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Abstract 

There are currently many challenges in creating portable human-assistive robotics and 

exoskeletons, although the need for robotic human assist continues to grow. These challenges 

span disciplines such as control, design, fuel and efficiency, user-interfaces, neuroscience, and 

kinesiology. Our lab has developed a pneumatically powered ankle-foot orthosis (PPAFO) to 

address some of these issues.  

In this dissertation, we address the issue of availability of portable pneumatic power sources, 

and we evaluate the short-term kinematic and metabolic impact of a bilateral, bidirectional 

portable powered ankle-foot orthosis (PPAFO) in an able-bodied population during over-ground 

walking, and we evaluate the kinematic and metabolic impact of a unilateral, bidirectional 

portable powered ankle-foot orthosis (PPAFO) in persons with gait impairment due to Multiple 

Sclerosis.  

First, in Chapter 2, we address the state of portable powered pneumatic power sources. 

Specifically, we evaluated the use of compressed gas tanks with carbon dioxide or nitrogen as 

fuel. A test bench model of the PPAFO and walking trials (treadmill and over-ground) were used 

to evaluate each tank and gas, investigating normalized run time, minimum tank temperature, 

and rate of cooling. We concluded that compressed gas tanks can be used to successfully power 

portable pneumatic robotic platforms, especially when a recycling circuit can be implemented 

to increase the longevity of the fuel source, but considerations need to be taken into account in 

order to determine the proper fuel, based on size, weight, cost, and availability. 
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In Chapter 3, we evaluated a bidirectional, bilateral powered ankle-foot orthosis or exoskeleton 

system during over-ground walking in able-bodied individuals. With the powered PPAFOs, 

participants were able to reduce the metabolic power needed for walking compared to the 

unpowered PPAFO condition, and they were able to match the minimum metabolic power 

needed in shoes walking. Some kinematic changes were seen while using the PPAFOs, 

specifically an unexpected reduction in plantarflexion during toe-off.  

In Chapters 4 and 5, we evaluated the use of a bidirectional powered ankle-foot orthosis to 

assist persons with gait impairment due to multiple sclerosis.  

Use of the current embodiment of the portable powered AFO did not improve gait performance 

as measured by spatiotemporal parameters of gait. Significant differences in kinematic 

parameters at the ankle were observed such that the PPAFO was able to provide better 

assistance for foot drop during swing than the AFO or a shoes condition. Changes in kinematics 

at the knee were found such that the changes are likely due to compensatory reactions to the 

changes at the ankle induced by the footwear. 

Throughout this work, we have been motivated to further research the mechanical design of 

the device so that users can better match their natural gait pattern in regards to spatiotemporal 

and kinematic parameters. Improving device design and functionality will help to determine if 

powered orthoses can be effective at assisting and improving gait function in persons with gait 

impairment.  
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Chapter 1 Introduction 

Lower limb exoskeletal and powered orthotic systems are currently being developed for a 

variety purposes ranging from augmenting the abilities of able-bodied individuals [1-3], 

assisting the abilities of those with physical limitations [4, 5], and studying the fundamental 

biomechanics and motor control of normal and pathological gait [6, 7]. As research continues in 

this area, there is a need to understand the current abilities and limitations of existing 

exoskeletal systems [8-10]. 

There are many types of lower limb exoskeletons, based on the number of actuated joints, and 

type of power system used [9, 10]. Generally, complete lower limb devices tend to neglect the 

ankle even though much of the force needed for gait is transferred through the joint to the 

ground [11-13]. A recent review of the use of powered lower limb exoskeletons for gait 

assistance even mentions the need for devices with powered ankle joints [4].  

Current solutions for individuals that need assistance at the ankle due to functional 

impairments are passive braces or ankle-foot orthoses that provide only motion control and 

joint stability. The ideal ankle-foot orthosis (AFO) should be adaptable to accommodate a 

variety of functional deficits created by injury or pathology while simultaneously being compact 

and light weight to minimize energetic impact to the wearer. These requirements illustrate the 

great technological challenges facing the development of non-tethered, powered AFOs. Passive 

AFO designs are successfully used as daily wear devices because of the simplicity, compactness, 
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light weight, and durability of the designs, but have limited functionality. To date, powered 

AFOs have not been commercialized and exist as research laboratory devices constructed from 

mostly off-the-shelf components [6, 14, 15]. Fully active devices have been developed to 

address limitations in motion control, such as the lack of plantarflexion motion and propulsion 

assistance during late stance [6, 16, 17] and the need for correcting drop foot during swing [18]. 

A few devices have been developed to address plantarflexor and dorsiflexor deficits during gait 

[19-21]. All of these devices have size and power requirements of the components and control 

algorithms that require tethered either power supplies or control electronics.  

In this field of research, the terms powered orthoses and exoskeletons are both used, 

commonly to refer to devices trying to achieve similar yet different goals. Most often, the term 

exoskeleton is used to define a device that is being used to augment or investigate the behavior 

of an able-bodied individual. The term orthosis, or powered orthosis, is usually used in 

reference to a device designed to provide assistance to persons with some type of physical 

deficit or limitation. Although the terms exoskeleton and powered orthosis are usually used in 

this way, that does not preclude exoskeletons from being used in populations with a physical 

impairment, and powered orthoses from being used in a able-bodied populations.  

In this literature review, we give an overview of a couple of areas of research in the field of 

ankle exoskeletons and powered orthoses. First we start with an introduction to our 

exoskeleton testbed used for research, the portable powered ankle-foot orthosis (PPAFO). The 

next section then reviews the other currently used ankle exoskeletons in the field. As many of 
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these exoskeletons are pneumatically powered, we follow the review of current exoskeletons 

with an overview of the available pneumatic power sources for portable use.  After reviewing 

the current device research, we look at research regarding gait impairment in a population who 

could benefit from such technologies: persons with multiple sclerosis.  

Throughout the aforementioned reviews, we noticed differences in ways that researchers have 

quantified the impact of their exoskeletons on walking tasks. A common goal of exoskeleton 

research is to reduce the amount of work done or energy used by the human; therefore many 

methods have been used to quantify this reduction in human energy use. A short overview of a 

few of the different parameters used is the final section before the direct specific aims of this 

dissertation are described. 

  INTRODUCTION TO PPAFO 

 A test bed of a portable powered ankle-foot orthosis (PPAFO) has been developed to explore 

challenges associated with mobile and/or wearable robotic devices (Figure 1.1). More 

specifically the PPAFO test bed can used to investigate issues related to creating mobile 

actively-powered orthotic devices [22]. As a research group using the PPAFO testbed, we have 

been addressing issues of control, runtime, weight, and bulk of pneumatically-powered human-

scaled mobile robotic systems. 

The PPAFO can provide modest dorsiflexor or plantarflexor torque at the ankle using a portable 

pneumatic power source. The bidirectional assistance is applied at the ankle as needed 
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throughout all phases of the gait cycle including late stance and propulsion, which is unavailable 

in current commercially-available technologies [14]. The timing of when to apply the 

bidirectional assistance is determined by a user-specific tuned kinematics-based controller that 

uses the PPAFO’s toe and heel force sensors and ankle angle to estimate the state of the limb 

during the gait cycle [23, 24].  

On the PPAFO, power is typically delivered to the ankle by our standard pneumatic circuit 

(Figure 1.2), two solenoid valves (VUVG 5V; Festo Corp-US, Hauppauge, NY) which control a 

rotary actuator (PRN30D-90-45, Parker Hannifin, Cleveland, OH) that can be actuated in 

dorsiflexion or plantarflexion directions).The PPAFO was designed to provide two levels of 

torque based on the direction of assistance. During plantarflexion, the PPAFO is designed to 

provide the maximum torque allowed by the pneumatic circuit components and available from 

the portable power source. With the current off-the-shelf components, the PPAFO is able to 

provide between 10-15 Nm of torque with 100-150 psig of pressurized gas during 

plantarflexion. A much smaller amount of torque is needed during swing to support the foot, 

such that a lower pressure (30-35 psig) is used to provide a 3-4 Nm torque in the dorsiflexion 

direction. A second pressure regulator mounted on the PPAFO (LRMA-QS-4; Festo Corp-US, 

Hauppauge, NY) down-regulates the inlet pressure to achieve the much smaller dorsiflexor 

torque needed. 

The PPAFO test bed has explored two main controller approaches (Table 1.1 & Table 1.2). The 

PPAFO can be controlled using a direct event (DE) controller or a state estimation (SE) 
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controller. The DE controller supplies directional actuation based on the current activation state 

of the two force sensors under the toe and heel. The two states (on/off) of each sensor 

(heel/toe) provide four distinct states that correspond to each of the four phases of gait where 

assistance is needed (Table 1.1) [22].The SE controller was designed to be trained and adapted 

to individual gait patterns [23, 24]. The sensor data that inform the controller of the user’s 

current state come from the two force sensors under the toe and heel, and an angle sensor on 

the pneumatic actuator [24]. The SE controller provides actuation during four functionally 

distinct gait tasks: (1) initial contact, (2) loading response, (3) forward propulsion, and (4) limb 

advancement. Initial  timings for the SE controller are based on normative gait event values 

determined from pre-existing data [25, 26] (Table 1.2); subject-specific PPAFO actuation timing 

can then be adjusted for each user’s gait pattern [24]. Generally, the DE controller requires less 

computational power than the SE controller, but the SE controller is more adaptive to every 

participant. One of the portable power sources used is a compressed gas tank as the pneumatic 

power supply [22, 27]. Currently, the PPAFO has a limited portable runtime (8-25 minutes) due 

to the fixed amount of fuel available in the supply tank (depending on tank size, 9 oz vs. 20 oz). 

In our previous studies, a pneumatic recycling scheme was proposed [28] to improve system 

efficiency by reducing fuel consumption. The PPAFO test bed was used to test the suggested 

recycling scheme [27]. For the recycling scheme, an additional solenoid valve (VUVG 5V; Festo 

Corp-US, Hauppauge, NY) and custom accumulator were added into the pneumatic power 

circuit (Figure 1.3). A four-phase procedure allowed the compressed exhaust gas from each 

plantarflexor actuation to be stored in the accumulator and released later to power the 

following dorsiflexor actuation.  
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The accumulator is a custom-constructed pneumatic elastomeric accumulator (PEA) [29-32] 

(Figure 1.4). The PEA is assembled from off-the-shelf pneumatic fittings, latex tubing, and a 

cylindrical polycarbonate sheath. The PEA concept was based on previous work completed in 

hydraulics where fluid power energy was stored in an elastomer that was then able to return 

the stored energy to the system [33]. As the compressed gas enters the accumulator, the 

elastomer is allowed to expand within the sheath constraint. As the accumulator powers 

dorsiflexion, the strain energy stored in the expanded elastomer reenters the pneumatic power 

system along with the stored compressed gas, as the elastomer returns to its original relaxed 

state. 

The development of the PPAFO, both with the standard and recycling pneumatic power 

schemes, has created a test bed for studying the many issues of portable, wearable robotics.  

 POWERED ANKLE EXOSKELETONS 

In the past 10 years, the field of powered lower-limb exoskeletons has expanded greatly to 

begin to answer questions about human adaptation to assistive exoskeletons, and about ideal 

design and control of the assistive exoskeletons. Part of the work being done was to determine 

which design choices were best suited to accomplish the desired task of the exoskeleton. 

Previous reviews have documented the challenges in the field of lower limb exoskeletons, as 

well as the currently available technologies [8, 10]. A review written by Shorter et al. [14] 

focused on ankle-foot devices, reviewing passive, semi-active and active devices. In this section, 
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we review the current work that has been done with powered ankle exoskeletons so that we 

may use our test bed to best contribute to the ongoing research in the field.  

One of the most studied powered ankle-foot orthoses (PAFO) is a design that was originally 

published by researchers at the University of Michigan [6] (Figure 1.5). This device provided 

powered plantarflexion or powered dorsiflexion through pneumatic muscles, with controllers 

that were based on the EMG signals from the soleus muscle during gait. The pneumatic muscles 

were tethered to a laboratory air compressor, and the EMG controller was tethered to a 

laboratory desktop computer. An updated version of this PAFO was then created to provide 

both dorsiflexion and plantarflexion torque during the same experiment, such that EMG of the 

soleus was used to control the plantarflexion torque, and EMG of the tibialis anterior was used 

to control dorsiflexion [34] (Figure 1.6). The design of the PAFO was also expanded to include a 

knee - ankle - foot orthosis (KAFO), also with EMG control [35, 36]. Initial studies with the PAFO 

were completed with able-bodied participants, unilateral device use, and unidirectional 

powered actuation, to investigate motor adaptation in gait of able-bodied persons [6, 37] 

(Figure 1.7)[34].   

Research regarding the locomotor adaptation of able-bodied persons has continued with the 

University of Michigan PAFO. One aspect of adaptation that was studied is the type of 

controller of the PAFO [38]. Although the original PAFO used an EMG-based control algorithm, 

a system was also designed using a forefoot footswitch controller (kinematic controller). The 

two controllers were compared with two groups of able-bodied young people with a unilateral, 



8 

plantarflexion-only PAFO. Both sets of participants were able to adapt to their controller over 

the testing period, but those using the EMG-controller showed larger reductions in muscle 

activation, and more normal gait kinematics. 

Kao et al. [7, 39], investigated the adaptation of able-bodied persons to a modified  PAFOs. 

First, Kao et al. [39] investigated adaptation to a powered dorsiflexion-only, tibialis anterior 

EMG-controlled PAFO. In this study, healthy persons walked on a treadmill with the PAFO 

providing dorsiflexion assistance either during swing and initial heel contact, or just during 

swing. Both groups adapted to the dorsiflexion assistance and adapted to walking with reduced 

tibialis anterior EMG and increased ankle dorsiflexion by 9o. Next, Kao et al. [7], modified the 

PAFO to included two artificial pneumatic muscles in parallel providing the plantarflexor torque 

for the effect of a greater perturbation (peak positive mechanical power with double pneumatic 

muscle PAFO (117 W), peak torque provided by PAFO (50.09 ± 12.05 Nm) [7]; peak positive 

mechanical power with single pneumatic muscle PAFO (107 W), peak torque provided by PAFO 

(estimated from Fig. 6a: 35 Nm)[37]) (Figure 1.8). The impact of the greater plantarflexor 

torque was a substantially different ankle kinematic pattern during gait, and an extended 

adaptation time compared to the lower plantarflexor torque design; so much so that some 

participants did not reach a new steady state gait pattern within two 30-minute practice 

sessions. Participants had greater power generation and less power absorption at the ankle 

joint, as well as a decreased peak plantarflexion during toe-off after adapting to the PAFO with 

greater plantarflexor torque compared to the PAFO with less plantarflexor torque. 
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A complete mechanical and energy analysis of the PAFOs for both level and incline walking in 

able-bodied individuals was completed by Sawicki and Ferris [40, 41]. In these studies, the 

researchers constructed a bilateral set of PAFOs for each participant to provide plantarflexion 

torque during gait controlled by soleus EMG signal. The studies reported that the participants 

were able to adapt their gait to the PAFOs within three 30-minute sessions of level ground 

walking. With practice, the participants significantly reduced the soleus muscle activity to allow 

the PAFO to assist powering part of push-off and significantly reduce the net metabolic power 

used to walk compared to an unpowered PAFO condition.  In inclined walking, the PAFOs 

helped the participants reduce their net metabolic power by 10-13%, independent of incline 

gradient. Sawicki and Ferris [42] continued investigating mechanisms by which the PAFOs can 

cause a reduction in net metabolic power by investigating varying step lengths and gait speeds 

at a constant step frequency. The PAFOs helped participants to reduce the net metabolic power 

at all step lengths.   

Other researchers have adopted the University of Michigan PAFO design and have helped to 

expand the research field of powered ankle-foot orthoses. At Virginia Tech, Norris et al. [43, 44] 

adapted the  PAFO pneumatic muscle design such that the powered plantarflexor actuation was 

timed with information from a kinematic controller based on the angular velocity of the foot 

section of the orthosis (Figure 1.9). First, using a bilateral set of the kinematically controlled 

PAFOs, Norris et al. [43] found that the metabolic cost of transport could be decreased in able-

bodied young adults, and that PAFOs may reduce walking stability, as stability measures were 

decreased when walking with the PAFOs. Second, Norris et al. [43] found that PAFOs 
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augmenting plantarflexion increased the preferred walking speed in young adults; however the 

same increased in preferred walking speed was not seen in older adults (compared to an 

unpowered PAFO condition). While wearing the PAFOs, young adults also reduced their 

metabolic cost of transport while wearing the PAFOs compared to an unpowered condition 

with the PAFOs.  

Another team of researchers that have adopted the Michigan pneumatic muscle PAFO for gait 

adaption studies were from Gent University [2, 16, 45-47]. Similar to Norris et al. [43], this 

group adapted the PAFO for powered plantarflexion, with the plantarflexion actuation timing 

determined by a kinematic controller based on a footswitch located under the heel, to create a 

wearable assistive lower leg exoskeleton (which they have recently called WALL-X, Figure 1.10). 

The first study [16] aimed to determine the ideal timing of turning the powered plantarflexion 

on in regards to gait cycle time, to reduce the metabolic cost of walking. In Malcolm et al. [16], 

they reported that with actuation timing starting at 43% of the gait cycle, the metabolic cost of 

walking could be reduced by 6% when wearing the WALL-X compared to walking without an 

ankle exoskeleton. A further study, using the 43% gait cycle actuation timing for plantarflexion 

actuation with the WALL-X, found that metabolic adaptation can be seen after 18.5 minutes, 

which was a faster adaptation than when they used a EMG feedback controller [46]. Further 

studies indicated that the WALL-X allowed for longer durations tolerated in an exercise test 

including a inclined walk with load carriage [2], and that actuation timing may need to be varied 

for inclined walking to an earlier percentage of gait to obtain maximal reduction in metabolic 

cost of walking (10% reduction in metabolic cost) [47]. 
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Recently, a novel ankle exoskeleton was developed by researchers at MIT specifically aimed at 

reducing the metabolic cost of walking in able-bodied individuals [3, 48, 49] (Figure 1.11). This 

ankle exoskeleton provided a large plantarflexor torque (approximately 120 Nm [3]) during 

push off using an electrical winch actuator and strut. During swing, the ankle exoskeleton 

allowed free movement by providing slack in the drive cord such that the user did not notice 

any assistance or impedance from the exoskeleton. The plantarflexor torque timing was 

controlled kinematically by a gyroscope on the actuator, which provided the controller data 

regarding the angular shank velocity. Results indicated that this ankle exoskeleton was able to 

help participants reduce their metabolic cost of walking by up to 10 ± 3% compared to a shoes-

only condition[49]. The ankle exoskeleton was also tested during walking with extra load 

carriage [3]. With the exoskeleton, while wearing a 23kg weighted vest, participants were able 

to reduce their metabolic cost of walking by 8% compared to not wearing the exoskeleton.  

In attempts to create a light-weight powered AFO that can be powered from a wearable power 

source, researchers at the University of Minnesota have developed a portable hydraulic ankle-

foot orthosis (HAFO, Figure 1.12) [50]. The goal for the HAFO was for the power density of 

hydraulics to be able to supply high torque at the ankle. A design goal was to separate the 

actuator and power supply to best distribute the weight, with as little weight at the ankle as 

possible. In published works, the HAFO has only been tested on an engineering test bench, 

where actuator and battery testing have produced promising results.  
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As summarized above, previous research on powered ankle exoskeletons has focused on mostly 

unidirectional powered devices that apply assistive torque  during plantarflexion or dorsiflexion, 

with majority of the work focusing on plantarflexion actuation. All of this work was also done in 

a tethered laboratory setting, with participants on fixed-speed treadmills. As there is little 

previous research on bidirectional assistance at the ankle during able-bodied gait, by 

developing and testing the PPAFO, we hope to learn about the importance of dorsiflexion 

assistance as well as plantarflexion assistance during powered gait assistance, especially as it 

relates to gait pathologies with dorsiflexor weakness. In addition by developing a portable 

system such as the PPAFO, we hope to extend the current field of research by completing 

studies of over-ground walking which allows for more natural variation in gait.  

 REVIEW OF CURRENTLY AVAILABLE PORTABLE PNEUMATIC POWER 
SUPPLIES 

One of the current challenges of creating portable powered devices is finding light-weight and 

long-lasting power supplies for effective runtimes. One major field of research in need of 

lightweight portable pneumatic power supplies are mobile or wearable soft robotic systems 

and pneumatically-powered exoskeletons [10, 51, 52]. There are currently limited options 

available for portable pneumatic power supplies. Portable pneumatic power sources such as 

microcompressors, combustion systems, and chemical decomposition systems are also being 

developed, but each presents with its own issues such as unwanted loud noise, high local 

temperatures, and toxic byproducts [53-63]. 
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The current microcompressors that are being developed include a single stage 

thermocompressor [55] and a miniature free-piston engine compressor [61, 62]. The 

thermocompressor is a Stirling thermocompressor that works by shuttling air between a heat 

source and a room temperature heat sink with a displacer piston (Figure 1.14). By using a series 

of strategically located check valves, the thermocompressor can store the heated and 

pressurized gas for use in a pneumatic system [63]. For the thermocompressor, a proof of 

concept has been achieved, but work still needs to be done to appropriately size the 

components and determine the necessary additional components to power the 

thermocompressor and store the compressed air. The miniature free-piston engine in current 

research is of the homogenous charge compression ignition type (HCCI), and works by using a 

low temperature combustion system (Figure 1.13). In the design by Tian et al. [62], there is an 

engine unit and a compressor unit which work together to compress room air. One of the down 

sides of the HCCI miniature free-piston engine compressor is the need for liquid fuel needed for 

combustion. Another downside is the noise produced by the combustion cycle.  

A unique use of the energy from combustion was developed by Shepherd et al. [56] which was 

used to power a soft robot. The soft robot was made organic elastomers with a passive valving 

system (“pneu-nets”) that allowed for the combustion of methane inside the robot (Figure 

1.15). Although a novel idea, this concept is not widely adaptable to other pneumatic powered 

robots.  
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Chemical decomposition or phase changes have been harnessed by some researchers to 

develop fuel systems for pneumatic robots [53, 54, 58-60]. Kim et al. [53, 54] used a compact 

pistons pump for the injection of H2O2 into a pneumatic system. The decomposition of 

hydrogen peroxide (H2O2), in the presence of a catalyst, into water and oxygen produces heated 

and pressurized oxygen that the compressed gas that is used for the pneumatic system (Figure 

1.16). One of the limitations of this system according to Kim et al. was the slow pressure 

generation rate [53, 54].  

