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Abstract

The central topic of this thesis is the task of syntactic parsing with Combinatory Categorial Grammar

(CCG). We focus on pipeline approaches that have allowed researchers to develop efficient and accurate

parsers trained on articles taken from the Wall Street Journal (WSJ). We present three approaches to

improving the state-of-the-art in CCG parsing. First, we test novel supertagger-parser combinations to

identify the parsing models and algorithms that benefit the most from recent gains in supertagger accuracy.

Second, we attempt to lessen the future burdens of assembling a state-of-the-art CCG parsing pipeline by

showing that a part-of-speech (POS) tagger is not required to achieve optimal performance. Finally, we

discuss the deficiencies of current parsing algorithms and propose a solution that promises improvements in

accuracy – particularly for difficult dependencies – while preserving efficiency and optimality guarantees.
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Chapter 1

Introduction

What does it mean to “understand” a language like English? The very act of reading this sentence confirms

your ability to understand the meaning of a sequence of written words. You might take that ability for

granted, but the cognitive act of forming those twenty words into a complex, abstract idea is quite impressive.

Humans excel at this type inference – every day we effortlessly comprehend the meaning of hundreds of

sentences that we have never heard before. We can even recognize unfamiliar words and try to learn their

meaning from context. 1 To a human, learning to understand language is literally child’s play.

By what cognitive processes do we produce and understand language? Answering that question falls

under the enterprise of linguistics, the field of science devoted to the study of human language. Researchers

in linguistics and its related disciplines have devoted lifetimes to answering that question, and their progress

towards understanding how language encodes meaning is the foundation on which the subfield of artificial

intelligence known as natural language processing (NLP) is built.

NLP is concerned with a slightly different set of questions: foremost, can our ability to understand

language be accurately simulated by a computer? Can the quality of the simulation be measured quantita-

tively, in a meaningful and scientifically reproducible way? What kinds of models are needed to reach an

appropriate level of understanding, and is it feasible to learn and apply those models under the constraints

of real-world computing resources? For decades, computer scientists have collaborated with linguists, psy-

chologists, statisticians, mathematicians, and electrical and computer engineers in a collective attempt to

define and answer those questions. This thesis is a very small contribution to that effort.

1.1 Thesis statement

The central topic of this thesis is the task of syntactic parsing with Combinatory Categorial Grammar

(CCG). We focus on how pipeline approaches have allowed researchers to develop efficient and accurate

parsers trained on articles taken from the Wall Street Journal (WSJ). We present three approaches to

1For instance, the reader might not yet know the meaning of technical terms like supertagger, tri-training, or adaptive
nanoparticle surface chemistry, but still deduce that all of those terms are noun phrases that are related to science.
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improving the state-of-the-art in CCG parsing. First, we test novel supertagger-parser combinations to

identify the parsing models and algorithms that benefit the most from recent gains in supertagger accuracy.

Second, we attempt to lessen the future burdens of assembling a state-of-the-art pipeline by showing that

part-of-speech (POS) tagging is not required for optimal performance. Finally, we discuss the deficiencies

of current parsing algorithms and propose a solution that promises improvements in accuracy – particularly

for difficult dependencies – while preserving efficiency and optimality guarantees.

1.2 Contents

Chapter 2: We begin with an introduction to NLP, including an explanation of the role played by pipelines

in the development of state-of-the-art systems. We then define the CCG parsing task by briefly summarizing

the core elements of CCG and highlighting the main pieces of syntatic analysis provided by a CCG parse.

We also introduce the basic components of the CCG parsing pipeline.

Chapter 3: We present the supertagging models that comprise the state-of-the-art over the last ten years,

including recent work with bi-directional Long Short-Term Memory (LSTM) models that have dramatically

improved performance. We show that these new supertaggers are not only more accurate than the previous

state of the art, but also more “certain” in their predictions.

Chapter 4: We describe the algorithms and state-of-the-art statistical models that predict a parse for a

supertagged sentence. We show that parsing accuracy can be preserved using tag feature templates based on

the Viterbi supertag assignment instead of POS tags, suggesting that POS tagging may not be necessary for

a state-of-the-art CCG parsing pipeline. We illustrate how the accuracy and certainty of LSTM supertaggers

permit an extremely efficient non-parametric A* parsing algorithm to approach state-of-the-art performance.

However, we show that existing parsing models surpass the A* baseline of even the most accurate supertagger,

and conclude that additional signal is required to accurately model long-range dependencies.

Chapter 5: We conclude by discussing ideas for improving end-to-end performance by relaxing the con-

straints of the pipeline to allow joint inference, while limiting the costs to efficiency that existing approaches

incur.

2



Chapter 2

The CCG Parsing Pipeline

2.1 Introduction

Natural language understanding is a challenging research problem. It is difficult to solve, in that despite

the considerable resources devoted to the effort, there is no general-purpose NLP system that can approach

human performance across the full array of linguistic tasks – many of which are so intuitive to us that we

take our own facility for granted. It is also difficult to define, in that it is difficult for the community to

agree on what it would mean to “understand” language in a general setting, or even how to determine when

that holistic bar is surpassed.

Instead, the overarching problem can be thought of as the aggregate of the high-level linguistic goals that

humans reason about: the ability to understand and answer a question, for instance, or to translate a letter

from German to French. Each of these high-level goals can be broken up into a series of connected subtasks,

each with a problem definition, resources, and evaluation metrics agreed upon by the interested research

subcommunity. This division serves several practical purposes. First, research groups can focus their efforts

on a tractable, reasonably well-defined problem and develop approaches to solving it that are informed by

their particular expertise. Specialization within the community allows for focused progress and ideological

diversity.

Second, “sharing” the pursuit of a task allows researchers (or funding institutions) to curate human-

annotated data, which is typically expensive. The specific type of annotation depends on the goals of the task,

but the intent is always for the resulting annotated resource to provide a meaningful metric for evaluating a

system against a quantitative measure of human ability. By publishing and adhering to consistent standards

for experimental conditions (e.g. train/test/development splits), different approaches can be fairly compared

against each other and results can (in theory) be replicated and verified by other scientists. It also allows

for a reasonable condition that a specific subtask is not “solved” until an automated system can at least

match the level of inter-annotator agreement on the subtask’s evaluation metric. This empirically-driven

definition of scientific progress can make it difficult to compare different theoretical approaches (as one might

3



do when designing an experiment in a field like linguistics), because the variance introduced by engineering

and training any sufficiently complex NLP system can significantly obscure the correlation with the true

(latent) linguistic processes the system is attempting to simulate.

Finally, treating subtasks independently allows researchers to more easily apply the progress of others

towards solving their own task. When treating a problem as a sequence from low-level tasks to more complex

high-level tasks, higher performance on earlier tasks can propagate and improve performance on later tasks;

this approach is known as pipelining. An NLP pipeline refers to a modular sequence of component systems

that each contribute some type of annotation to the original input (e.g. raw text). Components are tailored to

a specific subtask, but components in the pipeline have access to the analyses produced by earlier, typically

lower-level components; in many cases, the lower-level annotations are incorporated as useful features to

improve the accuracy of the higher-level inference, or make inference more efficient by restricting the search

space to a smaller feasible region. However, because the pipeline is one-way (results from earlier components

are fixed), errors made by earlier components also propagate and may be difficult to recover from. In the ideal

pipeline, different systems or components can be swapped in and out of the pipeline, to more easily build on

the work of others. At a global planning level, subtasks can be prioritized according to difficulty and research

interest; once the performance on an existing subtask reaches a sufficient level, more difficult/complex tasks

can become a viable area of research (e.g. the progression of CoNLL shared tasks).

2.2 Goal

This thesis is preoccupied with the task of syntactic parsing with Combinatory Categorial Grammar (CCG).

We will focus on how pipeline approaches have allowed researchers to create efficient and accurate parsers for

a particular domain: articles from the Wall Street Journal. In the rest of this chapter, we will introduce the

tasks that have been identified as useful intermediate goals in producing a final parse analysis. Later chapters

will discuss the state-of-the-art systems that have been designed to solve each of these tasks, and analyze

the benefits of the pipeline by testing novel combinations of subcomponents. Finally, we will discuss ideas

for improving end-to-end performance by relaxing the constraints of the pipeline to allow joint inference,

while limiting the costs to efficiency that existing approaches incur.

2.3 Syntactic parsing

The syntactic parsing task is to infer the correct grammatical analysis of a sentence, known as a parse. A

parse specifies relations between the words in the sentence, though the exact form of the parse will vary

4



depending on the choice of representation and grammar formalism used by the parser. Its purpose is to

encode the underlying linguistic structure necessary to correctly deduce what the sentence says about the

world (its meaning). As a classic example, compare the sentence man bites dog with the sentence dog bites

man. They both consist of the same three word tokens, and all three words have the same sense, or individual

semantic meaning, in both sentences. However, taken in their entirety the two sentences describe two very

different scenarios with antithetical semantic meaning. Our ability to distinguish the meanings of these two

superficially similar sentences is precisely what a syntactic parser is trying to simulate.

