noise

is constrained to a window of pH values that is limited in one side by low

sensitivities and in the other by large noise.

Figure 4.6: Measurement of transistor response to pH changes

4.3.3 Tailoring of biasing conditions

The amplification of sensitivity does not necessarily improve resolution be-

cause larger sensitivities are accompanied by increased noise. Therefore, to
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enhance the signal-to-noise ratio it is necessary to optimize the biasing condi-

tion to find operation points where the noise sources are not being amplified

as much as the sensitivity gains [135]. Figure 4.7 presents the results of a

resolution optimization experiment. Figure 4.7 (a) illustrates the dual-gate

mode surface potential to pH relationship for the same device under small

differences of fluid-gate bias. Variations on the fluid bias modify the magni-

tude of drain current in the front transistor changing the current ratio and

the pH sensitivity. Figure 4.7 (b) quantifies the sensitivity and resolution at

pH 7.32 for the different fluid biases (Table 4.2 presents the constants of the

extracted models). As expected, the sensitivity increases with increments in

Vfgs since the top transistor contributes more to the threshold current. How-

ever it is interesting to note that the optimal resolution is observed for Vfgs =

1.775 V. With this biasing we obtain the best resolution of the five screened

fluid biases. Figure 4.8 plots sensitivity, noise, and resolution as a function

of the electrolyte pH comparing the single-gate and the tailored dual-gate

modes. With Vfgs = 1.775 V and for a specific pH range, gains in sensitiv-

ity are greater than noise increments. The sensitivity and resolution of the

single-gate mode are also plotted in Figure 4.3 to compare the performance

of both operations for electrolytes with different pH. When compared to the

single-gate mode, the dual-gate mode exhibits an improvement in signal-to-

noise of a factor of ∼2X for the 7.32 pH (from ∼0.03 to 0.015 resolvable pH

units). Similar exercises could be performed for other pH values to improve

resolution for other electrolytes. Depending on experimental conditions like

starting pH and expected pH change, the fluid-gate bias can be tailored to

have optimal sensitivity and resolution.

To test the robustness and repeatability of the amplification method, the

same pH characterization was done for 5 different transistors in both single-

and dual-gate operation (Figure 4.9 ). In all devices there is a pH range of

improved resolution when operated in the tailored dual-gate mode. However,

the magnitude and range of the sensitivity enhancement vary between tran-

sistors. Our measurements indicate that the resolution improves by 20.3%

on average when compared with the single-gate operation but the standard

deviation is 19.1%. Variance in the top-gate threshold voltage and noise (as

it is shown in Figure 4.5 ) may explain the lack of uniformity of the dual-

gate resolution enhancement. However, the best resolution achieved with the

tailored dual-gate operation is superior to that required for DNA sequenc-
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Figure 4.7: Tailoring fluid-gate bias to enhance resolution in the dual-gate
mode

Table 4.2: Extracted asymptotic models of surface potential vs. electrolyte
pH for the dual-gate amplification

Vfg [V] Extracted model f(x) R2

Sensitivity S(x)

1.75 f = 128.8− 1.97x107 ∗ 0.16x 0.99
S = −1.97x107 ∗ 0.16xln(0.16)

1.775 f = 118.8− 1.49x108 ∗ 0.12x 0.96
S = −1.49x108 ∗ 0.12xln(0.12)

1.8 f = 141.4− 1.24x106 ∗ 0.27x 0.96
S = −1.24x106 ∗ 0.27xln(0.27)

1.825 f = 95.04− 1.28x108 ∗ 0.14x 0.97
S = −1.28x108 ∗ 0.14xln(0.14)

1.85 f = 93.07− 2.34x107 ∗ 0.20x 0.95
S = −2.34x107 ∗ 0.20xln(0.20)
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Figure 4.8: Comparison of single and tailored dual-gate operation pH
response as a function of measured electrolyte
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ing [127] and comparable to the inherently more sensitive nanowires [144].

Comparison of our results with other dual-gate approaches is complicated

because, as Rajan et al. mentioned, noise analysis has only been recently

adopted by the FET-biosensor and the reported sensitivity increments are

not necessarily resolution improvements.

Figure 4.9: pH sensitivity characterization of multiple DGFET transistors

4.3.4 Label-free detection of LAMP reactions

Improved sensitivity and resolution enable more precise monitoring of biolog-

ical reactions. To illustrate this principle, we compared the response of dual-

and single-gate modes when monitoring pH changes of DNA amplification

reactions. The incorporation of dNTPs into a growing DNA strand causes

the release of hydrogen ions and pyrophosphates [127, 145]. This process has

been thoroughly studied as a label-free sensing method of amplification and
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has been used for DNA sequencing [6] and detection of specific mutations

[65].

Experiments in Figure 4.10 show pseudo real-time amplification of the wzy

gene of O111 STEC using loop-mediated isothermal amplification (LAMP).

Starting in 2011, the US department of agriculture initiated a zero tolerance

policy for a group of 6 non O157 STECs [146]. The O111 serotype is part

of this so-called ‘big six group’ and has caused multiple outbreaks thereby

becoming an important target for food safety control [147, 148]. Our lab

has investigated detection methods for the ‘big six’ strands and the O111

type was used to evaluate and compare the performance of the single- and

dual-gate operation of the fabricated ISFETs for monitoring a LAMP am-

plificaiton.

Figure 4.10: Pseudo real-time monitoring of LAMP DNA amplification of
the wzy gene of O111 STEC

DNA amplification and simultaneous measurement of the transistor sur-
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face potential presented challenges that hinder the comparison of dual- and

single-gate modes. First, the heated stage that is used for on-chip ampli-

fication (mK1000 heated stage from Instec, Boulder, CO) introduces noise

that obscures the small pH signals coming from the amplification reaction.

Second, when performed on the silicon materials the DNA amplification re-

actions have lower yields due to non-specific adsorption of molecules that

reduce the measured signal [149, 150]. Third, even though the solution is

capped with mineral oil, the evaporation through the PDMS well causes a

concentration of products that increases experimental noise. Therefore, a

pseudo real-time LAMP (described in the methods sections) is performed to

have a controlled experiment to evaluate the benefits of dual-gate ISFETs

for reaction sensing.

Figure 4.10 (a) shows the measured LAMP solution pH as a function of

time, Figure 4.10 (b) shows relative fluorescence for positive and negative

samples (Figure 4.11 shows the fluorescence images), and Figure 4.10 (c)

shows the surface potential change for dual- and single-gate modes as a func-

tion of time. Figures 4.10 (a) and 4.10 (b) show that solutions where ampli-

fication is expected turn more acidic and increase fluorescence intensity with

reaction time. On the other hand, Figure 4.10 (c) shows that the surface po-

tential is maintained relatively constant for negative solutions while measure-

ments of positive solutions induce surface potential changes as a function of

time. This means that the surface potential responds to pH changes induced

by nucleotide incorporation which occurs only in LAMP samples with tem-

plate DNA. The larger sensitivity of the dual-gate mode, which is achieved

by tailoring the top and bottom current ratio of the device at the beginning

of the experiment, produces surface potential changes that are larger than

the ones in single-gate operation. This translates into a faster detection time

because the dual-gate mode enables the differentiation of negative and posi-

tive samples faster than the single-gate operation. Figure 4.10 (d) shows the

two tailored P-value calculated to compare negative and positive solutions

for the dual and single-gate modes. The threshold is set at 0.01 or in other

words when the null hypothesis of having two equal samples is rejected with

99% confidence. The P-value shows that the dual-gate operation allows us to

establish statistical conclusions about 10 min faster than with the single-gate

operation.

This result demonstrates the benefits of having an amplified sensitivity
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Figure 4.11: Progression of fluorescence images of positive and negative
samples imaged on the chip during LAMP

especially in high-noise environments or protocols. For the pseudo real-time

measurements, the dominant source of noise is not coming from the device

itself but the measurement protocol and setup. Each time point is a dif-

ferent solution that was measured individually. This means that for each

measurement there are small experimental changes like probe contact resis-

tance, position of the reference electrode, and temperature changes that will

introduce experimental noise to the surface potential measurement. In fact,

these experimental variations become the dominant source of noise. The

noise in experiments for pH characteristics (Figure 4.6 ) was in the order of 4

mV while the one for the DNA amplification experiment is about 12-19 mV.

The experimental noise is not being amplified by the dual-gate operation and

therefore a higher resolution is achieved with amplified sensitivity. Go et al.

had similar predictions and observations when modeling dual-gate operation

[130, 135]. If the sensor signal-to-noise ratio is limited by extrinsic sources of

noise, the dual-gate offers superior resolution since the sensitivity increases

without significant noise amplification. Go et al. also discussed the role of

instrumentation noise and here we observe a similar extrinsic noise source

which is the experimental procedure. In this case, the increased sensitivity

amplifies the signal from the pH amplification without significant noise incre-

ments, and in consequence, differentiation of negative and positive samples is
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faster for the dual-gate operation. This demonstrates that the signal ampli-

fication of the dual-gate operation allows improved monitoring of reactions,

especially in noisy environments, enabling observation of smaller pH signals

or reducing the reaction time needed to achieve conclusions. These attributes

of the dual-gate mode are especially desirable for point-of-care and on-site

applications. Diagnostic assessments that are performed outside a controlled

environment (i.e. not in a standard laboratory) are required to operate under

more aggressive extrinsic sources of noise and with low-precision instrumenta-

tion [151]. Then, for these applications the dominant source of noise will not

be amplified in the dual-gate operation enabling greater resolution improve-

ments. In addition, the improved detection time of the dual-gate operation

enables a faster turnaround diagnosis that is essential for portable applica-

tions where subsequent actions are contingent on diagnosis [152]. Therefore,

it is in the portable applications where true dual-gated ISFETs can provide

greater SNR amplification improving the device performance. However, data

in Figures 4.10 (c) and 4.10 (d) also demonstrates that the increased sensi-

tivity is accompanied by a loss of linearity and a consequent reduction in

dynamic range. After 40 min, the dual-gate response changes the trend of

improved signal-to-noise suggesting that the new pH of the LAMP solution

is outside the operation range where the dual-gate mode has improved reso-

lution. Therefore, gains in sensitivity and resolution are offset by reductions

in dynamic range and linearity of response.

4.4 Advantages of DG ISFETs for biological sensing

and further optimization

We have presented a dual-gated ISFET with a true back-gate where the

coupling of front and back transistors enables pH sensitivity amplification

and enhanced resolution for determined biasing conditions and ranges. A

novel fabrication process results in devices with standard MOSFET in the

back-gate transistor and a high-K dielectric to interface the electrolyte. The

devices are made in a conventional semiconductor foundry, making the fab-

rication process and the device structure suitable for rapid scalability and

seamless incorporation of other electronic components. These transistors

were operated in single- and dual-gate modes for pH measurements and bi-
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ological reaction monitoring. The single-gate mode operation has the same

linear pH response characteristics of regular ISFETs, but when operated in

dual-gate mode the sensor response to pH becomes asymptotic due to the

dynamic current ratios for different pH values. We show that for certain pH

range, the dual-gate sensitivity is amplified more than the noise, yielding

a higher signal-to-noise and enhanced resolution. Furthermore, we demon-

strate that the operation point can be tailored by manipulating the fluid bias

to minimize the resolution for a specific pH range and application.

We used the fabricated ISFETs to monitor a LAMP DNA amplification

reaction in single- and dual-gate modes. The pH changes related to incorpo-

ration of nucleotides change the surface potential of the transistor enabling

electrical label-free detection of DNA replication that is better monitored

with the dual-gate operation. For the presented experiment, the noise is

dominated by an extrinsic source and the greater sensitivity of the dual-gate

mode yields an improved resolution that reduces the detection time which

is established when the negative and positive samples are clearly differen-

tiated. This new device and the dual-gate operation can be used as an

electrochemical transducer for biological sensors that enable signal enhance-

ment for better monitoring of reactions. The new structure has particular

potential for applications targeting point-of-care diagnosis that are subject

to noisy environments and require a fast turnaround. Future work will aim to

maximize the resolution improvement and the pH range of operation of the

dual-gated ISFETS by optimizing W/L ratio and top/bottom capacitances,

and using arrays of devices to monitor the reactions.
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CHAPTER 5

ON-CHIP QUASI-REFERENCE
ELECTRODES WITH

ELECTRODEPOSITED POLYPYRROLE

One of the main advantages of incorporating semiconductor technology to bi-

ological reactions is the opportunity to easily scale and multiplex reactions.

The scalable nature of micro-fabrication processes and simple adaptation

of integrated circuitry for parallel reading creates a simple path for a large

number of reactions in a single chip. Field effect biosensors can improve pro-

cesses where multiple reactions are run in parallel like drug discovery assays

or pathogen/molecule screenings. There are still important challenges to be

solved before transistors are used as transducers in multiple isolated reac-

tions. For ion-sensitive field effect transistor (ISFET) the electrolyte needs

to be referenced to set the electrolyte potential that forms a conduction layer

on the silicon. Figure 5.1 shows a band diagram for ISFET transistors. The

potential set by the reference electrode determines the electrolyte Fermi-

level (Ef ) and therefore the band bending in the silicon/insulator interface

[153]. Conventional reference electrodes are bulky, fragile, and too big for

applications where the electrolyte volume is small. Several researchers have

proposed tackling this issue using planar micro-reference electrodes or a ref-

erence field effect transistor (REFET). However, these approaches are limited

by poor robustness, high cost, or complex integration with other microfab-

rication processes. In this chapter we study quasi-reference electrodes and

describe a simple method to create robust on-chip quasi-reference electrodes

by electrodepositing polypyrrole on micro-patterned metal leads.

5.1 The challenge of electrolyte referencing

An important difficulty that has prevented the broad incorporation of IS-

FETs into biosensing systems is the practical limitation of the conventional

reference electrodes that are required to operate the sensors [154]. Com-
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Figure 5.1: ISFET band diagram showing the effect of the electrolyte
potential [153]

monly used Ag/AgCl reference electrodes are too big, fragile, and expensive

for applications that use small volumes (e.g. droplets) or target portable/dis-

posable devices [155]. To the replace Ag/AgCl reference electrodes, various

micro-fabricated electrodes have been reported in the past [156]. For exam-

ple, a combination of thin-film metal deposition and agar gel saturated with

KCl was used to mimic Ag/AgCl electrochemical referencing mechanisms on

a miniature solid-state planar electrode [157, 158]. Also, platinum has been

treated with hydrogen gas, Nafion, and perfluorosulfonic acid polymer, to cre-

ate reference electrodes for miniaturized electrochemical cells [159, 160]. In

addition, greater miniaturization has been achieved with microscopic quasi-

reference electrodes (a reference that does not have an established potential

but varies predictably under certain conditions) [161] that have been fab-

ricated with iridium oxide [162] and with polyvinyl chloride (PVC) as a

passivation layer [163]. Despite good reported stability and reliability, these

miniaturized reference electrodes are undermined by complex and expensive

fabrication protocols that involve several micro-machining steps, complicated

chemical processes, the use of expensive precious metals and reagents, or in-

compatibility with other processes involved in silicon transistor fabrication.
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Therefore, due to a combination of complexity, cost, and process compatibil-

ity issues, it is unlikely that these previous approaches for miniaturization of

reference electrodes will be successful alternatives to bias FET-based biosen-

sors.

This chapter describes the fabrication of stable on-chip quasi-reference

electrodes through the electrodeposition of polypyrrole (PPy) on patterned

metals. The PPy coating process involves cyclic voltammetry to polymer-

ize pyrrole on a metal electrode. The deposition method and the polymer

characteristics were originally described by Bard et al., who reported PPy

polymerization on platinum and stainless steel wires [164]. This technique

has been adopted by many others to create quasi-reference electrodes for

electrochemical experiments with small or localized volumes such as scanning

electrochemical microscopy [165, 166]. We used a similar technique to create

on-chip quasi-reference electrodes with photolithography patterned metals

and evaluated their robustness and pH stability using open circuit potential

measurements. Our results indicate that with the on-chip PPy electrodes

random potential fluctuations are less than 1 mV, drift is typically between

1-2 mV/h, and potential changes due to pH variations are normally below 5

mV/pH. Other results demonstrate that the PPy deposition process is com-

patible with CMOS processes, and that operation of ISFETs with on-chip

PPy is robust and sensitive. The electrodeposition of PPy was carried out

both on precious (platinum, gold, and palladium) and non-precious metal mi-

croelectrodes (iron and nickel), demonstrating that the polymerization can

be performed on metals that are currently used in a standard semiconductor

foundry. Also, the PPy quasi-reference electrodes were fabricated on foundry

ISFET chips and used to bias ISFETs during pH sensing experiments. The

sensing performance of the transistors biased with on-chip PPy is similar

to that obtained when the transistor is biased with Ag/AgCl. The similar

results obtained with these two kinds of electrodes indicate that the high

stability and low pH response of the PPy quasi-reference translates to the

ISFET system, allowing robust operation of the transistor as pH sensor with

a microreference.
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5.2 Fabrication and evaluation methods of

polypyrrole-coated microelectrodes

5.2.1 Electropolymerization of PPy

Partially oxidized PPy has been deposited in the past on platinum and stain-

less steel wires through a cyclic voltammetry deposition process for the for-

mation of quasi-reference electrodes [164]. This technique is frequently used

to form electrodes for scanning electrochemical microscopy assays [167]. We

used a similar method to deposit the PPy on patterned metal leads to form

on-chip quasi-reference electrodes. Figure 5.2 (a) shows a schematic of the

three-electrode cell for PPy polymerization and deposition in patterned metal

microelectrodes. A polydimethylsiloxane (PDMS) well is bonded to the sil-

icon substrate, the on-chip metal is electrically contacted with a microma-

nipulator probe, a graphite rod is inserted in the solution, and a Ag/AgCl

reference electrode (BASi, West Lafayette, IN) is bridged with a pipette tip

filled with Agar gel and 0.1 M NaClO4 for minimization of a liquid junc-

tion potential between the organic solvent and the aqueous filling solution

in the reference electrode. The well is then filled with 400 µL of acetonitrile

containing 10 mM pyrrole and 100 mM of Tetrabutylammonium hexafluo-

rophosphate (all chemicals from Sigma-Aldrich). Figure 5.3 presents a pho-

tograph of the electrochemical cell used in the PPy polymerization on the

microelectrode.

