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Abstract

Often one encounters dynamical systems containing a wide range of natural frequencies.

These multiple-time-scale systems, which are modeled using stiff ordinary differential equa-

tions, are well known to present a significant challenge in obtaining a numerical solution

efficiently. Multiple-time-scale systems can be broadly classified into two classes: (1) sys-

tems with well-separate discrete time scales, such as molecular dynamic simulations and

electrical networks, and (2) systems with a continuously-distributed range of time scales,

such as aerosol dynamics, multiscale structural dynamics and turbulent fluid flow. For the

numerical simulation of systems with well-separated discrete time scales one can frequently

average over the fast time scales, either analytically or numerically. This results in effective

models with only slower time scales and allows efficient numerical simulations with large

timesteps. In cases where this is not possible, either due to system complexity or the fact

that there is simply a wide range of timescales with no clear scale separation, such as the

continuously-distributed time scales systems, it has traditionally been necessary to simulate

the entire system at the rate of the fastest timescale, which can be very expensive.

To efficiently simulate multiple-time-scale systems, many researchers have developed

multiple-time-step numerical integration methods, where more than one timestep are used.

These advance different components of the system forward in time at different rates, so that

faster components can use small timesteps, while slower components can use large timesteps,

resulting in lower computational cost. Most multiple-time-step integrators only apply to sys-

tems with discrete time scales, where subcycling methods, mollified methods, and r-RESPA

are good examples. In addition, these methods which have several numerical timesteps re-
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quire that timestep ratios be integer multiples of each other. In contrast, one family of

multiple-time-step methods does not attempt to enforce any such restrictions, namely asyn-

chronous integrators. These methods have incommensurate timesteps, such that all system

components never synchronize at common time instants. This feature allows some asyn-

chronous methods to be efficiently applied to systems with continuously-distributed time

scales, where every time scale can have an appropriately-chosen numeral timestep. However,

currently known asynchronous methods are at most second-order accurate and are known

to suffer from resonance instabilities, severely limiting their practical efficiency gain relative

to their synchronous counterparts.

In the present work, a new family of high-order Multistep Asynchronous Splitting Meth-

ods (MASM) is developed, based on a generalization of both classical linear multistep meth-

ods and the previously-known Asynchronous Splitting Methods (ASMs). These new methods

compute high-order trajectory approximations using the history of system states and force

vectors as for linear multistep methods, while at the same time allowing incommensurate

timesteps to be used for different system components as in ASMs. This allows them to

be both high-order and asynchronous, and means that they are applicable to systems with

either discrete time scales or continuously-distributed time scales.

Consistency and convergence are established for these new high-order asynchronous meth-

ods both theoretically and via numerical simulations. For convergence, the only requirement

is that the ratio of smallest to largest timestep remains bounded from above as the timesteps

tend to zero. For a sufficiently regular ODE systems, an m-step MASM can achieve mth or-

der accuracy, which is proven analytically and then validated using numerical experiments.

Numerical simulations show that these methods can be substantially more efficient than

their synchronous counterparts. Given that appropriate timesteps are chosen, the efficiency

gain using MASM compared to synchronous multi-step methods largely depends upon the

force field splitting used.

MASM is proven to be a stable method, provided it is convergent. The stability criterion
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also strongly depends upon the splitting of the force field chosen. In case of linear systems

for which the Jacobian of the force vector is diagonalizable, the force vector splitting can be

classified into asynchronous splitting, where each eigen-component is lumped with one of the

component force vector, and time scale splitting, where an eigen-component is split between

two or more component force vectors. Any force vector splitting is in general a combination

of asynchronous splitting and time scale splitting, where some eigen-components are lumped

with one of the component force vectors and other eigen-components are split between

different component force vectors. For synchronous splitting we prove a stability condition

with a bound essentially the same as for the corresponding synchronous multi-step method,

while for time scale splitting we restrict the analysis to two-component systems and derive

stability conditions for both conservative and non-conservative systems.

Finally, we also present an efficient time step selection (TSS) strategy that can be em-

ployed while using MASM for numerically solving ODEs, yielding the TSS-MASM method.

This time step selection strategy is based on an optimal equidistribution principle, where

component timesteps are chosen so that the contribution from each split force field towards

the local discretization error is equal. The efficiency gain is system dependent and split-

ting dependent and is investigated numerically. For strongly coupled systems such as a

multi-scale spring mass damper, TSS-MASM has approximately the same efficiency as syn-

chronous multistep methods, while for weakly coupled systems such as aerosol condensation,

TSS-MASM is much more efficient.
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Chapter 1

Introduction

Many engineered and natural systems involve multiple characteristic timescales, which present

difficulties for efficient numerical simulation. These multiple-time-scale systems can be

broadly classified into two classes: (1) systems with discrete time scales, such as molecular

dynamics [26] and electrical networks [38], and (2) systems with continuously-distributed

time scales, such as aerosol dynamics [74], multiscale structural dynamics [3], and turbu-

lent fluid flow [9]. In discrete time scale systems where there is a clear separation of scales

into fast and slow, there are many techniques available [29, 19, 49], both analytical and

numerical, to average or homogenize the fast timescales, leaving a system with only the

slow timescales to be simulated. In cases where this is not possible, either because the fast

timescales are important, because of system complexity or the fact that there is simply a

wide range of timescales with no clear separation, such as the continuously-distributed time

scales systems, it has traditionally been necessary to simulate the entire system at the rate

of the fastest timescale, which can be very expensive. Examples of systems where this oc-

curs include finite elements with non-uniform element meshes [44], molecular dynamics [73],

aerosol condensation/reaction dynamics [74] and turbulent fluid flow [9].

