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ABSTRACT 

 

About half of soybean [Glycine max (L.) Merr.] yield is attributed to genetic 

improvements of 12.5 kg ha-1 per year (Specht and Williams, 1984) with the remaining half of 

soybean yield being dependent upon environment, agronomic management, and the interaction 

of genetics and management (Rowntree et al., 2013). Many farmers have overlooked the 

importance of incorporating management practices into their soybean production system, which 

indicates they may be missing half of the potential yield of soybeans. Therefore, our objective 

was to quantify the impact of different agronomic management practices on soybean 

productivity. One study was conducted in 2014 and 2015 to determine the value of the foliar 

application of two different foliar manganese products to relieve “yellow flashing” in glyphosate 

resistant soybeans sprayed with the herbicide glyphosate. Foliar manganese applied 24 hours 

prior to glyphosate applications led to the greatest increase in plant manganese concentration. 

Although applications of either manganese formula increased plant manganese concentration, 

they did not result in a consistent impact on total biomass, plant chlorophyll, or final yield; 

however, chlorophyll measurements as well as visual observation did not indicate “yellow 

flashing” in either year.  A second experiment in 2015 evaluated alternative practices to break 

apical dominance in soybean in order to facilitate plant branching or create multiple new main 

stems to potentially increase yield. Practices to eliminate the plant apical meristem included 

applying the herbicide Cobra (2-ethoxy-1-methyl-2-oxoethyl-5-[2-chloro-4-(trifluoromethyl)-

phenoxy]-2-nitrobenzoate) to cause a chemical burn, as well as decapitation back to the 

unifoliate or first trifoliate nodes. Plant population (80,000 vs 160,000 plants acre-1) was also a 

factor in this study as soybean plants tend to naturally branch more at lower populations. All 

apical meristem removal treatments resulted in a significant yield decrease, with greater penalties 
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occurring at the lower plant population (80,000 plants per acre). Collectively, these findings 

emphasize the importance of providing the soybean plant a stress-free growing season to 

maximize yield. 
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CHAPTER 1: ELIMINATING GLYPHOSATE ‘FLASH’ IN SOYBEAN WITH 

ENHANCED MANGANESE MANAGEMENT 

 

ABSTRACT 

The use of glyphosate resistant soybeans [Glycine max (L.) Merr.] has increased with the 

widespread intensive use of the herbicide glyphosate. Because of the broad spectrum of weed 

control of glyphosate, farmers have intensively used the herbicide, and occasionally soybean 

plant injury has occurred. Glyphosate or “yellow flash” occurs when glyphosate resistant 

soybeans are sprayed with a high rate of glyphosate herbicide. The “flashing” can be identified 

as chlorosis or yellowing in new plant growth and is typically seen where overlap of the sprayer 

boom occurs. In these areas of excessive glyphosate application, it is thought that the glyphosate 

herbicide chelates manganese in the plant, keeping it from moving to new plant growth. 

Manganese is important in the plant for photosynthesis, nitrogen metabolism, and nitrogen 

assimilation. By applying manganese in addition to the glyphosate herbicide, applicators hope to 

relieve any possibility of tying up manganese in the plant. In this study, we tested two different 

manganese sources, mixed with glyphosate, as well as seeing if one source, GR-MNC14, applied 

24 hours before the glyphosate could alleviate yellow flashing and increase grain yield. All 

sources of manganese resulted in a higher concentration of manganese in the plant; however, 

when manganese was applied with the herbicide, there was no consistent impact on total 

biomass, plant chlorophyll, or final grain yield. 
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INTRODUCTION 

 

Glyphosate (N-(phosphonomethyl) glycine) is a nonselective herbicide that controls a broad 

spectrum of plants. The mechanism of action of glyphosate is unique in that it only targets an 

enzyme called 5-enolpyruvylshikimate-3-phosphate synthesis (EPSPS) in the shikimate pathway 

found in plants and bacteria (Zobiole et al., 2010). Because of this mechanism, the herbicide is 

destructive to all plant species making it difficult to use in cropping systems (Franz et al., 1997). 

With the ability to alter plants through molecular biology, scientists have been able to introduce a 

glyphosate insensitive gene into crops; which has allowed farmers to effectively control weeds 

found in crop production fields (Dill, 2005). The first glyphosate resistant soybean was 

introduced in 1996 under the trade name Roundup Ready. The introduction of this product was 

very successful as within nine years after becoming commercially available, 87% of all soybeans 

grown in the United States were the glyphosate resistant type (Fernandez-Cornejo and Caswell, 

2006).  

With the introduction of glyphosate resistant crops, the use of the glyphosate herbicide 

increased in production agriculture. Although glyphosate resistant soybeans are insensitive to the 

herbicide, visual injury known as “yellow flashing” has occurred under certain conditions with 

different salt formulations of glyphosate (Reddy and Zablotowicz, 2003). Glyphosate is a 

phosphonic acid (Franz et al., 1997) as well as a strong metal ion chelator (Kabachnik et al., 

1974; Glass, 1984; Coutinho and Mazo, 2005). With these qualities, the herbicide is known to 

reduce manganese concentrations in glyphosate resistant plants (Johal and Huber, 2009). 

Glyphosate also reduces the uptake and translocation of Mn in soybean plants (Huber, 2010). 

Mn is an important micronutrient in plants as it is necessary for many biochemical 

processes. The nutrient plays a role in processes such as respiration, amino acid synthesis, lignin 
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biosynthesis, and phytohormone levels; however, its most important role is in oxygen evolution 

in photosynthesis. Playing a major role in all photosynthetic organisms, Mn acts as a catalyst in 

the oxygen evolving reaction of photosystem II. Because photosynthesis is a vital process in 

providing photoassimilates and chemical energy to the plant, Mn deficiencies therefore affects 

plant growth, seed production, and other biochemical processes (Campbell and Nable, 1988). 

Manganese deficiencies are commonly seen as interveinal chlorosis (Moraghan, 1985; 

Marschner and Rimmington, 1988), dark brown spots on leaves, and early senescence of older 

leaves (Campbell and Nable, 1988). Chlorosis symptoms are associated with the lack of 

chlorophyll concentration likely leading to a reduction in photosynthesis (Weiland et al., 1975). 

A study with tomatoes found that Mn deficiency resulted in reduced leaf thickness, smaller 

palisade cells that led to necrosis of cells, and xylem that became blocked by brown deposits 

(Eltinge, 1941). The consequences of Mn deficiency are dependent on the severity, and 

photosynthesis levels of manganese deficient plants can be quickly restored (approximately 24 

hours later) when supplied with the nutrient (Campbell and Nable, 1988). The yield of legumes 

is highly dependent on the plant concentration of Mn as both deficiency and toxicity of Mn can 

result in decreased yield (Walton, 1978; Heenan and Campbell, 1980; Hannam et al., 1984; 

Mascagni and Cox, 1985). Reduction in yield results from fewer fertile nodes (and therefore 

seed-bearing pods) on a plant and decreased seed weight (Randall et al., 1975; Heenan and 

Campbell, 1980; Boswell et al., 1981; Gettier et al., 1985). When foliar Mn sulfate was applied 

to soybean plants deficient in Mn as late as at the prebloom stages, yield was similar to fertilizer 

banded with the seed at planting (Randall et al. 1975). Seed quality can also affected by 

moderate deficiencies of Mn, causing oil concentrations to decline from 21.4% to 17.4% (Wilson 

et al., 1982).   
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Manganese is the most available in the soil at pH levels between 5 and 6.5 as Mn+2. At pH 

levels below 5, Mn is even more available often leading to excessive uptake and tissue toxicity. 