Another chemical system that has been harnessed for generating pneumatic power is CO2 as 

dry ice. As dry ice “melts” it creates a pressurized liquid that is in equilibrium with a gas phase 

at the triple point. Since it is in equilibrium, the gas phase remains at a constant pressure, even 

when gas is removed from the container, as long as liquid phase is present [59]. Wu et al. [59] 

harnessed these properties of CO2 into a “Dry Ice Power Cell”, by controlling the heat transfer 

from the environment into the pressure container (Figure 1.17). Further work on the 

development of the Dry Ice Power Cell has continued with work by Wu et al. [58].  

Compressed carbon dioxide (CO2) tanks are commonly used for handheld power tools and 

paintball gaming, and are easily refilled from bulk CO2 tanks that can be rented or refilled at 

sports stores. One of the main factors that impacts the use and efficiency of compressed CO2 as 

a portable power source is the cooling of the fuel as the tank is emptied, due to the 

endothermic expansion of CO2 [64, 65]. This cooling is known to cause situations where the 
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regulators may freeze up, especially in the paintball industry where high frequency or continual 

use duty cycles are common, contributing to poorly controlled pressure output [64, 66].  

Another source of portable pneumatic power is compressed air in a high pressure air (HPA) 

tank. Traditionally the HPA tanks are filled with either high pressure compressed air or nitrogen 

(N2), which can be refilled at specialty paintball locations or from high pressure scuba tanks. 

HPA are not reported to freeze up like the CO2  tanks, and are preferred among paintball 

enthusiasts for game play due to a more consistent tank pressure [67].  

Unlike the newly developed power sources which are developed for use in soft robotics and 

portable pneumatic systems, compressed gas tanks have not been tested as much in the 

research field of powered exoskeletons. As new fuel sources are being developed and tested, 

there is space to test the already existing fuel sources in pneumatic robots to provide a baseline 

evaluation for newer fuel systems.  

 GAIT IMPAIRMENT IN PERSONS WITH MULTIPLE SCLEROSIS 

Gait impairment is one of the major day to day issues present in persons with Multiple Sclerosis 

(MS) [68]. The experienced gait impairments in persons with MS include muscle weakness 

causing foot drop, muscle tightness or spasticity, balance impairment leading to generalized 

ataxia, sensory deficits in the foot preventing proper sensation of the ground, and increasing 

severity of these impairments with increasing fatigue [69]. The major disease process of MS is 

characterized by demyelination lesions of the white matter of the brain stem, cerebellum, and 
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spinal cord [70] resulting in lower limb weakness leading to this generalized gait impairment 

[71]. Much research has been done and is ongoing to better understand and quantify the 

different aspects of gait impairment in persons with MS. By studying gait, one can possibly 

better identify and diagnose persons with early onset MS [72], as well as offering interventions 

towards improving the gait impairment as it has been noted that any gait impairment can place 

a significant personal and financial burden, as well as a decrease in quality of life for persons 

with MS [73]. Passive AFOs are often used clinically to assist with foot drop due to lower limb 

weakness in persons with MS in attempts to mitigate the resulting gait impairment (Figure 1.18) 

[74]. Mixed results have been reported when evaluating the clinical and biomechanical 

advantages of patient-specific, physician-prescribed, custom passive AFOs for individuals with 

MS [72, 75-77].  

Passive ankle-foot orthoses have been studied in mixed populations of persons with MS and 

stroke [76-78]. Bregman et al. [76] completed an in-depth analysis of the impact of a passive 

AFO on gait in persons with MS and stroke. They evaluated the effect of the mechanical 

properties of the AFO (stiffness and neutral angle as measured by a device designed to replicate 

a human leg that registers joint configuration and force exerted by the AFO (a.k.a., a BRUCE 

device) [79]) on the energy cost of walking, walking speed, gait kinematics, and kinetics. The 

researchers concluded that if the mechanical properties of the AFO matched the patient’s 

needs, the patient greatly benefited with improved outcome measures. Overall they found that 

walking with a passive AFO decreased cost of walking and increased walking speed; although 

when the participants were divided into two groups (presence or absence of foot drop during 
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swing), statistical power was diminished. Expected differences in ankle angle (decreased 

plantarflexion during swing and initial contact in the foot drop group, no change in the no drop 

group) were observed due to the AFO, but without statistical significance [76].  

Bregman et al. [77] continued to study the impact of AFOs on persons with MS and stroke, 

specifically by using a spring-like carbon-composite AFO. With the AFO in that study, Bregman 

et al. observed a decrease in energetic cost of walking, decreased range of motion of the ankle, 

and decreased net work at the ankle. The decreased range of motion was due to reduced 

plantarflexion, which was mechanically blocked by the AFO, leading to reduced push-off. Even 

with decreased push-off, the AFOs were able to provide enough assistance in dorsiflexion to 

lead to an overall reduced metabolic cost [77] 

Other groups have also looked into the use of AFOs in persons with MS. Ramdharry et al.[80] 

found that, although the passive AFO did initially cause destabilization of standing posture, 

after four weeks of using an AFO, persons with MS reported fewer limitations in their mobility 

(e.g. walking, running, stair climbing) when assessed using the Multiple Sclerosis Walking Scale-

12 [81]. Sheffler et al. [75] looked at the impact of an AFO on functional gait tasks (timed 25-

foot walk, five components of the modified Emory functional ambulation profile [82]), in 

persons with MS and saw no significant improvement with the AFO compared to no-device 

trials. McLoughlin et al. [83] investigated the effect of a dorsiflexion assist orthosis during a 

modified 6-minute walk test. When using the dorsiflexion assist orthosis (Figure 1.19), there 
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was no difference in distance walked or perceived fatigue, but there was reduced physiological 

cost of walking when normalized by gait speed  [83]. 

Novel designs of passive devices have been used for AFOs, such as Hwang et al., who compared 

an AFO-shaped band (elastic band attached to the thigh and shank with a loop to hold up the 

forefoot (Figure 1.20)), a molded plastic AFO, and barefoot conditions in persons with stroke 

and MS [78]. The AFO-shaped band increased the gait velocity and cadence compared to the 

barefoot and AFO conditions, with mixed results in stride length differences.  

Although most of these studies agree in that passive AFOs can assist persons with MS to 

improve gait from an unassisted condition, the existing research is limited to devices that only 

provide assistance with dorsiflexion. The realization that these devices do not address 

plantarflexion weakness in persons with gait impairment motivates further device design. There 

is a need for devices that can more reliably assist with impairments during all phases of gait 

which can be seen in persons with MS.   

It is possible that these traditional passive AFOs often fail to restore normal ankle function 

because they lack the ability to actively modulate motion control during gait and cannot 

produce propulsion torque and power. One possible direction the device design could go would 

be in the direction of actively powered bidirectional (plantarflexion and dorsiflexion) devices for 

assistance at the ankle. To better inform the design of such powered devices, we propose to 
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use our portable, powered ankle-foot orthosis (PPAFO) test bed, which can provide 

bidirectional externally applied torque at the ankle during gait.  

 REVIEW OF METABOLIC MEASUREMENTS FOR QUANTIFICATION OF ENERGY 
EXPENDITURE 

Throughout the research reviewed above regarding gait, whether with powered exoskeleton 

devices or in persons with gait impairment, a metabolic energy or cost parameter during the 

walking tests was often quantified. There is much variety between and within fields regarding 

how to compute a parameter to quantify the amount of energy used by a human during 

walking tests. In the exoskeleton work, primarily from the lab of Ferris and his collaborators, a 

variation of the Brockway equation [84] was used. We researched the previously used 

variations of the Brockway equations and documented when each first appeared in research 

literature (Table 1.3). 

In the work completed by researchers studying gait in persons with MS, even different 

metabolic measurements were used to compute parameters of energy expenditure. Some 

literature searches were completed to find the original sources of most of the measurements 

(Table 1.4). There is no analysis in this dissertation of the different methods of computing 

metabolically related parameters other than to acknowledge that various methods exist. The 

variety in methods used does challenge a researcher to compare their device within the 

literature and understand the basis for each measurement. 
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 SPECIFIC AIMS AND ORGANIZATION OF THE DISSERTATION 

This dissertation aimed to use the PPAFO test bed to investigate some of the broad research 

issues in portable exoskeleton design. One way in which we used the PPAFO test bed was to 

understand the abilities and limitations of portable power supplies for current and future 

powered orthotic and robotic platforms. Another way in which we used the PPAFO test bed 

was to understand the effect of powered ankle joint actuation on able-bodied gait. The 

proposed research with the PPAFO will expand the current literature to understand the effects 

of bidirectional assistive ankle torque on able-bodied gait. Lastly, we used the PPAFO test bed 

to further understand the functional needs and constraints of a portable powered ankle assist 

device in a population with gait impairment due to Multiple Sclerosis. Therefore the specific 

aims of this dissertation were: 

1. Evaluate fixed-volume compressed gas tanks as power sources for a wearable powered 

robotic system with and without a pneumatic recycling circuit. Specifically, we 

investigated CO2 and N2 based systems, used over the entire emptying time of the tanks.  

2.  Evaluate the impact of an externally applied bidirectional torque at the ankle during 

gait in an able-bodied population.  

3. Evaluate the impact of an externally applied bidirectional torque at the ankle during gait 

in persons with MS in ambulatory tasks that correlate to real-world ambulation.  
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 TABLES AND FIGURES 

 

 

 

Figure 1.1: Portable Powered Ankle-Foot Orthosis 
(PPAFO) with waist worn fuel tank and 
microcontroller.  
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Table 1.1: Direct Event Controller Scheme [27] © 2013 IEEE  

Functional Task Heel Toe Torque Direction 

1. Initial Contact ON OFF Dorsiflexor 

2. Loading Response ON ON None 

3. Forward Propulsion OFF ON Plantarflexor 

4. Limb Advancement OFF OFF Dorsiflexor 
 

Table 1.2: State Estimation Controller Scheme [27] © 2013 IEEE  

Functional Task % gait cycle Torque Direction 

1. Initial Contact 0-12 Plantarflexor 

2. Loading Response 12-48 None 

3. Forward Propulsion 48-62 Plantarflexor 

4. Limb Advancement 
62-67 None – Charging

a 

67-100 Dorsiflexor 
a. During SE without recycling, dorsiflexor torque starts at 60% 
of the gait cycle as there is no need for a charging phase 
b. Gait cycle timings from Perry (1992) [25] 
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Figure 1.2: Standard pneumatic power circuit for PPAFO. Both the plantarflexion and 
dorsiflexion actuation received compressed gas from the fuel tank, through directional 
control valves. (Pneumatic circuit schematic © 2013 IEEE [27]).  

To PF 
actuator

To DF 
actuator

From Gas 
Tank

Standard

Figure 1.3: Recycling pneumatic power circuit for PPAFO. The plantarflexion actuation is 
powered directly from the compressed gas tank through a direction control valve, whereas 
the dorsiflexion actuation is powered by using the captured exhaust of the previous 
plantarflexion actuation. The exhaust is stored in a custom made elastomeric accumulator. 
(Pneumatic circuit schematic © 2013 IEEE [27]).  

Recycling

To PF 
actuator

To DF 
actuator

From Gas 
Tank
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Figure 1.4: Fully assembled custom elastomeric strain energy accumulator as to be used in 
the recycling pneumatic power scheme. Top image shows uninflated accumulator, middle 
image shows partially inflated accumulated, bottom image shows fully inflated accumulator. 
The balloon expands and slides to fill the allowed space by the outer shroud. 
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Figure 1.5: Original PAFO design 
by Ferris et al. 2005 [6] 
 
Reprinted with permission from 
[Ferris, Czernieck, and Hannaford, 
2005, An ankle-foot orthosis 
powered by artificial pneumatic 
muscles, Journal of Applied 
Biomechanics, 21, 2, p. 189-97] © 
Human Kinetics, Inc.  

 
Figure 1.6: Updated PAFO design by Ferris et al. 
2006 [34] 

Reprinted from [Gait & Posture, 23(4), Ferris, 
D.P., K.E. Gordon, G.S. Sawicki, and A. 
Peethambaran, An improved powered ankle-
foot orthosis using proportional myoelectric 
control, p. 425-8, (2006), with permission from 
Elsevier]  
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Figure 1.7: Modified PAFO design by 
Gordon et al. 2007 [37].  
 
Reprinted from Journal of 
Biomechanics, 40 (12), Gordon and 
Ferris, Learning to walk with a robotic 
ankle exoskeleton, p. 2636-44, 
Copyright 2007 with permission from 
Elsevier 

 
Figure 1.8: Updated PAFO design 
with increased plantarflexion 
torque by Kao et al. 2010 [39].  
 
Reprinted from Journal of 
Biomechanics, 43(2), Kao, P.C., 
C.L. Lewis, and D.P. Ferris, 
Invariant ankle moment patterns 
when walking with and without a 
robotic ankle exoskeleton, p. 203-
9, (2010), with permission from 
Elsevier. 
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A.  

B.  
 
Figure 1.9: Updated PAFO design with gyroscopes 
used for signal input, by Norris et al. (A.[44], B.[43])  
 
A. Reprinted from Gait & Posture, 25(4), Norris, J.A., 
K.P. Granata, M.R. Mitros, E.M. Byrne, and A.P. Marsh, 
Effect of augmented plantarflexion power on preferred 
walking speed and economy in young and older adults, 
p 620-7, (2007), with permission from Elsevier. 
 
B. Reprinted from ASME International Design 
Engineering Technical Conferences and Computers and 
Information in Engineering Conference, 2007, Norris, 
J.A., A.P. Marsh, K.P. Granata, and S.D. Ross. Positive 
feedback in powered exoskeletons: improved 
metabolic efficiency at the cost of reduced stability?, 
with permissions from ASME. 
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Figure 1.10: WALL-X, adopted PAFO design by researchers at Ghent 
University [http://users.ugent.be/~ddclerc/WALL-X/] 
 
Image used with permission from Dr. Samuel Galle at Ghent 
University 

 
Figure 1.11: Autonomous Ankle Exoskeleton designed by researchers at MIT [48] © 2014 
IEEE 
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Figure 1.12: Hydraulic Ankle-Foot Orthosis (HAFO) by Neubauer et al. [50] © 2014 IEEE 
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Figure 1.13: The miniature free-piston engine compressor [61, 62]  
 
Figures used with permission from authors.  
 

 
Figure 1.14: Cross section of Stirling Thermocompressor 
[63]  
 
Reprinted with permission from ASME. [Hofacker, M.E., 
N.S. Kumar, and E.J. Barth, Dynamic Simulation and 
Experimental Validation of a Single Stage 
Thermocompressor for a Pneumatic Ankle-Foot Orthosis. 
Proceedings of the ASME/Bath Symposium on Fluid 
Power and Motion Control, 2013] 
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Figure 1.15: Schematic of soft robot with 
combustion of methane for pneumatic fuel 
source [56]  
 
Reprinted with permission from Angewandte 
Chemie International Edition, 52(10), 
Shepherd, R.F., A.A. Stokes, J. Freake, J. 
Barber, P.W. Snyder, A.D. Mazzeo, L. 
Cademartiri, S.A. Morin, and G.M. Whitesides, 
Using Explosions to Power a Soft Robot, p. 
2892-6,  © 2013 Wiley-VCH Verlag GmbH & 
Co. KGaA, Weinheim 
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Figure 1.16: Schematic of controllable pneumatic 
generator from decomposition of H2O2 [53]  
 
Reprinted with permission from Review of Scientific 
Instruments, 85(7), Kim, K.R., K.S. Kim, and S. Kim, 
Controllable pneumatic generator based on the 
catalytic decomposition of hydrogen peroxide. © 2014, 
AIP Publishing LLC. 
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Figure 1.17: Concept and schematic of the Dry Ice 
Power Cell [58] 
 
Reprinted with permission from Proceedings of the 
Institution of Mechanical Engineers Part C-Journal 
of Mechanical Engineering Science, 223(6), Wu, H., 
A. Kitagawa, H. Tsukagoshi, and S.H. Park, 
Development and testing of a novel portable 
pneumatic power source using phase transition at 
the triple point, p. 1425-32. © 2009 IMechE, SAGE. 
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Figure 1.18: A low-profile dorsiflexion-
assist AFO with free plantarflexion [74] 
 
Reprinted from Disease-a-Month, 59(8), 
Wening, J., J. Ford, and L.D. Jouett, 
Orthotics and FES for maintenance of 
walking in patients with MS, p. 284-9, © 
2013, with permission from Elsevier. 

 
Figure 1.19: A dorsiflexion 
assist orthotic [83] 
 
Reprinted from Archives of 
Physical Medicine and 
Rehabilitation, 96(2), 
McLoughlin, J.V., S.R. Lord, 
C.J. Barr, M. Crotty, and D.L. 
Sturnieks, Dorsiflexion Assist 
Orthosis Reduces the 
Physiological Cost and 
Mitigates Deterioration in 
Strength and Balance 
Associated With Walking in 
People With Multiple 
Sclerosis, p. 226-32, e1, © 
2015, with permission from 
Elsivier. 



35 

 

  

 
Figure 1.20: Alternatively shaped-AFO 
elastic band [78].  

Reprinted from NeuroRehabilitation, 32, 
Hwang, Y.I., W.G. Yoo, D.H. An, and H.J. 
Heo, The effect of an AFO-shaped elastic 
band on drop-foot gait in patients with 
central neurological lesions, p. 377-383, 
Copyright (2013), with permission from 
IOS Press. 
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Table 1.3: Comparison of equations of metabolic parameters often used in gait studies with exoskeletons 

Parameter name Equation Notes Reference 

Energy 
expenditure 

𝐸(𝑘𝐽) = 16.50 (
𝑘𝐽

𝐿
) × [𝑉𝑂2](𝐿) + 4.62 (

𝑘𝐽

𝐿
) × [𝑉𝐶𝑂2](𝐿) − 9.06 (

𝑘𝐽

𝑔
) × [𝑁](𝑔) 

Weir equation as 
organized by Brockway 

Weir, 1949 [85]; 
Brockway, 1987 [84] 

Energy 
expenditure 

𝐸(𝑘𝐽) = 16.52 (
𝑘𝐽

𝐿
) × [𝑉𝑂2](𝐿) + 4.51 (

𝑘𝐽

𝐿
) × [𝑉𝐶𝑂2](𝐿) − 9.22 (

𝑘𝐽

𝑔
) × [𝑁](𝑔) 

Weir equation 
coefficients modified 
by Brockway 

Brockway, 1987 [84] 
 

Energy 
expenditure 

𝐸(𝑘𝐽) = 16.58 (
𝑘𝐽

𝐿
) × [𝑉𝑂2](𝐿) + 4.51 (

𝑘𝐽

𝐿
) × [𝑉𝐶𝑂2](𝐿) − 5.90 (

𝑘𝐽

𝑔
) × [𝑁](𝑔) 

Proposed by Brockway, 
and cited by many 

Brockway, 1987 [84] 

Net metabolic 
power 

𝑃𝑚𝑒𝑡,𝑔𝑟𝑜𝑠𝑠(𝑊) = 16.58 (
𝑊 𝑠

𝑚𝐿 
) × [�̇�𝑂2] (

𝑚𝐿

𝑠
) + 4.51 (

𝑊 𝑠

𝑚𝐿 
) × [�̇�𝐶𝑂2] (

𝑚𝐿

𝑠
)  

Donelan et al., 2001 

[86] 

Net metabolic 
cost of transport 

𝐶𝑂𝑇𝑚𝑒𝑡 =
𝑃𝑚𝑒𝑡,𝑔𝑟𝑜𝑠𝑠(𝑊)

𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡(𝑁) × 𝑤𝑎𝑙𝑘𝑖𝑛𝑔 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (
𝑚
𝑠 )

 𝐶𝑂𝑇𝑚𝑒𝑡 is 
dimensionless 

Donelan et al., 2001 

[86] 

Metabolic energy 
expenditure rate 

�̇�𝑚𝑒𝑡(𝑊) = 16.48 (
𝐽

𝑚𝐿 
) × [�̇�𝑂2] (

𝑚𝐿

𝑠
) + 4.48 (

𝐽

𝑚𝐿 
) × [�̇�𝐶𝑂2] (

𝑚𝐿

𝑠
)  

Adamczyk et al., 

2006 [87] 

[V O2]: Volume of oxygen consumed over period of measurement 
[V CO2]: Volume of carbon dioxide produced over period of measurement 
[N]: Urinary nitrogen excretion over period of measurement 

[�̇�𝑂2]: Average rate of oxygen consumed over period of measurement 

[�̇�𝐶𝑂2]: Average rate of carbon dioxide produced over period of measurement 
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Table 1.4: Comparison of equations of metabolic parameters often used in gait studies in persons with MS. 

Parameter 
name 

Equation Notes Reference 

O2 cost 𝑂2 𝑐𝑜𝑠𝑡 =  
𝑉𝑂2

̇  (
𝑚𝐿

𝑠 )

𝑏𝑜𝑑𝑦 𝑚𝑎𝑠𝑠 (𝑘𝑔) × 𝑤𝑎𝑙𝑘𝑖𝑛𝑔 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (
𝑚
𝑠 )

 

“O2 cost is defined as the amount of energy 
required to perform a task. During level 
walking it is the amount of oxygen 
consumed per kilogram body weight per 
unit distance traveled (mL/kg per m). 
Equivalent to the O2 consumption rate 
divided by walking speed.” 

Waters et al., 

1999 [88] 

Energy 
equivalent of O2  

"𝑂2 − 𝑒𝑞. " =  4.94 (
𝑘𝐽

𝐿
) × (

[𝑉𝐶𝑂2] (𝐿)

[𝑉𝑂2] (𝐿)
) + 16.04 (

𝑘𝐽

𝐿
)  

Garby and 
Astrup, 1987 

[89] 

Gross energy 
cost 

No equation given, “Gross energy cost, defined as the total 

energy used per unit of distance, was calculated in 
𝐽

𝑘𝑔∗𝑚
 by 

dividing energy consumption (according to the Garby and Astrup 
method) during walking by walking speed.” 

Called “energy cost” by Bregman et al. 

[76];  
Brehm et al., 

2006 [90] 
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Chapter 2 : Evaluation of portable compressed gas tanks as fuel sources for 
portable pneumatic robots 

 ABSTRACT 

Introduction: One of the current challenges of creating portable robots and exoskeletons is 

finding lightweight and long-lasting power supplies for effective runtimes. Currently available 

portable pneumatic power sources are limited. When choosing a portable pneumatic power 

source, considerations need to be taken into account in order to determine the proper fuel, 

based on size, weight, cost, and availability. Compressed gas tanks are a current option 

available as portable power sources. In wearable, portable robotics, it is important that the fuel 

source is analyzed for factors of the amount of added weight to the robotic system, the contact 

temperature for the wearer, and the runtime availability for the ideal running duration of the 

wearable device. This study analyzed portable tanks of compressed gas (carbon dioxide (CO2), 

and nitrogen (N2)) as power sources for a pneumatically powered ankle-foot orthosis (PPAFO). 

The PPAFO can be used to provide gait assistance to people with walking disability.  