The first attempt to use more than a single timestep to address multiple-time-scale

problems was proposed by Tildesley et. al. [66] in the field of astronomy. Ever since,

much effort has been devoted in developing methods addressing discrete time scale problems

which include multiple time-stepping (MTS) methods [48, 14, 30], which allow different

timesteps to be used for integrating different components of the system. They were first

proposed for use in astronomy [31], were later used for studying molecular dynamics [65],
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and have been more recently used in structural dynamic applications [15, 62, 23]. In the

context of molecular dynamics, r-RESPA [26, 71] is perhaps the most widely known MTS

method. MTS methods are known to have resonance instabilities, especially in the context

of molecular dynamic simulations [54, 63], which can severely limit the computational gain

achieved. Several approaches have been proposed to reduce these instabilities [63, 47]. Unlike

in the case of molecular dynamics simulations, MTS methods in structural dynamics are less

hampered by resonance instabilities. Several studies have shown that the timesteps leading

to resonance instabilities are far less likely to be chosen in practice [14, 12, 13]. Hughes et

al. [33] have proven convergence for MTS methods and have shown that MTS have at most

first order convergence. Some efforts have been made to combine MTS with linear multi-

step methods, also known as multirate methods [51, 10, 21], but were found to be at most

second order accurate because of interface treatments or coupling terms [21, 38, 4]. Recently,

an asynchronous version of MTS has also been investigated in the context of atmospheric

applications [74].

A second class of numerical methods for multiple-time-scale systems are based on space-

time finite element formulations. These were first proposed by Hughes et al. [34, 35] based on

the use of time-discontinuous Galerkin methods, which allowed for unstructured meshes and

gave a framework for adaptive schemes, including rigorous error estimates and convergence

proofs. Fully discontinuous Galerkin methods in spacetime have also been investigated [3],

which allow discontinuities in both time and space and have been applied to shock-wave

propagation, boundary tracking, crystalline solid dynamics [39], fracture propagation [2],

and other areas. They have been shown to have a high order of convergence, depending upon

the polynomial degree of the spacetime finite element basis functions, but require spacetime

mesh generation algorithms [16, 1]. Added to that, the computational gain achieved can be

limited because the variation in the timesteps chosen may not be very large.

A third class of methods proposed are for addressing the problem of distributed simulation

of multibody systems [72]. These works address the problem of providing a simulation
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environment, also known as gluing-algorithm [67], where heterogenous subsystem mechanical

system models are coupled together to perform dynamic simulation of the entire system,

while the subsystem mechanical system models are allowed to develop independently. As a

result, each subsystem can use its own integration timestep and the global glue algorithm

enforces the constraints at the interface at desired time intervals. Several such algorithms are

proposed and studied in [72, 69, 68, 67] and are used to model complex mechanical systems

such as a complete automotive vehicle.

A fourth class of multiple-time-step numerical methods are Asynchronous Variational In-

tegrators (AVI) [44] and their generalization to Asynchronous Splitting Methods (ASM) [53,

45]. AVIs are a class of integrators derived from the discretization of Hamilton’s variational

principle in Lagrangian mechanics and permit the use of independent timesteps for different

system components, unlike in multiple time-stepping methods where timestep ratios are in-

teger multiples of each other. As a consequence of their variational structure, AVI methods

conserve local momenta and a local discrete multisymplectic structure exactly. However,

the convergence of AVI methods, and the more general ASM integrators, which has been

proven [45], are only second order. In addition, they have also been shown that they can

exhibit resonance instabilities similar to those of MTS methods [17], which can limit their

computational gain in some circumstances.

To understand stability-related issues with the multiple-time-step methods as well as

asynchronous methods, we further classify then into extrapolative [6, 5] and impulse [24, 7,

18, 71] based methods. Impulse-based schemes update the impact of slower force vectors

in the form of impulses while integrating the fast force vector more frequently. As a result

they can preserve the symplectic structure and hence are symplectic methods. However,

these methods generally suffer from resonance instabilities whenever the timestep of the

slower force vector is commensurate with the time period of the faster time scale in the

system [17, 5, 52]. As a result, for some systems the efficiency gain compared to traditional

synchronous methods is limited. Extrapolative schemes use force extrapolations of slower
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variables while updating the faster variables and therefore can be shown to not conserve

symplectic structures. While these methods are not known to suffer from resonance related

stability limitations of impulse based methods, they suffer from energy drift issues [5, 6].

In this work, a new numerical solution method for multiple-time-scale systems is in-

troduced, which is arbitrarily high-order and does not suffer from resonance instabilities.

Extending the work of Shin [61], we developed a one parameter family of high-order Mul-

tistep based Asynchronous Splitting Methods (MASM), which generalizes Asynchronous

Splitting Methods (ASM) to higher-order methods, based on an asynchronous version of

classical multistep methods [28]. MASM are explicit, have order m for m-steps, and are

cheap to evaluate at each step. The MASM methods are shown to be convergent, stable and

have higher efficiency than the corresponding synchronous methods.

For practical implementation of numerical ODE solvers, it is typically important to

have adaptive time-step and order selection. These ideas were first popularized by Krogh’s

DVDQ [41] and Gear’s DIFFSUB [22] codes. Present-day ODE solvers rely heavily on these

works, including examples such as ode113 [59] in MATLAB. We develop a time-step selec-

tion (TSS) method for solving ODEs using MASM. There are many such variable timestep

implementations [43, 40, 42, 56, 64, 59, 8, 57], but we here only explored a basic implemen-

tation of TSS using MASM. We also present a sparse implementation of MASM useful for

large scale simulations as well as parallel implementation.