The three electrodes are connected to a Reference 600TM potentiostat

(Gamry Instruments, Warminster, PA) that performs cyclic voltammetry

(CV), sweeping the potential from -0.6 to 1.2 V at a 0.1 V/s rate and an

start/end potentials of 0.4 V. The CV process is repeated for the desired

number of cycles, depositing the polymer on the working electrode. In ev-

ery iteration, pyrrole is polymerized and a dark film of partially oxidized

polypyrrole PPy/PPy+PF +
− is formed on the exposed microelectrode.

5.2.2 Physical characterization deposited PPy

The polypyrrole film deposited in electrodes was characterized using pro-

filometer and goniometer measurements, optical and SEM imaging, and X-
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Figure 5.2: Electrodeposition of PPy on on-chip microelectrodes

Figure 5.3: Photograph of the 3 electrode cell that was used for fabrication
of the on-chip PPy quasi-reference electrodes
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ray diffraction (XRD) analysis. The reported membrane thickness is the

total indicator runout (TIR) obtained in a step-high profilometer measure-

ment and the total height of the roughness profile (Rt parameter) is retrieved

after applying 2CR filting to the acquired data. To assess hydrophilicity of

the membranes, contact angle measurements were performed on larger elec-

trodes to accommodate 3 µL DI-water droplets. In addition, bright field and

SEM images of electrodes were taken after different numbers of PPy coating

cycles to evaluate the growth of polymeric membrane. The area of the PPy

electrode is estimated with the number of dark pixels in the bright field im-

ages quantified with ImageJ. Finally, to evaluate the structural composition

of the deposited PPy film, XRD patterns of the electrodeposited polymer

were obtained in a continuous scan from 5 ◦ to 105 ◦ in a PANalytical/

Philips X’pert MRD system.

5.2.3 Potentiostat open circuit potential measurements

Open circuit potential (OCP) measurements were taken to evaluate stability

and response to pH changes of the fabricated on-chip electrodes. For stability

experiments, the PDMS reservoir was filled with a 10 mM KCl solution, the

Ag/AgCl (unbridged) electrode was used as the reference, and the on-chip

metal was set as the working electrode. The potentiostat was programed

to take OCP measurements every half second for one hour after the initial

10 min of stabilization, and each experiment was done 3 times. For the

pH response analysis, the KCl solution in the PDMS reservoir was spiked

with 10 mM HCl or NaOH during the OCP measurement and the pH value

was calibrated with an InLab R© ultra-micro pH electrode (Mettler-Toledo,

Columbus, OH). After the injection, the potential is allowed to stabilize

for 10 min and the last 50 s of measurements are averaged to obtain the

OCP value for each pH. A pH range of 5.5-8.5 was selected for sensitivity

characterization experiments in order to model the behavior of electrodes

in regular physiological buffers and a typical reaction mix of biomolecular

assays such as DNA amplification [163].

The OCP measurements without pH changes are used to quantify stabil-

ity, repeatability, and drift of the microelectrodes. Stability is the potential

variation during a one hour experiment, and is determined by taking the
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standard deviation of all measurements in an experiment. Repeatability is

the variation across the different experiments and is calculated using the

average of the standard deviations of measurements in three experiments.

The drift measures the changes in potential as a function of time and is the

difference of the recorded potentials at the beginning and the end of the

experiment. Lastly, the reported pH sensitivity is the absolute value of the

slope in a linear regression of the OCP vs. pH data

5.2.4 Extended-gate ISFET fabrication

ISFET devices were fabricated by Taiwan Semiconductor Manufacturing

Company (Hsinchu, Taiwan) with a standard semiconductor process per-

formed on silicon-on-insulator wafers. A complementary metal-oxide-semiconductor

(CMOS) process forms the transistor in the device silicon layer. This pro-

cess is followed by a metallization layer that defines contacts to drain/source

nodes and a metallic extended gate that will act as the sensing region. Then,

the top inter-layer dielectric is deposited and selectively dry-etched to create

openings that reveal the metallic extended gate. The ISFETs are finalized

with the deposition of atomic layer deposition (ALD) hafnium oxide over the

entire wafer, creating the dielectric sensing membrane on top of the extended

gate. The use of hafnium oxide as the sensing layer on ISFET pH sensors

has been reported in the past. Our group demonstrated that ISFETs made

with HfO2 had a sensitivity of 56 mV/pH, with high linearity, over a range

between pH 4-10 [168]. Other publications have also reported the use of

HfO2 as the sensing layer in ISFETs for larger ranges (pH 2-12) [169], and

extended-gate transistors that use high-K dielectrics report high sensitivity

and linearity [170]. In Figure 5.4 we present pH dependent transistor transfer

curves of ISFETs to characterize performance of HfO2 ISFETs used is this

study.

5.2.5 Method to measure semiconductor sensors

To operate ISFETs, source, drain, and gate nodes of the transistors are

connected to independent source measure units (SMUs) of a Keithley 4200scs

(Keithley, Columbus, OH), and a PDMS well is plasma-bonded to the chip to
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Figure 5.4: pH response of hafnium oxide ISFET using a leak-free Ag/AgCl
reference electrode

hold the electrolyte solutions. The fluid-gate is swept from -1 to 1 V to obtain

transfer characteristic curves that are used to extract threshold voltages using

a constant-current extraction method defining Ith = 300nA ∗ W
L

, where W
L

is

the transistor’s aspect ratio [171]. In stability tests, the threshold voltage is

measured every minute for an hour to quantify stability and drift. For pH

sensitivity experiments, the electrolyte in the PDMS reservoir is titrated with

10 mM NaOH or HCl, and the resulting changes in the threshold voltage are

correlated with surface potential to obtain the ISFET pH sensitivity. Testing

buffers were selected in the range of pH 6-8 to model the sensor performance

in physiological buffers, the master mix of molecular reactions such as PCR

or LAMP, or solutions used in protein binding assays [18].

5.3 Assessment of polypyrrole microelectrodes for

electrolyte biasing

5.3.1 Physical properties of deposited PPy

The electrodeposition of PPy in the patterned microelectrodes was carried

out in the three-electrode electrochemical cell that is illustrated in Figure 5.2

(a). Cyclic voltammetry between working and counter electrodes referenced

to a bridged Ag/AgCl creates a dark film of partially oxidized PPy in the
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electrodes that is exposed to fluid. Voltammograms from a typical CV de-

position process are presented in Figure 5.2 (b), which shows the expected

shape of CV curves and larger peak/valley currents as the PPy film grows

[164, 172]. Figure 5.2 (c) shows PPy-coated platinum microelectrodes on an

oxidized wafer. Each electrode was set as the working electrode in indepen-

dent polymerizations, showing that the process is repeatable and will cover

the full electrode that is exposed to the acetonitrile solution.

Figure 5.5 presents results of PPy film characterization analysis. Pro-

filometer measurements were carried out on electrodes with different deposi-

tion cycles to assess the evolution of the PPy film thickness and roughness.

Figure 5.5 (a) shows that the film quickly grows to a few microns in the

initial cycles and proceeds to grow linearly in subsequent iterations, reach-

ing around 25 µm at the end of the 50th cycle. A similar trend is observed

in the roughness of the growing film. Figure 5.5 (b) shows that a thicker

layer is correlated with a rougher electrode, indicating uneven growth of the

PPy layer. In addition, Figure 5.5 (d) shows that more cycles result in more

hydrophilic electrodes. The well-known enhancement relationship between

roughness and wettability [173] explains the observed trend of lower contact

angles as the hydrophilic PPy layer becomes rougher. The high wettability of

the PPy electrodes will simplify their use for applications that use small vol-

umes or droplets. Contact between an on-chip electrode and small volumes

can be cumbersome with other approaches that use hydrophobic membranes

and therefore would require structures for volume confinement [174].

Figures 5.5 (e) and 5.5 (f) are bright field and SEM images of electrodes

with different CV deposition cycles. They reveal the uneven and isotropic

growth of the polymer layer. The bright field images show that electrodes

with more PPy have a larger area and an irregular shape. Figure 5.5 (c)

presents the quantified relative growth of the electrode area as a function

of the number of polymerization cycles. It shows that during the initial cy-

cles the measured area is equivalent to the patterned electrode indicating

that the PPy film grows mostly perpendicular to the substrate. However,

in later cycles the PPy layers grow stacked on top of each other resulting in

the observed isotropic growth. Figure 5.5 (f) zooms in on the left portion

of the electrode array (for 0, 10, and 50 cycles) and clearly shows that the

PPy film becomes thicker and rougher as it grows. The isotropic growth and

variability of the deposition process will limit the spatial resolution of the
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Figure 5.5: Characterization of the deposited PPy film

PPy electrodes. The horizontal growth of the polymer (parallel to the chip)

may cause undesired shorts between patterned electrodes and PPy coating

of regions adjacent to electrodes. Therefore, the design of photolithography

masks for the lift-off process must take into account this lateral growth and

provide adequate spacing between electrodes and on-chip features to prevent

shorts or undesired PPy coating during the electropolymerization. In addi-

tion, Figure 5.6 shows X-ray diffraction patterns for PPy films deposited on

platinum and nickel patterned electrodes. In both cases we observed expected

peaks from metal and substrate in addition to peaks at around 24 ◦C. These

peaks arise from the π-bonds interaction of the PPy chains and correspond to

a ‘d’ spacing of 0.38 [175]. These results indicate that the on-chip electrode-

position yields a normal PPy film that can be used in the electrochemical

operations.
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Figure 5.6: X-ray diffraction pattern of the deposited PPy

5.3.2 Stability of PPy microelectrodes

The stability of on-chip microelectrodes fabricated with different metals, with

and without the PPy film, was quantified with open circuit potential (OCP)

measurements against a standard Ag/AgCl reference electrode. For each ex-

periment, OCP measurements were collected for one hour because biochem-

ical reactions that are monitored with ISFETs, such as DNA amplification

[176] or protein binding [177], normally occur within that time frame. Fig-

ure 5.7 (a) shows the measured OCP as a function of time for platinum and

gold electrodes with and without PPy. The same figure also shows an OCP

stability measurement between two Ag/AgCl electrodes that is used as a

benchmark. Data in Figure 5.5 (a) is presented in the form of ‘bands’ where

the thickness is correlated to repeatability of OCP measurements. Each time

point for all 5 datasets represents 3 averaged experiments at the same time

point with the calculated standard deviation plotted as the error bar. The

error bars, which are in close proximity because measurements were taken

every half second, create the effect of a thick band. Therefore, the thickness

of each band is a representation of the electrode repeatability, and variations

in the profile represent the electrode stability. Comparative quantifications of

stability and drift are in Figure 5.7 (b) and 5.7 (c). The PPy coating makes

the electrodes more stable, reducing the variability by around one order of

magnitude, and substantially reduce drift. The best results were obtained

with PPy coated platinum that has stability and drift comparable to the com-

mercial Ag/AgCl electrode. Although the commercial reference electrode is
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better than those fabricated with polypyrrole, their stability and possibilities

for miniaturization make the PPy electrodes an interesting alternative to the

conventional reference electrodes for ISFET operation.

Figure 5.7: Open circuit potential (OCP) measurements of electrode
stability and pH sensitivity

5.3.3 Quasi-reference electrode pH sensitivity

Besides providing a stable potential during the experiment, a reference elec-

trode needs to sustain a constant voltage despite changes in the electrolyte

[155]. Figure 5.7 (d) presents the pH sensitivity of gold, platinum, and

Ag/AgCl electrodes measured by tracking the OCP as a function of the

solution’s acidity. Individual plots for each experiment with a different scale

that show details of the pH response for each electrode are in the supple-

mentary Figure 5.8. The ideal reference electrode response to pH changes is

the one observed for the Ag/AgCl reference electrode. With this electrode,
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despite electrolyte pH variations, the OCP potentials are within 1 mV, re-

sulting in a very low pH sensitivity. This is a consequence of the Nernst

equation for the Ag/AgCl electrode that is independent of H+ ions. Exper-

iments with other electrodes show potential variations as a function of pH.

The deprotonation and protonation of the electrode’s surface are a function

of the solution’s pH and affect the electrode-localized potential, resulting in

pH-dependent OCP [178]. Other publications have reported similar trends

and sensitivity quantification of metal electrodes to pH changes [179]. How-

ever, electrodes coated with the PPy film are substantially less sensitive to

pH changes than their bare metal counter parts. The partially oxidized

PPy film deposited on the on-chip electrodes is posed by the half reaction

PPy/PPy+ + e ←→ PPy + A− that allows exchange of ions to sustain a

stable potential [164]. The pH titration experiments are summarized in Fig-

ure 5.7 (e), which compares pH sensitivity of different electrodes. Potentials

measured with platinum electrodes are known to have high pH dependence

[163], but after the PPy polymerization the pH sensitivity is reduced by more

than 10 times. A similar pH sensitivity reduction is observed for the gold

electrode. The PPy layer brings new ion dynamics that result in low pH

sensitivities that are significantly smaller than in bare metal electrodes and

are required to reference an ISFET.

5.3.4 Referencing electrodes made with non-precious metals

Lack of compatibility with semiconductor processes and high manufactur-

ing costs explain why previously reported strategies to create on-chip ref-

erence electrodes have not been fully adopted for ISFET operation [180].

The PPy deposition process has been widely reported in gold and platinum

wires, but to reduce cost and enable simpler implementation it is necessary

to perform the electrodeposition process in regular metals used in the CMOS

process. The electrodeposition of PPy has been also carried out on a stain-

less steel wire [164] and others have reported deposition on aluminum at the

expense of modifying the electrolyte solution, adding polishing steps, and

using electron transfer mediation techniques [181]. To facilitate adaptation

of the PPy reference microelectrodes to other standardized fabrication tech-

niques, we attempted the same simple PPy deposition process, used in gold
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Figure 5.8: pH sensitivity of on-chip electrodes with and without PPy, and
a Ag/AgCl benchmark

and platinum, in metals compatible with CMOS microfabrication steps and

evaluated their performance. The PPy polymerization was also performed

on palladium on-chip microelectrodes. Although it is an expensive precious

metal, palladium has been used to improve reliability and thermal stability

of contact electrodes in MOSFETs and can be incorporated in the CMOS

semiconductor processes [182]. Results are presented in Figure 5.9, which

shows normal cyclic voltammograms during the deposition process, stable

OCP measurements, and a substantial reduction in the pH sensitivity. The

next polymerization experiment was performed in iron microelectrodes. The

previous polymerization of the PPy layer in steel suggested that iron, which

is not currently used for CMOS processes but is an inexpensive commodity

material, could be used as a microelectrode in the deposition process. Fig-

ure 5.10 shows that despite irregular cyclic voltammograms and unexpected

reduction of peak currents during the CV process, the deposition of PPy

drastically improves stability and pH sensitivity of the electrode. This shows

that the PPy coated iron is a stable quasi-reference electrode with perfor-

mance equivalent to that of the PPy electrodes that use precious metals.

The CV polymerization experiments were also performed with metals that
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Figure 5.9: Deposition on palladium microelectrodes and electrical
characterization

Figure 5.10: Deposition on iron microelectrodes and electrical
characterization
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are commonly used in semiconductor foundries. Electrodeposition of PPy on

metals that are currently used for metallization layers in the CMOS manufac-

turing process would facilitate the inclusion of these electrodes in the foundry

fabrication process to create on-chip quasi-reference electrodes. In this case,

electrodes could be easily created in a new metal layer in the surface of the

chip that would be coated with PPy using the cyclic voltammetry electrode-

position, with no need of additional masks or lithography steps. With the

same deposition protocol described above we were able to deposit the PPy

film on nickel microelectrodes but not on copper, titanium, or aluminum. Al-

though nickel is not used for metal leads in the CMOS process, it is commonly

used to create low-resistance nickel-silicide contacts that interface silicon and

metal layers in the source and drain nodes [183]. Figure 5.11 (a) presents the

deposition voltammograms on nickel, showing the expected trend of greater

peak currents as the layer grows. These curves also show a secondary pro-

cess around -0.2 V in reduction. Nevertheless, that process is eliminated in

the later cycles, and the final voltammograms are similar to those observed

in the deposition on precious metals. Figure 5.11 (b) presents the stability

measurements and Figure 5.11 (c) shows the pH sensitivity results for both

bare nickel and nickel coated with the PPy layer. Once again, quantification

of the stability and pH sensitivity demonstrate that the PPy layer signifi-

cantly reduces potential variations and the response to pH changes of the

nickel electrode, demonstrating that once the polymeric film is deposited it

will dominate the electrochemical exchange.

Figure 5.11: Polymerization of PPy on nickel electrodes and electrical
performance evaluation

The electrodeposition of PPy in the other metals typically used in semicon-

ductor foundries suffered from low metal reduction potentials that resulted in
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the dissolution of the metal thin-film during the CV process, or high resistiv-

ity of metals and metal oxides that prevented PPy film formation. Previous

publications have described other approaches to deposit PPy on these metals

[181, 184, 185]. Nevertheless, those methods were not pursued because they

include additional steps that would complicate the deposition process, un-

dermining desired CMOS compatibility and protocol simplicity. The results

of the attempted electrodepositions on copper, aluminum and titanium, are

presented in Figures 5.12- 5.14.

Figure 5.12: Attempted deposition of PPy on copper

Table 5.1 summarizes the stability and pH sensitivity data for all the elec-

trodes where PPy polymerization was successful, including data for their bare

metal counter parts. For all metals, the metal/PPy electrodes presented bet-

ter stability, improved repeatability, lower drift, and reduced pH response.

It is important to note that pH sensing with bare metal electrodes was in

general unreliable and only linear within short pH ranges. However, the pH

sensitivity evaluation through linear regressions of OCP vs. pH data created

a standard metric that enabled comparisons between electrodes and demon-
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Figure 5.13: Attempted deposition of PPy on titanium

Figure 5.14: Attempted deposition of PPy on aluminum
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Table 5.1: Summary of stability, repeatability, drift, and pH sensitivity of
electrodes made with different metals and with/without the deposited PPy

film

Electrode Stability Repeatability Drift pH sensitivity
[mV] [mV] [mV/h] [mV/pH]

Platinum 4.03 +/- 2.09 6.10 +/- 1.82 23.2 +/- 16.2 49.2 +/- 4.25

Platinum+PPy 0.21 +/- 0.16 0.67 +/- 0.17 0.75 +/- 0.53 2.09 +/- 0.16

Gold 3.38 +/- 1.66 4.22 +/- 1.19 11.5 +/- 6.07 27.97 +/- 2.81

Gold+PPy 0.59 +/- 0.06 1.63 +/- 0.05 2.17 +/- 0.18 4.29 +/- 0.28

Palladium 3.32 +/- 0.42 10.7 +/- 0.42 10.6 +/- 0.52 36.2 +/- 3.5

Palladium+PPy 0.21 +/- 0.12 0.48 +/- 0.13 0.92 +/- 0.43 8.61 +/- 0.57

Nickel 1.72 +/- 0.35 3.64 +/- 0.4 7.12 +/- 1.5 43.19 +/- 3.12

Nickel+PPy 0.51 +/- 0.10 1.28 +/- 0.08 1.73 +/- 0.36 4.7 +/- 1.56

Iron 6.91 +/- 1.11 5.37 +/- 2.8 35.8 +/- 7.25 29.5 +/- 2.03

Iron+PPy 0.44 +/- 0.06 1.87 +/- 0.05 1.57 +/- 0.26 4.71 +/- 1.23

strated a clear reduction of the pH sensitivity with PPy electrodes. The main

conclusion to be drawn from Table 5.1 and from the different OCP exper-

iments is that patterned microelectrodes coated with PPy are more stable

and less sensitive to pH changes than the metal-only electrodes. Therefore,

PPy electrodes are better candidates for on-chip quasi-reference electrodes

to operate ISFETs.