Methods: A test bench setup of the PPAFO system, with and without an exhaust-gas recycling 

power scheme, controlled to simulate walking was used to collect the temperature and mass of 

the gas tanks during continuous testing to determine the longevity of the gas tanks. Gas mass 

consumed and total runtime were also recorded during PPAFO use by healthy young adults 

during walking on a treadmill and over-ground.   
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Results/Discussion: The CO2 tanks had much colder minimum temperatures (9 oz CO2: -53.1 oC, 

9 oz N2: 8.0 oC) and much faster rates of cooling (9 oz CO2: -9.9 oC/min, 9 oz N2: -1.3 oC/min) 

than the N2 tanks. With the extreme minimum temperature experienced by the CO2 tanks, the 

presence of solid dry ice was noted inside the tanks. When a pneumatic recycling circuit was 

implemented, the (normalized) run time, regardless of fuel source, greatly increased (9 oz N2 

standard circuit: 1.42 min/oz; 9 oz N2 recycling circuit: 1.88 min/oz). The walking trials had a 

longer run time than predicted by the test bench set ups (9 oz CO2 treadmill: 1.69 min/oz, 9 oz 

CO2 test bench: 1.11 min/oz), but followed similar average rate of cooling patterns (9 oz CO2 

treadmill: -6.6 oC/min, 9 oz CO2 test bench: -9.9 oC/min). 

Conclusions: This study concluded that the selection of which compressed gas tanks to use as a 

fuel sources for a portable pneumatic robotic, depends on one’s working device constraints. 

When trying to extend the runtime of a compressed gas tank in a pneumatic system, a 

pneumatic recycling circuit always increased the run time of the gas tank. Due to the increased 

cooling in CO2 and possible issues of equipment freezing, along with the possibility of extreme 

cold contact with the wearer in a wearable robotics platform, compressed N2 was found to be 

the better fuel source. Although when total system weight and availability were taken into 

account, a case can easily be made for using CO2 instead of compressed N2.  
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 INTRODUCTION 

One of the current challenges of creating portable powered devices is finding lightweight and 

long-lasting power supplies for effective runtimes. Two major fields of research in need of 

lightweight portable pneumatic power supplies are mobile or wearable soft robotic systems 

and pneumatically-powered exoskeletons [10, 51, 52]. There are currently limited options 

available for portable pneumatic power supplies. Portable pneumatic power sources such as 

microcompressors, combustion systems, and chemical decomposition systems are also being 

developed, but each presents with its own issues such as unwanted loud noise, high local 

temperatures, and toxic byproducts [53-60]. 

Fixed-volume compressed carbon dioxide (CO2) tanks are commonly used for handheld power 

tools and paintball gaming. One of the main factors that impacts the use and efficiency of 

compressed CO2 as a portable power source is the cooling of the fuel as the tank is emptied, 

due to the endothermic expansion of CO2 [57, 64]. This cooling is known to cause situations 

where the regulators may freeze, especially in the paintball industry where high frequency or 

continual use duty cycles are common, contributing to poorly controlled pressure output [64, 

66]. We hypothesized that the cooling of the fuel and tank will reduce the operating pressure 

and increase fuel consumption rate, which are factors that may reduce the efficiency and 

longevity of a portable robotics platform driven by compressed CO2.  

Another source of portable pneumatic power is compressed gas in a high-pressure air (HPA) 

tank. Traditionally HPA tanks are filled with either high-pressure compressed air or nitrogen 
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(N2). HPA tanks are not reported to freeze like CO2 tanks, and are preferred among paintball 

enthusiasts for game play due to a more consistent tank pressure [65]. Some of the 

disadvantages of HPA tanks as a portable power source are their increased weight due to tank 

construction necessary for higher pressure storage, increased cost of tanks, and limited 

availability of refill locations or the high cost of acquiring high pressure tanks or compressors 

for refilling. We hypothesized that HPA tanks will provide more consistent pressure output and 

limited cooling of N2, such that the efficiency and longevity of a robotics platform will be 

greater compared to CO2.  

In this study, the portable pneumatically-powered system utilized as the test platform was the 

portable powered ankle-foot orthosis (PPAFO) [22, 27]. The PPAFO uses pneumatic power to 

generate torque at the ankle via a rotary actuator (Figure 2.1). To be a portable system, the 

PPAFO has been operated with fixed-volume CO2 tanks. The PPAFO provides two levels of 

torque based on the direction of assistance needed during the gait cycle (Figure 2.2). During 

late stance, a plantarflexor torque is provided by the PPAFO to help with push-off and forward 

propulsion. A much smaller dorsiflexor torque is needed by the PPAFO to support the ankle-

foot complex during leg swing and initial contact with the ground during the next step. These 

plantarflexor and dorsiflexor torques are generated with operating pressures of approximately 

100 psig and 30 psig, respectively. To improve runtime without increasing the size of the power 

source, a pneumatic recycling scheme can be implemented which captures exhaust gas from 

the high-pressure plantarflexor part of the cycle and then uses that exhaust to power the low-

pressure dorsiflexor part of the cycle [27, 28].  
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The aim of the current study was to evaluate fixed-amount compressed gas tanks as power 

sources for a wearable powered robotic system with and without a pneumatic recycling circuit. 

Specifically, we investigated CO2 and N2 based systems, used over the entire emptying time of 

various sized tanks in test bench trials and when used to assist with walking on a treadmill and 

over-ground. We hypothesized that an increased rate of cooling due to continuous usage of the 

CO2 will directly lead to shorter runtimes compared to N2. Secondly, we hypothesized that the 

different sized CO2 bottles would have no difference in normalized run time, but would show 

difference in cooling rates. Lastly, we hypothesized that there would be no difference in 

performance between simulated walking behavior on a test bench and actual walking on a 

treadmill or over-ground, such that the test bench configuration was an appropriate 

representation of actual device operation during walking.  

 METHODS 

We completed the study using the PPAFO testbed powered by compressed gas tanks. The 

primary gas used in the study was CO2, with a secondary analysis of using N2 gas. Due to 

availability in the area, only N2 was evaluated in this study, where compressed air (~78% N2) 

was not evaluated. This analysis of compressed gas was conducted on a test bench created to 

emulate the wearable PPAFO system. The test bench included all of the same pneumatic 

components as the wearable PPAFO, as well as sensors for data collection. To confirm that our 

findings from the test bench were a reliable measure of the intended use of the compressed 

gas tanks in portable powered orthoses, the wearable PPAFO operated with CO2 was tested on 

four test subjects during treadmill walking and seven test subjects during over-ground walking.  
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2.3.1. PPAFO Testbed 

The PPAFO can provide modest dorsiflexor or plantarflexor torque at the ankle via an 

untethered pneumatic power source [22]. Power is typically delivered to the ankle by our 

standard pneumatic circuit: two solenoid valves (VUVG 5V; Festo Corp-US, Hauppauge, NY) 

control a bi-directional rotary actuator (PRN30D-90-45, Parker Hannifin, Cleveland, OH). The 

plantarflexor torque (high pressure) is powered directly from the gas tank with a bottle top 

regulator (JacPac J-6901-91, Pipeline Inc., Waterloo, ON, Canada). Dorsiflexor torque (low 

pressure) is powered from the gas tank with a bottle top regulator and a secondary in-line 

regulator (LRMA-QS-4, Festo Corp-US, Hauppauge, NY) to down regulate the pressure further 

(Figure 2.3 and Figure 2.5). With the current off-the-shelf components, the PPAFO can provide 

between 10-15 Nm of torque with 100-150 psig of pressurized gas during plantarflexion and 3-4 

Nm of torque with 30-35 psig during dorsiflexion.  For the recycling power scheme, an 

additional solenoid valve (VUVG 5V; Festo Corp-US, Hauppauge, NY) and custom accumulator 

were added into the pneumatic power circuit (Figure 2.4 and Figure 2.5).  

The accumulator was a custom-constructed pneumatic elastomeric accumulator (PEA). The PEA 

was assembled from off-the-shelf pneumatic fittings, latex tubing, and a cylindrical 

polycarbonate sheath (Figure 2.7). The PEA concept was based on previous work completed in 

hydraulics where fluid power energy was stored in an elastomer that was then able to return 

the stored energy to the system [33]. As the compressed gas enters the accumulator, the 

elastomer expands within the sheath constraint. As the accumulator powers dorsiflexion, the 
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strain energy stored in the expanded elastomer reenters the pneumatic power system along 

with the stored compressed gas, as the elastomer returns to its original relaxed state. 

The recycling power scheme was a four-phase procedure that allowed compressed exhaust gas 

from each plantarflexion actuation to be stored in the accumulator and released later to power 

the following dorsiflexion actuation [27] (Figure 2.4). The recycling power scheme started with 

phase one where the plantarflexion actuation was powered directly from the gas tank. Phase 

two captured the exhaust from the plantarflexion power into the PEA. Phase three allowed for 

dorsiflexion actuation, by connecting the PEA to the dorsiflexion side of the actuator while 

venting the plantarflexion side of the actuator to atmosphere to allow for the PEA to power the 

actuator. The final phase exhausted the dorsiflexion side of the actuator, preparing for another 

cycle to begin.  

The PPAFO was controlled by a state estimation controller (SE) [23, 91], where the current state 

of the gait cycle was estimated by sensor input from heel and toe sensors on the sole of the 

PPAFO (force sensitive resistor, SEN-09376, SparkFun Electronics, Niwot, CO), as well as the 

current ankle angle from the rotary actuator position (programmable angle sensor, KMA199E,  

NXP Semiconductors, San Jose, CA). The SE controller provided actuation during four key 

regions of gait associated with four functional tasks: (1) initial contact, (2) loading response, (3) 

forward propulsion, and (4) limb advancement (Figure 2.2). Suggested timings for the SE 

controller were based on normative gait event values determined from pre-existing data [25, 

26] (Table 2.1). 
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2.3.2. Data Collection 

For all studies below (test bench, treadmill, and over-ground), trials were completed on 

different days based on availability of equipment, availability of participants, and refill of 

compressed gas tanks. Efforts were made to ensure that environmental conditions were the 

same for every trial, and gas tanks were allowed to equilibrate to room temperature after being 

refilled before being tested again.  

2.3.2.1. Test bench study 

To study the use of each of the gas sources and the effect of the recycling circuit on their use, a 

tabletop version of the PPAFO system was created.  The test bench included all of the same 

pneumatic components as the PPAFO (Figure 2.5). For the test bench trials, the pneumatic 

valves were controlled using a custom Simulink (v 7.13.0.564, the Mathworks, Waltham, MA) 

data collection model, and programmed to represent one gait cycle per second with 

appropriately timed plantarflexion and dorsiflexion actuation based on the temporal 

percentage of the gait cycle, emulating the SE controller (Table 2.1) [27]. To mimic the inertial 

properties of the foot (I = 44.0 kg*cm2, average of 100 males (p.304, Table 4.4, [92])) and the 

range of motion limits of the ankle (dorsiflexion 10o, plantarflexion 20o [25]), an uniform 304L 

stainless steel bar (91.4 cm x 3.18 cm x 0.32 cm, 0.72kg) was attached to the shaft of the rotary 

actuator. By using a test bench PPAFO, the longevity of each power source was evaluated under 

multiple controlled test conditions without the need for numerous able-bodied participants. A 

longevity test consisted of running the PPAFO test bench, as if a person was walking 

continuously, until a gas tank was emptied. The run time was defined as the amount of time it 
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took from starting the trial with a full compressed gas tank until the tank was no longer able to 

provide enough pressure to rotate the actuator.  

The longevity testing evaluated three different fuel tanks. The tanks used in the testing were: 

(1) 9 oz fuel capacity CO2 tank; (2) 20 oz fuel capacity CO2 tank (both from Catalina Cylinders, 

Hampton, VA) and; (3) 4500 psig 68 cubic inch HPA tank (Ninja Paintball, Crystal Lake, IL). The 

CO2 tanks (9 oz and 20 oz) were filled by weight to their rated fill capacity from a bulk CO2 refill 

tank in our facility. The HPA tanks were filled with high pressure N2 to ~4300 psig based on the 

availability of the refill station at the paintball supplier (Firemark Paintball, Dewey, IL), which 

corresponded to ~9 oz of N2 gas. The bottle top regulator was placed on a full gas tank and set 

to 100 psig at the beginning of each trial. Data were collected until the trial ended, defined by 

the actuator no longer being able to rotate through the intended range of motion (visual 

inspection), and no longer hearing audible exhaust from the pneumatic valves (auditory 

inspection). Longevity trials were run for both the standard and recycling pneumatic circuits 

with each gas tank. For the 9 oz CO2 tanks, three full tanks were run per pneumatic circuit. For 

the 20 oz CO2 tanks and 9 oz N2 tanks, two full tanks were run per pneumatic circuit (Table 2.4 

and Table 2.5).  

During each longevity test, temperature and mass were measured (Figure 2.5). The 

temperatures of the gas tank and regulator were recorded using a digital thermometer with 

thermocouples (HH303, Type K, Omega Engineering, Stamford, CT) attached to the bottom 

surface of the bottle and the output valve of the regulator. The minimum tank temperature was 



47 

determined to evaluate the possibility of freezing conditions around the regulator.  The gas tank 

and regulator were suspended such that their combined mass was recorded by a uniaxial force 

gauge (DFG35-10, Omega Engineering, Stamford, CT). The pneumatic pressure at the bottle top 

regulator outlet was recorded by a pressure transducer (AST4000A00150P3B1000, American 

Sensor Technologies, Mount Olive, NJ). The pneumatic pressure at the input to the 

plantarflexion side of the rotary actuator was recorded by another pressure transducer 

(AST4000A00100P3B1000, American Sensor Technologies, Mount Olive, NJ). The pneumatic 

pressure at the input to the dorsiflexion side of the actuator was recorded by a third pressure 

transducer (2091050PG1M2405P, Setra, Boxborough, MA). Pressures and angle were collected 

using a data acquisition device (Q8-USB, Quanser, Markham, Ontario, Canada), and were 

directly imported to the testing computer using Simulink. Mass and temperature were collected 

via USB ports and drivers on the computer and read directly into MATLAB (v2013a).  

2.3.2.2. Treadmill walking testing 

In order to compare the well-controlled test bench scenario for the CO2 gas source to results 

collected while walking with the PPAFO, four healthy young participants (1 female/3 male, age: 

23.1 ± 3.3 years) were tested while walking on a treadmill. Approval for the study was granted 

by the Institutional Review board and participants gave informed consent. Participants 

performed continuous walking on a treadmill while wearing a PPAFO on the right leg, with a 

comfortable walking shoe on the left leg. The treadmill was set to a self-selected comfortable 

speed, while asking the participant to achieve the same gait cycle timing as the test bench (i.e., 

1 Hz step rate created with a metronome set to 60 bpm). The PPAFO actuation timing was 
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controlled by a waist-worn microcontroller programmed with the SE controller, using each 

participant’s real-time signals to estimate the phase of gait, and apply proper directional 

actuation at the timings used in the test bench study (Table 2.1)[23].   

Each participant completed two treadmill trials, one with the PPAFO in the standard pneumatic 

circuit, and one with the PPAFO in the recycling pneumatic circuit. Each trial lasted the length of 

time that a 9 oz CO2 tank was able to power the PPAFO. Trials were ended when the pressure 

gauge on the bottle top regulator dropped below 30 psig (visual inspection), and there was no 

longer audible exhaust from the pneumatic valves (auditory inspection). During each trial, as 

with the test bench trials, temperature and mass of the PPAFO system were collected through 

USB computer interfaces into MATLAB. The CO2 tank was hung from the same testing rig as the 

test bench to measure the mass, such that the participant did not have to carry the gas tank 

while walking.   

2.3.2.3. Over-ground walking testing 

To investigate the run time and use of the CO2 power source during more natural 

unconstrained over-ground walking, an additional testing condition was performed on seven 

healthy young adult participants (2 female/5 male, age: 21.1 ± 1.1 years). Approval for the 

study was granted by the Institutional Review Board, and participants gave informed consent.  

Participants wore a PPAFO on each leg (bilateral) in the standard pneumatic circuit. Participants 

first wore the orthoses for an adaptation period (>20 min) where their gait pattern was 
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programmed into the PPAFO’s modified SE controller [24]. The additional SE controller 

programming allowed for greater adaptive power of the controller, to better estimate the 

phase of gait based on how each participant independently activated the heel and toe sensors, 

and each participant’s ankle angle during gait, as opposed to using normative gait values [24, 

93].  

Participants performed one continuous over-ground walk in a 9 m x 12 m hallway loop with 

four 90-degree turns. The trial began with one full 20 oz CO2 bottle per PPAFO, and the trial 

ended when there was no longer audible exhaust from the pneumatic circuit (auditory 

inspection), and the participant no longer felt any assistance from the PPAFO on one side. Each 

participant carried two CO2 tanks (one per PPAFO) on a tool belt at their waist during the over-

ground walking trials. The total consumed mass of CO2 was recorded for each condition, as well 

as the total distance walked, and the total walking time until the first CO2 tank was empty.  

2.3.3. Data Analysis 

For the test bench, the outcome measures of normalized run time (min/oz), mass consumed 

(oz), rate of cooling (oC /min), and minimum temperature (oC) were analyzed to determine the 

relationship of these factors to longevity, and to compare these values across tank sizes (9 oz, 

20 oz), and fuel types (CO2, N2). Normalized run time was computed as time per amount of fuel 

consumed, such that the total run time was divided by the total mass consumed. Rate of 

cooling was computed from the initial to minimum temperatures of a tank and the amount of 
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time needed to reach the minimum temperature in a trial. A linear approximation was 

determined to represent the experimental data (Figure 2.8).  

2.3.4. Statistical Analysis 

Outcome measures of normalized run time, mass consumed, minimum temperature and rate of 

cooling were compared to assess compressed gas fuel types (CO2 and N2), experimental testing 

conditions (test bench, treadmill walking and over-ground walking), tank sizes (9 oz and 20 oz), 

and pneumatic circuit type (standard and recycling) . Due to only certain trials performed per 

fuel type, experiment condition, and tank size, the collected data did not allow for full analyses 

of test condition (3) × fuel type (2) × tank size (2). First, the 9 oz tank trials were compared with 

a MANOVA, using normalized run time, minimum tank temperature, and rate of cooling, as the 

dependent variables with type-experiment trials (9 oz CO2 test bench, 9 oz N2 test bench, and 9 

oz CO2 treadmill walking) and pneumatic circuit type (standard vs. recycling) as fixed factors. 

Second, the different CO2 tank sizes were compared with a MANOVA, to investigate differences 

in normalized run time, minimum tank temperature, and rate of cooling as the dependent 

variables with tank size (20 oz CO2 and 9 oz CO2 test bench) and pneumatic circuit type 

(standard vs. recycling) as fixed factors.  For these MANOVAs, Bonferroni post-hoc comparisons 

were performed when appropriate. Lastly, an independent-samples T-test was used to compare 

only experiment conditions (20 oz CO2 test bench to the 20 oz CO2 over-ground walking) for the 

parameter of normalized run time. For all tests, the level of significance was set to α = 0.05.  

 RESULTS 
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The first statistical comparison was to directly compare the different types of fuel, experimental 

testing conditions, and pneumatic circuits. The 9 oz CO2 test bench, 9 oz N2 test bench, and 9 oz 

CO2 treadmill conditions were compared with both standard and recycling pneumatic circuits. 

The MANOVA found overall significance for differences in type-experiment trials (p < 0.001) and 

pneumatic circuit type (p < 0.001), as well as a significant interaction (p < 0.001). For the 

parameter of normalized run time, the 9 oz CO2 treadmill trials were significantly longer than 

the 9 oz CO2 test bench and the 9 oz N2 test bench conditions (p < 0.001, Figure 2.9). There was 

no significant difference between fuel type (N2 vs. CO2) for normalized run time. The recycling 

trials had significantly longer normalized run times than the standard pneumatic circuit trials (p 

< 0.001, Figure 2.9). For the rate of cooling (Figure 2.10), all trials were significantly different 

from one another (p < 0.001), and the standard and recycling pneumatic circuits were 

significantly different (p < 0.001), with a significant interaction between circuit and trial type (p 

< 0.001). The parameter of minimum tank temperature (Figure 2.11) showed a significant 

difference between trial type, with the 9 oz N2 test bench  having a significantly warmer 

minimum tank temperature than both the 9 oz CO2 test bench, and 9 oz CO2 treadmill 

conditions (p < 0.001).  

The second statistical comparison was to compare the different sized CO2 tanks with the 

standard and recycling pneumatic circuits on the test bench for the parameters of normalized 

run time, rate of cooling, and minimum tank temperature. The MANOVA showed significant 

effects for bottle size (p < 0.001) and pneumatic circuit type (p < 0.001) with a significant 

interaction effect (p = 0.005). The normalized run time was significantly different between the 
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standard and recycling pneumatic circuits (p < 0.001,Figure 2.12), with no significant differences 

based on tank size (9 oz vs. 20 oz). The rate of cooling (Figure 2.13) was significantly different 

for bottle size (p < 0.001), pneumatic circuit (p < 0.001), with a significant interaction effect (p < 

0.001).  The minimum tank temperature (Figure 2.14) also was significantly different for bottle 

size (p < 0.001), pneumatic circuit (P < 0.001), with a significant interaction effect (p < 0.001). 

The last statistical comparison was to compare the test bench to over-ground walking, both 

with 20 oz CO2 tanks. An independent samples T-test showed no significant difference between 

the normalized run time for the 20 oz CO2 test bench and 20 oz CO2 over-ground walking trials 

(Figure 2.15).  

  DISCUSSION 

This study evaluated fixed-volume compressed gas tanks as power sources for powered robotic 

systems. In this study, the implementation of a pneumatic recycling circuit was used to further 

evaluate the compressed gas tanks in robotic systems. The robotic system used in this study 

was the portable powered ankle-foot orthosis (PPAFO). Two different compressed gas systems 

(CO2 and N2) with various sized tanks were analyzed on a test bench as well as treadmill and 

over-ground walking. We hypothesized that the tanks of CO2 would have shorter normalized 

run times than the tanks of N2. When comparing different sized tanks of CO2, we hypothesized 

that the normalized run times would be the same regardless of tank size, but a slower rate of 

cooling would be demonstrated in a larger volume tank. Lastly, we hypothesized that the 
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performance of compressed gas tanks as fuel on the test bench (with simulated walking 

behavior) would act similarly to actual over-ground and treadmill walking with the PPAFO.  