Soils high in organic matter can chelate Mn+2 making it unavailable to the plant. Once absorbed, 

manganese is immobile in the plant, causing any deficiency symptoms that develop under Mn-

limited conditions to occur in the newest or youngest growth. Manganese fertilizer applications 

are suggested when soil test levels are less than 10 ppm, or when tissue concentrations are less 

than 20 ppm (Schulte and Kelling, 2004).  

Due to the importance of manganese in soybean, the objective of this study was to 

evaluate preventative methods of minimizing glyphosate “flash” using supplemental foliar 

manganese nutrition and application timing technologies. To accomplish our objective, we used 

two different manganese sources and looked at the effects of applying manganese either 

combined or separated with glyphosate.  

 

MATERIALS AND METHODS 

 

Experimental design and site characteristic 

The experiments were implemented during 2014 and 2015 in southern, central, and northern 

IL at Harrisburg, Champaign, and DeKalb, respectively. These locations were maintained weed- 

free with a pre-emergence herbicide application of Boundary (Syngenta, Greensboro, NC) at a 

rate of 2 pints acre-1. The fields at all sites were level and well-drained, and well-suited to 

provide evenly distributed soil fertility, pH, soil organic matter, and water availability. 

Experimental plots were four rows wide and 36 ft in length with 30-inch row spacing. In 2014, 

plots were planted on 24 May at Harrisburg (Hurst- Reesville silty clay loam, 2.2% organic 

matter; 12.6 meq/100g CEC, 6.4 pH, 10 ppm P, 80 ppm K, 39 ppm Mn with Mehlich-3 

extraction), 10 May at Champaign (Drummer- Flanagan silt loam, 4.0% organic matter; 21.0 



5 

 

meq/100g CEC, 6.4 pH, 45 ppm P, 179 ppm K, 44 ppm Mn), and 20 May at DeKalb (Drummer 

silt loam, 3.6% organic matter; 17.1 meq/100g CEC, 6.6 pH, 28 ppm P, 139 ppm K, 38 ppm 

Mn). Plots in 2015 were planted on 3 May at Harrisburg (Hurst- Reesville silty clay loam, 3.1% 

organic matter; 20.8 meq/100g CEC, 6.1 pH, 21 ppm P, 131 ppm K, and 20 ppm Mn with 

Mehlich-3 extraction), 23 May at Champaign (Drummer- Flanagan silt loam, 3.5% organic 

matter; 17.9 meq/100g CEC, 6.2 pH, 29 ppm P, 118 ppm K, and 34 ppm Mn), and 21 May at 

DeKalb (Drummer silt loam, 4.6% organic matter; 23.2 meq/100g CEC, 6.9 pH, 16 ppm P, 130 

ppm K, and 21 ppm Mn). Soybean cultivars adopted for each region were used, namely FS 

42A12 in Harrisburg, FS 39A42 and FS 31A32 in Champaign (as two separate trials, FS 31A32 

was planted at Champaign only in 2015), and FS 31A32 in DeKalb. Corn was the previous crop 

and conventional tillage was used. Plots were arranged using an RCBD with six replications. 

Herbicide and manganese treatments were applied in-season at V3 and reapplied at V6 (Table 

1.1). Touchdown (Syngenta, Greensboro, NC) was the glyphosate herbicide used in 2014 at a 

rate of 48 fl oz. acre-1. Due to no visual “flashing” of soybeans in 2014, a different herbicide was 

used at a higher rate in 2015. RoundUp Powermax (Monsanto, St. Louis, MO) was the 

glyphosate herbicide used for this experiment at a rate of 64 fl oz. acre-1. The control treatment 

received an application of glyphosate at both V3 and V6. In this study, two different manganese 

sources supplied by Goëmar Laboratories (Saint Malo, Bretagne, France) were tested; the 

Standard Mn source being manganese chloride. Interactions of manganese and glyphosate were 

evaluated by applying the Mn source, GR-MNC14, tank mixed with the glyphosate or 24 hours 

before glyphosate applications were made. In both years, manganese products were applied at a 

rate of 1.5 pints acre-1 which was recommended by Goëmar Laboratories. Treatments were 

applied with a CO2 pressurized backpack sprayer with an output of 15 gallons acre-1.  
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Measured parameters 

Biomass sampling for nutrient analysis was conducted at approximately 20 days after the V6 

treatment application at each of the locations (approximately the R1 growth stage). One meter of 

plants were sampled from each plot; sampled plant tissues were dried, weighed, and ground for 

analysis of N, P, K, and Mn (only P, K and Mn in 2015) by A & L Great Lake Laboratories, Fort 

Wayne, IN. Total biomass is presented on a dry weight basis (0% moisture concentration). 

Nutrient accumulation was algebraically derived using total plant biomass and tissue nutrient 

concentration. At the growth stage R5, five representative plants per plot were selected for yield 

component assessments. The number of pods and beans on each plant were counted and used for 

determination of beans pod-1. Crop vigor and chlorophyll (greenness) measurements were 

conducted using a SPAD502 plus meter (Spectrum Technologies, Aurora, IL) at approximately 7 

days after both the V3 and V6 applications. Chlorophyll measurements were obtained from the 

middle leaf of the uppermost, fully expanded trifoliate averaged over six plants per plot. Crop 

vigor evaluations used a 1 to 10 scale with 1 being less vigorous and 10 being most vigorous, 

based on a visual assessment of overall crop greenness, stem and leaf health, and crop growth.   

The center two rows of each plot were mechanically harvested at maturity for measurement 

of grain yield. Harvest in 2014 was on 12 October at Harrisburg, 5 October at Champaign, and 

20 October at DeKalb. In 2015, plots were harvested on 2 October at Harrisburg, 1 October 

(31A32) and 27 October (39A42) at Champaign, and 16 October at DeKalb. Subsamples of 

harvested grain were analyzed for grain quality (protein and oil) by NIT using a Foss Infratec 

1241 grain analyzer (Eden Prairie, WI). Subsamples of harvested grain were also used to 

determine individual seed weight based on a representative sub-sample of 300 seeds. Seed 
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number on a per-area basis was calculated algebraically by dividing total grain weight by 

individual seed weight.   

Statistical Analysis 

Data were analyzed in PROC MIXED with treatment and location in the model set as fixed 

effects and replication nested within location as a random effect using SAS software. Because of 

the change in herbicide source and rate in 2015, years were analyzed separately. PROC 

UNIVARIATE was used to assess normality of the residuals and for removal of outliers. LSD 

values were determined using the PDIFF macro using α=0.10 probability level. 

 

RESULTS  

2014 Evaluation 

      Although not statistically significant, the GR-MNC14 treatments tended to increase the 

number of pods by as much as 1.9 pods per plant when averaged across all locations (Table 1.2). 

Applying Mn in combination with glyphosate (standard Mn or GR-MNC14 combined with 

glyphosate) was especially effective at Champaign resulting in a 14% increase in pod number 

and an 11% increase in seed number compared to the control, although these differences were 

not statistically significant (Table 1.2). The absence of any visual glyphosate flashing may have 

limited the response to the Mn treatments (Table 1.2).  

