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Abstract 

 
Optimum wing spanloads were evaluated by comparing wing performance values from 

theoretical predictions and experimental wind-tunnel measurements. The optimum spanloads 

were found using a Lagrange multiplier optimization method. They were designed with a 

prescribed wing-root bending moment constraint with and without incorporating viscous 

representation. Wind-tunnel models were created based on the optimum spanloads and the 

experiments were conducted to evaluate the changes in drag as the design constraints differed. 

The results indicate that an optimized spanload having equal lift and wing-root bending moment 

to that of an elliptically-loaded wing can experience significant decreases in drag. Comparisons 

between the theoretical predictions and the wind-tunnel models were made using experimental 5-

hole probe wake-survey measurements, which were reduced into total lift and drag, as well as 

spanwise lift distributions. 
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I. Introduction 
  

The availability of jet fuel is soon to see a decline, accompanied by a projected increase in air 

traffic within the commercial aviation market.1 Unfortunately, these two circumstances cannot 

peacefully coexist. Due to a stagnation in crude oil production, a global initiative to decrease 

carbon emissions, and the prioritized production of motor gasoline and other petroleum products, 

jet fuel production cannot increase corresponding to increased aviation industry demand. This is 

dire news for the American aviation industry, and in turn the American economy. In order to 

increase air traffic and expand industry, the aviation sector needs to find ways to reduce fuel 

consumption. One way to accomplish this is to increase the efficiency of the current and future 

aircraft that are used.  

The greenhouse gas emissions created by aircraft contribute to global climate change, which 

can pose dangerous threats of rising sea levels and flooding. Greenhouse gas emissions by most 

commercial aircraft include carbon dioxide (𝐶𝑂2) mono-nitrogen oxides (𝑁𝑂𝑥), water vapor, and 

soot particles.2 Globally, transportation contributes to 14% of man-made greenhouse gas 

emissions (it is fourth after Electricity and Heat Production, 25%, Agriculture, 24%, and 

Industry, 21%).3 Aviation contributes between 2-3% of the global transportation emissions.2 As 

the warming effect of all economic sectors on the health of the earth’s climate is an immediate 

and major concern, limiting the emissions by the aviation industry is currently a subject of 

interest. Especially compelling is that carbon dioxide emissions are a direct result of fuel burn, 

which is a large portion of the operating cost of any aircraft, and represent inefficiencies in the 

aircraft design or operation.2 In order to reduce the amount of emissions of the aviation sector 

that contribute to climate change, increasing the efficiency of current and future aircraft is 

absolutely necessary. 

 Today’s aircraft are developed for high efficiency using modern design tools, like multi-

disciplinary design optimization (MDO). These design methods correlate the complex 

interdependencies between aircraft subsystems, such as the aircraft aerodynamics, structural 

mechanics, and propulsion system. The result of this process is the optimization of a desired 

design quantity (e.g., minimum cruise drag) for a set of fixed boundary conditions. The most 

accurate equations that could be used for optimization are typically too computationally complex 

to solve numerically (optimization is typically done via low-fidelity methods, such as Euler 
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bending methods for structural considerations and Euler or panel methods for aerodynamic 

considerations). The high-fidelity method used by Walsh et. all4 at NASA Langley Research 

Center took at least 5 hours of wall-clock time to complete one design cycle using parallel 

computing on 32 processors. Considering they analyzed about 25 different design cycles, the 

computational time alone would have taken over 5 days, simply to reduce drag from an initial 

level, not to necessarily find an absolute optimum.4  

Using a low-fidelity method is significantly less computationally intensive than more robust 

high-fidelity methods, but they do not provide a full representation of each individual subsystem. 

For example, panel methods or Euler equations ignore the effects of fluid viscosity when 

representing the aircraft aerodynamics.  Viscosity plays an important role in parasite drag, which 

contributes to the total drag of the vehicle. For a typical jet transport, the induced drag is only 

about 33% of the total drag, with 67% of the total drag being parasitic in origin.5 While a few 

more recent investigations have included viscous effects in the MDO process, these viscous 

effects were introduced in simple empirical relationships that lacked a physical interpretation. In 

order to create a wing design optimized for low drag in real flight conditions, the viscous effects 

must be understood and appropriately included.  

The goal of this study is to understand how to the optimum spanload design changes when 

incorporating viscous representation, and to experimentally evaluate different theoretical 

optimums to see how close the theoretical predictions are to the experimental results. Optimized 

spanwise loadings created under different constraints for both inviscid and viscous formulations 

were developed to create wing wind tunnel models. The performance of the different wing 

geometries were studied using a 5-hole probe wake survey measurement technique and force-

balance measurements. The results provide a case study to understand the fidelity of these low 

order methods for aerodynamic design as the project incorporates the structural and viscous 

effects on wing design. One aspect investigated by this current study is whether a simple 

correction can be made to the Euler or panel method assumptions to account for viscosity effects, 

thereby allowing the low-fidelity method to accurately consider viscosity.  
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II.  Background 
 

In an ever present attempt to increase the aerodynamic efficiency of aircraft, the theoretical 

research into optimizing wings for minimum drag has been a topic of interest in the field of 

aeronautics. In aerodynamics, the spanwise loading with minimum induced drag for a given lift 

and fixed span is an elliptical lift distribution after Prandtl6 and Munk.7 In circulation theory, this 

spanload produces a constant vortex-induced downwash across a lifting line. The elliptic 

spanload has served as a starting point in wing design for nearly a century, but other theoretical 

optimum solutions have also been developed. These subsequent studies have incorporated 

multidisciplinary aspects of aircraft design by considering wing structural weight or other aspects 

of wing design like non-planar wings or wingtip devices.  These studies demonstrate that the 

optimization method can be used with a multitude of constraints, with and without incorporating 

viscous effects, to find solutions for design problems that are ever more challenging. 

II.A. Examples of Optimized Solutions for Induced Drag 

In many classical and modern studies on wing design optimization, wing-root bending 

moment has served as a surrogate term for wing structural weight as the bending moment 

typically scales directly proportional to wing structural weight. If a wing-root bending moment 

constraint is used in the place of a span constraint in a wing optimization study, the resulting 

spanload for minimum induced drag becomes non-elliptical. Jones8 and Klein and Viswanathan9 

both worked to determine optimized spanloads for this set of constraints. When increasing the 

span from an elliptic wing, the optimum spanload had significant unloading near the wingtip and 

a higher loading near the wing root, with the same wing-root bending moment and lift coefficient 

as the original elliptic wing. 

Prandtl10 also formulated an analytic, optimized solution without the fixed span constraint, 

but instead utilizing a fixed integrated bending moment and fixed lift constraints. He found an 

analytic expression, which provided for an optimum solution with characteristics similar to that 

of Jones8 and Klein and Viswanathan.9 

Klein and Viswanathan11 found an optimized solution for fixed lift and structural weight by 

assuming that structural weight scaled proportionally with the span-integrated bending moment 

and shear stress. They found an analytic expression for the optimum spanwise loading which 

allowed for a 7% decrease in induced drag, for a 16% increase in span, than that of an elliptic 
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wing with the same structural weight and lift. This spanload had significant unloading near the 

wingtip, but an equal amount of loading as the elliptical wing near the root. To match the lift, the 

optimum spanload solution deviates above that of the elliptical solution for non-dimensional 

span 0 ≤ 𝜂 ≤ 0.5.11 

Löbert12 investigated trapezoidal forward and aft-swept wings and compared them to an 

optimized spanload with minimum induced drag with constant wing weight and lift. The weight 

constraint was implemented by constraining the integrated bending moment per unit sectional 

thickness. By fixing this integrated bending moment and lift, as well as area, sweep angle and 

thickness distributions, a unique optimum spanload was found. It was found that the forward-

swept wing spanload was extremely similar to this optimum spanload, implying that small 

amounts of twist would allow its performance to be increased. However, the aft swept wing 

spanload was more dissimilar from the optimum spanload as it had a lower load at the root 

hardly any unloading in the outboard portion of the wing. These differences implied that fairly 

large amounts of twist would need to be incorporated into the trapezoidal wing design in order to 

match the optimum spanload. Adding this much twist would cause drag penalties in the off-

design conditions.12 The effects of forward and aft sweep in minimizing induced drag was also 

investigated by McGeer13 for wings of given structural weight, elasticity, and maximum load 

factor. In this study, it was found that forward sweep had a theoretical reduction of induced drag 

at cruise of about 10%, but could have potentially greater reductions for the wings of aircraft like 

sailplanes, where the wing weight to lift ratio is high. 

II.B. Examples of Optimized Solutions for Total Drag 

Total drag can also be minimized when searching for an optimum solution. Kroo14 was able 

to utilize a strip theory approach in order to incorporate the sectional profile drag coefficient into 

the optimization problem. In this method the sectional profile drag was represented as a 

quadratic fit of the drag of an airfoil section with respect to the sectional lift coefficient. In doing 

so, the sectional pressure drag and skin friction drag contributions to the total drag could be 

accounted for during the optimization routine. 

This method of modeling viscous effects in the optimization process was also used by 

Verstraeten and Slingerland15 in order to identify drag characteristics for planar and non-planar 

wings. The method of Lagrange multipliers was used with a wing-root bending moment 

constraint in order to optimize and compare wings with the same structural weights. This method 
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compared viscous and inviscid optimized wings. In this method, profile drag was included for 

the viscous optimized wings by assuming the profile drag was a function of the local lift 

coefficient as was done by Kroo.14 The theoretical results found that the non-planar C wing had 

no advantages over a wing with winglets. However, the results did indicate that including 

winglets reduced the drag of the wing by 5.4% when comparing to a planar wing of the same 

span.  

The next step for using these simple viscous corrections in the optimization routine would be 

to incorporate them into larger design spaces like how Ning and Kroo16 used this method to 

incorporate optimum designs of wings and wing tip devices into full aircraft configurations. 

They found that besides incorporating viscous drag effects, conceptual wing designs also 

depended heavily on structural considerations like the depth of the wing structural box, the 

differences in cruise and maneuver loading, and wing skin thickness. 

II.C. Multidisciplinary Design Optimization Methods for Drag Reduction 

Low-fidelity approaches have allowed a great deal of insight into minimum drag solutions 

for wing designs. However, modern advancements in computing technology has led towards 

advancements in the area of drag reduction for more than just wing design, but for full-aircraft 

configurations using Multidisciplinary Design Optimization (MDO). In utilizing MDO methods, 

a structural modeling method is typically coupled to an aerodynamic modeling method and an 

optimization routine. Through the MDO process, a full-aircraft configuration can be produced, 

which optimally conforms to a given set of design criteria.17  

Lyu and Martins18 investigated blended-wing body aircraft optimization, which presented a 

challenge due to the multidisciplinary nature of the problem. In this study, the authors considered 

the interdependence on aircraft performance, trim, and stability as well as complexities added by 

transonic flow conditions and the number of design variables. Using computational fluid 

dynamics with a Reynolds-averaged Navier-Stokes turbulence model and a method to compute 

derivatives of aerodynamic forces, they were able to consider a total of 273 design variables 

when looking for an optimum solution. These design variables included twist, airfoil shape, 

sweep, chord, and span. The optimization method found a minimum drag for trimmed and stable 

configurations with fixed lift, trim, static margin, and center plane bending moment constraints. 

The lowest drag solution was found to be nearly identical to an elliptic spanload. 
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Another multidisciplinary problem was studied in the work of Antoine and Kroo.19 They 

explored developments in aircraft design that could reduce noise and emissions, two very 

important current topics in aircraft design. This led them to develop a preliminary design tool 

that could be used to determine optimal aircraft configurations while balancing the relationships 

between emissions, noise, and cost. A noise prediction code (ANOPP) developed at NASA 

Langley Research Center, an engine simulator from NASA Glenn Research Center, and aircraft 

design and optimization tools developed at Stanford University were all incorporated into the 

tool. The tool could be used to formulate an extremely low emission solution, a decrease in 𝑁𝑂𝑥 

emissions by 51% for a 9% increase in cost. This type of formulation could dramatically increase 

the environmental sustainability of the aviation industry. It was also found that aircraft could be 

designed in order to fly slower at lower altitudes, which allowed for a balance of noise, 

emissions, and fuel consumption. 

 MDO methods are oftentimes used for initial aircraft design, which have prohibitively large 

design spaces and related cost. As such, low-order methods of limited fidelity are often required 

for these initial design optimization processes as the higher-fidelity simulation techniques are not 

cost-effective for the early stages of design. Having low-order methods that account for effects 

experienced by real aircraft like viscosity is therefore incredibly important, as the effects of 

viscosity play such a large role in many types of real fluid flow. 

II.D. Experiment Objectives and Motivation 

In the current study, three optimum planar-wing spanloads were used. One was the historical 

baseline: the elliptic spanload, found by implementing a fixed lift and fixed span constraint for 

minimum induced drag. In this work, the optimum wing found with these constraints is deemed 

the “Elliptic Wing.” The second optimum spanload was found by relieving the fixed span 

constraint and instead using a fixed wing-root bending moment constraint, as well as fixed lift, 

for minimum induced drag. The wing-root bending moment can be used as a surrogate for the 

wing structural weight, as the two have historically been assumed to scale proportionally. In this 

work, the optimum wing found with these constraints is deemed the “Inviscid Optimized Wing.” 