5.3.5 Operation of ISFET with PPy electrodes

Platinum microelectrodes were patterned on ISFET chips with standard lift-

off. The same electrochemical cell used for other PPy depositions on elec-

trodes (Figure 5.2 (a)) was used for the ISFET chip. A PDMS well is bonded

to the top of the die with ISFETS and is filled with the acetonitrile solution.

Then, the graphite counter and the bridged Ag/AgCl electrodes are placed

inside the well. The deposition cyclic voltammograms are similar to the

others reported previously but have lower current peaks because the elec-

trodes on the ISFET chip have a smaller area than the testing structures

(Figures 5.18). On the same chip, platinum leads were coated with PPy but

others were left exposed for comparative measurements. The result is pre-

sented in Figures 5.15 (a), which shows an extended gate ISFET surrounded

by a PPy electrode and an exposed platinum electrode close to the sensing
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area.

Figure 5.15: Evaluation of ISFET operation with PPy microelectrodes

After the polymerization process, the acetonitrile solution is switched to

a 10 mM KCl solution for stability and pH experiments. To modulate drain

current, the transistor’s fluid-gate is biased with the on-chip electrodes (plat-

inum and PPy) and also with a commercial Ag/AgCl reference electrode.

Transfer characteristics of the transistor are presented in Figure 5.15 (b)),

where the inset zooms in the region of threshold current to obtain Vth. Op-

eration with the 3 electrodes yielded standard transfer characteristics similar

to those from other devices with the same fabrication process. The stabil-

ity of the transistor is evaluated by measuring transfer characteristics every

minute for an hour with each electrode in 3 separate experiments. The ex-

tracted threshold voltage as a function of time is plotted in Figure 5.15 (c)),

along with bars that quantify the threshold voltage drift. As expected, the

best stability results are obtained with the commercial Ag/AgCl electrode,

the worst with the bare platinum electrode, and intermediate results with

the PPy electrode. It is clear that the potential applied to the transistor is

more stable and repeatable when the patterned platinum is coated with PPy.

Also, the voltage variations and drift are greater in the ISFET experiment

than in OCP measurements. This indicates that new noise sources related

to the ISFET operation, such as thermal voltage fluctuations or stochastic
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electrochemical interactions in the gate oxide [186], diminish the transistor’s

voltage stability.

Evaluation of the ISFET pH sensitivity was performed by measuring thresh-

old voltage variations due to pH changes and correlating them with the

change in the oxide surface potential. The same evaluation was performed by

biasing the solution with the platinum, PPy, and Ag/AgCl electrodes to com-

pare ISFET pH sensing performance. Figure 5.15 (d)) shows the extracted

surface potential as a function of time while the electrolyte pH is changed by

titrating NaOH and the full pH-dependent transfer curves are presented in

Figure 5.16. Even though there is a clear pH response with the Ag/AgCl and

PPy electrodes, the high pH sensitivity of the platinum electrode counteracts

the ISFET response reducing the recorded surface potential changes in the

ISFET. This same behavior has been reported previously and constitutes a

strong argument against using platinum electrodes as quasi-reference elec-

trodes for pH monitoring with ISFETs [163]. The quantification of the pH

sensitivity is presented in Figure 5.15 (e)), which plots normalized changes in

surface potential as a function of the electrolyte pH for the three electrodes.

The linear regressions quantify sensitivity and show that the ISFET has sen-

sitivity close to the Nernstian limit when operated with Ag/AgCl, a lower but

similar response with the PPy electrode, and very low sensitivity with the

platinum electrode. This quantification underscores the importance of mini-

mum pH response of the quasi-reference electrodes. Good ISFET operation

is achieved when only the transistor’s surface potential changes as a function

of the electrolyte pH. Otherwise, other secondary interactions between po-

tentials can undercut pH sensitivity and the ISFET performance. Figure 5.15

(f)) compares the pH sensitivity and resolution of ISFETs biased with the

different electrodes. The pH resolution is defined as the ratio of noise to sen-

sitivity ∆pHmin = σψs/S where σψs is the average of potential fluctuations

in each pH measurement (noise), and S is the extracted sensitivity. From

this plot we conclude that ISFET pH sensitivity can be greatly improved

by coating the microelectrode with the PPy layer. The greater stability and

lower dependence of the PPy/electrolyte potential to pH changes result in

the ability to sense smaller pH fluctuations (of around 0.04 pH units), which

would translate into faster response times and lower detection limits in the

biochemical assays. Therefore, the addition of the PPy layer turns patterned

microelectrodes into a robust reference for ISFET operation.
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Figure 5.16: pH-dependent transfer curves of ISFET biased with different
reference electrodes

A similar pH sensing evaluation was performed for ISFETs operated with

nickel-based electrodes. Cyclic voltammograms of the PPy deposition on

nickel microelectrodes are presented in Figure 5.18 that shows expected

shapes but low current. Figure 5.17 presents measured sensitivity and sta-

bility of an ISFET biased with a Ni+PPy electrode and compares it with

results obtained using a bare Ni microelectrode. Figure 5.17 (a) shows pH-

dependent transfer curves when the ISFET is operated with a Ni+PPy elec-

trode. As shown in Figure 5.17 (b), the sensitivity quantification yielded a

surface potential change of 39 mV/pH. This is significantly larger than the

15 mV/pH obtained with bare Ni. In addition, the Ni+PPy electrodes are

more stable than the bare Ni counterpart. Figure 5.17 (c) shows the ISFET

threshold voltage as a function of time during one hour, demonstrating that

measurements performed with Ni+PPy electrodes are more repeatable and

have lower noise levels. Comparative measurements of pH resolution and

total drift are presented in Figure 5.17 (d) that summarizes the characteris-

tics of Ni+PPy electrodes. The fine pH resolution and low threshold voltage

drift of the ISFET biased with Ni+PPy are consistent with the low pH de-

pendence and high stability observed for coated nickel electrodes in OCP

measurements. With both Ni and Pt the electrodeposition of PPy on the

patterned electrodes created a robust reference that translates into higher

sensitivities and lower noise levels.

The PPy electrodes are well-suited to be efficient on-chip quasi-reference

electrodes for ISFET fabrication and operation. The stability and lack of

pH response of the PPy electrodes is complemented with a simple and in-
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Figure 5.17: ISFET pH sensitivity and stability when biased with PPy
coated and un-coated nickel electrodes

Figure 5.18: Results of the CV deposition process on a platinum and nickel
microelectrodes
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expensive manufacturing process. The electrodeposition method has several

advantages when compared to other reported alternatives. First, it does not

require photolithography and etching steps that are used for other on-chip

solid-state reference electrodes. Second, the iteration of CV cycles assures

that all the exposed metal will be covered by the polymer, minimizing per-

formance degradation caused by fabrication defects. Third, unlike other pro-

cesses that print electrodes, the polymerization of PPy can be easily scaled

to create quasi-reference microelectrodes in a parallel deposition process by

setting up multiple nodes as the working electrode. In addition, deposition

of PPy does not involve chemical surface modifications that may harm the

FET’s sensing hafnium oxide layer, and the materials required for the process

are inexpensive, especially when non-precious metals are used for patterning

the microelectrode. These advantages of the PPy electrodes make them good

candidates for fabrication of ISFETs with on-chip quasi-reference electrodes

made directly in semiconductor foundries.

The PPy electrodes will enable the use of ISFETS to perform and monitor

biochemical reactions that take place in small droplets, creating new oppor-

tunities for FET-based biological sensing. There are several advantages for

performing reactions in small volumes that can be exploited using the mi-

croscopic ISFETs. Besides the obvious reduction of reagent consumption,

performing reactions in small volumes enables high-throughput screening as-

says, results in better sensitivity and quantification, and permits fast and

low energy thermocycling [107]. Therefore, the robust PPy electrodes solve

the issue of droplet electrolyte referencing. They will allow the integration

of FETs and droplet reactions creating a path for multiplexed, inexpensive,

label-free, and portable biological sensing.

5.4 Polypyrrole electrodes performance overview and

low-cost fabrication

In this chapter, we presented a robust and low-cost method to create on-chip

quasi-reference electrodes to bias ISFET sensors. Simple cyclic voltamme-

try deposition of polypyrrole on patterned electrodes yielded robust quasi-

reference electrodes that have stability and pH response similar to the conven-

tional Ag/AgCl. We characterized the deposited polypyrrole film on the mi-
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croelectrodes by studying its deposition process and performed open circuit

potential measurements to evaluate its electrical characteristics. We showed

the isotropic growth of micrometer polypyrrole layers on the patterned micro-

electrodes and demonstrated that these quasi-reference electrodes are stable

within 1 mV, have a drift of only 1- 2 mV/h, and present a low pH re-

sponse of around 5 mV/pH. These characteristics are substantially better

than the ones obtained with bare metal electrodes and translate into robust

ISFET operation with close to Nernstian sensitivity and good pH resolution.

Furthermore, we polymerized PPy in different metals demonstrating that the

technique can be expanded to non-precious metals like nickel, showing a clear

path for integration of these quasi-reference electrodes to the semiconductor

foundry fabrication processes.

On-chip reference electrodes are smaller, more robust, less expensive, and

simpler to package than the common glass packed reference electrodes. The

polypyrrole on-chip electrodes that we studied have all those desirable char-

acteristics with the added bonuses of simple fabrication, low cost, and facile

integration with other process of a semiconductor foundry. We believe that

these new on-chip electrodes will allow novel applications of ISFET sensing

by enabling the use of smaller electrolyte volumes and simplifying implemen-

tation of portable applications.
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CHAPTER 6

OVER ONE MILLION ISFET ARRAY
BIOSENSOR

The multiplexing ability of ISFETs (and other electronic-based biosensors)

has been identified previously as one of the key benefits of electrical biode-

tection methods. However, only a few studies have developed platforms that

use large parallelism for new spatial and temporal monitoring applications.

For example, large arrays of nano-capacitors are used to perform electri-

cal impedance spectroscopy (EIS) analysis of cell cultures to monitor the

dynamic attachment of cancer cell lines in real time with sub-micrometer

resolution [187, 188]. Also, a platform of 64 pixels of ISFETs is being de-

veloped to monitor extracellular pH and cellular behavior by configuring

ISFET sensors as CMOS inverters and switches [189], and large arrays of

foundry-fabricated ISFETs have been used for the detection of DNA binding

events and urea by-products [190]. These platforms are the basis for new

approaches of high-throughput screening that leverage the high scalability of

the CMOS processes to create parallel sensors that monitor multiple reac-

tions or study the spatial and temporal behavior of biological entities [191].

They have demonstrated that the incorporation of electronics into biosensing

applications creates new tools with promising biomolecular applications and

clear advantages over traditional methods. This chapter presents a novel

massively multiplexed ISFET biosensing platform with enhanced capabili-

ties over those published in the past. A dual-gated ISFET array of 1024

x 1024 transistors, distributed in a 7x7 mm2 area, was fabricated with a

0.18 µm SOI process, having a high-K hafnium oxide sensing layer, and indi-

vidually addressable MOS back-gates. The ISFET platform was thoroughly

characterized, obtaining standard metrics of electrical performance and eval-

uating the sensitivity to pH changes as the measurement of responsiveness

to changes in the electrolyte. In addition, we show that the massive amount

of sensors in the array simplifies the development of statistically significant

assays and enables the incorporation of redundancy techniques to improve
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the measurement accuracy.

6.1 ISFET array fabrication and operation

6.1.1 Fabrication of sensing array and on-chip circuits

The array of dual-gated ISFETS (DG-ISFET) is fabricated at TSMC foundries

without any required post-processing steps and a detailed step-by-step flow

chart was provided in Chapter 4. MOSFET transistors are fabricated with a

standard CMOS process on the device layer of an SOI wafer. This initial set

of transistors defines the back-gate of future ISFET sensors and creates the

logic transistors that make multiplexers, decoders, and selection elements re-

quired for row and column addressing. To test the reliability of the decoding

circuits, selector transistors in the diagonal across the chip are disconnected

creating ‘dummy’ pixels within the array becoming an embedded control that

tests the correct addressing of sensors in the array (Figure 6.2 (b)). After the

initial standard CMOS fabrication the top of the SOI wafer is bonded to a

carrier wafer, the full structure is flipped upside down, and the SOI handling

silicon is etched with a chemical mechanical polish (CMP) revealing the SOI

buried oxide. The buried oxide is dry-etched in the sensor area and hafnium

oxide is ALD-deposited over the entire wafer creating the ISFET sensing

membrane. A schematic of the resulting transistor structure is presented in

Figure 6.1 (a).

Figure 6.1: DG ISFET schematic and chip photograph

The finalized chip is mounted on a PGA 256 pin printed-circuit board
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(PCB) and 48 contact pads are wire bonded to the board for electric access

to the silicon die. The pads are used to supply voltage to the array, access

the FET’s drain/source/gate nodes, and specify the address of the selected

transistor. The wire bonds are then encapsulated with an epoxy matrix, a

crucial step to improve robustness of connections during bio-detection assays.

A finalized chip is presented in Figure 6.1 (b), indicating the ISFET array

sensing area, the position of the logic transistors used for row and column

addressing, and the wire bonded pads.

6.1.2 IC tester to interrogate a million sensors

For pH experiments a 600 µL PDMS well is bonded to the chip without

covering the sensing area. The chip (now mounted in the PCB) is then

connected to a 256 PGA socket (Integrated Service Technology, Hsinchu,

TW) that establishes connections between the silicon die and a PXI logic

IC tester with trigger (PE16A/S) and reading cards (PEMU32) respectively

(OpenATE, Hsinchu, TW) that are synchronized with a Spectrum transient

recorder (Spectrum, Grosshansdorf, DE) with all three cards housed in a

NI PXI-1033 chassis (National Instruments, Austin, TX). The trigger card

of the IC tester supplies voltages to the decoding circuit to select the de-

sired transistor and sets biasing conditions while a transimpedance amplifier

routes the ISFET drain current to reading circuits that record serial mea-

surements at intervals of about 0.11 ms. The full process is coordinated with

a customized MTS3 software (OpenATE) and the output is presented in the

form of comma separated values files.

6.1.3 Protocols for pH measurements on array

Five 10 mM PBS solutions of different pH are prepared by titrating HCl

and NaOH in specific concentrations. The resulting pH of these calibration

solutions is measured with an Orion 3 star pH meter (Thermo Scientific,

Pittsburgh, PA) and used to evaluate the ISFET pH sensitivity. The solu-

tions are manually pipetted in the PDMS well, the sensors are allowed to

stabilize for 10 min, and a leak-free Ag/AgCl reference electrode (Warner

Instruments, Hamden, CT) is immersed to set the electrolyte potential. The

103



drain current of each transistor is obtained for a specific biasing condition

creating a drain current map for a given gating voltage. The PBS solution is

swapped for the next pH and potential changes induced by protonation and

deprotonation of the sensing layer are observed as current changes [163].

6.1.4 Analysis of IC tester output for sensor evaluation

Data collected in the IC tester is compiled with Matlab scripts that average

drain current measurements (each transistor is interrogated up to 15 times)

and arrange data in a two-dimensional matrix for each measurement. The

pH sensitivity is determined by taking the derivative of the electrolyte pH vs.

Ids relationship both for the full ISFET array and single sensors. The Ids pH

sensitivity is then converted to the traditional surface potential sensitivity by

multiplying current variations with the transistor’s transconductance, that

is obtained from transfer characteristics, using the relation SIds = gm ∗ SVg

in the triode region [192]. With sensitivity values it is possible to determine

the sensor’s pH resolution (minimum detectable pH change) by dividing IS-

FET noise over sensitivity pH(min) = σ/S, having the noise of the system

equivalent to the standard deviation of the drain current measurements [193].

6.2 Assessment of ISFET array performance and data

analysis strategies

6.2.1 FET transfer characteristics

Figures 6.2 and 6.3 show the transfer characteristics of transistors in the

array plotting the drain-source current as a function of the fluid- and back-

gate potentials. Figure 6.2 shows the transfer characteristics when the back-

gates (BG) are swept from 0 to 1 V with a drain voltage of 2 V and 0

V in the fluid-gate. Each transistor has an individual BG that is set to a

specific potential and the resulting current is recorded. Figure 6.2 (a) is

a 3D plot of the matrix presenting the multiple Ids for each sensor as a

result of different V gBG tensions. Figures 6.2 (b) shows a heat map that

presents the top-view of the 6.2 (a) plot. It shows the drain-current in the
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array when V gBG is set at 0.75 V and reveals the ‘dummy diagonal’ that is

used to assure the reliability and proper status of the decoding circuits that

are used for row and column addressing. Finally, Figure 6.2 (c) presents the

quantification and the transfer function with error bars showing the standard

deviation of all the pixels in the array excluding the dummy pixels in the

diagonal. Results presented in Figure 6.2 demonstrate standard transistor

characteristics, overall gm = 0.05 uA
mV

, and low variations across the chip. The

drain current seems to saturate at large voltages. This is caused by the fact

that the acquisition card protection circuits truncate larger volumes resulting

in an apparent saturation.

Figure 6.2: Array transfer characteristics of ISFET back-gate

Similar measurements are performed to characterize the fluid-gate (FG)

using a reference electrode that biases the electrolyte potential and all the

transistors of the array. Figure 6.3 (a) shows the Ids heat-map when the FG is

set at 2.5 V, BG at 0 V, and the drain-source at 2 V. Similarly to Figure 6.2

(b) the dummy-diagonal is used as an embedded control of the decoding

circuits. The transfer characteristic of Ids as a function of the electrolyte

potential (V gFG) is shown in Figure 6.3 (b) that presents a standard transfer

characteristic with an overall transconductance gm = 0.01 uA
mV

.

