
c© 2016 Johnathan Alsop

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158313673?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

GSI: A GPU STALL INSPECTOR TO CHARACTERIZE THE
SOURCES OF MEMORY STALLS FOR TIGHTLY COUPLED GPUS

BY

JOHNATHAN ALSOP

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Adviser:

Professor Sarita Adve

ABSTRACT

In recent years the power wall has prevented the continued scaling of single

core performance. This has led to the rise of dark silicon and motivated

a move toward parallelism and specialization. As a result, energy-efficient

high-throughput GPU cores are increasingly favored for accelerating data-

parallel applications. However, the best way to efficiently communicate and

synchronize across heterogeneous cores remains an important open research

question. Many methods have been proposed to improve the efficiency of

heterogeneous memory systems, but current methods for evaluating the per-

formance effects of these innovations are limited in their ability to attribute

differences in execution time to sources of latency in the memory system.

Performance characterization of tightly coupled CPU-GPU systems is com-

plicated by the high levels of parallelism present in GPU codes. Existing

simulation tools provide only coarse-grained metrics which can obscure the

underlying memory system interactions that cause performance differences.

In this thesis we introduce GPU Stall Inspector (GSI), a method for iden-

tifying and visualizing the causes of GPU stalls with a focus on a tightly

coupled CPU-GPU memory subsystem. We demonstrate the utility of our

approach by evaluating the sources of stalls in several recent architectural

innovations for tightly coupled, heterogeneous CPU-GPU systems.

ii

To Rory

iii

ACKNOWLEDGMENTS

This work was supported in part by the Center for Future Architectures

Research (C-FAR), one of the six centers of STARnet, a Semiconductor Re-

search Corporation program sponsored by MARCO and DARPA, and the

National Science Foundation under grants CCF-1018796 and CCF-1302641.

I’d like to thank my advisor, Professor Sarita Adve, for her dedicated

guidance, motivation, and support. I’d also like to thank the members of my

group for their help and friendship, especially Matt Sinclair for his continued

mentorship. I’d like to thank all of my teachers and professors who have

instructed and inspired me throughout my life, especially Mikko Lipasti of the

University of Wisconsin, who helped spark my interest in computer systems.

I’d like to thank my family for their constant love and encouragement, and

for supporting me in everything I do. I’d like to thank my friends for helping

me stay balanced and being an incredible source of joy in my life. Finally,

I’d like to thank my wife Rory for loving me, supporting me, and putting me

in my place when necessary.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND: GPU EXECUTION 3

CHAPTER 3 RELATED WORK . 4

CHAPTER 4 STALL CLASSIFICATION 5
4.1 Classifying Causes of Instruction Stalls 5
4.2 Attributing Stalls to Cycles 6
4.3 Sub-Classifying Memory Data Stalls 7
4.4 Sub-Classifying Memory Structural Stalls 8

CHAPTER 5 METHODOLOGY . 10

CHAPTER 6 CASE STUDIES . 12
6.1 DeNovo vs. GPU Coherence 12
6.2 Stash vs. Scratchpad+DMA 18

CHAPTER 7 CONCLUSION . 25

REFERENCES . 26

v

CHAPTER 1

INTRODUCTION

As power and energy constraints limit further scaling of single core perfor-

mance, chip designers have turned to parallelism and heterogeneity to deliver

further improvements in performance and efficiency. In particular, GPUs are

increasingly used alongside CPUs to accelerate applications.

However, modern GPU architectures limit the types of applications that

can be efficiently accelerated. Most GPUs are located on a discrete chip

and have a separate memory space, so applications with frequent synchro-

nization or irregular data access cannot be efficiently accelerated. Recently,

CPU-GPU systems are becoming increasingly tightly coupled [1, 2, 3, 4].

This shift enables GPU acceleration for an ever broader class of parallel ap-

plications, but conventional GPU memory systems do not provide efficient

support for them. Therefore, performance simulation of emerging parallel

applications is important for empirically evaluating innovations in a tightly

coupled heterogeneous memory system.

Cycle-accurate simulation tools such as GPGPU-Sim [5] and gem5-gpu [6]

are used today for evaluating CPU-GPU system performance. These sim-

ulation frameworks provide useful metrics such as execution time, network

traffic, and energy consumed, but the massive parallelism of GPU cores makes

it difficult to understand subtle changes to the memory system using only

these coarse-grained measurements. When comparing the execution times

of different memory system configurations, it can be difficult to determine

whether an unexpected result is due to faulty assumptions about the impact

of a change, the manifestation of an unexpected system effect, or a bug in

the simulator.

A stall breakdown is a helpful tool for obtaining a detailed understanding of

execution time results. Past work has instrumented GPGPU-Sim to output a

breakdown to help understand changes to the warp scheduler [7] and to help

understand how irregular kernels perform on GPU cores [8]. These profilers

1

are applied only to discrete GPUs and have a very basic classification of

memory stalls. In a tightly coupled CPU-GPU system there can be multiple

possible reasons for a memory stall. A thread may stall because the data it

is working on does not fit in the cache and loads must always access lower

levels of the memory hierarchy, because the MSHR is full due to excessive

memory traffic, or because it has reached a memory barrier and is waiting for

previous memory operations to complete, among other reasons. Changes to

the memory system can reduce some types of stalls while increasing others,

leading to confusing results without additional information.

To analyze the tradeoffs of different memory configurations in a tightly

coupled heterogeneous system, we created GPU Stall Inspector (GSI). GSI

is a GPU stall attribution tool for an integrated CPU-GPU simulator that

enables a more detailed classification of memory stalls than existing methods

currently provide. To demonstrate the power of our tool, we use it to analyze

the sources of performance differences for two recent innovations to hetero-

geneous memory systems. First, we compare a hybrid, hardware-software

coherence protocol for GPUs [9] to a conventional modern GPU coherence

protocol. Next, we compare conventional scratchpad memories with two ap-

proaches that improve the performance of scratchpads [10, 11]. By analyzing

the results of GSI and identifying the sources of memory stalls, we obtain

a deeper understanding of the effects of these architectural innovations and

motivate further changes to hardware and software.