The final optimum spanload used in this current study was found, again, by relieving the fixed 

span constraint and using instead a fixed wing-root bending moment constraint, as well as fixed 

lift, but now for minimum total drag. The minimization of total drag was performed using a strip 
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theory approach, where profile drag could be incorporated into the optimization routine. In this 

work, the optimum wing found with these constraints is deemed the “Viscous Optimized Wing.”  

The classical studies for minimizing induced and total drag are incredibly useful in 

understanding how to achieve a spanload that can optimally fit a set of design criteria. However, 

the fidelity of these classical studies for minimizing induced drag, or total drag under a wing 

bending-moment constraint, have not been experimentally validated. As viscous effects play a 

major role in low Reynolds number flow, understanding the efficacy of a simple viscous 

correction to an otherwise inviscid optimization routine becomes increasingly important in the 

wing design. Understanding the balance between the fidelity and the expense of this type of low-

order method is critically important when deciding how to begin the optimization of a wing or 

full-aircraft configuration for a given set of design criteria. 

The goal of the current study is to experimentally assess the aerodynamic performance of 

wing geometries that have been optimized using low-order methods, with and without 

incorporating viscous effects. This assessment was done by first calculating optimum spanloads 

from a discrete vortex element method with an embedded Trefftz plane analysis routine for three 

different sets of design criteria. The optimum spanloads were calculated from a discrete vortex 

element method with an embedded Trefftz plane analysis routine. This design method follows 

the work of Blackwell20 and is based upon the fundamental concepts of circulation theory. This 

analysis resulted in the creation of three separate wing designs which were used for wind tunnel 

experiments. The measurements of the total wing lift and drag were collected during a series of 

wind tunnel experiments from force balance measurements. The spanwise lift distribution was 

also measured using a wake-survey technique. These experimental measurements were then used 

in order to understand the accuracy of the aerodynamic predictions from the low-order design 

method with empirical viscous corrections. 

II.E. Theoretical Design Methods 

The optimum spanloads were calculated by Wroblewski and Ansell.21 However, for the 

purposes of a complete understanding of the experimental evaluation detailed in this current 

work, many relevant details of this previous work will be reproduced here.  

II.E.1. Wing Design Criteria 

The design criteria used for the optimization routine were chosen in such a way that the three 

different designs would be as similar as possible so that the comparisons between the wings were 
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confined solely to the differences between their aerodynamic performance. This approach was 

used in order to investigate the accuracy of the aerodynamic predictions and design routines for 

both the inviscid and viscous optimization routines. As such, the wings were all straight tapered 

wings and had the same area and taper ratio, so the chord distributions were predetermined and 

the twist distributions for each wing were modified to achieve the desired spanloads. In order to 

satisfy the design constraints, the lift coefficient, wing-root bending moment, and Reynold’s 

number were all set to be the same.  Since the area remained constant but the span varied for 

each wing, the mean aerodynamic chord of each wing was different. As a result, the 

experimental freestream Mach of the experiments was varied accordingly in order for each wing 

to be tested at the prescribed Reynolds number. The twist and aspect ratio of the wings were then 

tailored to achieve the desired spanload. 

All wings were planar and the airfoil was a symmetric NACA 0015 in order to ensure 

simplicity and valid comparison between the wing models. The geometric and aerodynamic 

parameters used for all three wings are tabulated in Table II-1. Using non-planar configurations 

and wing-tip devices, as well as specially designed airfoils can have tremendous benefits in 

terms of aerodynamic performance, though use of these configurations were outside of the scope 

of the current study. Instead, the goal of the current study is to compare different optimization 

methods and constraints. 

Table II-1 Aerodynamic and geometric parameters for wing designs 

CL 0.439 

b

2
 CB 

0.279 

Rec̄ 450,000 

Airfoil NACA 0015 

Planform Taper Ratio (λ) 0.5 

Wing Reference Area (S) 1.385 ft2 

 

II.E.2. Elliptic Wing Optimization 

The optimum spanloads were calculated following the method discussed by Blackwell20 

where aircraft lifting surfaces are represented by a discrete vortex element method. An embedded 

Trefftz plane analysis routine was used to determine the induced drag of the wing by projecting 

the induced cross-flow velocity normal to the surface of this plane to the near field, assuming a 

fixed wake. The induced drag was evaluated using Munk’s second theorem, which allows for the 

computations to be carried out, not in the real plane, but at the Trefftz plane, which simplifies the 
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calculation.20 This final step allows for aerodynamic forces and moments to be determined by 

relating the local bound circulation (Γ𝑗) of a wing section to the spanload using the Kutta-

Joukowski theorem. 

Γ𝑗

𝑉∞
=
(𝐶𝑙𝑐)𝑗

2
 

(II.1) 

A useful expression is that of the normalized spanload (𝛾𝑗). In this expression, 𝑐𝑎𝑣𝑔 is the mean 

geometric chord of the wing. 

𝛾𝑗 =
(𝐶𝑙𝑐)𝑗

𝑐𝑎𝑣𝑔
 

(II.2) 

The Biot-Savart law dictates that the induced velocity normal to a point on the Trefftz plane 

in the far-field will be twice the value of one in the near-field. This is due to the fact that the 

velocity in the far-field is induced by a series of infinite vortex lines, whereas the velocity near 

the lifting line is only affected by semi-infinite vortex lines. The induced velocities at the Trefftz 

plane can be expressed in terms of the spanload distribution, as the induced velocities produced 

by the circulation shed into the wake are directly dependent on the spanload. Since circulation 

and induced velocities can both be expressed in terms of spanload distribution, the expressions 

for induced drag and lift can be re-written in terms of the wing spanload. 

𝐶𝐷𝑖 =∑∑𝛾𝑖𝛾𝑗𝑠𝑖𝐴𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 

(II.3) 

𝐶𝐿 = 2∑𝛾𝑗𝑠𝑗

𝑁

𝑗=1

 
(II.4) 

In the previous expressions for CD.i and CL, sj is the normalized semiwidth of a given vortex pair 

and Aij is the aerodynamic influence coefficient.  

The method of Lagrange multipliers was used in order to determine the spanload that 

minimizes induced drag under a given design constraint. The method discussed by Kroo22 was 

used specifically. This method was designed to calculate spanload distributions for planar and 

non-planar wings with fixed lift, structural weight, and/or trim constraints. Different cost 

functions were used for each wing, depending on the design constraints. For the Elliptic Wing, 

the cost function (J) was used to minimize induced drag of a wing at a fixed lift coefficient. 

𝐽 = 𝐶𝐷𝑖 + 𝜆𝐶𝐿(𝐶𝐿 − 𝐶𝐿𝑟𝑒𝑓) (II.5) 
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When using the method of Lagrange multipliers, the objective is to minimize the cost 

function. This is done when the partial derivatives with respect to each independent variable of 

the cost function is equal to zero, indicating an extremum in the analytical solution. Substitution 

of 𝐶𝐷𝑖 and 𝐶𝐿 from II.3 and II.4 into the cost function in II.5, allows for a linear system of 

equations to be formulated (II.6). 

[
 
 
 
 
𝜕𝐽

𝜕𝜆𝑗
𝜕𝐽

𝜕𝜆𝐶𝐿]
 
 
 
 

= [0] 

(II.6) 

The equation II.6 can be solved to minimize the cost function and produce the Lagrange 

multiplier for the lift coefficient constraint (𝜆𝐶𝐿) and the optimum spanload which can be seen in 

Figure II-1 as a function of the normalized semispan (η). Also shown in this figure is the elliptic 

load of Prandtl6 for comparison. For this optimum spanload, the calculated span efficiency factor 

was 1.00, which agrees well with the ideal value of unity. 

 

Figure II-1 Elliptic Wing spanload, with comparison to theoretical optimum of Prandtl6 

 

II.E.3. Inviscid Wing Optimization 

For the Inviscid Wing, the cost function (J) was used to minimize induced drag of a wing at a 

fixed lift coefficient constraint and a fixed wing-root bending moment constraint. This version of 

the Lagrange multipliers follows the work of Blackwell20 and Verstraeten and Slingerland.15  

𝐽 = 𝐶𝐷𝑖 + 𝜆𝐶𝐿 (𝐶𝐿 − 𝐶𝐿𝑟𝑒𝑓) + 𝜆𝐶𝐵(𝐶𝐵 − 𝐶𝐵𝑟𝑒𝑓) 
(II.7) 

where 


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C

L
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Prandtl
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𝐶𝐵 =
1

2
∑𝛾𝑗𝑠𝑗 (

2𝑦𝑗

𝑏
)

𝑁

𝑗=1

 

(II.8) 

The linear system of equations to be solved in order to produce the optimum spanload becomes: 

[
 
 
 
 
 
 
𝜕𝐽

𝜕𝜆𝑗
𝜕𝐽

𝜕𝜆𝐶𝐿
𝜕𝐽

𝜕𝜆𝐶𝐵]
 
 
 
 
 
 

= [0] 

(II.9) 

In order to select an optimum span ratio between the Inviscid Optimized Wing and the 

Elliptic wing, the induced drag ratio of the Inviscid Optimized Wing to the Elliptic Wing 

(𝐶𝐷𝑖/𝐶𝐷𝑖,𝑒) was plotted against span ratio to find a minimum. This plot is presented in Figure II-2 

with the same values as those found by Jones8 and Klein and Viswanathan9 for comparison. 

From Figure II-2, the induced drag ratio for the Inviscid Optimized Wing is consistent with those 

determined from these classic studies.  

 
Figure II-2 Ratio of induced drag of optimally-loaded wing relative to elliptically-loaded wing having equal 

wing-root bending moment and lift.8,9 

 

From Figure II-2 it can be seen that the induced drag ratio decreases as the span increases, 

but since the solution is inviscid, the induced drag of the Inviscid Optimized Wing approaches 

zero as its span approaches infinity. As a result, there is no true minimum point to select for the 

optimum span ratio. However, there is an inflection point at b/be = 4/3 that was selected by Klein 

and Viswanathan as the optimum span ratio.9 This inflection point was also used as the optimum 

span ratio for the current study. 

b/b
e
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e
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II.E.4. Viscous Wing Optimization 

  

The Viscous Optimized Wing optimum spanload was found by further following the work of 

Kroo14 and Verstraeten and Slingerland.15 This formulation included the influence of the profile 

drag, allowing the wing design to be optimized by optimizing for the total drag instead of the 

induced drag. The total drag is found as the sum of the induced drag and the profile drag. The 

profile drag coefficient (Cd,p) of a local section of the wing is assumed to vary quadratically with 

the sectional lift coefficient as seen in II.10. 

𝐶𝑑,𝑝 = 𝐶𝑑,0 + 𝐶𝑑,2𝐶𝑙
2 (II.10) 

The local Reynolds number of a non-rectangular wing varies across the span of the wing as 

the chord varies. The profile drag coefficient depends on Reynolds number, so the variation of 

the Reynolds number as the chord changes needed to be incorporated into the optimization 

routine. To do this, Cd,0 and Cd,2 were identified for a range of Reynolds numbers within the 

design space. These coefficients were determined using the XFOIL program developed by Drela 

and Youngren.23 This program couples inviscid flow solutions to integral boundary-layer 

methods allowing for estimates of profile drag of airfoils. In order to calculate the profile drag 

for the entire wing, a strip theory approach was used. This method incorporates the chord 

distribution and the airfoil profile drag coefficient. With the profile drag contribution to total 

drag now able to be calculated, the expression for total drag can be written as: 

𝐶𝐷 =∑∑𝛾𝑖𝛾𝑗𝑠𝑖𝐴𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

+∑[𝐶𝑑,0𝑖 + 𝐶𝑑,2𝑖 (
𝛾𝑐𝑎𝑣𝑔

𝑐
)
𝑖

2

]

𝑁

𝑖=1

 

(II.11) 

Now with a new expression for total drag, the cost function used to minimize total drag for 

fixed lift coefficient and fixed wing-root bending moment becomes: 

𝐽 = 𝐶𝐷 + 𝜆𝐶𝐿 (𝐶𝐿 − 𝐶𝐿𝑟𝑒𝑓) + 𝜆𝐶𝐵(𝐶𝐵 − 𝐶𝐵𝑟𝑒𝑓) 
(II.12) 

The Viscous Optimized Wing drag can now be compared to the Elliptic Wing in the same 

way that the Inviscid Optimized Wing was in the previous section, but instead of comparing 

induced drag ratios, the total drag ratios are compared. The total drag ratio between the Viscous 

Optimized Wing and the Elliptic Wing (CD/CD,e), having the same lift and wing-root bending 

moment, can be seen in Figure II-3. Also in this figure are the optimized wing results from 

Kroo;14 however, note that while these results were calculated with the same taper ratio of 𝜆 =

0.5, they were found under fixed weight and trim constraints as opposed to fixed wing-root 
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bending moment. Additionally, the figure also includes results from Verstraeten and 

Slingerland,15 but these were found under an optimization routine with the same design 

constraints of lift and wing-root bending moment, but a different wing taper ratio than the current 

study. It is important to note that the total drag ratio will be very sensitive to these differences in 

constraints as well as the profile drag coefficients used in the process. The profile drag 

coefficient, and therefore the total drag ratio, are sensitive to changes in chord and Reynolds 

number. As a result, different wing taper ratios and chord distributions greatly affect the total 

drag ratio. However, the total drag ratio to span ratio for this current study is consistent with 

these previous studies.  