The rest of the thesis is organized as follows. In Chapter 2, we review ASM and linear

multistep methods, and define the new MASM integrators, including the derivation of the

coefficient conditions for maximal order, as well as the proof of convergence and some numer-

ical studies. In Chapter 3, we look at the stability of MASM, which is studied analytically

and numerically. Chapter 4 discusses the timestep selection strategy developed for using

with MASM, including the results of numerical experiments studying the performance of

the same. Finally, in Chapter 5 we present our conclusions.
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Chapter 2

MASM and its Convergence

2.1 MASM

In this chapter, before we formulate MASM, we briefly review linear multistep methods and

the ASM methods that have inspired MASM. In this thesis, we restrict ourselves to Adams-

type MASM, which corresponds to Adams-type multistep methods, i.e., Adams-Bashforth

Methods (ABM). We also establish the conditions for achieving maximal order. We prove a

few important results before proving the convergence of MASM and explore this convergence

via numerical experiments.

2.1.1 Linear multistep methods and Adams-Bashforth Methods

(ABM)

We begin by recalling the classical theory of linear multistep methods. We will consider

systems of first-order ordinary differential equations (ODEs) written as

Ẋ(t) = F(X, t), (2.1)

where X(t) ∈ RM is the state of the system at time t and we assume that F is Lipschitz.

An explicit m-step general linear multistep method [28] for solving (2.1) is given by

Φk+1 +
m−1∑
i=0

αiΦk−i = ∆tk

m−1∑
j=0

βjFk−j, (2.2)
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where Φk approximates X(tk), Fk = F(Φk, tk) and ∆tk = tk+1 − tk.

From the above equation it can be seen that the multistep scheme uses the history of the

state as well as the history of function evaluations to determine the state at the next timestep.

The coefficients αi and βi determine the consistency, order, and stability of the method (see,

e.g., Hairer et al. [28] for details). The primary advantage of multistep methods is that they

are very cheap to evaluate, requiring only a single function evaluation per step, in contrast

to m-stage Runge Kutta methods, for example, which require m function evaluations per

step.

We will be particularly interested in the Adams-Bashforth Methods (ABM), a family of

linear multistep methods. These methods have α0 = −1 and α1 = α2 = · · · = αm−1 = 0,

giving the m-step ABM to be

Φk+1 = Φk + ∆tk

m−1∑
j=0

βjFk−j, (2.3)

and the coefficients βi are uniquely determined by the requirement that the method be of

order m (see, e.g., Iserles [37]). Such methods are stable [28, Chapter III.3] and of maximal

order m, as shown by the first Dahlquist barrier result [28, Theorem III.3.5]. Note that the

second Dahlquist barrier shows that explicit linear multistep methods cannot be A-stable.

Multistep methods require a starting procedure to generate the first m− 1 steps, before

the equation (2.2) can be used. This can be done using a high-order one-step method, such

as a Runge-Kutta method, or, more commonly, by using low-order multistep methods with

very small stepsizes [28, Chapter III.1]. It is also common to use adaptive stepsize and order

selection [28, Chapter III.7] to compute the solution with the least cost for a given error

tolerance. To obtain the solution at particular times, perhaps including the final time, an

appropriate-order interpolation can be used.
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2.1.2 Asynchronous Splitting Methods (ASM)

We say that a splitting [46] of ODE (2.1) is a decomposition of the form

Ẋ(t) = F(X, t) =

Nf∑
j=1

F[j](X, t) (2.4)

for component Lipschitz functions F[j]. Note that this corresponds to a splitting of the vec-

tor field, not a splitting of the variables. Multiscale numerical methods based on fast/slow

variable splittings have been widely explored, but are different in spirit to vector field split-

tings. A splitting method for (2.4) composes integrators for each component F[j] to give an

integrator for the entire system (see McLachlan and Quispel [46] for a overview). This allows

the integration method to be designed for each component.

Asynchronous Splitting Methods (ASM) [45] generalize splitting methods by allowing

different timesteps to be used for each component F[j]. Given one-step integrators Ψ
[j]
∆t :

RM → RM for the component vector field F[j], together with a sequence of timesteps ∆tk

and indices jk, the method is defined by

Φk+1 = Ψ
[jk]
∆tk

(Φk). (2.5)

That is, the kth integration step consists of applying the integrator for component jk for

timestep ∆tk. We define the cumulative time for component j at step k to be

t
[j]
k =

k∑
p=1

δj,jp∆tp (2.6)

where δi,j is Kronecker delta function and the global minimum time to be

tmin
k = min

j=1,...,Nf

t
[j]
k . (2.7)

See Figure 2.1 (left panel) for a graphical illustration of these definitions and Lew et. al. [45]
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Figure 2.1: Left: Asynchronous Splitting Method (ASM) time variables. Right: Multistep
ASM (MASM) time variables for 3-step MASM. The two methods are not depicted at the
same times.

for a discussion of algorithm implementation.

The maximum asynchronicity is the greatest time by which any vector field component

is advanced in time more than other component, given by

∆tasynch = max
k

{
max

j∈{1,...,Nf}

(
t
[j]
k − t

min
k

)}
. (2.8)

It is proved in Lew et al. [45, Theorem A.7] that an ASM is convergent as ∆tasynch → 0,

assuming that each component integrator Ψ[j] is consistent. In general this convergence is

of first order in the timestep scaling.

