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ABSTRACT

The raising concerns of energy consumption and air pollution advance the

development of electric vehicle technologies and promote the increased de-

ployment of Electric Vehicles (EVs) towards electric transportation. The

increasing number of EVs on the road network leads to a growing challenge

of electricity management for the power grid to promptly supply electricity

to EVs. In order to address this challenge, we need to carefully plan the

energy sources and energy delivery via charging facilities to EVs, taking into

consideration interdependencies between roads/transportation and electric

grid. In this thesis, we focus on studying the placement of energy sources

and their charging facilities for EVs by developing: 1) an extended Flow Re-

fueling Location model [1] which finds optimal locations for charging stations

as well as dynamic wireless charging pads, and 2) a 2-stage planning process

for placement of charging stations [2]. The first stage of the planning process

is to determine the optimal locations for placing the charging stations to

serve the maximum amount of EVs on the road network. Given the selected

optimal locations, the second stage determines the capacity of the charging

service locations with the purpose of minimizing the total waiting time of

EV drivers across the road network to charge their EVs. We show the effec-

tiveness of these two planning models on a sample road network during our

performance evaluation.
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CHAPTER 1

INTRODUCTION

Major concerns regarding energy consumption and air pollution lead to the

development of electricity powered vehicles. Pure Electric Vehicle (EV) and

Plugin Hybrid Electric Vehicle (PHEV) are two main types of vehicles that

are promoted to replace conventional fossil consuming vehicles [3]. Their

market penetration will experience a significant increase in the following years

[4, 5] as studies in various fields related to EV [6, 7, 8, 9] show. Due to

the limitation of driving range of a charged EV, the accessibility of public

charging facilities is one key issue that restricts the widespread adoption of

EVs [10].

As we can see from Figure 1.2, which presents the available public charging

stations for EVs in U.S. in year 2013, the accessibility of charging stations is

far from evenly distributed across the nation and the accessibility to charging

stations is extremely limited in the central area. Therefore, carefully placed

and planned charging stations as well as other types of charging facilities are

in great needs in the following years in order to support and promote the mass

adoption of EVs. Motived by the increasing demand of charging facilities,

this thesis focuses on studying the charging facility allocation problem in

cities.

Charging station is one of the most widely adopted charging facilities on

road network. However, the risks and concerns of charging stations such as

electrocution advance the development of an inductive charging technique

which is applied by charging pad [13]. Figure 1.2 shows an example of a road

segment which is equipped with dynamic wireless charging pads that charges

electric bus on the fly. In Chapter 2, we introduce and compare the charging

facilities in more detail.

We propose a model, called an extended Flow Refueling Location Model,

as an optimization problem to find optimal locations for 2 types of charging

facilities: charing stations and dynamic wireless charging pads with the goal
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Figure 1.1: Available charging stations for electric vehicles in U.S. in year
2013 [11].

Figure 1.2: Illustration of wireless dynamic charging pads for electric buses
[12].

2



of maximizing the number of EVs that could be charged on the road network

[1]. Furthermore, we propose a 2-stage planning process for charging sta-

tions. The first stage applies the extended Flow Refueling Location Model

which was designed to find optimal locations both for charging stations and

dynamic wireless charging pads. After obtaining the optimal locations, one

critical question remains to answer is the configuration plan for the allocated

charging facilities. The specific configuration plans depend on the type of

charging facilities allocated. For example, let us assume it is optimal to pick

a road link to deploy dynamic wireless charging pads, we then need to de-

termine how long should we pave the charging pads. In terms of charging

stations, we need to answer questions such as how many charging servers

should we deploy for each station. Note that charging servers are the access-

handles for EVs to connect to the energy source within (or close to) the

charging station. EV needs to obtain a charging server to get charged which

is similar to conventional vehicles requiring handles to get served at a gas

station.

Each charging station could have more than one charging server and the

number of charging servers deployed in each charging station affects the per-

formance of the charging facility system since

• it determines the service rate for each charging station which will there-

fore affect the waiting time of EV drivers and the charging completion

rate (i.e., the ratio between the number of vehicles successfully charged

and the total number of arrived EVs) of the charging system,

• it determines the maximum number of EVs that could be charged at the

same time which will affect the power grid system since charging a large

number of EVs leads to peaks of electricity supplying demand which

puts a high pressure on the power grid infrastructure. Therefore, we

need to make sure the demand peak will not collapse the whole power

grid system.

As stated above, it is essential to study the configuration plan for charging

facilities in order to complete the facility planning research. Thus, the goal

of the second stage is exploring the optimal configuration plan for charging

facilities. However, due to the fact that dynamic wireless charging pads

are not yet widely adopted on the road network, its related configuration
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planning has not raised a big concern. Thus, in this thesis, we only focus on

discussing the configuration planning for charging stations.

Therefore, the first stage adopts and customizes the extended FRLM model

proposed in [1] to find optimal locations for charging stations under a budget

constraint and the second stage next explores the optimal configuration plan

based on the optimal locations obtained from the first stage.

In this thesis, we present our work on charging facility planning and our

contributions are:

• We acknowledge the differences between various types of charging fa-

cilities and discuss the concerns and challenges when allocating these

types of charging facilities on road networks.

• We propose a model, the extended FRLM [1], to find optimal locations

for charging facilities when two different types of facilities are taken

into consideration. In particular, we focus on studying placing charging

stations and dynamic wireless charging pads.

• We propose a 2-stage planning process for charging station planning

[2]. The first stage starts by choosing the optimal locations for charging

stations from the macroscopic view and the second stage focuses on the

configuration plan of charging servers for each charging station from the

microscopic view point.

• We discuss lessons learned when studying the charging facility alloca-

tion problem. We also present a list of interesting and open topics

worth exploring in the future.

The thesis is structured as follows: detailed introduction and comparison

regarding different types of charging facilities are presented in Chapter 2; in

Chapter 3, we introduce the background knowledge, concepts and notations

we use throughout this thesis, as well as presenting a detailed description of

the problem; in Chapter 4, we review related work on the charging facility

allocation problem. In Chapter 5, we review the FRLM proposed in [14]

and in Chapter 6, we introduce our proposed Extended FRLM. In Chapter

7, we present the 2-stage planning process. Evaluation results are presented

in Chapter 8. In Chapter 9, we discuss the lessons learned and challenges

encountered when studying the charging facility allocation problem. At last,

in Chapter 10, we conclude the thesis and present potential future work.
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CHAPTER 2

CHARGING FACILITIES

In this chapter, we introduce the background of EV charging with a focus on

charging facilities. Depending on the various working principles of charging

facilities, the charging facilities can mainly be categorized into 2 categories:

wired and wireless charging facilities. In the following sections, we review

these two types of facilities separately. At the end of the chapter, we discuss

the challenges and concerns when placing charging facilities on road networks.

2.1 Wired charging

Wired charging primarily refers to charging stations which are also the most

widely adopted charging facilities for EVs. Gas stations refill conventional

vehicles when vehicles arrive in stations and obtain a gas pump. In the

same manner, charging stations charge EVs as shown in Figure 2.1 1. More

specifically, an EV arrives at a charging station, obtains a charging server (by

parking car next to the charging server), and starts charging to a satisfactory

level to support its later trip. As mentioned in Chapter 1, charging servers

are access points for EVs to the energy source and one charging station can

include one or more charging servers (i.e. also multiple parking lots).

Depending on the publicity of charging stations, stations could be classified

into personal and public charging stations. A personal charging station refers

to a charging station served in xxx installed at the EV owner’s home, where

EV owner charges the vehicle overnight. On the other hand, public charging

stations are built in public parking spaces which are accessible to all EVs.

According to the charging rate of charging stations, stations could be cat-

egorized into AC level 1 charging and fast charging (such as AC level 2 and

1Note that gas stations are isolated physical infrastructures to enable XXXX of gasoline
in safe manner. Charging station is becoming an XXXX part of a parking facility close to
a major point of interest, such as mall, downtown entertainment area and others.
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Figure 2.1: Illustration of charging station of electric vehicles [15].

level 3) [16]. EVs takes advantage of AC level 1 charging by connecting to

a standard home or business outlet through a 120-volt alternating-current

plug. AC level 2 provides charging through 208/240-volt alternating-current

charging equipment while AC level 3, also referred to as DC fast charging,

provides charging at 480VAC. Typically, there is no installation of charging

equipment required for AC level 1 charging and depending on the model of

an EV, it could take 8 to 20 hours to fully charge the vehicle. However, for

fast charging options, specific charging equipment is required. For AC level

2 charging, depending on the model of an EV, it could take 4 to 8 hours to

charge an EV and it takes approximately 10 to 30 minutes to recharge an

EV using the AC level 3 charging.