 

Figure II-3 Ratio of total drag of optimally-loaded wing relative to an elliptically-loaded wing having equal 

wing-root bending moment and lift.14,15 

For the current study, based off the results in Figure II-3, the minimum predicted drag of the 

Viscous Optimized Wing corresponds to a span ratio of b/be = 1.21. 

II.E.5.  Wing Design Results 

A summary of the resulting drag predictions for the three spanloads at the design CL and 
b

2
 CB 

are presented in Table II-2. 

Table II-2 Drag predictions produced by optimal spanload configurations. 

Spanload CD,i CD,p CD e AR 

Elliptic Wing 0.00942 0.00929 0.01871 1.00 6.5 

Inviscid Optimized Wing 0.00796 0.00954 0.01750 0.666 11.6 

Viscous Optimized Wing 0.00798 0.00941 0.01739 0.806 9.5 

The optimum spanloads that are produced by the three design cases are plotted in Figure II-4 

against a normalized span (𝜂). 
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Figure II-4 Spanloads of the optimally-loaded wing designs. 

 

The elliptic wing has an elliptic spanload distribution in order to produce a constant 

downwash profile across the span, resulting in the minimum induced drag at a given lift and 

span. However, the Inviscid Optimized Wing has a “bell-shaped” spanload distribution that is 

consistent with the literature for inviscid optimization with wing-root bending moment 

constraints.9 This distribution allows for significant unloading near the wingtip, but higher 

loading at the root than the other two distributions. As the span of the Inviscid Optimized Wing 

is longer than that of the Viscous Optimized Wing, it would make sense that the increased span 

would lead to an increase in profile drag, even with the decrease in induced drag produced by a 

span extension. As a result, the Viscous Optimized Wing follows a spanload that falls between 

the Elliptic Wing and Inviscid Optimized Wing spanloads. 

 

Figure II-5 Twist distributions at design CL used to achieve design spanload. 
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As discussed previously, the design spanload was achieved through tailoring the twist 

distribution, since a prescribed planform configuration was used for all three wings. These 

resulting twist distributions are given in Figure II-5. 
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III. Experimental Methods 

 Three wing models based on the theoretical designs were tested in a wind tunnel at the 

University of Illinois at Urbana-Champaign. These wing models were used to obtain to force 

balance measurements, as well as results from 5-hole probe wake survey experiments and 

surface oil-flow visualization. The methods used for these various experiments are detailed in 

this section. 

III.A. Wind Tunnel  

The data obtained in this investigation were acquired from a series of wind tunnel 

experiments, performed at the University of Illinois at Urbana-Champaign. The Illinois 2.8-ft × 

4-ft subsonic wind tunnel located in the Aerodynamics Research Laboratory was used 

throughout this investigation. The wind tunnel is an open-return, low turbulence, subsonic wind 

tunnel with a 7.5:1 contraction ratio between the inlet and test section, and turbulence intensity 

less than 0.1% for all operating speeds and can be seen in Figure III-1.  

 
Figure III-1 Wind Tunnel Diagram 



17 

 

 

The wind tunnel is driven by a 125-hp AC motor connected to a five-bladed fan, which is 

regulated by an ABB ACS 600 Low Voltage AC Drive. The maximum rotational speed of the 

fan is 1200 rpm which corresponds to a maximum empty test section speed of 165 mph (242 

ft/sec). This results in a maximum tunnel streamwise Reynolds number of approximately 1.5 × 

106/ft. The Reynolds number of the wing models were calculated using the mean aerodynamic 

chord (c̄) of each model as well as the tunnel freestream velocity, density, and viscosity as in 

equation III.1. 

𝑅𝑒 =
𝜌𝑉∞𝑐̅

𝜇
 

( III.1) 

All measurements were acquired at a Reynolds number of 0.45 × 106, based on the wing 

mean aerodynamic chord. The Reynolds number was kept within 0.5% of the desired value 

throughout the duration of each experiment. The tunnel test section velocity was calculated using 

pressure measurements (p) across he inlet and the known areas (S) of the test section (ts) and 

settling section (ss) of the wind tunnel, as well as ambient conditions inside the laboratory. This 

calculation was done using a combination of incompressible Bernoulli’s equation (III.2), 

incompressible mass conservation (III.3), and the ideal gas law (III.4).  

1

2
𝜌𝑎𝑚𝑏𝑉𝑡𝑠

2 + 𝑝𝑡𝑠 =
1

2
𝜌𝑎𝑚𝑏𝑉𝑠𝑠

2 + 𝑝𝑠𝑠 
(III.2) 

𝑆𝑡𝑠𝑉𝑡𝑠 = 𝑆𝑠𝑠𝑉𝑠𝑠 (III.3) 

𝜌𝑎𝑚𝑏 =
𝑝𝑎𝑚𝑏
𝑅𝑇𝑎𝑚𝑏

 (III.4) 

Where 𝑝𝑎𝑚𝑏and 𝑇𝑎𝑚𝑏 are the ambient pressure and temperature measurements as R is the ideal 

gas constant for air. The ambient pressure was measured using a Setra 270 pressure transducer 

located in the control room and the ambient temperature was measured using a J-type 

thermocouple. 

Using these three equations, the velocity in the test section can be found: 

𝑉𝑡𝑠 = √

2(𝑝𝑠𝑠 − 𝑝𝑡𝑠)

𝜌𝑎𝑚𝑏 (1 −
𝑆𝑡𝑠
𝑆𝑠𝑠
)
2 

(III.5) 

Where (𝑝𝑠𝑠 − 𝑝𝑡𝑠)was measured using pressure taps located in the wind tunnel. A total of eight 

pressure taps were located inside the wind tunnel: four within the settling section on each tunnel 
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wall, and another four just before the test section on each tunnel wall. Each set of four taps were 

pneumatically averaged and then connected to a Setra 239 differential pressure transducer.  

III.B. Data Acquisition System 

The data acquisition programs used for the experiments detailed in this chapter were 

developed in LabVIEW 2012 and run on a Dell Precision T3400 computer with an Intel® 

Core™ Quad CPU with 4GB RAM. The computer had a Windows XP 32-bit operating system. 

The computer software was able to command the various pieces of equipment used for the 

experiments such as the tunnel variable frequency drive, the three-component force balance, the 

Zaber traverse system, and the pressure measurement system. Commands were sent by the data 

acquisition computer to these devices via RS-232 communication. The analog signals from the 

three-component force balance were converted to digital signals using a National Instruments 

(A/D) conversion board. 

III.C. Force Balance 

The model angle of attack was regulated within 0.1° using a turntable, which was part of a 

three-component Aerotech ATE Limited balance located underneath the wind tunnel test section 

seen in Figure III-2. Measurements acquired from this three-component balance were used to 

determine the lift, drag, and quarter-chord pitching moment coefficients (CL, CD, and CM, 

respectively) of the wing models. Load cells were used by the balance in order to measure the 

forces and moments experienced by the wing models. These load cells could be set to measure 

loads across a certain range for each component. In order to reduce uncertainty of digitizing the 

analog measurements, choosing the correct range is important. As each of the three models are 

relatively small, the lowest range for the load cells was chosen. The normal force range was ±90 

lbf, the axial force range was ±18 lbf, and the pitching moment range was ±15 ft-lbf. The load 

cells output voltage signals, which were low-pass filtered at 1 Hz and then amplified from the 

original ±20 mV to ±5 V using the signal conditioning system within the balance. For each final 

balance measurement, 200 voltage samples were acquired at a sample rate of 100 Hz and 

averaged. 

Before acquiring force and moment measurements over a range of angle of attack, balance 

tare voltages were acquired with the wind off. These tare voltages were taken over the entire 
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range of angle-of-attack range at 1° intervals. These balance tare voltage measurements were 

subtracted from the balance voltage measurements acquired during the experiment, producing a 

tare-corrected voltage measurement. This difference in voltage measurements was multiplied by 

a force balance range ratio (RR) in order to obtain a scaled voltage. For the lowest load cell 

range, the 𝑅𝑅𝑛𝑜𝑟𝑚𝑎𝑙 was 0.2046, the 𝑅𝑅𝑎𝑥𝑖𝑎𝑙 was 0.2173, and the 𝑅𝑅𝑚𝑜𝑚𝑒𝑛𝑡 was 0.3413.  

The resulting normal force (𝑉𝑁), axial force (𝑉𝐴), and pitching-moment (𝑉𝑀) scaled voltage 

measurements were put into the calibration matrix (III.6) in order to determine the normal force 

(𝐹𝑁), axial force (𝐹𝐴), and pitching-moment (𝑀). 

{
𝐹𝑁
𝐹𝐴
𝑀
} = [

37.7
−0.1607
−0.01299

  
0.01359
8.3125

−0.005521
  
−0.2095
−0.01638
1.247

  
0.01094
0.007084
−0.002122

  
0
0
0
  
−0.000865
0.007660
0.0001497

] 

{
  
 

  
 
𝑉𝑁
𝑉𝐴
𝑉𝑀
𝑉𝑁
2

𝑉𝐴
2

𝑉𝑀
2}
  
 

  
 

  

 

 

(III.6) 

These forces can be directly converted into lift, drag, and quarter-chord pitching moment via 

a coordinate transform. 

𝐿 = 𝐹𝑁 cos(𝛼) − 𝐹𝐴sin (𝛼) (III.7) 

𝐷 = 𝐹𝑁 sin(𝛼) + 𝐹𝐴cos (𝛼) (III.8) 

𝑀𝑐
4⁄
= 𝑀 + 𝑥𝑜𝑓𝑓𝑠𝑒𝑡𝐹𝑁 + 𝑦𝑜𝑓𝑓𝑠𝑒𝑡𝐹𝐴 (III.9) 

Where 𝑥𝑜𝑓𝑓𝑠𝑒𝑡 and 𝑦𝑜𝑓𝑓𝑠𝑒𝑡 are the distances between the quarter-chord position to the center of 

the force balance. Since the quarter-chord of the models were mounted directly to the center of 

the balance plate, 𝑥𝑜𝑓𝑓𝑠𝑒𝑡 and 𝑦𝑜𝑓𝑓𝑠𝑒𝑡 were both zero for the current study.  

In order to calculate the non-dimensional lift coefficient (𝐶𝐿) and drag coefficient (𝐶𝐷), the 

lift and drag forces needed to be divided by the freestream dynamic pressure (𝑞∞) and model 

reference area (S). 

𝐶𝐿 =
𝐿

𝑞∞𝑆
 

(III.10) 

𝐶𝐷 =
𝐷

𝑞∞𝑆
 

(III.11) 

In order to calculate the non-dimensional quarter-chord pitching moment coefficient (𝐶𝑀), 

the pitching moment needed to be divided by the freestream dynamic pressure, model reference 

area, and mean aerodynamic chord. 
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𝐶𝑀 =
𝑀𝑐

4⁄

𝑞∞𝑆𝑐̅
 

(III.12) 

Where the freestream dynamic pressure was calculated using the previously-measured values 

of 𝜌𝑎𝑚𝑏 and 𝑈𝑡𝑠 

𝑞∞ =
1

2
𝜌𝑎𝑚𝑏𝑉𝑡𝑠

2 =
𝑝𝑠𝑠 − 𝑝𝑡𝑠

1 − (
𝑆𝑡𝑠
𝑆𝑠𝑠
)
2 

(III.13) 

 
Figure III-2 Photograph of Force Balance 

III.D. Wind Tunnel Corrections 

Tunnel wall corrections for a 3D wing model were made to these measurements in order to 

account for solid blockage, wake blockage, streamline curvature, and wall-induced upwash using 

standard methods described by Barlow et al.24  

All of the corrections that will be discussed were implemented automatically by a LabVIEW 

data reduction immediately following the acquisition of all measurements. There are two main 

factors necessitating corrections factors: the presence of the wing model, which affects the 

dynamic pressure, and the presence of the tunnel walls, which affects the upwash distributions 

along both the chord and span of the model. 

 Blockage correction is necessary as blockage in the wind tunnel induces an incremental 

velocity increase at the model that changes the dynamic pressure. The forces and moments 

Force Balance 

Turn Table 
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experienced by the model scale directly with the dynamic pressure at the model, because the 

solid model reduces the area of the test section, leading to an artificial increase in dynamic 

pressure. The solid blockage factor is discussed in Barlow et al.24 and is given in equation III.12. 

𝜖𝑠𝑏 =
Δ𝑉

𝑉∞
=
0.9(𝑊𝑖𝑛𝑔 𝑉𝑜𝑙𝑢𝑚𝑒)

𝑆𝑡𝑠
3/2

 
(III.12) 

The wake blockage correction includes the effects of flow separation and more effectively 

corrects for reductions in velocity across the wake that lead to artificial increases in the dynamic 

pressure of the freestream. The wake blockage correction is also discussed in Barlow et al.24 It 

includes CDu, the uncorrected drag coefficient, CDi, the uncorrected drag due to lift, and CDo, the 

uncorrected minimum drag coefficient. The equation for wake blockage correction is given in 

equation III.13. 