As humans, we typically never have to think about how to analyze sentences in this way – we just do it

subconsciously. The syntactic parser is therefore one of the earlier components in the NLP pipeline. As a

consequence, the input to the syntactic parser does not come with much extra information – typically POS

tags, if that.

One of the main resources for evaluating syntactic parsers is the Wall Street Journal (WSJ) portion

of the Penn Treebank [2]. In the 1990s, trained linguists annotated a large corpus of articles with POS

tags and constituent parse analyses (first with a skeletal context-free bracketing, and later adding some

predicate-argument dependency information). Performance on the parsing task is measured by comparing

the predicted parse’s agreement with these human annotations, either of the bracketing of constituents or the

word-word dependencies. These evaluation metrics can be refined to measure labeled agreement, in which

the predicted syntactic role of the constituent or dependency must also agree with the annotation to be

correct.

2.4 Combinatory Categorial Grammar

Combinatory Categorial Grammar [3, 4] is a formalism developed by Steedman while collaborating with

Szabolcsi [5,6] and Ades [7]. It is derived from Categorial Grammar [8,9], which provides the slash notation

for compositional syntactic categories along with a mechanism for inferring complex syntactic types by func-

tion application. CCG expands the space of functions to include other syntactically-motivated combinators,

which we we describe below. Among the formalism’s many attractive properties is that a CCG analysis

enforces a close relationship between the syntactic structure of a parse and the semantic meaning implied

by the analysis’s predicate-argument dependency structure [10].
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2.4.1 CCG categories

In CCG, a constituent’s category is a function that directly encodes significant information about its syntactic

role. Rules in the grammar are obtained by applying combinators that determine how two categories combine.

The grammar is effectively defined by its lexicon (the set of lexical categories permitted for each word in the

language) and the set of allowed combinators.

CCG categories encode a substantial amount of syntactic information relative to the symbols in most

other grammar formalisms, and can be used to derive semantic meaning using lambda calculus.

Atomic categories

Atomic categories indicate concrete syntactic roles and do not take any arguments themselves. We use four

atomic categories: N (bare noun), NP (noun phrase), PP (prepositional phrase), and S (sentence), each of

which represents a constituent of the appropriate type. The categories can be augmented with features that

provide additional information, typically for different kinds of sentence categories like S[dcl] (declarative

sentence), S[q] (yes-no question), S[wq] (wh-question), etc.

Atomic categories (including features, if applicable) form the basic building blocks of the complex functor

categories.

Complex categories

Complex categories, or functors, take the form X/Y or X\Y (where X and Y may be either atomic or

complex); both represent a function that takes an argument category Y and produces a result category X.

The direction of the slash indicates whether the argument Y is absorbed from the right (/) or left (\) of the

functor. For example, the determiner category NP/N takes a bare noun argument on the right and produces

a noun phrase as a result; an intransitive declarative verb phrase S[dcl]\NP applied to a subject NP on its left

results in a declarative sentence S[dcl]. Modifier categories X|X 1 can combine with an argument of type X

regardless of the argument’s feature, if any (e.g. the adverb category (S\NP)\(S\NP) is allowed to combine

with both S[dcl]\NP, S[wq]\NP, etc.), but otherwise there must be feature agreement between functor and

argument.

The arity of a complex category is defined as the number of arguments it takes; for example, the arity of

the category ((S\NP1)\(S\NP)2)/NP3 is three. The index of each argument is indicated by a subscript.

1| is shorthand and represents either / or \
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2.4.2 CCG combinators

We briefly describe the set of CCG combinators used in our grammar; we recommend [4,11] and especially [3]

for a more thorough treatment of the subject.

Application

The basic combinatory schema is function application, in which a functor X|Y combines with an adjacent

argument Y in the appropriate direction to produce a result X. See Figure 2.1 for an example: each step in

the derivation consists of either forward or backward application, indicated by > and < , respectively.

John loves the opera

NP (S\NP)/NP NP/N N
>

NP
>

S\NP
<

S

Figure 2.1: The derivation for the sentence John loves the opera.

CCG differentiates between head-argument and head-modifier relations; when modifier categories of the

form X|X) are applied to an argument X, the head indices of the resulting category will be the same as the

modified argument.

Composition

The composition combinator operates on two functors; in the case of forward composition, X/Y and Y|Z

combine to produce X|Z. In backward composition, Y|Z and X\Y combine to produce X|Z. The degree of

composition is defined to be the arity of Z. Under this convention, application is equivalent to composition

with degree 0. In English, composition is necessary for modeling relative clauses and adverbial modifiers.

Coordination

In the sentence John and Mary eat pizza, both people are eating. In order to recover both dependencies,

CCG allows conjuncts of the same syntactic type to combine into a single constituent via coordination. The

resulting constituent has the same category as the conjuncts and combines their head information.
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Type-raising

The unary type-raising schema allows a category Y to type-raise to a new functor X/(X\Y) (forward type-

raising) or X\(X/Y)(backward type-raising). Thus Y, which might have previously served as an argument

to X\Y using backward application, can instead type-raise to X/(X\Y) and take X\Y as an argument. Both

analyses have the same result category X, which introduces spurious ambiguity that can harm the ability of

a statistical parser to recover the correct parse. Spurious ambiguities can be prevented by applying normal-

form constraints [12, 13]. The grammar may also contain unary type-changing rules, which simply replace

category X with Y, leaving head information unchange. The most common of these converts atomic nouns

to atomic noun phrases, but others are necessary to generate the WSJ as well.

2.5 Parsing with CCG

In this section, we describe the most popular resource available for the supervised CCG parsing task and

introduce the three main elements of a CCG parse.

2.5.1 CCGbank

Just like the Penn Treebank from which it is derived, CCGbank [14,15] is a critical resource for developing,

training, and evaluating statistical parsers in a rigorously reproducible setting. The first statistical models

for wide-coverage CCG parsing were developed by Hockenmaier and Steedman [10,11] and Clark et al. [16];

the first work defines joint probability distributions factored over derivation structures (parse trees) and

sentences, while the latter defines a conditional distribution under which the dependency parse, conditioned

on the sentence. Together, they demonstrated that statistical parsers could recover the (unlabeled) word-

word dependencies of Wall Street Journal text with accuracy comparable to that of state-of-the-art parsers

at the time, such as Collins’s lexicalized PCFG models [17–19]. The experiments performed later in the

paper use CCGbank exclusively for training (Section 02-21), development (Section 00), and testing (Section

23). As a testament to the enduring popularity of the resource, other CCGbanks have been produced as

well [20] and are used to train and evaluate CCG parsers in other languages and domains beyond the English

WSJ.

2.5.2 Elements of a CCG parse

A CCG parse for a sentence consists of three main parts. First, every word in the sentence is associate with

a pre-terminal (lexical) syntactic category know as a supertag. Supertags are significant because in (C)CG
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the lexicon encodes most of the syntactic information of a particular language. From these lexical categories

the grammar licenses a rule-based parse tree that spans the sentence. Every node in the tree consists of a

syntactic category and a set of one or more lexical heads. From this tree one can extract a set of labeled

dependencies that indicate the predicate-argument structure encoded in the analysis.

2.5.3 Supertags

The pre-terminal categories in a CCG parse tree are known as supertags or lexical categories. We show

a sample 1-best supertag sequence in Figure 2.2, where the lexical categories of the adverb ardently and

adjective classical reflect their syntactic role as modifiers.

John ardently loves classical opera

NP (S\NP)/(S\NP) (S\NP)/NP N/N N

Figure 2.2: Example supertags for the sentence John ardently loves classical opera.

Supertags can be atomic or complex. Because of the size of the CCG lexicon, predicting the correct

supertag for a particular word token may be difficult (and therefore, token- and sentence-based measure of

supertagging accuracy correlate with parsing performance). However, successfully identifying the correct

tag can greatly reduce the burden on the parsing model.

2.5.4 Derivations

A CCG derivation specifies how combinatory rules are applied to constituents to build a parse tree. Figure 2.3

shows the derivation for the sentence John ardently loves classical opera. This derivation indicates that the

adverb attaches to the verb before the verb’s direct object argument is filled, using composition (>B).

John ardently loves classical opera

NP (S\NP)/(S\NP) (S\NP)/NP N/N N
>B >

(S\NP)/NP N
>T

NP
>

S\NP
<

S

Figure 2.3: Example derivation for the sentence John ardently loves classical opera.
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2.5.5 Predicate-argument dependencies

In CCGbank, the predicate-argument structure of each derivation is encoded in a set of bilexical (word-word)

dependencies [3, 10]. For each head word assigned a complex lexical category in the derivation, the head

is traced to its maximal projection (the point in the derivation where the head serves as an argument to

another functor). Along this path, dependencies are generated whenever an argument slot in the initial

lexical category is filled by combining with another constituent. Each of these dependencies is labeled with

the head word (index), head lexical category, and the index of the filled argument slot, along with the

head word (index) of the argument constituent. If the argument constituent has multiple heads (e.g. after

coordination), a dependency is generated for each.

Dependent Head Label Slot

John loves (S\NP1)/NP2 1

opera loves (S\NP1)/NP2 2

opera the NP/N1 1

Figure 2.4: Labeled predicate-argument dependencies for the sentence John loves the opera.