2.2 Wireless charging

Wireless charging facilities charge EVs wirelessly and wireless charging can

be further categorized into static wireless charging and dynamic wireless

charging.

EVs can get charged by parking over a static wireless charging pad as

described in Figure 2.2a. Static wireless charging requires installment of: 1)

a wireless charging pad on the ground, 2) a control panel, and 3) an adapter

6



(a) Illustration of static wireless charging [20].

(b) Illustration of dynamic wireless charging [21].

Figure 2.2: Illustration of wireless charging.

inside the vehicle.

EVs can also get charged dynamically by driving over the dynamic wireless

charging pads for a certain distance as depicted in Figure 2.2b. It is referred

to as dynamic charging which has been under heavy study in recent years

[13, 17, 18, 19]. Dynamic charging requires embedding dynamic wireless

charging pads along roads and EVs automatically get charged while moving

over the charging pads due to the magnetic induction between the pads. In

order to accommodate the charging demands of EVs of getting charged to

a satisfactory level, it requires installing a certain number of charging pads

along the road that are close to each other (e.g., 50 cm away) in order to

provide sufficient electricity.
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Figure 2.3: Summary of key features of charging facilities.

2.3 Challenges of placing charging facilities

In previous sections, we introduced two types of charging facilities and their

key features can be summarized in Figure 2.3. In the rest of this section,

we discuss the challenges and concerns when studying the charging facility

placement problem.

• One critical challenge encountered when placing charging facilities, de-

spite the types of facilities under study, is studying traffic status on

the road network. To be more specific, to obtain traffic status informa-

tion on the road network, traffic status prediction, monitor and traffic

status analysis are necessary.

Since one common goal of placing charging facilities is to serve as many

EVs as possible, it is obvious that traffic status of road links has a

strong impact of the location of charging facilities. Here is a list of

traffic conditions that are frequently observed on the road network.

However, note that traffic conditions are not limited to these listed

scenarios below.

– Morning and evening peak hours are typical features of urban traf-

fic which means that traffic flows during the peak hours increase

dramatically compared to the rest hours in the day.
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– Events, such as baseball games and concerts, attract a large amount

of vehicles to travel to and from a certain location before and after

events. Such locations can also be treated as temporary hot spots

that are driven by events.

– Special situations, e.g., traffic accidents and road constructions,

impact travel routes of vehicles in the way that drivers may select

alternative routes which leads to traffic flow migration.

Inevitably, ideally, planners need to take these various traffic conditions

into consideration which complicates the planning problem.

• Getting a good estimate of the battery status of EVs helps to ensure

that EVs could travel between charging facilities without the risk of

out of battery. Therefore, with a number of EV models available on

the road network, differences between EV models is another factor that

plays an important role in the charging facility planning problem. For

example, driving range is one of the most critical key limitations of EVs

and it various between different EV models. Also, the consumption rate

of electricity between EVs could vary dramatically depending on the

EV model, driver behavior and the traffic condition while the EV was

driving on the road.

• It is challenging setting the goal for the charging facility planning prob-

lem.

– One reasonable objective is to maximize the number of EVs that

could get charged on the road network which is also the goal that

we applied for our model. However, with a limited number of

charging facilities available for placement due to a budget con-

straint, there could be EVs that do not have access to any charg-

ing facilities which forces drivers to select alternative routes which

pass a charging facility to travel to their destinations. This sit-

uation could be easily observed when traffic flows are not evenly

distributed across the road network which means that there are

heavy traffic flows as well as flows with extremely low volumes.

– One other legitimate objective is to maximize the total coverage of

placed charging facilities. However, this could lead to the situation
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where areas with few EVs get assigned with charging facilities

while left areas with dense traffic flows underserved.

– It is also justifiable to set the goal as achieving a certain degree of

balance in terms of charging load across the power system. One

potential problem with this objective is that it is possible that

some EVs from heavy traffic flows may not get charged promptly

since there is a restriction on the number of EVs that could get

charged at the same time which results in longer waiting time.

• Some key challenges and design issues we see when investigating placing

charging stations on the road network are:

– picking optimal locations for placing charging stations.

– Determining the number of charging servers at each charging sta-

tion.

– The workload of charging stations also needs to be taken consider-

ation and a load balancing strategy is needed in order to balance

the energy load across the power grid.

Note that static wireless charging pads and charging stations share a

similar working principle which requires EVs parking at the facilities

for a certain amount of time to get charged. Static wireless charging

pads are normally placed at points of interests and each service area

(i.e. charging spot) includes several charging pads to support charging

multiple EVs at the same time. Therefore, the challenges of placing

static wireless charging pads are comparable to the ones of charging

stations. Therefore, we do not repeatedly list the challenges for placing

static wireless charging pads.

• The placement of dynamic wireless charging pads depends on the mod-

els of EVs. Again, different models share distinct features such as

battery capacity, max charging rate and miles of charging per hour.

These features lead to different maximum driving distances, required

charging times, etc. The placement of dynamic wireless charging pads

also heavily depends on the traffic flow densities on the road network.

Traffic flow density is defined as the number of EVs per unit length

of the road link. Placing charging pads along the road links that have
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heavy traffic flows helps to maximize the amount of EVs traveling on

the roads. We also need to consider the impact of the traffic flow pat-

terns. For example, for traffic flows during peak hours, turning the

charging pads on during the peak hours while keeping them off for the

rest of the day may help saving energy compared to turning the pads

on for the whole day. The design issues for dynamic wireless charging

pads include

– Determining which road links to equip with the dynamic wireless

charging pads.

– Deciding how many charging pads should be placed on a certain

road link.

– Determining when to turn on and off the charging pads.
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CHAPTER 3

BACKGROUND AND PROBLEM
DESCRIPTION

In this chapter, we first present the background information by defining the

concepts used throughout this thesis followed by the problem description.

Then we provide a sample network depicted in Figure 3.1 to further clarify

and illustrate the concepts and problem. It is also the sample network we

use to evaluate our proposed models. As a brief summarization, the problem

we are solving is planning charging facilities on road networks. To be more

exact, the types of charging facility that we study in this thesis are charging

stations and dynamic wireless charging pads.

An Origin-Destination (OD) pair is a pair of nodes from the road network

G(V,E) that serves as the origin and destination of an EV route/trip. Origins

VO are nodes that generate traffic flows while destinations VD are nodes that

attract traffic flows. It is obvious that VO ∈ V and VD ∈ V . We denote the

set of all OD pairs as Q and use q as the index.

Traffic flow fq denotes the vehicles traveling on the shortest path between

the OD pair q. Traffic flow is described by the number of vehicles passing

a reference point on the shortest path during a given time period which is

typically in the unit of vehicles per hour. Traditionally, it is assumed that

traffic flows are symmetric in the way that flows between OD pairs (Vi, Vj)

and (Vj, Vi) are the same.

3.1 Extended FRLM

In Chapter 6, we propose an extended Flow Refueling Location model to

optimally place charging stations and dynamic wireless charging pads on road

networks under a budget constraint. In particular, the budge constraint is

specified by fixing the number N of available charging facilities.

Let us denote candidate location set as Vst for charging stations and Epad
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for dynamic wireless charging pads. As discussed in previous chapters, charg-

ing stations are to be located at nodes of a road network while dynamic

wireless charging pads are to be places along links of a network. Therefore,

it is straightforward to see that Vst ⊂ V and Epad ⊂ E from the overall

road network G(V,E) 1. The candidate location set Vst has a special case of

Vst = V , which means that all nodes on the network are treated as candidate

location set for charging stations. Similarly, Epad = E means that all links

are treated as candidate locations for dynamic wireless charging pads.