 To address our first hypothesis, we compared a 9 oz tank of N2 on the test bench to 9 oz tanks 

of CO2 on the test bench and while walking on the treadmill. The CO2 tanks (regardless of 

testing condition), had significantly colder minimum temperatures compared to the 9 oz N2 

condition (Figure 2.11). As we hypothesized, the CO2 tanks had significantly faster rates of 

cooling than the N2 tank (Figure 2.10), although we did not see the expected difference in 

normalized run time between the 9 oz CO2 and 9 oz N2 test bench conditions (Figure 2.9). The 

relationships between runtime and temperature were thermodynamically-based, with each gas 

type having its own unique characteristics. The gas characteristics such as those commonly 

depicted in a phase diagram (i.e. phase transition curves), where the temperature and pressure 

of the gas inside the tank determine whether the fluid exists as a gas or as a combination of gas, 

solid, and liquid are responsible for some of the differences in behaviors between gases that 

were observed in this study. The characteristics of CO2 are especially worth noting; as with the 

pressures and temperatures experienced in running down a CO2 tank, it is possible to go 

through multiple phase transitions. The difference in minimum temperatures of the two gasses 

(CO2: -53.1 oC, N2: 7.9 oC) is important to note, as the temperature of the working fluid can have 

impact on the functional of pneumatic components. Most pneumatic components are rated for 

working fluid temperatures, such that mechanical and electrical parts inside the components 

will not freeze up or be damaged by extreme temperatures.  
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Interestingly, the 9 oz CO2 treadmill condition had the longest normalized run time compared 

to the 9 oz CO2 test bench condition (Figure 2.9, Table 2.4), likely due to the variability in 

actuating against a biological active ankle in treadmill walking, as opposed to the more constant 

set up of the test bench. It is possible that while wearing the PPAFO, participants went through 

smaller ranges of motion at the ankle during walking than expected, using less volume of fuel 

per actuation.  

As expected from previous work [27], the recycling circuit provided an increased normalized 

run time compared to the standard pneumatic circuit (Figure 2.9). The recycling circuits also 

provided for a reduced rate of cooling in the CO2 trials, as the tanks still eventually reached the 

same minimum temperature as the standard circuit but did so over a longer run time (Figure 

2.8 & Figure 2.10).  

Our second hypothesis involved comparing different sized CO2 tanks with both the standard 

and recycling pneumatic circuits on the test bench. As we hypothesized, there was no 

difference due to CO2 tank size for normalized run time (Figure 2.12) and there was a significant 

difference in cooling rate (Figure 2.13). Additional findings in this comparison included the 

expected increase in normalized run time due to the recycling pneumatic circuit.   

Lastly, we hypothesized that there would be no difference between test bench and treadmill or 

over-ground walking. The comparison between 20 oz CO2 test bench and 20 oz CO2 over-

ground walking showed no significant differences for normalized run time (Figure 2.15). There 
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was a significant difference between normalized run time for 9 oz CO2 test bench and 9 oz CO2 

treadmill, with the treadmill having a greater normalized run time (Figure 2.9).  It is not clear-

cut to draw strong conclusions from these differences as the over-ground and treadmill studies 

differed in a few ways. Specifically, the over-ground study was completed with bilateral 

PPAFOs, and the treadmill study was completed with a unilateral PPAFO. Also in the over-

ground study, participants were allowed to walk at their preferred speed (average 0.9 Hz gait 

cycle), whereas in the treadmill study, the participants were encouraged to walk with a 1 Hz 

gait cycle to match the test bench controller settings. Generally, the test bench is a reasonable 

approximation of the PPAFO use during walking, and should be continued to be used for device 

design and development, likely with validation for each type of study.  

2.5.1. Presence of dry ice 

One qualitative observation that was recorded during the trials was the evidence of presence of 

dry ice inside the tank at the end of each standard pneumatic circuit CO2 trial. Presence of dry 

ice was determined by shaking the tank and listening for a solid rattling noise on the test bench 

and treadmill walking tests. It is plausible based on the data collected that the formation of dry 

ice could be related to the rate of cooling. The total mass consumed values per each trial 

though did not vary between the trials that had dry ice formation (standard) and those without 

(recycling), indicating that the amount of dry ice was unlikely to be a usable amount of fuel 

from the tank.  

2.5.2. Other Considerations 
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Other than the length of time that a given amount of compressed gas will power a portable 

robotic device, some other considerations might need to be taken into account, such as the 

overall weight of the filled tank, and the overall price of the system. A 4500 psig 68 cu. in. 

fiberglass HPA tank filled will 9 oz of N2 can weigh ~55 oz, where as a filled 9 oz CO2 tank weighs 

~24.5 oz, almost half the total weight of the N2 system. The cost of HPA tanks is also more than 

that of CO2 tanks (approximately $100 HPA vs. $30 CO2), and it can be more difficult to find 

available retailers or to set up one’s own system to fill the HPA tanks for regular use [65].  

An important proof of concept in using a pneumatic recycling scheme was demonstrated here. 

In order to have an application for a recycling scheme, a system must have at least two 

different pressure needs, in that it has a higher pressure actuation from which the exhaust gas 

can be captured to power a lower pressure actuation. If a control system can be designed to 

operate portable pneumatic robotics in this way, then a substantial improvement in any power 

source longevity can be expected.  

2.5.3. Limitations  

This study was not without limitations. As with any pneumatic system, there is always the 

possibility for undetected leaks within the system that can affect outcome measures.  This work 

could have benefited from a few more trials on any condition to improve the statistical power, 

but the repeatability of the test bench was proven by just two or three reliable trials completed 

on different days. As with any human subjects testing, there is natural variability in human 

motion, so it is not expected that a test bench will exactly replicate the human study results.  
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 CONCLUSION 

This study concluded that the selection of which compressed gas tanks to use as a fuel sources 

for a portable pneumatic robot, depends on one’s constraints. If a long run time is needed, a 

recycling scheme to reuse pressurized exhaust gas will greatly extend the lifetime of any fuel 

source. The downside to using CO2 is the extreme cooling that happens with constant use that 

can cause possible component freezing, and the possible formation of dry ice. The HPA tank 

filled with compressed N2 does not get as cold as the CO2 tanks, although the HPA tank is 

heavier than the CO2 tanks. Consideration of higher cost and greater difficulty with refilling may 

limit the use of HPA tanks versus CO2 tanks. From this study, we are able to conclude that if cost 

and availability are concerns for the fuel source, than CO2 is the better option; if pneumatic 

components or external robot components experiencing a very cold temperature is of 

significant concern then N2 or compressed air is the better option. When powering portable 

pneumatic robots, a more compact and long-lasting fuel source would be ideal, but until such a 

power supply is developed, fixed volume compressed gas tanks have the ability to provide 

portable power for extended periods of use.  
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Table 2.2: Participants in walking studies (Treadmill and Over-ground) 

 Participants Age Height Weight 

Treadmill  N = 4 (3 Male/1 Female) 23.1 ± 3.3 years 179.6 ± 2.0 cm 77.8 ± 3 kg 

Over-ground  N = 7 (5 Male/2 Female) 21.1 ± 1.1 years 178.4 ± 5.5 cm 71.5 ± 6 kg 

 

Table 2.1: State Estimation Controller Scheme [27] 

Functional 
Task 

% gait 
cycle 

Torque Direction 

1. Initial Contact 0-7 Dorsiflexor 

2. Loading Response 7-48 None 

3. Forward Propulsion 48-62 Plantarflexor 

4. Limb Advancement 
62-67 None – Charginga 

67-100 Dorsiflexor 

a. Without recycling, dorsiflexor torque starts at 62% of the 
gait cycle as there is no need for a charging phase 

b. Gait cycle timings adapted from Perry [25] 
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Table 2.3: Data Collection Sensors 

Sensor Model # Company 

Pressure Transducer – 50 psig 2091050PG1M2405P Setra, Boxborough, MA 

Pressure Transducer – 100 psig AST4000A00100P3B0000 American Sensor Technologies, Inc, Mount Olive, NJ 

Pressure Transducer – 150 psig AST4000A00150P3B1000 American Sensor Technologies, Inc, Mount Olive, NJ 

Force Gauge DFG35-10 Omega Engineering, Stamford, CT 

Thermometer HH303, Type K Omega Engineering, Stamford, CT 

Angle sensor – programmable angle sensor KMA199E NXP Semiconductors, San Jose, CA 

Data acquisition device Q8-USB Quanser, Markham, Ontario, Canada 
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Table 2.4: Mean (standard deviation) of all longevity experimental trials 

 
Number 
of Trials 

Run Time 
(min) 

Mass 
consumed 

(oz) 

Normalized 
Run Time 
(min/oz) 

Minimum bottle 
temperature 

(oC) 

Average rate 
of cooling 
(oC/min) 

Standard Circuit       

20 oz CO2 Test bench n = 2 20.42 
(0.24) 

17.92 
(0.02) 

1.14 
(0.01) 

-49.3 
(0.4) 

-3.97 
(0.40) 

9 oz CO2 Test bench n = 3 9.26 
(0.10) 

8.32 
(0.46) 

1.11 
(0.07) 

-53.1 
(0.4) 

-9.87 
(0.09) 

9 oz (~4300psig) HPA (N2) n = 2 12.96 
(0.12) 

9.12 
(0.11) 

1.42 
(0.03) 

8.0 
(0.9) 

-1.32 
(0.05) 

9 oz CO2 Treadmill Walking n = 4 13.73 
(2.55) 

8.12 
(0.73) 

1.69 
(0.17) 

-48.5 
(7.5) 

-6.63 
(0.86) 

20 oz CO2 Over-ground Walking n = 7 25.32 
(2.65) 

19.58 
(0.71) 

1.29 
(0.19) 

Data not collected 

Recycling Circuit       

20 oz CO2 Test bench n = 2 30.15 
(0.15) 

17.44 
(0.11) 

1.73 
(0.02) 

-44.0 
(0.6) 

-2.25 
(0.02) 

9 oz CO2 Test bench n = 3 11.46 
(0.39) 

7.04 
(0.18) 

1.63 
(0.01) 

-44.1 
(0.2) 

-5.78 
(0.18) 

9 oz (~4300psig) HPA (N2) n = 2 16.25 
(2.45) 

8.64 
(0.34) 

1.88 
(0.21) 

7.8 
(0.3) 

-0.91 
(0.17) 

9 oz CO2 Treadmill Walking n = 4 20.86 
(3.40) 

7.84 
(0.41) 

2.66 
(0.36) 

-44.6 
(2.7) 

-3.75 
(0.37) 

 



61 

Table 2.5: Individual trial values for each testing condition and circuit 

Data 
Source 

Pneumatic 
Circuit 

Time 
(min) 

Mass  
consumed 

(oz) 

Normalized 
Run Time 
(min/oz) 

Dry Ice 
formed? 

(Y/N) 

Minimum 
temp. 

(oC) 

Rate of 
cooling 

(oC/min) 

Test 
bench  
20 oz 
CO2 

Standard 
20.25 17.95 1.13 Y -49.5 -4.26 

20.59 17.98 1.15 Y -49.0 -3.69 

Recycling 
30.25 17.28 1.75 N -44.4 -2.23 

30.04 17.44 1.72 N -43.5 -2.26 

Test 
bench  
9 oz 
CO2 

Standard 

9.35 8.00 1.17 Y -53.3 -9.93 

9.28 8.00 1.16 Y -53.3 -9.77 

9.15 8.80 1.04 Y -52.6 -9.91 

Recycling 

11.74 7.20 1.63 N -43.9 -5.66 

11.02 6.88 1.60 N -44.3 -5.99 

11.63 7.20 1.62 N -44.0 -5.70 

Test 
bench 

N2 

Standard 
13.04 8.96 1.46 N 8.6 -1.28 

12.87 9.12 1.41 N 7.3 -1.35 

Recycling 
17.99 8.80 2.04 N 7.6 -0.79 

14.52 8.32 1.75 N 8.0 -1.02 

Treadmill 
Walking 

CO2 

Standard 

13.30 8.00 1.66 Y -51.1 -7.36 

10.44 7.20 1.45 N -37.4 -5.55 

14.68 8.32 1.76 Y -53.9 -7.29 

16.49 8.96 1.84 Y -51.6 -6.33 

Recycling 

20.53 8.00 2.57 N -46.8 -3.84 

23.29 8.32 2.80 N -46.8 -3.77 

16.17 7.36 2.20 N -43.4 -4.14 

23.43 7.68 3.05 N -41.3 -3.26 

Over-
ground 
Walking 

CO2 

Standard 

25.0 19.84 1.26 N 

Data not collected 

30.51 17.95 1.70 N 

24.52 19.68 1.25 N 

21.92 19.82 1.11 N 

26.30 19.85 1.32 N 

24.30 19.99 1.22 N 

24.63 19.53 1.26 N 
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 FIGURES 

 

 

Figure 2.1: Portable Powered Ankle-Foot 
Orthosis (PPAFO) with waist worn fuel 
tank and microcontroller.  

Figure 2.2: Assistance during a gait cycle provided by the PPAFO. Torque values are based 
on 100 psig during plantarflexor assistance and 30 psig during dorsiflexor (DF) assistance.  
 
Adapted and reprinted from Clinical Gait Analysis, Kirtley, C., Introduction, p. 201-22, © 2006, 
with permission from Elsevier.  
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Figure 2.3: Standard pneumatic power scheme for 
PPAFO [27] © 2013 IEEE 
 

Figure 2.4: Recycling pneumatic power scheme for 
PPAFO [27] © 2013 IEEE 
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Figure 2.5: Test bench setup of PPAFO 
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Figure 2.6: PPAFO with accumulator 
and pressure transducers for longevity 
testing. All components were attached 
to the PPAFO for both pneumatic 
circuits during treadmill testing, so only 
pneumatic connections needed to be 
adjusted between trials. For the over-
ground walking trials, the pressure 
transducers on the back and the 
accumulator were not attached to the 
PPAFO.   

Figure 2.7: Fully assembled custom elastomeric strain energy accumulator used in the 
recycling circuit. Top image: uninflated accumulator. Middle image: partially inflated 
accumulated. Bottom image: fully inflated accumulator. The balloon expands and slides to 
fill the allowed space by the outer shroud.  
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Figure 2.8: Bottle temperature throughout longevity trial of 9 oz CO2 and N2 tanks on test 
bench. Rate of cooling was computed by finding slope of the curve between the average 
starting temperature and the average minimum temperature (dashed lines). Each solid 
colored line represents an independent trial for a given condition.  

Figure 2.9: Normalized run time for each 9 oz trial type. The 9 oz 
CO2 treadmill trial had a significantly longer normalized run time 
than either test bench trial (‡). There was also a significant 
difference between pneumatic circuits: recycling and standard (*). 
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Figure 2.10: Rate of cooling for each 9 oz tank trial. All trial 
conditions (9 oz CO2 test bench, 9 oz N2 test bench, and 9 oz CO2 
treadmill) were significantly different from one another (‡). The 
standard and recycling circuits were also significantly different 
from one another (*), with a significant interaction effect (#).  

Figure 2.11: Minimum tank temperature comparing the 9 oz 
fuel experiments. The N2 tank had a significantly warmer 
minimum tank temperature than the 9 oz CO2 tank test bench 
and treadmill trials. There were no significant differences 
between standard and recycling pneumatic circuits. 
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Figure 2.12: Normalized run time for comparing CO2 
tank sizes. There is a significant difference between 
pneumatic circuits (standard and recycling) (*).  

Figure 2.13: Rate of cooling compared between CO2 tank 
sizes. There are significant differences between tank sizes 
(‡) and between pneumatic circuits (*), as well as a 
significant interaction (#).  
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Figure 2.14: Minimum tank temperature 
comparing CO2 tank sizes. There is a 
significant difference between tank sizes (‡) 
and pneumatic circuits (*), as well as a 
significant interaction (#). 

Figure 2.15: Normalized run time comparing 
the test bench to over-ground walking. There 
was no significant difference between test 
bench and over-ground conditions. The 
standard deviation for the test bench is 
smaller than the marker used. 
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Supplemental Figures

 

 

 
Figure 2.16: Average linear approximation of rate of cooling for each gas tank type on the 
test bench and during able-bodied treadmill walking.  

 
Figure 2.17: Normalized run time for each longevity trial type.  
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Figure 2.18: Minimum tank temperature reached for each longevity trial type.  
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Chapter 3 : Spatiotemporal, kinematic, and metabolic evaluation of a bilateral, 
bidirectional powered ankle-foot orthosis in able-bodied over-ground gait 

 ABSTRACT 

Introduction: Previous research on powered ankle-foot orthoses and exoskeletons have 

focused mainly on powered devices that apply assistive torque during plantarflexion while 

walking on a laboratory treadmill. The purpose of this study was to evaluate the short-term 

kinematic and metabolic impact of bilateral, bidirectional powered ankle assistance via a 

powered ankle-foot orthosis in an able-bodied population during over-ground walking.  

Methods: The portable powered ankle-foot orthosis (PPAFO) device was used in this study. 

Eight healthy young adults completed three 6 minute walk (6MW) tests during which they wore 

a portable metabolic unit. During a portion of the path, the participant walked over a gait mat 

and through a 3D motion capture space. Three footwear conditions were compared: shoes-

only, bilateral unpowered ankle orthoses, and bilateral powered ankle orthoses. Outcome 

measures of 6MW distance, stride velocity, stride length, stride width, metabolic cost of 

transport, and sagittal-plane knee and ankle angles (peak magnitudes in four subphases of gait) 

were determined and compared between footwear conditions.  

Results and Discussion: With the powered PPAFOs, participants were able to reduce the 

metabolic cost of transport for walking compared to the unpowered PPAFO condition, and they 

were able to match the metabolic cost of transport for shoes walking (Powered: 0.30 ± 0.08, 

Unpowered: 0.36 ± 0.07, Shoes: 0.32 ± 0.03). Kinematic changes were found while using the 
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PPAFOs, specifically an unexpected reduction in plantarflexion angle during toe-off (Powered: -

12.9 ± 7.2o, Unpowered: -18.6 ± 5.6o, Shoes: -27.8 ± 6.6o).  

Conclusions: Being able to match the metabolic cost of transport while using the powered 

PPAFO in over-ground walking compared to shoes is a valuable starting place for being able to 

further research augmenting gait with new technologies. Yet, some of the unexpected results 

kinematic changes while using the PPAFO motivate us to further investigate the mechanical 

design of devices so that users can better match their natural gait pattern in regards to 

spatiotemporal and kinematic parameters. 
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 INTRODUCTION 

Lower limb powered orthoses and exoskeletal systems are currently being developed for a 

variety purposes ranging from augmenting the abilities of able-bodied individuals, e.g., [1-3], 

assisting the abilities of those with physical limitations, e.g., [4, 5], and studying the 

fundamental biomechanics and motor control of normal and pathological gait, e.g., [6, 7]. There 

are many types of lower limb exoskeletons, based on the number of actuated joints, and type 

of power system used, e.g., [9, 10]. Generally, complete lower limb devices tend to neglect the 

ankle even though much of the force needed for gait is transferred through the ankle joint to 

the ground [11-13]. A recent review of the use of powered lower limb orthoses for gait 

assistance even mentions the need for devices with powered ankle joints [4].  

Some of the most studied powered ankle-foot orthoses (PAFO) designs are those from the 

University of Michigan (e.g., [5-7, 34, 36-42, 94, 95]). These devices generally provided powered 

plantarflexion and/or powered dorsiflexion through pneumatic muscles, with EMG-based 

controls during gait. These tethered designs use a laboratory air compressor and desktop 

computer to power and control the pneumatic muscles while participants walk on a laboratory 

treadmill at constant speeds. Studies have investigated unilateral device use and uni- (or bi-) 

directional powered actuation to investigate motor adaptation in gait of able-bodied persons 

[6, 37].  

Other researchers have adopted the Michigan PAFO design with a pneumatic muscle to create 

plantarflexor torque and have explored the effect of added plantarflexor torque to the 
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metabolic cost of walking in young able-bodied participants. At Virginia Tech, a team of 

researchers used a bilateral set of kinematic controlled PAFOs [43, 44]. The data for the timing 

of the custom control algorithm were based on the angular velocity of the foot section of each 

orthosis during walking. In maintaining a tethered design, Norris et al. [44] investigated the 

impact of providing additional plantarflexion via the PAFO while walking on a treadmill on the 

metabolic cost of transport and preferred walking speeds in young and older adults. 

Researchers at Gent University used a kinematic controller based on a footswitch located under 

the heel in a series of bilateral PAFO studies on their Wearable Assistive Lower Leg eXoskeleton 

(WALL-X) design [2, 16, 45-47]. One study aimed to determine the ideal timing of turning on the 

powered plantarflexion in regards to gait cycle time based on reducing the metabolic cost of 

walking [16].  

Recently, a novel ankle exoskeleton was developed by researchers at MIT specifically to reduce 

the metabolic cost of walking in able-bodied individuals [3, 48, 49]. This ankle exoskeleton 

provided a large plantarflexor torque (approximately 120 Nm [3]) during push off using an 

electrical winch actuator and strut. The ankle exoskeleton allowed free movement during swing 

by providing slack in the drive cord such that the user did not notice any assistance or 

impedance from the exoskeleton. The plantarflexor torque timing was controlled kinematically 

by gyroscopes on the actuator, which provided angular shank velocity data to the controller. 

With onboard controllers at the waist, this untethered system was still only tested on a 

treadmill at fixed speeds [3, 49].  
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Although much work has been done in the area of powered ankle-foot orthoses and 

exoskeletons, so far the studies done with these devices have been limited to laboratory 

environments with treadmill walking. As most of human walking occurs over-ground, it is 

necessary to begin to study the impact of these devices in less strict walking environments.  

Researchers at the University of Illinois developed the first untethered PAFO that provides 

actuation in both plantarflexion and dorsiflexion using a bidirectional pneumatic rotary actuator 

at the ankle (e.g., [22-24, 27, 91, 96, 97]). Pneumatic power can be provided in a portable 

system by a waist-worn tank of compressed gas. Modest plantarflexor torque of 9-12 Nm can 

be generated using an input pressure of 90-120 psig, and a dorsiflexor torque of ~3 Nm was 

heuristically tuned to support the foot during swing by down regulating the input pressure to 

~30 psig [91, 98, 99]. The Portable Powered Ankle-Foot Orthosis (PPAFO) can been 

kinematically controlled with an on-board microcontroller using foot switches and ankle angle 

sensor. The PPAFO testbed explored multiple approaches to determine the current phase of 

gait to control plantarflexor and dorsiflexor torque timing with either direct measurement of 

gait events [22] or algorithms to estimate the state of the system as a function of gait cycle [23, 

24, 96]. As a portable gait assistance device, studies have also been conducted to understand 

control while walking in multiple environments (level-ground, stairs, ramps) [91] and methods 

to improve fuel efficiency [27].  

The purpose of this study was to evaluate the short-term kinematic and metabolic impact of a 

bidirectional powered ankle-foot orthosis in an able-bodied population during over-ground 
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walking that is not restricted to walking on a treadmill. The PPAFO was worn bilaterally in young 

healthy adult participants. We hypothesized that use of the powered PPAFO would reduce 

steady-state metabolic cost compared to the unpowered PPAFO and shoes only, due to the bi-

directional powered assistance provided by the PPAFO. We also hypothesized that there would 

be greater dorsiflexion during swing and a greater plantarflexion at toe off with the powered 

condition compared to unpowered condition and shoes only. Finally, we hypothesized that 

participants would have greater over-ground gait speed (stride velocity) when walking in the 

powered condition compared to the unpowered condition, and a slower gait speed with the 

unpowered condition as compared to shoes only.  As there is little previous research on 

bidirectional assistance at the ankle during able-bodied gait, we hope to learn about the 

importance of powered dorsiflexion as well as plantarflexion assistance, especially as related to 

gait pathologies with lower limb weakness. 