The derivation for John loves opera from the previous example (Figure 2.1) produces the dependencies

shown in Figure 2.4.

CCG dependency graphs are allowed to have non-projective (i.e. crossing) dependencies. Additionally,

words can depend on multiple parents. For example, in the sentence John loves and Mary hates the opera,

the word opera is the direct object of both verbs love and hate. Figure 2.5 provides the derivation for this

sentence, while Figure 2.6 shows the predicate-argument dependencies. Due to coordination, the constituent

with category S/(S\NP) spanning John loves and Mary hates has both loves and hates as heads, due to

coordination. Thus, a CCG dependency graph is not necessarily a tree. Labeling dependencies based

on lexical category helps avoid confusion due to spurious ambiguities and type-raising, as in the previous

example.
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John loves and Mary hates the opera

NP (S\NP)/NP conj NP (S\NP)/NP NP/N N
>T >T >

S/(S\NP) S/(S\NP) NP
>B >B

S/NP S/NP
<Φ>

S/NP
>

S

Figure 2.5: The derivation for the sentence John loves and Mary hates the opera. Type-raising and coordination
facilitate the long-range dependency between loves and opera.

Dependent Head Label Slot

John loves (S\NP1)/NP2 1

opera loves (S\NP1)/NP2 2

opera the NP/N1 1

Mary hates (S\NP1)/NP2 1

opera hates (S\NP1)/NP2 2

Figure 2.6: Labeled predicate-argument dependencies for the sentence John loves and Mary hates the opera.

It is impossible to produce a perfect labeled dependency analysis without correctly predicting each lexical

category unless the grammar allows type-changing, so quality of the supertagger will have a large effect on

the accuracy of the parser. Wide-coverage grammars are ambiguous by necessity, and a derivational model

is required to select the best parse from even a perfect sequence of supertags 2. As we will see later in this

chapter, the expressive power of CCG is such that even a relatively simple heuristic can be paired with a

sufficiently accurate supertagger to produce extremely accurate parses. However, while supertag accuracy

and derivational metrics defined over the rule-based parse tree are highly correlated with parsing accuracy,

the ultimate measure of a syntactic CCG parser is its ability to correctly predict the labeled predicate-

argument dependencies for an input sentence, as these will provide the richest representation of the sentence

to components further down the NLP pipeline.

2For instance, the noun phrase man next to the child with the blue hat contains ambiguous prepositional phrase attachment;
it is unclear whether the man or the child is the one with the hat, as both analyses are syntactically plausible
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2.6 CCG parsing pipeline

Finally, we briefly introduce the three components of the CCG parsing pipeline: POS tagging, supertagging,

and parsing.

2.6.1 POS tagging

Traditionally, the CCG pipeline relied on a POS tagger to help recognize unknown or rare words. More

recent supertaggers avoid this dependency by relying on word embeddings [21, 22] instead of discrete word

indicators; word embeddings represent each word as a multi-dimensional vector, and these vectors can be

learned by processing large amount of unlabeled text. However, the best log-linear CCG chart parsers

still use features defined over POS tags. As supertags themselves encode a significant amount of syntactic

information, we should be able to adapt the models by treating the Viterbi supertag assignment 3 as if it

were a sequence of automatically assigned POS tags, and generate features based on those lexical categories.

We evaluate the effects of this modification in Chapter 4.

2.6.2 Supertagging

The supertagger prunes the space of possible analyses by rejecting improbable (and often incorrect) su-

pertags, improving both the speed and the accuracy of the final parser [23]. Because CCG is a strongly

lexicalized grammar formalism where the space of combinatory rules is small relative to the space of possible

categories, an assignment of (on average) one or two possible categories to each token with a high level of

accuracy significantly reduces the burden on the statistical parsing model. The sequence modeling inherent

in the supertagger is reasonably robust to rare or unseen words, which can often be correctly labeled based

on their surrounding context.

2.6.3 Parsing

The parser (consisting of a statistical parsing model and/or derivational heuristic) is responsible for finding

the best derivation given the output of the supertagger; the best derivation is the highest-scoring analysis

that spans the complete sentence. If no such analysis is found, there is a parse failure and no dependencies

are predicted. When using adaptive supertagging, the parser may back off to a more permissive beam and

try again. However, the productivity of the CCG lexicon is such that the size of the chart may grow too

large for the computer’s hardware to maintain, especially for long sentences or large beam widths. For this

3The most likely sequence of tags according to the supertagger, i.e. the sequence formed by taking the highest-probability
tag for each word.
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reason, most parsers will abort the attempt to find the spanning analysis if the chart grows larger than a

preset maximum number of items. These conflicting constraints illustrate a subtle, not-very-well-understood

point: the role of the grammar in pruning the search space, for both good and ill. The best treatment of

the subject that we know can be found in [23]. In the WSJ domain especially, treatment of commas (which

can indicate appositions, relative clauses, etc.) and coordination over compound noun phrases can have a

very large effect on the size of the chart.

2.7 Conclusion

We have outlined the supervised CCG parsing task and motivated our research into the effects of the CCG

parsing pipeline. In the next chapter, we will show how approaches to supertagging have evolved and the

effect that recent developments in deep neural networks have had on supertagging and multitagging accuracy.
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Chapter 3

CCG Supertagging Models

3.1 Introduction

The supertagger plays an important role in the CCG parsing pipeline: because of the compositional nature

of CCG, the lexical category of a word fully specifies its syntactic role. The CCG lexicon can allow many

different categories for a word, and even with dynamic programming it is computationally intractable for

the parser to generate and score all of the possible analyses that are licensed by the grammar using the full

lexicon. By predicting a probability distribution over candidate lexical categories, the supertagger provides

the parser with a importance means of prioritizing derivations within the full search space.

3.2 Adaptive supertagging

While the efficiency benefits of supertagging are tangible, there is an intrinsic cost to limiting the space

of lexical categories considered by the parser: specifically, it has no way to recover the correct analysis

if a needed supertag is pruned away. In fact, there is no guarantee that the supertags returned by the

supertagger can even form a complete parse. While the accuracy of current state-of-the-art supertaggers

is high (approximately 94.5% token accuracy on in-domain text), the one-best tag sequence for a sentence

is too brittle to allow for wide-coverage parsing. To avoid parse failures, the C&C parser [1] described in

Section 4.3 uses a lexical category for a particular token when searching for spanning analyses if and only

if the marginal probability assigned to that supertag is within a fraction β of the probability assigned to

the most-likely supertag for that token. In adaptive supertagging, β is initially set to a relatively large

value (β = 0.075) that is relaxed until a successful parse is found, the size of the chart exceeds a preset

maximum number of items, or β reaches a minimum value (usually 0.001 for chart parsing). In reverse

adaptive supertagging [23], the parser initially uses the most permissive value for β and tightens the beam

until the full chart is sufficiently small. Both of these techniques are variants of multitagging, in which the

supertagger is allowed to assign multiple lexical categories to a word.
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3.3 Statistical approaches to CCG supertagging

The earliest CCG supertaggers were based on maximum-entropy Markov models [24] and conditional random

fields (CRFs) [25], but recent work in CCG supertagging has promoted the use of neural nets, which have

greatly improved state-of-the-art performance. The first supertagger to use these techniques is the unigram

feed-forward tagger developed at the University of Edinburgh [26], which we discuss in Section 3.3.2. Later

work demonstrated that a simple A* decoder provided credible (if not quite state-of-the-art) performance

on the CCG parsing task using a supertag-factored model with no additional parameters beyond those by

the supertagger [27]. Later, recurrent neural net architectures like the Elman neural net [28] used by Xu

et al. [29] and the Long Short-Term Memory model [30] used by Vaswani et al. [31] and Lewis et al. [32]

improved these results even further by capturing long-range dependencies between supertags and approach

state-of-the-art parsing performance with the A* decoder; we provide a brief overview of these approaches

in Sections3.3.3 and 3.3.4.

3.3.1 Conditional random fields (CRF)

The C&C supertagger of [1] is a trigram conditional random field (CRF) that assigns supertags probabilities

conditioned on a five-word context window and the two preceding supertags. It defines features over the

words and POS tags in the context window, including bigram and skip-bigram features. For multitagging, the

forward-backward algorithm is used to compute the marginal probabilities on which adaptive supertagging

can be performed. Due to the O(C3) cost of inference in a trigram sequence model where C ≥ 425 is the

number of categories in the wide-coverage lexicon, a tag dictionary is used to restrict the set of considered

supertags at each word. If the word was observed at least k = 20 times in the training data, only those

categories observed with the word are licensed by the tag dictionary; for rare and unknown words, the

tag dictionary backs off to the categories observed with word’s POS tag (which is typically a large set of

categories).

This model relies on POS tags to handle unknown words and is very sensitive to the quality of those

tags; this is one reason that its performance degrades aggressively outside of its target domain. Later in

this chapter we report supertagging and oracle multitagging accuracies for this model with both gold and

automatically-assigned POS tags.
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3.3.2 Feed-forward neural nets (NN)

The feed-forward neural net (NN) of [27] was the first CCG supertagger to leverage word embeddings; the

classifer:

“uses features of the +/- 3 word context window surrounding a word. The key feature is word

embeddings, initialized with the 50-dimensional embeddings trained in [21], and fine-tuned during

supervised training. The model also uses 2-character suffixes and capitalization features.”