The objective of the proposed extended FRLM can then be described as

finding a set of nodes V ∗st ⊂ Vst and a set of links E∗pad ⊂ Epad such that the

maximum amount of traffic flows can be charged. Since the number of nodes

that get assigned with charging stations can be represented by Nst = |V ∗st|
and the number of road links that are selected to install dynamic wireless

charging pads is depicted by Npad = |E∗pad|, the budget constraint can be

expressed as N = Nst +Npad.

We use the network presented in Figure 3.1 as an example to further clarify

the notations and problems described above. The road network has a set

of nodes V , where V = {v1, v2, · · · , v9} and a set of links E, where E =

{e1, e2, · · · , e15}. The indices are marked next to the corresponding nodes

and links. These 9 nodes, V = {v1, v2, · · · , v9} , constitute the set of VO and

VD which means that any node could be an origin as well as a destination.

Therefore, the set Q has 72 OD pairs. Let us take the OD pair of (v1, v3) as

an example. Node v1 is the origin while v3 is the destination. Let us assume

this OD pair has an index of 2, then f2 describes the traffic flow traveling on

the shortest path from v1 to v3.

Let us assume we select Vst = V and Epad = E, then we have 9 candidate

nodes to allocate charging stations and 15 candidate links to place dynamic

wireless charging pads. Let us suppose the budget constraint is N = 3 which

implies that we are to find 3 locations on the road network to locate either

types of the charging facilities. By applying the extended FRLM described

in Section 6, the optimal locations are chosen as e4, e5 and e10 due to the

maximal simulated traffic traveling on links e4, e5 and e10. Then the set E∗pad
contains links e4, e5 and e10, i.e. E∗pad = {e4, e5, e10} and Vst = ∅ since no

charging stations are placed on the network.

1Notations could be referred to Table 6.1
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Figure 3.1: A sample network with 9 nodes and 15 links. Numbers next to
nodes are their corresponding indices.

3.2 2-stage planning process for charging stations

In Chapter 7, we propose a 2-stage planning process to solve the charging

station planning problem by addressing two questions: 1) where to place the

charging stations, and 2) how many charging servers should we place for each

charging station.

The goals of the 2 stages are listed below separately:

1. For the first stage, the objective is to determine the optimal locations

for allocating charging stations given a fixed number of stations Nst

due to cost constraint. This stage can be seen as special scenario of

the problem discussed in the previous section, we adopt the same set

of notations for consistency.

Since we only focus on selecting candidate nodes from the road network

for charging stations, we exclude links as candidate locations. In this
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stage, we would like to find the set of nodes V ∗st ⊂ Vst such that the

maximum amount of traffic flows can be served with the constraint of

|V ∗st| = Nst (we restrict that each candidate location can only have one

charging station).

2. After obtaining the optimal location set V ∗st for charging stations from

the first stage, in the second stage, we focus on determining the optimal

number of charging servers to place for each charging station in order to

minimize the waiting time of EV drivers across the entire road network.

The constraints are the minimum and maximum number of possible

charging servers to place for each charging station, as well as the total

number of charging servers. The total number of charging servers to

allocate across the road network is Nse. In other words, we work on

finding the optimal solution K∗ of which K∗vst indicates the number

of charging servers to place for a charging station vst ∈ V ∗st. In other

words,
∑

vst∈V ∗
st
K∗vst = Nse. Also,

∑
vst /∈V ∗

st
K∗vst = 0 which means that

nodes that are not assigned with charging stations do not have any

charging servers (i.e., if a charging station exists or is planned, then at

least one on charging server is in the charging station).

Again, we use the network, shown in Figure 3.1, to clarify the notations

and problems of the 2-stage planning process:

1. For the first stage, we could choose the candidate location set Vst the

same as the set V , i.e., Vst = V , or a subset of V . Let us assume

we select Vst = V . Then we have 9 candidate locations to allocate

charging stations. The goal of this stage is to find the optimal locations

for charging stations under the constraint of a fixed number of stations

driven by the budget limit city can spend on charging stations. Let us

assume we are to find 2 charging locations with Nst = 2 on the road

network G, by applying the model described in Section 7.1, and the

optimal locations are chosen as v4 and v8 due to maximal traffic going

through v4 and v8. Then the set V ∗st contains nodes v4 and v8, i.e.,

V ∗st = {v4, v8}.

2. After finding the optimal locations, the goal of the second stage is

to optimally allocate the charging servers to the stations at v4 and

15



v8. Let us assume Nse = 3, with the implicit restriction that each

charging station has at least one charging server, the problem is to

determine whether the charging station at v4 should have 2 charging

servers of K∗v4 = 2 and the charging station at v8 has 1 charging server

of K∗v8 = 1, or should it be the other way around. If we run the model,

presented in Section 7.2, then the solution is K∗v4 = 2 and K∗v8 = 1,

and K∗ = {0, 0, 0, 2, 0, 0, 0, 1, 0} represents the optimal server allocation

plan across the entire road network G.
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CHAPTER 4

RELATED WORK

In this chapter, we review related work on allocating immobile refueling

infrastructures. In [22], authors make decision on locations for new charging

infrastructure by developing an agent-based decision support system which

identifies patterns in residential EV ownership and driving activities. In

[23], authors focus on finding optimal charging station locations for EVs in

urbanized areas by developing a two-step model. The first step is transferring

road information into data points and then clustering the data points into

demand clusters. The second step is building an optimization problem given

the clusters. In [24], authors formulate a mixed-integer linear programming

problem to minimize the construction cost incurred when building stations.

The constraints of the optimization problem ensure a minimum amount of

flow being served. The Flow Refueling Location Model (FRLM) proposed in

[14, 25] is a flow-based location-allocation model, aiming at finding optimal

locations for refueling stations. This model has two critical features which

are that: 1) it assumes vehicles stop at refueling stations on their preplanned

trips instead of making a single purpose trip to refueling stations and 2) the

FRLM takes vehicle’s driving range into consideration which is one crucial

factor of EVs.

Another category of the refueling facility planning problem [26] features

the queueing issue of vehicles at refueling facilities. This category of problems

claims that optimal locations should not just minimize or constrain distances

from a demand node to a server node, they should also consider the delay

caused by a queue at the refueling facilities. This is an important issue to in-

clude when a limited number of infrastructures is available and long refueling

times are required, especially in a much more stochastic environment.

In [27], authors develop a simulation-optimization model that determines

the optimal locations for electric vehicle chargers to maximize their use by

privately owned electric vehicles. Authors use simulation to evaluate the
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deterministic multiple-server delay and level of service. It is shown that

although the optimal location is sensitive to the specific optimization crite-

rion considered, overall service levels are less sensitive to the optimization

strategy.

Approximations for the multiple server delay evaluation are studied in

several papers. In [28], author studies the approximation and extended the

approximation to M/D/c queues with deterministic service times. In [29], au-

thors generalize the approximation to M/G/c queues. In [30], authors study

the facility allocation problem with the objective of minimizing customers’

total traveling cost and waiting cost. One critical assumption for their pro-

posed model is that each facility only has one server with exponential service

times. In [31] authors study the multiple server allocation problem which

generalizes the model in [30] by allowing more than one server. Authors pro-

pose a model that accounts for queues at the server nodes, assuming demand

is allocated to the closest server node. The multiple server allocation prob-

lem can be solved using a greedy algorithm to incrementally assign servers,

as has been demonstrated in the queueing network literature. The Multiple

Server Allocation model, proposed in [31], is designed to minimize the sum

of the travel time and the average time spent at the server by allowing more

than one servers at each facility.
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CHAPTER 5

REVIEW OF FRLM

In this chapter, we review the original Flow Refueling Location Model (FRLM).

The FRLM is a flow-based model which treats serving demands of road net-

works as traffic flows with various OD pairs. FRLM applies a critical concept,

combination, which is first introduced in [14]. A candidate combination is

defined as a set of candidate locations to locate refueling facilities. The refu-

eling facilities discussed in [14] are hydrogen stations and they are assigned

to nodes. We use Figure 5.1 to illustrate some examples of combination.

Number two and four indicate the length of corresponding links.

Given the short path in Figure 5.1 with values representing length of the

corresponding link, if we only allocate stations to nodes, then the follow-

ing subsets of nodes constitute all candidate combinations: {v1}, {v2}, {v3},
{v1,v2}, {v1,v3}, {v2,v3}, {v1,v2,v3}. Candidate combination {v1} means a

station is assigned to node v1 only. Candidate combination {v1,v2,v3} indi-

cates that all nodes on the path are assigned with stations.