Material in this thesis appears originally in the Proceedings of the 2016

IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS)[12].

2

CHAPTER 2

BACKGROUND: GPU EXECUTION

Without loss of generality, we use CUDA [13] terminology when describing

GPUs. GPUs consist of multiple compute units called streaming multipro-

cessors (SMs) which are designed to efficiently execute thousands of concur-

rent threads by exploiting SIMD and SIMT parallelism. When a kernel is

launched to a GPU, a scheduler begins assigning the specified number of

threads to the SMs. The threads of a kernel are divided hierarchically into a

grid of thread blocks, and thread blocks are further subdivided into warps.

Thread block size defines SM scheduling granularity. All threads in a thread

block are scheduled on the same SM and occupy that SM until they com-

plete. Warps define pipeline scheduling granularity. All threads in a warp

are issued and progress through the pipeline together.

The issue stage of an SM may consider only one instruction from each

warp at any time. If the next instruction to be issued in a warp cannot issue

because of a data or structural dependency, then the entire warp is blocked.

An application with many long-latency memory or compute instructions can

therefore experience reduced SM utilization and increased execution time.

Similarly, an application that uses an execution unit in a bursty manner may

incur underutilization and delay because many warps will be blocked waiting

for a single hardware resource.

The warp scheduler may consider multiple warps in each cycle, and it may

be able to issue an instruction from multiple warps in each cycle depending

on the number of issue slots it has. The ability of GPUs to hide sources

of delay with parallelism makes it very difficult to precisely understand the

performance effects of application or architectural changes in a GPU.

3

CHAPTER 3

RELATED WORK

There have been previous efforts to provide more detailed performance profil-

ing metrics. GPGPU-Sim is a cycle-accurate GPU simulator that can be used

to model the effects of architectural changes to a GPU device [5]. It provides

many simulation evaluation metrics including overall performance and stall

counts, but not a stall breakdown. Aerialvision [14] augments GPGPU-Sim

to provide more detailed measurements such as the number of cycles spent

in the core pipeline by each thread, the number of DRAM accesses gener-

ated by each instruction, and the number of stall cycles due to long-latency

off-chip read requests. However, it lacks a single comprehensive breakdown

attributing execution latency to fine-grained stall causes.

O’Neil and Burtscher [8] use a stall classification method, also based on

GPGPU-Sim, to help understand the performance of irregular GPU ker-

nels. Their breakdown, however, does not differentiate between stalls due

to memory or compute delays. Lee and Wu [7] also use a similar GPU stall

classification method based on GPGPU-Sim which is designed to character-

ize the latency-hiding capability of GPU warp schedulers. It provides a more

detailed stall breakdown and adds a memory latency stall type, but is focused

on warp scheduler changes.

While this prior work also provides profiling information about GPUs,

unlike GSI, they are all designed for discrete GPUs. Furthermore, they focus

on profiling the GPU core, while we are capturing detailed information about

the causes of memory stalls in a unified CPU-GPU memory system.

4

CHAPTER 4

STALL CLASSIFICATION

Understanding causes of GPU latency is complicated by the massive paral-

lelism present in GPUs. In each cycle, a GPU may issue one instruction per

issue slot from its warps. We define a stall cycle as any cycle in which no

warp instructions are issued by an SM. In Section 4.1 we describe the various

stall types that may prevent a warp instruction from issuing. Although this

work focuses on memory system stalls, we define and discuss the implications

of all stall types to provide a full picture.

In each stall cycle there may be multiple different warp instructions that

are stalled for multiple different reasons. In Section 4.2 we describe how a

single stall type is chosen from among these stall causes and attributed to

each stall cycle. Finally, since we are most interested in memory stalls, in

Sections 4.3 and 4.4 we subclassify memory stalls further based on their

underlying causes.

4.1 Classifying Causes of Instruction Stalls

When an instruction can be issued in a cycle, the cycle is classified as no

stall.

An idle stall occurs when there are no active warps available to issue

instructions. A large number of idle stalls indicates that the kernel is not

fully utilizing the GPU because some SMs simply have no work to do. This

may be because the thread blocks are not evenly distributed across SMs or

because thread block execution time is highly variable.

A control stall occurs when the instruction supplied by the instruction

buffer is not the next instruction to be executed in a warp. If control stalls

dominate, there is significant divergence in the kernel code.

A synchronization stall occurs when a warp is blocked due to a pending

synchronization operation (acquire, release, or thread barrier). GPUs use

5

acquire and release operations to preserve memory consistency and thread

barriers to synchronize threads in a thread block. Acquire and release oper-

ations block a warp until one or more previous memory accesses have com-

pleted. A thread barrier blocks a warp until all other threads in the thread

block have reached the barrier.

A memory data stall occurs when an instruction cannot issue because

it is dependent on the output of a pending load. Section 4.3 provides more

details on the different subcategories of memory data stalls.

A memory structural stall occurs when a memory instruction is unable

to issue to the load/store unit because it is full. There are multiple sources

of memory structural stalls, which we describe in more detail in Section 4.4.

A compute data stall occurs when an instruction cannot issue because it

is dependent on the output of a pending compute (non-memory) instruction.

A compute structural stall occurs when a compute instruction cannot

issue because the appropriate compute unit is occupied.

4.2 Attributing Stalls to Cycles

GSI stall cycle attribution proceeds in two stages. First, a single stall type

is assigned to each warp instruction considered in the issue stage. When

classifying the stall cause assigned to an individual warp instruction, pri-

ority is given to the stall cause that is most strongly preventing execution.

Intuitively, the strength of a stall cause is linked to the likelihood that the

instruction will remain stalled in the next cycle. This is not always straight-

forward to define, and should be tailored to the profiling goals. We specify

our prioritization in Algorithm 1.