2.1.3 Multistep Asynchronous Splitting Methods (MASM)

We will work with a split vector field of the form (2.4) and generalize linear multistep

methods (2.2) to Multistep Asynchronous Splitting Methods (MASM). To do this, we first

introduce some additional notation.
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In time integration, different time grids

∆[j] := {t[j]0 = t0 < t
[j]
1 < . . . < t[j]p < t

[j]
p+1 < . . . < t

[j]

N [j] = tend}, (j = 1, . . . , Nf) (2.9)

are considered for each individual term F[j]. The full splitting method uses the grid

∆ := {t0 < t1 < . . . < tk < tk+1 < . . . < tN = tend} :=

Nf⋃
j=1

∆[j]. (2.10)

An m-step explicit linear Multistep Asynchronous Splitting Method (MASM) integrator

proceeds in timesteps tk ← tk + ∆tk updating the numerical solution Φk ≈ X(tk) by

Φk+1 = Φk + ∆tk

Nf∑
j=1

Mk−1∑
i=0

〈
β̃ββ

[j]

k

〉
i
F[j](Φk−i, tk−i) (2.11)

with
〈
β̃ββ

[j]

k

〉
i
=0 if tk−i /∈ ∆[j]. Also note that because of the condition on

〈
β̃ββ

[j]

k

〉
i
, F[j]

need not be evaluated at all times tk ∈ ∆ but instead are only evaluated at times tk ∈ ∆[j].

In an m-step method, there are for any k ≥ 0 and j ∈ {1, . . . , Nf} at most m non-

vanishing coefficients
〈
β̃ββ

[j]

k

〉
i
, (i = 0, 1, . . . ,Mk − 1). More precisely: Let

{t[j]p ∈ ∆[j] : t[j]p ≤ tk} = {t[j]0 < t
[j]
1 < . . . < t

[j]

`[j](k)
}, i.e., t

[j]

`[j](k)
= max{t[j]p ∈ ∆[j] : t[j]p ≤ tk}

(2.12)

then 〈
β̃ββ

[j]

k

〉
i

= 0 if tk−i /∈ {t[j]`[j](k)
, t

[j]

`[j](k)−1
, . . . , t

[j]

`[j](k)−(m−1)
}. (2.13)

The number Mk of terms in the inner sum of (2.11) is given implicitly by

tk−(Mk−1) = min
j=1,...,Nf

t
[j]

`[j](k)−(m−1)
. (2.14)
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The current system time is

tk = max
j=1,...,Nf

t
[j]

`[j](k)
(2.15)

and the current system state is

Φk(≈ X(t
[j]

`[j](k)
)) for j chosen such that tk = t

[j]

`[j](k)
. (2.16)

These variables are illustrated in Figure 2.1 (right panel).

Given component timesteps ∆t
[j]

`[j](k)
for each component j, at each time tk we choose the

global timestep to be

∆tk = min
j=1,...,Nf

(
t
[j]

`[j](k)
+ ∆t

[j]

`[j](k)
− tk

)
. (2.17)

Note that this is different from the timestep definition (2.6) for ASM. We may update

each component timestep within the time interval described by that timestep itself, subject

to the condition that ∆t
[j]

`[j](k+1)
> tk+1− t[j]`[j](k)

if tk+1 < t
[j]

`[j](k)
+ ∆t

[j]

`[j](k)
, to ensure that time

only advances forward.

As with a regular Adams-Bashforth multistep method (2.3), we need a starting procedure

to compute the first m − 1 steps for each component j. We use a high-order one-step

method to do this, but very small stepsizes with a lower-order multistep method would also

be possible [28, Chapter III.7]. A self start algorithm using adaptive timestep and order

selection can also be employed [50, 58], which is also discussed later in Chapter 4. We do

use a standard interpolation to evaluate the solution at particular times, including the final

time.

The coefficients
〈
β̃ββ

[j]

k

〉
i

must generally be determined for each component at each step,

also described in the next section, as the local incremental step sizes are varying. The data

that must be maintained for MASM (2.11) is the current state Φk and the m previous

function evaluations F[j](Φ
[j]

`[j](k)−i, t
[j]

`[j](k)−i), i = 0, . . . ,m − 1, for each system component

10



j ∈ {1, . . . , Nf}. For fully-coupled ODEs this could be substantially more expensive in

storage than a traditional synchronous multistep method, but for sparsely coupled systems

(such as that in Section 2.4.2) this may be only slightly more expensive in terms of storage.

The algorithmic description of MASM is given in Algorithm 1 and a graphical depiction

of the variable indexing is shown in Figure 2.1 (right panel). Note that Algorithm 1 is

written without in-place updating of variables (except k). In practical implementations only

single m × Nf arrays are stored for times t
[j]

`[j](k)−i, and force vector field F
[j]

`[j](k)−i, where

i = 0, . . . ,m − 1, and j = 1, . . . , Nf and these are updated in-place. In case {αi}m−1
i=1 6= 0

(see Eq. 2.2), one would also need to store history of the states, Φ
[j]

`[j](k)−i (≈ X(t
[j]

`[j](k)−i)). In

addition, if the system components are sparsely coupled (such as in Section 2.4.2), it may

be unnecessary to update all components at each step.

2.2 Order Condition

We follow Hairer et al. [28, Chapter III.2] for definitions of local error and method order.