 Nutrient accumulation of nitrogen, phosphorus, and potassium in the plants at the R1 growth 

stage was not affected by the Mn applications (Table 1.3). Conversely, significant increases in 

manganese uptake occurred at Champaign and DeKalb, and when averaged across all three 

locations when GR-MNC14 was the source applied separately from the herbicide (Table 1.3). 

The standard Mn product only increased Mn accumulation at DeKalb, and GR-MNC14 applied 
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with the herbicide only increased Mn accumulation at Champaign (Table 1.3). All treatments at 

Harrisburg numerically increased the manganese content of plants; however, this increase was 

not significant, nor did it lead to significant yield improvements (Tables 1.3 and 1.5). 

 Crop vigor and chlorophyll greenness at approximately seven days after application revealed 

that plants were not damaged by any of the manganese products (Table 1.4). At Harrisburg, there 

was an approximate 9% increase in the V6 plus 7 days SPAD values associated with GR-

MNC14 applied with glyphosate, though it did not result in greater biomass, pod counts, or yield 

(Tables 1.2 and 1.5). 

Yield, yield components, and grain quality were primarily influenced by differences in 

location as opposed to treatment applications (Table 1.5). When averaged across all locations, 

remedial measures of supplying Mn to eliminate glyphosate flash did not increase or decrease 

yield. The most notable yield increase trend of 3.9 bushel acre-1 with GR-MNC14 applied 

separately from glyphosate at Champaign was associated with a significant increase in seed 

number (+ 5%; Table 1.5). There was also a non-significant yield response of  3.5 bushel acre-1 

associated with the GR-MNC14 applied concurrently with glyphosate (applied at V3 and V6) at 

DeKalb (Table 1.5). Applying GR-MMNC14 combined with glyphosate increased seed oil 

concentration at all three locations and usually decreased protein levels.  

2015 Evaluation 

In 2015, Mn and glyphosate did not significantly impact pod and bean number or R1 biomass 

(Table 1.6). There were, however, significant location effects and an interaction of treatment and 

location effects on seeds pod-1, which was most likely due to the fluctuation of pod number and 

seed number at each location (Table 1.6). For example, at Harrisburg, the GR-MNC14 applied 

separately from the herbicide tended to cause a 4.3 pod plant-1 increase with a concommitment 
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decrease in seed plant-1 (Table 1.6). Yield is a combination of pod number, seeds pod-1, and seed 

weight, so while applying GR-MNC14 separately from glyphosate tended to increase the pod 

number, the plants compensated by decreasing seed number pod-1. Mn applications did not have 

an effect on biomass at R1 (Table 1.6). 

 All manganese applications tended to decrease P2O5 and K2O accumulation at the R1 growth 

stage at DeKalb (Table 1.7). As expected, manganese applications usually increased Mn 

accumulation, with the amount of increase affected by the variety in Champaign and by the 

location. An evaluation of crop vigor and greenness at approximately seven days after each 

application showed that after two applications of manganese and glyphosate, plants had lower 

SPAD values when GR-MNC14 was applied separately from glyphosate at Harrisburg, and 

when GR-MNC14 was combined with glyphosate at DeKalb (Table 1.8).  

At Champaign, the GR-MNC14 applied separately from the herbicide significantly increased 

yield by 2.9 to 4 bushel acre-1 depending on variety (Table 1.9). At Harrisburg, there was no 

effect of any Mn treatment on yield; while at DeKalb all treatments numerically decreased yield, 

with the GR-MNC14 applied separately from the herbicide causing a significant yield decrease 

of 3.6 bushel acre-1 (Table 1.9). The yield increases at Champaign were primarily due to an 

increase in seed number (Table 1.9), with the shorter season variety (31A32) also exhibiting an 

increase in seed weight from GR-MNC14 either combined with or separated from the glyphosate 

(Table 1.9). In contrast to 2014, the impact from treatments on grain quality was minimal at all 

locations, although when a treatment increased yield, grain protein concentration tended to 

decrease (Table 1.9).  
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DISCUSSION 

 Although many growers and crop consultants believe that foliar Mn applications are helpful 

in alleviating glyphosate-induced “yellow flashing”, there are not many consistent results 

supporting this practice. There are, however, a number of published reports on the use of foliar 

(and soil-applied) Mn to increase Mn status and grain yield; although similar to our findings, the 

results of these studies are inconsistent. Results from a study evaluating Mn applications across 

nine locations in 2013 and seven locations in 2014 found variable responses to foliar Mn 

application with positive yet not significant responses occurring only 50% of the time (Bluck et 

al., 2015). Although manganese did not have an effect on yield in our study, yield increases have 

been seen in previous studies evaluating the effects of manganese in glyphosate resistant 

soybeans. Previous work by Gordon (2006) and Huber (2007) have shown that the application of 

supplemental Mn increased yield by 13 to 18 bushel acre-1 which are drastic increases compared 

to the findings in our study. Randall et al. (1975) evaluated broadcast, starter, and foliar 

applications of MnEDTA on soybean. In this study, they found that all methods of Mn 

application resulted in higher concentrations of Mn in the plant which is what we would have 

expected with each of the Mn products in our study; however, both sources did not consistently 

increase Mn accumulation at all locations.  

 

CONCLUSIONS 

Although no visual “yellowing flashing” occurred in 2014 or 2015, manganese tended to 

have a positive impact on yield components, nutrient uptake, plant greenness, and yield; 

however, results from the manganese treatments were fairly inconsistent and not always 
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significant. It is possible that plants did not experience manganese deficiency due to sufficient 

soil manganese levels as well as foliar manganese applications. 
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TABLES AND FIGURES 

 

Table 1.1. Treatments used for the evaluation of Mn and glyphosate interactions at 

Harrisburg, Champaign, and DeKalb, IL in 2014 and 2015. Treatment applications were 

made at both the V3 and V6 soybean growth stages. In 2014, a glyphosate rate of 48 fl oz 

acre-1 was applied through the use of Touchdown (Syngenta, Greensboro, NC) at both V3 

and V6. In 2015, a different glyphosate product was used (RoundUp Powermax; Monsanto, 

St. Louis, MO), and the rate was increased to 64 fl oz acre-1. 

Mn Treatment Mn Rate Mn Application† 

 pt acre-1 Timing 

Glyphosate Only 0 . 

Standard Mn 1.5 Applied with glyphosate 

GR-MNC14 1.5 Applied with glyphosate 

GR-MNC14 1.5 Glyphosate applied 24 hrs after GR-MNC14 

† A symbol of ‘.’ indicates the absence of that practice for the corresponding treatment.  
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Table 1.2.  Effect of Mn and glyphosate treatments on physiological yield components at the 

R5 growth stage and soybean biomass at the R1 growth stage in 2014 at three locations. 

Biomass is reported on a dry weight basis (0% moisture concentration). Glyphosate was 

applied at a rate of 48 fl oz acre-1, either combined with one of the two Mn sources or 

separated by 24 hours. Treatments were repeated at both the V3 and V6 stages. Values are the 

average of 6 replications. 