After each instruction considered in the issue stage has been classified, the

issue cycle itself is classified based on the stall causes of the individual warp

instructions. The prioritization we use to classify cycle stall causes is defined

in Algorithm 2. Generally, the cycle stall classification is set to match the

weakest stall cause found. Intuitively, this is the stall cause of the instruction

that was closest to issuing. Since we know it was the strongest stall cause for

that instruction, removing that stall cause will likely improve performance.

However, removing the stall cause may not cause a proportional reduction in

the stall count for the removed stall type. A single stalled instruction can be

blamed for many stall cycles even if all other instructions are unable to issue

6

Algorithm 1 Instruction Stall Classification

if No active warps to consider then
classify idle stall

else if The next instruction to issue is unavailable then
classify control stall

else if Warp is blocked for a synchronization then
classify synchronization stall

else if Instruction has a data hazard on a pending load then
classify memory data stall

else if Instruction has a structural hazard on load/store unit then
classify memory structural stall

else if Instruction has a data hazard on a pending compute operation
then

classify compute data stall
else if Instruction has a structural hazard on a compute unit then

classify compute structural stall
else if Instruction is able to issue then

classify no stall
end if

for unrelated reasons. Thus, removing the original stall cause and allowing

this instruction to issue could simply cause other stall types to dominate.

The “weak” cycle stall classification priority described in Algorithm 2 is

not an exact inversion of the “strong” instruction stall classification priority.

Memory stalls and synchronization stalls are prioritized over compute stalls

in both classification algorithms because we are interested in analyzing the

effects of changes to the memory system.

4.3 Sub-Classifying Memory Data Stalls

Memory data stalls are subclassified based on where the dependency load

was serviced. The sub-categories are: L1 cache, L1 coalescing, L2 cache,

remote L1 cache, and main memory.

L1 cache stalls mean that instructions have been stalled because they are

dependent on loads that are satisfied locally. This can happen if data is

used immediately after it is loaded or if there is a delay in the load/store

unit. L1 coalescing stalls are due to requests that have missed in the L1

cache but were satisfied by a response for another request to the same line.

L2 cache stalls are due to dependencies for requests that are satisfied in the

7

Algorithm 2 Issue Cycle Stall Classification

if At least one instruction was able to issue then
classify no stall

else if At least one memory structural stall was found then
classify memory structural stall

else if At least one memory data stall was found then
classify memory data stall

else if At least one synchronization stall was found then
classify synchronization stall

else if At least one compute structural stall was found then
classify compute structural stall

else if At least one compute data stall was found then
classify compute data stall

else if At least one control stall was found then
classify control stall

else if At least one idle stall was found then
classify idle stall

end if

L2 and may mean that the L1 cache is not being efficiently utilized or that

the data access pattern does not allow for reuse at L1. Remote L1 cache

stalls are caused by dependencies for data requests that are satisfied at a

remote L1 core. These are only possible in protocols like DeNovo [15] that

enable ownership in L1 caches. Main memory stalls indicate dependencies

on accesses to main memory and can occur when the data set is too large to

fit in the L2 cache or the L2 is not being utilized efficiently.

4.4 Sub-Classifying Memory Structural Stalls

Memory structural stalls occur when a ready memory instruction is blocked

from issuing to the load/store unit. Possible causes depend on the memory

system being studied, but they are often due to multiple pending memory ac-

cesses. For the memory system configurations considered in this work, mem-

ory structural stalls can be caused by a full MSHR, a full store buffer, a

bank conflict, a pending release, or a pending DMA.

Memory structural stalls due to a full MSHR may indicate there is bursty

load miss traffic or the MSHR is too small. Similarly, stalls due to a full

store buffer may mean there is bursty store miss traffic or the store buffer

is too small. Bank conflict stalls can occur if data accesses are not evenly

8

strided across cache or local memory banks. In the system studied, release

operations block stores from issuing until all prior stores are flushed, causing

pending release stalls. Similarly, a memory instruction will be blocked if it is

trying to access DMA data before the DMA is complete, resulting in pending

DMA stalls.

9

CHAPTER 5

METHODOLOGY

Similar to the innovations we analyze in the case studies [9, 11], we simulate

an integrated CPU-GPU system with a global, unified, shared address space.

The system contains 1 CPU core and 15 GPU cores (SMs). The applications

used in our first case study utilize all 15 GPU cores. The microbenchmark

used in our second case study utilizes only one GPU core. CPU and GPU

cores are uniformly distributed across a 4 x 4 mesh network. Each core has

a private L1 and all cores share a banked last level L2 cache. Table 5.1

summarizes the key architectural parameters of our simulated system.

We simulate a tightly coupled CPU-GPU system using an integrated, cy-

cle accurate architectural simulator. The Simics [16] full system simulator

models the CPU cores, GPGPU-Sim v3.2.1 models the GPU cores (our GPU

is similar to an NVIDIA GTX 480), the Wisconsin GEMS memory timing

simulator [17] models the memory system, and Garnet [18] models the inter-

connect. The changes required to implement GPU stall profiling are minimal.

GSI increases simulation time by on average 5% for a set of representative

workloads, with this proportion decreasing as input sizes increase. We use

atomic operations to perform global synchronization and all atomic accesses

occur at L2.1 We also use a data-race-free memory consistency model [20].

All memory configurations tested use a 32-entry MSHR and a 32-entry

write-combining store buffer. The store buffer keeps track of pending writes

and is flushed when it becomes full, at the end of a kernel, and on a release

operation. By keeping track of which data in the cache is dirty, the store

buffer enables write-combining and non-blocking stores for both coherence

protocols studied, similar to other recent work [21].

1This is different from the more optimized recent implementations of DeNovo which
employ ownership even for atomics, enabling owned atomics to be serviced at the L1
[9, 19].

10

Table 5.1: Parameters of the simulated heterogeneous system.