In addition to providing state-of-the-art multi-tagging performance across three domains (annotated CCG

data drawn from the Penn Treebank [2,14], Wikipedia [33], and GENIA [34,35]), the supertagger is extremely

efficient as all tagging decision are local and no sentence-level inference is needed. It also provides the

foundation for later work in efficient A* parsing [27].

The neural net of three layers: the lookup layer, which maps the words in the context vector to a feature

vector of fixed dimension; the (first) linear layer, which multiplies the feature vector by its matrix of weights

to produce a real-valued input for each category; and the soft-max transfer function, which takes those

inputs and outputs a probability distribution over lexical categories for the word in the center of the context

window.

While not used in EasyCCG due to overfitting, the supertagger can learn a non-log-linear model by

including a second hidden layerwhere the output of the first linear layer is passed through into a hard-tanh

transfer function before entering the second linear layer, which then outputs the real-valued inputs to the

soft-max output layer. In this case (but not the log-linear case), the number of hidden units in the first linear

layer can be varied; in both cases, the number of hidden units in the linear layer preceding the soft-max

output layer is fixed to the number of lexical categories permitted by the tagger (e.g. 425).

Lookup layer

The lookup layer stores a map between context words and their feature vectors; the feature vectors are

real-valued, and the weights are updated during training. When tagging a word token wt in a sentence using

a context window of 7, the current feature vectors for words wt−3 through wt+3 are concatenated to produce

the input for the first linear layer.

In both EasyCCG and our implementation, every word’s feature vector contains exactly 60 elements:

50 of these are initialized with the Turian-50 word embeddings [21] available online 1, while the other ten

are initialized with mean zero/unit variance Gaussian noise. Of these ten features, five depend on the

1 https://github.com/turian/crfchunking-with-wordrepresentations
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capitalization of the word and five depend on the word’s 2-character suffix. These features share the same

initialization across common words, but are learned separately for each word during training. If different

embeddings of dimension D are used, then each word’s feature vector will contain D + 10 elements.

In addition to the known words in the embeddings vocabulary, the lookup layer stores a randomly-

initialized feature vector that it uses when presented with a word that is not in its vocabulary, as well

as START and END markers used when the context window extends past the sentence boundary. With 60

stored parameters for each of the ∼270K words in the vocabulary, our implementation maintains ∼16.16M

parameters for the lookup layer; as noted in [29], most of the performance of the model comes from the

lookup tables. We will refer to the parameter matrix for the lookup tables as U.

First linear layer

In the log-linear model using a context window of size C and embeddings of dimension D to predict a set

of K categories, the first linear layer consists of K hidden nodes and is parameterized by a CD ×K weight

matrix and a K × 1 bias vector. It outputs a K × 1 vector. Thus, in our current Java supertagger using

Turian-50 embeddings with a context window of seven words to predict 425 categories, the first linear layer

has 178,925 parameters. The parameters in the weight matrix are initialized with zero-mean Gaussian noise;

the variance of the distribution is equal to the inverse of the square root of the number of input nodes (e.g.

350 for a seven-word context window where each word requires 50 features for its embedding). We will refer

to the parameter matrix for the linear hidden layer as V.

Soft-max output layer

The output layer consists only of a soft-max transfer function and has no parameters. Its main function is

to produce a normalized distribution over categories (which can be used for multitagging with a beam). By

choosing to maximize the log-likelihood of the correct category for each word, the gradient back-propagated

to the preceding linear layer is simple and numerically stable (see Equation 3.1).

Training the NN model

Learning proceeds stochastically over individual tokens in the training data. First, the tagger predicts a

probability distribution over tags given its current parameters. Then, weights are updated by propagating

gradients of the objective function back through the net. For an example, back-progagation is performed as

follows:
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Back-propagation: soft-max gradient

Let pj be the probability assigned to category cj by the net. The gradient of the objective function LL with

respect to nj , the jth hidden node in the preceding linear layer is:

∂LL

∂nj
= 1cj=c∗ − pj (3.1)

Back-propagation: linear layer

The update to the bias vector for the linear layer is simply a step towards the gradient calculated by the soft-

max layer, scaled by the learning rate. For the other parameters, the update to the jth row of the parameter

matrix is a step towards the gradient calculated by the soft-max layer, scaled by both the learning rate and

the input nj (received from the lookup table during classification).

The gradient propagated back to the lookup layer is equal to the transpose of the parameter matrix times

the gradient from the soft-max layer.

Back-propagation: lookup layer

The update to the lookup table parameters only affects the feature vectors for the words in the context

window. For those words, the update is simply a step towards the gradient calculated by the linear layer,

scaled by the learning rate.

Preprocessing and additional features

In addition to the word embeddings, Lewis and Steedman follow [36] and include discrete features for

capitalization and the 2-letter suffix of each word; these simple features are expected to generalize to other

domains better than more detailed ones would. As pre-processing, all words are lowercased before embedding,

and hyphenated words back off to their suffix.

Implementation

The EasyCCG-0.2 distribution 2 depends on Torch [37] 3 for training, which itself runs on LuaJIT 4. In

particular, the process of training a model is handled completely by Torch through a separate command-line

routine; once the network weights have been learned, the updated embeddings and other parameters are

loaded into memory before parsing.

2 https://github.com/mikelewis0/easyccg
3 http://torch.ch/
4http://luajit.org/
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The Torch library provides many different kinds of layers (nets are constructed by stacking these layers,

called “modules”, together); however, to emulate the best-performing version of the EasyCCG supertagger,

we only needed to re-implement three.

3.3.3 Recurrent neural net (RNN)

Recently, an improvement on the feed-forward neural net was proposed that resulted in a new state-of-the-

art [29]. While the feed-forward net uses word embeddings to remove the reliance on unreliable POS tags

and sparse, discrete features over words, it does not take anything more than local observed context into

account when tagging. Thus, it is not really a surprise that including contextual information beyond the

local context window would improve results.

By implementing a Elman recurrent neural net [38] (RNN), this supertagger is able to leverage the

previously-tagged context by maintaining an unbounded history in an additional hidden state layer. If

we let xt represent the 420-dimensional input vector used for tagging word wt (exactly as in the original

tagger) and ht represent the hidden layer (again, as in the feed-forward tagger), then the new hidden state

layer can be referred to as ht−1.

Using this notation (taken from [29]), the output of the hidden layer for the feed-forward network is:

ht = f(xtU) (3.2)

where f is the hard-tanh activation function, and the output of the softmax layer is:

yt = g(htV) (3.3)

where g is the softmax activation function.

In contrast, the value of the hidden layer ht in the recurrent net additionally depends on the hidden state

ht:

ht = f(xtU + ht−1W) (3.4)

while the output of the softmax layer remains the same (using the new definition of ht). By recurrently

updating the value of the hidden state, contextual history is accumulated as the tagger processes the sentence.
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Training

Training is similar to that of the feed-forward net, using a fixed learning rate of 0.0025 and 200 hidden nodes

for ht. They use mini-batched backpropagation through time [39] with a mini-batch size of 9 5. Additionally,

to prevent overfitting (which they observe at around 20 training epochs) they follow [40] and randomly

“drop-out” (mask) input features at a rate of 0.25. The dropout increased their 1-best tag accuracy from

92.63 to 93.07 (the feed-forward net has a 1-best accuracy of 91.10) and improved multi-tagging accuracy

as well.

3.3.4 Long short-term memory (LSTM)

While the RNN is more accurate than previous supertaggers, it has difficulty capturing long-range depen-

dencies. To help resolve this issue, Vaswani et al. [31] and Lewis et al. [32] implement bi-directional long

short-term memory (LSTM) models that perform well on difficult-to-predict supertags such as those encod-

ing prepositional arguments in verbs, as well as on prepositions themselves. We will differentiate these two

models by referring to them as LSTM-V and LSTM-L, respectively. LSTMs are well-suited to a task like CCG

supertagging because they are designed to model both local and long-range context. Additionally, propa-

gating signal in both directions mirrors the way that constituents in Categorial Grammar take arguments

either earlier or later in the sentence; see [31] for an extended investigation into the LSTM’s ability to predict

arguments in different slots based on a functor’s internal direction.

Tri-training

In addition to training their supervised LSTM on sections 02-21 of CCGbank, Lewis et al. also train a

semi-supervised model by adding additional data generated via tri-training [41]. To generate the data, they

created another instance of their parser that did not have access to the supertag probabilities (which we

refer to as Dep in the results in Chapter 4). Using these two parsers and an incremental shift-reduce CCG

parser [42], they parsed an additional 43 million words (more than 40 times the size of CCGbank) where

all three parsers produced parses with the same sequence of supertags; those supertags were then treated

as erzatz gold annotations, and the LSTM model was retrained on this data (we refer to this model as

LSTM-L-Tri).