Each candidate combination is either eligible or ineligible in terms of a

specified OD pair. An eligible combination refers to a combination that can

refuel vehicles driving a round trip between the origin and the destination

without running out of fuel [14]. Otherwise, the candidate combination is

ineligible.

We make the following assumptions about EV battery status before or

after charging:

Figure 5.1: A path consists of two links and three nodes.
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• Let us assume that vehicle’s driving range is 5 units when fully refueled.

In other words, the full fuel range is 5.

• A vehicle gets fully refueled after passing a refueling station.

• A vehicle’s starting fuel range is full fuel range if a refueling station is

located at the origin of its trip. Otherwise, its starting fuel range is

half the full fuel range.

In order to test if a candidate combination is eligible, we need to consider

the vehicle’s driving range. For example, in Figure 5.1, if we assume the

EV’s full battery range is 5, i.e., an EV with full battery can move a distance

of 5 units without charging, then candidate combination {v2} cannot refuel

the OD pair (v1,v3), because the distance for a vehicle to drive from node v2

to node v3 then back to v2 is 2 ∗ 4 = 8, which is longer than the EV’s full

battery range of 5.

Now we move on to the details of the FRLM. The FRLM consists of two

major steps:

1. Generate and record all eligible combinations for all OD pairs on the

study road network.

2. Given the combinations generated by the first step, build an optimiza-

tion problem to select combination(s) to achieve a prefixed goal.

Detailed description of the first step can be found in [14], where an al-

gorithm was developed. Since we will describe its extension in more detail

in Chapter 6, we do not repeat it here. Briefly, the first step outputs two

matrices {ahp} and {bqh}, which are explained as follows:

• Matrix {ahp} is used to store configuration of each combination. Each

row of matrix {ahp} indicates a distinct combination and each column

represents a candidate location for assigning refueling facilities. Matrix

entry ahp = 1 when a refueling facility is located at location p, otherwise

0.

Let us assume we are studying a 9 node network, shown in Figure 3.1,

then it means we have 9 candidate locations V = {v1, v2, · · · , v9} to

locate refueling facilities. Thus the number of columns of matrix {ahp}
would be 9.
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• Matrix {bqh} is used to keep track of eligibility of each combination in

terms of each OD pair. Each row of matrix {bqh} represents an OD pair

on the network G = (V,E) and each column represents a combination

whose configuration is stored in matrix {ahp}. Matrix entry bqh = 1 if

combination h is able to refuel OD pair q, otherwise 0.

Let us use the 9 node network example in Figure 3.1 again. The network

has 36 unique OD pairs (72 OD pairs if we include symmetric OD

pairs), so {bqh} has 36 rows. And, if using the {ahp} matrix mentioned

above, the number of columns of matrix {bqh} would be the same as

the number of rows of matrix {ahp} which is 9.

After getting matrices {ahp} and {bqh} from the first step, an optimization

problem is built in the second step which is formulated as follows:

maximize Z =
∑
q

fT
q xq (5.1)

s.t.
∑
h∈H

bqhvh ≥ xq, ∀q ∈ Q (5.2)

ahpyp ≥ ch, ∀h ∈ H,∀p ∈ P (5.3)∑
p∈P

yp = N, (5.4)

xq, yp, vh ∈ {0, 1}, ∀q,∀h,∀p (5.5)

where:

q = index of OD pairs.

Q = a set of all OD pairs.

fq = traffic flow, in veh/hr, on the shortest path between OD pair q.

xq = 1 if flow fq is refueled, otherwise 0.

bqh = 1 if combination h could refuel flow fq, otherwise 0.

h = index of combination.

H = a set of all combinations.

ch = 1 if all facilities in combination h are selected to get assigned, other-

wise 0.

p = index of candidate location.

P = a set of all candidate locations.

ahp = 1 if a refueling facility is assigned to candidate location p in combi-
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nation h, otherwise 0.

yp = 1 if a refueling facility is assigned to candidate location p.

N = fixed number of refueling facilities to locate on the network.

The objective of this optimization problem is to maximize the refueled flow

volume as described by Equation (5.1). Constraint (5.2) specifies that a flow

fq is considered refueled only when at least one of its eligible combination

is selected. Constraint (5.3) specifies that an eligible combination is consid-

ered selected only when all of the facilities required by the combination are

actually being assigned with refueling facilities. Constraint (5.4) fixes the

total number of refueling facilities to locate on the network. Constraint (5.5)

specifies that xq, yp and vh are all binary variables. By restricting xq to be

either zero or one, it makes sure each refueled flow is counted at maximum

one time.
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CHAPTER 6

EXTENDED FRLM

In this chapter, we introduce our proposed extended FRLM [1] which aims

at finding optimal locations for both charging stations and dynamic charging

pads on road networks.

As discussed in Chapter 2, charging stations share the same feature as

conventional refueling stations, such as gas stations. Therefore, they are

typically assigned to nodes of a road network. On the other hand, dynamic

wireless charging pads charge EVs while EVs are driving above them [13]

which implies that the number of adjacent charging pads, embedded along

the links of a road network, determines the amount of electricity an EV

could obtain while traveling on the link. As a conclusion, we assign charging

stations to nodes v ∈ V (points of interest) and dynamic wireless charging

pads to links e ∈ E of road networks G = (V,E).

In contrast to the combinations discussed in Chapter 5, we consider candi-

date combinations including links for the purpose of locating dynamic wire-

less charging pads. To better illustrate the differences, we revisit the short

path example described in Figure 5.1.

All candidate combinations including both nodes and links are listed under

the following three situation:

• If we only locate charging stations, then the candidate combinations

are the same with the combinations discussed in Chapter 5.

• If we only locate dynamic wireless charging pads, then the following

subset of links constitute all candidate combinations {e1}, {e2}, {e1,e2}.
Candidate combination {e1} means that a charging pad is assigned to

link e1.

• If we consider both charging stations and dynamic wireless charging

pads, then candidate combinations are all possible combinations of two
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candidate combinations, each from the above two separate lists.

Note that we exclude the combinations where we assign both dynamic

wireless charging pads to a link and charging station to one of its end-

point. For example, combination {v1,e1} is not considered a candidate

combination since node v1 is assigned with a charging station and is on

link e1, which has a dynamic wireless charging pad. In contrast, combi-

nation {v1,e2} is a valid candidate combination. The reason of setting

this criteria is to decrease the size of the set of candidate combinations.

The intuition behind this is the maximum flow refueling objective will

not be achieved by having overlapping charging facilities since spread-

ing them would have a higher chance of serving more flows. Thus, we

suspect that, even though all candidate combinations including those

with overlapping facilities were fed into the optimization solver, they

should be eliminated eventually.Therefore, we are pre-excluding these

combinations to reduce the burden of optimization solver.

As we have discussed in Chapter 5, to test the eligibility of candidate

combinations, we need to consider the driving range of EVs. Since an EV

can be charged while moving above the dynamic wireless charging pads, we

assume that the State-of-Charge (SoC) of EV’s battery remains the same

while moving on links which are equipped with dynamic wireless charging

pads. In other words, there is no battery consumption as long as an EV

drives on a link which has dynamic wireless charging pads.

This is in fact a conservative assumption since driving above charging

pads actually increases remaining energy of an EV. For example, the energy

consumption rate of Nissan Leaf 2011 model is 34kW [32]. As discussed in

[17, 18, 19], charging pads are capable of achieving 37kW to 51kW energy

transfer. It proves that driving above charging pad increases SOC level.

We pick one candidate combination from each situation discussed above

to test their eligibility as an illustration.

• Candidate combination {v1} from the first situation is not an eligible

combination. This is proved in Chapter 5 already.

• Candidate combination {e1} from the second situation is not an eligible

combination since the starting remaining fuel range of EV is 2.5 (since

there is no charging station at node v1 and it is assumed that EV’s
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starting fuel range is half the full fuel range when its origin has no

charging station which is stated in Chapter 5). The EV cannot make

round trip from node v2 to v3 with remaining fuel range of 2.5.