CPU Parameters
Frequency 2 GHz

Cores 1
GPU Parameters

Frequency 700 MHz
SMs used: case study 1, case study 2 15, 1

Scratchpad/stash Size 16 KB
Number of banks in stash/scratchpad 32

Memory Hierarchy Parameters
L1 and stash/scratchpad hit latency 1 cycle

Remote L1 and stash hit latency 35−83 cycles
L1 size (8 banks, 8-way assoc.) 32 KB

L2 size (16 banks, NUCA) 4 MB
L2 hit latency 29−61 cycles

Memory latency 197−261 cycles

11

CHAPTER 6

CASE STUDIES

6.1 DeNovo vs. GPU Coherence

Our first case study compares two coherence protocols: a baseline GPU

coherence and the DeNovo coherence protocol. This comparison mirrors the

protocol comparison performed by Sinclair et al. in previous work [9]. By

analyzing the stall breakdowns of these two coherence protocols for a single

application, unbalanced tree search, we demonstrate how the information

provided by GSI can enable a deeper understanding of performance results

and can motivate changes to an application.

6.1.1 DeNovo vs. GPU Coherence Overview

Our baseline GPU coherence protocol, which we refer to as GPU coherence,

is a simple software-based protocol similar to those of modern GPUs. Unlike

MESI-style protocols, modern GPU coherence protocols use reader-initiated

invalidations. Thus, an acquire operation (e.g., atomic read or kernel launch)

invalidates the entire cache to prevent subsequent reads from using stale

values. Similarly, a release synchronization (e.g., an atomic write or kernel

exit) flushes all buffered writes from the L1 caches. Instead of obtaining

ownership on writes, GPU coherence protocols write-through dirty data to

the shared L2 cache. As a result, read misses can obtain the up-to-date

copy from the L2 cache. This coherence strategy is very simple and works

well for conventional streaming GPU applications which only synchronize at

coarse-grained kernel boundaries. However, for emerging applications with

frequent synchronization or irregular data accesses [22, 23, 24, 25, 26, 27],

GPU coherence can lead to poor cache utilization. Frequent acquire and

release operations prevent cache reuse and write coalescing, reducing the

12

effectiveness of the L1 cache.

Previous work demonstrated that DeNovo provides advantages over con-

ventional GPU coherence protocols for GPUs [9] and conventional hardware

coherence protocols like MESI for CPUs [15, 19, 28]. DeNovo keeps caches

coherent by self-invalidating caches on acquire operations and registering for

ownership of dirty data on release operations. An SM obtains ownership of

written data by sending an ownership request to the last level cache, which

keeps track of the owner of the up-to-date data. This data stays owned in the

cache until it is evicted or until ownership is requested by another SM. Owned

data is not invalidated on acquires or written back on releases, enabling im-

proved cache performance in the presence of frequent synchronization. In

both configurations studied, the CPU cache uses DeNovo coherence; we only

compare DeNovo and GPU coherence protocols in the GPU caches. Both

protocols self-invalidate on acquire operations and flush their store buffer on

release operations.

The main difference between DeNovo and GPU coherence is DeNovo’s

ability to keep data owned in the cache. Ownership allows improved cache

utilization, but it adds some overhead to the coherence protocol. If the

last level cache receives a request for data that is owned at a remote core, it

forwards the request to the owner which will respond directly to the requestor.

This extra hop adds latency to remote read requests and ownership requests.

With multiple potentially competing effects, it can be difficult to discern

which characteristics of DeNovo and ownership have the greatest performance

impact using only coarse-grained simulation metrics. We compare the per-

formance of GPU coherence and DeNovo coherence for a single benchmark

application and we use GSI to analyze how the protocol differences contribute

to different types of stalls.

6.1.2 Unbalanced Tree Search Benchmark

Unbalanced tree search (UTS) is an algorithm that processes each node of an

unbalanced tree with unknown structure [29]. The control and access pattern

is irregular and a global task queue is used to keep track of which nodes have

yet to be processed. Each element in the task queue corresponds to a tree

node. When a tree node is processed, its children are pushed onto the global

task queue. Threads are grouped into warps which follow the same control

13

(a) execution time
breakdown

(b) memory data stall
breakdown

(c) memory structural
stall breakdown

Figure 6.1: Stall cycle breakdowns for UTS (normalized to GPU
coherence). For this version of UTS, memory time is small, so the last two
sub-figures are shown primarily for completeness.

path. Task queue access is protected by a lock that is only accessed by one

thread per warp. This lock ensures that only one warp may pull from or push

to the queue at any time. The lock is implemented using atomic instructions

with acquire and release semantics to properly synchronize concurrent access.

This application is representative of programs with high levels of irregular

synchronization (e.g. task queue based algorithms). Although such algo-

rithms are not commonly used on GPUs today due to the inefficiencies of

synchronization on modern GPUs, this data-driven approach has been shown

to speed up certain types of irregular GPU applications [25] and may become

more common as GPUs become more general purpose and GPU synchroniza-

tion improves.

6.1.3 Unbalanced Tree Search Results

Figure 6.1a shows the GPU execution time breakdown of GPU coherence

and DeNovo running the UTS benchmark. Figures 6.1b and 6.1c show

the memory data and structural stall subclassifications, respectively. We

use these results to identify sources of performance degradation in the two

executions.

As Figure 6.1a shows, there is very little overall performance difference

14

(a) execution time
breakdown

(b) memory data stall
breakdown

(c) memory structural
stall breakdown

Figure 6.2: Stall cycle breakdowns for UTSD (normalized to GPU
coherence).

between GPU coherence and DeNovo coherence for UTS. This is because the

execution time for both is dominated by synchronization stalls. The large

number of synchronization stalls are due to the use of a single global lock for

the global task queue. All workers must acquire and release this lock before

processing a node and will spin on the shared variable until the lock is free.

The stall breakdown identifies synchronization as the most prominent

source of stalls for both systems. Therefore, any efforts to improve per-

formance must reduce synchronization stalls either through changes to the

application or changes to the system.

6.1.4 Unbalanced Tree Search Decentralized
One way to reduce synchronization in the application is to decentralize the

task queue. If each SM has its own task queue to push to and pull from,

contention for the queue locks will be much lower and workers will be able

to make forward progress more easily.