𝜖𝑤𝑏 =
𝑆

4𝑆𝑡𝑠
𝐶𝐷𝑜 +

5𝑆

4𝑆𝑡𝑠
(𝐶𝐷𝑢 − 𝐶𝐷𝑖 − 𝐶𝐷𝑜) 

(III.13) 

The second term the drag coefficient due to any separated flow. When there is no separated flow, 

this term is zero, so equation III.13 gives the wake blockage correction for streamlined flow. The 

derivation of these terms is described in detail in Barlow et al.24  

The corrected dynamic pressure is then found as follows: 

𝑞∞𝑐 = 𝑞∞(1 + 𝜖𝑠𝑏 + 𝜖𝑤𝑏)
2 (III.14) 

The streamline curvature correction is necessary because the presence of the tunnel walls 

changes the upwash distribution along the chord of the model. This upwash affects the angle of 

the attack and pitching moment coefficient of the wing. The streamline curvature correction is a 

function of the tunnel aspect ratio as well as the ratio of the model quarter-MAC to the width of 

the tunnel. This correction factor is 𝜏2 and is automatically found by the data acquisition 

program in LabVIEW using charts from Barlow et al.24 

The wall-induced upwash correction factor 𝛿 is a function of the spanload distribution, ratio 

of model span to the width of the tunnel, the shape of the test section, and the position of the 

wing. The correction factor is determined by finding the effective vortex span of a wing, which is 

a function of taper ratio and span. The upwash correction factor is automatically found by the 

data acquisition program in LabVIEW using digitized charts from Barlow et al.24 and user-input 

data about the geometry of the model. 
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The correction factors are applied utilizing the following equations derived in Barlow et al.24 

to find the corrected drag coefficient (𝐶𝐷𝑐), the corrected angle of attack (𝛼𝑐), and the corrected 

quarter-chord pitching moment (𝐶𝑀𝑐). 

 𝐶𝐷𝑐 =
𝐷

𝑞∞𝑐 𝑆
+
𝛿𝑆

𝐴𝑡𝑠
𝐶𝐿𝑐
2  

(III.15) 

 𝛼𝑐 = 𝛼𝑔 +
𝛿𝑆

𝐴𝑡𝑠

180

𝜋
(1 + 𝜏2)𝐶𝐿𝑐 

(III.16) 

 𝐶𝑀𝑐 =
𝑀

𝑞∞𝑐  𝑆 𝑐̅
+ 0.125 𝛿 𝜏2  

𝑆

𝐴𝑡𝑠
 𝐶𝐿𝑐 (

𝑑𝐶𝐿𝑐
𝑑𝛼𝑐(rad)

) 
(III.17) 

Where 𝛼𝑔 is the geometric angle of attack and 𝐶𝐿𝑐 is simply found by dividing 𝐶𝐿 by (1 + 𝜖𝑠𝑏 +

𝜖𝑤𝑏)
2. 

III.E. Construction of Wing Models 

Three wing models were constructed according to the designs discussed in section II. The 

theoretical design defined wings with set taper ratios, surface areas, and spans, as well as chord 

and twist distributions. CAD models were created in Creo Parametric using NACA0015 airfoil 

sections and can be seen in Figure III-3. The airfoil sections were placed at small intervals along 

the span of each wing, and then the wing shapes were created by connecting all of the sections 

with a swept blend. The sections were spaced closer together in areas where the twist distribution 

changed rapidly in order to ensure that the model had conformed to specified twist distribution at 

all points.  

Each model was machined from solid aluminum using a 5-axis CNC mill. The aluminum 

models were then processed through an acid wash and a 1/64-inch thick fiberglass cloth was 

adhered to the surface. The model surfaces were polished and painted with primer, producing 

smooth, high-quality surfaces. Photographs of the three wing models installed in the wind tunnel 

test section are presented in Figure III-4. 
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Figure III-3 Isometric view of CAD models for a) Elliptic Wing, b) Inviscid Optimized Wing, c) Viscous Optimized Wing. 

 

    

Figure III-4 Wing models installed in wind-tunnel test section: a) Elliptic Wing, b) Inviscid Optimized Wing, 

c) Viscous Optimized Wing. 
a)            b)                                     c) 

a) b) 

c) 
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III.F. Pressure Measurement System 

In order to use the 5-hole probe wake survey method that is detailed in section III.E, pressure 

data were acquired across a wake-survey plane behind the wing models. The pressure 

measurements were acquired using an Aeroprobe Corp. model PS5-C318-152 five-hole probe 

with a base diameter of 0.125 inches. This pressure probe has one central port and four 

equidistant peripheral ports around the conical tip of the probe. The pressure measurements were 

acquired using a DTC Initium System manufactured by Pressure System. The DTC Initium 

collected data from one ± 0.35 psid Miniature Electronically Scanned Pressure (ESP) 32-port 

module. This ESP module was connected to the five output pneumatic ports from the five-hole 

pressure probe, as well as a reference port connected to the tunnel test section static pressure. 

The tunnel settling section static pressure was connected to port 32. The module was able to 

measure the pressure difference between each of 6 ports used and the reference port. A schematic 

of the Pressure Measurement System can be seen in Figure III-5. 

 

Figure III-5 Schematic of the Pressure Measurement System. 
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The DTC Initium was connected to the ESP module using a PSCB cable. The Initium was 

connected to the Dell computer using a 10/100 Base – T Ethernet cable as seen in Figure III-5. 

Also seen in this figure is the connection between the Initium and a supply of compressed 

nitrogen gas. The DTC Initium system re-zeroes the ESP module by applying 100 psi of 

compressed nitrogen through a C1 port on each scanner. This shifts a manifold within the 

module, which is then shifted back by applying 100 psi of pressure to the port C2. Once this 

calibration is completed, the pressure measurement system is ready for data acquisition. Vinyl 

tubing was used to connect the five-hole probe pressure ports and static pressure lines to the ESP 

module. 

III.G. Wake Survey System 

A 2-axis traverse system was used to move the 5-hople probe across the wake survey plane. 

Zaber linear traverses were used for each axis. In the horizontal axis, the Zaber traverse was 

model A-LST1250BE01-ENG1561-KT07, and in the vertical axis the model was A-LST1000A-

E01-KT07. The positions of each traverse were able to be measured with Rotary quadrature 

encoders within 9.84 thousandths of an inch. Two-phase stepper motors controlled the position 

of the axes and were connected to the data acquisition computer with an RS-232 cable.  

The wake-survey measurement plane is approximately 25 inches behind the quarter-chord 

location, which is the same for all three models. The experimental setup for the wake-survey 

method can be seen in Figure III-6. The measurement points selected in the wake-survey plane 

were entirely dependent on the test conditions, as model produced a different wake at each angle 

of attack, therefore the position and size of the wake-survey data acquisition grid changed 

depending on the test in order to capture the entirety of the wake. In order to determine where to 

collect data, a preliminary wake survey was run for approximately 15 minutes using a 1 in. 

sampling grid to acquire pressure measurements. The raw pressure data could be viewed using a 

MATLAB code that plotted the grid of pressures from a selected port. This visualization of raw 

data was then used to determine the size and shape of a much finer sampling grid in a separate 

MATLAB code. The finest sampling grid utilized is equal to that of the five-hole pressure 

probe’s base diameter: 0.125 in. This process was used in order to save time, as acquiring data in 

such a fine grid is costly. In order to simplify the data reduction process, full rectangular grids of 

data points were collected. For the portions of the wake-plane where there were no significant 
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flow features, a coarser grid of 0.25 in. was used. At this resolution, a typical survey at one angle 

of attack took approximately 9-10 hours, but depended heavily on the span of each model and 

the size of the wing tip vortex present in the wake.  

 

Figure III-6 Photograph depicting the installed wing model, 5-hole probe, and probe support. 

The 5-hole probe pressure measurements collected at the wake survey plane were then used 

in order to calculate the three-components of velocity at the downstream wake survey plane from 

the wing models. A calibration was required to reduce the raw pressure measurements into the 

three velocity components. A detailed discussion of the calibration procedure is detailed in 

Appendix B. The process for converting these velocity measurements is discussed in Appendix 

C. These measurements were used to determine the spanwise lift, induced drag, and profile drag 

distributions, as discussed by Brune.25 This method utilizes the control volume analysis 

techniques, originally developed by Maskell26 and Betz27. A brief introduction to the wake-

survey method is given in this section, but a more detailed derivation can be seen in Appendix A. 

Wake survey measurements were taken for each of the three wings at four angles of attack. From 

these velocity components, the vorticity (ξ) and stream function (ψ) terms were first calculated. 

With these necessary terms, the wake survey technique developed by Brune25 allows the wing 

lift (L), induced drag (Di), and profile drag (Dp) to be calculated from the change in momentum 

across a control volume surrounding the model. 

Wing model 

5-hole probe 

Probe support 
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𝐷𝑝 = ∬[(𝑝𝑡,∞ − 𝑝𝑡) +
𝜌

2
(𝑢∗ − 𝑢){𝑢∗ + 𝑢 − 2(𝑉∞ + 𝑢𝑏)}] 𝑑𝑦𝑑𝑧 

𝑊𝐴

 (III.18) 
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dydzyL

AW

   (III.20) 

In the profile drag equation, ub is the wake-blockage velocity introduced by Maskell, which takes 

the form of an x-directional perturbation velocity as an integral over the wake survey area.26 
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Betz introduced u*, an artificial velocity component that is different from u in the wake area 

alone.27 As such, the difference between u and u* is zero everywhere except for in the wake of 

the model. The equation for the artificial velocity can be expressed as, 

𝑝𝑡,∞ = 𝑝𝑡 +
𝜌

2
(𝑢∗2 + 𝑣2 + 𝑤2) (III.22) 

 

The lift in equation III.20 is found using Maskell’s method, however Kusunose puts forth a 

method for determining lift using classical circulation theory with a planar wake assumption 

shown in equation III.23.31 This method is extremely useful as it allows for the calculation of 

sectional lift coefficient using equation III.24. 

𝐿 = 𝜌𝑉∞ ∫ Γ(𝑦)𝑑𝑦

𝑦𝑅

𝑦𝐿

 

(III.23) 

𝐶𝑙(𝑦) =
2

𝑉∞𝑐(𝑦)
Γ(𝑦) 

(III.24) 

Since ψ and ξ are both functions of the wake velocities, the lift and drag components of the wing 

can be determined by the 5-hole pressure measurements acquired across the wake plane. The 

streamwise vorticity calculation requires taking the curl of the cross-flow velocity components 

across the wake plane, 
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The stream function is used for the calculation of induced drag and can be found using the x-

vorticity component. An iterative procedure was used to solve the discrete Poisson equation in 

order to obtain ψ.27 


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2

2

2
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(III.26) 

 

The data reduction also included Savitzky-Golay filtering on the velocity and total pressure 

distributions before finite difference techniques were used to compute vorticity and the y- and z-

derivatives of the total pressure difference from the freestream value. This filtering helped 

mitigate the effects of instrument-induced error on the calculation of the derivatives by ensuring 

a smooth spatial distribution of the velocity and pressure contours. The total pressure difference 

was defined as 1 – Cp,t and was calculated using the total pressure measured by the 5-hole probe. 

The z-derivative of the total pressure difference was also used in order to find the position of the 

wake, so that measurements outside of the wake could be neglected in the calculation of lift and 

drag components; this includes the portion of the flowfield dominated by a wing-floor juncture 

vortex. The data reduction is elaborated upon further in Appendix C. 

III.H. Oil-Flow Visualization 

Fluorescent oil surface-flow visualization was also used in order to identify separation bubbles 

and other flow features of interest. When performing this qualitative experimental method, the 

shear forces experienced at the surface of the wing model during tunnel operation cause oil on 

the surface of the model to move and create a time averaged pattern of the surface flow. In order 

to perform surface oil-flow visualization, the wing model was first wrapped in black Con-Tact 

paper, which provided a high-contrast surface for the fluorescent oil image. A thin coat of 10W-

30 motor oil was applied to the wing model, and a mixture of Dye-Lite fluorescent leak detector 

dye and heavy viscosity mineral oil was applied to the wing model using an airbrush. The 

airbrush used Nitrogen gas regulated at 35 psi in order to apply florescent oil in a very fine 

speckle pattern. The wing model was rotated to the desired angle of attack and the wind tunnel 

was run at the desired Reynolds number for approximately three minutes. Black lights were used 

to excite the fluorescent dye in the oil, and all other sources of light were eliminated. The 

resulting flow patterns were documented using a Nikon D3100 digital camera with long 

exposure settings. Flow visualization was conducted for each wing at the design lift coefficient.  
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IV. Results and Discussion 

IV.A. Wing Performance 

The resulting performance measurements for the three wing models are presented in Figure 

IV-1 and Figure IV-2. Since airfoil and wing performance measurements are known to be 

sensitive to hysteresis effects at low Reynolds numbers, performance data were acquired for both 

increasing and decreasing angles of attack. The design predictions of CL and CD are also 

provided in Figure IV-1 and Figure IV-2 as filled symbols. The root angle of attack is used as the 

reference incidence setting for the wing. The interpolated drag coefficient and root angle of 

attack from the wind-tunnel measurements are also presented in Table IV-1 for each of the three 

wings at the design CL. From Figure IV-1 b), since the root angle is different for each wing, the 

zero-lift αroot is also expected to be different for each model. Additionally, within the linear lift 

regime it can be seen that there is an increase in lift curve slope with increasing aspect ratio. The 

Elliptic Wing has the shallowest lift curve slope and the Inviscid Optimized Wing has the 

steepest. From Figure IV-1 a), the predicted behavior in the wing drag is also exhibited, where 

the drag of the Elliptic Wing has the highest total drag coefficient of the three wing geometries 

for the design CL. Also from Figure IV-1 a), the Viscous Optimized Wing produces the smallest 

drag coefficient at the design CL. These observations are consistent with the design predictions, 

as shown in Table IV-1. 