• Candidate combination {v1,e2} from the third situation is an eligible

combination since an EV gets fully charged at node v1 (since node v1

has a charging station) and it can make a round trip from node v1 to

node v2 along with the fact that no energy consumption on the round

trip from node v2 to v3.

The extended FRLM shares the same two steps as introduced in Chapter

5: 1) generate eligible combinations for all OD pairs; and 2) formulate an

optimization problem to find optimal solutions. However, since the extended

FRLM considers locating facilities to both links and nodes of a road network,

the algorithm and model applied to these two steps are adjusted accordingly.

Details about these two steps are introduced in the two following sections.

6.1 Eligible combination generation

An algorithm is developed in [14] to check eligibilities of different combina-

tions that consists of nodes. In this section, since we consider combinations

with links as well, we extend the algorithm so that it takes both nodes and

links into consideration in order to model charging station and dynamic wire-

less charging pad placement.

If we consider all possible combinations of links and nodes, then the number

of candidate combinations explodes, and results in a large decision space for

the optimization problem, formulated in the second step. Instead of treating

each single link as a candidate site to assign dynamic wireless charging pads,

we treat each OD pair as an entity to assign charging pads.

For example, if there is only one traffic flow in Figure 5.1, which has

EVs travel from origin node v1 to destination node v3, we do not consider

assigning dynamic wireless charging pads to either link e1 or link e2 but to

assign charging pads to the entire link of (v1, v3) (which consists of e1 and

e2). As long as the OD pair (v1,v3) is chosen to assign with dynamic wireless

charging pads, link e1 and link e2 will both get assigned. On the other hand,

if there are two distinct traffic flows one has OD pair of node v1 and node v3
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and the other one with OD pair of node v1 and node v2, then when choosing

the optimal locations for allocating dynamic wireless charging pads, we need

to consider 2 different situations that: 1) the OD pair of (v1,v3) is selected

to embed dynamic wireless charging pads, or 2) only OD pair of (v1,v2) is

selected which means link e1 is assigned with dynamic wireless charging pads

while link e2 does not get assigned with any pads. Note that we do not

need to consider the situation when both OD pairs of (v1,v2) and (v1,v3) are

selected since choosing OD pair of (v1,v3) alone would result in OD pair of

(v1,v2) to be assigned with dynamic wireless charging pads automatically. In

other words, assigning charging pads to link (v1,v3) cover link e1 by definition.

Inputs of the algorithm are the network topology and driving range of EV,

and outputs are two matrices {ahp} and {bqh} which have the same meaning

as in Chapter 5, with a slight difference on the number of columns of matrix

{ahp}.
Revisit the short path example in Figure 5.1. According to Chapter 5,

matrix {ahp} has 3 columns since there are 3 candidate locations to place

charging stations. However, in our case, assuming we select 2 candidate OD

pairs to assign dynamic wireless charging pads and 3 candidate nodes to

place charging stations, the number of columns of matrix {ahp} would then

become 5.

Next we introduce the algorithm to generate matrix {ahp} as follows:

Step 1: initialization. Generate shortest paths for all OD pairs and store

their corresponding nodes and links. Keep a list of all OD pairs Q.

Step 2: select OD pairs as candidate ODs to assign dynamic

wireless charging pads. Given a network with more than one OD pair,

select a subset of OD pairs, R, to be candidate ODs. Normally, one good cri-

teria for picking candidate ODs is choosing the ones with the top traffic flow

volumes so that the heavy traffic flows have a higher priority to be serviced.

Step 3: initialize matrix {ahp} as an empty matrix with a number

of n columns where n is the summation of the number of candi-

date nodes and the number of candidate paths.

Step 4: generate candidate combinations for all OD pairs.
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1. Begin with the first OD pair q on the list of Q.

2. List all candidate combinations when assigning charging stations only.

3. If q is in list R, list the combinations of q assigned with charging pads

only and the combinations of assigning both charging pads and charing

stations. Else, skip this step.

4. Repeat the above two steps until candidate combinations are generated

for all OD pairs in Q.

5. Record all combinations in matrix {ahp}.

Step 5: check eligibility for all combinations by discussing if EV

could complete trips with limitation of its driving range.

1. Initialize matrix bqh with entries all zero.

2. Begin with the first candidate combination h and the first OD pair q.

Generate a round trip qr for OD pair q.

3. If any links of trip qr in combination h is assigned with charging pad,

update the energy cost of corresponding links to zero. This is based on

the assumption that SOC of EV remains the same while driving above

charging pads.

4. If a charging station is located at the origin of path qr, set the starting

fuel range as full fuel range. Otherwise, set it as half of the full fuel

range.

5. Check if combination h is an eligible combination for OD pair q.

• Start from origin node and move to the next node on the round

trip path qr. Update the remaining fuel range by subtracting the

fuel cost from the remaining fuel range at previous node.

• If the remaining fuel range is negative. We reached the conclusion

that the combination h is not able to refuel path q. Leave bqh = 0

as initialized. Go check the next combination for path q.

• If the remaining fuel range is nonnegative, check the followings:
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If the current node is destination node of path q and there is a

charging station at the destination node, then combination h can

refuel OD pair q. Set bqh = 1 and go check the next combination.

If the current node is the origin node, then the EV is able to make

a round trip without running out of energy. This is an eligible

combination. Set bqh = 1 and go check the next combination.

If the current node has a charging station, update the remaining

fuel range to full fuel range.

• Move to the next node and repeat the same procedures until the

round trip is checked.

6. Repeat the above steps until the eligibility of all combinations have

been evaluated for all OD pairs.

Step 6: for each OD pair q, remove combinations which are su-

persets of any other remaining combination. For example, in Figure

5.1, if combinations {v1,v2,v3} and {v1,v3} for OD pair of (v1,v3) are both eli-

gible, we remove combination {v1,v2,v3} since it is a superset of combination

{v1,v3}. We prefer the smaller combination due to the fact that it requires

fewer charging facilities.

6.2 Optimization problem formulation

After generating matrices {ahp} and {bqh}, The allocation problem is for-

mulated into an optimization problem with the objective of maximizing the

refueled volume of traffic flows described by (6.1):
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maximize Z =
∑
q

fT
q xq (6.1)

s.t.
∑
h∈H

bqhvh ≥ xq, ∀q ∈ Q (6.2)

ahpyp ≥ ch, ∀h ∈ H,∀p ∈ P (6.3)∑
p∈P

yp = N, (6.4)

ypn + ypr ≤ 1, ∀pn ∈ pr,∀pn ∈ P, ∀pr ∈ P (6.5)

xq, yp, ch ∈ {0, 1}, ∀q,∀h,∀p (6.6)

Notations of the model and their meanings could be found in Table 6.1.

Constraint (6.2) specifies that a flow fq is considered refueled only when at

least one of its eligible combination is selected. Constraint (6.3) specifies that

an eligible combination is considered selected only when all of the facilities,

required by the combination, are actually being assigned with refueling facili-

ties. Constraint (6.4) fixes the total number of refueling facilities to locate on

the network. Constraint (6.5) means that no overlapping of charging station

and charging pad is allowed. This is achieved by restricting the number of

facilities a node could be assigned is at maximum one. In other words, when

charging pad is assigned to one candidate path, none of the nodes on this

path could get assigned with charging station anymore.

Let us use the 9-node network in Figure 3.1 as an example limiting the

number of charging facilities to place on the road network to 3 with pre-

generated traffic flows. Apply the optimization model discussed above, as

shown in Figure 6.1, the model chooses to place 3 charging stations on the

network at nodes v4, v5 and v8 and no dynamic wireless charging pads are

selected. The traffic flows that could be charged on the road network are the

ones with OD pairs of (v4, v5), (v4, v8) and (v5, v8).