The comparison of Figures 6.2 and 6.3 demonstrates a behavior previously
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Figure 6.3: Array transfer characteristics of ISFET fluid-gate

observed in similar DG-ISFET structures [176]. The stability, uniformity,

and gate potential response of the back-gate are significantly better than

that observed in the fluid-gate. This is attributed to greater variations in

the fabrication process of the high-K dielectric that acts as sensing mem-

brane and dielectric on the fluid-gate. While the silicon oxide that is used

in the back-gate is subject to optimized annealing processes and tightly con-

trolled conditions, the ALD deposition is intrinsically more variable and its

deposition at the end of the fabrication process limits restoration processes.

Despite nonidealities and variations across the 7x7 mm2 area, devices present

standard transfer characteristics for FET devices, the large number of sensors

facilitates the acquisition of data, and the use of adjacent pixels to normalize

response or detect uncommon behaviors will result in more robust biosensing.

6.2.2 Array response to electrolyte changes

The sensitivity to pH changes of the transistors is commonly used as a per-

formance metric of ISFET sensors. We evaluated the ISFET array pH sensi-

tivity by modifying the electrolyte’s pH as described in the methods section.

Figure 6.4 (a) shows the pH-dependent drain current heat maps obtained
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from the ISFET sensors when the electrolyte is biased at a constant 2 V but

the pH is changed. Decrements in pH cause the protonation of the sensing

membrane which results in surface potential increments that are transduced

as a greater current in NMOS devices [130]. The opposite occurs when the

pH of the electrolyte increases and deprotonation events will modify the IS-

FET’s current. The overall response to pH changes is observed in the drain

current quantification of Figure 6.4 (b) that reveals lower drain currents as

the pH of the electrolyte increases. The error bars represent the standard

deviation of all the ISFET drain currents recorded in the array, a total of

1,048.576 data points. Figure 6.4 (c) presents similar information but in

terms of surface potential changes by translating the drain current into sur-

face potential changes via each ISFET trans-conductance obtained from the

front-gate sweep (figure 6.3 ). Table 6.1 summarizes electrical and sensing

characteristics of the ISFET platform.

Figure 6.4: ISFET array pH sensitivity

The pH sensitivity analysis reveals an overall response of 45 mV/pH and

significant variations across the drain currents recorded in the array. Hafnium

oxide has been used in the past as the sensing layer for ISFETs with near

Nernstian sensitivity but in our array we observe a slightly lower response
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Table 6.1: ISFET sensor array specifications

Specification Value
Technology 0.18µm

Number of ISFETs 1048576
Sensing Membrane HfO2

Sampling Rate [ms] 0.11± 0.028
pH sensitivity [mV/pH] 45.8± 5.4
pH resolution [pHmin] 0.25± 0.09
Dynamic Range [pH] 4-10

[193]. When inspected in detail, the drain current maps show areas that are

pinned to a specific value that reduce the overall sensitivity and contribute

to large deviation between devices in the array. Three factors affect the

pH response in these regions. First, contamination and defects in the sensing

membrane would prevent sound electrochemical exchange in the dielectric re-

sulting in lower and diverse sensitivities. Second, selector pixels introduce a

pH insensitive current into the reading. The on-chip circuitry for row and col-

umn addressing of the devices uses selector pixels connected in series to select

specific drain-source nodes. Poor performance of these selector transistors

of the decoding circuitry will minimize pH response and enhance deviations.

Finally, in an area of 7x7 mm2, variations in the electrolyte and the refer-

encing potential are probable and will result in lower sensitivities, increased

noise, and topographical variations. Defects in the sensing membrane, non-

idealities in the selector circuits, and lack of uniformity in electrolyte and

biasing conditions explain the variations and non-ideal sensitives observed in

the pH characterization. Therefore, a more robust analysis can be done in a

pixel by pixel analysis that normalizes the response of each sensor.

6.2.3 Pixel-normalized analysis

A pixel-normalized pH sensitivity and resolution analysis is presented in Fig-

ure 6.5. Figure 6.5 (a) shows a sensitivity heat map that color-codes the

surface potential variations as a function of the electrolyte’s pH. It clearly

shows spatial sensitivity variations in the array, confirming that the nature

of current variability is related with processing, circuitry, or biasing defects

that locally affect the sensing membrane. The distribution of sensitivities
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for the million different ISFETs in the array is presented in Figure 6.5 (b).

It presents a slightly negatively skewed normal distribution with a mean ‘µ’

of 45.8 mV/pH and standard deviation ‘σ’ of 5.4 mV/pH. Similar figures

are presented in panels (c) and (d) of Figure 6.5, that show the heat map

of each sensor’s resolution (minimum detectable pH change) and the corre-

sponding distribution. As described in the methods section, the resolution is

calculated as the ratio between the ISFET’s noise and sensitivity. Therefore

the resulting resolution distribution is mirrored from sensitivity, a positively

skewed normal distribution with a mean µ of 0.25 pH and standard deviation

of 0.1 pH. The ample sample size available with the ISFET array reveals im-

portant aspects of the sensor behavior when analyzed as a population. The

skewed characteristic of the distributions is explained by the non-idealities

discussed above and also the rigid upper physical limit of the Nernst equa-

tion that sets a maximum sensitivity of 59 mV/pH [194]. The defects in

the HfO2 membrane and readout circuitry cause variations in sensitivity, but

those variations cannot overcome the intrinsic sensitivity limitations of the

maximum electrochemical response. Therefore the non-idealities in the plat-

form reduce the sensitivity of devices but never increase it above the Nernst

limit resulting in the skewed distributions that we observe.

6.2.4 Filtering based on performance metrics

A key advantage of having multiple equivalent sensors in a single platform is

the ability to discard elements based on performance metrics or compression

techniques. These methods are common practice for platforms with many

sensing elements such as piezo-sensor arrays [195], CMOS imaging systems

[196, 197], or gas detection clusters [198]. They have been developed to

minimize noise, optimize use of bandwidth, or increase sampling and transfer

rates. With over a million different ISFET elements in our platform, it is

possible to apply this concepts in the biosensing platform taking advantage

of the massively multiplexed sensing ability.

For ISFETs, the key metric of performance is the sensor’s pH resolution.

The resolution metric takes into account both sensitivity and noise, result-

ing in a signal-to-noise ratio metric that accurately reflects the ability of the

sensor to detect biochemical events[144]. Using the pixel-normalized reso-
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Figure 6.5: Pixel-normalized analysis of sensitivity and resolution

lution calculations presented in Figure 6.5, we filtered the data based on

a performance metric of 0.25 pH resolution. Devices with larger resolution

than the one selected would have a low sensitivity or high noise which indi-

cate issues with the sensing membrane or readout circuitry. Figure 6.6 (a)

shows a binary map of the array with rejected and accepted ISFETs under

the resolution metric that discarded 40% of the sensors. The map shows

how areas of the array that had poor sensitivity are discarded and also evi-

dence a spatial division between accepted and rejected elements, indicating

that an important source of performance variation is processing conditions

of the fluid-gate. After discarding elements the overall pH sensitivity is re-

calculated. Results are presented in Figures 6.6 (b) and 6.6 (c) that show

not only an increased gross pH sensitivity but lower variations across the ac-

cepted devices. The performance of the ISFET biosensing platform improved

by discarding elements of the array based on an individual performance met-

rics demonstrating the power of redundant measurements with a massively

multiplexed system.

110



Figure 6.6: Selection of pixels based on performance metrics

6.2.5 ISFET array drift

Electrical characteristics of ISFETs are known to be subject to sudden changes

due to temperature effects, hysteresis, and drift [199]. Different techniques

have been studied to correct these events and improve the stability of the

sensors [200, 201]. However, minimizing these undermining effects by opti-

mizing quality of manufacturing steps and materials is an alternative that

has demonstrated success in the past [202]. The ISFET sensing array has

been carefully studied and developed to optimize robustness of the measure-

ments. Even though spatial variations are observed in different devices, the

performance of these foundry-fabricated sensors is highly robust. Figure 6.7

presents a drift analysis of the ISFET array by sampling drain current at

constant biasing conditions every hour during a 6 hour period. The results

demonstrate that both the fluid-gate and back gate of the transistors are

stable during this time frame. As expected, there is greater variability in the

fluid-gate samples due to the manufacturing differences that have been dis-

cussed previously, but measurements taken in both gates show highly stable

conditions that would facilitate monitoring of reactions that cause potential

changes as a function of time.
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Figure 6.7: Array drift analysis for the fluid and back gates

6.2.6 Temporal and spatial redundancy

At a sampling of rate of less than a millisecond per measurement and over a

million devices, the ISFET platform that we have developed makes it easy to

quickly take redundant measurements both in time and space. The ability

to perform massively redundant measurements can be used to improve the

signal-to-noise ratio by generating many data points that reveal the true value

of the measured variable and its related distribution [203]. This technique

has been used in the past to eliminate or reduce the effect of outlier events

and to improve the accuracy of comparisons between data sets by minimizing

variability under the assumption of normal distributions [204, 205]. In our

platform the redundancy can be obtained by sampling many times per sensor

(time redundancy) or by using many sensors to monitor the same reaction

(spatial redundancy). Figure 6.8 (a) shows the effect of sampling the same

group of sensors multiple times. It shows how the sample standard deviation

decreases as a function of the number of samples taken. Even though the

reduction in standard deviation in the group is small, it demonstrates a solid

trend that this strategy would minimize the effect of drift and randomize

events creating a more robust measurement. In Figure 6.8 (b) we present the

effect of increasing the number of sensors that monitor a reaction. It shows

that the sample-to-sample variation decreases dramatically as more sensors

are used to monitor a single reaction and enable better comparisons between

samples by reducing the influence of sensors with abnormal behaviors. Fig-

ure 6.8 (b) shows that significant variation decrements are observed up to

112



around 100 sensors but the improvement is small with more sensors. This

trend indicates that after a certain number of sensors, spatial related effects

(such as the spatial variations that have been observed in the other heat

maps) affect the sample noise resulting in a stable sample-to-sample varia-

tion. The two redundancy strategies show how redundant techniques can be

employed to handle measurements in noisy environments and the power of

a massively parallel ISFET platform with integrated circuitry for fast data

acquisition. The intrinsic variability of the fabrication process of ISFETs

and the variations of the biochemical events that are investigated with FET

biosensors can be managed by using iterative and redundant measurements

that improve accuracy and simplify quantitative conclusions on the detec-

tion of entities and differences in the response between target and control

samples.

Figure 6.8: Spatial and temporal strategies to minimize noise and improve
resolution

6.3 Summary of the ISFET array evaluation and

future biosensing applications

This chapter describes a massively multiplexed dual-gated ISFET sensing

platform with over one million devices organized in a 1024 x 1024 array of

7x7 mm2. The transistors are addressed with an on-chip row and column

decoding circuit that quickly obtains Ids measurements for each sensor scan-
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ning the full array in around 90 s. We presented transfer characteristics

of a typical sensing array, evaluated its pH sensitivity, and estimated the

minimum pH change that the sensors can resolve. This characterization re-

vealed distributions of the ISFET sensors and spatial variations in the array.

We identified factors that affect performance and uniformity of the sensing

events and propose filtering techniques based on performance metrics to im-

prove robustness, sensitivity, and ultimately resolution of the ISFET sensors.

In addition, we tested the ISFET platform stability by measuring its drift

over a period of six hours and observed the advantages of performing spatial

and temporal redundant measurements to reduce variations within a group

of sensors and to minimize the sample-to-sample variations.

With the 1024x1024 ISFET platform we have developed a tool that ex-

ploits the intrinsic advantages of semiconductor biosensors creating a minia-

turized, inexpensive, and massively multiplexed tool for label-free detection

reactions. With the sensing power of over one million sensors we foresee new

instruments and applications in clinical diagnostics, point-of-care biosensing,

environmental control, and drug discovery. The massive parallelism and low

cost that have revolutionized digital applications can now be applied to bi-

ological problems, improving research and diagnostic tools that ultimately

advance healthcare and our understanding of biology.
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CHAPTER 7

MULTIPLEXED LABEL-FREE LAMP
DETECTION OF FOODBORNE

PATHOGENS

An emerging approach for portable detection of DNA amplification reactions

leverages advances in the semiconductor industry to minimize cost and size of

detection tools while enhancing their robustness and level of automation [18].

After more than 50 years of exponential improvements, the semiconductor

industry nowadays can easily fabricate transistors at fractions of a penny and

pack millions in a microscopic area [206]. This ability in combination with

recent research on ionic and molecular sensing with field effect transistors has

created a pathway to incorporate semiconductor devices in bio-sensing appli-

cations [207]. The use of inexpensive and highly dense transistor chips has

already demonstrated that it can minimize the cost and size of DNA sequenc-

ing tools [6] and point-of-care devices [208], and similar approaches can result

in novel biosensing systems for food safety. In this chapter we describe an in-

tegrated device where primer dehydration techniques are coupled with ISFET

electrochemical sensing to achieve on-chip multiplexed detection of foodborne

pathogens through LAMP reactions. The massively parallel dual-gated ion-

sensitive field effect transistor (DG-ISFET) array of 1024x1024 sensors de-

scribed in Chapter 6 was used to electrically detect nucleotide incorporation.

The DG-ISFET array is divided in several independent micro-chambers with

anisotropically etched gold-coated silicon wells that are bonded to the sens-

ing area. The gold-coated silicon acts both as the confinement element to

create independent reactions and a pseudo-reference electrode to bias the

electrolyte and gate the transistors. With this setup ISFETs are monitoring

multiple independent 250 nL reactions, the transistors are used to recognize

pH changes that result from LAMP, and parallel assays are easily performed

using microinjection and primer dehydration techniques described in Chap-

ter 3. Each one of the formed micro-chambers in the partitioned ISFET chip

was prepared with specific primer groups that target a pathogenic gene and

will report the presence of bacterial pathogens in a process that is briefly

115



summarized in the schematic of Figure 7.1 (b). The results that we report

describe the electrical and pH sensing performance of the ISFET array with

the gold-coated chambers, differential electrical signals recorded by ISFETs

from chambers with and without reaction, and techniques to improve the

signal-to-noise ratio based on redundancy techniques and filtering strategies.

In addition, this chapter presents experiments of concurrent electrical de-

tection of Escherichia coli and Salmonella typhimurium using the described

platform and evaluates the effect of lower bacterial concentration to estimate

the protocol and tool limit of detection.

7.1 Partitioned ISFET array for parallel LAMP

detection

7.1.1 Description of ISFET array and fabrication of
gold-coated chambers

The DG-ISFET array is fabricated in collaboration with Taiwan Semicon-

ductor Manufacturing Company with a CMOS compatible process that has

been described in detail in Chapters 4 and 6.

To partition the ISFET array and create the micro-chambers for multi-

plexed detection gold-coated silicon wells were fabricated at the Micro and

Nanotechnology Laboratory cleanrooms at UIUC. Standard silicon wafers

(University Wafers, Boston, MA) are thinned down with a cycle of oxida-

tion and hydrofluoric etch to achieve a thickness of around 200 µm. The

wafer is left with 80 nm of silicon oxide that is patterned with standard

SPR220 photolithography (MicroChem, Westboroguh, MA) and 10:1 BOE

etch (Avantor, Center Valley, PA) to reveal the silicon that will be etched to

form the micro-chambers. After the silicon oxide is patterned the photoresist

is stripped of the wafer with Remover PG (MicroChem) and then immersed

in a 1:1 TMAH (Sigma-Aldrich, St. Louis, MO) bath for 36 h heated to 80 ◦C.

The etched process creates inverted square pyramids that carve through the

wafer creating an array of chambers. After etching, 20 nm of Ti and 80 nm

Au are deposited on the wafer with an E-beam evaporator (CHA Industries,

Freemont, CA) so the silicon wells act also as a pseudo-reference electrode
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[209, 210]. Finally, to assemble the ISFET array chip with the gold-coated

silicon micro-chambers a layer of uncured Sylgard PDMS (Dow Corning,

Midland, MI) is spin coated on the back of diced gold-coated chips that are

then aligned with the 7x7 mm2 ISFET sensing area and baked at 60 ◦C for

3 h. The resulting sensing chip is presented in Figure 7.1 (a).

Figure 7.1: Photograph of assembled chip and parallel LAMP detection
assay schematics

7.1.2 Response to pH changes of partitioned array

The pH of 10 mM phosphate buffered saline (PBS) is modified by diluting

hydrochloric acid and sodium hydroxide until a desired pH calibration value

is obtained. Solutions are adjusted with an Orion 3 start pH meter (Thermo

Scientific, Pittsburgh, PA) and injected into the reaction chambers with a mi-

croinjector IM-300 (Narishige Scientific Instrument Lab., Tokyo, JP). With

the droplets of the calibration pH solution inside the micro-chambers the chip
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is connected to the testing station, the gold is biased to the desired fluid-gate

potential with the micromanipulator, and the drain current of each element

in the array is recorded. Subsequent measurements are obtained by swapping

the PBS solution for one with a different pH, and current changes are cor-

related with surface charge in the hafnium oxide layer indicating the surface

potential sensitivity to pH changes.

7.1.3 LAMP reaction mix and primer dehydration

The LAMP reactions for the detection of pathogenic genes of E.coli and

S.typhi are divided into 3 different stages: chip priming, electrical profiling

prior the reaction, and drain-current measurements after the reaction. The

process is described in the schematic of Figure 7.1 (b) that shows primer

dehydration and sample injection, primer resuspension and annealing to tar-

get sequence, DNA amplification, and electrical detection of pH changes. In

the chip priming stage a primer mix for the selected pathogen is dispensed

and air-dried inside the micro-chambers. The sequences of primers for the

amplification of eae (E.coli ) and invA (S.typhi ) are specified in Table 7.1.

They are prepared from customized oligos (iDT DNA, Coralville, IA) in con-

centrations of 19 µM for FIP/BIP pair, 9.6 µM for loop primers LF/LB,

2.4 µM for F3/B3. After the primers are dehydrated a primer-less LAMP

reaction mix that has been optimized to trigger pH changes [163] is injected

in all the reaction chambers. The LAMP reaction mix consisted of 0.1X

isothermal amplification buffer, 1.3 mM of dNTP mix, 5 mM of magnesium

sulfate, 6 units of Warmstart Bst 2.0 polymerase (all four from New England

Biolobs, Ipswich, MA), 800 mM betaine, 55 mM KCl (Sigma-Aldrich), and

1x EvaGreen (Biotium, Hayward, CA) . The template DNA is extracted from

bacteria cultures, E.coli O157:H7 in brain-heart infusion medium or S.typhi

in Lysogeny broth (Fisher Scientific, Pittsburgh, PA), grown overnight in a

34 ◦C incubator. For DNA extraction bacterial cells are centrifuged at 8600

rcf for 3 min and re-suspended in DI water, lysed at 95 ◦C, and cell debris is

removed with a fast centrifugation (12500 rcf for 10 min) leaving template

DNA in the supernate.