Definition 1. The local error of a MASM (2.11) is defined by

X(tk+1)−Φk+1 (2.18)

where X(t) is the exact solution of the ODE (2.4) and Φk+1 is the numerical solution obtained

from (2.11) with the previous states set to the exact values Φp = X(tp) for p = 1, 2, . . . , k.

While it would also be possible to introduce an appropriate linear difference operator

and generating polynomials in the MASM framework, here we consider only the most simple

definition of method order, as follows.

Definition 2. The MASM (2.11) is said of be of order n if the local error (2.18) is

O(∆tk)
n+1 for all sufficiently regular ODEs (2.4), where all other timesteps are defined

to be constant-factor multiples of ∆tk.

11



We will focus in this thesis on Adams-type MASM integrators (2.11). An m-step MASM

of this type can be of order m, and this condition uniquely determines the coefficients
〈
β̃ββ

[j]

k

〉
i

as shown in the following theorem.

Theorem 1. The m-step Adams-type MASM (2.11) is of order m if the coefficients
〈
βββ

[j]
k

〉
i

satisfy

V
[j]
k βββ

[j]
k = R (2.19)

for the Vandermonde matrix V
[j]
k , vector R and vector βββ

[j]
k defined by

[
V

[j]
k

]
p+1,i+1

=
(
τ

[j]

`[j](k)−i

)p
for p, i = 0, . . . ,m− 1 (2.20)

〈R〉p+1 =
1

p+ 1
for p = 0, . . . ,m− 1, (2.21)〈

βββ
[j]
k

〉
q+1

,
〈
β̃ββ

[j]

k

〉
s+1

where t
[j]

`[j](k)−q = tk−s (Note: s ∈ {0, . . . ,Mk − 1} and q ∈ {0, . . . ,m− 1}) ,

(2.22)

where τ
[j]

`[j](k)−i = (t
[j]

`[j](k)−i − tk)/∆tk. Furthermore, the coefficients
〈
βββ

[j]
k

〉
i

exist and are

uniquely determined so long as all timesteps are positive.

Proof. Taking X(t) and Φp as in Definition 1, using Eq. (2.22) one can reduce Eq. (2.11) to;

12



Φk+1 = X(tk) + ∆tk

m−1∑
i=0

Nf∑
j=1

〈
βββ

[j]
k

〉
i
F[j](X(t

[j]

`[j](k)−i), t
[j]

`[j](k)−i) (2.23)

= X(tk) + ∆tk

m−1∑
i=0

Nf∑
j=1

〈
βββ

[j]
k

〉
i

m−1∑
p=0

dpF[j](X(tk), tk)

dtp

(t
[j]

`[j](k)−i − tk)
p

p!
+O(∆tm+1

k )

(2.24)

= X(tk) +
m−1∑
p=0

Nf∑
j=1

m−1∑
i=0

dpF[j](X(tk), tk)

dtp
(∆tk)

p+1

p!

〈
βββ

[j]
k

〉
i
(τ

[j]

`[j](k)−i)
p +O(∆tm+1

k ).

(2.25)

Taking a Taylor expansion of X(t) as the exact solution of (2.4) now gives

X(tk+1) = X(tk) +
m−1∑
p=0

Nf∑
j=1

dpF[j](X(tk), tk)

dtp
(∆tk)

p+1

(p+ 1)!
+O(∆tm+1

k ). (2.26)

Comparing (2.25) and (2.26) we see that the
〈
βββ

[j]
k

〉
i

must satisfy

m−1∑
i=0

〈
βββ

[j]
k

〉
i
(τ

[j]

`[j](k)−i)
p =

1

p+ 1
(2.27)

for p = 0, . . . ,m− 1, which is (2.19). As V
[j]
k is Vandermonde, its determinant is given by

det V
[j]
k =

∏
0≤p<i≤m−1

(
τ

[j]

`[j](k)−i − τ
[j]

`[j](k)−p

)
, (2.28)

which is nonzero for positive timesteps, and thus the
〈
βββ

[j]
k

〉
i

are uniquely determined by

(2.19).

The linear system in Theorem 1 that must be solved for the
〈
βββ

[j]
k

〉
i

coefficients can be

13



written out as



1 1 1 · · · 1

τ
[j]

`[j](k)
τ

[j]

`[j](k)−1
τ

[j]

`[j](k)−2
· · · τ

[j]

`[j](k)−(m−1)

(τ
[j]

`[j](k)
)2 (τ

[j]

`[j](k)−1
)2 (τ

[j]

`[j](k)−2
)2 · · · (τ

[j]

`[j](k)−(m−1)
)2

...
...

...
. . .

...

(τ
[j]

`[j](k)
)m−1 (τ

[j]

`[j](k)−1
)m−1 (τ

[j]

`[j](k)−2
)m−1 · · · (τ

[j]

`[j](k)−(m−1)
)m−1


βββ

[j]
k =



1

1/2

1/3

...

1/m


.

(2.29)

This system can also be obtained by considering the polynomial interpolation problem re-

quired to construct an mth order MASM integrator.

For high order MASM integrators the expense of solving the system (2.29) for each

component at each timestep can be very significant. For lower order methods (m ≤ 4, for

example) with expensive function evaluations, solving this system is comparatively cheap.

Efficient solvers for this system are possible for any m, using the Vandermonde structure [50,

Section 2.8.1].