Note that this model helps choosing optimal locations for both charging

stations and dynamic wireless charging pads, it can be modified to allocate

either charing stations or dynamic wireless charging pads only. We present

the modified model in Chapter 7.
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Label Meaning
ahp 1 if a refueling facility is assigned to candidate location p in com-

bination h, otherwise 0
ahvst 1 if a refueling facility is assigned to candidate location vst in

combination h, otherwise 0
bqh is 1 if combination h could refuel flow fq, otherwise 0
ch is 1 if all facilities in combination h are selected to get assigned,

otherwise 0.
CRkv∗st

completion rate of the charging station at node v∗st with k servers

E links of road network G
Epad candidate links for placing dynamic wireless charging pads
fq traffic flow, in veh/hr, on the shortest path between OD pair q

G(V,E) road network with nodes V and links E
h index of combination
H a set of all combinations
kv∗st node v∗st is equipped with k charging servers
N a fixed number of charging facilities to locate on the road network.
Nse total number of servers to place on the network
Nst fixed number of charging stations to locate on the network
p index of candidate location
pn index of of candidate location which is a node
pr index of candidate location which is a candidate path
P a set of all candidate locations
q index of OD pairs
Q a set of all OD pairs
Su the maximum number of charging servers to place for each node
Sl the minimum number of charging servers to place for each node
vst index of candidate location (nodes)
v∗st index of nodes which are assigned with a charging station
V nodes of road network G
V ∗st a set of all nodes that are assigned with a charging station
Vst a set of all candidate locations (nodes)
xq is 1 if flow fq is refueled, otherwise 0
yp 1 if a refueling facility is assigned to candidate location p
yvst 1 if a refueling facility is assigned to candidate location vst
λv∗st arrival rate of electric vehicles of node v∗st
µ service rate of each server. In other words, each server can serve

µ customers per time unit

Table 6.1: List of notations.
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Figure 6.1: Example of placement of 3 charging facilities on a road network
with 9 nodes.
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CHAPTER 7

THE 2-STAGE PLANNING PROCESS

In this chapter, we introduce our proposed 2-stage planning method for charg-

ing facilities [2]. More specifically,

1. the first stage applies the modified Extended FRLM (FRLM) model

which is based on the FRLM proposed in [14] to help finding the optimal

locations for charging facilities so that the maximum amount the traffic

flows could be refueled under a budget constraint,

2. in the second stage, we formulate an optimization problem with the

goal of finding the optimal configuration plan for charging stations,

i.e., optimal number of charging servers per charging station, so that

the charging completion rate of the whole system is maximized.

7.1 First stage

The allocation problem is formulated into an optimization problem with the

objective of maximizing the volume of refueled traffic flows described by (7.1).

maximize Z1 =
∑
q

fT
q xq (7.1)

s.t.
∑
h∈H

bqhch ≥ xq, ∀q ∈ Q (7.2)

ahvstyvst ≥ ch, ∀h ∈ H,∀vst ∈ Vst (7.3)∑
vst∈Vst

yvst = Nst, (7.4)

xq, yvst , ch ∈ {0, 1}, ∀q,∀h,∀vst (7.5)

where notation q, Q, fq, xq, bqh, h, H, ch have the same meaning as in the
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optimization problem from Chapter 6 except for vst, Vst, ahvst , yvst and Nst.

The meaning of these notations could be found in Table 6.1.

Constraint (7.2) specifies that a flow fq is considered charged only when at

least one of its eligible combinations is selected. Since charging stations are

the only charging facilities being considered and they are to be placed only

at nodes of road networks, candidate combinations only consists of nodes

of road networks and has the same definition as in Chapter 5. Also, the

definition of eligible combination of a traffic flow f can be found in Chapter

5 which is defined as a combination, from the candidate combinations, that

could ensure EVs to make a round-trip between the origin and destination of

flow f . Constraint (7.3) specifies that an eligible combination is considered

selected only when all of the nodes of the road network required by the

combination are actually being assigned with charging stations. Constraint

(7.4) fixes the total number of charging stations a city can afford to purchase.

Constraint (7.5) specifies that xq, yvst and ch are binary variables.

7.2 Second stage

After obtaining the optimal location set V ∗st of nodes (i.e. points of interests)

to place charging stations from the first stage, we formulate the configuration

planning process of charging server per station as an optimization problem

below.

The objective is to maximize the EV’s charging completion rate CR, which

depends on the number of servers k at each charging station v∗st ∈ V ∗st, arriving

rate λ and service rate µ of EVs at each charging station v∗st ∈ V ∗st, for all

charging stations, on the city road network, as described by Equation (7.6).

Notations of the model and their meanings could be found in Table 6.1.

maximize Z2 =
∑

v∗st∈V ∗
st

CRkv∗st
(λv∗st , µ) (7.6)

s.t.
∑

v∗st∈V ∗
st

kv∗st = Nse (7.7)

kv∗st ≤ Su, ∀v∗st ∈ V ∗st (7.8)

kv∗st ≥ Sl, ∀v∗st ∈ V ∗st (7.9)
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Constraint (7.7) specifies that the total number of charging servers kv∗st to

place across the network is Nse. Constraint (7.8) and Constraint (7.9) specify

the maximum and minimum number of servers kv∗st to place for each node

v∗st ∈ V ∗st.
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CHAPTER 8

EVALUATION

In this chapter, we evaluate our proposed extended FRLM and the 2-stage

planning process separately in the following section.

8.1 Extended FRLM

In this section, we evaluate the extended FRLM on the network, shown in

Figure 8.1. We use A:B notation in the figure, where A represents the index

of the corresponding link eA ∈ E or node vA ∈ V and B denotes the weight

of the node (i.e. popularity of the node or importance of the location) of the

city road network, G = (V,E), or length of the link.

We assign each node with a weight and each link with a length. The length

of links describes the distance between two points on the road network G.

The weight of each point describes the popularity of each node, i.e., high

weight means high popularity. High popularity of a location results from, for

example, being a tourist attraction or being a shopping mall.

The feature of this network is that Node 4 is the center node which has the

highest weight while rest of the nodes share similar weights and the weights

are lower than the weight of Node 4. According to explanations before, Node

4 attracts most of the traffic flows traveling to the center.

One real life example of this type of network is the city Berlin of Germany.

Berlin is grouped into six districts with district Mitte in the center and the

other five surrounding it. The center district Mitte attracts and generates

large volumes of traffic flows into the center. Therefore, studying the network

in Figure 8.1 helps us to have a better understanding on how the charging

facilities should be located for such center-formed networks and later apply

the model to similar cities.

This network has 36 traffic flows, i.e., OD pairs, with the top five flows
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Figure 8.1: A sample network with 9 nodes, where A:B indicates that node
(link) A has weight (length) B.

listed in Table 8.1 as examples. As we can see from Table 8.1, flows traveling

from the center Node 4 to other surrounding nodes have the top flow volumes

which corresponds to the fact that center Node 4 attracts and generates most

of the flows.

When testing the extended FRLM model discussed in Section 6, we set

the necessary variables as follows:

• number of facilities Nst equals 3.

• Number of candidate paths equals 5.

• Full fuel range of EV is 5 unit

We pick candidate paths based on flow volumes in decreasing order. There-

fore, Flow 25, Flow 22, Flow 10, Flow 24, and Flow 34 are candidate paths

to assign charging pads which are listed in Table 8.1.

36



Table 8.1: Top flows of the 9 node network

Flow ID O D Distance Path Volume (veh/hr)
25 4 8 5 4 → 8 1197
22 4 5 3 4 → 5 1092.5
10 2 4 4 2 → 4 1068.8
24 4 7 5 4 → 7 1026
34 7 8 3 7 → 8 756

Table 8.2: Served flows with Link 4, Link 5, and Link 10 assigned with
charging pads.

Flow ID O D Distance Path Volume (veh/hr)
10 2 4 4 2 → 4 1068.8
11 2 5 7 2 → 4 → 5 147.86
13 2 7 9 2 → 4 → 7 180
22 4 5 3 4 → 5 1092.5
24 4 7 5 4 → 7 1026

Note that the traffic flows in the table represent the general traffic flows of

registered vehicles, namely EVs and conventional vehicles. Since the number

of EVs on the road network are proportional to all the registered vehicles (i.e.

the general traffic flows), serving the maximum amount of general traffic flows

helps to achieve the goal of serving the maximum amount of EVs. In order

to calculate the number of EVs, out of the general traffic flows, that could be

charged, we need to obtain the EV market share of the studied road network

and multiply the percentage share with the volumes of general flows that

could be served. Note that, one special situation, with the EV market share

of 100%, the volumes of traffic flows presented in Table 8.1 is also the number

of EVs that could be charged.