Treatment Pods Seeds Seed Pod-1 R1 Biomass 

 pods plant-1 seed plant-1 seed pod-1 lbs acre-1 

 Average Across Locations 

Glyphosate Only 47.4 120 2.5 3773 

Standard Mn-Combined 49.7 125 2.5 3814 

GR-MNC14-Combined 49.3 123 2.5 3743 

GR-MNC14-Separated 47.1 118 2.5 3790 

LSD (α=0.10)           NS NS           NS        NS 

     

 Harrisburg, IL 

Glyphosate Only 52.0 132 2.5 2983 

Standard Mn-Combined 52.3 133 2.5 3034 

GR-MNC14-Combined 50.5 131 2.6 3038 

GR-MNC14-Separated 50.3 129 2.6 3083 

LSD (α=0.10)           NS NS 0.1 NS 

     

 Champaign, IL 

Glyphosate Only 41.4 111 2.7 4859 

Standard Mn-Combined 47.0 123 2.6 4793 

GR-MNC14-Combined 47.1 122 2.6 4619 

GR-MNC14-Separated 41.3 112 2.7 4639 

LSD (α=0.10)           NS NS 0.1 NS 

     

 DeKalb, IL 

Glyphosate Only 48.9 117 2.4 3477 

Standard Mn-Combined 49.9 119 2.4 3615 

GR-MNC14-Combined 50.1 116 2.4 3572 

GR-MNC14-Separated 49.8 114 2.3 3649 

LSD (α=0.10)           NS NS 0.1 NS 

     

Source of Variation P > F 

Treatment (T) 0.4002 0.5563 0.8223 0.9266 

Location (L) 0.1616 0.1621 0.0541 <0.0001 

T x L 0.6467 0.9567 0.1900 0.7843 
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Table 1.3. Effect of Mn treatments on nutrient uptake at R1 of N, P, K, and Mn in 2014 at 

three locations. Glyphosate was applied at a rate of 48 fl oz acre-1, either combined with one 

of the two Mn sources or separated by 24 hours. Treatments were repeated at both the V3 

and V6 stages. Values are the average of 6 replications. 

Treatment N P2O5 K2O Mn 

 ----------------------------------------------------                 lbs acre-1 ----------------------------------------------------- oz acre-1 

 Average Across Locations 

Glyphosate Only 125.1 27.5 114.2 2.2 

Standard Mn-Combined 124.2 28.2 118.7 2.4 

GR-MNC14-Combined 133.2 28.5 113.2 2.5 

GR-MNC14-Separated 122.6 28.1 113.7 2.8 

LSD (α=0.10) NS NS NS 0.4 

     

 Harrisburg, IL 

Glyphosate Only 85.8 20.0 86.7 1.3 

Standard Mn-Combined 90.1 19.7 90.8 1.6 

GR-MNC14-Combined 101.3 20.6 90.7 1.7 

GR-MNC14-Separated 75.6 19.7 92.8 1.8 

LSD (α=0.10) NS NS NS           NS 

     

 Champaign, IL 

Glyphosate Only 178.4 38.9 148.3 3.2 

Standard Mn-Combined 158.6 38.2 156.9 2.9 

GR-MNC14-Combined 187.4 41.4 144.6 3.5 

GR-MNC14-Separated 173.5 39.4 138.9 3.8 

LSD (α=0.10) NS NS NS 0.6 

     

 DeKalb, IL 

Glyphosate Only 111.3 23.5 107.6 2.0 

Standard Mn-Combined 124.0 26.7 108.5 2.8 

GR-MNC14-Combined 110.8 23.5 104.2 2.4 

GR-MNC14-Separated 118.7 25.0 109.4 2.7 

LSD (α=0.10) NS NS NS 0.6 

     

Source of Variation P > F 

Treatment (T) 0.8228 0.9078 0.7374 0.0674 

Location (L) <0.0001 <0.0001 <0.0001 <0.0001 

T x L 0.7859 0.7174 0.7763 0.4587 
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Table 1.4.  Effect of Mn treatments on plant chlorophyll and vigor assessments in 2014 at 7 days 

after treatment application for three locations. The crop vigor measurements used a 1 to 10 scale 

with 1 being less vigorous and 10 being most vigorous. Glyphosate was applied at a rate of 48 fl 

oz acre-1, either combined with one of the two Mn sources or separated by 24 hours. Treatments 

were repeated at both the V3 and V6 stages. Values are the average of 6 replications. 

 Chlorophyll Vigor 

Treatment V3+7d V6+7d V3+7d V6+7d 

 SPAD relative units relative scale 

 Average Across Locations 

Glyphosate Only 30.6 30.6 8.8 9.5 

Standard Mn-Combined 31.1 31.9 8.4 9.4 

GR-MNC14-Combined 31.0 31.4 8.4 9.5 

GR-MNC14-Separated 30.4 30.7 8.6 9.5 

LSD (α=0.10) NS 0.8 NS NS 

     

 Harrisburg, IL 

Glyphosate Only 31.0 30.4 9.3 10.0 

Standard Mn-Combined 31.3 32.9 8.5 10.0 

GR-MNC14-Combined 30.7 33.0 8.5 10.0 

GR-MNC14-Separated 29.6 31.0 8.3 10.0 

LSD (α=0.10)         NS 1.2 0.8 NS 

     

 Champaign, IL 

Glyphosate Only 31.0 31.4 8.7 10.0 

Standard Mn-Combined 32.3 32.4 8.7 10.0 

GR-MNC14-Combined 31.8 30.4 8.8 10.0 

GR-MNC14-Separated 31.6 31.1 9.5 10.0 

LSD (α=0.10) NS          NS NS NS 

     

 DeKalb, IL 

Glyphosate Only 29.8 29.9 8.5 8.5 

Standard Mn-Combined 29.8 30.4 8.0 8.3 

GR-MNC14-Combined 30.3 30.7 8.0 8.5 

GR-MNC14-Separated 30.1 30.0 8.0 8.4 

LSD (α=0.10) NS          NS NS NS 

     

Source of Variation P > F 

Treatment (T) 0.3756 0.0197 0.3241 0.9268 

Location (L) 0.1230 0.0019 0.0749 <0.0001 

T x L 0.4008 0.0358 0.1957 0.9875 
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Table 1.5.  Effect of Mn treatments on grain yield, yield component, and grain quality in 2014.  

Grain yield is presented in bushel acre-1 at 13% moisture concentration and seed weight in mg seed at 

0% moisture concentration. Glyphosate was applied at a rate of 48 fl oz acre-1, either combined with 

one of the two Mn sources or separated by 24 hours. Treatments were repeated at both the V3 and V6 

stages. Values are the average of 6 replications. 

Treatment Yield Seed Weight Seed Number Protein Oil 

 bu acre-1 mg seed-1 seed m-2 ------------------------------------- % ----------------------------------- 

 Average Across Locations 
Glyphosate Only 71.8 173.0 2303 35.7 18.8 

Standard Mn-Combined 72.5 171.9 2361 35.6 19.0 

GR-MNC14-Combined 72.8 173.0 2358 35.4 19.0 

GR-MNC14-Separated 72.3 174.5 2327 35.6 18.8 

LSD (α=0.10)        NS          NS 53 0.1 0.1 

      

 Harrisburg, IL 

Glyphosate Only 66.1 156.2 2294 35.3 19.7 

Standard Mn-Combined 65.6 156.4 2351 35.3 19.7 

GR-MNC14-Combined 66.1 157.0 2356 35.0 19.9 

GR-MNC14-Separated 64.2 158.7 2261 35.2 19.7 

LSD (α=0.10)        NS          NS NS 0.2 0.1 

      

 Champaign, IL 

Glyphosate Only 78.3 196.0 2239 35.1 19.6 

Standard Mn-Combined 80.9 194.0 2332 34.8 19.8 

GR-MNC14-Combined 78.0 193.1 2258 34.8 19.8 

GR-MNC14-Separated 82.2 195.6 2349 34.9 19.7 

LSD (α=0.10)        NS          NS 91 0.2 0.1 

      

 DeKalb, IL 

Glyphosate Only 70.8 166.8 2374 36.6 17.1 

Standard Mn-Combined 71.0 165.2 2400 36.7 17.1 

GR-MNC14-Combined 74.3 168.8 2460 36.5 17.3 

GR-MNC14-Separated 70.6 169.1 2372 36.8 17.1 

LSD (α=0.10)        NS          NS NS 0.2 0.1 

      

Source of Variation P > F 

Treatment (T) 0.8593 0.3898 0.2284 0.0090 0.0145 

Location (L) <0.0001 <0.0001 0.0650 <0.0001 <0.0001 

T x L 0.1481 0.7669 0.1936 0.1271 0.3607 
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Table 1.6. Effect of Mn treatments on physiological yield components and soybean biomass at the 

R1 growth stage in 2015. Biomass is reported on a dry weight basis (0% moisture concentration). 