2.3 Convergence

Convergence of MASM integrators can be proved in a similar fashion as to the convergence

of linear multistep methods (see [28]), which require expressing MASM (2.11) as a one-step

method as an initial step. Unlike the multistep methods, the one-step method definition for

MASM is not straight forward as the length of the history of the forcing used, i.e. Mk, at

each step varies and also could grow with refinement of timesteps. However, if the component

timesteps satisfy,

(
hmax
hmin

)
≤ Ct, (2.30)

where Ct is a constant and {hmax, hmin} = {maxj,k (∆t
[j]

`[j](k)
),minj,k (∆t

[j]

`[j](k)
)} for all

14



j ∈ {1, 2, . . . , Nf} and k ≥ 0, then an upper bound on Mk exists as shown in the following

Lemma.

Lemma 1. Given the component timesteps, {∆t[j]p }, of MASM (2.11) satisfy Eq. (2.30),

then

Mk ≤ (m+ 1)NfCt, (2.31)

for all k ≥ 0.

Proof. From Eq. (2.14) Mk can be written as,

Mk ≤
Nf∑
j=1

(s
[j]
k + 1) (2.32)

where s
[j]
k are defined by,

s
[j]
k = max {s|s ∈ N+ such that t

[j]

`[j](k)−s ≥ min
ĵ
tĵ,`[ĵ](k)−(m−1)}. (2.33)

Note that s
[j]
k + 1 ≥ m for all j ∈ {1, 2, . . . , Nf} and k ≥ 0. From the definition of s

[j]
k

(Eqn. 2.33) and using the fact that t
[j]

`[j](k)−p = t
[j]

`[j](k)
−
∑p

i=1 ∆t
[j]

`[j](k)−i, one can easily show

that,

s
[j]
k∑
i=0

∆t
[j]

`[j](k)−i ≤ t
[j]

`[j](k)+1
− tjm,`[jm](k) +

(m−1)∑
i=1

∆tjm,`[jm](k)−i, (2.34)

where jm is such that tjm,`[jm](k)−(m−1) = minĵ tĵ,`[ĵ](k)−(m−1). Since hmin ≤ ∆tjm,`[jm](k)−i

≤ hmax and maxj t
[j]

`[j](k)+1
−minj t

[j]

`[j](k)
≤ 2hmax,

(s
[j]
k + 1)hmin ≤

s
[j]
k∑
i=0

∆t
[j]

`[j](k)−i ≤ (m+ 1)hmax, (2.35)

(s
[j]
k + 1) ≤ (m+ 1)

(
hmax
hmin

)
. (2.36)
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Therefore, recalling Eq. (2.32),

Mk ≤
Nf∑
j=1

(s
[j]
k + 1) ≤ (m+ 1)Nf

(
hmax
hmin

)
, (2.37)

Mk ≤ (m+ 1)NfCt. (2.38)

Hence proved.

Ct is a measure of the range of times scales in the numerical simulation. Also note that

it remains constant when the timesteps of the components are refined uniformly. Once an

upper bound for Mk is established and one-step MASM is defined, the proof for convergence

of MASM will be very similar to the convergence of linear multistep methods [28], except

that it also requires
〈
βββ

[j]
k

〉
i
to be bounded above. Below we firstly define the one-step MASM

and then prove that
〈
βββ

[j]
k

〉
i

are bounded from above.

Let Zk = [ΦT
k ΦT

k−1 . . . ΦT
k−(M−1)]

T , using which one can express Eq. (2.11) as,

Zk+1 = (A⊗ I)Zk + ∆tkΛk(Zk, {∆ti}), (2.39)

where the increment function Λk(Zk, {∆ti}ki=k−(M−1)) = [(
∑Nf

j=1

∑M−1
i=0

〈
β̂ββ

[j]

k

〉
i
F

[j]
k−i)

T 0T

. . . 0T]T, the coefficient matrix is Kronecker tensor product of I, an identity matrix, and A,

which is defined by

[A]ij =


1 i = j = 1

1 i = j + 1 and j = 1, 2, . . . ,M − 2

0 otherwise,

(2.40)

where M = (m+1)NfCt (see Eq. 2.38) and
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〈
β̂ββ

[j]

k

〉
i

=


〈
βββ

[j]
k

〉
p

if tk−i = t
[j]

`[j](k)−p where p ∈ {0, 1, . . . ,m− 1}

0 elsewhere.

(2.41)

Similar to
〈
β̃ββ

[j]

k

〉
i

(Eq. 2.13), for each j and k there still remains only m non-zero quanti-

ties in
〈
β̂ββ

[j]

k

〉
and the non-zero quantities are defined by Eq. (2.19). In the following Lemma

we establish that
〈
β̂ββ

[j]

k

〉
i

coefficients are bounded above, which will be the last additional

result required to prove the convergence of MASM solution.

Lemma 2. Given {∆t[j]p } of MASM (2.39) satisfy Eq. (2.30), then there exist a constant

Cβ such that, β̂ββ
[j]

k (2.41) satisfy,
∥∥∥β̂ββ[j]

k

∥∥∥
∞
≤ Cβ, for all j = 1, . . . , Nf and k ≥ 0.

Proof. Using Eqs. (2.41, 2.19) and also since R (see Eq. 2.21) is a constant vector with

‖R‖∞ = 1,

∥∥∥β̂ββ[j]

k

∥∥∥
∞

=
∥∥∥βββ[j]

k

∥∥∥
∞

=

∥∥∥∥(V
[j]
k

)−1

R

∥∥∥∥
∞
≤
∥∥∥∥(V

[j]
k

)−1
∥∥∥∥
∞
‖R‖∞, (2.42)

≤
∥∥∥∥(V

[j]
k

)−1
∥∥∥∥
∞
. (2.43)

Norm of an Inverse Vandermonde matrix is known to be bounded above (see [32] pp.