Apply the model from Chapter 6 and the optimal solution is to locate

charging pads and charging pads only on the network. The configuration is

assigning charging pads to Flow 10, Flow 22, and Flow 24. The corresponding

links are Link 4, Link 5, and Link 10. The total amount of flows being served

is 3515.1 (veh/hr). Details of charged flows by this combination are listed in

Table 8.2.

Since we are locating 3 charging facilities on the network, the possible

situations of charging pads and charging stations are:

• locate 3 charging pads,
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Table 8.3: Maximum flow served under various situations

# pad # station Configuration Volume (veh/hr)
3 0 Link 4, Link 5, Link 10 3515.1
2 1 Link 4, Link 5, Node 1 2309.1
1 2 Node 1, Node 2, Link 5 2726.9
0 3 Node 1, Node 2, Node 4 1692.2

• locate 2 charging pads and 1 charging station,

• locate 1 charging pad and 2 charging stations,

• locate 3 charging stations.

Next, we compare the performance of the optimal solutions each from the

above situations in Table 8.3:

As we can see from Table 8.3, locating 3 charging pads on the network is

doubling the amount of general traffic flows when compared with flows being

charged by locating 3 charging stations only.

Next, we compare the charging time, i.e., contact time, when placing charg-

ing stations and charging pads. Let us suppose we study EV model of Nissan

Leaf driving between OD pair Node 2 and Node 7. The battery capacity of

Nissan Leaf is 24kWh and its driving range is about 70 miles [33] which

corresponds to the 5 unit of full fuel range we assumed previously. Scale the

distance accordingly, then the distance of the round trip between this OD

pair is 126 miles. Also, let us assume the speed limit is 70mile/hr meaning

without stops, it takes 1.8 hours to complete the trip. If (e4, e10) are equipped

with wireless dynamic charging pads, since EVs do not need to stop in the

middle of the trip, the amount of time required to complete the trip is also

1.8 hours.

On the other hand, let us assume slow charging servers with 3.6kW are

installed at charging stations, which leads to the result that, to complete the

trip, an EV needs to charge at least twice and it takes about 7.6 hours to

charge the EV. Plus the 1.8 hours to travel the distance, it takes 9.4 hours

in total to complete the trip.

Therefore, driving between the OD pair (v2, v7) requires at least 5 times of

charging time if charged at charging stations instead of driving over charging

pads (e4, e10, e10, e4), which shows that EV drivers would benefit from charg-

ing over dynamic wireless charging pads by saving a significant amount of
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Figure 8.2: Served flow volume given various number of facilities.

charging time. Also, assigning charging pads to roads could be considered

for those who have high traffic volumes or those who are required to have

shorter travel time and higher efficiency.

Next, we show the effect of locating different number of facilities on the

charged traffic flow volumes.

As shown in Figure 8.2, the total amount of traffic flows being served

increased with the number of charging facilities to locate. This meets our

expectation since increasing accessibility of charging facilities by EVs enables

EVs to travel longer distances. However, increasing the number of facilities

on a network raises the building and management cost which is normally a

limitation.

Given the fact that discussions on comparison between the costs on build-

ing and managing charging stations and charging pads are not available, so

we restrict the number of charging facilities to control budget.
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O D Distance Path Volume (veh/hr)
4 5 3 4 → 5 1092.5
4 8 5 4 → 8 1197
5 8 8 5 → 4 → 8 181.1

Table 8.4: Charged flows with Node 4, Node 5 and Node 8 assigned with
charging stations.

8.2 2-stage planning process

In this section, we evaluate the 2-stage allocation model on the same sample

network which is shown in Figure 8.1.

8.2.1 First stage

We first test the 2-stage planning model starting by finding the optimal

locations for EV charging stations. We set the essential variables as follows:

• The total number of charging stations to allocate is 3, i.e. Nst = 3.

• The full battery range of EV is 5 unit. Take a fully charged EV traveling

from Node 1 to Node 2 as an example. Since the starting battery status

of an EV is 5 and the length of Link 1 is 4, the EV is able to travel from

Node 1 to Node 2 without charging. However, if the driver is traveling

a round trip between Node 1 and Node 2 and would like to drive back

to Node 1, the remained 1 unit of battery would not be suffice and

charging is required.

We apply the model from Section 7.1 and the model outputs the opti-

mal locations for charging stations as Node 4, Node 5 and Node 8, which

means V ∗st = {v4, v5, v8}. The total amount of traffic flow being charged is

2470.6(veh/hr). Detailed charged traffic flows information is listed in Table

8.4.

8.2.2 Second stage

Next, we proceed to the second stage of the planning process which is deter-

mining the optimal number of charging servers to allocate for each charging
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station. We use SimPy [34] to simulate the queueing process of EVs at charg-

ing stations. In the mean time, we make a couple of assumptions which are

listed below:

• we assume the traffic flows stays constant during the day. In other

words, we do not consider peak hour affects on traffic flows (to be

considered in future work),

• we assume that electric vehicles arrive to charging stations following

poisson distribution,

• to simulate the charging preference and behavior of EV drivers more

practically, instead of assuming all EV drivers prefer to charge to full

battery capacity, we assume that 50% of EV drivers are cautious drivers

and would like to get fully charged every time they go into a charging

station. However, the other 50% of EV drivers are more concerned

about the long charging times, so they are only charging to the battery

level that is enough to support them to travel to the next charging

station.

Note that the amount of electricity EV drivers request determines the

service rate of charging servers, i.e., drivers with their EVs charge to full

battery takes more time than those drivers who request less electricity

given the same charging server.

We consider fast chargers at charging stations which have a maximum

of 50kWh output and the service rate of the fast chargers is 2.08 EV/hr.

The duration of our simulation is one day (i.e., 24 hours) and we assume

the EV market share is 0.3% (i.e., 3 EVs out of 1000 registered vehicles).

According to [35], in California, there are 3 EVs per 1000 registered vehicles

and California is the state with the highest EV market share in the United

States.

In Figure 8.3, we show the relationship between the completion rate and

the number of servers for each charging station. The EV market share plays

an import role in determining the number of servers for each charging station

since higher EV shares indicate higher numbers of EVs arriving at charging

stations which results in longer waiting queues given the same number of

charging servers at charging stations. To maintain a satisfactory completion
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Figure 8.3: Completion rate (%) with various number of servers).

rate, a increasing number of charging servers are required to be installed in

order to accommodate the increasing number of incoming EVs.

Again, completion rate is defined as the division between the number of

charged EVs and the number of arrived EVs. As we can see, with the low

EV market share, it is easy to achieve almost 100% completion rate for all

these 3 charging stations.

After getting the completion rate of each charging station under various

number of charging servers CRkvst
(λvst , µ), we find the optimal number of

servers to allocate for each charging station by constructing the optimization

problem discussed in Section 7.2. We set the parameters of the optimization

as follows:

• the total number of servers to deploy is Nse = 10,

• the minimum number of servers for each station is Sl = 2,

• the maximum number of servers for each station is Su = 10.

Solving the optimization problem, the solution shows that it would be

optimal to place 6 servers at Node 4, 2 servers at Node 5 and 2 servers
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Node index # Servers Traffic flows (veh/hr) Completion Rate (%)
4 6 2465.6 99.54
5 2 1273.6 100
8 2 1378.1 98.98

Table 8.5: Charging station configuration.

Figure 8.4: Completion rate under various EV market shares (%).

at Node 8. Therefore, as a final result, given 3 charging stations and 10

charging servers, the 2-stage planning process outputs the optimal planning

configuration as presented in Table 8.5. And this configuration gives an

averaged completion rate of 99.51% across the 3 charging stations which is

quite satisfactory.

Even though the model works perfectly well with the current low EV mar-

ket share, we would like to investigate its performance further given higher

market shares. We additionally tested our model against market shares rang-

ing from 1% to 50% and the result is presented in Figure 8.4.

Next, we compare the averaged completion rates obtained under various

market shares. In order to obtain the completion rates, we only need to

change the arrival rates of EVs at charging stations to reflect different market

shares. Since higher EV market shares implies more EVs on the road network,
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Figure 8.5: Number of servers needed to achieve a 75% completion rate
under various EV market shares (%).

arrival rates increase accordingly. The specific values of arrival rate can be

calculated from the traffic flow volumes.

With market share increased from 0.3% to 10%, we see that the comple-

tion rate decreases dramatically from 99.51% to 16.6%. And the completion

rate drops below 10% with EV market shares higher than 15%. This low

completion rate is due to the inevitable long charging time as well as the

limited number of charging servers.