We modified UTS to implement this change and refer to this version as

unbalanced tree search decentralized (UTSD). Similar to prior work, UTSD

adds per-SM local task queues to UTS and allows each worker to push and

pull from its local queue [24]. Load balancing is preserved by adding a shared

global queue. Threads only push to the global queue when the local queue

15

is full and only pull from the global queue when the local queue is empty.

Local queues also increase cache locality, since task producers and consumers

are likely to be on the same SM.

Figure 6.2a shows the stall breakdown for GPU coherence and DeNovo

coherence running UTSD, normalized to GPU coherence. Although it is not

visible in the normalized graphs, UTSD reduces the execution time for GPU

coherence and DeNovo coherence by 91% and 94%, respectively, relative to

UTS. This decrease comes from a significant reduction in synchronization

stalls and “no stall” cycles, which occur due to reduced lock contention.1 In

addition, UTSD increases the relative proportion of memory stalls, highlight-

ing the memory system tradeoffs of the two coherence protocols.

DeNovo coherence decreases memory structural stalls by 71% and mem-

ory data stalls by 57% relative to GPU coherence, contributing to a 28%

reduction in execution time. Figure 6.2b shows that the memory data stall

reduction is primarily due to a decrease in requests serviced at L2. The main

memory and L1 cache components of memory data stalls are not reduced

because DeNovo’s increased hit rate affects data that has a high locality and

would otherwise be located in the L2. Thus stalls due to requests that are

serviced at L1 or main memory for GPU coherence do not change under De-

Novo. Figure 6.2c shows that memory structural stalls are reduced because

pending release stalls decrease. These improvements demonstrate how De-

Novo improves performance by obtaining ownership in the local L1 caches.

Since owned data is not invalidated on acquire operations, DeNovo is able

to decrease delay by reusing cached L1 data across synchronization points.

Similarly, release operations are cheaper for DeNovo because owned data

does not need to be written back on a release, so DeNovo incurs fewer stalls

due to pending release operations. The significant decreases in both memory

data and memory structural stalls therefore give us a measure of how much

ownership can reduce latency by improving cache reuse and reducing the cost

of synchronization in the UTSD benchmark.

The GSI stall breakdowns indicate that DeNovo’s disadvantages do not

have a significant impact on UTSD’s latency. If the overheads of ownership

were significant and the redirection of load requests and ownership requests

caused delay, we would expect to see specific increases in memory stalls. Load

1“No stall” cycles also decrease because fewer instructions are executed spinning on a
lock.

16

request redirection would cause increased memory data stalls due to remote

L1 hits. Ownership request redirection would increase store buffer flush

latency and cause increased memory structural stalls due to pending release

operations. In fact, we do see these effects in the memory stall breakdowns

for the original UTS benchmark. These effects indicate that redirection is

common in UTS, meaning locality is poor and most tasks are likely consumed

on a different node than where they were produced. With UTSD’s local

task queues, memory data stalls due to remote L1 hits virtually disappear

and memory structural stalls due to pending releases are reduced relative to

GPU coherence, indicating that UTSD’s locality removes the disadvantages

of ownership.

The stall profiling information can also be used to motivate and priori-

tize further application optimizations. Synchronization stalls, for example,

still contribute significantly to execution time. This suggests that additional

performance gains can be achieved by reducing synchronization costs even

further. Synchronization may be reduced in the application by adding back-

off or by grouping threads at a coarser granularity (e.g. thread blocks rather

than warps). Hardware optimizations such as owned atomics [9] or scoped

atomics [24] can also make synchronization cheaper by performing atomic

accesses locally. Finally, UTSD indicates that memory structural stalls due

to a pending release contribute to 10% of execution time for GPU coherence

and 4% of execution time for DeNovo. This latency can be reduced or elim-

inated if we add a mechanism similar to QuickRelease’s S-FIFO [21]. By

keeping track of the stores that were ordered before each release operation,

the S-FIFO allows memory requests to continue to issue while a release is in

progress.

In this case study we have shown how GSI can provide information that

motivates targeted optimizations to hardware and software. We enacted one

such software optimization to the UTS benchmark and witnessed substan-

tial performance improvements for both GPU coherence and DeNovo. GSI

helped us analyze and quantify the performance differences between the two

configurations, and between the original application and the improved appli-

cation. Finally, we used the stall profiling results of the improved application

to evaluate the likely effects of additional performance optimizations.

17

6.2 Stash vs. Scratchpad+DMA

For our second case study we evaluate two improvements to the scratchpad

memory structure used in modern GPUs. We compare the performance of

these innovations against a baseline scratchpad implementation and analyze

the stall breakdowns of these two innovations for a single application. Us-

ing this information we again determine the precise causes of performance

degradation and motivate changes to the hardware configuration.

6.2.1 Stash vs. Scratchpad+DMA Overview

Scratchpad memory is a directly addressed memory space that is not kept

coherent and is private to a thread block. The scratchpad can be used to

cheaply satisfy data accesses that would otherwise need to use the cache.

Because all threads in a thread block share the space, scratchpad memory

is often used for efficient intra-thread block communication as well. By con-

verting global memory accesses to scratchpad accesses, stress on the memory

system can be reduced and performance and energy efficiency can be im-

proved because scratchpad accesses are much cheaper and are always satisfied

locally.

Despite these benefits, scratchpads suffer from multiple inefficiencies. Typ-

ical scratchpad use involves loading data into the scratchpad at the start of

a kernel, performing computations on the data in the scratchpad, and then

copying the scratchpad data to global memory at the end of the kernel. In

this scenario, copying data between the global memory and the scratchpad

pollutes the cache and registers and increases instruction count and energy.

In addition, the lack of coherence requires that any data that could poten-

tially be accessed by other cores must be conservatively transferred to and

from the scratchpad. Thus, if a memory region is only accessed sparsely and

unpredictably, the entire region must be copied to and from the scratchpad

memory, incurring waste. Because of these inefficiencies, only kernels that

access a memory region multiple times in a predictable fashion tend to benefit

from using scratchpads.