Examination of the drag polar reveals that the Inviscid Optimized Wing, having the longest 

span, has lower drag than the Viscous Optimized Wing and the Elliptic Wing at high lift 

coefficients. Since the Inviscid Optimized Wing has the largest aspect ratio of all three wing 

designs, significantly less induced drag is produced by this wing at high values of CL, despite the 

lower planform efficiency factor associated with this wing. From Figure IV-1, the Elliptic Wing 

also exhibits the lowest drag coefficient at CL = 0 of the three wings, followed by the Viscous 

Optimized Wing and the Inviscid Optimized Wing. As shown in Table IV-1, the Elliptic Wing 

was designed with the lowest profile drag of all of the three wing designs. Since the wings are 

operating at an angle of attack that is different from that of the design conditions, it can be 

expected that a small amount of induced drag is being produced at CL = 0 due to small positive 

and negative local lift contributions across the span produced in the off-design spanload. 

However, it is safe to assume that this induced drag contribution is small for this case, and the 
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trends observed in the drag polar for CL = 0 are primarily due to the differences in profile drag 

between the three wing designs.  

 

Figure IV-1 Aerodynamic performance of design wing models at Rec¯ = 0.45 × 106 for increasing αroot: a) CD, 

b) CL, c) CM. 

While the trends in the drag coefficient of the wings agree with the predictions, the exact 

values of CL and CD predicted in the wing designs are slightly different than those acquired from 

the experimental measurements. This observation is similar to those of Coder and Maughmer28 

for airfoils at low Reynolds numbers, where the theoretic methods tended to over-predict the lift 

coefficient and under-predict the drag coefficient at a given α, when compared to the 

experimental measurements. While this slight difference could be due to several factors, the 

authors attribute a large portion of this discrepancy to the presence of the wind-tunnel floor 

boundary layer and wing-floor juncture vortex in the wind-tunnel measurements, which was not 

included in the wing design predictions. 
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The quarter-chord pitching moment coefficient in Figure IV-1 c) also displays a behavior 

similar to that of an NACA 0015 airfoil, though one significant difference is the negative 

pitching moment observed at αroot = 0 deg. For the NACA 0015 airfoil one would expect CM = 0 

at α = 0 deg. Though, in Figure IV-1 c) a negative pitching moment is produced for the wings 

due to the aggressive washout near the tips of each design. From Figure IV-1 and Figure IV-2, 

the wing performance corresponding to an increasing angle of attack is consistent with that 

obtained for a decreasing angle of attack, with the exception of the angle-of-attack range near 

stall.  

 

Figure IV-2 Aerodynamic performance of design wing models at Rec¯ = 0.45 × 106 for decreasing αroot: a) 

CD, b) CL, c) CM. 
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Table IV-1 Drag and Angle of Attack for Each Wing at Design CL = 0.439 

Spanload CD αroot (deg) 

Elliptic Wing 0.02158 5.76 

Inviscid Optimized Wing 0.01967 8.54 

Viscous Optimized Wing 0.01879 7.77 

 

IV.B. Surface Oil-Flow Visualization 

The surface-oil flow visualization results for the three wings at the design lift coefficient are 

also presented in Figure IV-3.  

                   

Figure IV-3 Surface-oil flow visualization of wing models at design CL: a) Elliptic Wing, b) Inviscid 

Optimized Wing, c) Viscous Optimized Wing. 

 

From Figure IV-3, the flow visualization reveals the presence of a separation bubble on each 

wing. The location and size of the separation bubble was observed to vary across the span of the 

wing, due to the spanwise twist distribution that was incorporated into the wing designs. Since 

the local angle of attack across the outboard sections of the wings were lower than those across 

a)          b)      c) 
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the inboard section of the wings, the local flow qualities and separation bubble geometry was 

observed to vary relative to this twist geometry. A slight influence of the tip vortex can also be 

observed in each of the flow visualization results, though across the majority of the span the flow 

appears to exhibit very little spanwise interaction, as indicated by the streamwise flow pattern 

upstream and downstream of the separation bubble. 

IV.C. Wake-Survey 

 

Wake-survey data was acquired for the three different wing models at the design lift 

coefficient (CL = 0.439) at Rec̄ = 0.45 × 106. Contours for the u-velocity measurements, the x-

vorticity component, and the change in total pressure are shown in Figure IV-4-Figure IV-6, 

since these measurements are important for the calculations of total lift and drag. Vorticity is 

used for calculating lift and induced drag, and the change in total pressure and the u-velocity 

component are used in the calculation of profile drag. Since each model was run at a different 

M∞ to produce a constant Rec̄ = 0.45 × 106, the dimensional contour levels are different for each 

wing. It should be mentioned that the vorticity contour for the elliptic wing in Figure IV-4 b) has 

a different contour scaling than the other wings due to the distinctly high vorticity associated 

with the tip vortex for this case. 

In Figure IV-4-Figure IV-6, the velocity deficit due to the model is clearly visible as the 

vertically-oriented region of high change in total pressure (1-Cp,t). The floor boundary layer and 

juncture flow adjacent to the model is also clearly visible in the u-velocity measurements as the 

region of low pressure spanning the bottom of the plot for each wing model. The large spanwise 

twist required to achieve the spanloads of the Inviscid Optimized Wing and the Viscous 

Optimized Wing also produce a deflection of the wake trace, which can be observed in Figure 

IV-5 and Figure IV-6. Finally, the tip vortex, resulting from the roll-up of the wake, is also 

visible for each wing model, but most clearly for the Elliptic Wing in Figure IV-4. In comparing 

the vortex size between the three wings, the Elliptic Wing has a much larger tip vortex than the 

Viscous and Inviscid Optimized Wings. This difference in vortex size was attributed to the 

difference in the spanload configurations local to the tip. The Elliptic Wing, for example, has a 

much more aggressive decrease in the bound circulation local to the tip than the Viscous and 

Inviscid Optimized wings do. Since this decrease in bound circulation across the span is fed into 

the strength of the trailing vortex sheet, it can be expected that the trailing circulation local to the 
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tip of the Elliptic Wing is significantly stronger than the Viscous and Inviscid Optimized Wings. 

This increased strength of the vortex sheet leads to a stronger interaction of the free wake, 

causing a more aggressive roll-up at the tips for this wing configuration. Knowing that increasing 

aspect ratio decreases induced drag coefficient, it also follows that the longer span, and therefore 

largest aspect ratio, produces the smaller trailing vortices.  

 

 

Figure IV-4 Contour plots for the Elliptic Wing for a) 1-Cp,t, b) ξ, and c) u. 

 

 

Figure IV-5 Contour plots for the Inviscid Optimized Wing for a) 1-Cp,t, b) ξ, and c) u. 
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Figure IV-6 Contour plots for the Viscous Optimized Wing for a) 1-Cp,t, b) ξ, and c) u. 

 

In observing a) for each of Figure IV-4-Figure IV-6, it should be noted that the total pressure 

difference from the floor vortex generated during wind tunnel testing has been excluded from the 

measurements, as mentioned in the Experimental Methods section. As a result, the portion of 

wake area with the floor vortex has been neglected from profile drag calculations. The u-velocity 

outside of the wake has also been set to u*, the artificial axial velocity component, so that when 

profile drag is calculated from Equation III.18, the (u*- u) term is considered only within the 

wake. As such, the floor vortex is still visible in the plot of the u-velocity, as it exists within u*, 

but it does not affect the calculation of profile drag. This procedure was utilized in order to 

prevent small amounts of measurement noise or uncertainty from biasing the calculated lift or 

drag values from the wake survey technique, when integrations were performed across the entire 

wake plane. From b) for each of Figure IV-4-Figure IV-6, it can also be seen that there is a 

distortion of the vorticity due to the vortex created at the root of the wing and the tunnel floor, 

and that this portion of the vorticity is not able to be fully resolved. The floor juncture vortex 

creates an area of negative vorticity that reduces the calculated lift and induced drag near the 

root. To combat this effect, negative vorticity near the wing root has been set to zero. 

Additionally, in Figure IV-4-Figure IV-6 b), it can be seen that the vorticity near the tip has been 

transported inboard from the tip of the wing due to the wake roll-up. For example, the span of the 
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Elliptic Wing is 1.5 ft, but in Figure IV-4 b) the maximum vorticity is located 1.417 ft from the 

root.  

The balance polar data is also compared to the wake survey results and design predictions in 

Figure IV-7-Figure IV-9. In these figures, the axes of the CL vs. CD curve have been set to more 

effectively display the comparison between the design predictions and the experimental 

performance measurements across the CL and CD range of interest. Overall, the calculated 

performance of the wings from the wake survey measurements agree with those acquired from 

the balance measurements and the design predictions. However, as seen in Figure IV-7-Figure 

IV-9 b), the wake survey data has slightly higher drag than the design prediction, which was also 

seen in for the balance measurements in Figure IV-1.  

 

Figure IV-7 Elliptic Wing polar data compared to wake-survey data and the design predictions for a) CL vs. 

αroot and b) detail view of CL vs. CD. 

 
Figure IV-8 Inviscid Optimized Wing polar data compared to wake-survey data and the design predictions 

for a) CL vs. αroot and b) detail view of CL vs. CD. 
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Figure IV-9 Viscous Optimized Wing polar data compared to wake-survey data and the design predictions 

for a) CL vs. αroot and b) detail view of CL vs. CD. 

 

The wake-survey measurements also display good agreement with the CL vs. CD polar from 

the balance measurements; however, there is some disparity between the lift-coefficient 

measurements and angle of attack setting when comparing wake-survey and balance 

measurements, as seen in most prominently in Figure IV-7 a). The differences between the 

balance measurements and the wake-survey measurements likely stem from multiple sources. 

The high level of distortion of the flow at the wing root due to the interaction with the junction 

vortex likely has an effect on the measured vorticity produced by the wing across the region near 

the wall, causing the wing vorticity to dissipate and spread across the wake plane. This effect can 

be observed by the decreased amplitude of the vorticity near the wing root and the small patches 

of vorticity present outside of the wake trace as observed in Figure IV-4-Figure IV-6 b). 

Additionally, some of the assumptions of the wake-survey method concerning the wake may not 

be fully valid. Since the method assumes a fixed wake, it is unable to take into account the roll-

up of a wake vortex sheet and viscous dissipation of vortices, which occurs in real wing flows. 

Spanwise lift distributions were also obtained for each of the three wings using the wake 

survey measurements. A comparison of the design and experimentally-obtained spanloads for 

each wing can be seen in Figure IV-10 From this comparison, it can be seen that the general 

trend of the lift distribution is consistent between the design and the experiment, though there is 

a noticeable difference near the root. As discussed previously, this difference is attributed to the 

interaction between the shed circulation of the wing and the junction vortex or wall boundary 

layer. It is worth noting, however, that a junction vortex is a relatively common phenomenon on 
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practical aircraft applications. As a result, if a true indication of the performance of a wing is 

desired, linearized, inviscid modeling methods will be incapable of capturing the influence that 

these structures have on the aerodynamic performance of a wing. As a result, if resolving such an 

influence is important in the design of an aircraft, it would be necessary to incorporate higher-

order approaches that include viscous effects as part of the design process.  

 

 

 

Figure IV-10 Comparison between predicted spanwise lift and that obtained experimentally from the wake 

survey: a) the Elliptic Wing, b) the Inviscid Optimized Wing, and c) the Viscous Optimized Wing. 

 

It can also be observed that the outboard portions of the spanload differ from the design to 

different degrees for each wing. The Elliptic Wing has a significant premature decrease in lift at 

the tip compared to the design spanload, and this effect is visible to a lesser extent in the Viscous 

Optimized Wing. This sudden decrease in the spanload of the Elliptic Wing is attributed to the 

roll-up of the wake after leaving the wingtip. In contrast, the smallest observable tip-vortex was 
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exhibited in Figure IV-5 by the Inviscid Optimized Wing. As a result, in Figure IV-10 b), there 

appears to be no significant premature decrease in lift compared to the design. Since the Inviscid 

Optimized Wing features a tapering of the spanload to zero as the tip region is approached, the 

strength of the trailing vortex sheet at the tip is significantly weaker than that for the Elliptic 

Wing.  