In the second stage of the detection protocol, the primer-less LAMP solu-

tion is microinjected in the reaction chambers and immediately covered with
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Table 7.1: LAMP primers targeting eae and invA for the detection of E.coli
O157 and S.typhi

Target Gene Primer
set

Sequence (5’-3’) Source

eae F3 TGACTAAAATGTCCCCGG [93]
B3 CGTTCCATAATGTTGTAACCAG
FIP GAAGCTGGCTACCGAGACTC-

CCAAAAGCAACATGACCGA
BIP GCGATCTCTGAACGGCGATT-

CGTATTAACGAACCCGG
LF TGT GGTTAATAACAGACACCGATG
LB ACGCGAAAGATACCGCTCT

invA F3 CGGCCCGATTTTCTCTGG [29]
B3 CGGCAATAGCGTCACCTT
FIP GCGCGGCATCCGCATCAATA-

TGCCCGGTAAACAGATGAGT
BIP GCGAACGGCGAAGCGTACTG-

TCGCACCGTCAAAGGAAC
LF GGCCTTCAAATCGGCATCAAT
LB GAAAGGGAAAGCCAGCTTTACG

mineral oil to prevent evaporation during the heating stages. Fluorescence

intensity of the reaction chambers is obtained with a Nikon Eclipse FN-1 mi-

croscope (Nikon Instruments Inc. Melville, NY) and electrical characteristics

of ISFETs are obtained with the IC tester obtaining an optical and electrical

characteristic prior the amplification reactions. The chip is then taken to an

oven at 60 ◦C to trigger LAMP.

Finally after the chip is heated up in a convection Isotemp oven (Fisher

Scientific) to 60 ◦C for 60 min, the fluorescence intensity and electrical char-

acteristics are measured again. Differences between before and after states

and differential signals with negative controls will reveal DNA amplification

in chambers where the primer set found a matching template indicating the

presence of a specific pathogen.

7.1.4 Drain current maps and filtering techniques

For every reported Ids measurement each sensor in the array was interrogated

5 times. The reported Ids is the average of the 5 measurements and the
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standard deviation is considered the experimental noise. The pH sensitivity

is obtained with the linear regression of the drain-current to pH function and

surface potential changes can be obtained by correlating current changes to

fluid-biasing conditions via the sensors transconductance SIds = gm∗SVg [192].

The resolution is estimated by dividing the measured experimental noise with

the recorded sensitivity [193]. This ratio would indicate the minimum pH

shift that is electrically detectable with the particular FET.

The inclusion of EVA green into the reaction mix enables the fluores-

cent confirmation of DNA amplification products. Increments in the fluo-

rescence intensity are related to a greater concentration of dsDNA in the

standard method to monitor amplification and a related pathogenic presence

for qPCR and qLAMP. The fluorescence images are analyzed using ImageJ

(http://rsb.info.nih.gov/ij/) to estimate intensity with mean gray values. In-

crements in the recorded mean grey value indicate successful replication of

target DNA and are computed as relative intensity changes. The results also

show the subtraction of before and after images that are performed with the

image calculator tools of ImageJ to highlight fluorescence intensity changes

caused by the amplified dsDNA.

Electrical detection of DNA amplification reactions is obtained by com-

paring the measured drain current in monitoring ISFETs before and after

the reaction takes place inside the micro-chambers. Matlab scripts let the

user select the micro-chamber to be analyzed, create histograms and obtain

other statistical metrics of the recorded current in the selected chamber. For

a pixel-normalized evaluation, the drain-current matrices before and after

the reaction are subtracted creating a differential matrix that describes cur-

rent and potential changes that occurred during the amplification reaction.

Given that thousands of ISFETs are monitoring a single reaction, the col-

lected drain current and differential data sets can be filtered to obtain an

improved signal-to-noise ratio. Groups of sensors can be discarded from the

measurement to improve clarity of the recorded signals using performance-

based filters and statistical detection of abnormal or outlier elements. First,

the resolution of ISFETs was used as the performance metric to accept or

reject individual sensors. Sensors with poor sensitivity or large experimen-

tal noise can be identified with a resolution metric that is used to discard

elements. A second filtering technique is based on statistical tests that re-

veal elements outside the normal expected distribution. The Grubbs test
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and its iterative form of the Extreme Studentized Deviate (ESD) test have

been used in the past to filter data sensor arrays or networks [211, 212]. We

use the same algorithms to discard points outside the normal distribution

to enhance differences between populations of currents of different reaction

chambers and obtain clear signals of amplification. Unless specified in the

results section, the performance filter is set to have a threshold of maximum

resolution of 0.5 pH units while the ESD test is done using a discard prob-

ability threshold α of 0.05 and a maximum number of iterations equivalent

to half of the total number of points in the data set (N/2).

7.2 Biosensing in the partitioned ISFET

7.2.1 Chip electrical characterization

Figure 7.2 presents transfer characteristics of fluid and back-gate of ISFETs

in the sensing array presenting typical I-V curves, a 3D map of measured

drain currents as a function of gate voltage, and drain-current color coded

maps of the 1024x1024 array. Figure 7.2 (a) shows how the full array re-

sponds to changes in the back-gate potential while Figure 7.2 (d) shows that

only sensors in the bottom of the reaction chambers respond to the fluid-gate

bias that is established with the gold-coated silicon. Similar information is

presented in the heat-maps of Figures 7.2 (b) and 7.2 (d) that color code the

current in each sensor. In Figure 7.2 (b) the position of reaction chambers

has a correlation to the measured drain current induced by the back-gate, an

effect that has been previously identified as charge coupling between gates

in DG-ISFETs but that has no significant influence on pH monitoring [213].

Figure 7.2 (d) on the other side presents a clear shape of each reaction cham-

ber’s bottom (the irregular shapes are related to PDMS reflow during the

bonding step). Only ISFETs exposed to the electrolyte are affected by the

fluid-gate potential resulting in the sectioned heat map with most of the IS-

FETS in the array having negligible current. Finally Figures 7.2 (c) and 7.2

(e) present standard Id Vg plots for the bottom and fluid gates showing

standard transfer curves. These plots show a lower threshold voltage for the

back-gate and a saturation current at high gate voltages for both bottom

and fluid gates. Lower and more uniform threshold voltages have been previ-

121



ously observed in the back-gate of DG-ISFETs due to better controlled and

optimized fabrication processes in the MOS gates [176]. On the other hand,

the drain-current saturation and the resulting lack of linearity are caused by

protection circuits in the PXI reading card that truncate high currents above

a threshold.

Figure 7.2: Electrical characterization of the ISFET array with gold-coated
chambers for confinement and electrolyte biasing

7.2.2 pH sensitivity in independent chambers

More acidic electrolytes cause the protonation of the hafnium oxide layer,

increasing the surface potential, and in consequence augmenting the NMOS

transistor drain current. That trend is observed in Figure 7.3 (a) that shows

how Ids decreases with pH increments. Data presented in Figure 7.3 (a) is the

average of all the transistors that are exposed to fluid in the array and the

error bars represent the standard deviations across all the devices. This error

is high, but it indicates not ISFET variability but rather spatial variations

across the chip that can be reduced by normalizing each pixel value. A pixel
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to pixel sensitivity analysis is presented in Figure 7.3 (b) that presents a color

coded map of the sensitivity for each pixel. The linear regression of surface

potential vs. pH in each sensor independently is reported as the sensitivity.

A similar plot is presented in Figure 7.3 (c) that presents the sensor estimated

resolution that relates sensitivity and noise for each device. Sensors that are

not in contact with fluid and therefore not affected by the fluid-gate have no

sensitivity to pH changes and therefore infinite resolution that is truncated

at value of 1 for visualization purposes. Histograms of both sensitivity and

resolution of sensing ISFETs are presented in Figures 7.3 (d) and 7.3 (e). The

sensitivity histogram shows a normal distribution skewed to the left with a

mean sensitivity of 32 ± 4.9 mV/pH. The sensitivity distribution is skewed

because some sensors have a decreased response due to variable conditions

in the sensing layer that have an upper limit set by the Nernst relation. The

measured sensitivity is far from the ideal Nernst limit, but it is explained

by the potential induced by the quasi reference electrode. Unlike standard

Ag/AgCl reference electrodes the gold surface has a small but significant

reactivity to bulk pH changes that decreases the ISFET sensitivity [193]. On

the other hand the resolution mean is of 0.51± 0.13 pH units with a normal

distribution this time skewed to the right. This behavior is explained by

the inverse relation between sensitivity and resolution that translates poor

sensitivities into a high resolution metric.

Multiplexing ability to detect pH changes in the ISFET array is exem-

plified in Figure 7.4 (a) that shows a drain current map of the array when

chambers grouped in columns had an electrolyte of different pH value. From

left to right in the array, increasing pH values are correlated with lower cur-

rents. Quantification of the drain current recorded for each group of wells is

presented in Figure 7.4 (b) that shows a similar trend and slope to those ob-

tained for the full chip experiments of Figure 7.3 with a linear regression that

indicates a pH sensitivity of around 2 µA/pH. Error bars in Figure 7.4 (b)

again represent variations between the thousands of ISFETs in each group of

chambers and pixel-normalized analysis will result in lower variations. The

experiment shows that it is possible to identify electrolytes of different pH

value in reaction chambers by tracking the associated drain current of tran-

sistors inside the chamber. This ability allows multiplexed monitoring of

reactions for parallel screening assays.
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Figure 7.3: pH sensitivity of ISFET array with gold-coated chambers

Figure 7.4: Parallel pH measurements on the ISFET array
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7.2.3 Detection of LAMP reactions on ISFET platform

We divided chambers in the array into positive and negative assays having

half of the chambers with full reactions and the second half with reactions

without primers to test the ability of the ISFET array to detect the pro-

ton by-products of LAMP reactions. No amplification and no pH change

are expected from control chambers without primers (negatives) while am-

plification is anticipated in the chambers with full (positive) reactions. Fig-

ure 7.5 shows fluorescence and drain-current measurements before and after

the amplification reaction. The fluorescence detection is used as an optical

confirmation of DNA amplification using the intercalating dyes to support

conclusions. Figure 7.5 (a) shows the full array with 36 chambers prepared

with methods described previously and also delineates the division between

positive and negative samples. A similar map is presented in Figure 7.5 (d)

that shows the drain current map dividing the different sensing regions in

positive and negative samples. The electrical map is missing one column of

negative reactions that are outside the ISFET sensing area. Using uncured

PDMS to bond the gold-coated chambers with the ISFET array provides a

good seal to hold the reactions during amplification but requires a single-

attempt alignment that is difficult, and misalignments can leave chambers

outside the sensing region.

After heating the chip for 60 min at 60 ◦C, the ‘after’ measurements pre-

sented in Figures 7.5 (b) and 7.5 (e) were taken. These measurements show

increments in fluorescence intensity for the positive samples and a lower in-

tensity in negative samples. Amplified dsDNA in positive reactions increases

the number of binding points for the intercalating dye increasing measured

fluorescence while the lack of amplification in negative chambers in conjunc-

tion with partial photo-bleach of fluorescent molecules results in a diminished

fluorescence. The electrical measurements reveal that in both positive and

negative samples the drain current increased. However increments in the pos-

itive chambers are higher by approximately 1.8 µA than those in the negative

samples indicating that despite overall variations across the chip related to

drift and noise, the sensors are detecting changes caused by the DNA ampli-

fication reactions. Comparative fluorescence and electrical quantification are

presented in Figures 7.5 (c) and 7.5 (e).

Whereas the fluorescence increment in positive reaction chambers clearly
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Figure 7.5: Optical and electrical measurements before and after DNA
amplification in a chip of 36 wells

differentiates amplification, the signal is more obscure in the electrical mea-

surements where standard deviations are higher and means are closer. The

electrical measurements reveal two important features. First the full chip, in-

cluding reactions chambers with no amplification, presented current changes.

This is the result of ISFET drift, change in biasing conditions, and common

electrolyte changes during the reaction [199]. A second important character-

istic is the high variations between ISFETs monitoring a single reaction. As

has been observed during the electrical characterization and pH sensitivity

analysis, ISFETs present a normalized distribution and associated standard

deviation that are correlated with spatial variations. From plot 7.5 (e) it is

clear that the associated standard deviation is high compared to the signal

obtained from the amplification reaction. This result demonstrates the im-

portance of having strong sensing capabilities and high quality and quantity

of sensors to obtain the highest possible signal-to-noise ratio that enables a

robust differentiation of the LAMP by-products. The incorporation of neg-

ative controls will simplify the rejection of common noise and drift, and the

employment of filtering techniques that detect and discard sensors with ab-
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normal behaviors will decrease the variability of the current measurements

and facilitate the detection of LAMP-related signals. These two strategies

will enable statistically significant differentiation between positive and nega-

tive samples.

7.2.4 Statistical and performance filtering techniques

High variability among sensors reduces the signal-to-noise of the amplifica-

tion reactions and obscure results from the amplification assays. However

the massive sensing ability of our ISFET platform results in redundant mea-

surements that enable the use of filtering and statistical outlier detection

techniques that allow discarding sensors with poor performance or abnormal

behaviors. The elimination of elements with high noise or with current values

that fall away from the normal distribution will result in improved signals to

facilitate the electrical detection of LAMP amplification.

Performance based filtering rejects sensors with poor response to pH changes

under the metric of resolution. The ISFET resolution combines the pH sen-

sitivity and stability of the sensor creating a comprehensive evaluation pa-

rameter. Therefore we have selected the resolution of ISFETs to discard ones

with poor performance. Figure 7.6 (a) shows the ISFET drain current differ-

ence matrix, calculated by subtracting after and before measurements of the

experiment presented in Figure 7.5. The sequence of images in Figure 7.6

(c) shows the same map but without sensors discarded based on a resolution

higher than the established threshold. Current maps in Figure 7.6 (c) show

that most of the sensors monitoring reactions in the array have a resolution

better than 0.5; however, as the performance metric is more strict (0.4 to 0.1

pH) the number of accepted sensors decreases and a resolution threshold of

0.1 would discard most of the sensing ISFETs. The image sequence also re-

veals that the discarded sensors tend to be clustered in specific regions of the

array. This indicates that there is a correlation between the sensor perfor-

mance and its position in the array suggesting spatial fabrication variations

in the sensing membrane or the reading circuitry. The relation between the

selected resolution metric and number of sensors monitoring the reaction is

presented in Figure 7.6 (b).

A second filtering strategy uses statistical analysis of data to detect ab-
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Figure 7.6: Resolution based performance filtering

normal populations. The Grubbs test is an algorithm that is used evaluate

whether or not a data point falls out of a normal distribution [212]. It in-

volves the identification of elements’ maximum distance to the mean, an

estimation of a related t-distribution, and evaluation of a critical value that

takes into account a user-defined rejection probability. The same process

can be iterated over a data set with the Extreme Studentized Deviate (ESD)

test, eliminating unrepresentative elements in the array that fall outside the

expected normal distribution to reduce variations in the drain current pop-

ulations obtained from ISFETs. This process is described in Figure 7.7 (a)

that summarizes the detection and elimination process in a flow diagram.

To demonstrate the effect of applying the ESD technique into a recorded

drain-current data set, Figure 7.7 (b) and 7.7 (c) present original and ESD

tested distributions. The full data set in Figure 7.7 (b) presents a normal

distribution skewed to lower current. After applying the ESD algorithm with

α = 0.05 and r = N/2, the current distribution is changed to the one pre-

sented in Figure 7.7 (c). The clear cutoff boundaries are obtained by having

strict probability tolerances and the high likelihood of deletion. Under those

parameters around 30,000 sensors out of the original 108,028 are discarded

because they have a current outside the estimated distribution. This process
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statistically reduces variability (the standard deviation of the distribution is

reduced by around 50%) and enhances the signals that are caused by the

DNA amplification reaction.

Figure 7.7: Statistical filtering analysis of a drain current distribution

The redundancy that provides the 1024x1024 ISFET array in combination

with performance and statistical filters allows monitoring pH in reaction

chambers with a high signal-to-noise ratio. The validity of the analysis is not

changed as long as the filtering techniques are equally applied to all sampled

sensors in the array. The use of the described techniques results in narrower

distributions with clear signals recovered from the noisy environment inherent

to the ISFET sensors and the amplification protocols. In addition, these

statistical processes can be easily performed with minimal computing power

and could be incorporated into the standard detection protocols leveraging

the massive multiplexing of the ISFET array to clearly identify differences

in populations and the seamless integration with other circuitry and data

processing elements.
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7.2.5 Multiplexed detection of foodborne pathogens

Using the techniques described in previous sections (primer dehydration,

monitoring of the ISFET current, and data filtering), we have performed

assays that show the multiplexing ability of the ISFET platform for the de-

tection of foodborne pathogens. Figure 7.8 presents results from an experi-

ment where the ISFET array was divided into three regions. A control region

(on the right) had no primers, and it is used as reference ISFETs to subtract

common noise in differential measurements. A second group was prepared

with primers to amplify the invA gene for S.typhi detection and the third and

final group had primers for the amplification of the eae gene of shiga-toxin

producing E.coli. The LAMP reaction mix injected after primer dehydration

contained templated DNA extracted from an overnight culture of S.typhi in

LB. After setting up the reaction fluorescence, electrical images were taken

to record the status of reaction chambers prior the reaction. Before and

after fluorescence images are summarized in Figure 7.8 (a) that shows the

differential image calculated with imageJ, and the bar plot in Figure 7.8 (b)

evaluates increments in fluorescence by calculating relative fluorescence in-

tensity changes. Similarly, the before and after current maps are condensed

in Figure 7.8 (c), that shows the difference map of the two measurements,

and the current distributions of the filtered difference data for each group of

chambers, filtered with a resolution threshold of 0.5pH and ESD inputs of

α = 0.05 and r = N/2, is presented in Figure 7.8 (d).