417) and is given by,

∥∥∥∥(V
[j]
k

)−1
∥∥∥∥
∞
≤ max

p
Πq 6=p

1 + |τ [j]

`[j](k)−q|

|τ [j]

`[j](k)−p − τ
[j]

`[j](k)−q|
. (2.44)

To get an estimate for the above upper bound, recall Eq. (2.20),

τ
[j]

`[j](k)−i =
t
[j]

`[j](k)−i − tk
∆tk

= (−1)

∑i
r=1 ∆t

[j]

`[j](k)−r +
(
tk − t[j]`[j](k)

)
∆tk

 . (2.45)

Since ∆t
[j]

`[j](k)
≥ tk − t[j]`[j](k)

> 0 (see Eq. 2.15),
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∣∣∣∣∣∣
∑i

r=1 ∆t
[j]

`[j](k)−r

∆tk

∣∣∣∣∣∣ < |τ [j]

`[j](k)−i| ≤

∣∣∣∣∣∣
∑i

r=0 ∆t
[j]

`[j](k)−r

∆tk

∣∣∣∣∣∣ , (2.46)

∣∣∣∣(ihmin∆tk

)∣∣∣∣ < |τ [j]

`[j](k)−i| ≤
∣∣∣∣((i+ 1)hmax

∆tk

)∣∣∣∣ , (2.47)

where i = 0, 1, . . . , (m− 1). Using similar algebra, one can show that,

∣∣∣τ [j]

`[j](k)−p − τ
[j]

`[j](k)−q

∣∣∣ =

∣∣∣∣∣∣
∑max (p,q)

r=min (p,q) ∆t
[j]

`[j](k)−r

∆tk

∣∣∣∣∣∣ . (2.48)

Therefore, for all j,

|p− q|hmin
∆tk

≤ |τ [j]

`[j](k)−p − τ
[j]

`[j](k)−q| ≤ |p− q|
hmax
∆tk

. (2.49)

The bounds on ∆tk can be obtained using Eq. (2.17) and also Eq. (2.15), i.e.,

∆tk = min
j=1,...,Nf

(
t
[j]

`[j](k)
+ ∆t

[j]

`[j](k)
− tk

)
≤ ∆t

[j]

`[j](k)
+
(
t
[j]

`[j](k)
− tk

)
, (2.50)

≤ ∆t
[j]

`[j](k)
, for j ∈ {1, . . . , Nf}. (2.51)

0 < ∆tk ≤ hmax. (2.52)

Using Eq. (2.49) and Eq. (2.47),

1 + q hmin
∆tk

|p− q|hmax
∆tk

≤
1 + |τ [j]

`[j](k)−q|

|τ [j]

`[j](k)−p − τ
[j]

`[j](k)−q|
≤

1 + (q + 1)hmax
∆tk

|p− q|hmin
∆tk

, (2.53)

∆tk + qhmin
|p− q|hmax

≤
1 + |τ [j]

`[j](k)−q|

|τ [j]

`[j](k)−p − τ
[j]

`[j](k)−q|
≤ ∆tk + (q + 1)hmax

|p− q|hmin
. (2.54)
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Using Eqs. (2.52, 2.30), and also since p 6= q = {0, 1, . . . ,m− 1},

1

m− 2

1

Ct
<

1 + |τ [j]

`[j](k)−q|

|τ [j]

`[j](k)−p − τ
[j]

`[j](k)−q|
≤ (m+ 1)Ct. (2.55)

Now from Eqs. (2.43, 2.44, 2.55),

∥∥∥β̂ββ[j]

k

∥∥∥
∞
≤ Cβ, (2.56)

where Cβ = (m+ 1)m−1Cm−1
t . Hence proved.

Definition 3. The local error of a one-step MASM (2.39) at tk is defined by

Z(tk)− Zk, (2.57)

where Z(tk) is the exact solution of the ODE (2.4) and Zk (= [ΦT
k X(tk−1)T . . . X(tk−(M−1))

T ]T )

is obtained from (2.39) with Zk−1 = Z(tk−1) = [X(tk−1)TX(tk−2)T . . .X(tk−M)T ]T .

One can easily show that the vector norm of the local error in one-step MASM is equal to

the vector norm of the local error of MASM (Definition 1), i.e. ‖Z(tk)−Zk‖ = ‖X(tk)−Φk‖.

Now following an approach similar to Lemma 4.3 (section III.4, [28]) and Theorem 5.8

(section III.5, [28]), convergence of MASM solution is proved in the following theorem and

later it is shown to have a order of convergence of atleast m for sufficiently regular ODEs

(2.4).

Theorem 2. Given F[j] (2.39) are Lipschitz functions with Lipschitz constant L for all

j ∈ {1, . . . , Nf} and {∆t[j]p } satisfy Eq. (2.30), then the global error in MASM (2.39) at time

T (= tk+1) satisfy,
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‖Zk+1−Z(tk+1)‖ ≤ ‖(A⊗ I)‖ ‖Zk−Z(tk)‖+∆tkNfLMCβ max
i=0,...,M−1

‖Φk−i −X(tk−i)‖+‖lk‖

(2.58)

where lk = Z(tk+1)− (A⊗ I)Z(tk)−∆tkΛk(Z(tk), {∆ti}), Cβ is a constant (see Eq. 2.56)

and ‖.‖ is a vector norm.