From the comparison of the wake-survey measurements to the design prediction, it can be 

seen that the experimental measurements vary from the design prediction to various extent, but 

overall that the low order design method used in this experiment is still qualitatively similar to 

the experimentally-obtained results. The results of this experiment demonstrate that inviscid 

approximations with simple, empirical viscous corrections can be used effectively in the 

preliminary design of wings. For the final design and analysis of wings, however, higher-order 

methods would be useful to resolve viscous-based complex interactions. 
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V. Conclusions  
 

This work documents the findings of a study on planar wings designed with optimum 

spanloads for minimum drag under a fixed wing-root bending moment constraint. Three wings 

were designed using a Lagrange multiplier optimization method, with and without incorporating 

a representative viscous effect. These wings were also experimentally evaluated in a wind-tunnel 

environment. The results of this investigation indicate that significant decreases in drag from an 

elliptic spanload are produced by increasing the wing span, while keeping the lift and wing-root 

bending moment fixed. Representing viscous effects by incorporating a profile drag term in a 

strip theory approach yielded a more realistic optimization problem, as total drag could be 

minimized instead of induced drag. 

In general, the trends of the design prediction method agreed with the experimental 

measurements, though the theoretical model generally over-predicted the wing lift and under-

predicted the wing drag. However, these differences in theoretical predictions and experimental 

measurements were consistent with observations in the literature for airfoils at low Reynolds 

numbers. 5-hole probe wake-survey measurements were used to obtain the spanwise lift 

distributions. These distributions allowed the designed spanload to be compared to those 

obtained experimentally. The qualitative agreement between the predictions and measurements 

indicate that while simple representations of viscous effects can be used in spanload 

optimization, higher fidelity methods are required to capture effects produced by more complex 

flow features, if desired. These complex features could include boundary layer effects of a 

fuselage-wing junction or, in the case of this experiment, the floor boundary layer and its effects. 
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Appendix A. Detailed Derivation of Wake-Survey Method from Far-field Analysis  

A.1. Far-field Analysis and the Trefftz Plane 

 

Far-field analysis allows the flow across a downstream plane to be used to compute forces 

acting local to a wing or lifting surface.29 The Trefftz Plane is normal to the free-stream flow 𝑉∞ 

at its location far downstream from the wing as seen in Figure A.1 as ST. In real experiments, the 

Trefftz plane is the plane at which a five-hole pressure probe would collect pressure data, 

however, theoretically the Trefftz plane is infinitely far downstream from the wing. The induced 

drag and lift of the wing can be calculated using the circulation across the Trefftz plane which is 

shed from the wing into the wake. In this section, a derivation of induced drag using the Trefftz 

plane will be done to help show the basics of far-field analysis and serve as a starting point for 

the more complicated derivations of profile drag in the next section.  

 

Figure A-1 Control volume used for far-field analysis conservation of momentum equation, after Katz and 

Plotkin.30 

 

Applying conservation of momentum on the control volume for an inviscid, incompressible, 

steady flow where body forces are neglected results in equation (A.1).  
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∫ 𝜌 ∗ 𝑽(𝑽 ⋅ 𝒏)𝑑𝑆 = 𝑭 − ∫ 𝑝 ∗ 𝒏𝑑𝑆

𝑆𝑆

 

(A.1) 

𝜌 – density 

𝑽 – velocity vector 

𝒏 – normal vector 

𝑝 – pressure  

𝑆 – control volume surface 

 

 

In equation (A.1), the left hand side of the equation represents the rate of momentum outflow 

through the surface. The first term on the right hand side is the force acting on the fluid due to 

the presence of the body, and the integral term is the integral of the pressures acting on the 

control volume through the surface.  

Letting 𝑽 = (𝑈∞ + 𝑢, 𝑣, 𝑤) where u, v, and w are the perturbation velocities in the x, y, and 

z directions respectively, the drag equation (A.2) can be determined when the x-component of 

(A.1) is computed. 

𝐷 = −∫ 𝜌(𝑉∞ + 𝑢)[(𝑉∞ + 𝑢) 𝑑𝑦𝑑𝑧 + 𝑣 𝑑𝑥𝑑𝑧 + 𝑤 𝑑𝑥𝑑𝑦] − ∫ 𝑝 𝑑𝑦𝑑𝑧

𝑆𝑆

 

(A.2) 

Equation A.3 can be used with the control volume analysis as subtracting 𝑃∞ from all 

surfaces cancels to zero. Bernoulli’s equation can be used to find pressures in equation A.4 since 

the flow is both inviscid and incompressible:Error! Bookmark not defined. 

∫ 𝑝 𝑑𝑦𝑑𝑧

𝑆

= ∫(𝑝 − 𝑝∞) 𝑑𝑦𝑑𝑧

𝑆

 

(A.3) 

𝑝 − 𝑝∞ =
𝜌

2
𝑉∞
2 −

𝜌

2
[(𝑉∞ + 𝑢)

2 + 𝑣2 + 𝑤2] =  −𝜌 𝑢 𝑉∞ −
𝜌

2
(𝑢2 + 𝑣2 +𝑤2) (A.4) 

 

The results from (A.3) and (A.4) can be substituted back into (A.2) which results into a new 

drag integral:29 
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𝐷 =  ∫
𝜌

2
(

𝑆

𝑢2 + 𝑣2 + 𝑤2) 𝑑𝑦𝑑𝑧 − ∫ 𝜌(𝑉∞ + 𝑢)𝑉∞𝑑𝑦𝑑𝑧

𝑆

+∫ 𝜌𝑢𝑉∞𝑑𝑦𝑑𝑧 

𝑆

−∫ 𝜌(𝑉∞ + 𝑢)[𝑢 𝑑𝑦𝑑𝑧 + 𝑣 𝑑𝑥𝑑𝑧 + 𝑤 𝑑𝑥𝑑𝑦]

𝑆

  

(A.5) 

Neglecting second order terms ( 𝑢2 ≈ 0, 𝑢𝑣 ≈ 0, 𝑢𝑤 ≈ 0 ), the first and fourth integral can 

be simplified. As a result, the fourth integral reduces to (A.6), which then reduces to zero 

because of continuity ∫ 𝜌(𝑽 ⋅ 𝒏)𝑑𝑆 = 0
𝑆

.29 

∫ 𝜌𝑉∞(𝑢 𝑑𝑦𝑑𝑧 + 𝑣 𝑑𝑥𝑑𝑧 + 𝑤 𝑑𝑥𝑑𝑦)

𝑆

= 0 

(A.6) 

The second and third terms can be combined to simplify to (A.7) which will cancel out when 

integrated across the control volume, as all terms are constant: 

−∫ 𝜌𝑉∞
2𝑑𝑦𝑑𝑧

𝑆

= 0 

(A.7) 

As a result of (A.6) and (A.7), the drag equation is reduced: 

𝐷 =
𝜌

2
∫(𝑢2 + 𝑣2 + 𝑤2)𝑑𝑦𝑑𝑧

𝑆

 

(A.8) 

However, as the flow had been assumed inviscid, the flow in the wake is parallel to the free 

stream flow, which implies that there will only be velocity perturbations in the y and z 

directions: 𝑢2 ≪ 𝑣2, 𝑤2. Since the perturbation velocity in the streamwise direction would 

provide the viscous momentum deficit associated with profile drag, the Trefftz plane analysis 

does not provide a measurement for evaluating profile drag contributions.29 It is also assumed 

that the ±𝑦 and ±𝑧 boundaries of the control volume are infinitely far from the wing. Thus, only 

on the Trefftz Plane are the values for v and w nonzero, so the drag integral equation can be 

taken only across ST.27 

𝐷 =
𝜌

2
∫(𝑣2 + 𝑤2)𝑑𝑦𝑑𝑧

𝑆𝑇

 

(A.9) 
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The integral in equation (A.9) as identified by Betz as the induced drag in his formulation of 

drag which was further used by Maskell to define induced drag in terms of vorticity and scalar 

functions in the wake of a wing (See equation (A.18)).  

 

A.2. Profile Drag from Betz and Maskell 

 

The theories of Maskell and Betz allow the profile drag to be calculated from wake-survey 

variables. In using these theories, the area where data is captured can be minimized as only 

measurements across the wake trace need to be captured.25 Reducing the amount of area needed 

for capture is essential, as wake-survey experiments are typically very long as several thousand 

data points need to be captured.  

There are a few assumptions that need to be formalized before beginning with the drag 

calculations based on the theory of Betz and Maskell. First, the incoming flow at the front of the 

control volume needs to satisfy the undisturbed free stream condition. As a result, this plane of 

the control volume should be relatively far upstream of the model. Secondly, all of the data 

captured during the wake-survey test needs to be taken from only one plane behind the model. 

Third, the Mach number in the tunnel is limited to 0.5 because of the flow at the wake-survey 

station being assumed steady and incompressible.31 Fourth, the surfaces of the control volume 

are assumed to be solid and represent the wind tunnel walls; as a result, blowing and suction 

cannot be incorporated in this analysis. Fifth, the walls are assumed parallel, and the tunnel 

freestream velocity is, as a result, tangent to the tunnel wall surfaces everywhere in the flow.31 

Finally, the viscous shear stresses at the wake-survey station are to be neglected.25 

As was stated earlier, the forces that act on the model can be evaluated from flow variables 

measured at the wake-survey plane. As was done in the previous section, the drag is able to be 

calculated from the change in momentum across the x-direction of the control volume, as seen in 

Figure A.2. 

The drag can be written as the difference between momentum at S1 and S2 (upstream and 

downstream planes) as seen in equation (A.10). 

𝐷 =∬(𝑝 + 𝜌𝑢2)𝑑𝑦𝑑𝑧 − ∬(𝑝 + 𝜌𝑢2)𝑑𝑦𝑑𝑧

𝑆2𝑆1

 

(A.10) 
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Total pressure is introduced as pt: 

𝑝𝑡 = 𝑝 +
𝜌

2
(𝑢2 + 𝑣2 + 𝑤2) (A.11) 

 

Figure A-2 Control volume and coordinate system used to derive drag based on the theories of Betz and 

Maskell, after Kusunose.31 
 

Using pt and the fact that the flow at S1 satisfies the undisturbed free stream condition, 

equation A.10 can be rewritten as:31 

𝐷 = ∬(𝑝𝑡,∞ − 𝑝𝑡)𝑑𝑦𝑑𝑧 +
𝜌

2
∬(𝑉∞

2 − 𝑢2 + 𝑣2 + 𝑤2)𝑑𝑦𝑑𝑧

𝑆2𝑊𝐴

 

(A.12) 

𝑊𝐴 - the wake survey area 

𝑝𝑡,∞- the total freestream pressure 

 

 

Notice that the first integral is limited to an integral only over the wake area since there is no 

loss in total pressure outside the wake as there (𝑝𝑡 = 𝑝𝑡,∞).
31 

In order to limit the second integral in equation (A.12) to an integral over the wake area only, 

Betz introduced 𝑢∗, an artificial velocity component that is different from u in the wake area 

alone.27 The equation for the artificial velocity is seen below and is similar to equation (A.11): 

𝑝𝑡,∞ = 𝑝 +
𝜌

2
(𝑢∗2 + 𝑣2 + 𝑤2) (A.13) 

A perturbation velocity (𝑢′) in the x-direction is now to be defined as:31 
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𝑢′ = 𝑢∗ − 𝑉∞ (A.14) 

Now, using equations (A.13) and (A.14) the drag equation (A.12) now becomes: 

𝐷 = ∬[(𝑝𝑡,∞ − 𝑝𝑡) +
𝜌

2
(𝑢∗ − 𝑢)(𝑢∗ + 𝑢 − 2𝑉∞)] 𝑑𝑦𝑑𝑧 

𝑊𝐴

+
𝜌

2
∬(𝑣2 + 𝑤2)𝑑𝑦𝑑𝑧

𝑆2

−
𝜌

2
∬𝑢′2𝑑𝑦𝑑𝑧

𝑆2

 

(A.15) 

The integrals above were first derived by Maskell,26 but the first integral of (A.15) was seen 

as an expression for profile drag by Betz, and he saw the second integral as an expression for 

induced drag as mentioned in the discussion around equation (A.9) which is identical to this 

second integral.27  

In order to deal with the last integral of equation (A.15) and express the x-direction 

perturbation velocity in an integral over the wake survey area, Maskell introduced 𝑢𝑏, the wake 

blockage velocity:26 

𝑢𝑏 =
1

2𝑆𝑇𝑆
∬(𝑢∗ − 𝑢)𝑑𝑦𝑑𝑧

𝑊𝐴

 

(A.16) 

Where 𝑆𝑇𝑆 represents the wind tunnel cross-sectional area.  

 

According to Kusunose,31 equation (A.16) allows for the third integral of (A.15) to be 

transformed as seen below: 

 (A.17) 

𝜌

2
∬𝑢′2𝑑𝑦𝑑𝑧

𝑆2

= 𝜌𝑢𝑏 ∬(𝑢∗ − 𝑢)𝑑𝑦𝑑𝑧

𝑊𝐴

 

Since this integral is now in the form of a wake integral, it can be combined with the first 

integral of equation (A.15), which results in the final “total drag” equation (A.18). 