The differential fluorescence image shows that only wells prepared with

primers for the amplification of the invA gene ended up with a larger con-

centration of dsDNA. Only in this group of wells does the template find a

matching primer set that triggers the amplification reaction. On the other

hand, the electrical difference map shows changes in all reaction chambers

but a greater change in chambers where amplification took place indicat-

ing that the pH change affects the surface potential and threshold voltage

of the devices. These differences are clear once the current distributions of

each group of chambers are filtered with the techniques described previously.

When the negative control is compared to the wells with eae primer, there

is no difference (P value of 0.81) indicating that current changes in the wells

prepared for E.coli detection are common noise and not related to the am-

plification reaction. On the other hand, the current from ISFETs in reaction
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Figure 7.8: Multiplexed electrical detection of foodborne pathogens in
ISFET array chip
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chambers with the invA primer is significantly different from the negative

control (P value of 0.02) which indicates that the differential signal is related

to the DNA amplification reaction that was fluorescently confirmed. The dif-

ferential signal of approximately 2 µA is expected given that the pH change

in positive reactions oscillates between 0.8 and 1.2 pH units [65]. The same

methods of primer dehydration and pH monitoring with ISFETs could be

expanded to create panels of multiple relevant targets in the miniaturized

system, resulting in minimal hands-on work during detection assays [73].

7.2.6 Titration of template DNA (LOD)

The sensitivity of the ISFET array platform was evaluated by titrating the

concentration of DNA template obtained from the bacterial cultures. For

the assay presented in Figure 7.9 all chambers were prepared with a single

primer set (eae) for the detection of the gene for STECs. After the dehydra-

tion stage, a reaction mix with known template concentration was injected

in each chamber. Chambers were grouped by columns having the highest

concentration in the left-most column, with an equivalent of 250,000 copies

/ reaction, logarithmic dilutions in neighboring columns, and no template

for the last column that acts as reference. Figure 7.9 (a) shows the fluores-

cence differential image of before and after the reaction also indicating the

CFU / ml equivalent concentration in the chip. It shows a clear fluores-

cence increment in all reaction chambers with the exemption of the negative

control. Normalized increments are quantified in Figure 7.9 (b). The fluo-

rescence significantly increases in the reaction chambers where amplification

is expected but there is no increment in the control chambers. Furthermore,

Figure 7.9 (b) shows that the reaction is able to replicate DNA when the

template concentration is as low as 25 copies/reaction. Similar results were

observed in the electrical measurements. Figure 7.9 (c) shows the differential

drain current in before and after measurements in a color coded map with the

reaction chambers divided by groups based on the concentration of template

DNA used in the injection step. In Figure 7.9 (d) changes of drain current

in the ISFETs monitoring the reaction groups are quantified after applying

the filtering strategies that have been described previously. It shows that

in all ISFETs there were current changes but increments were higher in the
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chambers where the amplification reaction took place. The greater current

changes in those chambers are related to the pH changes triggered by the

amplification reaction that does not occur in the control chambers.

Figure 7.9: Sensitivity evaluation of LAMP reaction on the ISFET array
divided in groups of chambers with different template concentration

The quantifications presented as bar plots in Figure 7.9 show that the mag-

nitude of end-point fluorescence and drain current signals are independent

from the starting concentration. This effect is explained by plateau stage

of the amplification reactions that terminates LAMP regardless of the initial

concentration. There are three main mechanisms behind the plateau stage of

PCR and LAMP: The reactions run out of material to increase the number

of amplicons, a very high concentration of created dsDNA prevents proper

annealing of primers, or by-products change the buffering conditions and im-

pede the normal polymerase elongation [214, 215]. For the case of pH-LAMP

reactions, changes in the buffering conditions that affect the polymerase be-

havior are likely to be the dominating cause of the plateau stage. In pH

LAMP, the composition of the amplification reaction is modified by reduc-

ing the concentration of buffering agents to enhance the pH signals from
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the incorporation of nucleotides. The reduction of the buffer concentration

facilitates electrical monitoring of the reaction but limits the ability of the

polymerase to continue amplification when the by-products change the reac-

tion mix characteristics. Under nominal conditions (e.g. 65 ◦C, 8.8 pH) the

Bst polymerase incorporates 10 nmol of dNTP in 30 min, but if these con-

ditions are changed the polymerase activity decreases and large variations

will result in negligible activity causing the amplification stagnation [216].

With the minimized buffering conditions the reaction mix’s pH steps out of

the working range faster than in regular reactions reaching the plateau state

due to polymerase inactivity. In Figure 7.9, the plateau effect is evident in

both the fluorescence and electrical measurements. Besides the saturation of

current and fluorescence signals, another relevant result is a demonstrated

sensitivity of 25 copies/reaction. Further optimization of the reaction com-

position and the preparation of the chambers with passivation agents such

as silanes can further reduce the limit of detection to a few copies/reaction

chamber by limiting inhibitory effects present in small volumes [217].

7.3 On-chip multiplexed electrical detection of LAMP

in the future of biodetection

We have performed multiplexed electrical detection of LAMP reactions using

a massive parallel array of ISFETs divided with gold-coated silicon micro-

chambers. The ISFET sensors in the array have typical drain current to gate

voltage relations with the exception of a saturation current at high biases that

is caused by protection circuits of the IC tester. ISFETs being referenced

with the gold pseudo-reference electrode presented an average sensitivity of

32 mV/pH (equivalent to ∼2 µA/pH) with an estimated resolution of 0.5

pH units with both metrics being described by skewed normal distributions.

That pH sensing ability of the sensors was used to detect by-products of

modified LAMP amplification reactions. LAMP reactions with low buffer

concentration enhance pH signals related to nucleotide incorporation [163]

and a primer dehydration technique allows the concurrent detection of mul-

tiple genes in a single assay [142]. With these techniques thirty independent

reactions were set up on the ISFET array and monitored with fluorescent and

electrical methods. As expected, in chambers where the dried primer finds
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the target gene the fluorescence intensity and drain current increase indicat-

ing greater concentrations of dsDNA and the generation of protons during

elongation. The large quantity of individual ISFETs that monitor each re-

action in our platform allows the use of statistical and performance filtering

methods to clearly identify LAMP-triggered surface potential changes de-

spite low and noisy signals. These methods are used in a parallel foodborne

pathogen detection experiment where S.typhi and E.coli are detected in a

single assay. An electrical signal of ∼2.5 µA drain current increment is ob-

tained from chambers with matching primer set and template. The inclusion

of negative controls as references enables the simple subtraction of common

noise and reveals changes due to the amplification and in consequence the

presence of a specific pathogenic. Finally we evaluate the sensitivity of the

platform by titrating the concentration of template DNA. It was possible to

detect concentrations of 25 particles / reaction, which represents an equiv-

alent to 105 CFU / ml but lower detection limits should be obtained with

surface treatments and optimization of the reaction conditions that augment

the efficiency of the reaction and eliminate inhibitory effects.

The current and upcoming challenges in food safety demand better pathogen

detection tools that enhance the enforcing ability of regulatory agencies.

Tighter food quality controls and faster outbreak reaction protocols are

only possible with contamination sensors that sustain performance of cur-

rent methods but are portable, inexpensive, and easy to use. The platform

that we describe in this chapter is aligned with these targets thanks to its

small size, minimal cost, and simple detection of biological entities through

DNA amplification. By combining sensitive molecular diagnosis techniques

and semiconductor sensors we created a multiplexed, robust, and simple plat-

form that can be used for many bio-detection applications creating the core

of a biosensing tool. However the success of this approach depends on novel

sample preparation techniques. Even though LAMP has been demonstrated

to be more robust than other DNA amplification techniques and it can be

performed with minimal sample preparation [218], fully integrated detection

systems for foodborne pathogens require the incorporation of concentration,

partitioning, and mixing stages [219]. Such integrated devices that miniatur-

ize and automate all processes for pathogen detection will promote screening

tests in food samples and enhance control over the food chain. Food safety

can greatly benefit from the advances in MEMS and semiconductor fields
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to create new tools that solve problems of low sampling rates, poor detec-

tion times, and expensive bio-detection to improve the quality of the food

products.
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CHAPTER 8

CONCLUSIONS AND
RECOMMENDATIONS FOR FUTURE

WORK

It has been almost 25 years since Dr. Kary Mullis was awarded the Nobel

Prize for the development of the polymerase chain reaction. The ability to

specifically replicate DNA has had a profound impact in the way we under-

stand microorganisms and interact with them [22]. In this dissertation we

explored methods to miniaturize the equipment required to conduct DNA

amplification with the goal of enabling more entities to use this reaction

in multiple settings. Our approach was to utilize semiconductor devices to

detect amplification by-products. With field effect transistors as the core

element of our biosensor we reduced cost, minimized size, and improved

the robustness of a portable DNA amplification system. We have created a

microchip for the multiplexed electrical detection of DNA amplification reac-

tions and during the development of our system tackled multiple challenges

related to the miniaturization of a biochemical reaction and its integration

with semiconductor devices. The prototype resulting from our work shows

the basis of novel DNA amplification systems based on the ubiquitous and

nanoscopic field effect transistors.

This project had the goal of creating small portable pathogen detection

devices. It started by miniaturizing the DNA amplification reaction so it

could be performed on silicon devices. In the initial stage we learned the im-

portance of passivation layers to enhance compatibility between biomolecules

and silicon, and developed methods to perform multiplexed assays using a

primer dehydration technique [142]. Then, in collaboration with Taiwan

Semiconductor Manufacturing Company, we created a field effect transistor

structure that could be exposed to fluid and had strong pH sensitivity. With

this device we were able to electrically detect the reaction by-products utiliz-

ing the same principle that Ion Torrent uses in their popular sequencer [220].

The electrical signals that we obtained from the reaction by-products are

intrinsically small and optimization exercises to improve the signal-to-noise
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ratio were required to clearly identify the electrochemical signatures of the

nucleotide incorporations. The optimization was done in three fronts. First,

the reaction components were modified to enhance pH changes[176]. Second,

the transistors were operated in a dual-gate mode to enhance resolution and

facilitate the detection of pH changes [193]. And third, we studied the effect

of multiple electrolyte biasing techniques designed to minimize variations in

the reference electrode to focus potential changes in the transistor’s sensing

membrane. The optimization effort improved our understanding of the re-

lationship between the sensors and the amplification reaction and served as

a pathway to expand the sensing platform into a massive array of sensors

that leverage the ability of the semiconductor industry to easily replicate

structures with the top-down fabrication paradigm.

In the final stage of the project we fabricated a sensing platform with over

one million sensors, showing the scalability potential of semiconductor de-

vices. We utilized all the methods developed in the previous projects to create

a platform of multiplexed electrical detection of DNA amplification reactions.

The three elements of reagent dehydration, electrical sensing, and pseudo-

reference of an electrolyte were incorporated in a single platform to perform

an electrical measurement of biochemical reactions designed to detect the

presence of pathogenic entities. The developed platform demonstrated the

power of semiconductor devices when used for biological applications. Hav-

ing transistors as biosensors not only reduces size, cost, and complexity of

the biological assays but also provides sensing redundancy that enables the

utilization of statistical methods to improve the quality of the signal recorded

from the reaction. Millions of sensors distributed in an area about the size

of a finger nail used as biosensors show what could be the next generation of

biological assays. New tools will feature small and inexpensive devices that

allow untrained users to perform complex biological assays by leveraging

technology of the revolutionary semiconductor industry [18].

The platform that we have developed has been designed as the core of new

biological sensors. The ability to perform and monitor multiple DNA ampli-

fication reactions on a microchip with dried primers to promote automation

can create new kinds of biological sensing tools that take advantage of the

low cost, small size, and seamless integration with electronics of the tran-

sistor biosensors. However, this core element will need to be complemented

with other support systems to create devices that provide complete biosens-
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ing solutions for entities interested in pathogens detection. The next few

sections delineate possible future work that could lead to complete platforms

fabricated in large commercializable scales.

8.1 Methods for automated loading

In this work we conducted our on-chip reactions in nanoliter chambers. The

miniaturized reaction chambers are treated and loaded with a microinjec-

tion system that provides fine control of droplet size, low dead volumes, and

the possibility to automate fluid dispensing. However microinjection equip-

ment is large and expensive. It would severely undermine the portability and

cost of the DNA amplification system. Therefore new alternatives for load-

ing and sensor preparation techniques must be pursued. The combination

of microfluidic systems and microarray printing services would yield inex-

pensive and efficient sensor preparation and sample partition. There were

two tasks performed with the micro-injector: primer dehydration and sample

loading. The first task could be performed with inkjet printing tools that

have a very accurate control of the position and volume of dispensed fluids

[221]. The primer dehydration that is critical for multiplexed assay could

be performed with these commercially available tools developed to create

micro-arrays [222]. In addition, the use of more sophisticated mechanisms

developed in this industry can enable the dehydration of more reagents re-

quired for the reaction like dNTPs, buffers, and salts. The second task of

sample loading must be performed with small and simple devices that can

be part of the chip so the detection assays can be performed in a portable

setting. We have explored the use of PDMS microfluidic devices to partition

the sample in the reaction chambers. The microfluidic ‘greek-key’ presented

in Figure 8.1 and other structures utilized in digital PCR assays could be

replicated in our system to load the chambers with the reaction mix with

minimal equipment [223, 224]. By utilizing commercial tools to dry reagents

in the chip and microfluidic components to partition the sample to be ana-

lyzed it will be possible to overcome the use of the micro-injector and have

a truly portable system.
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Figure 8.1: Microfluidic Greek-Key. Studies for sample partitioning showing
schematics and microscope images of microfluidic partition with greek-key,
optimization of reservoir aperture, and photograph of full microfluidic chip.

8.2 On-chip cost effective reference electrodes

Chapter 5 of this work described studies for on-chip reference electrodes

and their effect on the ion-sensitive field effect transistor pH performance. In

those studies we developed protocols to coat different metals with polypyrrole

to significantly improve their referencing ability. However due to fabrication

constraints in the one million sensor array we were not able to apply these

techniques for the integrated version. In order to use the PPy techniques in

the ISFET array it will be necessary to modify the polymer deposition pro-

tocols to prevent damage to the sensing structures. Improved compatibility

between the polymerization process and the ISFET array can be obtained

by designing electrode layouts that minimize interference with the decoding

circuit, changing the solvent utilized during electrochemical deposition, or

modifying the cyclic voltammetry protocol to minimize stress in the fluidic

devices. Working on new fabrication methods to allow the deposition of

polypyrrole electrodes in the ISFET array will be a complex iterative pro-

cesses but it will result in better devices with three specific advantages over
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the gold-coated chambers reported in this dissertation. First, the pH sig-

nal will be larger with polypyrrole electrodes facilitating the identification of

the amplification by-products to distinguish positive and negative samples.

Second, on-chip electrodes would allow a higher density of independent reac-

tions. The gold coated chambers that were utilized to partition samples in the

array sacrifice many transistors that are not exposed to fluid. With on chip

electrodes a more precise partition could be obtained potentially increasing

the number of reactions that can be performed and improving multiplexing

ability. Finally, our studies demonstrated that the polypyrrole deposition can

be performed on non-precious metals such as nickel and iron reducing the

fabrication cost while improving performance. These advantages of utilizing

polypyrrole on-chip electrodes motivate further optimization of polymeriza-

tion protocols to exploit the advantages of the semiconductor biosensors. The

photograph of Figure 8.2 shows the ISFET array chip with on-chip electrodes

for polypyrrole deposition studies.

Figure 8.2: ISFET array with on-chip electrodes for PPy deposition

8.3 Embedded heaters and fast thermocycling

The loop-mediated isothermal amplification that we use for the detection

of pathogens is triggered at 60 − 65 ◦C. In the experiments reported in this

work we utilized external heating sources to drive the amplification reaction.

However, creating heating structures embedded in the silicon chip will result
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in more portable devices, allow real time analysis, and reduce the detection

time. Our collaborators in TSMC have created grids of polysilicon that can

be used as resistive heaters embedded in the silicon chip [190]. Cross section

and top-view schematics of the heaters are presented in Figure 8.3 that also

shows an adjacent diode that is used as temperature control. With these

heaters it will be possible to perform real time analysis to do quantitative

detection reactions and conduct very fast PCR, two tasks difficult to do with

external heaters.

Figure 8.3: Cross section and top view schematics of embedded heaters on
the silicon chip

Quantitative analysis of LAMP reaction requires real-time monitoring of

the by-products to assess the time to threshold that is correlated with the

initial target concentration. This real-time detection of the electrical by-

products was not possible with external heating sources. External sources

introduce noise into the electrical measurement obscuring the signal from

the reaction. They are also difficult to incorporate in the measurement setup

diminishing the system robustness and repeatability of the experiments. On

the other hand, on-chip heating elements are simple, small, and provide great

control over the temperature profile. Also, the polysilicon grid on the chips

enables highly localized heating of small volumes. By reducing the thermal

mass it will be possible to perform very rapid thermocycling accelerating

the PCR reaction. Characterization experiments presented in Figure 8.4
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demonstrate the faster response of on-chip heaters. Panels (a) and (b) show

the heating / cooling response while panel (c) shows that the platform could

potentially complete the 3 temperatures of PCR in less than 500 ms. The

on-chip heaters will expand the functionality of the ISFET platform for DNA

amplification reactions.

Figure 8.4: Characterization of on-chip polysilicon heaters

8.4 Path towards integrated solutions

The use of microfluidic and electrochemical approaches for pathogenic detec-

tion in the system that we have developed has multiple advantages. It allows

the development of label-free assays, enables portability and automation, and

reduces cost of reagents and equipment. However it has two important intrin-

sic limitations. The first one is related to the quality and composition of the
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sample to be analyzed. In order to use microfluidics it is important to have

clear samples that can be flown through the fluidic network. The samples

that are typical for pathogen detection are usually complex and with many

colloids in solution. These samples cannot be flown through microfluidics

and need to be cleared and filtered before the miniaturized devices can be

utilized. Second, the sampled volume that can be handled in the microscopic

devices is low. The amount of sample that can be screened in a microflu-

idic device is intrinsically small. Therefore it is required to have samples

with analytes in a concentration high enough to have at least one analyte in

the sampled volume. These two challenges can be mastered if the detection

system is integrated with sample preparation or concentration devices.