Glyphosate was applied at a rate of 64 fl oz acre-1, either combined with one of the two Mn 

sources or separated by 24 hours. Treatments were repeated at both the V3 and V6 stages. Values 

are the average of 6 replications. 

Treatment Pods Seeds Seed Pod-1 R1 Biomass 

 pods plant-1 seed plant-1 seed pod-1 lbs acre-1 

 Average Across Locations 

Glyphosate Only 42.9 109 2.5 4046 

Standard Mn-Combined 42.7 108 2.5 3924 

GR-MNC14-Combined 41.8 104 2.5 3954 

GR-MNC14-Separated 41.7 105 2.5 4017 

LSD (α=0.10)            NS           NS         NS        NS 

     

 Harrisburg, IL 

Glyphosate Only 47.5 131 2.7 4595 

Standard Mn-Combined 48.2 124 2.6       4437 

GR-MNC14-Combined 48.3 124 2.6 4701 

GR-MNC14-Separated 51.8 129 2.5 4601 

LSD (α=0.10) NS           NS 0.1 NS 

     

 Champaign, IL (39A42) 

Glyphosate Only 46.7 108 2.3 2974 

Standard Mn-Combined 46.9 116 2.4 3128 

GR-MNC14-Combined 44.1 104 2.3 2927 

GR-MNC14-Separated 44.8 111 2.5 3107 

LSD (α=0.10) NS           NS 0.1 NS 

     

 Champaign, IL (31A32) 

Glyphosate Only 44.8 115 2.5 2890 

Standard Mn-Combined 39.8 99 2.5 2891 

GR-MNC14-Combined 41.7 103 2.6 2665 

GR-MNC14-Separated 38.9 98 2.5 2838 

LSD (α=0.10) NS           NS 0.1 NS 

     

 DeKalb, IL 

Glyphosate Only 32.6 82 2.5 5725 

Standard Mn-Combined 36.2 95 2.6 5238 

GR-MNC14-Combined 32.9 82 2.5 5526 

GR-MNC14-Separated 31.2 83 2.7 5524 

LSD (α=0.10) NS           NS 0.1 NS 

     

Source of Variation P > F 

Treatment (T) 0.7993 0.4160 0.3922 0.7309 

Location (L)  <0.0001 0.0004 0.0014 <0.0001 

T x L 0.4250 0.2638 0.0007 0.7217 
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Table 1.7. Effect of Mn treatments on nutrient uptake at R1 of P, K, and Mn averaged 

across all locations in 2015. Glyphosate was applied at a rate of 64 fl oz acre-1, either 

combined with one of the two Mn sources or separated by 24 hours. Treatments were 

repeated at both the V3 and V6 stages. Values are the average of 6 replications. 

Treatment P2O5 K2O Mn 

 ---------------------------------         lbs acre-1 ------------------------------ oz acre-1 

 Average Across Locations 

Glyphosate Only 27.5 127.2 2.6 

Standard Mn-Combined 26.4 119.3 2.9 

GR-MNC14-Combined 24.6 117.6 2.8 

GR-MNC14-Separated 25.8 124.9 2.9 

LSD (α=0.10) 1.6 8.8 0.3 

    

 Harrisburg, IL 

Glyphosate Only 36.7 167.2 1.9 

Standard Mn-Combined 34.7 167.2 2.6 

GR-MNC14-Combined 34.3 166.1 2.6 

GR-MNC14-Separated 35.5 174.7 2.0 

LSD (α=0.10) NS NS           NS 

    

 Champaign, IL (39A42) 

Glyphosate Only 23.3 106.5 2.9 

Standard Mn-Combined 27.4 112.6 3.6 

GR-MNC14-Combined 21.6 102.4 3.5 

GR-MNC14-Separated 24.8 116.4 4.1 

LSD (α=0.10) 3.0 NS 0.5 

    

 Champaign, IL (31A32) 

Glyphosate Only 22.4 93.9 2.9 

Standard Mn-Combined 20.3 88.4 3.0 

GR-MNC14-Combined 20.4 93.0 3.0 

GR-MNC14-Separated 21.2 96.9 3.1 

LSD (α=0.10) NS NS  NS 

    

 DeKalb, IL 

Glyphosate Only 27.5 141.2 2.2 

Standard Mn-Combined 23.1 108.9 2.4 

GR-MNC14-Combined 21.9 108.8 2.2 

GR-MNC14-Separated 21.8 111.6 2.3 

LSD (α=0.10) 3.4 18.9           NS 

    

Source of Variation P > F 

Treatment (T) 0.0293 0.2272 0.1884 

Location (L) <0.0001 <0.0001 <0.0001 

T x L 0.0881 0.2579 0.1332 
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Table 1.8. Effect of Mn treatments on plant chlorophyll and vigor assessments in 2015. The crop 

vigor measurements were based off of a 1 to 10 scale with 1 being less vigorous and 10 being most 

vigorous. Glyphosate was applied at a rate of 64 fl oz acre-1, either combined with one of the two 

Mn sources or separated by 24 hours. Treatments were repeated at both the V3 and V6 stages. 

Values are the average of 6 replications. 

 Chlorophyll Vigor 

Treatment V3+7d V6+7d V3+7d V6+7d 

 relative units relative scale 

 Average Across Locations 
Glyphosate Only 36.1 40.3 10 10 

Standard Mn-Combined 36.8 40.8 10 10 

GR-MNC14-Combined 36.5 39.6 10 10 

GR-MNC14-Separated 36.6 39.8 10 10 

LSD (α=0.10)         NS NS  NS         NS 

 Harrisburg, IL 

Glyphosate Only 42.9 39.1 10 10 

Standard Mn-Combined 42.9 41.5 10 10 

GR-MNC14-Combined 42.5 39.1 10 10 

GR-MNC14-Separated 43.3 36.4 10 10 

LSD (α=0.10)          NS 1.5 NS NS 

 Champaign, IL (39A42) 

Glyphosate Only 32.4 37.7 10 10 

Standard Mn-Combined 32.6 37.2 10 10 

GR-MNC14-Combined 32.4 37.5 10 10 

GR-MNC14-Separated 32.7 37.7 10 10 

LSD (α=0.10)          NS NS NS NS 

 Champaign, IL (31A32) 

Glyphosate Only 36.1 39.8 10 10 

Standard Mn-Combined 38.4 40.2 10 10 

GR-MNC14-Combined 38.2 39.6 10 10 

GR-MNC14-Separated 37.0 40.2 10 10 

LSD (α=0.10)          NS   NS  NS         NS 

 DeKalb, IL 

Glyphosate Only 33.2 44.7 10 10 

Standard Mn-Combined 33.2 44.3 10 10 

GR-MNC14-Combined 33.0 42.4 10 10 

GR-MNC14-Separated 33.4 44.8 10 10 

LSD (α=0.10)          NS 1.5 NS NS 

     

Source of Variation P > F 

Treatment (T) 0.3742 0.0244 1.0 1.0 

Location (L) <0.0001 <0.0001 1.0 1.0 

T x L 0.2014 0.0005 1.0 1.0 
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Table 1.9.  Effect of Mn treatments on grain yield, yield component, and grain quality in 2015 season.  