𝐷 = ∬[(𝑝𝑡,∞ − 𝑝𝑡) +
𝜌

2
(𝑢∗ − 𝑢){𝑢∗ + 𝑢 − 2(𝑉∞ + 𝑢𝑏)}] 𝑑𝑦𝑑𝑧 

𝑊𝐴

+
𝜌

2
∬(𝑣2 + 𝑤2)𝑑𝑦𝑑𝑧

𝑆2

 

(A.18) 
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𝐷𝑝𝑟𝑜𝑓𝑖𝑙𝑒 = ∬[(𝑝𝑡,∞ − 𝑝𝑡) +
𝜌

2
(𝑢∗ − 𝑢){𝑢∗ + 𝑢 − 2(𝑉∞ + 𝑢𝑏)}] 𝑑𝑦𝑑𝑧 

𝑊𝐴

 

(A.19) 

𝐷𝑖𝑛𝑑𝑢𝑐𝑒𝑑 = 
𝜌

2
∬(𝑣2 + 𝑤2)𝑑𝑦𝑑𝑧

𝑆2

 

(A.20) 

Equation A.18 represents the final expression for calculating drag using the far-field method. 

Profile drag, as expressed in equation (A.19) can be completely determined by flow variables 

capture in the wake area. However, the induced drag expression is still an integral over the entire 

plane surface. In the next section there is a discussion on how Maskell was able to introduce a 

method that allows the induced drag integral expression to be reduced to an integral over the 

wake area as opposed to the entire plane. This formulation will be discussed in the next section.  

A.3. Induced Drag from Maskell 

In order to determine an equation for induced drag that uses measurements acquired across 

the wake trace alone, Maskell utilized two scalar functions: 𝜉, the x-component of the vorticity 

vector, and 𝜎, the source strength, which is defined using the continuity equation.26 These 

functions can be defined in terms of the cross-sectional velocities v and w, which can be 

measured in the wake. The definitions for these scalar functions are seen in equations (A.21) and 

(A.22). 

𝜉 =
𝜕𝑤

𝜕𝑦
−
𝜕𝑣

𝜕𝑧
 

(A.21) 

𝜎 =
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
 

(A.22) 

 

Two more scalar functions are also defined which satisfy the vorticity equation (A.21) and 

the source equation (A.22). These functions are 𝜓(𝑦, 𝑧) and 𝜙(𝑦, 𝑧) and can be seen below: 

𝑣 =
𝜕𝜓

𝑑𝑧
+
𝜕𝜙

𝜕𝑦
 

(A.23) 

  

𝑤 = −
𝜕𝜓

𝜕𝑦
+
𝜕𝜙

𝜕𝑧
 

(A.24) 
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According to Brune25, the following equations determine 𝜓 and 𝜙: 

𝜕2𝜓

𝜕𝑦2
+
𝜕2𝜓

𝜕𝑧2
= −𝜉 

(A.25) 

 

𝜕2𝜙

𝜕𝑦2
+
𝜕2𝜙

𝜕𝑧2
= 𝜎 

(A.26) 

Equation (A.25) is only true along the streamlines inside of the wake.31 It must also satisfy a 

boundary condition at the tunnel walls in order to ensure that the walls become streamlines of the 

flow field: 𝜓𝑤𝑎𝑙𝑙 = 0. Equation (A.26) is also configured with a boundary condition of (
𝜕𝜙

𝜕𝑛
= 0) 

in order to ensure the tunnel walls are considered solid boundaries and no flow passes through 

them.  

Using the definitions in equations (A.21-A.26), the induced drag equation can be re-written: 

𝐷𝑖 =
𝜌

2
∬(𝑣2 + 𝑤2)𝑑𝑦𝑑𝑧 =

𝜌

2
∬𝜓𝜉 𝑑𝑦𝑑𝑧

𝑊𝐴𝑆2

−
𝜌

2
∬𝜙𝜎 𝑑𝑦𝑑𝑧

𝑆2

 

(A.27) 

The second term is still an integral over the entire surface S2. However, wake measurements 

taken in experiments have shown that the source term 𝜎 is small outside of the wake, allowing 

the 𝜙𝜎 term to be neglected everywhere except inside the wake region.25 This allows induced 

drag to be approximated by the following integral: 

𝐷𝑖 ≈
𝜌

2
∬(𝜓𝜉 − 𝜙𝜎) 𝑑𝑦𝑑𝑧

𝑊𝐴

 

(A.28) 

The above equation is the result reached by Brune25; however, Kusunose31 cites the work by 

De Leeuw to simplify the equation further. De Leeuw conducted experiments with a half-wing 

model in a wind tunnel, and found that the 𝜙𝜎 term in equation (A.28) contributes very little to 

the total drag. As a result, the induced drag equation can be simplified further: 

𝐷𝑖 ≈
𝜌

2
∬𝜓𝜉 𝑑𝑦𝑑𝑧

𝑊𝐴

 

(A.29) 
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A.4. Lift from the Wake-survey Method 

If the control volume of Figure A.2 is revisited, lift as a function of flow variables can be 

found. If conservation of momentum is applied in the z-direction, the lift on the wing can be 

written: 

𝐿 =  ∬𝑝 𝑑𝑥𝑑𝑦

𝑆𝑓

− ∬𝑝 𝑑𝑥𝑑𝑦

𝑆𝐶

− 𝜌∬𝑢𝑤 𝑑𝑦𝑑𝑧

𝑆2

 

(A.30) 

In equation (A.30), the first two terms are the static pressure integrals of the floor and ceiling, 

respectively. The third term is an integral over the surface S2, the wake-survey plane. This 

integral represents the effect of downwash behind the model. Using vorticity and 𝑢∗, Maskell 

was able to represent lift in terms of integrals over WA .
26 

𝐿 = 𝜌𝑈∞ ∬𝑦𝜉 𝑑𝑢𝑑𝑧 

𝑊𝐴

+ 𝜌 ∬(𝑢∗ − 𝑢)𝑤 𝑑𝑦𝑑𝑧

𝑊𝐴

 

(A.31) 

The effect of the second term in equation (A.29) is considered effectively negligible, so lift 

can be approximated without it.26 

𝐿 ≈ 𝜌𝑈∞ ∬𝑦𝜉 𝑑𝑢𝑑𝑧 

𝑊𝐴

 

(A.32) 

The above equation is Maskell’s result for lift. However, Kusunose also puts forth a method 

using classical circulation theory that can be compared to equation (A.30). The equations used 

for this method can be seen below. A diagram of the shed circulation across the far-field plane 

and relevant variables are also shown in is Figure A.3 after Kusunose.31 

𝐿 = 𝜌𝑈∞ ∫ Γ(𝑦)𝑑𝑦

𝑦𝑅

𝑦𝐿

 

(A.33) 

Γ(𝑦) =

{
 
 

 
 −Γ𝐿(𝑦) =  + ∫ 𝛾(𝑦)𝑑𝑦

𝑦

𝑦𝐿

−Γ𝑅(𝑦) =  − ∫ 𝛾(𝑦)𝑑𝑦
𝑦𝑅

𝑦

 

(A.34) 

𝛾(𝑦) = − ∫ 𝜉(𝑦, 𝑧)𝑑𝑧

𝑍𝑊𝐴

 

(A.35) 
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Figure A-3 A wing and its planar wake: a visual representation of Kelvin’s circulation theorem, after 

Kusunose.31 

 

This second method detailed in equations (A.33-A.35) incorporates a planar wake 

assumption to determine spanwise lift. As the tips of wing wake roll up in real flow, the lifting 

characteristics on the wing cannot be perfectly reconstructed. As a result, the lift distribution in 

this vicinity cannot be exactly determined and errors can accumulate near the regions of the wing 

tips.31 
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Appendix B. Five-Hole Probes: Theory of Operation and Calibration 

In order to capture the pressure data necessary to calculate velocities, vorticity, and other 

necessary terms, five-hole pressure probes are used. Pressure probes are in-flow pressure 

measurement devices and can capture pressure data directly. In general, pressure tubes and 

probes can be classified as follows:32 

 Static tubes are used to measure local static pressure 

 Pitot tubes are used to measure local total pressure 

 Pitot-static tubes are combinations of pitot and static tubes and can provide the local 

dynamic pressure, from which local flow velocity can be obtained 

 Multi-hole probes are combinations of pitot and static tubes, five-hole probes are most 

common, and these probes can be used to provide local static, total, and dynamic pressure 

as well as the three components of the local velocity vector. 

Pressure tubes are typically low resolution, spatially and temporally. However, very small 

pressure transducers can be installed within a pressure probe near the ports that can allow for fast 

response times and increase the resolution of the data.  

For the typical wake-survey experiment, like those conducted or referenced by Brune25 and 

Kusunose31 five-hole pressure probes are most commonly used. There are reasons to choose 

between the typical five-hole probe, or a fast response probe, or a seven+ hole probe, through the 

choice largely depends on the needs of the experiment.  

Multi-hole probes are used specifically so that the data they capture can help the researcher 

determine the flow velocity vector, or rather, the magnitude and direction of the flow. Five-hole 

probes incorporate five parallel tubes, one in the center with the hole normal to the tube body, 

surrounded by four others in a pyramid or conical tip shape. The probe is symmetric and an 

example can be seen in Figure B.1. 

 

Figure B-1 Five-hole probe front and side views after Kusunose.31 
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The probes used by Boeing in the 1990s were like the one seen in Figure B.1. They were run 

in non-nulling mode, which allows for faster acquisition of data. According to Brune25, the 

pneumatic probes like the one seen in Figure B.1 provide three main benefits. First, they can 

measure all three components of velocity in the wake as well as total pressure, and they can 

make these measurements accurately and simultaneously. Second, the data is time averaged 

automatically, reducing the data output and post-processing time.25 Finally, compared to other 

in-flow measurements like hot wire anemometers, pneumatic probes are far more durable and 

less likely to break or become contaminated by particles in the wind tunnel.25 Because of these 

benefits, only one five-hole pressure probe is necessary to use in experiments; however, more 

than one would reduce testing time and costs. Despite the benefits of using multi-hole probes in 

wake-survey experiments, it is worth noting that five-hole probes may be affected by Reynolds 

number, shear flow, vibration, misalignment, proximity to walls, the presence of turbulence or of 

compressible flows.32 

The probes are typically mounted to a traverse system, which can move in a Cartesian grid 

space, or can sweep in semi-circular arcs. For most tests, the probes would be parallel to the 

tunnel walls. An example of a wake-survey area that would be captured by a five-hole pressure 

probe during an experiment is modeled in Figure B.2, after Brune.25 

 

Figure B-2 An example of a wake-survey region after Brune.25 

 



53 

 

The following five-hole probe calibration method is carried out in MATLAB and is based 

upon the work of Diebold.33 Initially, a calibration data set is taken. The pressure probes must be 

calibrated to map the acquired 5-port pressure measurements to total and static pressures and 

three-component velocities. The calibration procedure involves the pressure probes being placed 

in a uniform free stream flow inside of the empty wind tunnel. The probes are angled at different 

combinations of pitch, 𝛼𝑝, and yaw, 𝛽𝑝. The five pressures are then recorded. The numbering 

scheme for this analysis can be seen in Figure B.3.  

 

Figure B-3 Labeling scheme for five-hole pressure probes to be used in calibration discussion.33 

  

 

An average pressure pm is calculated: 

𝑝𝑚 =
1

4
(𝑝2 + 𝑝3 + 𝑝4 + 𝑝5) 

(B.1) 

The pitch pressure coefficient can now be calculated: 

𝐶𝛼 =
𝑝4 − 𝑝5
𝑝1 − 𝑝𝑚

 
(B.2) 

The yaw pressure coefficient: 

𝐶𝛽 =
𝑝3 − 𝑝2
𝑝1 − 𝑝𝑚

 
(B.3) 

The total pressure calibration coefficient at the tip of the probe: 

𝐶𝑃𝑇 =
𝑝1 − 𝑝𝑡𝑜𝑡𝑎𝑙
𝑝1 − 𝑝𝑚

 
(B.4) 

The static pressure calibration coefficient at the tip of the probe: 

𝐶𝑃𝑆 =
𝑝𝑚 − 𝑝𝑠𝑡𝑎𝑡𝑖𝑐
𝑝1 − 𝑝𝑚

 
(B.5) 
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Unfortunately, 𝑝𝑡𝑜𝑡𝑎𝑙 and 𝑝𝑠𝑡𝑎𝑡𝑖𝑐 are not measured directly during data acquisition. However, 

this can be resolved since all acquired pressure measurements are referenced against the static 

pressure of the tunnel test section. As 𝑝𝑡𝑜𝑡𝑎𝑙 − 𝑝𝑡𝑠 = 𝑞∞, the total pressure coefficient can be 

calculated as follows: 

𝐶𝑃𝑇 =
𝑝1 − 𝑞∞
𝑝1 − 𝑝𝑚

 
(B.6) 

Similarly, static pressure referenced against itself is zero, so the static pressure coefficient 

can be re-written as: 

𝐶𝑃𝑆 =
𝑝𝑚

𝑝1 − 𝑝𝑚
 

(B.7) 

Next, the calibration values of 𝐶𝛼 and 𝐶𝛽 are used to create linearly spaced vectors, and then 

assembled into a rectangular grid in 2D space using the MATLAB functions linspace and 

meshgrid. The linearly spaced vector forms of 𝐶𝛼 and 𝐶𝛽 are used in conjunction with the 

scatteredInterpolant function in MATLAB to create interpolants (interpolating functions that can 

be evaluated at desired locations) for the probe pitch, 𝛼𝑝, and yaw, 𝛽𝑝, angle data as well as the 

𝐶𝑃𝑇 and 𝐶𝑃𝑆 data. These interpolants are represented by the F’s in (B.8-B.11). 