Other researchers and collaborators have been working in other platforms

that focus on preparing/cleaning the sample and concentrating the target

analyte. Examples include the lateral flow concentration elements [90], im-

mobilized gangliosides [225], or DNA aptamer capture [226]. These systems

are complementary to the portable DNA amplification system and a uni-

fied system will create a complete solution that could be easily adopted by

parties interested in detecting pathogens from complex samples. The inte-

gration process between platforms should be dictated by a target application

that specifies sample quantity, quality, and required limit of detection in the

design of the complete system. After many years of development of novel

methods for bacterial detection, it seems that the combination of multiple

technologies will be the key to address the challenges of pathogenic detection

and microorganism identification.
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APPENDIX A

ON-CHIP RT-LAMP FOR VIRAL
DETECTION

The ISFET platform for LAMP reactions was developed to detect foodborne

pathogenic bacteria and improve current food safety inspections. However

the same platform can be used for other applications that can also benefit

from specific, low cost, and rapid diagnosis tools. In this appendix we briefly

document work on the use of the same platform for the detection of HIV

virus demonstrating that the DNA amplification methods can be used in

different scenarios. A reverse transcription LAMP (RT-LAMP) assay was

developed with primers designed to target the HIV p24 gene in viruses [227].

The assay has demonstrated robust detection of HIV directly in blood and it

is a good candidate for portable detection. Carrying out this method on-chip

can simplify the detection procedures allowing more frequent screenings in

multiple settings. Here we present the use of on-chip LAMP to detect down

to 30 copies/reaction of HIV cDNA from a human sample.

A.1 Formulation of the RT-LAMP

The LAMP reaction mix consisted of HIV viral cDNA sample in different

concentrations, a P24 primer mix, Betaine (800 mM), dNTP mix (1.4 mM),

isothermal amplification buffer (1x, New England Biolabs, MA), magnesium

sulfate (8 mM), Bst 2.0 WarmStart polymerase (0.64 units/µl, New England

Biolabs), Eva Green fluorescent dye (20 µM, Biotium, CA), and DI water.

The sample of HIV viral DNA was prepared using the PureLink purification

kit and the ProtoScript First Strand cDNA reverse transcription kit. The

p24 primer sequences were obtained from previous literature. One control

reaction with no viral DNA, and three others with 30, 3,000 and 300,000

copies of cDNA per reaction were prepared in order to test sensitivity. Reac-

tion mixes were then microinjected into the silicon micro-wells. The top row
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has the control reaction mix without template and the other three solutions

are injected in the described groups of 10 wells (Figure A.1 (a)). The chip

was heated to 65 ◦C and imaged with a fluorescence microscope every minute

for 60 min with the same protocol described in Chapter 3.

A.2 On-Chip amplification of p24 gene

Figure A.1 (a) illustrates the placement of 30 nL reaction droplets inside

individual wells in the silicon dioxide microarray creating 36 individual nano

reactions in the 4x4 mm chip. Figure A.1 (b) shows fluorescence images of

the LAMP reaction progression. Groups of pixels with the different con-

centrations achieve the fluorescence threshold at 11, 15, and 18 min. These

different threshold times are expected for each concentration and are used

to build the standard curve presented in Figure A.1 (c). In Figure A.1 (d)

the threhsold time is plotted against the equivalent virus/reaction concen-

tration. The linear regression shows an R2 value of 0.985 indicating a robust

sensitivity and a limit of detection of 30 particles/reaction.

Figure A.1: On-chip amplification of HIV p24 with different viral
concentration in columns of the array

These preliminary experiments on detection of viruses show the ability
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to use the same platform that has been described in the main chapters to

detect targets other than bacterial pathogens. In recent publications the

same protocols were used for the detection of viruses using a smartphone

[218]. These new approaches incorporate microfluidic mechanisms for sample

preparation and smartphone-based fluorescence imaging of the amplificaiton

reactions to create a small and portable detection unit, showing that on-

chip detection in micro-chambers can be integrated with other miniaturized

systems to create integrated solutions. This experience has demonstrated

that the methods developed for on-chip amplification can be tailored for

multiple applications simply by changing the primer set and will allow the

detection of different pathogenic entities based on their genetic composition.
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APPENDIX B

ISFET ARRAY SENSOR TESTER AND
SOFTWARE

This appendix describes the operation of the IC tester and software that are

used to interrogate the elements of the array. The testing setup is shown

in Figure B.1. It is composed of a PCB with a 256 socket where the wire

bonded device is connected, a power source supplying -15 V and +15 V to

the transimpedance amplifier, and a NI PXI IC testing rack with excitation

and reading cards.

Figure B.1: Testing setup for ISFET array measurement

The user would connect the chip to the 256 PGA socket, then turn on

the power supply, and start the MST3 software. Do not connect the chip

while the circuit is powered to prevent electrostatic discharge damage. The

MTS3 software will open the launcher and panel control windows shown in

Figure B.2. The user will then open the desired project with the scripts to

test the specific array. C scripts have been created by OpenATE (Hsinchu,

Taiwan) and coordinate excitation and reading of the IC testing cards. With
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the appropriate project loaded the user will click Utility and TP build to

open the editor shown in Figure B.3 (a). In this window the user will define

the excitation voltages, number of cycles performed in the array, and lead

time between cycles.

Figure B.2: Launcher and panel control of MTS3 software

After operation variables are defined the user should click on the ‘Test’

tab to open the window shown in Figure B.3 (b). Here the chip ID with

any other relevant experimental information can be described in the chipid

variable. The user should then save and compile the project with icons in the

tool bar, and go back to the launcher to initialize and run the code (green

man and play button in the tool bar). The program will then execute the

measurements and output a csv file with voltages that are related to the

drain current in each transistor.
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Figure B.3: MTS3 editing windows to define voltages and chip ID
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APPENDIX C

SELECTED MATLAB SCRIPTS AND
ROUTINES

This appendix specify short subroutines in Matlab used for data analysis or

collection. Complete code can be found in our group’s website

(libna.mntl.illinois.edu).

C.1 Micromanipulator control

1

%Initialize communication with Agilent E3647A to trigger

injection.

3 FG_E3647A_init

%set Agilent at 5 so there is no injection (Negative logic)

5 FG_E3647A_set_voltage (5 ,0.5);

7

9 %This gets data from text boxes

speed = str2num(get(handles.edit_speed ,’String ’));

11 zinj= str2num(get(handles.edit_zinj ,’String ’));

zrel= str2num(get(handles.edit_zrel ,’String ’));

13 deltax= str2num(get(handles.edit_x ,’String ’));

deltay=str2num(get(handles.edit_y ,’String ’));

15 columns= str2num(get(handles.edit_columns ,’String ’));

rows=str2num(get(handles.edit_rows ,’String ’));

17 delay=str2num(get(handles.edit_pause ,’String ’));

tiltpositive = get(handles.checkbox_tilt ,’Value’);

19 alignx = str2num(get(handles.static_AlignX ,’String ’))

aligny = str2num(get(handles.static_AlignY ,’String ’))

21

correctx = (alignx -deltax*(columns -1))/(columns -1);

23 correcty = (aligny -deltay*(rows -1))/(rows -1);
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25

%Send message for alignment in 0,0,0.

27 set(handles.static_status ,’String ’,’Align to 0,0,0. Press

enter in console ’)

%dummy=input(’Align the surface of 1x1 so motor micrometers

at: x=3 y=3 z= 20, switch to auto and enter ’);

29 %Initiate communication

if (exist(’obj_MCLxyz ’,’var’)==0)

31 MCLxyz_init;

end

33 %Set origin

35 MCLxyz_set_position (0,0,0)

%Set speed (faster gives issues on communication and stuck

motors)

37 MCXxyz_joystick_off(speed)

%Raise tip to injection point

39 MCLxyz_goto_abs (0,0,zinj)

set(handles.static_status ,’String ’,’Ready for injection?

Press enter in console ’)

41 %dummy=input(’Enter if ready for injection ’);

set(handles.static_status ,’String ’,’Inject every beep’)

43 %Cycle depending on number of droplets. Every time a row is

finished will

%change row.

45 c =1;

r=1;

47 movex=deltax+correctx;

movey=deltay+correcty;

49

for (i=1: columns*rows)

51 if (get(handles.pushbutton_start ,’UserData ’) ==2)

set(handles.static_status ,’String ’,’STOP. Program

was stopped ’)

53 else

%Change row columns status

55 set(handles.static_column ,’String ’,c);

set(handles.static_row ,’String ’,r);

57 %Inject

beep;

59 FG_E3647A_set_voltage (0 ,0.5);

pause(delay)

61 FG_E3647A_set_voltage (5 ,0.5);
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%Release

63 MCLxyz_goto_abs (0,0,zrel)

pause(delay)

65 %Go to next position

if (mod(i,columns)==0)

67 MCLxyz_goto_abs (-(deltax+correctx)*(columns -1)

,-(correcty*(columns -1)),zrel)

MCLxyz_set_position (0,0,zinj)

69 MCLxyz_goto_abs(correctx ,deltay+correcty ,zinj)

r=r+1;

71 else

MCLxyz_goto_abs(deltax+correctx ,correcty ,zinj)

73 c=c+1;

end

75 MCLxyz_set_position (0,0,zinj)

end

77 end

79 set(handles.static_status ,’String ’,’Array done. Press enter

in console ’)

dummy=input(’Array done. Press enter when ready to clear ’);

81 MCLxyz_goto_abs (5000 ,5000 , -30000)

FG_E3647A_close

83 MCLxyz_close;

C.2 Auto shutter control

%Initialize serial communication with shutter

2 s = serial (’COM1’);

fopen (s);

4

%This gets data from text boxes

6 temp = str2num(get(handles.edit -Temp ,’String ’));

inter = str2num(get(handles.edit -Interval ,’String ’));

8 expo = str2num(get(handles.edit -exposure ,’String ’));

ttime = str2num(get(handles.edit -TotalTime ,’String ’));

10

% Setting the status bar and getting position from mouse fix

12 set(handles.static_status ,’String ’,’Program has started ’)

% x is a temporary variable to move data
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14 x = getappdata(handles.pushbutton_start ,’UserData ’);

xm = x(1);

16 ym = x(2);

18 %start the loop , begins in init , steps of inter and finish

in final

for (i= 0: inter:ttime)

20 if (get(handles.pushbutton_start ,’UserData ’) ==2)

%Close shutter

22 fprintf(s,’A’);

set(handles.static -LeftTime ,’String ’ ,0);

24 set(handles.static -CurrentCapture ,’String ’ ,0);

fclose (s);

26 clear s

else

28 set(handles.static -LeftTime ,’String ’,ttime -i);

set(handles.static -CurrentCapture ,’String ’,i);

30 %Pause for the interval

pause(inter*60 - expo - 5)

32 %Open shutter

fprintf(s,’\’);pause (2)javasetmouselocation( xm,

ym);javaclickmouse([1

0]);pause(expo+3)fprintf(s,’A’);endendset(handles.static-status,’String’,’Program

finished with no interruption’)fclose (s);clear s

C.3 Import sequential data from IC tester

1

for foldercount = 1: numFolders;

3 strFoldercount = int2str ( foldercount );

eval ([’Foldername = folder ’, strFoldercount , ’;’]);

5

for device = 1: device_count;

7 strDevicecount = int2str ( device );

eval ([’Devicename = device ’, strDevicecount , ’;’]);

9

if(foldercount >1)

11 splitDevice = regexp (Devicename , replaceString

(1), ’split’);

part1 = char(splitDevice (1));
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13 part2 = char (splitDevice (2));

eval([’Devicename = [part1 , fold’,

strFoldercount , ’String , part2];’]);

15 end

17 Filename = [Foldername ,’\’,Devicename , ’.csv’]

M = csvread ( Filename , 1, 1 );

19 cutName = regexp (Devicename , ’_2015’, ’split’);

shortName = char (cutName (1));

21 cutName = regexp (shortName , ’TV1_’, ’split’);

shortName = char (cutName (2));

23 Devicename = shortName;

RawDrain ( foldercount , : ) = mean (transpose(M(:,

7:7+ sweeps -1)));

25 if (sweeps == 1)

DrainI ( foldercount , : ) = (( transpose(M(:,

7:7+ sweeps -1))) -0.2)*10;

27 else

DrainI ( foldercount , : ) = (mean (transpose(M

(:, 7:7+ sweeps -1))) -0.2)*10;

29 end

eval(sprintf(’DrainMatrix_%d = transpose(vec2mat(

DrainI ,1024));’, device));

31 RawNoise ( foldercount , : ) = std (transpose(M(:,

7:7+ sweeps -1)));

NoiseI ( foldercount , : ) = DrainI.*RawNoise ./

RawDrain;

33 eval(sprintf(’NoiseMatrix_%d = transpose(vec2mat(

NoiseI ,1024));’, device));

end

35 end

C.4 Pixel-normalized analysis

1 %Plot Id Vg for averaged values

pHArray=str2num(input(’Enter an array with test pH [a b ...]

’,’s’));

3

%Calculate slope

5 for (i=1: device_count -1)
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next=i+1;

7 eval(sprintf(’Diff_%d=DrainMatrix_%d-DrainMatrix_%d;’, i

,i,next));

eval(sprintf(’PatCurrentSens_%d=Diff_%d/( pHArray (%d)-

pHArray (%d));’, i,i,next ,i));

9 end

11 %Initialize matrix with sens data

SensCurrent = zeros(size(DrainMatrix_1));

13 NoiseCurrent = ones(size(DrainMatrix_1));

15 %Add the difference matrixes

for (i=1: device_count -1)

17 eval(sprintf(’SensCurrent=SensCurrent+PatCurrentSens_%d;

’, i));

end

19

for (i=1: device_count)

21 eval(sprintf(’NoiseCurrent= max(NoiseCurrent ,

NoiseMatrix_%d);’, i));

end

23 NoiseCurrent(NoiseCurrent ==0) =0.5;

SensCurrent = SensCurrent /( device_count -1);

25 Tam=size(SensCurrent);

if (Tam (1) ==1024)

27 ResolutionCurrent = ResolutionCeiling1K ((3*NoiseCurrent)

./ SensCurrent);

else

29 ResolutionCurrent = ResolutionCeiling(NoiseCurrent ./

SensCurrent);

end

C.5 ESD routine for outlier elimination

function [FilteredArray ,testT] =ESD_OutliersDelete(x,r,alpha

)

2 xy =x;

%Calculate mean and standard deviation for array

4 for(i=1:r)

aver = mean(xy);
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6 dev = std(xy);

%Compute largest gap

8 Gap_min = abs(aver -min(xy));

Gap_max = abs(aver -max(xy));

10 %Calculate the R stadistic for the largest difference

R_value = max(Gap_max ,Gap_min)/dev;

12

%Obtain vector size and p_value (theorem shows equal to

1-alpha/2n)

14 totalN = max(size(xy));

if(totalN <r)

16 break

end

18

p_value = alpha/totalN;

20 df = totalN -2;

%Calculate t distribution

22 t_crit = tinv(p_value ,df);

\%Compute lambda

24 lambda_crit = (totalN -1)*t_crit/sqrt(totalN*(df+t_crit

^2));

26 %Eliminate Outlier

if(R_value >lambda_crit)

28 if(Gap_max >Gap_min)

xy(xy==max(xy))=[];

30 else

xy(xy==min(xy))=[];

32 end

end

34 end

36 FilteredArray = xy;

157



REFERENCES

[1] E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The
present and future role of microfluidics in biomedical research,”
Nature, vol. 507, no. 7491, pp. 181–9, 2014. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/24622198

[2] C. Toumazou and P. Georgiou, “Piet Bergveld - 40 years of
ISFET technology: From neuronal sensing to DNA sequencing,”
Electronics Letters, vol. 47, no. 26, 2011. [Online]. Available: http:
//digital-library.theiet.org/content/journals/10.1049/el.2011.3231

[3] M. U. Ahmed, I. Saaem, P. C. Wu, and A. S. Brown,
“Personalized diagnostics and biosensors: a review of the biology
and technology needed for personalized medicine,” Critical Reviews in
Biotechnology, vol. 34, no. 2, pp. 180–96, 2014. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/23607309

[4] Y. J. Chen, “Some new applications of MEMS in the biomedical
and environmental fields,” Advanced Materials Research, vol. 650, pp.
498–502, 2013. [Online]. Available: http://www.scientific.net/AMR.
650.498

[5] M. Balconi and R. Fontana, “Entry and innovation: an analysis
of the fabless semiconductor business,” Small Business Economics,
vol. 37, no. 1, pp. 87–106, 2009. [Online]. Available: http:
//link.springer.com/10.1007/s11187-009-9231-5

[6] B. Merriman, I. T. R&D Team, and J. M. Rothberg, “Progress in
Ion Torrent semiconductor chip based sequencing,” Electrophoresis,
vol. 33, no. 23, pp. 3397–3417, 2012. [Online]. Available: http:
//doi.wiley.com/10.1002/elps.201200424

[7] N. P. Pai, C. Vadnais, C. Denkinger, N. Engel, and M. Pai,
“Point-of-care testing for infectious diseases: diversity, complexity,
and barriers in low- and middle-income countries,” PLoS Medicine,
vol. 9, no. 9, p. e1001306, 2012. [Online]. Available: http:
//www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3433407

158

http://www.ncbi.nlm.nih.gov/pubmed/24622198
http://digital-library.theiet.org/content/journals/10.1049/el.2011.3231
http://digital-library.theiet.org/content/journals/10.1049/el.2011.3231
http://www.ncbi.nlm.nih.gov/pubmed/23607309
http://www.scientific.net/AMR.650.498
http://www.scientific.net/AMR.650.498
http://link.springer.com/10.1007/s11187-009-9231-5
http://link.springer.com/10.1007/s11187-009-9231-5
http://doi.wiley.com/10.1002/elps.201200424
http://doi.wiley.com/10.1002/elps.201200424
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3433407
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3433407


[8] M. Hamon, O. Oyarzabal, and J. W. Hong, “Nanoliter/picoliter
scale fluidic systems for food safety,” in Advances in Applied
Nanotechnology for Agriculture. American Chemical Society, 2013,
ch. 8, pp. 145–165. [Online]. Available: http://pubs.acs.org/doi/abs/
10.1021/bk-2013-1143.ch008

[9] E. L. Lewandrowski, E. M. Van Cott, K. Gregory, I.-K. Jang,
and K. B. Lewandrowski, “Clinical evaluation of the i-STAT
kaolin activated clotting time (ACT) test in different clinical
settings in a large academic urban medical center: Comparison
with the Medtronic ACT Plus,” American Journal of Clinical
Pathology, vol. 135, no. 5, pp. 741–8, 2011. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/21502428

[10] M. A. Poritz, A. J. Blaschke, C. L. Byington, L. Meyers, K. Nilsson,
D. E. Jones, S. A. Thatcher, T. Robbins, B. Lingenfelter, E. Amiott,
A. Herbener, J. Daly, S. F. Dobrowolski, D. H.-F. Teng, and
K. M. Ririe, “FilmArray, an automated nested multiplex PCR
system for multi-pathogen detection: development and application to
respiratory tract infection,” PloS One, vol. 6, no. 10, p. e26047, 2011.
[Online]. Available: http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid=3198457