D2MA [10] addresses the inefficiencies of scratchpads by offloading the

process of loading data into the scratchpad to an independent DMA engine.

The DMA engine explicitly transfers data into the scratchpad in bulk without

18

polluting the L1 cache or registers. At the start of a kernel a mapping from

scratchpad to global data is defined. Scratchpad memory accesses to the

mapped region are then blocked (on the first use) until the entire DMA

transfer is complete. We approximate D2MA by adding a DMA engine to

the baseline scratchpad memory. This implementation, which we refer to as

scratchpad+DMA, differs from D2MA in that the DMA engine can transfer

data to and from scratchpad (D2MA only loads data into the scratchpad) and

a load to an incomplete DMA mapping blocks progress at a core granularity

rather than a warp granularity.

Stash is a new hybrid memory structure that addresses the inefficiencies of

scratchpad accesses and cache accesses by making scratchpads a part of the

coherent global address space [11]. The stash stores a mapping from local to

global data (and the reverse) in a stash map structure. When any address

in the stash mapping is first accessed, the stash map is used to generate a

global request to the memory system. When the data returns, it bypasses

the cache and is directly loaded into the stash. Subsequent accesses to the

mapped address will always hit locally and return without translation. The

stash map also enables an SM to respond to global requests for data that is

dirty in the stash. These coherence mechanisms allow stash data to be loaded

on-demand and to be lazily written back, which is not possible with D2MA.

This avoids wasteful copies and wasteful instructions involved in managing

a scratchpad. Our stash implementation is the same as the one used by

Komuravelli et al. [11].

All three configurations use DeNovo coherence for GPU and CPU caches

and for the stash. Both scratchpad+DMA and stash improve upon scratch-

pad memory because the data transfers to and from scratchpad/stash mem-

ory bypass the cache. The stash also implicitly transfers data between the

local and global address spaces. The main difference between stash and

scratchpad+DMA is that stash data is kept coherent with the shared global

memory space. This means that stash accesses can generate global load re-

quests on-demand and that dirty data can be lazily written back because it

is globally visible. In contrast, scratchpad with DMA must conservatively

transfer all data into the scratchpad at the start of a kernel, and conserva-

tively write back any potentially modified data at the end of the kernel.

The DMA data movement pattern can be helpful or harmful. Bulk reads

and writes happen in parallel and can be a very effective preloading technique

19

for avoiding the memory latency of successive on-demand load misses. How-

ever, scratchpad accesses to a pending DMA allocation must stall until the

entire DMA transfer completes. This latency combined with the congestion

caused by bursty DMA traffic may negatively affect performance.

The tradeoffs of stash memory and scratchpad+DMA result in differences

in the memory system which can reduce some sources of performance degra-

dation but increase others. We use GSI to better understand how these

differences affect GPU performance, focusing on one microbenchmark.

6.2.2 Implicit Microbenchmark

Implicit is one of the synthetic microbenchmarks used by Komuravelli et al.

to evaluate the benefits of stash [11]. In the implicit microbenchmark, an

array of data is allocated and mapped to scratchpad/stash memory. Each

thread block is assigned a chunk of the array. Each thread reads an element

in the chunk, performs a computation on the element, and writes the result

back to the same location in memory.

This microbenchmark highlights the advantage of implicitly loading data

into scratchpad/stash memory and is representative of applications that ac-

cess data in a regular streaming manner. Stash implicitly moves data from

global to scratchpad/stash memory while scratchpad+DMA uses a DMA

engine to reduce the overheads of explicit data movement, so both configura-

tions should improve performance over the baseline scratchpad configuration.

By applying GSI to this application and analyzing the stall breakdown, we

can understand how important each of the above effects are on overall per-

formance, and we use this information to motivate a change in the hardware

system used.

6.2.3 Implicit Results

Figure 6.3a shows the GPU execution time breakdown of the implicit mi-

crobenchmark. Figures 6.3b and 6.3c show the memory data stall and mem-

ory structural stall subclassifications, respectively. We use these results to

identify causes of performance disparity between stash and scratchpad+DMA

memory configurations.

Figure 6.3a shows that the number of “no stall” cycles is reduced by

36% and 31% for scratchpad+DMA and stash, respectively. This occurs

20

(a) execution time
breakdown

(b) memory data stall
breakdown

(c) memory structural
stall breakdown

Figure 6.3: Stall cycle breakdowns for implicit microbenchmark
(normalized to baseline scratchpad).

because both the scratchpad+DMA and stash configurations reduce instruc-

tion count. The scratchpad+DMA configuration does this by offloading the

loads to its DMA engine, and the stash does this by loading mapped data

on-demand from global memory into the stash. Thus, both configurations

do not need initial scratchpad load and store instructions that pollute the

registers or L1 cache. However, the reduction in “no stall” cycles is offset by

increases in other stall types. This kind of benefit offset is not uncommon

when profiling stall causes. A GPU core may be unable to issue instructions

for several reasons, but the stall is only attributed to one cause.

In the case of the implicit microbenchmark, the “no stall” cycle reductions

in scratchpad+DMA and stash are offset primarily by a 67% and 34% in-

crease in memory structural stalls, respectively. Scratchpad has fewer mem-

ory structural stalls because the explicit transfer of scratchpad data serves

to restrict the rate of requests to the memory system. At the start and end

of the kernel, the baseline scratchpad implementation issues many concur-

rent loads and stores (respectively) to the memory system, incurring memory

structural stalls due to bank conflicts, a full store buffer and a full MSHR.

However, these memory operations are interleaved with instructions that per-

form address calculations and scratchpad store instructions, so the rate at

which global memory loads are issued to the memory system is limited. As

21

a result, the number of memory structural stalls is also limited.

In comparison, scratchpad+DMA does not need to process any data trans-

fer instructions and is able to issue load requests to the memory system as fast

as the DMA engine allows (one per cycle). This increased request rate causes

the MSHR to fill up faster. These generated requests bypass the pipeline and

the cache, so bank conflicts are insignificant, but as soon as a normal memory

access tries to issue to the global memory or scratchpad memory, it is blocked

due to a full MSHR or a pending DMA (only for dependent instructions).