We next study the minimum number of server required to achieve an aver-

age of 75% of completion rate under various EV market shares and the result

is presented in Figure 8.5. The figure shows an almost linear relationship be-

tween the EV market share and the number of servers required to sustain a

75% completion rate. Since increasing the market share of EVs results in a

linearly increasing number of EVs arriving at charging stations, to maintain

a completion rate of 75%, the number of servers (i.e., the service rate of the

charging station) needs to increase correspondingly.

Besides the fast charging servers, we also tested the planning model con-

sidering chargers with slower power (e.g. 3.6kW) and the completion rate is

included in Table 8.6. Note that fast charging stations are stations equipped
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# servers Fast charging station (%) Regular charging station (%)
6 99.79 28.58
9 99.92 34.81
12 99.95 41.78
15 99.98 46.72

Table 8.6: Completion rate comparison between fast and slower charging
stations.

with fast chargers while regular charging stations are equipped with slow

charging servers which power is 3.6kW. Therefore, fast charging stations

have higher service rate compared to regular charging stations.

The completion rates are obtained from the charging station place at Node

4. It is obvious to see that completion rates of deploying these slower chargers

are significantly smaller than the completion rates obtained from fast charg-

ers. And it is safe to say that the charging speed of the servers plays a critical

role in the charging station planning process. It is also straightforward to see

because the charging speed of charging servers impact the service rate of a

charging server. Therefore, if a charging location is considered to serve EVs

similar to conventional gas stations, fast chargers are essential. On the other

hand, if a charging location is also serving as a parking spot which allows

EVs to park several hours with drivers left for shopping malls or offices, slow

chargers are acceptable.
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CHAPTER 9

LESSONS LEARNED

In this section, we discuss the challenges encountered while studying the

charging facility allocation problem and we focus on discussing the charging

stations and dynamic wireless charging pads.

• As discussed in previous sections, charging stations are similar to con-

ventional gas stations that vehicles arrive at the stations to get served.

When allocating the charging stations and conventional gas stations,

typically, they share the same goal of maximizing the amount of served

vehicles on the road network.

• Concerns regarding electrocution and charging stations becoming frozen

on vehicles in extreme weather for charging stations [13] advanced the

development of dynamic wireless charging pads. EVs get charged when

parking on static wireless charing pads while EVs are required to drive

over the dynamic wireless charging pads in order to be charged.

One major challenge is configuring the charging facilities. Based on the

distinct working features of charging stations and dynamic wireless charg-

ing pads, as discussed in previous sections, charging stations are normally

located at nodes of a road network while dynamic wireless charging pads are

embedded into road links. Thus, the configuration plan differs depending on

the type of charging facilities under study.

For charging stations, the key question to answer is how many charging

servers to locate for each charging station. Charging stations are connected

to the power grid which means that the charging load of the stations impacts

the charging load distribution across the entire power grid. Since the charging

load of charging stations is highly related to the traffic condition on the road

network, it is critical to consider potential traffic scenarios when determining

the number of charging servers to allocate. For example, one feature of urban
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traffic flows is that there are morning and evening peak hours during which

the volume of traffic flows increases dramatically in comparison to other times

during the day. High volume of traffic flows leads to an increasing number

of charging requests especially for certain hot spots, e.g. major roads and

business centers. In order to sufficiently accommodate the peak hours as

well as the regular hours, it is necessary to predict the number of charging

requests based on potential traffic flows and then plan accordingly. Also,

peak hours would also result in power load fluctuations throughout the day

which is challenging to the power grid. It may require certain power storage

facility to accommodate the bursts of charging requests. For example, EVs

could be treated as mobile energy sources since they could provide electricity

to other EVs.

In terms of dynamic wireless charging pads, charging pads require an EV

to drive over for a certain distance in order to get charged and the length of

charging pads affects the amount of electricity an EV could obtain. There-

fore, it is essential to determine how many charging pads to be installed along

a selected road link so that an EV could get charged to a satisfactory level.

Another challenge is that it is crucial to take various EV models into con-

sideration as well as driver behaviors. Different EV models share different

charging rates, driving ranges, battery capacities etc, and various driving be-

haviors inevitably affect the charging needs of different drivers. For example,

cautious EV drivers may prefer to get fully charged whenever a charging fa-

cility is available. Also, cautious drivers may be conservative when using ACs

and audios since these will speed up the battery consumption rate. There-

fore, it is helpful to take these variations into consideration when studying

the facility allocation problem.
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CHAPTER 10

CONCLUSION AND FUTURE WORK

In this paper, we first proposed an extended FRLM to find optimal loca-

tions for both dynamic wireless charging pads and charging stations in order

to maximize the traffic flows (EVs/hr) being charged on the road network.

Our evaluation on a sample 9-node network suggests that placing charging

pads helps to charge significantly more EV traffic flows compared to placing

charging stations only. Also, by comparing the charging time required by

charging stations and charging pads, it showed that charging pads performs

better in terms of saving more travel time. In summary, optimal planning

of charging stations and charging pads could benefit the road network by

serving more traffic flows (EVs/hr) as well as benefiting individual drivers

with dramatically decreased required charging time [1].

Next, we proposed a 2-stage planning process for charging stations [2] of

which:

• the first stage applies the extended FRLM [1] to maximize the charged

traffic flows. Since we focused on studying the 2-stage planning pro-

cess for charging stations, we adjusted the model accordingly to help

allocating charging stations only.

• After obtaining the optimal locations for charging stations, we move

on to study configuration planning for placed charging stations. To

be more specific, we focus on finding the optimal number of charging

servers to assign to each charging station so that the completion rate

across the entire road network is maximized.

We evaluated the planning process on the same sample network and showed

that the planning process achieves a promising satisfactory completion rate

given current EV market shares. We also performed experiments of the

proposed process in terms of various higher EV market shares and showed

their corresponding completion rates.
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In addition to our work, a number of interesting extensions worth exploring

in the future are listed below:

• in this paper, we tested the proposed models on a small size center-

formed road network and it would be appealing to have the models

evaluated on larger scales of road networks with different traffic flow

patterns. Furthermore, it is highly possible that approximation algo-

rithms need to be developed in order to solve optimization problems

with larger sizes due to the increased size of road networks.

• To complete the simulation studies of the model, performing extensive

simulation to relax the assumptions we made in the second stage. For

example, we could consider more types of EVs and with more charging

stations allocated on the network, we could simulate the process of

drivers leaving the station after waiting a certain amount of time. Also,

it would be interesting to consider the situations when charging servers

have different service rate.

• In this paper, we studied the configuration planning for charging sta-

tions. The planning approach for wireless charging pads also worth

studying.

• We assumed, in this paper, that traffic flows are constant without fluc-

tuations and EVs come to charging stations follow Poisson distribution.

In the future, it worth exploring the affects that different traffic flow

patterns may have on the performance of the models. For example, as

discussed in Chapter 2, urban traffic normally has morning and evening

peak hours. In order to accommodate the heavy traffic flows during the

peak hours and increasing the completion rate of EVs at charging sta-

tions, more charging stations or charging servers may need to be placed

along the path which has the top traffic flows.

• Dynamic pricing is another topic worth studying which could be used to

dynamically balance charging demands from EVs on the road network.

For example, increasing the price of electricity of a overloaded charging

station may incentivize incoming EV drivers, or even drivers waiting

at the station, to change to alternative nearby charging stations with

lower prices. As a result, charging demands are better balanced across
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the road network. Encouraging drivers to go to alternative charging

stations could also help alleviate traffic congestions around the packed

charging stations.

• Developing a recommendation system that guides EVs to the charging

stations with fewer waiting drivers would be another promising topic.

In order to achieve this, we need to be monitor the waiting queues at

charging stations in real time. Also, we may need to place extra charg-

ing stations on the road network so that EVs could have alternative

charging options.

• It would also be interesting to study more charging preferences and be-

haviors of EV drivers. For example, EV drivers may prefer to charge to

different battery levels and charging stations could require EV drivers

to charge for at least a certain amount of electricity. Since different

charging behaviors could impact the service rate of charging servers,

they would further effect waiting time of drivers and their charging

experience.
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