A secondary exploration within the study was completed which specifically addressed 

adaptation during walking with the PPAFO. The amount of training and adaptation time needed 

to optimize the use of a powered exoskeleton device is an area of current research in the field 

[37, 38, 46, 47, 94, 95, 100]. Much of the research has shown mixed results in the amount of 

time needed for neuromuscular adaptation, with values ranging from 5 to 25 minutes of 

controller training or walking practice needed. Higher powered and EMG controlled devices 

seem to require more time to adaptation than lower powered and kinematically controlled 

devices [7, 38]. We conducted a preliminary investigation into kinematic or metabolic 

adaptation changes throughout 20 minutes of walking, which occurred after a controller 
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training period. As our device is lower powered and kinematically controlled compared to 

previously published exoskeleton designs, we hypothesized, that a shorter (less than 20 

minutes) amount of time will be necessary for adaptation.  

 METHODS 

3.3.1. Portable Powered Ankle Foot Orthosis 

The PPAFO can provide dorsiflexor or plantarflexor torque via an untethered pneumatic power 

source; thus allowing for gait assistance away from confined spaces or treadmill walking (Figure 

3.1). Torque is delivered to the ankle through a standard pneumatic circuit: two solenoid valves 

(VUVG 5V; Festo Corp-US, Hauppauge, NY) control a rotary actuator (PRN30D-90-45, Parker 

Hannifin, Cleveland, OH). The rotary actuator was powered directly from a portable 

compressed CO2 tank (20oz, Catalina Cylinders, Hampton, VA) with a bottle top regulator 

(JacPac J-6901-91, Grainger, Inc). The valves and controller were powered by a portable battery 

pack.  

The PPAFO was designed with interchangeable sizes in the shank and foot bed fiberglass shells 

to create a custom fit with padding for every participant. The PPAFO also had an orthotic rocker 

sole to aid in natural gait with a hard sole orthotic [101-103]. With the pneumatic valves, 

actuator, and other necessary hardware, each PPAFO has a total weight of near 1.8 kg. The 

electronics controller and battery as well as the portable pneumatic tank were worn at the 

waist and weigh approximately 1.5 kg. The design of the PPAFO was intended to keep at much 

weight as possible centrally located on the body, near the wearer’s center of mass [104, 105]. 
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The applied torque of the PPAFO can provide directional assistance at the ankle as needed 

throughout all phases of the gait cycle (Figure 3.2). The PPAFO was controlled by a modified 

fractional time state estimation controller (SE) [24], where the current state of the gait cycle 

was estimated by sensor input from heel and toe contact sensors on the sole of the PPAFO, as 

well as a Hall effect sensor that measured ankle angle. The SE controller provided actuation 

during four functional gait tasks: (1) initial contact, (2) loading response, (3) forward propulsion, 

and (4) limb advancement (Figure 3.2). 

For this study, a bilateral PPAFO system was used (Figure 3.3). Each PPAFO was run from its 

own controller and fuel source. The PPAFO controllers in the bilateral system were 

programmed and run independently from one another.  

3.3.2. Participants 

The study included eight healthy young adult participants (Table 3.1) with no previous 

experience testing the PPAFO. Inclusionary criteria included wearing a men’s shoe size 5-14 and 

having no severe or recent lower limb injuries. Exclusionary criteria included significant cardiac 

or respiratory problems, and the inability to walk without assistive devices. Approval for the 

study was granted by the Institutional Review Board and participants gave informed consent.  

3.3.3. Testing Protocol 

Participants first wore the PPAFOs for a training period where the PPAFO controller was trained 

for an individual’s gait pattern. The training period took approximately 20 minutes; during that 

time, the participant walked sporadically with the PPAFO for a cumulative walking time of ~10 
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minutes. To start the training period, the PPAFO controllers were set to baseline assistance 

timing based on normative gait timing values [25]. The PPAFOs were trained one at a time, such 

that the PPAFO (side) that was not being trained was powered with the most recently update 

program timings (initially, the baseline assistance was used). The participants were instructed 

to walk as naturally as possible with the powered PPAFOs. For each PPAFO’s controller training, 

the participants walked for more than 10 continuous test steps during which heel, toe, and 

angle sensor data from that PPAFO were collected. The PPAFO sensor data were then evaluated 

to determine the ideal timing for each participant based on the participant’s pattern of sensor 

activation (gait pattern) [24]. The PPAFO controller was then updated with the new actuation 

timings. After one PPAFO controller was initially updated, then the other side PPAFO was 

programmed in the same manner as the first. The participant was asked to repeat the 

aforementioned process such that the programming would be repeated for each side. The 

controller adjustment process was repeated at least three times for each PPAFO, alternating 

between the controller for each side. Verbal feedback from each participant was also used to 

confirm comfortable actuation timings. After the controller timings were set, each participant 

finished the training period by walking until he/she felt comfortable with the actuation of the 

PPAFO; at a minimum, each participant completed one loop around the 9 m x 12 m hallway 

while acclimating to walking with the PPAFOs. 

Participants then completed three 6-minute walk (6MW) tests that were performed over-

ground in a 9 m x 12 m hallway loop with four 90-degree turns (Figure 3.4). Instructions were 

given to the participant to walk as fast as possible within the limits of their safety for the 
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entirety of the 6MW. With the PPAFO trials (unpowered and powered), participants were also 

instructed to walk as naturally as possible. One 6MW was completed per footwear condition: 

personal shoes, unpowered bilateral PPAFOs, powered bilateral PPAFOs. The trials were always 

completed in the same order such that the shoes trial was always completed first for a baseline 

measurement, and the powered PPAFO condition was always complete last so that the 

participants could continue walking past the 6MW until the portable power sources for the 

PPAFOs ran out of fuel (determined by cessation of pneumatic exhaust sounds from control 

valves) as part of another study (Chapter 2). For both the powered and unpowered trials, 

participants donned both the PPAFOs as well as the fuel tanks and controllers that were worn 

at the waist. 

3.3.4. Outcome Measures/Data Analysis 

Spatiotemporal, kinematic, and metabolic parameters of gait were measured during each 

6MW. During each 6MW, spatiotemporal parameters of gait were measured as the participant 

passed over an 8.9 m pressure sensitive walkway (GAITRite, CIR Systems Inc., Sparta, NJ) with 

each lap (≥ 4 passes per 6MW test). Bilateral values of stride length (cm), stride width (cm), and 

stride velocity (cm/s) for each participant were determined from the software (GAITRite 4.0). 

Averaged values were then computed from the values recorded during the final 3 minutes of 

the 6MW. Total distance traveled during the 6MW was recorded with a measuring wheel 

(RT312, Rolatape, Watseka, IL). 
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During each 6MW, rates of oxygen consumption (V̇O2(mL min )⁄ ) and carbon dioxide 

production (V̇CO2(mL min )⁄ ) were measured breath-by-breath using a commercially available 

portable metabolic unit (K4b2, Cosmed S.r.l., Rome, Italy). Net values for V̇O2  and V̇CO2 were 

computed using 30-second moving averages for 1 minute before the 6MW (resting) and over 

the entire 6MW (walking) using the Cosmed software. Steady-state values then were computed 

from averaging walking values for the final 3 minutes of the 6MW. Net values were computed 

by subtracting average resting values from the steady-state values (Eqns. 1 and 2) [86].  

[V̇O2]
net

(mL min )⁄ =  [ V̇O2]
steady−state

−  [V̇O2]
resting

 (1) 

[V̇CO2]
net

(mL min )⁄ =  [ V̇CO2]
steady−state

− [V̇CO2]
resting

 (2) 

Metabolic cost of transport (COTm) was computed to quantify the energy expenditure during 

walking [40, 41, 43, 86].  A modified Brockway equation [84] with updated coefficients by  

Adamczyk et al. [87]  was used to calculate COTm from the net V̇O2 and V̇CO2as suggested by 

Donelan et al. [86] (Eqn. 3). Gait speed was computed as the average gait speed over the last 

three minutes of the 6MW, by dividing the distance covered in that time by 3 minutes.  

Metabolic Cost of Transport (COTm)

=   
16.477 (W ∙ s mL)⁄ ∗ [V̇O2]

net
(mL/min)  +  4.484 (W ∙ s mL)⁄ ∗ [V̇CO2]

net
(mL/min)

60 (
s

min) ∗ body weight (N) ∗ gait speed (m/s)
 

(3) 
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COTm was normalized by body weight. In the PPAFO conditions (unpowered and powered), an 

additional 6.6 kg was added to the participant’s body weight (1.8 kg for each PPAFO and 1.5 kg 

for each compressed gas tank and controller).   

Lower body movements were recorded using a motion capture system for a portion of each 

loop around the 6MW path (Oqus Motion Capture Camera System, Qualisys, Highland Park, IL) 

(Figure 3.4). A lower body 23 static marker set was used with markers on the ASIS, greater 

trochanter, mid-thigh, lateral knee epicondyle, medial knee epicondyle, tibia, lateral malleolus, 

medial malleolus, heel, toe 1, and toe 5 for both the right and left limbs, as well as a sacral 

marker. In the trials where the PPAFOs were worn, an extra marker was placed on the lateral 

point of the actuator in line with the plantarflexion/dorsiflexion axis of the ankle (Figure 3.3). 

The sagittal plane joint angles (ankle, knee) were determined from the motion capture data. 

The marker data were filtered (4th order Butterworth filter, 12Hz cutoff frequency), and then 

using inverse kinematics subject-specific models calibrated to a static standing pose, the joint 

angles were computed (Visual3D v5, C-Motion, Germantown, MD). Heel strike and toe off 

events were determined for each gait cycle by visual inspection of the motion data. Each 

participant completed at least one gait cycle for each pass through the motion capture space. 

Data analysis was completed on the passes through the motion capture space during the final 

three minutes of each 6MW; each participant completed at least 4 passes per final three 

minutes. To compare ankle and knee angles between footwear conditions, for each gait cycle, 

the local minimum or maximum peak magnitude and peak timing were found during four 
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subphases of gait: loading response, terminal stance, pre-swing (near toe-off), and terminal 

swing [25].  

A secondary exploration was completed which specifically addressed adaptation during walking 

with the PPAFOs. All participants were asked to complete an additional 14 minutes of walking 

after completing the 6MW, for a total of 20 minutes of continuous over-ground walking. The 

final three minutes (minutes 18-20, “Powered-Late”) of walking were compared to three last 

minutes from the 6MW test (minutes 4-6, “Powered”). All of the spatiotemporal, metabolic, 

and kinematic parameters were collected and analyzed as described above during this 

extended walking time period. One of the eight participants chose to end the powered PPAFO 

walking trial after completing the 6MW due to uncomfortable fit of the PPAFOs (Table 3.1). 

3.3.5. Statistical Analysis 

A series of repeated measures MANOVAs were run to assess the effect of footwear condition 

on metabolic, spatiotemporal, and kinematic data (SPSS v22, IBM Corporation, Armonk, New 

York).  First, spatiotemporal and metabolic measures of COTm, stride velocity, stride length, 

stride with, and 6MW distance were compared across footwear conditions (shoes, unpowered, 

powered) with a repeated measures MANOVA. Then the same parameters were evaluated for 

adaptation (powered, powered-late) with a repeated-measures MANOVA. Kinematic 

parameters of ankle angle peak magnitudes and timing and knee angle peak magnitudes and 

timing were also compared across footwear conditions (shoes, unpowered, powered) and for 

adaptation (powered, powered-late) using four repeated measures MANOVAs. Follow-up post-
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hoc tests (Bonferroni) were examined on significant variables to identify significantly different 

footwear conditions. Level of significance was set to α = 0.05. 

 RESULTS 

The first statistical comparison found differences in COTm, stride velocity, stride length, stride 

width, and 6MW distance dependent on footwear condition. The MANOVA for the metabolic 

and spatiotemporal parameters found overall significance for differences in footwear 

conditions (p < 0.001). Metabolic cost of transport was significantly greater during unpowered 

PPAFO walking than powered PPAFO walking (p = 0.012, Table 3.2, Figure 3.5). Stride velocity (p 

< 0.001), stride length (p = 0.004) and 6MW distance (p < 0.001) were significantly greater in 

the shoes condition than in the unpowered or powered PPAFO conditions. Both the stride 

velocity and 6MW distance were greater in the unpowered condition than the powered 

condition (Table 3.2, Figure 3.5). For stride width, the shoes condition was significantly 

narrower than the unpowered or powered conditions (p = 0.005).  

Lower limb kinematics during the final 3 minutes of the 6MW tests were compared across 

footwear conditions (Figure 3.6). For ankle angle, differences were seen in both peak timing 

and magnitude between footwear conditions (MANOVA, p < 0.001). The plantarflexion peak 

during loading response was sooner (p = 0.022) in the unpowered condition than either the 

shoes (1% GC later) or powered conditions (2 %GC later). At the dorsiflexion peak at terminal 

stance, it was observed that the shoes condition peak occurred significantly sooner (p < 0.001) 

than the unpowered (4.1 %GC later) or powered (6.4 %GC later) conditions, and the unpowered 
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condition peaked significantly sooner (2.3 % GC earlier) than the powered condition. The 

plantarflexion peak magnitude at pre-swing was significantly greater (p < 0.001) in the shoes 

condition than the unpowered (9.2o less) or powered conditions (14o less). The dorsiflexion 

peak during terminal swing was significantly later (p = 0.002) in the shoes condition than the 

unpowered (5.5 %GC earlier) and powered conditions (7.9 %GC earlier) , and the dorsiflexion 

peak magnitude at terminal swing was significantly greater (p = 0.008) in the powered condition 

than the shoes (6o less) or unpowered condition (6.8o less) (Figure 3.6, Table 3.3).  

For knee angle, only timing of the peak magnitude were significantly different between 

footwear conditions (MANOVA, p = 0.003) . For the peak at loading response, the unpowered 

PPAFO condition was significantly earlier than the powered or shoes conditions (p = 0.033). For 

the terminal stance (p < 0.001) and mid-swing peaks (p < 0.001), the powered PPAFO condition 

was significantly later than the shoes or unpowered PPAFO conditions (Figure 3.6, Table 3.3). 

When examining the effect of adaptation to the PPAFO over 20 minutes of walking in the 

spatiotemporal and metabolic parameters of gait, no significant differences were seen between 

minutes 4-6 (Powered) and minutes 18-20 (Powered-Late) of the powered PPAFO walking 

condition (MANOVA, p = 0.653, Table 3.2, Figure 3.5). There were also no significant differences 

found in ankle (MANOVA, p = 0.344) or knee (MANOVA, p = 0.139) angles between minutes 4-6 

or 18-20 of powered PPAFO walking (Figure 3.6).  

 DISCUSSION 
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The purpose of this study was to evaluate the short-term kinematic and metabolic impact of 

bilateral ankle exoskeletons in an able-bodied population during over-ground walking. We 

evaluated the impact of the bilateral PPAFOs in a 6-minute walk (6MW) test environment 

where each participant completed one 6MW per footwear condition: personal shoes, 

unpowered PPAFOs, and powered PPAFOs. Each participant also was asked to complete 

continued over-ground walking for the preliminary adaptation study with the powered PPAFOs 

past the 6-minute time if they were able. Seven out of 8 participants completed 20 minutes of 

walking with the powered PPAFOs (Table 3.1).  

We hypothesized that in the powered PPAFO condition, participants would have a reduced 

metabolic cost of transport, compared to the unpowered PPAFO and shoes conditions, due to 

the bi-directional powered assistance provided by the PPAFOs (Table 3.2). The results of this 

work indicate that as hypothesized, in the powered PPAFO condition, participants used less net 

metabolic power than in the unpowered condition. There was no statistically significant 

difference between the shoes and powered PPAFO condition in this study. These results 

indicate that the powered PPAFOs provide some energetic assistance and are able to reduce 

the COTm from the unpowered PPAFOs, but they are not better than able-bodied walking with 

shoes. Given the weight (6.6 kg) and design (rocker bottom) of the PPAFOs, it is substantial to 

point out that in the powered condition, being as good as a normal walking shoes condition in 

regards to metabolic power is an achievement. A device that does not require more energy to 

walk is a good starting point for future research regarding optimizing the PPAFOs for human 

augmentation, whether in able-bodied or impaired individuals.  
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We hypothesized that participants would have a faster over-ground gait speed when walking 

with the powered PPAFOs compared to the unpowered PPAFOs, and a slower gait speed with 

the unpowered PPAFOs compared to shoes. Contrary to our hypothesis, the results of this study 

indicated that the powered PPAFOs caused participants to walk with a slower stride velocity 

than the unpowered PPAFO condition, and the shoes condition allowed for a faster stride 

velocity than both the unpowered and powered PPAFO conditions (Table 3.2, Figure 3.5). The 

stride velocity was correlated to the total distance walked in the 6MW. The participants walked 

the furthest in the shoes condition, and the participants walked further in the unpowered 

PPAFO condition than in the powered PPAFOs condition. When comparing stride length values, 

the shoes condition had a significantly longer stride length than either the unpowered or 

powered PPAFO conditions. The final spatiotemporal parameter that was investigated was 

stride width, in which the shoes condition had a significantly smaller stride width than either 

the unpowered or powered PPAFO conditions. All of the changes above, generally walking with 

smaller and slower length steps with a wider base (stride length), point to the participants 

reacting to feeling unstable while walking with the PPAFOs. It is possible that in a study with a 

unilateral PPAFO, participants would likely have felt more stable, compensating with their 

unassisted limb in learning how to best walk with the PPAFO. In future studies, one could 

possibly measure lower limb electromyography on the plantarflexor and dorsiflexor muscles to 

see if muscle coordination was timed with PPAFO actuation. It is possible that some of the 

unexpected differences, such as slower velocity with the PPAFO could be explained by 

oppositional muscle coordination, where the participant is acting against the PPAFO action.  
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We hypothesized that participants would have a larger peak dorsiflexion angle during swing and 

larger peak plantarflexion angle at toe off in the powered condition compared to the 

unpowered and shoes conditions. As hypothesized, the powered condition provided the 

greatest dorsiflexion angle during swing (Table 3.3, Figure 3.6). Contrary to our hypothesis, the 

powered condition provided a smaller plantarflexion ankle at toe off than the shoes condition, 

and there was no significant difference between the powered and unpowered conditions at 

toe-off. It is unclear at this time why the powered PPAFO did not produce a larger 

plantarflexion peak than the other footwear conditions, especially the unpowered condition.   

In terms of timing of the peak dorsiflexion and peak plantarflexion angles, the powered and 

unpowered conditions changed the timing of the ankle angle peaks from the shoes condition 

(range from 1-6 %GC difference, Table 3.3). It is likely that these timing differences were due to 

multiple factors including the programmed actuation timings of the PPAFOs (for the powered 

condition), the added distal mass of the PPAFOs, and the rocker-bottom sole of the PPAFOs. 

Even though the controller was programmed specifically for each participant’s gait, it is still 

possible that the participant became part of a feedback system in which, as we changed the 

controller to match the participant’s gait, the participant subconsciously changed their gait 

pattern to match the actuation timing of the PPAFO. At a certain point in training, the controller 

timing and the participant’s timing converged so that the participant was able to feel 

comfortable walking, but it is impossible to determine from this study how much the controller 

timing dictated the participant’s gait pattern timing. Other researchers have put time and effort 

into determining when the best time is to actuate a powered exoskeleton during treadmill 
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walking [16], with increasing attention to varying the gait speeds [96],  it is unclear if their 

timing scheme would be applicable in over-ground walking.  

We also investigated sagittal plane knee kinematics to see if changes were seen in the knee 

between footwear conditions. No significant changes were observed in peak knee angles, but 

statistically significant changes were found in the timing of the peaks throughout the gait cycle 

(< 3 %GC differences, Table 3.4). Although these changes in timing were statistically significant, 

the changes were not very large and not likely clinically significant. These timing changes may 

be just compensatory responses to the changes in ankle kinematics.  

In regards to net metabolic power, it is worth noting that, in our preliminary adaptation 

investigation to compare minutes 4-6 to minutes 18-20 of walking with the PPAFO, no 

significant difference was found at the later time point. The first possibility to explain the lack of 

difference is that the true metabolic steady-state with the powered PPAFOs was reached in 

minutes 4-6 and no further metabolic adaptation could occur. One could argue an alternate 

interpretation such that metabolic adaptation was still occurring, but 20 minutes of walking was 

not long enough to elicit a significant change in metabolic power and a longer bout of 

continuous walking is needed to elicit a further reduction in metabolic power needed to walk. 

Previous research shows that it takes anywhere from 7-18 minutes to metabolically adapt to 

walking with a powered exoskeleton [43, 46]. Previous research regarding the type of controller 

used and the force provided by the ankle exoskeleton also comments on the time needed to 

adapt, with a lower-powered, and kinematically controlled exoskeleton both taking a shorter 
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amount of time to adapt [7, 38]. Since our device is lower powered than those previously used 

in research and it uses a kinematically based controller, it is reasonable that it fits in with 

previous research such that participants were able to reach a steady state by the end of 6 

minutes of walking. 

 There were no significant changes in ankle or knee kinematics in the powered PPAFOs 

condition between minutes 4-6 and minutes 18-20 of over-ground walking. Similar to the COTm, 

this result may be due to that the participants had already reached a kinematic adaptation to 

the PPAFOs by the 4-6 minute mark, such that there was no significant change at 18-20 

minutes. Another possibility is that the participants had yet to adapt their kinematics 

completely and were still slightly adjusting their movement, just not enough for statistical 

significance.  

One confounding factor of the study design that was not taken into account in the analysis of 

the spatiotemporal, kinematic, and metabolic changes was the ordering of the footwear 

conditions. Each participant completed the shoes condition first, followed by the unpowered 

condition, and then the powered PPAFO condition. Although each participant was given at least 

10 minutes rest between 6MW tests, there still could have been fatigue or other factors from 

the previous walks that influenced the later walks.  

It is possible that some of these spatiotemporal, kinematic, and metabolic changes were due to 

two attributes of the PPAFOs: the rocker bottom and the mass of the device (1.8 kg per PPAFO). 