5I don’t know if this is over 9 words or 9 sentences
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Supertagging model Dev. Test

CRF (Gold POS) 92.7 93.3

CRF (Auto POS) 91.5 92.0

NN 91.1 91.6

RNN 93.1 93.0

LSTM-V 94.2 94.5

LSTM-L 94.1 94.3

LSTM-L-Tri 94.9 94.7

Table 3.1: 1-best supertag accuracy on the development (00) and test (23) sections of CCGbank for a selection of
supertagging models. The trigram CRF supertagger Clark and Curran (2007) uses features based on POS tags (either
gold human-annotated tags, or assigned automatically by a POS tagger). The other supertaggers use neural net
architectures that do not require POS tagging: NN is the feed-forward unigram model of Lewis and Steedman (2014)
and RNN is the uni-directional recurrent model introduced in Xu et al. (2015). Finally, the LSTM-V model of Vaswani
et al., (2016) and the LSTM-L model Lewis et al. (2016) are both based on stacked bi-directional LSTMs, and use
different training procedures. LSTM-L-Tri is the latter LSTM model trained on additional unannotated data obtained
via tri-training.

3.4 Performance

Viterbi supertagging accuracy

The difficulty of predicting a correct supertag out of lexicon of hundreds of categories is well documented;

the task has been colorfully described as almost parsing [43]. Table 3.1 presents the 1-best supertagging

results for each of the supertagging models discussed in this chapter on sections 00 and 23 of CCGbank.

Multitagging accuracy

State-of-the-art supertaggers can now achieve over 94% accuracy on a 1-best per-token basis, but even at

that high level of performance the Viterbi supertag sequence is too brittle to support wide-coverage parsing

over a domain like the Wall Street Journal. Given the highly lexicalized nature of CCG, even a single

supertagging error can seriously harm the parser’s ability to recover the correct parse (or even any parse at

all). In a true uni-directional pipeline approach to CCG parsing, the parser would not be able to recover from

a supertagging error; however, techniques like adaptive supertagging and A* parsing relax that constraint

and allow the parser to recover supertags that were rejected by the supertagger (methods for doing so will

be discussed in the next chapter).

In this respect, 1-best supertagging accuracy is an informative but slightly flawed measure of the utility

of a supertagger to the entire CCG parsing pipeline. To more faithfully simulate the needs of the parser,

we can use an oracle score computed over an assignment of multitags. Once the multitagger has assigned a

set of tags to each token, the accuracy of the assignment can be computed as the percentage of tokens for
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which the correct supertag is included in the set. One way to measure the ambiguity of the assignment is to

look at the average number of supertags assigned to each word.

CRF (G) CRF (A) NN RNN LSTM-V

β Amb. Acc. Amb. Acc. Amb. Acc. Amb. Acc. Amb. Acc.

1.0 - 92.7 - 91.5 - 91.1 - 93.1 - 94.2

0.075 1.3 97.3 1.3 96.3 1.3 96.8 1.3 97.3 1.1 97.1

0.030 1.4 97.9 1.4 97.1 1.6 97.8 1.5 98.1 1.2 97.8

0.010 1.7 98.4 1.7 97.6 2.1 98.5 1.8 98.7 1.4 98.4

0.005 2.0 98.5 2.0 97.9 2.6 98.8 2.2 99.0 1.6 98.7

0.001 3.0 99.2 3.6 98.7 4.7 99.2 3.9 99.4 2.3 99.2

Table 3.2: Multitagger performance as a function of supertagging beam width β on section 00 of CCGbank. Amb.
refers to the level of ambiguity (i.e., the number of proposed categories per word) and Acc. indicates the per-word
multitagging oracle accuracy. Results are presented for the trigram CRF supertagger of Clark and Curran using tag
dictionaries and features based on gold and automatic POS tags; the baseline feed-forward neural net (NN) of Lewis
and Steedman that only uses local context; the RNN) of Xu et al. that does feed-forward inference over the full
sentence; and the bi-directional stacked LSTM model (LSTM-V) of Vaswani et al. Results were not available for either
the vanilla or tri-trained LSTM-L supertaggers, as Lewis et al. do not use adaptive supertagging in their parsing
algorithm.)

The multitagging performance metrics presented in Table 3.2 are tailored to the adaptive supertagging

regime: once the supertagger has produced a probability distribution over supertags for each token, the

multitag assignment is computed by applying a beam of width β; for each token, the beam defines a

threshold βpvit (where pvit is the probability of the Viterbi supertag) and supertags assigned probability

lower than that threshold are pruned.

The ambiguity levels for each supertagger are organized according to the beam widths β used by the

C&C parser when adaptive supertagging was introduced. Subsequent advances in statistical techniques

have improve supertagging accuracy to the point that current ambiguity levels of current supertaggers are

significantly lower than that of their predecessors. This is a good thing for supertagging – the models are

more certain in their predictions – but could cause unintended consequences for chart parsers tuned to the

older beam widths.
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3.5 Conclusion

In this chapter, we presented five supertagging models and showed that recently introduced LSTM supertag-

gers represent a quantum leap in performance on this task.

In the next chapter, we will present results showing the performance of these supertaggers when used

during adaptive supertagging for both our reimplementation of the C&C normal-form model and the Java

C&C parser.
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Chapter 4

CCG Parsing Models

4.1 Introduction

In this chapter, we focus on the task of recovering labeled predicate-argument dependencies from a su-

pertagged sentence. We introduce three parsing algorithms – A* search, CYK parsing, and beam decoding

– and discuss the properties of each. We then describe the statistical parsing models of [1], and describe a

simple technique to remove the models’ dependence on POS tags. We show that the accuracy and certainty

of the LSTM supertaggers described in the previous chapter permit an extremely efficient non-parametric

A* parsing algorithm to approach state-of-the-art performance. Previous work [32] using this algorithm

with a tri-trained LSTM supertagger obtained state-of-the-art accuracy, and reported that incorporating

a dependency model actually hurt performance. Even using probabilities assigned a weaker supertagger,

the best chart parsing model we tested outperforms both the A* baseline and their state-of-the-art system,

showing that there are attachment preferences that cannot be recovered by LSTM supertagger alone.

4.2 CCG parsing algorithms

Each of the algorithms described in this section searches for a CCG parse by generating analyses bottom-up,

beginning with supertagger assigned by the lexicon (or supertagger, in practice). The grammar specifies the

rules that combine subderivations to generate new constituents. Becase this process is completely determined

by the supertags assigned to words within the constituent’s span – a local decision – a wide-coverage grammar

will generate intermediate constituents that are inconsistent with the complete parse assigned the highest

probability by the parser’s statistical model.

This is part of the fundamental tension between accuracy and efficiency in a bottom-up parser: using

only local context, it is often difficult to predict how useful a constituent will be in constructing analyses

for the entire sentence. While incorporating signal from the supertag probabilities definitely helps, the

issue cannot be resolved by the supertagger alone – even a perfect 1-best supertag assignment can produce
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multiple legitimately-ambiguous parses.

Where possible, we try to highlight how the tradeoffs between efficiency and accuracy motivate each of

the following algorithms.

4.2.1 CYK

The Cocke-Younger-Kasami (CYK) algorithm [44, 45] is a polynomial-time 1 dynamic-programming algo-

rithm developed for parsing sentences with context-free grammars. It was first applied to CCG parsing

by [46]. The productivity of a wide-coverage CCG lexicon does not allow unconstrained CYK parsing in

practice, so the search space must be pruned by techniques like adaptive supertagging, tag dictionaries, or

a parsing beam that removes partial analyses based on an approximate figure of merit.

The CYK algorithm operates over a chart containing cells for every subspan of a sentence. The chart

is initialized by adding an item for each supertag to the appropriate cell in the chart. Then, constituents

spanning two adjacent words are generated by applying the rules of the grammar to the cross-product of

the lexical categories for each word; when two categories are allowed to combine, an item representing the

new constituent is created and added to the cell associated with its span. This item maintains backpointers

to the items that were used to generate it. When a statistical model is used to score the chart, the highest-

scoring subderivation for an item can be reconstructed by selecting the item’s highest-scoring backpointer

and recursively traversing the highest-scoring backpointers of its children. By filling cells of strictly increasing

span, dynamic programming ensures that best parse can be recoverd by back-tracking from the root of the

chart. However, if lexical categories or internal items have been pruned by any kind of beam, then the best

parse is not guaranteed to be optimal.

Dynamic programming is only valid if the scores assigned by the model decompose over items and

backpointers, so any non-local features that the model uses to score an item must be maintained as part

of the item’s equivalence class; thus, more expressive statistical models require more time and memory to

process the larger number of items that their features dictate.

4.2.2 Beam decoding

The beam-search decoding algorithm employed in Java C&C [47] also performs inference over a chart; instead

of storing the parse forest as a packed chart of constituents and backpointers, though, each cell maintains

a set of complete subderivations for its span. The number of subderivations in each cell is limited by the

beam size parameter, B.