Stash generates a global memory access at the first load of each stash data

word. Since the stash is directly addressed, fewer instructions are needed

to compute stash addresses than are needed to compute the target address

for requests to global memory in the baseline scratchpad configuration. This

means fewer instructions are interleaved with the memory instructions, and

memory instructions are issued to the memory system at a faster rate than

for baseline scratchpad. This increased memory request rate increases the

amount of memory structural stalls due to a full MSHR, a full store buffer,

and bank conflicts.

Overall, the stall breakdowns tell us that scratchpad+DMA and stash are

able to improve performance, but the amount of time saved is offset by ad-

ditional stalls caused by increased memory request frequency. Furthermore,

although there is a difference in data stalls, it is insignificant.

6.2.4 Implicit MSHR Sensitivity

Since MSHR stalls are significant for this microbenchmark, we investigate

the effect of increasing MSHR size on performance. We run the implicit

microbenchmark on all three configurations while increasing MSHR size from

32 to 256. We also scale the store buffer size with the MSHR size to prevent

store buffer stalls from becoming the new bottleneck. Figure 6.4a shows the

results normalized to baseline scratchpad using an MSHR with 32 entries.

The decrease in full MSHR stalls shows that increasing MSHR size benefits

all configurations. However, each configuration benefits from the increased

MSHR size in different ways. A 256-entry MSHR completely eliminates full

MSHR stalls for the baseline scratchpad configuration, but memory data

stalls significantly increase (13X compared to its original value). Memory

data stalls increase for the scratchpad configurations because the instruction

22

(a) execution time
breakdown

(b) memory data stall
breakdown

(c) memory structural
stall breakdown

Figure 6.4: Stall cycle breakdowns for implicit microbenchmark with
varying MSHR sizes (normalized to baseline scratchpad with 32-entry
MSHR).

following the explicit load is dependent on the result of that load (a store of

the value to scratchpad memory). Although many more explicit loads are

able to issue with a larger MSHR, the next instruction will need to block

until the load has completed.

As MSHR size increases, MSHR stalls decrease for the scratchpad+DMA

configuration. However, memory structural stalls due to pending DMA

requests significantly increase as MSHR size increases (8.9X more with a

256-entry MSHR). These memory structural stalls increase because the first

scratchpad accesses occur early in the application, which causes threads to

be blocked due to a pending DMA soon after the application begins.

Increasing MSHR size also reduces MSHR stalls for the stash configura-

tion by allowing a greater number of threads to concurrently issue memory

requests (implicitly in the case of the stash configuration). Although MSHR

stalls decrease, memory data stalls increase (2.1X compared to the original

value) because the issued requests have not completed before a dependent

instruction needs to use the returned value. However, the increase is less sig-

nificant for stash compared with scratchpad. This is because the scratchpad

implementation must wait for all loads to the scratchpad to complete be-

fore proceeding to the compute phase. The stash configuration, on the other

hand, will issue loads on-demand within the compute phase. Although many

23

warps will still be blocked waiting for the result of a load to stash memory,

there are more active threads during the compute phase that can utilize the

issue slots with useful work. As a result, stash achieves higher core utilization

than scratchpad and experiences a smaller increase in memory data stalls as

MSHR size increases.

Overall, these results show that increasing MSHR size improves perfor-

mance for all configurations. However, alleviating this bottleneck causes

other stall sources to increase. For the scratchpad configuration, increasing

the number of MSHRs does not help as much because of data dependencies.

Increasing MSHR size is more beneficial for the scratchpad+DMA configu-

ration, which sidesteps the data dependencies by prefetching data. However,

because the scratchpad data is used early in the application, memory struc-

tural stalls due to pending DMA requests increase for the scratchpad+DMA

configuration. The stash configuration also benefits from increased MSHR

size but is better able to utilize the core by only blocking scratchpad loads at

the granularity of warps (as discussed in Section 6.2.1). Thus, these results

demonstrate the benefits of the stash’s hybrid memory organization.

24

CHAPTER 7

CONCLUSION

If heterogeneity and GPGPUs in particular are to continue to drive per-

formance improvements in the coming years, then significant inefficiencies

must be overcome to enable their use on a wider range of parallel appli-

cations. Current CPU-GPU memory systems are one significant source of

inefficiency. As innovations in heterogeneous memory systems emerge to ad-

dress these issues, better techniques are needed for analyzing their effects on

performance.

We propose GPU Stall Inspector, a new stall profiling system that provides

detailed information about sources of stalls in a tightly coupled GPU. Each

stall cycle is classified based on its cause. Memory stalls are subclassified

further based on where the memory request was serviced or based on the

cause of delay in the load/store pipeline. By identifying and quantifying the

effects of GPU latency sources, GSI can provide valuable insight when eval-

uating a wide range of software and hardware innovations in highly parallel

heterogeneous systems.

We present two case studies which demonstrate the value of detailed GPU

stall profiling. Applied to UTS and the implicit microbenchmark, the stall

breakdown reveals differences in synchronization and memory stall sources

which help motivate software and hardware changes.

Moreover, although we focus primarily on memory stalls, GSI can easily

be applied to study software and architectural changes which predominantly

affect other stall sources. For example, when studying architectural changes

that affect functional unit congestion or latency, compute stalls may be prior-

itized or subcategorized instead of memory stalls. Similarly, when studying

software changes that affect control divergence, control stalls may be pri-

oritized or subcategorized. Thus, GSI’s fundamental methodology may be

useful in an even broader range of application domains.

25

REFERENCES

[1] A. Branover, D. Foley, and M. Steinman, “AMD fusion APU: Llano,”
IEEE Micro, vol. 32, no. 2, pp. 28–37, 2012.

[2] IntelPR, “Intel delivers new range of developer tools for gaming, media,”
Intel Newsroom, 2013.