Previous research has commented on the impact of adding mass to the distal end of the leg 
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during gait [104, 105], such that additional mass as the ankle increases the metabolic 

parameter of choice (oxygen consumption rate [104] and net metabolic rate [105]). Barnett et 

al. [104] reported that adding 1.82 kg unilaterally did not changed the rate of oxygen 

consumption or the walking speed. Adding 3.73 kg bilaterally (1.82 kg per leg) resulted in an 

increased swing time. A linear regression analysis showed that oxygen consumption rate versus 

added weight was a significant relationship. Browning et al. [105] found similar trends, but 

evaluated 4 kg (2 kg/limb) as the smallest added mass, which is greater than the mass of our 

PPAFOs. The rocker-shape of the PPAFO sole also possibly had some impact on the gait of these 

participants as a rocker bottom sole is known to change the kinematics of gait, and possibly 

impact spatiotemporal and metabolic parameters of gait as well [87, 101-103]. 

One unique aspect of this study was the use of over-ground walking assessment. Most lower 

body exoskeletal work has been evaluated on treadmills. Completing this study in an over-

ground walking environment provided a more realistic use scenario, which had the added 

advantage or perhaps disadvantage of introducing greater variability into the study. 

Participants were allowed to easily change gait speed whenever they desired, whereas gait 

speed is generally controlled on a motorized treadmill. Over-ground walking also allowed for 

any natural changes in gait kinematics to happen at the preferred speed based on footwear as 

opposed to at a specified, fixed speed. Previous research has indicated that there are significant 

differences between over-ground and treadmill walking [106], and it is important that lower-

limb devices are evaluated in the task for which their end use is designed.  
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3.5.1. Limitations 

This study was limited by a few factors, including the small and limited participant number. 

Some of the participant’s gait might have been impacted by the fit and comfort of the PPAFO 

devices. Even though the devices were sized and fit to the participant, they were not custom fit 

and designed for each participant. Also the participants were asked to carry the controllers and 

fuel bottles for the PPAFOs during the unpowered and powered PPAFO conditions, whereas 

exoskeletons in treadmill studies are tethered to off-board power supplies. This adding weight 

at the waist (3.0 kg, two full CO2 fuel tanks and regulators and control boxes) may have 

impacted the gait parameters evaluated here. Also as with any human subject study, there is 

always inherent variability in how each participant completed the task. For this study, it is 

possible that our results would have been more consistent if each participant would have had 

more time training with the device and practice walking with the PPAFOs. Although participants 

were given training time, it is also possible that more familiarity with the device would have 

produced different outcomes.  

 CONCLUSIONS 

In conclusion, this study evaluated a bilateral powered ankle exoskeletal system in an over-

ground walking environment with able-bodied young adults.  The bilateral PPAFO system was 

programmed to match subject-specific gait patterns. With the powered PPAFOs, participants 

were able to reduce the metabolic power needed for walking compared to the unpowered 

PPAFO condition, and they were able to match the minimum metabolic power needed in shoes 

walking. Some kinematic changes were found while using the PPAFOs, primarily at the ankle 
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such that there was an unexpected reduction in plantarflexion during toe-off. Some of the 

unexpected results motivate us to further investigate the mechanical design of the device so 

that users can better match their natural gait pattern in regards to spatiotemporal and 

kinematic parameters. In summary, being able to match the metabolic cost of transport while 

using the powered PPAFOs in over-ground walking to that used while wearing shoes is 

noteworthy. The differences in COTm, while still impacting spatiotemporal and kinematic 

parameters is a good starting point for continually improving and developing new technologies 

for gait augmentation.  
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 FIGURES 

 

 

 
Figure 3.1: Portable Powered Ankle-Foot Orthosis 

 
Figure 3.2: Assistance during a gait cycle provided by the PPAFO. Torque values are based 
on 100 psig during plantarflexor assistance and 30 psig during dorsiflexor (DF) assistance. 
Figure adapted from Kirtley (2006) [26] 

Reprinted from Clinical Gait Analysis, Kirtley, C., Introduction, p. 201-22, © 2006, with 
permission from Elsevier.  
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Figure 3.3: Lower body motion capture marker sets used with the bilateral PPAFO testbed.  

 

Figure 3.4: 6-minute walk test path with motion capture space, 
and gait mat in the loop. 
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Figure 3.5:  Spatiotemporal and metabolic parameters of gait during the final 3 minutes of the 
6MW.  

* indicates significantly different from other two footwear conditions 
# indicates significantly different from powered condition   
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Figure 3.6: Lower limb kinematics during the final 3 minutes of the 6MW test compared 
across footwear conditions at 4-6 and 18-20 minutes of walking.  
 
* indicates significant timing differences on the x-axis,  
+ indicates significant peak magnitude differences near the peak magnitude.  
significance was set to p < 0.05 
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 TABLES 

 

 

Table 3.1: Participant demographics for 6MW and > 20 minutes of walking 

Participant Groups  Males/Females Age (years) Height (cm) Weight (kg) 

Completed 6MW n = 8 6 / 2 20.9 ± 1.2 178.7 ± 5.1 71.7 ± 5.7 

Completed > 20 
minutes of walking 

n = 7 5 / 2 21.1 ± 1.1 178.4 ± 5.5 71.5 ± 6.1 
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Table 3.2: Mean (± standard deviation) Metabolic and Spatiotemporal parameter values for eight participants 

 Shoes Unpowered Powered 
Powered-

Late 

p-value 
(shoes, unpowered, 

powered) 

Metabolic Cost of 
Transport 

0.32 ± 0.03 0.36 ± 0.07 # 0.30 ± 0.08 0.25 ± 0.08 p = 0.012 

Stride Velocity (cm) 194.9 ± 14.4 * 157.1 ± 25.7 # 141.1 ± 22.1 140.9 ± 24.9 p < 0.001 

Stride Length (cm) 177.9 ± 8.4 * 157.1 ± 15.4 156.5 ± 11.2 155.6 ± 15.6 p = 0.004 

Stride Width (cm) 12.6 ± 2.3 * 15.5 ± 2.8 15.3 ± 2.3 15.5 ± 2.7 p = 0.005 

6MW Distance (m) 669.3 ± 49.6 * 538.9 ± 80.7 # 482.5 ± 70.8  p < 0.001 

* indicates significantly different from other two footwear conditions 
 # indicates significantly different from powered condition.  
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Table 3.3: Mean (± standard deviation) Ankle peak kinematic magnitudes and times 

 
 

Shoes Unpowered 
Powered  
(min 4-6) 

Powered – Late 
(min 18-20) 

p-value 
(shoes, unpowered, powered) 

Ankle Angle 
Loading Response 

-8.2 ± 3.1 deg -6.3 ± 5.7 deg -5.1 ± 4.7 deg -4.7 ± 4.7 deg p = 0.468 

Ankle Angle Timing 
Loading Response  

8.1 ± 1.3 %GC 7.2 ± 0.8 %GC # 9.3 ± 1.6 %GC 9.3 ± 2.0 %GC p = 0.022 

Ankle Angle 
Terminal Stance 

6.7 ± 3.2 deg 5.5 ± 4.1 deg 6.1 ± 4.6 deg 7.1 ± 4.2 deg p = 0.859 

Ankle Angle Timing 
Terminal Stance 

46.3 ± 2.5 %GC * 50.4 ± 1.1 %GC # 52.7 ± 0.7 %GC 51.2 ± 1.7 %GC p < 0.001 

Ankle Angle 
Pre-Swing 

-27.8 ± 6.6 deg * -18.6 ± 5.6 deg -13.8  ± 6.0 deg -12.9 ± 7.2 deg p < 0.001 

Ankle Angle Timing 
Pre-Swing 

64.7 ± 1.5 %GC 64.8 ± 1.4 %GC 65.6 ± 0.6 %GC 66.2 ± 1.6 %GC p = 0.129 

Ankle Angle 
Terminal Swing 

1.0 ± 3.3 deg -0.2 ± 5.1 deg 7.0 ± 5.1 deg * 6.9 ± 5.6 deg p = 0.008 

Ankle Angle Timing 
Terminal Swing 

98.5 ± 0.9 %GC * 93.0 ± 5.0 %GC 90.6 ± 5.3 %GC 89.6 ± 4.9 %GC p = 0.002 

* indicates significantly different from other two footwear conditions 
# indicates significantly different from powered condition  
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Table 3.4: Mean (± standard deviation) Knee peak kinematic magnitudes and times 

 

 
Shoes Unpowered 

Powered  
(min 4-6) 

Powered – Late 
(min 18-20) 

p-value 
(shoes, unpowered, powered) 

Knee Angle 
Loading Response 

27.4 ± 3.9 deg 29.7 ± 4.2 deg  27.7 ± 4.2 deg  28.0 ± 6.3 deg p = 0.757 

Knee Angle Timing 
Loading Response 

14.6 ± 1.3 %GC 13.2 ± 0.9 %GC * 14.6 ± 1.0 %GC 14.4 ± 1.0 %GC p = 0.033 

Knee Angle 
Terminal Stance 

4.1 ± 3.5 deg 5.6 ± 3.3 deg 4.7 ± 2.9 deg 6.3 ± 3.3 deg p = 0.612 

Knee Angle Timing 
Terminal Stance 

40.7 ± 0.9 %GC 41.2 ± 0.8 %GC 43.0 ± 1.2 %GC *  42.6 ± 0.9 %GC p < 0.001 

Knee Angle 
Pre-Swing 

67.7 ± 4.2 deg 69.5 ± 5.5 deg 71.8 ± 4.9 deg 72.2 ± 4.5 deg p = 0.237 

Knee Angle Timing 
Pre-Swing 

73.3 ± 1.0 %GC 73.3 ± 1.2 %GC 75.4 ± 0.9 %GC * 75.6 ± 0.9 %GC p < 0.001 

Knee Angle 
Terminal Swing 

4.5 ± 5.1 deg 8.4 ± 3.2 deg 6.7 ± 6.6 deg 6.2 ± 3.5 deg p = 0.446 

Knee Angle Timing 
Terminal Swing 

98.5 ± 1.4 %GC 98.4 ± 0.6 %GC 98.7 ± 1.0 %GC 99.1 ± 0.8 %GC p = 0.611 

* indicates significantly different from other two footwear conditions 
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Chapter 4 : Spatiotemporal and Metabolic Parameters of Gait in Persons with 
Multiple Sclerosis using Passive and Powered Ankle Foot Orthoses 

 ABSTRACT1 

Objective: To determine if a powered orthosis or exoskeleton that provides dorsiflexor and 

plantarflexor assistance at the ankle can improve the gait of persons with multiple sclerosis 

(MS). 

Design: Cross-sectional repeated-measures  

Setting: University research laboratory 

Participants: Sixteen participants with neurologist-confirmed diagnosis of MS and daily use of a 

prescribed custom passive ankle-foot orthosis (AFO). Post hoc analysis identified difference in 

impairment severity by groups based on Expanded Disability Status Scale (EDSS) score: 

moderate (EDSS ≤ 5.5, N = 8) and severe (EDSS ≥ 6.0, N = 8). 

Interventions: Three 6-minute walk tests (6MW), one per footwear condition: shoes, prescribed 

passive AFO, and powered portable AFO (PPAFO), with the assistive devices worn on the more 

impaired limb.  

                                                      

1 This chapter has been formatted and prepared to send to the Archives of Physical Medicine and Rehabilitation for 
future publishing.  
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Main Outcome Measures: Distance walked, spatiotemporal parameters of gait, and metabolic 

cost of transport were collected during each 6MW and compared between footwear conditions 

and EDSS groups.  

Results: PPAFO use resulted in shorter stride length, slower stride velocity, and a shorter 6MW 

distance than a passive AFO. Regardless of footwear, the moderate group had longer and faster 

strides, longer 6MW distances, and reduced metabolic cost of transport compared to the 

severe group.  

Conclusions: Use of the current embodiment of the portable powered AFO did not improve gait 

performance in a sampling of participants with gait impairment due to MS. Further research is 

required to determine if expanded training or modified design of powered orthoses can be 

effective at assisting and improving gait function in persons with gait impairment due to MS.  

Keywords: orthosis, multiple sclerosis, gait, rehabilitation, exoskeleton  
Abbreviations:  
6MW (6-minute walk test) 
AFO (ankle-foot orthosis) 
EDSS (expanded disability status score) 
MS (multiple sclerosis) 
COTm (metabolic cost of transport) 
PPAFO (portable powered ankle-foot orthosis) 

V̇O2 (rate of oxygen consumption) 

V̇CO2(rate of carbon dioxide production)  
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 INTRODUCTION 

Traditional ankle-foot orthoses (AFOs) often fail to restore normal ankle function because they 

lack the ability to actively modulate motion control during gait and cannot produce propulsion 

torque and power. A test bed of a portable powered ankle-foot orthosis (PPAFO) has been 

developed to explore the issues and challenges related to creating mobile actively-powered 

orthotic devices [22]. As the PPAFO is still a research device, not ready for commercialization, it 

is being use as a platform to address some of these challenges such as issues of control, 

runtime, and weight. Researching these topics is helping to advance the field of powered 

orthotics towards commercial use. The PPAFO can provide modest dorsiflexor or plantarflexor 

torque at the ankle using a portable pneumatic power source (Figure 4.1). The bidirectional 

assistance is applied at the ankle as needed throughout all phases of the gait cycle including 

late stance and propulsion, which is unavailable in current commercially-available technologies 

[14]. The timing of when to apply the bidirectional assistance is determined by a user-specific 

tuned kinematics-based controller that uses the PPAFO’s toe and heel force sensors and ankle 

angle to estimate the state of the limb during the gait cycle [23]. The PPAFO was built as a 

modular system with small, medium, and large foot beds and small, medium, and large tibial 

shells in order to choose the appropriate size for each participant. Padding was used to create a 

custom fit in the best-sized components for each participant. To further inform the design 

needs and functional impact of a powered ankle assistance device, a study was designed to 

assess the effect of added dorsiflexor and plantarflexor torque on a population of persons with 

gait impairment due to multiple sclerosis.  
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The major disease process of Multiple Sclerosis (MS) is characterized by demyelination lesions 

of the white matter of the brain stem, cerebellum, and spinal cord [70] resulting in lower limb 

weakness leading to gait impairment [71]. This gait impairment presents major personal, social, 

and economic burdens on those living with MS [73]. Passive AFOs are often used clinically to 

assist with foot drop due to lower limb weakness in persons with MS in attempts to mitigate 

the resulting gait impairment [74].  

Passive ankle-foot orthoses have shown mixed results when analyzed in a research setting in 

persons with MS [75, 80, 83]. Ramdharry et al.[80] found that, although the AFO did initially 

cause destabilization of standing posture, after four weeks of using an AFO, persons with MS 

reported fewer limitations in their mobility (e.g. walking, running, stair climbing) when assessed 

using the Multiple Sclerosis Walking Scale-12 [81]. Sheffler et al. [75] saw no significant 

improvement in persons with MS with the AFO compared to no-device trials on functional gait 

tasks (timed 25-foot walk, five components of the modified Emory functional ambulation 

profile [82]). McLoughlin et al. [83] investigated the effect of a dorsiflexion assist orthosis 

during a modified 6-minute walk test. When using the dorsiflexion assist orthosis, there was no 

difference in distance walked or perceived fatigue, but there was reduced physiological cost of 

walking (change in heart rate when walking normalized by gait speed) [83]. 

Passive ankle-foot orthoses have also been studied in mixed populations of MS and stroke [76-

78]. Bregman et al. [76]completed a more in depth analysis of the impact of a passive AFO on 

gait in persons with MS and stroke. They evaluated the effect of the mechanical properties of 
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the AFO (stiffness and neutral angle as measured by a BRUCE device [79]) on the energy cost of 

walking (calculated from the net oxygen consumption, and respiratory exchange ratio, then 

normalized by walking speed and body mass [90]), walking speed, gait kinematics, and kinetics 

[76]. The researchers concluded that if the mechanical properties of the AFO matched the 

patient’s needs, the patient greatly benefited with improved outcome measures. Overall they 

found that walking with an AFO decreased cost of walking and greater walking speed; although 

when the participants were divided into two groups (presence or absence of foot drop during 

swing), statistical power was diminished. Expected differences in ankle angle (decreased 

plantarflexion during swing and initial contact in the foot drop group, and no change in the no 

foot drop group) were observed due to the AFO, but without statistical significance [76]. 

Bregman et al. continued to study the impact of AFOs on persons with MS and stroke, 

specifically by using a spring-like carbon-composite AFO [77]. With the AFO in that study, 

Bregman et al. observed a decrease in energetic cost of walking, decreased range of motion of 

the ankle, and decreased net work at the ankle. The decreased range of motion was due to 

reduced plantarflexion, which was mechanically blocked by the AFO, leading to reduced push-

off. Even with decreased push-off, the AFOs were able to provide enough assistance in 

dorsiflexion to lead to an overall reduced metabolic cost. Hwang et al. compared an AFO-

shaped band (elastic band attached to the thigh and shank with a loop to hold up the forefoot), 

a molded plastic AFO, and barefoot conditions in persons with stroke and MS [78]. The AFO-

shaped band increased the gait velocity and cadence compared to the barefoot and AFO 

conditions, with mixed results in stride length differences. Although most of these studies agree 
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in that passive AFOs can assist persons with MS to improve gait from an unassisted condition, 

the existing research is limited to devices that only provide assistance with dorsiflexion.  

The goal of this current investigation was to determine if a powered device that provided active 

bi-directional (dorsiflexor and plantarflexor) assistance can improve the gait of persons with 

gait impairment due to MS. This study evaluated both metabolic and spatiotemporal aspects of 

gait with the PPAFO compared to both a patient-prescribed AFO and shoes-only condition 

during a six minute walk protocol.  

 METHODS 

4.3.1. Participants 

The study included 16 participants with a neurologist-confirmed diagnosis of MS and daily use 

of a prescribed custom passive AFO for gait assistance (12 female/4 male, age: 54.6 ± 5.3 years, 

Expanded Disability Status Score: 5.75 [4, 6] (mean [IQR]). Participants were allowed to use 

their normal assistive device: 4 used a single point cane, 1 used a two-wheeled walker, 3 used a 

four-wheeled walker, and 2 used the walls and arms of caregivers on a regular basis. Approval 

for the study was granted by the University of Illinois at Urbana-Champaign Institutional Review 

Board and participants gave informed consent.  

4.3.2. Experimental Procedure 
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First, a clinical examination of disability was performed by trained investigators (REK, YL)2 to 

establish Expanded Disability Status Score (EDSS) [107]. Participants completed three 6-minute 

walk (6MW) tests that were performed over-ground in a 9 m x 12 m hallway loop with four 90-

degree turns. One 6MW was completed per footwear condition: shoes, AFO, and PPAFO. The 

PPAFO was worn on the more affected limb (i.e., the same side as the prescribed AFO, or more 

impaired side if prescribed bilateral AFOs) with the participant’s normal walking shoe on the 

contralateral limb. For this study, the electronics control box of the PPAFO was worn at the 

chest on an over-the-shoulder harness, and the portable pneumatic air tank was carried by a 

research assistant following the participant. Participants first wore the PPAFO for a training 

period (~ 10 minutes of intermittent walking) where their gait pattern was programmed into 

the PPAFO controller. During the training period, sensor data from the heel, toe, and angle 

sensors on the PPAFO were used to estimate the phases of gait for each participant. The 

timings of these phases were then used to better inform the controller of appropriate timings 

for applying gait assistance. The shoes condition 6MW was always completed first as a baseline. 

The remaining two conditions (AFO and PPAFO) were randomized between subjects with 10-

minute periods of recovery between all walks.  

4.3.3. Data analysis 

                                                      

2 Rachel E Klaren (REK) and Yvonne Learmonth (YL) from the Exercise Neuroscience Research Lab in the 
Department of Kinesiology and Community Health at the University of Illinois at Urbana-Champaign performed the 
EDSS clinical examination.  
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Multiple parameters of interest were collected during each 6MW. Spatiotemporal parameters 

of gait were measured as the participant passed over an 8.9 m pressure sensitive walkway 

(GAITRite, CIR Systems Inc., Sparta, NJ) with each lap (≥ 4 passes). Bilateral values of stride 

length (cm), stride width (cm), and stride velocity (cm/s) for each participant were determined 

from the software (GAITRite 4.0). Averaged values were then computed from the data recorded 

during the six-minute period. The total 6MW distance traveled (m) was recorded with a 

measuring wheel (RT312, Rolatape, Watseka, IL). Rates of oxygen consumption (V̇O2(mL/min)) 

and carbon dioxide production (V̇CO2(mL/min)) were measured breath-by-breath using a 

commercially available portable metabolic unit (K4b2, Cosmed S.r.l., Rome, Italy). V̇O2 and 

V̇CO2 were measured as 30-second averages for 1 minute before the 6MW (resting) and over 

the entire 6MW (walking). Steady-state values were computed from average walking values of 

the final 3 minutes of the 6MW. Net values were computed by subtracting average resting 

values from the steady-state values (Eqns. 1 and 2).  

[V̇O2]
net

 (mL min⁄ ) =  [ V̇O2]
steady−state

− [V̇O2]
resting

 (1) 

[V̇CO2]
net

(mL min⁄ ) =  [ V̇CO2]
steady−state

− [V̇CO2]
resting

 (2) 

Metabolic cost of transport (COTm) was used to quantify the energy expenditure during gait 

[86]. COTm  was computed from the net V̇O2 and V̇CO2 using a modification to the Brockway 

equation [84] to calculate the COTm as suggested by Donelan et al. [86], with updated 

coefficients by Adamczyk et al. [87] (Eqn. 3).  
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Metabolic Cost of Transport (COTm) = 

 
16.477 (W ∙ s mL)⁄ ∗ [V̇O2]

net
(mL min⁄ ) + 4.484 (W ∙ s mL)⁄ ∗ [V̇CO2]

net
(mL min⁄ )

60 (s min )⁄ ∗ body weight (N) ∗ gait speed (m s⁄ )
 

(3) 

For the PPAFO condition, the additional mass of the PPAFO and controller box (2 kg) 

was added to the participant’s mass to be included in the body weight.  
 

4.3.4. Statistical analysis 

Gait and metabolic data were analyzed for the effect of footwear and disability status. Post-hoc 

analysis identified a difference in participants based on severity of impairment. Participants 

were divided into groups based on EDSS score: moderate (EDSS ≤ 5.5, N = 8) and severe (EDSS ≥ 

6.0, N = 8). Multiple spatiotemporal parameters of gait (stride length, stride width, and stride 

velocity) were analyzed with a two-way repeated-measures multivariate analysis of variance 

(MANOVA) test to compare parameters across footwear conditions (shoes, AFO, and PPAFO) 

and between EDSS groups for all 16 participants. Follow-up univariate ANOVAs were examined 

on significant variables, followed by LSD post-hoc comparisons where appropriate. Due to 

equipment error, one participant completed the 6MWs but the final distance was not available; 

a two-way repeated-measures univariate ANOVA was used to compare the 6MW distance 

across footwear conditions (shoes, AFO, and PPAFO) and between EDSS groups for the 

remaining 15 participants (11 female/4 male, age: 54.9 ± 5.4 years, EDSS: 5.2 ± 1.1).  Another 

participant completed the 6MWs but there was an equipment error with the portable 
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metabolic unit; a two-way repeated-measures univariate ANOVA was used to compare the 

COTm for 15 participants (11 female/4 male, age: 54.3 ± 5.3 years, EDSS: 5.2 ± 1.1). All statistical 

tests were performed using SPSS (v22, IBM Inc., Armonk, NY) and the level of significance was 

set at α = 0.05.  