1The algorithm requires Θ(n3|G|) time and memory in its worst case, where n is the length of a sentence and |G| is a constant
based on the size of the grammar.
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Cells are populated in the same order as in the CYK algorithm. Because each item is a complete

subderivation, during beam decoding the statistical model has access to a much wider range of non-local

features than would be feasible with CYK. However, this expressiveness comes at a cost: packed CYK charts

to store an exponentially large number of possible parses reasonably efficiently, and dynamic programming

allows the model to find the best one in polynomial time. With beam decoding, only the B highest-scoring

parses for a span are maintained, and there is no notion of equivalence between items (as it would be

expensive to compute). Thus, the beam decoding algorithm makes no guarantees about the optimality of

the returned parse, and is heavily dependent on the supertagger’s ability to correctly predict the necessary

lexical categories; once a constituent is pruned from the chart (i.e., none of the items is rooted in that

category) there is no mechanism to recover.

To mitigate the damage caused by pruning away a necessary constituent, beam decoding permits skim-

ming [48] dependencies from partial analyses in the event of a parse failure. If no spanning analysis is

found, a greedy heuristic is used to find the shortest sequence of non-overlapping subderivations that collec-

tively span the sentence. The dependency structure produced by the parser is the union of the dependency

structure for each partial analysis.

While the algorithm’s dependence on the supertagger makes it fragile in a pipeline, its ability to do

reasonably efficient inference 2 while using non-local context to predict the best parse is something we will

continue to discuss.

4.2.3 A* search

The supertag-factored A* parsing algorithm [27] developed by Lewis was introduced using the NN neural net

supertagger than only uses local context; at the time, its main contribution was efficiency: in constrast to

the heavily-optimized C&C parser, the Java implementation of the A* baseline achieved comparable parsing

speeds for considerably less engineering effort. However, the accuracy of the resulting parser was well below

state-of-the-art at the time. That changed when LSTMs were applied to CCG supertagging and the A*

baseline began to surpass many of the systems reported in the literature.

The A* parsing algorithm differs from CYK and beam decoding in that the order in which items are

processed is not based on their span; rather, the model maintains an agenda (priority queue) of items that it

intends to add to the chart. Items are prioritized by an upper bound on the score of the maximal parse with

which their best subderivation is compatible. In the supertag-factored model, this upper bound is obtained

2The maximum size of the chart is O(Bn2Dn), where Dn is a constant upper bound on the size of a subderivation of span
n, and the worst-case running time of the algorithm is Θ(B2n2C), where C bounds the time required to combine a pair of
derivations and depends on the model’s features and the implementation of the chart.
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by multiplying the probability of the best subderivation for an item with a simple heuristic: the product of

the supertagger probability of the Viterbi supertag for every word outside of the subderivation’s span. When

an item is popped off of the priority queue and added to the appropriate cell in the chart, the algorithm

queries the grammar to see which items in adjacent spans have categories that are allowed to combine with

the item’s category. The subsequenct combination operation is identical to that performed in CYK, but

produced items are pushed onto the agenda rather than added directly to the chart.

This “best-first” approach to parsing is well-suited to CCG parsing for at least two reasons. First, the

incremental process by which items are added means that no adaptive supertagging beam is required to

limit the size of a chart. When the first full parse is found, it is guaranteed that that parse is the optimal

analysis according to the supertagger. Second, the supertag-factored model reflects the intuition that CCG

encodes the grammar of a language is in the lexicon.

4.3 The C&C parser

For over a decade, the C&C parser [1, 25, 49, 50] developed by Clark and Curran was the standard against

which all other work in supervised statistical CCG parsing for the WSJ was measured. They introduced the

modern CCG parsing pipline by using a supertagger [24] to restrict the set of lexical categories considered

by their log-linear discriminative parsing models. In addition to parsing, their system provides input to the

semantic analysis tool Boxer [51–53].

The C&C parser is based on two statistical models: the normal-form model (Section 4.3.2) that defines

features over rule-based head relations, and the dependency model (Section 4.3.3) intended to explicitly cap-

ture predicate-argument structure. The hybrid dependency model incorporates both of these, and performs

the best. In this work, we reimplement their normal-form parsing model and test further modifications to

improve in-domain performance and eliminate the pipeline’s dependence on a part-of-speech tagger.

4.3.1 Java C&C

Originally written in optimized C, the C&C parser runs extremely quickly considering the algorithmic

complexity of its inference (CYK parsing with adapative supertagging). A more recent version of the

system, known as Java C&C, was released in part to facilitate future research. 3. Algorithmically, Java

C&C allows both CYK inference with (reverse-) adaptive supertagging and beam decoding. In addition

to reimplementing the normal-form model described in the next section, the system also provides a model

3From [47]: “The C&C CCG parser was designed with efficiency in mind, with some cost to the readability and usability of
the code base.”
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Structural tree features:

LexCat + Word (S/S)/NP + Before

LexCat + POS (S/S)/NP + IN

RootCat S[dcl]

RootCat + Word S[dcl] + bought

RootCat + POS S[dcl] + VBD

Rule S[dcl]→ NP S[dcl]\NP
Rule + Word S[dcl]→ NP S[dcl]\NP + bought

Rule + POS S[dcl]→ NP S[dcl]\NP + VBD

Rule dependency features:

Word–Word 〈company, S[dcl]→ NP S[dcl]\NP,bought〉
Word–POS 〈company, S[dcl]→ NP S[dcl]\NP,VBD〉
POS–Word 〈NN, S[dcl]→ NP S[dcl]\NP,bought〉
POS–POS 〈NN, S[dcl]→ NP S[dcl]\NP,VBD〉
Word + Distance(words) 〈bought, S[dcl]→ NP S[dcl]\NP 〉 + 2

Word + Distance(punct) 〈bought, S[dcl]→ NP S[dcl]\NP 〉 + 1

Word + Distance(verbs) 〈bought, S[dcl]→ NP S[dcl]\NP 〉 + 0

POS + Distance(words) 〈VBD, S[dcl]→ NP S[dcl]\NP 〉 + 2

POS + Distance(punct) 〈VBD, S[dcl]→ NP S[dcl]\NP 〉 + 1

POS + Distance(verbs) 〈VBD, S[dcl]→ NP S[dcl]\NP 〉 + 0

Table 4.1: Feature types and examples for the C&C normal-form model, taken from [1]. These entries show features
for a rule in the derivation for a sentence like the company bought stake.

specifically for beam-decoding that augments the normal-form model with non-local grandparent features.

We show that this augmented model is expressive enough to outperform the best published LSTM A*

baselines.

4.3.2 C&C normal-form model

The C&C normal-form model has two sets of features, both described in Table 4.1: structural tree features,

which lexicalize elements of the parse tree with the head word or POS tag, and rule dependency features,

which encode relationships between the head and sister words/POS tags of a binary rule (including three

distance metrics based on the number of intervening word tokens, punctuation marks, and verbs).
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Shared features

For leaves in a parse tree, only three features (the lexical category, along with the word and with the POS)

are stored; for the root of a parse (the children of TOP), there are also three: the final category itself, as well

as the category paired with the word or POS of the category’s lexical head. For every other backpointer,

there are three features for the CCG rule (A → B (C)), either on its own or augmented with the word or

POS of the rule’s lexical head.

Normal-form features

In the normal-form model, backpointers corresponding to binary rules have ten additional features defined

over the two children, all of which are extensions to the CCG rule. Four are obtained by annotating the rule

with the lexical heads of the children (Word-Word, Word-POS, POS-Word, and POS-POS); the remaining

six consist of the rule, the lexical head of the parent (as word/POS), and one of three measures of distance

between the lexical heads of the children. The three kinds of distance are in intervening words (0, 1, 2, 3+),

punctuation (0, 1, 2, 3+), and verbs (0, 1, 2+), where a token is classified as punctuation or verb based on

its POS tag.

A feature is included in the model if it occurs at least twice in the training data’s gold derivations. Under

this condition, the model includes roughly 425 thousand features.

4.3.3 C&C predicate-argument dependency model

The second C&C parsing model (which we have not reimplemented for this work) is the predicate-argument

dependency model. Building on the work in [16], the dependency model uses discriminative features to

predict the dependency structure directly. Like the normal-form decoder, the dependency model also uses

dynamic programing, though the equivalence class for items in the chart will additionally depend on the set

of unfilled dependencies. The definition of the equivalence class is motivated by model’s choice of features;

equivalent items must share the same set of attributes (e.g. category, lexical heads, etc.) from which the

features are obtained, to avoid inconsistent scoring.