Grain yield is presented in bushel acre-1 at 13% moisture concentration and seed weight in mg seed at 0% 

moisture concentration. Glyphosate was applied at a rate of 64 fl oz acre-1, either combined with one of the 

two Mn sources or separated by 24 hours. Treatments were repeated at both the V3 and V6 stages. Values 

are the average of 6 replications. 

Treatment Yield Seed Weight Seed Number Protein Oil 

 bu acre-1 mg seed-1 seed m-2 ---------------------------------- % -------------------------------- 

 Average Across Locations 
Glyphosate Only 63.8 137.0 2934 34.7 18.9 

Standard Mn-Combined 64.0 136.4 2954 34.6 19.0 

GR-MNC14-Combined 64.4 136.3 2970 34.7 19.0 

GR-MNC14-Separated 64.6 138.7 2917 34.6 19.0 

LSD (α=0.10)         NS 1.4 NS        NS        NS 

      

 Harrisburg, IL 

Glyphosate Only 74.1 125.4 3563 34.5 20.1 

Standard Mn-Combined 75.4 126.7 3608 34.4 20.1 

GR-MNC14-Combined 74.7 125.8 3592 34.6 20.1 

GR-MNC14-Separated 73.7 133.2 3352 34.9 20.0 

LSD (α=0.10)         NS 3.2 139 0.3        NS 

      

 Champaign, IL (39A42) 

Glyphosate Only 60.7 145.4 2703 35.5 18.6 

Standard Mn-Combined 61.6 144.3 2762 35.3 18.7 

GR-MNC14-Combined 61.8 143.6 2779 35.4 18.7 

GR-MNC14-Separated 63.6 145.0 2835 35.1 18.8 

LSD (α=0.10) 2.8         NS 111 0.3        NS 

      

 Champaign, IL (31A32) 
Glyphosate Only 64.4 140.1 2803 34.2 19.1 

Standard Mn-Combined 64.5 140.7 2797 34.2 19.1 

GR-MNC14-Combined 65.9 141.5 2838 34.4 19.1 

GR-MNC14-Separated 68.4 141.1 2951 34.1 19.2 

LSD (α=0.10) 2.8 2.5 111        NS        NS 

      

 DeKalb, IL 

Glyphosate Only 56.2 137.3 2666 34.6 17.9 

Standard Mn-Combined 54.6 134.2 2649 34.7 18.1 

GR-MNC14-Combined 55.1 134.4 2671 34.5 18.1 

GR-MNC14-Separated 52.6 135.6 2532 34.4 18.0 

LSD (α=0.10) 3.2 2.9 129 0.3 0.1 

      

Source of Variation P > F 
Treatment (T) 0.8537 0.0224 0.5075 0.6394 0.4178 

Location (L) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

T x L 0.1829 0.0211 0.0067 0.0216 0.0138 
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CHAPTER 2: CAN SOYBEAN YIELD BE INCREASED BY INDUCING BRANCHING? 

 

 

ABSTRACT 

 

Soybean [Glycine max (L.) Merr.] plants are known for the ability to compensate for stresses 

such as hail damage, wildlife feeding, etc. through branching. The soybean’s ability to branch is 

based on the plant’s growth structure. Soybean plants have a single axillary bud at each node of 

the main stem where the trifoliate leaves are attached (i.e., where the leaf petiole is attached to 

the stem) and two axillary buds where the unifoliate leaves and the cotyledons are attached at the 

base of the plant. Dormancy occurs when the stem apex exhibits apical dominance and 

suppresses the transformation of axillary buds into branches or flowers. By removing the apical 

meristem, the axillary buds are released from apical dominance and can develop into new stems 

or branches. The goal of this research was to test that stress or removal of the apical meristem 

will promote branching or new stem development of soybean plants, effectively doubling the 

number of main branches, and as a result, the number of pods per plant and the final seed yield. 

Branching treatments consisted of a Cobra (2-ethoxy-1-methyl-2-oxoethyl-5-[2-chloro-4-

(trifluoromethyl)-phenoxy]-2-nitrobenzoate) herbicide application (12.5 oz acre-1), and low 

(leaving the unifoliate leaves) and high (leaving the first trifoliate leaf) levels of plant 

decapitation; achieved by hand cutting. Plant population (80,000 vs. 160,000 plant acre-1) was 

also included as a treatment as soybean tends to compensate for lower population through 

increased branching. By stressing the soybean plant with branching treatments, yield was 

significantly reduced by 5 to 22 bushel acre-1  with greater penalties occurring at the lower plant 

population (80,000 plants per acre). Results show the importance of reducing stress to the 

soybean plant in early season vegetative stages.  
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INTRODUCTION 

 

 Apical dominance is a common occurrence in soybean. Axillary buds of the soybean plant 

can develop into a branch, flower, or remain dormant (Pedersen, 2009). The development of 

axillary buds is dependent on the production and translocation of indole-acetic acid (IAA) 

produced in the apical meristem of the plant. Phytohormones including cytokinins, gibberellic 

acid, and benzyladenine are known to break apical dominance. Inhibited axillary buds can also 

resume growth after loss of the apical meristem (Sorokin and Thimann, 1964; Ali and Fletcher, 

1971). When apical dominance is released, branch development in soybean commonly occurs at 

the cotyledonary node before V2 and the unifoliate node after V2 (Ali and Fletcher, 1970). 

Practices such as mowing, rolling, and herbicide application have been used on soybean in 

order to kill the apical meristem of the plant and as a result promote branching. Practices to 

promote branching became more popular due to its success in soybean yield contests where the 

use of the herbicide Cobra (Valent, Walnut Creek, CA) has become a common practice in 

attempts to increase soybean yields. Cobra is a protoporphyrinogen oxidase (PPO) inhibitor 

herbicide that, when applied to soybean, will kill the apical meristem of the soybean plant 

(Silverman et al., 2004). Cobra is a herbicide that causes damage to plant tissues on contact 

(Gunsolus and Curran, 2007). Injury is typically seen as bronzing of plant tissues leading to 

chlorosis followed by necrosis (Harris et al., 1991; Wichert and Talbert, 1993). This injury 

makes the herbicide effective at killing the apical meristem of soybean.   

 The soybean canopy can be divided into four canopy subsections: bottom (nodes 1 to 7), 

middle (nodes 8 to 14), top (nodes 15+), and branches (all pods derived from branches). While 

relieving apical dominance increases branching in soybean, soybean branches only contribute 

about 17.8% of yield, showing that yield is largely dependent on the main stem (82.2%) (Bender, 
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2015). Throughout the main stem, the soybean canopy varies in pod distribution with the 

majority of pods in the middle subsection (52%). Of the remaining pods, 14.3% come from the 

bottom subsection and 15.9% from the top (Bender, 2015). Since the main stem produces most 

of the yield in soybean, a primary focus for yield improvement is to increase the number of main 

stems rather than branches.   