 RESULTS 

The MANOVA test on spatiotemporal variables of gait found significant main effects (p < 0.001 

(due to group), p = 0.010 (due to footwear)), but no interaction effect (Figure 4.2). Follow-up 

univariate ANOVAs with respect to stride length and stride velocity found significant main 

effects for footwear (p = 0.016 and p = 0.026, respectively) and for group (p = 0.002 and p < 

0.001, respectively). No significant differences were found for stride width. The univariate 

ANOVA for COTm found significant main effects (p < 0.001) for group, but no significant 

difference for footwear condition (Figure 4.2). The univariate ANOVA for 6MW distance found 

significant main effects for footwear (p < 0.001), group (p < 0.001), and the footwear by group 

interaction (p = 0.004). 

The follow-up univariate ANOVAs, with LSD comparisons between footwear conditions, 

indicated that PPAFO use resulted in shorter stride length, slower stride velocity, and a shorter 

6MW distance than a custom AFO, especially in the moderate group compared to the severe 

group. Regardless of footwear, the moderate group had longer and faster strides, and longer 

6MW distances than the severe group. Metabolic expenditure was greater for the severe group 

than the moderate group, while footwear did not result in a significant change in COTm. 
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 DISCUSSION 

This study was the first to assess the use of a powered ankle-foot orthosis to provide 

bidirectional powered gait assistance to persons with MS. Participants wore the powered 

orthosis (PPAFO), their own passive ankle-foot orthosis (AFO) inside of their shoe, or only their 

shoes (Shoes) in a 6-minute walk test. Participants were grouped based on EDSS score: EDSS ≤ 

5.5 (moderate) and EDSS ≥ 6.0 (severe). Spatiotemporal parameters of gait and metabolic 

measurements were collected and then compared across footwear conditions (PPAFO, AFO, 

Shoes) and between disability groups (moderate, severe). Significant differences were found 

between disability groups and across footwear conditions for the spatiotemporal parameters of 

gait and metabolic cost of transport.  

The significant differences between disability groups in the gait parameters examined here 

have been previously noted. The group differences of longer, faster strides and longer 6MW 

distances in the moderate group have been previously observed [108-110]. Although the group 

differences had been previously observed, it is unique that the group differences in stride 

velocity and stride length held across different footwear conditions, including a new device to 

the participants, our PPAFO. From the group differences, even with the PPAFO, the moderate 

disability group kept a greater stride length and stride velocity than the severe impairment 

group. It is worth noting though that the group difference seen in 6MW distance was 

accompanied by a significant interaction between footwear and group. This interaction 

suggests that even though the moderate group was able to maintain their stride length and 

stride velocity performance above the severe group with the PPAFO, these faster and longer 
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strides did not necessarily translate to a longer 6MW distance with the PPAFO. The use of the 

PPAFO in the moderate group significantly limited their 6MW distance compared to the severe 

group. This difference between groups for the 6MW distance with the PPAFO possibly suggests 

that while the moderate impairment group was better able to become accustomed to using the 

PPAFO in their gait, it was possibly at the expense of the total distance covered in the 6MW. 

Since the severe impairment group did not reduce their 6MW distance as much while using the 

PPAFO, it is possible that their disability had already limited their mobility so much that a new 

device could not further reduce their performance.  

We also found a difference in metabolic cost of transport between the moderate and severe 

disability groups, with the severe disability group having a significantly higher COTm than the 

moderate disability group. The factors contributing to this increased COTm for the severely 

disabled group have been detailed further by using a metabolic parameter of oxygen cost of 

walking in research by Sandroff et al. [111]. Generally, it is expected that a person with a more 

advanced impairment would need to work harder to overcome that impairment while 

ambulating. 

The resulting spatiotemporal gait parameter comparisons regarding the use of an AFO 

compared to shoes seen in this study are also in line with previous research. In agreement with 

studies by Bregman et al. [76, 77], the AFO footwear condition resulted in faster walking speeds 

(greater stride velocity and greater 6MW distance) than a shoes-only condition; however, our 

results did not agree since we did not find a significant reduction in metabolic parameters of 
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walking due to wearing an AFO. The lack of this difference could be due to any number of 

factors, such as a difference in the participants use of their AFOs or different calculations of 

metabolic parameters. More studies on AFO use in persons with gait impairment should 

quantify the amount of daily use that a participant uses their AFO, how many years they have 

used an AFO, and possibly what type or types of AFOs the person has used. The only inclusion 

criteria for our study was that a participant had an AFO. Having an AFO, does not necessarily 

mean that each of our participants used their AFOs in similar ways, or for similar amounts of 

time. It is expected that the amount of metabolic benefit that one would receive from using an 

AFO, is related to the amount that the AFO is actually used. Different metabolic calculations to 

evaluate the energy used during gait are used across various fields of research, making it 

difficult to make direct comparisons between studies [84, 87, 89, 90]. A study by McLoughlin et 

al. [83] found a similar decrease as Bregman et al, in the physiological cost of walking when 

using a dorsiflexion assist orthosis that we did not find in our study. There was not a significant 

decrease in metabolic measurement in our study (COTm) with the AFO compared to the shoes 

condition (Fig. 2).  

4.5.1. Study Limitations 

The shorter, slower strides seen when wearing the PPAFO compared to the AFO condition could 

be due to a number of factors. In this study, the participants were given a minimum of 20 

minutes to adapt to the device as the controller was programmed to their gait, but even more 

training and practice might have been ideal to elicit the improvement in spatiotemporal gait 

parameters that we expected. Some studies have that suggested upwards of 20 minutes or 
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even multiple days of use may be necessary to adapt to a powered ankle orthosis [37, 38, 41, 

43]. The practice time with the PPAFO was not limited, although care was taken not to severely 

fatigue the participant, giving them sufficient rest (at least 10 minutes) between each 6MW, as 

well as extra rest as needed and requested.  

Some of the participant’s gait might have also been impacted by the fit and comfort of the 

PPAFO devices. Even though the devices were sized and fit to the participant, they were not 

custom fabricated for each participant. Custom therapeutic AFOs range in weight based on the 

type and the size for example for a medium-sized female: a carbon fiber strut would weigh 0.1 

kg, a solid thermoplastic AFO would weigh around 0.4 kg, and a thermoplastic hybrid with 

metal ankle joints and uprights would be upwards of 0.7 kg or more [112]. The PPAFO added 

weight to the distal ankle (1.8 kg total PPAFO weight), possibly impacting the participant’s gait 

[104, 105]. The PPAFO was also designed with a heel rocker and forefoot rocker in the sole that 

were not accounted in the gait analysis completed here [101-103]. 

 CONCLUSIONS 

These results indicate that within this study design, the participants did not overcome their gait 

impairment while using the PPAFO. Yet, the PPAFO did not negatively impact the COTm used to 

walk. The hypothesized impact of a powered ankle-foot orthosis with bidirectional ankle torque 

providing improved gait assistance was not realized in this study and could be due to any 

number of factors, such as a need for more training and experience walking with the PPAFO, 

fatigue, or a need for improved device design. The PPAFO has many areas for further 
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development such as more advanced controls and sensors to better track impaired gait. These 

updated controls could impact the amount of training needed for comfortable use of the 

PPAFO. A hardware redesign for the PPAFO would be beneficial to even further reduce the 

weight of the device while increasing the amount of assistive torque that it is able to produce. 

Lastly, from the experiences with using the PPAFO in this study, an analysis of the structural 

components (tibial and footbed carbon fiber shells) is warranted to better understand how 

these components interact with the wearer in regards to comfort, fit, and walking action.  
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 FIGURES/TABLES 

 
Figure 4.1: The portable, powered ankle-foot orthosis (PPAFO) test bed. The PPAFO can give 
powered assistance in both dorsiflexion and plantarflexion directions. 
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Figure 4.2: Spatiotemporal gait parameters for 16 persons with MS in three footwear 
conditions:  Shoes, AFO, or PPAFO (mean ± std. err.). Metabolic cost of transport for 15 
persons with MS, and 6MW distance for 15 persons with MS.  Symbols represent significant 
main effect or interaction differences (p < 0.05). 
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Chapter 5 : Kinematic evaluation of a bidirectional powered ankle-foot orthosis 
in persons with Multiple Sclerosis.  

 ABSTRACT   

Introduction: Passive ankle-foot orthosis (AFOs) are commonly used by persons with multiple 

sclerosis (MS) to control foot drop and aid in gait impairment. The aim of this study was to 

evaluate the use of a portable powered AFO (PPAFO) that provides dorsiflexor and plantarflexor 

assistance at the ankle in persons with MS by quantifying the change in kinematics of gait 

between powered and passive AFO, as well as a shoes-only condition in a six-minute walk test 

(6MW).  

Methods: Sixteen persons with MS with daily use of an AFO were recruited for the study. Each 

participant completed three 6MWs, during which ankle and knee kinematics were recorded 

over a 3 m x 1.5 m motion capture space. Each 6MW was completed in a different footwear 

condition, with a shoes-only condition complete first, followed by the participant’s prescribe 

AFO, and then powered AFO condition. Outcome measures of sagittal-plane knee and ankle 

angles were determined.  

Results: Significant differences between peak values for sagittal ankle angle were found such 

that the PPAFO was able to provide better assistance for foot drop during swing than the AFO 

or a shoes condition. Significant differences between peak values and timing of peak values for 

sagittal plane knee angles were found such that the changes are likely due to compensatory 

reactions to the changes at the ankle induced by the footwear. 
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Discussion: Continued research needs to be done to optimize the PPAFO and like-devices for 

assisting those with impaired gait, but this study is a first step towards showing that greater 

range of motion can be achieved with a powered device.   
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  INTRODUCTION 

Gait impairment is one of the major day to day issues present in persons with Multiple Sclerosis 

(MS) [68]. The major disease process of MS is characterized by demyelination lesions of the 

white matter of the brain stem, cerebellum, and spinal cord [70] resulting in lower limb 

weakness leading to this generalized gait impairment [71]. Much research has been done and is 

ongoing to better understand and quantify the different aspects of gait impairment in persons 

with MS. By studying gait, one can possibly better identify and diagnose persons with early 

onset MS [72], as well as offering interventions towards improving the gait impairment as it has 

been noted that any gait impairment can place a significant personal and financial burden, as 

well as a decrease in quality of life for persons with MS [73].  

One intervention that has frequently been employed to assist with gait impairment is an ankle-

foot orthosis [74]. Mixed results have been reported when evaluating the clinical and 

biomechanical advantages of physician-prescribed, custom AFOs for individuals with MS [72, 

75-77]. Bregman et al. reported that polypropylene custom passive AFOs with low stiffness 

were able to overcome foot-drop during swing, while not inhibiting the stance phase of gait in 

persons with central neurological disorders (MS and stroke) [72, 76]. Sheffler et al. reported 

that 3 months of using a custom passive AFO for dorsiflexion and eversion weakness resulted in 

no significant improvement in times on clinical gait tests [75]. In another study, Bregman et al. 

studied the use of a custom carbon composite spring-like passive AFO to aid in the push off 

ability of the ankle in persons with MS. The custom carbon composite AFO presumably reduced 

the energy cost of walking by reducing the ankle range of motion and ankle angular velocity. 
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The reduction of ankle work, contributed to a need for compensatory work at the hip, such that 

the overall cost of walking was only slightly reduced, but at the expense of altered 

biomechanics that could be less favorable, causing premature fatigue or even injury [77].  The 

mixed results within the current field of research involving passive AFOs as assistive devices for 

foot drop and plantarflexor weakness motivate further device design that can more reliably 

assist with impairments of gait, specifically seen in persons with MS.  It is possible that these 

traditional passive AFOs often fail to restore normal ankle function because they lack the ability 

to actively modulate motion control during gait and cannot produce propulsion torque and 

power. 

One reason that the aforementioned passive AFOs fail to restore normal gait is that they lack 

the functionality of moving with natural gait motion. Passive AFOs are unable to provide 

variable and bidirectional motion control throughout the phases of gait, especially during late 

stance where propulsive power is needed at the ankle. New research devices are being 

developed for powered assistance at the ankle. To better inform the design of such powered 

devices, we propose to use our portable, powered ankle-foot orthosis (PPAFO) test bed, which 

can provide bidirectional assistive torque at the ankle during gait [22].  

In this study, we used the PPAFO test bed to further understand the functional needs and 

constraints of an active ankle assist device in a population of persons with gait impairment and 

Multiple Sclerosis (MS). The study design was based around a six-minute walk test (6MW), 

commonly used as a clinical and functional measure of gait in persons with MS [109, 113-116]. 
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The aim of this study was to evaluate the use of powered AFOs to passive AFOs in persons with 

MS by observing ankle and knee joint kinematics during a 6MW test.  

 METHODS 

5.3.1. Portable Powered Ankle Foot Orthosis 

The PPAFO can provide modest dorsiflexor or plantarflexor torque at the ankle via an 

untethered pneumatic power source (Figure 5.1) [22]. Torque is delivered to the ankle through 

a pneumatic circuit. A portable CO2 tank (20oz, Catalina Cylinders, Hampton, VA) with a bottle 

top regulator (JacPac J-6901-91, Supplierpipeline, Inc.; Waterloo, Ontario, Canada) is the 

pneumatic fuel source which is connected to two directional solenoid valves (VUVG 5V; Festo 

Corp-US, Hauppauge, NY) to direct the pneumatic power into a either side of a rotary actuator 

(PRN30D-90-45, Parker Hannifin, Cleveland, OH). One valve directs the compressed gas to the 

side of the rotary actuator for plantarflexion assistance, where the other valve directs the 

compressed gas to the side of the rotary actuator for dorsiflexion assistance. The valves are 

controlled by a waist worn microcontroller and powered by a rechargeable battery pack.  

The applied torque of the PPAFO can provide directional assistance at the ankle as needed 

throughout all phases of the gait cycle (Figure 5.3). The PPAFO microcontroller is programmed 

with a state estimation controller (SE) [24], where the current state of the gait cycle is 

estimated by sensor input from heel and toe sensors on the sole of the PPAFO, as well as the 

ankle angle from the rotary actuator position. The SE controller provides actuation during four 
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functional gait tasks: (1) initial contact, (2) loading response, (3) forward propulsion, and (4) 

limb advancement.  

5.3.2. Participants and protocol 

The study included 16 participants with a neurologist-confirmed diagnosis of MS and daily use 

of a prescribed custom passive AFO for gait assistance (12 female/4 male, age: 54.6 ± 5.3 years, 

Expanded Disability Status Score: 5.1 ± 1.1). 

First, a clinical examination of disability was performed to establish EDSS score [107]. 

Participants first wore the PPAFO for a training period where their gait pattern was 

programmed into the PPAFO controller. The training period took approximately 20 minutes; 

during that time, the participant walked sporadically with the PPAFO for a cumulative walking 

time of ~10 minutes. To start the training period, the PPAFO controller was set to baseline 

assistance timing based on normative able-bodied gait timing values [25]. The participant was 

asked to walk with the powered PPAFO for more than 10 continuous test steps during which 

heel, toe, and angle sensor data from the PPAFO were collected. The PPAFO sensor data were 

then evaluated to adjust for the participant’s gait pattern. The PPAFO controller was then 

updated with the new actuation timings, and the participant was asked to repeat the test steps 

such that the process would be repeated. The controller adjustment process was repeated at 

least three times for each participant. Verbal feedback from each participant was also used to 

confirm comfortable actuation timings. After the controller timings were set, each participant 

finished the training period by walking until he or she felt comfortable with the actuation of the 
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PPAFO. At a minimum each participant completed one loop around the 9 m x 12 m hallway 

while acclimating to walking with the PPAFO.  

After completion of the training period and a minimum of 10 minutes of rest, participants 

completed the three 6-minute walk tests using standardized instructions and delivery [113]. 

The 6-minute walk (6MW) tests were performed over-ground in a 9 m x 12 m hallway with four 

90-degree turns (Figure 5.2). One 6MW was completed per footwear condition: shoes, AFO, 

and PPAFO. The PPAFO was worn on the affected limb (i.e., the same side as the prescribed 

AFO, or more impaired side if prescribed bilateral AFOs) with a normal walking shoe on the 

contralateral limb. The shoes condition 6MW was always completed first as a baseline. The 

remaining two conditions (custom AFO and PPAFO) were counter-balanced between subjects. 

Participants were given a minimum of 10 minutes to rest and recover between each 6MW. 

Participants’ lower body movements were recorded using a motion capture system for 3 m of 

each loop around the 6MW path (Oqus Motion Capture Camera System, Qualisys, Highland 

Park, IL). A lower body 23 static marker set was used with markers on the ASIS, greater 

trochanter, mid-thigh, lateral knee epicondyle, medial knee epicondyle, tibia, lateral malleolus, 

medial malleolus, heel, toe 1, and toe 5 for both the right and left limbs, as well as a sacral 

marker. In the trials where the PPAFO was worn, an extra marker was placed on the lateral 

point of the actuator in line with the plantarflexion/dorsiflexion axis of the ankle (Figure 5.4).  

5.3.3. Data Processing 



127 

 The sagittal plane joint angles for the impaired limb of each participant during walking were 

determined from the motion capture data (QTM v2.7, Qualisys, Highland Park, IL; Visual3D v5, 

C-Motion, Germantown, MD). The marker data were filtered (4th order Butterworth filter, 12Hz 

cutoff frequency), and then using inverse kinematics subject-specific models calibrated to a 

static standing pose, the joint angles were computed. Heel strike and toe off events were 

determined for each gait cycle by visual inspection. Each participant completed at least one gait 

cycle per pass through the motion capture space, and each participant completed at least 3 

passes per 6MW. To compare joint angles between footwear conditions, for each gait cycle, the 

local minimum or maximum peak value and peak timing were found during four phases of gait: 

loading response, terminal stance, pre-swing (near toe-off), and terminal swing.  

5.3.4. Statistical Analysis 

Outcome measures of four peak magnitudes and four peak timings for each joint (knee, ankle) 

were compared. One participant was excluded from analysis due to poor marker visibility and 

unsatisfactory camera calibration, leaving 15 participants for statistical analysis (11 female/4 

male, age: 54.6 ± 5.5 years, Expanded Disability Status Score: 5.1 ± 1.1).  Further, due to marker 

occlusion problems with some participants, only ankle and knee data were consistently 

available. Since four peaks magnitudes and timings per joint angle were examined, a two-way 

repeated-measures MANOVA test was run for each joint (ankle, knee) to compared across 

footwear conditions (shoes, AFO, and PPAFO) and between EDSS groups (moderate: ≤ 5.5, N = 

8; severe: ≥ 6.0, N = 7)(α = 0.05; SPSS Inc., Chicago, IL). . Follow-up univariate ANOVAs were 

examined on significant variables, followed by LSD post-hoc comparisons where appropriate. 
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 RESULTS  

The ankle MANOVA indicated significant differences for the main effect of footwear (p = 0.006), 

but no significant EDSS group differences or interaction effect (Figure 5.5, Table 5.1).  The knee 

MANOVA indicated significant differences for the main effects of footwear and EDSS group, as 

well as a significant interaction effect (p < 0.001, Figure 5.5, Figure 5.6, Table 5.2). Follow-up 

analyses found significant differences between peak values for ankle angle during swing. 

Significant differences between peak values and timing of peak values for sagittal plane knee 

angles were found during stance and swing. 

Subsequent univariate ANOVA analyses found that there were differences in ankle kinematics 

due to footwear during loading response, pre-swing, and terminal swing (Figure 5.5, Table 5.1). 

Specifically, the peak plantarflexion angle (minimum ankle angle) during the loading response 

was significantly greater in the PPAFO condition than the shoes condition; the timing of this 

maximum plantarflexion during the loading response was significantly later in the PPAFO 

condition than either the shoes or AFO conditions. The peak plantarflexion during pre-swing 

(toe-off) was significantly less in the shoes condition compared to both the AFO and PPAFO 

conditions. The peak dorsiflexion during terminal swing was significantly greater in the PPAFO 

condition than both the AFO and shoes condition, and the AFO condition showed a significantly 

greater peak angle than the shoes condition. There were no significant differences between 

EDSS groups for ankle angle (Figure 5.6).  
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Subsequent univariate ANOVA analyses for the knee parameters found differences during the 

loading response, terminal stance, and terminal swing subphases of gait due to footwear and 

differences during the loading response, terminal stance, and pre-swing subphases of gait due 

to EDSS group (Table 5.2). Specifically, the peak knee flexion during the loading response was 

significantly greater in the PPAFO than the shoes condition, and the timing of this peak was 

significantly earlier in the shoes condition than the AFO condition. The peak knee extension 

angle during terminal stance was significantly greater and later in the PPAFO condition than 

both the shoes and AFO trials. The peak knee extension angle during terminal swing was 

significantly greater in the PPAFO condition than the shoes and AFO conditions although the 

timing did not vary (Figure 5.5). For knee angle, there were significant differences between the 

moderate and high impairment EDSS groups (p<0.001), regardless of footwear for the peak 

values at the loading response, terminal stance, and pre-swing phases of gait (Figure 5.6). A 

footwear by EDSS group interaction was also significant in the MANOVA for the knee kinematic 

parameters (p = 0.007), although this interaction was not specifically seen to be significant in 

any individual peak or timing parameter.  

 DISCUSSION 

One of the primary reasons of prescribing an AFO is to compensate for the foot drop and foot 

slap that occur as a result of weakness of lower limb muscles. Foot drop occurs during the 

swing phase of gait when the foot is in the air, and foot slap occurs during the loading response 

after the heel contacts the ground. During both of these phases of gait, the PPAFO, which 

provides active powered dorsiflexion and plantarflexion assistance, was found to significantly 
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increased dorsiflexion angle compared to the shoes condition (Figure 5.5). During swing, the 

PPAFO also increased dorsiflexion angle compared to the AFO condition (Figure 5.5). These 

results are similar to those seen by van der Liden et al. in a study of persons with MS using a 

functional electrical stimulation (FES) device; where by using the FES device, participants 

experienced more dorsiflexion both at initial contact and during swing [117]. Bregman et al. 

also found that while wearing an AFO, the overall ankle range of motion was decreased by 12%, 

especially by reducing plantarflexion at pre-swing and reducing dorsiflexion during terminal 

stance [77]. Our study found a similar significant reduction in plantarflexion angle during pre-

swing, although we did not observe the reduction in dorsiflexion in terminal stance. Although 

not directly calculated, an overall reduction in range of motion was seen in our study both with 

the AFO and PPAFO conditions (Figure 5.5).  