Dependency features

In the dependency model, backpointers corresponding to binary rules also have features based on the (one

or more) predicate-argument dependencies that were filled by applying the rule. Each dependency feature

consists of (1) the head word/POS of the parent, (2) the lexical category of the parent’s head, (3) the “slot”

of the argument filled by this rule, (4) the head word/POS of the sister, and (5) a field indicating locality.
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Structural tree features:

LexCat + Word (S/S)/NP + Before

LexCat + POS (S/S)/NP + IN

RootCat S[dcl]

RootCat + Word S[dcl] + bought

RootCat + POS S[dcl] + VBD

Rule S[dcl]→ NP S[dcl]\NP
Rule + Word S[dcl]→ NP S[dcl]\NP + bought

Rule + POS S[dcl]→ NP S[dcl]\NP + VBD

Predicate-argument dependency features:

Word–Word 〈bought, (S\NP1)/NP2, 2, stake, (NP\NP )/(S[dcl]/NP )〉
Word–POS 〈bought, (S\NP1)/NP2, 2,NN, (NP\NP )/(S[dcl]/NP )〉
POS–Word 〈VBD, (S\NP1)/NP2, 2, stake, (NP\NP )/(S[dcl]/NP )〉
POS–POS 〈VBD, (S\NP1)/NP2, 2,NN, (NP\NP )/(S[dcl]/NP )〉
Word + Distance(words) 〈bought, S[dcl]→ NP S[dcl]\NP 〉 + 2

Word + Distance(punct) 〈bought, S[dcl]→ NP S[dcl]\NP 〉 + 1

Word + Distance(verbs) 〈bought, S[dcl]→ NP S[dcl]\NP 〉 + 0

POS + Distance(words) 〈VBD, S[dcl]→ NP S[dcl]\NP 〉 + 2

POS + Distance(punct) 〈VBD, S[dcl]→ NP S[dcl]\NP 〉 + 1

POS + Distance(verbs) 〈VBD, S[dcl]→ NP S[dcl]\NP 〉 + 0

Table 4.2: Feature types and examples for the C&C predicate-argument dependency model, taken from [1]. These
examples describe a long range dependency as in the stake which I bought.

30



If the dependency is local, the fifth field is empty (as in IBM bought the company); otherwise, it contains

the category which mediated the long-range dependency (as in the company which IBM bought).

Permutations over the word/POS of the lexical heads produces four features for each dependency; com-

bining both words and POS tags with the three distance measures produce six more.

4.4 Removing POS tags

While POS tags served an important role in defining the tag dictionaries used by early CCG parsers [10,

11] and supertaggers [24], recent supertaggers do not benefit from the additional supervision provided by

automatically-assigned POS tags. The C&C parsing models use POS tags to smooth and assist in parsing

sentences with unknown words. However, they are sensitive to the accuracy of the tags: performance suffers

when moving from gold to automatically-assigned POS tags within CCGbank, and degrades even further

in other domains where the POS tagger is less reliable. Because CCG categories provide so much syntactic

information relative to POS tags – and because the parser already has access to the output of the supertagger

– it’s reasonable to wonder whether the Viterbi lexical category is an acceptable replacement.

If the parsing models can achieve comparable performance using Viterbi supertags instead of POS tags,

then there would be no reason to retain the POS tagger in the CCG pipeline. Removing the supertag will

make it easier to develop and release self-contained NLP tools based on CCG.

4.5 Results

We now present the results of our parsing experiments on CCGbank.

4.5.1 A* baseline

In the previous chapter, we discussed how 1-best supertag accuracy was a brittle measure of supertagger

performance, and that oracle multitagging accuracy was a more meaningful metric of the supertagger’s

ability to provide signal to the parser. We now present an even more informative measure: the ability of

a supertagger to recover CCGbank predicate-argument dependencies using A* search. We present these

results in Table 4.3.

Where it was difficult to determine the significance of the variation in oracle multitagging accuracy

between the RNN and LSTM-L models, there is no such ambiguity in the parsing results: the LSTM supertagger
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Dev. Test

LP LR LF1 LP LR LF1

NN - - - - - 83.4

RNN 83.4 84.9 84.2 84.1 85.1 84.6

LSTM-V 86.4 85.9 86.1 87.4 86.8 87.1

LSTM-L - - - 87.7 86.7 87.2

LSTM-L-Tri - - - 88.6 87.5 88.1

Table 4.3: Parsing results using the A* model of Lewis and Steedman (2014) for a selection of supertagging models
(none of which require POS tags). Parsers were evaluated on their ability to recover labeled, directed predicate-
argument dependencies on all sentences (100% coverage). Derivational ambiguity was resolved using the attach-low
heuristic of Lewis et al. (2016).

is clearly better at predicting supertags that reflect the predicate-argument dependency structure of a parse,

and in fact it outperforms most of the previous work in supervised CCG parsing. This confirms the result

of Lewis et al., and presents a remarkable opportunity to push forward in future work.

4.5.2 Pipeline results

One of the most frustrating aspects of doing research in NLP is the difficulty in replicating the end-to-end

results of a pipeline when the intermediate performance of the individual components are not available.

The A* baseline provides a way to measure the quality of a parsing model in terms of the improvement

it provides, and not just against the final numbers reported in the scientific literature (where errors and

improvement propagate in ways that are impossible to identify).

Table 4.4 presents the accuracy of several parsing pipelines on both development and test data, clustered

based on the supertager used during evaluation. We indicate the incremental improvement of each pipeline

over its A* baseline.

4.5.3 Removing POS tags

We retrained both our implementation of the C&C normal-form model and the Java C&C beam-decoding

model using Viterbi supertags in place of POS tags.

Figure 4.1 shows the accuracy of the C&C normal form model on section 00, both with and without

POS tags. It is clear that the drop in tagging accuracy due to the larger category space is offset by the

extra utility afforded by the richness of the supertags relative to the POS tag set, as the normal-form model

performs significantly better using Viterbi supertags as features.
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Figure 4.1: Labeled dependency accuracy on section 00 for our implementation of the C&C normal-form model when
trained and evaluated using feature templates based on POS tags (NF C&C-POS) and Viterbi supertags (NF C&C-VST).
Each of the models was evaluated on the full development set, including parse failures (100% coverage).
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Dev. Test

Supertagger Parser LF1 ∆ LF1 ∆

NN A* - 83.4

RNN
A* 84.2 84.6

Beam C&C-POS 87.0 2.8 87.5 2.9

LSTM-V

A* 86.1 87.1

NF C&C-POS 86.6 0.5 87.5 0.4

NF C&C-VST 86.9 0.8 87.8 0.7

Beam C&C-POS 87.8 1.7 88.3 1.2

LSTM-L
A* - 87.2

A* + Dep - - 87.8 0.6

LSTM-L-Tri
A* - 88.1

A* + Dep - - 87.8 -0.3

Table 4.4: Labeled dependency accuracy on the development and training sets for several supertagger-parser combina-
tions, along with the increase (or decrease) in accuracy for each parser relative to the A* baseline for each supertagger.
The A* baseline is the non-parametric supertag-factored parsing model of Lewis and Steedman (2014) that performs
inference using a A* search with a fixed heuristic to resolve derivational ambiguity. NF C&C is our implementation of
the normal-form C&C parsing model of Clark and Curran, which we tested using feature tag templates defined over
either POS tags (NF C&C-POS) or the Viterbi categories assigned by the supertagger (NF C&C-VST). Beam C&C-POS is
the model provided by Java C&C that uses non-local features to score complete subderivations during beam decoding,
with tag feature templates defined over POS tags. Finally, A* + Dep is the joint supertag-dependency model used in
Lewis et al. (2016), which was adapted from their previous work. Parsers were evaluated on their ability to recover
labeled, directed predicate-argument dependencies on all sentences (100% coverage). For A* inference, derivational
ambiguity was resolved using the attach-low heuristic of Lewis et al. (2016).

Figure 4.2 shows the results of the same transformation for the Java C&C beam-decoding model; perfor-

mance degrades slightly when using Viterbi supertags. We suspect that this is a consequence of the beam

decoding algorithm itself; because the LSTM supertagger is very accurate, the model will learn to prefer

lexical categories that match the Viterbi supertag, even when that tag is incorrect. The beam decoder uses

an extremely aggressive pruning procedure and has difficulty resolving ambiguity.

4.5.4 Long-range dependencies

We examined the ability of different parsing models to recover long-range dependencies (i.e., attachments

between words more than five tokens apart) on the development set (section 00). First, we fixed the

evaluation to use supertags assigned by the LSTM supertagger. For each of the four parsing models – the

A* baseline, normal-form C&C with and without POS tags, and the Java C&C beam decoding model – we

binned their dependency predictions by length and report LF1 on each bin, following [32].

Figure 4.4 shows the same comparison on long-range dependencies, but between the beam decoder and the

A* baseline using tags assigned by both the RNN and the LSTM supertaggers. The beam-decoding model’s

ability to accurately predict long-range dependencies appears to be robust to the choice of supertagger; even
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Figure 4.2: Labeled dependency accuracy on section 00 for the Java C&C’s beam-decoded model when trained using
feature templates based on POS tags (Beam C&C-POS) and Viterbi supertags (Beam C&C-VST). The beam decoder
allows the model to define non-local features over complete sub-derivations. The dependency skimmer was used to
obtain partial analyses for parse failures, so the accuracies reported here include “partial credit” for sentences that
other algorithms aren’t able to parse.
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Figure 4.3: LF1 on labeled dependencies of various lengths, evaluated over section 00. All parsers were evaluated
using the supertags produced by the LSTM supertagger of Vaswani et al. A* (LSTM) is the A* parsing model of
Lewis et al.; C&C-POS is our implementation of the C&C normal-form model using POS tag features; C&C-VST is our
implementation of the C&C normal-form model when the POS features are replaced by Viterbi supertag features; and
Beam C&C-POS is the beam-decoded parsing model in Java C&C and defines additional features over full subderivations
(for this instance of the model, the tag feature templates are based on POS tags).
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Figure 4.4: Development accuracy on long-range dependencies; we compare the A* baseline with the beam decoding
model of Java C&C. Even though the RNN supertagger is significantly less accurate than the LSTM supertagger, the
beam decoding model is able to recover long-range dependencies at a very similar rate regardless of which supertags
it uses.

though the tags produced by the RNN supertagger are less effective at predicting dependencies on their own

using A* search, the model is able to correct the errors implicit in the supertagger’s predictions.