[3] P. R. (AMD), “OpenCL 2.0 - Shared Virtual Memory,” AMD Developer
Central, 2014.

[4] P. Rogers, “Heterogeneous system architecture overview,” in Hot Chips,
vol. 25, 2013.

[5] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simulator,” in IEEE
International Symposium on Performance Analysis of Systems and Soft-
ware, 2009, pp. 163–174.

[6] J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood, “gem5-
gpu: A heterogeneous CPU-GPU simulator,” Computer Architecture
Letters, vol. 14, no. 1, pp. 34–36, 2015.

[7] S.-Y. Lee and C.-J. Wu, “CAWS: Criticality-aware warp scheduling for
GPGPU workloads,” in Proceedings of the 23rd International Conference
on Parallel Architectures and Compilation Techniques, 2014, pp. 175–
186.

[8] M. A. O’Neil and M. Burtscher, “Microarchitectural performance char-
acterization of irregular GPU kernels,” in Workload Characterization
(IISWC), 2014 IEEE International Symposium on. IEEE, 2014, pp.
130–139.

[9] M. D. Sinclair, J. Alsop, and S. V. Adve, “Efficient GPU synchroniza-
tion without scopes: Saying no to complex consistency models,” in Pro-
ceedings of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO. IEEE, 2015.

26

[10] D. A. Jamshidi, M. Samadi, and S. Mahlke, “D2MA: Accelerating
coarse-grained data transfer for GPUs,” in Proceedings of the 23rd inter-
national conference on Parallel architectures and compilation. ACM,
2014, pp. 431–442.

[11] R. Komuravelli, M. D. Sinclair, J. Alsop, M. Huzaifa, M. Kotsifakou,
P. Srivastava, S. V. Adve, and V. S. Adve, “Stash: Have your scratch-
pad and cache it too,” in Proceedings of the 42nd Annual International
Symposium on Computer Architecture, 2015, pp. 707–719.

[12] J. Alsop, M. D. Sinclair, and S. V. Adve, “GSI: A GPU stall inspector
to characterize the sources of memory stalls for tightly coupled GPUs,”
in IEEE International Symposium on Performance Analysis of Systems
Software. IEEE, 2016.

[13] NVIDIA, “CUDA SDK 3.1.” [Online]. Available:
http://developer.nvidia.com/object/cuda 3 1 downloads.html

[14] A. Ariel, W. Fung, A. Turner, and T. Aamodt, “Visualizing complex
dynamics in many-core accelerator architectures,” in IEEE International
Symposium on Performance Analysis of Systems Software, 2010, pp.
164–174.

[15] H. Sung, R. Komuravelli, and S. V. Adve, “DeNovoND: Efficient hard-
ware support for disciplined non-determinism,” in Proceedings of the
Eighteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2013, pp. 13–26.

[16] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full
system simulation platform,” Computer, vol. 35, no. 2, pp. 50–58, 2002.

[17] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s
general execution-driven multiprocessor simulator (GEMS) toolset,”
ACM SIGARCH Computer Architecture News, vol. 33, no. 4, pp. 92–99,
2005.

[18] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A de-
tailed on-chip network model inside a full-system simulator,” in IEEE
International Symposium on Performance Analysis of Systems and Soft-
ware, 2009, pp. 33–42.

[19] H. Sung and S. V. Adve, “DeNovoSync: Efficient support for arbitrary
synchronization without writer-initiated invalidations,” in Proceedings
of the 20th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2015, pp. 545–559.

27

[20] S. V. Adve and M. D. Hill, “Weak ordering – A new definition,” in ACM
SIGARCH Computer Architecture News, vol. 18, no. 2SI. ACM, 1990,
pp. 2–14.

[21] B. Hechtman, S. Che, D. R. Hower, Y. Tian, B. M. Beckmann, M. D.
Hill, S. K. Reinhardt, D. Wood et al., “QuickRelease: A throughput-
oriented approach to release consistency on GPUs,” in IEEE 20th Inter-
national Symposium on High Performance Computer Architecture, 2014,
pp. 189–200.

[22] J. A. Stuart and J. D. Owens, “Efficient synchronization primitives
for GPUs,” CoRR, vol. abs/1110.4623, 2011. [Online]. Available:
http://arxiv.org/abs/1110.4623

[23] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of irreg-
ular programs on GPUs,” in Workload Characterization (IISWC), 2012
IEEE International Symposium on. IEEE, 2012, pp. 141–151.

[24] D. R. Hower, B. A. Hechtman, B. M. Beckmann, B. R. Gaster, M. D.
Hill, S. K. Reinhardt, and D. A. Wood, “Heterogeneous-Race-Free Mem-
ory Models,” in Proceedings of the 19th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
2014. [Online]. Available: http://doi.acm.org/10.1145/2541940.2541981
pp. 427–440.

[25] J. Y. Kim and C. Batten, “Accelerating irregular algorithms on GPG-
PUs using fine-grain hardware worklists,” in 47th Annual IEEE/ACM
International Symposium on Microarchitecture, 2014, pp. 75–87.

[26] S. Che, B. Beckmann, S. Reinhardt, and K. Skadron, “Pannotia: Under-
standing irregular GPGPU graph applications,” in IEEE International
Symposium on Workload Characterization, 2013, pp. 185–195.

[27] M. S. Orr, S. Che, A. Yilmazer, B. M. Beckmann, M. D. Hill, and D. A.
Wood, “Synchronization using remote-scope promotion,” in Proceedings
of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2015, pp. 73–86.

[28] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.
Adve, V. S. Adve, N. P. Carter, and C.-T. Chou, “DeNovo: Rethinking
the memory hierarchy for disciplined parallelism,” in Proceedings of the
20th International Conference on Parallel Architectures and Compila-
tion Techniques, 2011, pp. 155–166.

28

[29] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan, P. Sadayappan, and C.-W.
Tseng, “UTS: An unbalanced tree search benchmark,” in Languages
and Compilers for Parallel Computing, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2007, vol. 4382, pp. 235–250.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-72521-3 18

29