Few other studies have evaluated changes in kinematics due to AFOs in persons with MS, 

although some have looked at the kinematics in general in persons with MS and compared 

them to gait kinematics of healthy controls. Huisinga et al. found decreased peak plantarflexion 

angle during loading response and at toe-off in their MS population compared to healthy 

controls [118]. Kelleher et al. also found differences in ankle kinematics between two MS 

groups based on impairment level and a healthy control group, observing that both MS groups 

had a decreased overall range of motion at the ankle, mostly due to reduced plantarflexion at 

toe-off [119].  
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Using the PPAFO also caused the plantarflexion during loading response to occur later in the 

gait cycle than in the AFO or shoes condition, which is likely due to the design and control of the 

PPAFO, as opposed to an inherent effect of assistive powered plantarflexion (Figure 5.5). The 

PPAFO was designed to give powered dorsiflexion assistance during the loading response phase 

to mitigate foot slap, which it successfully applied. It is unclear if the delayed timing of the 

plantarflexion peak had any functionally relevant changes to the participant’s gait. If the timing 

of the plantarflexion peak needed to be changed to better align the assistive plantarflexion with 

the participant’s natural plantarflexion, the timing of the PPAFO controller could easily be 

adjusted.  

A significant difference was also seen in ankle angle during pre-swing (toe-off). The AFO and 

PPAFO conditions had significantly smaller plantarflexion peaks than the shoes condition. A 

reduction in peak plantarflexion magnitude was expected in the AFO condition, as passive AFOs 

typically are designed to hold the foot in dorsiflexion, requiring the wearer to work against the 

AFO to plantarflex. This difference was unexpected in the PPAFO condition as the PPAFO is 

designed as a powered exoskeleton with powered plantarflexion and dorsiflexion assistance 

and the PPAFO was programmed to provide plantarflexion assistance at this point in the gait 

cycle. The lack of expected plantarflexion assistance at pre-swing (toe-off) could be due to a 

number of factors including needing a better timed and calibrated controller, or better physical 

attributes of the PPAFO. For example, the rocker bottom sole that was intended to assist with 

rollover during late stance; however it may have contributed to minimizing plantarflexion 

during pre-swing (Figure 5.1). There was no significant difference between the PPAFO and AFO 
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conditions during pre-swing, suggesting that the powered plantarflexion and dorsiflexion 

assistance did not interfere with natural plantarflexion any more than a passive AFO.  

Significant differences were also found in knee angle peaks and timings between footwear 

conditions (Figure 5.5). During the loading response, using an AFO or an exoskeleton with 

powered plantarflexion and dorsiflexion allowed for greater knee flexion with a later peak than 

the shoes condition. The increased and later flexion during the loading response was likely a 

result of the more controlled, more positive plantarflexion during the same phase. At mid-to-

terminal stance, the knee extension angle was larger and occurred later with the powered 

plantarflexion and dorsiflexion than the AFO or shoes condition. This change during mid-to-

terminal stance was likely due to properties of the PPAFO which provided the powered 

plantarflexion and dorsiflexion, such as the controller timing and the rocker-bottom rollover 

sole. The decrease in knee extension seen in terminal swing in the PPAFO compared to the 

shoes and AFO conditions may also be due to physical attributes of the PPAFO. The PPAFO has 

an increased weight compared to a normal shoes or AFO, which could require more energy and 

muscle strength to swing through a full stride, possibly preventing full extension at the knee 

during terminal swing [104, 105]. Other studies have observed a larger peak knee flexion during 

swing with a FES in persons with MS compared to a no FES condition [117]. A larger knee 

flexion peak in swing was, however, not seen in using an AFO or PPAFO in this study. Previous 

studies of passive AFOs that studied gait kinematics found no significant changes at the knee 

due to the use of an AFO [77].  
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There were no differences seen between EDSS groups in ankle angle which was unexpected, 

but likely due to the large variability within groups, especially in the severe group (Figure 5.6). 

Even though there were no significant differences, there was a trend that found decreased 

dorsiflexion during swing in the severely impairment group, as would be expected due to 

increased tibial anterior muscle weakness. Previous kinematic studies of persons with MS have 

found differences in ankle angle between MS groups and healthy controls, with MS groups 

having consistently reduced plantarflexion at loading response and toe off, and reduced 

dorsiflexion during swing [118, 120]. Huisinga et al. also found that the peak plantarflexion at 

toe off significantly correlated with EDSS score in the MS group, although our work did not 

directly support this relationship [118]. 

Differences were found in peak knee angles between groups, in that the moderately impaired 

group had greater knee flexion during the loading response, less knee extension during mid-to-

terminal stance, and greater knee flexion during pre-swing (toe-off). These differences are likely 

due to the moderate EDSS group’s increased mobility over the severe EDSS group. Previous 

studies have also observed changes in knee angles in persons with MS [118-120]. Specifically 

decreased knee extension at heel strike was found in two studies [119, 120]. A generally 

reduced knee range of motion was also found for persons with MS compared to healthy 

controls [119]. Confirming the differences in knee angle that were seen in this study between 

EDSS groups, Huisinga et al. had previously reported that peak knee flexion angle and knee 

range of motion were significantly correlated with EDSS score in MS patients [118].  
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 CONCLUSIONS 

These results indicate that within this study design, the use of an ankle exoskeleton with 

powered assistive plantarflexion and dorsiflexion did significantly change the ankle and knee 

kinematics of gait in persons with MS when compared to use of a prescribed passive AFO or no 

assistive device (shoes condition). The powered exoskeleton provided greater dorsiflexion 

assistance during swing, while allowing plantarflexion at pre-swing (toe-off) similar to that as 

the passive AFOs. EDSS group differences suggest that persons with a higher EDSS have much 

more impaired gait kinematics at the knee than the moderately impaired group; whereas at the 

ankle, the groups had similar joint kinematic patterns. The powered exoskeleton was able to 

provide some additional gait assistance, especially during swing and the loading response, to 

overcome the classic foot drop and foot slap seen with lower leg weakness.  
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 TABLES  

Table 5.1: Mean (standard deviation) for peak ankle magnitude and time during four phases of gait 

Parameter Phase of Gait 

Footwear condition EDSS group  

Shoes 
(A) 

AFO 
(B) 

PPAFO 
(C) 

p-
value† 

Moderate 
(D) 

Severe 
(E) 

Peak plantarflexion angle 
(deg) 

Loading 
Response 

-11.9 
(4.6) 

-8.6 
(3.9) 

-7.3A 
(4.9) 

0.025 
-8.9 
(3.1) 

-9.6 
(2.9) 

Peak plantarflexion time 
(%GC) 

Loading 
Response 

4.7 
(4.0) 

5.9 
(3.7) 

8.4A,B 
(4.1) 

0.018 
7.3 
(2.5) 

5.2 
(3.2) 

Peak dorsiflexion angle (deg) Terminal Stance 
10.0 
(5.6) 

10.2 
(3.9) 

7.4 
4.2) 

0.116 
10.2 
(4.3) 

8.1 
(2.3) 

Peak dorsiflexion time (%GC) Terminal Stance 
49.2 
(4.8) 

50.8 
(3.0) 

51.1 
(3.5) 

0.226 
51.0 
(2.5) 

49.6 
(3.3) 

Peak plantarflexion angle 
(deg) 

Pre-swing 
-16.6B,C 
(13.0) 

-7.6 
(6.2) 

-7.1 
(7.0) 

0.026 
-11.1 
(6.4) 

-9.7 
(4.9) 

Peak plantarflexion time 
(%GC) 

Pre-swing 
70.5 
(4.7) 

68.9 
(4.2) 

69.0 
(4.2) 

0.420 
67.7 
(1.4) 

71.6 
(3.8) 

Peak dorsiflexion angle (deg) Terminal Swing 
-5.0 
(6.1) 

-1.4A 
(4.8) 

2.5A,B 

(6.7) 
<0.001 

0.0 
(4.0) 

-2.8 
(5.6) 

Peak dorsiflexion time (%GC) Terminal Swing 
84.9 
(21.3) 

91.3 
(4.3) 

89.3 
(3.5) 

0.289 
91.7 
(2.3) 

84.7 
(9.1) 

† p-values from follow-up univariate ANOVAs are listed since the main effect was found to be significant in the overall 
MANOVA.  
Superscript (A, B, or C) signify significant difference from condition 
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Table 5.2: Mean (standard deviation) for peak knee magnitude and time during four phases of gait 

Parameter Phase of Gait 

Footwear condition EDSS group 

Shoes 
(A) 

AFO 
(B) 

PPAFO 
(C) 

p-value† 
Moderate 
(D) 

Severe 
(E) 

p-value† 

Peak knee flexion 
angle (deg) 

Loading Response 
14.2 
(12.8) 

15.9 
(13.2) 

18.9A 

(11.4) 
0.026 

24.54 
(8.9) 

7.02D 

(7.1) 
0.001 

Peak knee flexion 
time (%GC) 

Loading Response 
8.8B 
(5.3) 

14.6 
(5.9) 

10.4 
(1.1) 

0.009 
12.5 
(2.9) 

10.0 
(3.5) 

0.152 

Peak knee extension 
angle (deg) 

Terminal Stance 
1.5 
(9.2) 

2.9 
(8.9) 

11.0A,B 
(14.6) 

0.030 
9.4 
(7.9) 

0.21D 
(7.8) 

0.041 

Peak knee extension 
time (%GC) 

Terminal Stance 
40.1 
(5.2) 

38.9 
(4.4) 

47.3A,B 
(8.8) 

0.004 
43.6 
(4.2) 

40.4 
(3.7) 

0.142 

Peak knee flexion 
angle (deg) 

Pre-swing 
41.0 
(21.8) 

44.3 
(20.1) 

43.4 
(19.4) 

0.516 
55.8 
(11.6) 

28.2D 
(15.3) 

0.002 

Peak knee flexion 
time (%GC) 

Pre-swing 
74.9 
(7.0) 

74.5 
(7.0) 

76.0 
(6.9) 

0.456 
75.5 
(5.9) 

74.7 
(7.2) 

0.802 

Peak knee extension 
angle (deg) 

Terminal Swing 
8.5 

(11.0) 
9.9 
(9.4) 

12.6A,B 

(9.8) 
0.026 

12.8 
(9.9) 

7.44 
(9.2) 

0.297 

Peak knee extension 
time (%GC) 

Terminal Swing 
95.9 
(4.0) 

94.9 
(6.6) 

95.8 
(3.5) 

0.650 
95.9 
(2.6) 

95.0 
(4.2) 

0.594 

† p-values from follow-up univariate ANOVAs are listed since the main effect was found to be significant in the overall 
MANOVA.  
Superscript (A, B, C, D, or E) signify significant difference from condition 
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Figure 5.1: Portable Powered Ankle-Foot 
Orthosis 

 

 

Figure 5.2: 6-minute walk test path with motion capture space 
in the loop 
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Figure 5.3: Assistance during a gait cycle provided by the PPAFO. Torque values are 
based on 100 psig during plantarflexor assistance and 30 psig during dorsiflexor (DF) 
assistance.  
Figure adapted from Kirtley (2006)[26] 

Reprinted from Clinical Gait Analysis, Kirtley, C., Introduction, p. 201-22, © 2006, with 
permission from Elsevier.  
 

 
Figure 5.4: Example of motion 
capture marker placement used with 
PPAFO; Not shown: heel, ASIS, 
greater trochanter, and sacral 
markers. 
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Figure 5.5: Joint angles during gait with each footwear condition. Line shows mean 
value with shaded area ± 1 standard deviation. Ankle (top), Knee (bottom). 
Positive/negative values indicate dorsiflexion/plantarflexion. 
 
+ indicates significant differences in peak angle values near the angle value 
* indicates significant differences in peak timing values on the x-axis.  
significance was set at p < 0.05.  

*

+
+

+

*

+

*

+ +

Shoes

AFO

PPAFO
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Figure 5.6: Ankle and knee joint angles, by EDSS group, averaged over all footwear 
groups. . Line shows mean value with shaded area ± standard deviation. Ankle (top), 
Knee (bottom). Positive/negative values indicate flexion/extension.  
 
+ indicates significant differences in peak angle values near the angle value 
significance was set at p < 0.05. 

+ +

+

Moderate: EDSS ≤ 5.5

Severe: EDSS ≥ 6.0
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Chapter 6 Conclusions 

The work in this dissertation addressed some of the many issues in research regarding portable 

powered orthoses or exoskeleton robotics. Our lab has developed a pneumatically powered 

ankle-foot orthosis (PPAFO) to address some of the issues in portable robotic exoskeleton 

development [22]. Although many of the research areas span various disciplines, such as 

control, design, fuel and efficiency, user-interfaces, neuroscience, and kinesiology, only a few 

are addressed here [8, 14]. Chapter 2 provides an assessment of the available portable 

compressed gas tanks that could be used to power pneumatic robots, especially in the 

expanding field of soft-robotics [57]. Chapters 3, 4, and 5 evaluate the use of a our PPAFO 

during walking.  

Chapter 1 provides a literature review of the current state of research regarding portable ankle 

exoskeletons. Specific foci included available portable power sources for soft robotics, as well 

as the use of robotic ankle exoskeletons in able-bodied persons and persons with gait 

impairment, focusing on persons with Multiple Sclerosis (MS). One issue that that persists 

throughout the field of research is determining consistent ways to compare the impact of 

powered exoskeleton devices on human movement and energy use. One common goal in 

exoskeleton research, regardless of target population, is to reduce the amount of energy used 

in walking related tasks. It is difficult to compare the effects of different exoskeletons on the 

energy expenditure as, there are many methods used to quantify the energy expenditure used 

during walking.  
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In chapter 2, we investigated the use of portable compressed gas tanks as a fuel source for 

portable pneumatically powered robotics. With the growing field of soft robotics [52, 121, 122], 

more pneumatic fuel sources are being designed and needed to power these robotics [57]. 

Although they are an old technology, portable compressed gas tanks provide a quantifiable 

source of fuel that have potential for powering soft robotics. Small, wearable, compressed gas 

tanks filled with CO2 and N2, which are currently commonly available, were evaluated for use in 

portable robots. Issues of cooling while the tank empties during use are fundamental 

thermodynamic issues [64]; but with N2, the fuel tank does not cool near as quickly or to as cold 

of temperatures as with CO2. The differences in cooling are due to the basic properties of the 

different gases when stored under high pressure at room temperature. Carbon dioxide when 

stored in a pressure vessel at high pressures (~760 psig) is in a two-phase state of liquid and 

gas, whereas N2 when compressed stays a gas at room temperature in the portable tanks used 

here. Some of the benefits of CO2 are the commercial availability of refilling the tanks and the 

relatively low cost of CO2 tanks compared to high pressure air (HPA) tanks needed for 

compressed N2. Overall, N2 was preferred over CO2 due to its warmer minimum temperature 

and slower rate of cooling, with similar normalized run times. 

In chapter 3, we used the PPAFO to evaluate the use of bilateral bi-directionally powered ankle-

foot orthoses in young, able-bodied persons while walking over-ground. The PPAFOs were 

programmed to provide assistance in the appropriate direction (plantarflexion or dorsiflexion) 

during all phases of gait. With the powered PPAFOs, participants were able to match the 

metabolic cost of transport needed for walking compared to the shoes condition. In previous 
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research [2, 3, 16, 49], the goal has often been to try to reduce the metabolic needs for walking 

with a powered device to below that of normal walking in shoes. While completing this 

research, we have often wondered if reducing the metabolic cost of walking below that in 

shoes is an appropriate goal for these powered orthoses and exoskeletons, especially for able-

bodied persons. Often the human body is already operating in the lowest energy state 

necessary to achieve its goal, as it is a quite sophisticated machine. An issue with trying to 

reduce the metabolic cost of walking with powered devices, may also be in the training that is 

provided on how to use the devices. Every researcher uses a different training protocol for their 

studies, usually based on the needs of their device controllers and participant comfort. Future 

work could be done in providing more intentional and specific instructions to participants 

towards the goal of reducing the amount of work that they need to walk. Aside from the goal of 

reducing metabolic cost of an already efficient human body, perhaps researches should be 

content with matching the low metabolic cost of normal walking, while using powered devices 

to add functionality to normal human gait.  

Some kinematic changes were seen while using the PPAFOs, primarily at the ankle where an 

unexpected reduction in plantarflexion during toe-off was observed. Previous studies with prior 

versions of our PPAFO showed increased plantarflexion compared to shoes conditions [27, 

123], so this reduction in plantarflexion was especially unexpected. It is difficult to know exactly 

what caused this decreased plantarflexion with the PPAFO, although a number of factors could 

have been at play. This was the first over-ground walking study completed with the PPAFO, and 

inherently, lab floor that is swept and cleaned each night is a much different surface than that 
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of a treadmill. It is possible that participants walked much more cautiously, in a more marching 

gait fashion as to not slip on the slicker lab floor. It is also possible that small changes to the 

footwear structure of the PPAFO, primarily the rocker-bottom sole of the PPAFO caused 

changes in kinematics that we previously did not see. Differences in PPAFO functionality also 

could have caused this unexpected change in kinematics, specifically the controller timing and 

design. Much work has been done on other devices [38, 47]and our PPAFO [24, 91, 96{Li, 2013 

#84] to determine different control strategies for the powered devices. Along with determining 

which sensors and signals can or should be used to capture the current state of the device and 

the wearer, researching the proper timing of plantarflexion assistance has also been a focus. 

Although the discussion and research of different controllers was out of the scope of the 

research in this dissertation, the impact that a well-designed and well-trained controller was 

not underestimated. As more research continues on the human aspect of powered orthotics 

and exoskeletons, a reflection back to the influence of the controller design and operation on 

the human behavior is essential.  

A preliminary adaptation study to wearing the PPAFOs was also completed to determine the 

time needed to metabolically and kinematically adapt to a low-power kinematically-controlled 

ankle exoskeleton. There were no statistically significant differences observed between minutes 

3-6 and minutes 17-20 of continuous over-ground walking with the powered devices in any 

spatiotemporal, kinematic, or metabolic parameters. The lack of measured differences suggests 

that the participants were able to adapt quickly to wearing the device, after the device 

controller had been trained to their gait pattern. Although this was faster adaptation than 
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previous powered devices have reported, the PPAFO is lower powered, and controlled by 

kinematic input signals (compared to EMG). Another factor that may have contributed to the 

faster adaptation time was pre-training the controller to each participant’s gait pattern. During 

the training time, participants walked casually in intermittent sets of 5-10 steps so that the 

pattern of kinematic input signals for each person could be input into the controller code. The 

input signal patterns then dictated the timing of the actuation of the plantarflexion and 

dorsiflexion assistance. It is possible that some human adaptation happened during this training 

time, although due to the limited nature of the walking, we believe any real adaptation to be 

highly unlikely. In previous research, most studies have had some loosely defined period of 

device training or device fitting that happens before the adaptation study. A thorough 

investigation into human adaptation to powered devices might need to take these training and 

fitting periods into account.  

In chapters 4 and 5 we addressed the use of a powered bidirectional ankle-foot orthosis in 

persons with gait impairment due to multiple sclerosis (MS). A traditional gait assistance device 

in persons with MS is a passive ankle-foot orthosis (AFO) that holds the foot in a neutral 

position to act against foot drop, especially during swing. Participants for this study were 

selected based on use of a passive AFO in their daily lives.  

We evaluated the use of our PPAFO in this population of persons with MS who have AFOs. The 

powered AFO was tested on their more impaired limb against their own AFOs, and a shoes-only 

no AFO condition with a series of 6 minute walk tests. The spatiotemporal and metabolic gait 
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parameters (analyzed and presented in Chapter 4) indicated that within the study design, the 

participants did not overcome their gait impairment while using the PPAFO. Yet, the PPAFO did 

not negatively impact the COTm used to walk. Ankle and knee sagittal plane joint kinematics 

were analyzed and presented in Chapter 5. The differences seen in the kinematic parameters of 

peak ankle and knee angle magnitudes and timings suggest that the powered exoskeleton 

provided greater dorsiflexion assistance during swing, while allowing plantarflexion at pre-

swing (toe-off) similar to that as the passive AFOs.  

Together these two analyses (Chapters 4 and 5) provide a very broad pictures of the changes of 

gain in an impaired population while using the PPAFO. Although the PPAFO induced kinematic 

changes, that seemed to possibly benefit the participant (increased dorsiflexion during swing), 

these changes did not translate to improved spatiotemporal outcomes, or a longer 6MW 

distance with the PPAFO. The powered exoskeleton was able to provide some additional gait 

assistance, especially during swing and the loading response, to overcome the classic foot drop 

and foot slap seen with lower leg weakness.  

Many lessons and future ideas came out of working with the participants from our population 

of persons with MS compared to able-bodied participants. Persons with gait impairments have 

much more irregular gait patterns than able-bodied persons, and early in our research, our 

controller was not prepared to expect these differences. Future work on powered orthoses and 

exoskeletons should be carefully evaluated when transitioning from an able-bodied population 

to an impaired population, both in terms of device design and experiment design. The 
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experimental design was important to evaluate as impaired populations (especially those with 

MS) are more likely to be fatigued sooner than an able-bodied population and cannot 

withstand as much testing in a single session as able-bodied persons.  

Another aspect of PPAFO operation that should be considered is the noise made during the 

pneumatic actuation. In the generation of the PPAFO test bed used in these studies, there are 

no mechanical noises made by the actuator which makes for a very quiet operation, but there is 

pneumatic exhaust noise made every actuation cycle. Some of this noise was lessened by the 

use of silencers, but the exhaust noise was not totally dissipated. The noise itself does not pose 

an issue in research settings, although it could confound any results regarding neuromuscular 

function, comfortable speed choice, and adaptation to controller timings by acting as an 

auditory cue to the participant. Although this issue could be specific to the pneumatic noise 

based on the operation of the PPAFO, other researchers in the field should be aware of 

unintentional physical, auditory, and behavioral cures that their devices are creating, especially 

when drawing conclusions from human behaviors and adaptation.  

Also we received much qualitative feedback about the perception of our device. In our able-

bodied population, most participants were university students who were interested in 

engineering and were excited about testing out the PPAFO. For our population of persons with 

MS, their background and familiarity with engineering and technology varied, as did their 

reaction to the PPAFO. It could have been useful record our participant’s initial opinion of the 
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PPAFO to see if a negative or positive initial opinion influenced their physical outcome 

measures during gait testing.  

As mentioned above, some of the unexpected results from these studies motivate us to further 

research the mechanical design of the device so that users can better match their natural gait 

pattern in regards to spatiotemporal and kinematic parameters. In the next generation of 

PPAFO design, intentional decisions and research should consider the utility of the rocker-

bottom sole, the weight distribution at the ankle, and the fit and comfort of the device. In order 

to fundamentally understand the differences made by the powered bidirectional torque during 

gait, these other possible confounding factors need to be minimized.  
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