[11] GENEU, “Our Genomics Revolution,” 2014. [Online]. Available:
http://geneu.com/about-geneu/about-us/

[12] P. Craw and W. Balachandran, “Isothermal nucleic acid amplification
technologies for point-of-care diagnostics: A critical review,” Lab
on a Chip, vol. 12, no. 14, pp. 2469–86, 2012. [Online]. Available:
http://pubs.rsc.org/en/content/articlehtml/2012/lc/c2lc40100b

[13] F. Ahmad and S. A. Hashsham, “Miniaturized nucleic acid
amplification systems for rapid and point-of-care diagnostics: A
review,” Analytica Chimica Acta, vol. 733, pp. 1–15, 2012.
[Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0003267012006265

[14] R. D. Stedtfeld, D. M. Tourlousse, G. Seyrig, T. M. Stedtfeld,
M. Kronlein, S. Price, F. Ahmad, E. Gulari, J. M. Tiedje, and S. A.
Hashsham, “Gene-Z: a device for point of care genetic testing using
a smartphone,” Lab on a Chip, vol. 12, no. 8, pp. 1454–1462, 2012.
[Online]. Available: http://pubs.rsc.org/en/content/articlehtml/2012/
lc/c2lc21226a

[15] Y. Zhang and P. Ozdemir, “Microfluidic DNA amplification–a review,”
Analytica Chimica Acta, vol. 638, no. 2, pp. 115–25, 2009. [Online].
Available: http://www.ncbi.nlm.nih.gov/pubmed/19327449

159

http://pubs.acs.org/doi/abs/10.1021/bk-2013-1143.ch008
http://pubs.acs.org/doi/abs/10.1021/bk-2013-1143.ch008
http://www.ncbi.nlm.nih.gov/pubmed/21502428
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3198457
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3198457
http://geneu.com/about-geneu/about-us/
http://pubs.rsc.org/en/content/articlehtml/2012/lc/c2lc40100b
http://www.sciencedirect.com/science/article/pii/S0003267012006265
http://www.sciencedirect.com/science/article/pii/S0003267012006265
http://pubs.rsc.org/en/content/articlehtml/2012/lc/c2lc21226a
http://pubs.rsc.org/en/content/articlehtml/2012/lc/c2lc21226a
http://www.ncbi.nlm.nih.gov/pubmed/19327449


[16] L. Jiang, M. Mancuso, Z. Lu, G. Akar, E. Cesarman, and D. Erickson,
“Solar thermal polymerase chain reaction for smartphone-assisted
molecular diagnostics,” Scientific Reports, vol. 4, p. 4137, 2014.
[Online]. Available: http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid=3929917

[17] Y. Mori, H. Kanda, and T. Notomi, “Loop-mediated isothermal
amplification (LAMP): recent progress in research and development,”
Journal of Infection and Chemotherapy, vol. 19, no. 3, pp. 404–411,
2013. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S1341321X13701223

[18] C. Guiducci and F. M. Spiga, “Another transistor-based revolution:
on-chip qPCR,” Nature Methods, vol. 10, no. 7, pp. 617–8, 2013.
[Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/23807193

[19] E. Scallan, R. M. Hoekstra, F. J. Angulo, R. V. Tauxe, M. A.
Widdowson, S. L. Roy, J. L. Jones, and P. M. Griffin, “Foodborne
illness acquired in the United States-Major pathogens,” Emerging
Infectious Diseases, vol. 17, no. 1, pp. 7–15, 2011. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3375761/

[20] L. Zach, M. E. Doyle, V. Bier, and C. Czuprynski, “Systems
and governance in food import safety: A U.S. perspective,” Food
Control, vol. 27, no. 1, pp. 153–162, 2012. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0956713512001326

[21] A. Niemz, T. M. Ferguson, and D. S. Boyle, “Point-of-care
nucleic acid testing for infectious diseases.” Trends in Biotechnology,
vol. 29, no. 5, pp. 240–50, 2011. [Online]. Available: http:
//www.ncbi.nlm.nih.gov/pubmed/21377748

[22] E. A. Vetter, J. D. C. Yao, N. L. Wengenack, F. R. Cockerill,
and T. F. Smith, “Real-time PCR in clinical microbiology :
Applications for routine laboratory testing,” Clinical Microbiology
Reviews, vol. 19, no. 1, pp. 165–256, 2006. [Online]. Available:
http://cmr.asm.org/content/19/1/165

[23] M. D. Adams, J. M. Kelley, J. D. Gocayne, M. Dubnick, M. H. Poly-
meropoulos, H. Xiao, C. R. Merril, A. Wu, B. Olde, R. F. Moreno,
A. R. Kerlavage, W. R. Mccombie, and J. C. Venter, “Complemen-
tary sequencing: expressed sequence tags and human genome project,”
Science, vol. 252, no. 1990, pp. 1651–1656, 1991.

[24] PRNewswire, “Polymerase chain reaction (PCR) technologies and
global markets,” BCC research, Wellesley, Tech. Rep., 2010.

160

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3929917
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3929917
http://linkinghub.elsevier.com/retrieve/pii/S1341321X13701223
http://linkinghub.elsevier.com/retrieve/pii/S1341321X13701223
http://www.ncbi.nlm.nih.gov/pubmed/23807193
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3375761/
http://linkinghub.elsevier.com/retrieve/pii/S0956713512001326
http://www.ncbi.nlm.nih.gov/pubmed/21377748
http://www.ncbi.nlm.nih.gov/pubmed/21377748
http://cmr.asm.org/content/19/1/165


[Online]. Available: http://www.bccresearch.com/market-research/
biotechnology/polymerase-chain-reaction-markets-bio087a.html

[25] H. VanGuilder, K. Vrana, and W. Freeman, “Twenty-five years
of quantitative PCR for gene expression analysis,” BioTechniques,
vol. 44, no. 4, pp. 619–626, 2008. [Online]. Available: http:
//www.biotechniques.com/article/000112776

[26] Y. Ho Kim, I. Yang, Y.-S. Bae, and S.-R. Park, “Performance
evaluation of thermal cyclers for PCR in a rapid cycling condition,”
BioTechniques, vol. 44, no. 4, pp. 495–505, 2008. [Online]. Available:
http://www.biotechniques.com/article/000112705

[27] T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe,
N. Amino, and T. Hase, “Loop-mediated isothermal amplification of
DNA,” Nucleic Acids Research, vol. 28, no. 12, p. E63, 2000. [Online].
Available: http://nar.oxfordjournals.org/content/28/12/e63

[28] X.-J. Ma, Y.-L. Shu, K. Nie, M. Qin, D.-Y. Wang, R.-B. Gao,
M. Wang, L.-Y. Wen, F. Han, S.-M. Zhou, X. Zhao, Y.-H. Cheng,
D.-X. Li, and X.-P. Dong, “Visual detection of pandemic influenza
A H1N1 Virus 2009 by reverse-transcription loop-mediated isothermal
amplification with hydroxynaphthol blue dye,” Journal of Virological
Methods, vol. 167, no. 2, pp. 214–7, 2010. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/20381535

[29] S. Chen, F. Wang, J. C. Beaulieu, R. E. Stein, and B. Ge, “Rapid
detection of viable salmonella in produce by coupling propidium
monoazide with loop-mediated isothermal amplification,” Applied and
Environmental Microbiology, vol. 77, no. 12, pp. 4008–16, 2011.
[Online]. Available: http://aem.asm.org/content/77/12/4008.long

[30] S. Endo, T. Komori, G. Ricci, A. Sano, K. Yokoyama, A. Ohori,
K. Kamei, M. Franco, M. Miyaji, and K. Nishimura, “Detection
of gp43 of Paracoccidioides brasiliensis by the loop-mediated
isothermal amplification (LAMP) method,” FEMS Microbiology
Letters, vol. 234, no. 1, pp. 93–7, 2004. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/15109725

[31] Q.-M. Kong, S.-H. Lu, Q.-B. Tong, D. Lou, R. Chen, B. Zheng,
T. Kumagai, L.-Y. Wen, N. Ohta, and X.-N. Zhou, “Loop-mediated
isothermal amplification (LAMP): Early detection of toxoplasma
gondii infection in mice,” Parasites & Vectors, vol. 5, no. 1, p. 2, 2012.
[Online]. Available: http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid=3280158

161

http://www.bccresearch.com/market-research/biotechnology/polymerase-chain-reaction-markets-bio087a.html
http://www.bccresearch.com/market-research/biotechnology/polymerase-chain-reaction-markets-bio087a.html
http://www.biotechniques.com/article/000112776
http://www.biotechniques.com/article/000112776
http://www.biotechniques.com/article/000112705
http://nar.oxfordjournals.org/content/28/12/e63
http://www.ncbi.nlm.nih.gov/pubmed/20381535
http://aem.asm.org/content/77/12/4008.long
http://www.ncbi.nlm.nih.gov/pubmed/15109725
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3280158
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3280158


[32] Eiken Chemical Co, “The principle of LAMP method About LAMP
method,” 2005. [Online]. Available: http://loopamp.eiken.co.jp/e/
lamp/

[33] K. Nagamine, T. Hase, and T. Notomi, “Accelerated reaction by loop-
mediated isothermal amplification using loop primers,” Molecular and
Cellular Probes, vol. 16, no. 3, pp. 223–229, 2002. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0890850802904159

[34] Z. K. Njiru, “Loop-mediated isothermal amplification technology:
Towards point of care diagnostics,” PLoS Neglected Tropical
Diseases, vol. 6, no. 6, p. e1572, 2012. [Online]. Available:
http://dx.plos.org/10.1371/journal.pntd.0001572

[35] M. M. Ali, F. Li, Z. Zhang, K. Zhang, D.-K. Kang, J. A. Ankrum,
X. C. Le, and W. Zhao, “Rolling circle amplification: a versatile
tool for chemical biology, materials science and medicine,” Chemical
Society reviews, vol. 43, no. 10, pp. 3324–41, 2014. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/24643375

[36] H. Zhou, K. Bouwman, M. Schotanus, C. Verweij, J. A.
Marrero, D. Dillon, J. Costa, P. Lizardi, and B. B. Haab,
“Two-color, rolling-circle amplification on antibody microarrays
for sensitive, multiplexed serum-protein measurements,” Genome
Biology, vol. 5, no. 4, p. R28, 2004. [Online]. Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=395787

[37] E. Cho, L. Yang, M. Levy, and A. Ellington, “Using a
deoxyribozyme ligase and rolling circle amplification to detect a
non-nucleic acid analyte, ATP,” Journal of American Chemical
Society, vol. 127, pp. 2022–2023, 2005. [Online]. Available:
http://pubs.acs.org/doi/abs/10.1021/ja043490u

[38] W. Zhao, C. H. Cui, S. Bose, D. Guo, C. Shen, W. P. Wong,
K. Halvorsen, O. C. Farokhzad, G. S. L. Teo, J. a. Phillips,
D. M. Dorfman, R. Karnik, and J. M. Karp, “Bioinspired
multivalent DNA network for capture and release of cells,”
Proceedings of the National Academy of Sciences, vol. 109,
no. 48, pp. 19 626–31, nov 2012. [Online]. Available: http:
//www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3511714

[39] B. Liu, X. Ouyang, J. Chao, H. Liu, Y. Zhao, and C. Fan,
“Self-assembly of DNA origami using rolling circle amplification based
DNA nanoribbons,” Chinese Journal of Chemistry, vol. 32, no. 2,
pp. 137–141, 2014. [Online]. Available: http://doi.wiley.com/10.1002/
cjoc.201300827

162

http://loopamp.eiken.co.jp/e/lamp/
http://loopamp.eiken.co.jp/e/lamp/
http://www.sciencedirect.com/science/article/pii/S0890850802904159
http://dx.plos.org/10.1371/journal.pntd.0001572
http://www.ncbi.nlm.nih.gov/pubmed/24643375
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=395787
http://pubs.acs.org/doi/abs/10.1021/ja043490u
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3511714
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3511714
http://doi.wiley.com/10.1002/cjoc.201300827
http://doi.wiley.com/10.1002/cjoc.201300827


[40] J. Inoue, Y. Shigemori, and T. Mikawa, “Improvements of rolling
circle amplification (RCA) efficiency and accuracy using Thermus
thermophilus SSB mutant protein,” Nucleic Acids Research, vol. 34,
no. 9, p. e69, 2006. [Online]. Available: http://www.pubmedcentral.
nih.gov/articlerender.fcgi?artid=1463899

[41] O. Piepenburg, C. Williams, N. Armes, and D. Stemple, “Recombi-
nase polymerase amplification,” ASM Scientific Inc, assignee. Patent
US7399590B2. 20 Mar. 2004. Print.

[42] M. Euler, Y. Wang, P. Otto, H. Tomaso, R. Escudero, P. Anda, F. T.
Hufert, and M. Weidmann, “Recombinase polymerase amplification
assay for rapid detection of Francisella tularensis,” Journal of Clinical
Microbiology, vol. 50, no. 7, pp. 2234–8, 2012. [Online]. Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3405570

[43] D. J. Arndt-Jovin, M. Robert-Nicoud, D. a. Zarling, C. Greider,
E. Weimer, and T. M. Jovin, “Left-handed Z-DNA in bands of acid-
fixed polytene chromosomes,” Proceedings of the National Academy
of Sciences, vol. 80, no. 14, pp. 4344–8, 1983. [Online]. Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=384034

[44] Twist Dx Inc., “A Revolution in DNA Detection,” 2014. [Online].
Available: http://www.twistdx.co.uk/

[45] F. L. Kiechle and C. a. Holland, “Point-of-care testing and
molecular diagnostics: miniaturization required,” Clinics in laboratory
medicine, vol. 29, no. 3, pp. 555–60, 2009. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/19840687

[46] H. Ledford, “Life hackers,” Nature, vol. 467, no. 7316, pp. 650–
652, 2010. [Online]. Available: http://www.nature.com/news/2010/
101006/full/467650a.html

[47] J. Love and R. Marquis-Nicholson, “Portable battery-operated rapid
PCR amplification of the CAG repeat region of the Huntington disease
locus,” Research Journal of Biology, vol. 02, no. 06, pp. 191–196, 2012.
[Online]. Available: https://www.yumpu.com/en/document/view/
26128091/portable-battery-operated-rapid-pcr-scientific-journals

[48] OpenPCR, “Real-Time PCR Coming soon Your open-source PCR
Thermocycler ,” 2014. [Online]. Available: http://openpcr.org/

[49] BioFire, “FilmArray Panels,” 2014. [Online]. Available: http:
//filmarray.com/the-panels/

163

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1463899
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1463899
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3405570
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=384034
http://www.twistdx.co.uk/
http://www.ncbi.nlm.nih.gov/pubmed/19840687
http://www.nature.com/news/2010/101006/full/467650a.html
http://www.nature.com/news/2010/101006/full/467650a.html
https://www.yumpu.com/en/document/view/26128091/portable-battery-operated-rapid-pcr-scientific-journals
https://www.yumpu.com/en/document/view/26128091/portable-battery-operated-rapid-pcr-scientific-journals
http://openpcr.org/
http://filmarray.com/the-panels/
http://filmarray.com/the-panels/


[50] D. Matricardi, “The FilmArray System: A fire fueled by
consumables,” 2012. [Online]. Available: http://www.mdbuyline.com/
blog/the-filmarray-system-a-fire-fueled-by-consumables/

[51] T. Abe, Y. Segawa, H. Watanabe, T. Yotoriyama, S. Kai, A. Yasuda,
N. Shimizu, and N. Tojo, “Point-of-care testing system enabling 30 min
detection of influenza genes,” Lab on a Chip, vol. 11, no. 6, pp. 1166–7,
2011.

[52] S. C. K. Lam, K. L. Wong, K. O. Wong, W. Wong, and W. H.
Mow, “A smartphone-centric platform for personal health monitoring
using wireless wearable biosensors,” in 7th International Conference
on Information, Communications and Signal Processing, ICICS, 2009.
[Online]. Available: http://dx.doi.org/10.1109/ICICS.2009.5397628
pp. 1–7.

[53] D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George,
P. Nath, and B. T. Cunningham, “Label-free biodetection using a
smartphone,” Lab on a Chip, vol. 13, no. 11, p. 2124, 2013. [Online].
Available: http://xlink.rsc.org/?DOI=c3lc40991k

[54] H. Yu, Y. Tan, and B. T. Cunningham, “Smartphone fluorescence
spectroscopy,” Analytical Chemistry, vol. 86, no. 17, pp. 8805–13, 2014.
[Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/25098859

[55] E. J. Topol, “Individualized medicine from prewomb to tomb,”
Cell, vol. 157, no. 1, pp. 241–253, 2014. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0092867414002049

[56] Biomeme Inc., “Biomeme device is a real-time PCR thermocycler
that attaches to your iPhone 5,” 2015. [Online]. Available:
http://www.biomeme.com/

[57] P. R. Wakeley, J. Errington, S. Hannon, H. I. J. Roest, T. Carson,
B. Hunt, J. Sawyer, and P. Heath, “Development of a real time
PCR for the detection of Taylorella equigenitalis directly from genital
swabs and discrimination from Taylorella asinigenitalis,” Veterinary
Microbiology, vol. 118, no. 3-4, pp. 247–54, 2006. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/16971068

[58] K. Sugawara, M. Himeno, T. Keima, Y. Kitazawa, K. Maejima,
K. Oshima, and S. Namba, “Rapid and reliable detection of
phytoplasma by loop-mediated isothermal amplification targeting a
housekeeping gene,” Journal of General Plant Pathology, vol. 78, no. 6,
pp. 389–397, 2012. [Online]. Available: http://link.springer.com/10.
1007/s10327-012-0403-9

164

http://www.mdbuyline.com/blog/the-filmarray-system-a-fire-fueled-by-consumables/
http://www.mdbuyline.com/blog/the-filmarray-system-a-fire-fueled-by-consumables/
http://dx.doi.org/10.1109/ICICS.2009.5397628
http://xlink.rsc.org/?DOI=c3lc40991k
http://www.ncbi.nlm.nih.gov/pubmed/25098859
http://linkinghub.elsevier.com/retrieve/pii/S0092867414002049
http://www.biomeme.com/
http://www.ncbi.nlm.nih.gov/pubmed/16971068
http://link.springer.com/10.1007/s10327-012-0403-9
http://link.springer.com/10.1007/s10327-012-0403-9
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