 A typical soybean plant consists of one main stem with branches developing from the 

cotyledonary or unifoliate nodes. However, at these cotyledonary and unifoliate nodes the 

soybean plant has two opposite axillary buds that have the potential to develop into stems 

making it possible for the soybean plant to produce two main stems if the apical bud is damaged 

(Pederson, 2009). As the plant develops trifoliate nodes, axillary buds become alternate which 

would suggest that the plant would resume growth with one main stem. Because soybean plants 

can readily branch, they can overcome early stress by to the growth of these axillary buds.  

 Plant population is known to have a large effect on the branching of soybean. Research 

looking at effects of population on branching suggests that higher plant populations cause 

shading which reduces photosynthesis, ultimately resulting in a shortage of carbon that could be 

used for the production of branches (Acock and Acock, 1987). Work by Carpenter and Board 

(1997) found that at lower plant populations, branch pods accounted for 75-87% of the total 

yield, and branch dry matter increased by 162% when populations were decreased. When plant 

populations were increased, dry matter production per plant decreased by reducing the number of 

branches on the main stem (Enyi, 1973).  

 The goal of this research was to determine if soybean yield can be increased through 

manipulating the soybean plant’s ability to branch. Branching was induced through the 
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application of the herbicide Cobra, as well as decapitation back to the unifoliate or first trifoliate 

nodes. 

 

MATERIALS AND METHODS 

Experimental design and site characteristic 

The experiment was implemented in 2015 at Champaign, IL. This location has been 

maintained weed- and disease-free, is level and well-drained, and well-suited to provide evenly 

distributed soil fertility, pH, soil organic matter, and water availability (Drummer-Flanagan silt 

loam, 4.0% organic matter; 21.0 meq/100g CEC, 6.4 pH, 45 ppm P, 179 ppm K, 44 ppm Mn). 

Plots were four rows wide and 16 ft. in length with 30-inch row spacing. Plots were planted with 

a Croplan R2C3783 soybean variety on 23 May. Corn was the previous crop and conventional 

tillage was used. Treatments were arranged using an RCBD with six replications. Two 

populations of 80,000 and 160,000 plants acre-1 were evaluated. Soybean plants were induced to 

branch by cutting plants by hand or by spraying with Cobra (Valent, Walnut Creek, CA)  at a 

rate of 12.5 fl oz on 21 June (V3 growth stage) (Table 2.1). To generate the low decapitation 

treatment, plants were cut directly above the unifoliate leaves, while the high decapitation 

treatment cut the stems above the first trifoliate. All plots received an application of fungicide 

and insecticide (Priaxor and Fastac; BASF, Raleigh, NC) at R3 on 20 July at labeled rates with a 

commercial spray applicator. 

Measurements 

At R6, five representative plants per plot were selected for yield component assessments. In 

addition to total pods and beans, branches per plant were enumerated as well as the positioning 

of the pods and beans on the main stem vs. the branches.   
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The center two rows of each plot were mechanically harvested at physiological maturity (27 

October) for determination of grain yield. Subsamples of harvested grain were analyzed for grain 

quality (protein and oil) by NIT using a Foss Infratec 1241 grain analyzer (Eden Prairie, MN). 

Subsamples of harvested grain were further evaluated to determine yield components (individual 

seed weight and seed number) for each plot as described in Chapter 1. 

Statistical Analysis 

Data were analyzed in PROC MIXED with treatment and population in the model set as 

fixed effects and replication as a random effect using SAS software. PROC UNIVARIATE was 

used to assess normality of the residuals and for removal of outliers. LSD values were 

determined using the PDIFF macro using α=0.10 probability level. 

 

RESULTS AND DISCUSSION 

 

Weather Conditions 

With below-average temperatures and above-average precipitation throughout much of the 

2015 growing season, the crop experienced little weather-induced heat or moisture stress (Figure 

2.1). Alternatively, the cool, wet conditions following implementation of the treatments 

potentially impeded the regrowth and branching response, as the ideal daytime temperature for 

soybean is 85oF (Figure 2.1).  

Branching, yield components, grain yield, and seed quality 

 

Decapitation treatments were successful in creating new growth from axillary buds; with 

100% of low decapitation resulting in two main stems that developed from the remaining 

opposite axillary buds, and the first trifoliate (high decapitation) resumed growth with one main 

stem from the alternating node at the first trifoliate (Figure 2.2). The Cobra treatment resulted in 
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burning of the young leaves at V3 as was seen by Gunsolus and Curran (2007) (Figure 2.2). 

Contrary to our expectations, plants that received a decapitation treatment had fewer branches 

than the control or Cobra treatment (Table 2.2). With less interplant competition at 80,000 plants 

acre-1, branch number per plant increased (+ 50 to 67%) compared to the higher population 

(Table 2.2) which was similar to reports published by Enyi (1973) and Carpenter and Board 

(1997). The decreased population greatly increased the total amount of pods by 47%, 48%, 36%, 

and 45% and total beans by 51%, 48%, 34%, and 48% for the control, Cobra, low, and high 

decapitation treatments, respectively (Table 2.2). Previously, Gregg et al. (2015) found that when 

Cobra was applied to soybean, branch pods and branch beans were not affected. Although the 

Cobra treatment did not alter branching, pods, or beans per plant, both decapitation treatments 

caused a decrease in pods and beans per plant when compared to the control (Table 2.2). 

Contrary to these findings, Orlowski (2015) found that when plants were treated with Cobra, or 

when the apical meristem was removed, the total number of pods per plant did not differ from 

the control. While neither the Cobra nor the decapitation treatments affected beans pod-1 (Table 

2.2), the low decapitation at the low population decreased the number of branches, pods, and 

beans per plant (Table 2.2). Although not significant, all branching treatments at the higher 

population tended to decrease beans pod-1 (Table 2.2).  

Similar to the control, the Cobra treatment tended to result in more pods and beans on the 

branches than the decapitation treatments (Table 2.3) which is most likely due to the decapitation 

treatments developing fewer branches for pods and beans to develop on than the control and 

Cobra treatments (Table 2.2). On the other hand, the decapitation treatments resulted in more 

pods and beans on the main stem of the plant than the control or Cobra- treated plants (Table 

2.3). Alternatively, Orlowski (2105) found that Cobra applications increased the production of 



31 

 

pods and beans on the main stem of the plant. When plants were grown at 50% of the high 

population (a reduction from 160,000 to 80,000 plants acre-1), pod number per main stem 

increased by 19% for the control, 29% from Cobra, and 33% and 23% from the low and high 

decapitation treatments, with a corresponding increase in main stem beans of 19%, 29%, 31%, 

and 24%, respectively (Table 2.3).  