4.6 Conclusion

The results presented in this chapter confirm that A* parsing using supertagger output is feasible and effec-

tive. We also showed that a beam-decoding model with non-local features can improve on this impressive

baseline, particularly when predicting long-range dependencies. In the final chapter, we will propose tech-

niques for combining the efficiency of the A* algorithm with the accuracy of the best non-local parsing

models
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Chapter 5

Conclusion

As most of the contributions of this thesis are based on a critique of others’ work, we conclude with a summary

of observations about the state of supervised CCG parsing and a discussion of future work that could produce

a parsing algorithm that can improve on some of the deficiencies we find with existing approaches.

5.1 Observations

We believe that there is a fundamental tension in the CCG parsing pipeline today: there are long-range

predicate-argument dependencies that are too difficult for the A* parsing algorithm to recover using any

existing supertagger, but the only currently-available parsing algorithms that can correct those kinds of

errors all require some form of beam search to parse efficiently. Adaptive supertagging is particulary fragile

because the parser must either (a) rely on the supertagger to provide the correct lexical categories in the

initial beam, or (b) hope that the grammar does not license a successful parse based on the provided

supertags, and repeat the process with a wider beam.

CCG supertagging is a difficult task, as the results in Table 3.1 and Table 3.2 illustrate. A* search using

the tri-trained LSTM is an excellent baseline for future research, and current methods do have difficulty

improving on its performance. However, there’s a lot of meat on the proverbial bone: prepositions and

known words that appear with a supertag for the first time will always be difficult to disambiguate through

sequence-labeling alone, and our results from Figure 4.3 show that parametric parsing models can still help

recover long-range dependencies. However, the amount of engineering required to push the baseline leads to

overfitting to the training data and target domain. Long-range dependencies represent only 10-12 percent

of all dependencies (even in WSJ, which is complex), but account for a quarter of the errors.

In the next section, we discuss the need to develop better parsing algorithms that leverage the power of

CCG to efficiently focus on these difficult classifications.
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5.2 Future work

An ideal algorithm would combine the efficiency of A* search with the accuracy of a statistical model that

makes predictions using non-local context. We believe that such an algorithm exists, but requires a novel

combination of the A* and beam-decoding approaches.

5.2.1 Joint CYK inference

Previous approaches to joint supertagger-parser inference using dual decomposition and loopy belief prop-

agation [23] show that it can improve parsing accuracy, but in order to achieve their best result the speed

of their parser decreased by an order of magnitude relative to the baseline (the C&C hybrid dependency

model). They also trained their supertagging and parsing models separately, and left the presumed benefits

of joint training as unfinished future work. We suspect that following up would produce significant gains in

accuracy, but the cost to efficiency would remain high.

5.2.2 Joint A* search

The A* + Dependency model of [54] that uses A* search and non-local features to jointly predict CCG

parses and semantic role labels has many of the properties that we are looking for in a parsing algorithm.

It permits exact inference with (theoretical) optimality guarantees by defining the global upper bound as

a sum over the highest-scoring analysis of each token, and it explicitly models labeled predicate-argument

dependencies. It is designed to recover difficult dependencies by conditioning the dependency features on the

distance between a head and its argument, and includes additional features to specifically resolve ambiguous

prepositional phrase attachments and predict semantic roles.

However, in practice the full model runs much slower than the simple A* model that uses only supertagger-

defined log-probabilities; we posit that it sacrifices considerable efficiency due to the overly-relaxed upper

bounds of the A* heuristic when defined over the full set of features. By optimizing for accuracy during

training (their objective is to maximize the marginal probability of the gold semantic dependencies, which

obviates some of the effects of spurious ambiguity), their learned model has no incentive to limit the number

of operations required to find the optimal parse.

This is particularly relevant given the recent gains in supertagging performance. We saw in Chapter 3

that an LSTM supertagger is much more confident in its predictions than previous supertaggers were; this

is particularly relevant to A* parsing with the simple supertag-factored model. Note that the upper bound

in the simple A* model is fixed during inference – it is always the log-probability of the Viterbi supertag
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assignment, which itself is the sum of the log-probabilities of the Viterbi supertag for each token. If the

grammar can produce a successful parse using the Viterbi supertag sequence where every assignment is

“certain” (i.e., the probability of each token’s Viterbi tag is close to 1.0), then very few extraneous items will

be added to the chart because the margin between a high-probability Viterbi supertag and the corresponding

second-best supertag is very large.

The upper bound is initialized in the same way for the full model, and the upper bound for a cell is

still the sum of the highest-scoring lexical entries for each of the tokens in that cell’s span. However, the

upper bound for a token can increase during inference based on the dependency structure of the intermediate

parses because the model allows dependency features to have positive weight. This is a critical but eminently

sympathetic mistake. Log-linear chart parsers are trained to upweight “good” features that occur in correct

derivations and to penalize “bad” features that distract from them; dynamic programming algorithms like

CYK and beam decoding benefit from this freedom without any caveat. However, the A* algorithm prioritizes

the items in the agenda that have the highest figure of merit, and will naturally tend to combine items if

they will produce net-positive dependencies. If the positive weight of the attachment causes the score of

the modified lexical entry to exceed the previous highest-scoring lexical entry for that token, then the upper

bound for the token rises to match it and the global upper bound will relax. As a result, many extraneous

items can be added to the chart before a spanning analysis is found, slowing down inference dramatically.

5.2.3 A potential solution

The joint A* parsing model from the previous section is at the same disadvantage as any chart parsing

model that tries to explicitly capture predicate-argument dependencies: most dependency attachments are

local, and training to maximize the likelihood of the dependencies for an entire corpus will inevitably lead

the model towards a preference for local attachments. Ironically, these are exactly the attachments that a

supertagger is already effective at recovering. The net result is that instead of building on the impressive

baseline performance of the A* parsing algorithm with a state-of-the-art tri-trained LSTM supertagger, the

joint model of [32] is harmed by the well-intentioned but ineffective dependency model that – without access

to the supertag probabilities itself 1 – näıvely tries to push the LSTM away from the non-local attachments

that it correctly predicts.

An ideal parsing algorithm would be nearly as fast 2 and at least as accurate the basic A* parsing

algorithm, and none of the systems we tested in the Chapter 4 meet those requirements. Even modifying the

1In order to provide a sufficiently different view of the unannotated data considered as part of tri-training.
2214 sentences per second when tagging using a single 3.5GHz core, and 2670 sentences per second using TensorFlow on a

single NVIDIA TITAN X GPU [32].
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full A* model to restrict dependency features to be non-positive might not be sufficient on its own; while the

modified algorithm would not be susceptible to the same insidious upper bound relaxation, inference would

be slower due to two factors: first, the computational cost of scoring dependencies before a spanning analysis

has been found means that inference will be slower by some constant factor; second, such a model could still

penalize an item in the derivation that the simple model would have selected, which could lengthen parsing

time if the penalty is large enough that more items need to be processed.

Instead, our parsing algorithm should trust the supertagger to be a bona-fide baseline – after all, it can

predict labeled dependencies with 88.1% accuracy – by deferring to the simple A* model to find an initial

parse; additionally, the algorithm should learn an expressive parsing model that predicts and penalizes any

errors in that full derivation (but never assigns a positive score). If the parsing model does assign a penalty,

then the A* baseline can continue to search for additional derivations.

By defining the joint model to be the sum of the supertagger and parsing models, this hypothetical

algorithm satisfies our requirements. If the parsing model doesn’t penalize the initial derivation at all, then

that analysis is certifiably optimal according to the joint model. By encouraging the joint model to be

cautious and only assign small penalties (if any) then the joint model should be at least as accurate as the

baseline supertagger.

The algorithm is relatively flexible in terms of its stopping conditions: optimality is guaranteed once the

A* agenda is exhausted of items for which the figure of merit (an upper bound on the maximal derivation

containing the item) is lower than the highest-scoring full derivation, but the algorithm can also “give up”

and return the highest-scoring derivation if the size of the chart grows too large, or if the time spent parsing

exceeds a predefined limit. The ability to abandon the search and go with the best solution found so far

could be an attractive property for an A* algorithm that lacks any other theoretical guarantees about its

running time, as we saw with the positive-weight dependency model – especially since the algorithm will

have an initial parse to fall back on as soon as the A* baseline can produce it.

5.2.4 Closing remarks

This proposed algorithm is underspecified due to time constraints, so we conclude by mentioning its simi-

larities to dual decomposition [55–57] and forest rescoring/reranking [58,59]. As in dual decomposition, the

joint model recovers the exact optimal parse (modulo tiebreaking) on convergence. The richness of CCG’s

predicate-argument structure allows for many interesting factorizations of the the parsing model, including

the ability to do lazy coarse-to-fine parsing or factor non-local features into lexical category chart items.
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