𝛼𝑝 = 𝐹𝛼(𝐶𝛼, 𝐶β) (B.8) 

𝛽𝑝 = 𝐹𝛽(𝐶𝛼, 𝐶β) (B.9) 

𝐶𝑃𝑇 = 𝐹𝑃𝑇(𝐶𝛼, 𝐶β) (B.10) 

𝐶𝑃𝑆 = 𝐹𝑃𝑆(𝐶𝛼, 𝐶β) (B.11) 

These functions can be used now in conjunction with experimental five-hole probe pressure 

data. Experimental data is taken where the pitch and yaw angles of the flow are unknown. In 

order to reduce the five-hole probe pressure data into the three components of velocity, these 

angles are necessary. By calculating experimental values of 𝐶𝛼  and 𝐶β, the experimental angles 

can be found as well as the experimental total and static pressure calibration coefficients, which 

can be used to find total and static pressure coefficients. 
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Appendix C. Wake Survey Data Reduction Methods 

The data reduction code used to reduce the wake survey experimental data was created in 

MATLAB based on the work of Diebold.33 The code was used to apply calibration data to the 

experimental five-hole probe pressure data, allowing for experimental values of probe pitch, 𝛼𝑝, 

and yaw, 𝛽𝑝 to be determined as well as the experimental 𝐶𝑃𝑇 and 𝐶𝑃𝑆. These values were found 

by calculating B.2 and B.3 for the experimental data, and then using the calibration interpolant 

functions from B.8-B.11. Using these experimental calibration coefficients and the measured 

dynamic pressure and tunnel freestream velocity, the experimental total pressure, static pressure, 

and total local velocity were found using the equations C.1-C.5 at each measurement location. 

𝑝𝑡𝑜𝑡𝑎𝑙 = (𝑝1 − 𝐶𝑃𝑇(𝑝1 − 𝑝𝑚)) (C.1) 

𝐶𝑝,𝑡 =
𝑝𝑡𝑜𝑡𝑎𝑙
𝑞∞

 
(C.2) 

𝑝𝑠𝑡𝑎𝑡𝑖𝑐 = (𝑝𝑚 − 𝐶𝑃𝑆(𝑝1 − 𝑝𝑚)) (C.3) 

𝐶𝑝,𝑠 =
𝑝𝑠𝑡𝑎𝑡𝑖𝑐
𝑞∞

 
(C.4) 

𝑉𝑡𝑜𝑡 = 𝑈∞√𝐶𝑝,𝑡 − 𝐶𝑝,𝑠 
(C.5) 

 

The three components of velocity are able to be extracted from the total local velocity using 

the experimental values of probe pitch, 𝛼𝑝, and yaw, 𝛽𝑝 angles. First, the values of wing 

pitch 𝛼𝑤, and yaw, 𝛽𝑤 need to be determined, as they are different from the probe angles. The 

relation between these angles can be seen in equations C.6 and C.7. 

𝛼𝑤 = 𝛽𝑝 (C.6) 

𝛽𝑤 = 𝛼𝑝 (C.7) 

Now the three components of velocity can be found using these angles and the total local 

velocity as seen in equations C.8-C.10. 

𝑢 = 𝑉𝑡𝑜𝑡 cos(𝛽𝑤) cos (𝛼𝑤) (C.8) 

𝑣 = 𝑉𝑡𝑜𝑡 sin(𝛽𝑤) (C.9) 

𝑤 = 𝑉𝑡𝑜𝑡 cos(𝛽𝑤) sin (𝛼𝑤) (C.10) 

 The next step is to interpolate the experimental data into a grid with step size equal to the 

smallest experimental step size, 0.125 in. The data that was interpolated into a grid was the total 
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local velocity 𝑉𝑡𝑜𝑡, the axial velocity component 𝑢, the spanwise velocity component 𝑣, and the 

normal velocity component 𝑤. Additionally, the total pressure coefficient 𝐶𝑝,𝑡, dynamic pressure 

𝑞∞, and freestream velocity 𝑉∞ were interpolated to the grid. The data was smoothed using 

Savitzky-Golay filtering on the velocity and total pressure distributions before finite difference 

techniques were used to compute vorticity using equation III.25 and the y- and z-derivatives of 

the total pressure difference from the freestream value. The total pressure difference was defined 

as 1 – Cp,t. The z-derivative of the total pressure difference was used in order to find the position 

of the wake, as the presence of the wake creates a rapid change in total pressure with respect to 

the z-direction. The total pressure and velocity measurements outside of the wake trace were 

then neglected in the calculation of lift and drag components, including the portion of the 

flowfield dominated by a wing-floor juncture vortex, where portions of vorticity were also 

neglected from the lift and drag calculations.  

 The MATLAB code then calculated lift and lift coefficient using the method developed by 

Maskell from equation III.20. Additionally, circulation, lift, and spanwise lift coefficient were 

calculated using circulation theory (equations III.23 & III.24). 

 In order to calculate induced drag from equation III.19, the stream function needs to be found 

in from the Poisson equation seen in C.11. The stream function 𝜓 is found using a discrete 

Poisson solver using the negative vorticity. 













2

2

2

2

zy
 

(C.11) 

 

This equation is solved following the method outlined by Diebold33 using the tunnel wall 

boundary condition that, at the walls, 𝜓 = 0. In order to use this boundary condition, the 

computational grid was extended from the wake survey area of the tunnel test section walls. In 

the area outside of the wake, the vorticity values were equal to zero. The Poisson equation was 

solved using a second order central finite differencing method seen in C.12. 

𝜓𝑖,𝑗+1 − 2𝜓𝑖,𝑗 + 𝜓𝑖,𝑗−1

Δ𝑦2
+
𝜓𝑖+1,𝑗 − 2𝜓𝑖,𝑗 + 𝜓𝑖−1,𝑗

Δ𝑧2
= −𝜉𝑖,𝑗 

(C.12) 

 

Because the grid spacing was equidistant in both the z and y directions, one gap size d can be 

used in place of the z and y step sizes. The Poisson equation in C.12 was thereby solved, with an 

initial guess of 𝜓𝑖,𝑗 = 0 for all points in the domain, using a Jacobi iteration method. 
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𝜓𝑖,𝑗
𝑛𝑒𝑤 =

1

4
(𝜓𝑖+1,𝑗

𝑜𝑙𝑑 + 𝜓𝑖−1,𝑗
𝑜𝑙𝑑 + 𝜓𝑖,𝑗+1

𝑜𝑙𝑑 +𝜓𝑖,𝑗−1
𝑜𝑙𝑑 − 𝑑2𝜉𝑖,𝑗) 

(C.13) 

 

An error tolerance was defined and the program was run until the difference between the 

most recent two iterations of 𝜓𝑖,𝑗
𝑛𝑒𝑤was less than the error tolerance for all points in the domain. 

If the difference was greater than the error tolerance, the “new” data was defined as next 

iterations “old” data: 𝜓𝑖,𝑗
𝑜𝑙𝑑 = 𝜓𝑖,𝑗

𝑛𝑒𝑤. 

 Using the calculated stream function and vorticity values, induced drag could be then found 

by equation A.29. 

The following two equations are used to calculate ub, the wake-blockage velocity, and u*, an 

artificial velocity component, which are necessary in order to solve for the profile drag.  

𝑢∗ = √𝑢2 − 𝑉∞2 ∗ (1 − 𝐶𝑝,𝑡) 
(C.14) 

  

AWTunnel

b dydzuu
S

u *

2

1

  

(C.15) 

The profile drag is then found using equation A.19. 

The wing-root bending moment coefficient was found using the following two equations: 

𝐶𝑏(𝑦) = (
1

𝑆
2⁄
)𝐶𝑙(𝑦)𝑐(𝑦)𝑦 

(C.16) 

𝑏

2
𝐶𝐵 = ∫ 𝐶𝑏(𝑦)

𝑏/2

0

dy 
(C.17) 
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Appendix D. Uncertainty Analysis 

In order to estimate the potential error present in this experiment, an uncertainty analysis 

was performed. The estimated uncertainty of some result R, where R is the function of several 

independently measured variables (xi), depends on the uncertainty of each variable.  

𝑅 = 𝑅(𝑥1, … , 𝑥𝑛) (D.1) 

The uncertainty calculations follow that of Coleman and Steele34 and assumed that the 

uncertainties of each measured variable were independent of each other. The experimental 

uncertainty (UR) of R is given as the square root of the sum of the squares of each independent 

variable uncertainty component: 

𝑈𝑅 = √(
𝜕𝑅

𝜕𝑥1
𝑈𝑥1)

2

+⋯+ (
𝜕𝑅

𝜕𝑥𝑛
𝑈𝑥𝑛)

2

 (D.2) 

An alternative expression for equation D.2 can be seen in equation D.3 if R is a product of 

independent variables (𝑅 = 𝑘𝑥1
𝛼𝑥2

𝛽
…𝑥𝑛

𝜁
)  where k is a constant and the exponents are 𝛼, 𝛽,…  𝜁. 

𝑈𝑅
𝑅
= √𝛼2 (

𝑈𝑥1
𝑥1
)
2

+⋯+ 𝜁2 (
𝑈𝑥𝑛
𝑥𝑛
)
2

 (D.3) 

Using equation D.3, the uncertainty for the results from the force balance performance 

coefficients can be found. Equations III.10-III.12 provide the basis for the uncertainty calculation 

where the results (R) are 𝐶𝐿 ,   𝐶𝐷 ,  and 𝐶𝑀. The relative uncertainty calculations for each of these 

results are seen in equations D.4-D.6. 

𝑈𝐶𝐿
𝐶𝐿

= √(
𝑈𝐿
𝐿
)
2

+ (
𝑈𝑞∞
𝑞∞

)
2

+ (
𝑈𝑏
𝑏
)
2

+ (
𝑈𝑐𝑔

𝑐𝑔
)

2

 (D.4) 

𝑈𝐶𝐷
𝐶𝐷

= √(
𝑈𝐷
𝐷
)
2

+ (
𝑈𝑞∞
𝑞∞

)
2

+ (
𝑈𝑏
𝑏
)
2

+ (
𝑈𝑐𝑔
𝑐𝑔
)

2

 (D.5) 

𝑈𝐶𝑀
𝐶𝑀

= √(

𝑈𝑀𝐶
4

𝑀𝐶
4

)

2

+ (
𝑈𝑞∞
𝑞∞

)
2

+ (
𝑈𝑏
𝑏
)
2

+ 4(
𝑈𝑐𝑔
𝑐𝑔
)

2

 (D.6) 

In these equations 𝑈𝐿 , 𝑈𝐷 , and 𝑈𝑀𝑐
4

 are the absolute uncertainties in the measured lift, drag, 

and pitching moment. In order to find these absolute uncertainties, equation D.2 was used to 
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form equations D.7-D.9 which are functions of the absolute uncertainties of the measured normal 

force (𝑈𝐹𝑁), axial force (𝑈𝐹𝐴), and quarter-chord pitching moment (𝑈𝑀𝑐
4

), as well as (𝑈𝛼), the 

absolute uncertainty of the angle of attack. 

𝑈𝐿 = √(𝑈𝐹𝑁 cos(𝛼))
2
+ (𝑈𝐹𝐴 sin(𝛼))

2
+ (−𝐷𝑈𝛼)2  (D.7) 

𝑈𝐷 = √(𝑈𝐹𝑁 sin(𝛼))
2
+ (𝑈𝐹𝐴 cos(𝛼) )

2
+ (𝐿𝑈𝛼)2  (D.8) 

𝑈𝑀𝑐
4

= √(𝑈𝑀)2 + (𝐹𝑁𝑈𝑋𝑜𝑓𝑓)
2

+ (𝐹𝐴𝑈𝑌𝑜𝑓𝑓)
2

  (D.9) 

The independent variables, example reference values, and example absolute and relative 

uncertainties can be seen below in Table D-1.                                                                                                                                                                                                                  

 

Table D-1 Uncertainty Analysis Quantities 

Independent Variable  Reference 

Value (R) 

Absolute 

Uncertainty, (𝑼𝑹) 

unit Relative Uncertainty 

(%) 

𝑏, span 1.5 0.0004 ft 0.028 

𝑐𝑔, mean geometric chord 0.462 0.0004 ft 0.090 

𝐹𝑁, normal force 7.136 0.0180 lbs 0.199 

𝐹𝐴, Axial Force 0.301 0.0054 lbs 1.144 

𝑀, Moment about center of balance 0.048 0.0225 ft-lbs 3.804 

𝛼, angle of attack 5.1 0.0200 deg 0.392 

𝑋𝑜𝑓𝑓, x-dir. Offset  0 0.0004 ft  

𝑌𝑜𝑓𝑓 , y-dir. Offset  0 0.0004 ft  

𝑞∞, dynamics pressure 0.186 0.0004 psi 0.220 

𝐿, lift 7.081 0.0002 lbs 0.002 

𝐷, drag 0.335 0.0032 lbs 0.946 

𝑀𝑐

4
, quarter-chord pitching moment 0.048 

0.0228 
ft-lbs 

3.857 

𝐶𝐿, lift coefficient 0.382 0.0012  0.239 

𝐶𝐷, drag coefficient 0.018 0.0002  0.975 

𝐶𝑀, moment coefficient -0.005 -0.0026  3.868 
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