Unfortunately, interfering with the natural growth of the soybean plant (Cobra application, 

low decapitation, and high decapitation) significantly reduced grain yields, by 5 to 23 bushel 

acre-1 (Table 2.4). The control treatment of the higher population resulted in a 7 bushel acre-1 

increase in yield over the lower population which was associated with more seeds per land area 

and similar individual seed weight (Table 2.4). These results for early season Cobra application 

contradict the results found by Harris et al., 1991; Wichert and Talbert, 1993; Nelson et al., 

2002; and Gregg et al., 2015 who reported that there were no yield differences between Cobra 

treated plants and non- Cobra treated plants. For the cutting treatments (low and high 

decapitation), yield was most likely decreased due to the reduction in beans produced by the 

plant (Table 2.4). At the lower population, the Cobra treatment caused a significant decrease in 

seed weight; however, seed number was comparable to that of the control (Table 2.4), possibly 

due to less overall plant damage with this technique. Population did not affect bean quality, and 

there was no interaction of population and bean quality. However, the cutting treatments resulted 

in higher protein concentration and lower oil concentration regardless of population, Table 2.4, 

which was also found by Orlowski (2015).  

 

CONCLUSIONS 

 

The goal of this research was to determine whether damage or removal of the apical 

meristem could promote branching or additional stem development of soybean plants. 
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Treatments were successful at removing the apical meristem; however, these treatments did not 

increase branch number when compared to the control. Additional stem development occurred in 

low decapitation treatments with 100% of the plants resulting in two main stems. All branching 

treatments resulted in a significant decrease in soybean yield. The lower plant population did 

cause plants to increase branch production; however, this branching was insufficient to result in 

yield increases. This study shows that damage to the apical meristems of soybean plants is 

potentially harmful and should not be used to increase yield in soybeans. 
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TABLES AND FIGURES 

 

Table 2.1. Treatments designed to alter soybean branching at 

Champaign, IL in 2015. 

Branching Treatment  Plant Population 

 Plants acre-1 

Control 80,000 

Cobra† 80,000 

Low Decapitation 80,000 

High Decapitation 80,000 

Control 160,000 

Cobra† 160,000 

Low Decapitation 160,000 

High Decapitation 160,000 

† Applied at 12.5 fl oz acre-1 

All treatments were made at V3 growth stage. 

Low decapitation consists of leaving only the unifoliate leaves on the plant. 

High decapitation consists of leaving one trifoliate on the plant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 

 

Table 2.2. Effect of branching treatments at V3 on branching and physiological yield components 

(pods, beans, and beans pod-1) at two planting rates at Champaign, IL in 2015. Treatment and 

population were included in the ANOVA model as fixed effects and replication was added as a random 

effect. 

Treatment Main Stems Branches Total Pods Total Beans Beans Pod-1 

 stems plant-1 branches plant-1   pods plant-1 beans plant-1 beans pod-1 

      

 80,000 Plants Acre-1 
Control 1.0 4.0 81.6 224.4 2.8 

Cobra 1.0 4.0 76.4 211.3 2.8 

Low Decapitation 2.0 1.0 61.8 163.1 2.6 

High Decapitation 1.0 3.0 72.5 200.7 2.8 

LSD (α=0.10)           0.1 0.5 7.6 17.4        NS 

      

 160,000 Plants Acre-1 
Control 1.0 2.0 43.0 110.4 2.8 

Cobra 1.0 2.0 39.7 110.1 2.7 

Low Decapitation 2.0 0.0 39.3 107.1 2.7 

High Decapitation 1.0 1.0 39.8 104.7 2.7 

LSD (α=0.10) 0.1 0.5          NS       NS        NS 

      

 Average of Populations 
Control 1.0 3.0 62.3 167.4 2.8 

Cobra 1.0 3.0 58.0 160.7 2.7 

Low Decapitation 2.0 1.0 50.5 135.1 2.7 

High Decapitation 1.0 2.0 56.2 152.7 2.8 

LSD (α=0.10)           0.1 0.4 5.4 12.3  NS 

      

Source of Variation P > F 

Treatment (T) <.0001 <.0001 0.0071 0.0006 0.2959 

Population (P) 0.5559 <.0001 <.0001 <.0001 0.7131 

T x P 0.7868 0.0508 0.0697 0.0023 0.5488 
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Table 2.3. Effect of branching treatments at V3 on physiological yield determinants per 

main stem vs. branches at two planting rates at Champaign, IL in 2015. Treatment and 

population were included in the ANOVA model as fixed effects and replication was 

added as a random effect. 

 Main stem Branches 

Treatment Pods Beans Pods Beans 

 pods stem-1 beans stem-1 pods branch-1 beans branch-1 

     

 80,000 Plants Acre-1 
Control 35.9 98.9 40.5 112.4 

Cobra 40.3 110.9 41.3 113.6 

Low Decapitation 57.6 152.2 4.2 10.9 

High Decapitation 43.6 120.3 28.9 80.4 

LSD (α=0.10) 4.6 10.5 6.4 13.6 

     

 160,000 Plants Acre-1 
Control 29.0 79.7 9.2 30.4 

Cobra 28.6 78.3 10.6 32.0 

Low Decapitation 38.7 105.7 0.5 1.4 

High Decapitation 33.4 91.3 6.3 13.4 

LSD (α=0.10) 4.6 10.5 7.5 13.6 

     

 Average of Populations 
Control 34.5 89.3 25.6 71.4 

Cobra 32.5 94.6 25.3 72.8 

Low Decapitation 48.2 129.0 2.4 6.1 

High Decapitation 38.5 105.8 17.6 46.9 

LSD (α=0.10) 3.2 7.4 4.9 9.6 

     

Source of Variation P > F 

Treatment (T) <.0001 <.0001 0.0043 <.0001 

Population (P) <.0001 <.0001 0.0008 <.0001 

T x P 0.0263 0.0318 0.0194 <.0001 
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Table 2.4. Effect of branching treatments at V3 grain yield, yield component, and grain 

quality at two planting rates at Champaign, IL in 2015. Grain yield is presented in bushel acre-

1 at 13% moisture concentration and seed weight in mg seed at 0% moisture concentration. 

Treatment and population were included in the ANOVA model as fixed effects and replication 

was added as a random effect. 

Treatment Yield Bean Weight Bean Number Protein Oil 

 bu acre-1 mg bean-1 bean m-2 -----   ------------------------ % -------------------------- 

      

 80,000 Plants Acre-1 
Control 81.0 129.0 3675 33.0 19.6 

Cobra 75.4 124.0 3563 33.3 19.6 

Low Decapitation 58.3 136.2 2506 35.2 18.8 

High Decapitation 72.4 130.0 3265 34.3 19.2 

LSD (α=0.10) 3.7 2.9 187 0.3 0.2 

      

 160,000 Plants Acre-1 
Control 88.3 129.8 3990 33.1 19.5 

Cobra 83.9 127.3 3861 33.3 19.5 

Low Decapitation 70.3 133.1 3095 34.9 18.8 

High Decapitation 83.2 135.6 3593 34.3 19.1 

LSD (α=0.10) 3.6 2.9 187 0.3 0.2 

      

 Average of Populations 
Control 84.7 129.4 3833 33.1 19.6 

Cobra 79.7 125.6 3712 33.3 19.5 

Low Decapitation 64.3 134.6 2801 35.1 18.8 

High Decapitation 77.8 132.7 3429 34.3 19.2 

LSD (α=0.10) 2.6 2.1 132 0.2 0.1 

      

Source of Variation P > F 

Treatment (T) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Population (P) <0.0001 0.0658 <0.0001 0.5601 0.2444 

T x P 0.4403 0.0078 0.2182 0.3220 0.6677 
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Figure 2.1. Maximum and minimum temperatures (οF), average high and low temperatures, and 

daily precipitation (inch) at Champaign, IL in 2015.  
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