Proof. Recalling Eq. (2.39) and using the definition of lk, norm of the global error at T

(= tk+1 − t0) can be written as,

‖Zk+1 − Z(tk+1)‖ = ‖(A⊗ I) (Zk − Z(tk)) + ∆tk (Λk(Zk, {∆ti})− Λk(Z(tk), {∆ti})) + lk‖

(2.59)

= ‖(A⊗ I) (Zk − Z(tk)) (2.60)

+ ∆tk

Nf∑
j=1

M−1∑
i=0

〈
β̂ββ

[j]

k

〉
i

(
F

[j]
k−i − F[j](X(tk−i), tk−i)

)
+ lk‖.

Since F[j] is uniformly Lipschitz continuous, where L is the Lipschitz constant, the above

equation can be written as,

‖Zk+1 − Z(tk+1)‖ ≤ ‖(A⊗ I)‖ ‖Zk − Z(tk)‖+ ∆tkL

Nf∑
j=1

M−1∑
i=0

∥∥∥β̂ββ[j]

k

∥∥∥
∞
‖Φk−i −X(tk−i)‖+ ‖lk‖,

(2.61)

≤ ‖(A⊗ I)‖ ‖Zk − Z(tk)‖ (2.62)

+ ∆tkL

Nf∑
j=1

(
M−1∑
i=0

∥∥∥β̂ββ[j]

k

∥∥∥
∞

)(
max

î=0,...,M−1
‖Φk−î −X(tk−î)‖

)
+ ‖lk‖.

Invoking Eq. (2.30) and applying Lemma 2 one can show that
(∑M−1

i=0

∥∥∥β̂ββ[j]

k

∥∥∥
∞

)
≤MCβ.

As a result the above equation can be rewritten as,
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‖Zk+1 − Z(tk+1)‖ ≤ ‖(A⊗ I)‖‖Zk − Z(tk)‖ (2.63)

+ ∆tkNfLMCβ max
î=0,...,M−1

‖Φk−î −X(tk−î)‖+ ‖lk‖.

Hence proved.

The above theorem proves the convergence of the solution of MASM (2.39) as hmax → 0.

Theorem 3. Given (i) {∆t[j]p } satisfy Eq. (2.30), (ii) F[j] (2.39) are Lipschitz functions with

Lipschitz constant L for all j ∈ {1, . . . , Nf} and sufficiently differentiable, and (iii) the local

error (defined by Def. 3) in MASM (2.39) at k=0 satisfy, ‖Z0−Z(t0)‖ ≈ O (hmax)
m+1, then

the global error in MASM (2.39) at T (= tk+1) satisfy,

‖Zk+1 − Z(tk+1)‖ < C (hmax)
m , (2.64)

where ‖.‖ is a vector norm.

Proof. Firstly, we invoke Theorem 2,

‖Zk+1 − Z(tk+1)‖ ≤ ‖(A⊗ I)‖ ‖Zk − Z(tk)‖ (2.65)

+ ∆tkNfLMCβ max
i=0,...,M−1

‖Φk−i −X(tk−i)‖+ ‖lk‖.

Now recall from Eq. (2.40) that (A⊗I) is a constant matrix and from Lemma 4.4 (section

III.4, [28]) there exists a vector norm such that ‖A ⊗ I‖ ≤ 1. Using this result along with

the fact that maxi=0,...,M−1 ‖Φk−i −X(tk−i)‖ ≤ ‖Zk − Z(tk)‖, the global error at tk, can be

shown to be,
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‖Zk+1 − Z(tk+1)‖ ≤ (1 + ∆tkNfLMCβ) ‖Zk − Z(tk)‖+ ‖lk‖ (2.66)

≤
(
Πk
p=0 (1 + ∆tpNfLMCβ)

)
‖Z0 − Z(t0)‖

+ (‖lk‖+ (1 + ∆tkNfLMCβ) ‖lk−1‖+ . . . (2.67)

+Πk
q=1 (1 + ∆tqNfLMCβ) ‖l0‖

)
,

since (1 + ∆tpNfLMCβ)< exp ∆tpNfLMCβ

< exp

((
k∑
p=0

∆tp

)
NfLMCβ

)
‖Z0 − Z(t0)‖

+ (‖lk‖+ exp (∆tkNfLMCβ)‖lk−1‖+ . . . (2.68)

+ exp

((
k∑
q=1

∆tq

)
NfLMCβ

)
‖l0‖

)
(2.69)

< exp ((tk+1 − t0)NfLMCβ) {‖Z0 − Z(t0)‖+ (‖lk‖+ ‖lk−1‖+ . . .+ ‖l0‖)} .

(2.70)

Since F[j] are sufficiently differentiable, from Definition 2 it is clear that ‖lk‖ ≈O (∆tk)
m+1

( i.e., there exists constant C0 such that ‖lk‖ ≤ C0 (∆tk)
m+1 ≤ C0 (hmax)

m+1). And similarly

since it is assumed that ‖Z0 − Z(t0)‖ ≈ O (hmax)
m+1, there exists a constant Cz such that

‖Z0 − Z(t0)‖ ≤ Cz (hmax)
m+1. Therefore the global error is,

‖Zk+1 − Z(tk+1)‖ < exp ((tk+1 − t0)NfLMCβ)
{
Cz (hmax)

m+1 + (k + 1)C0 (hmax)
m+1} .

(2.71)

Since T = tk+1 − t0, one can easily show that T
hmax

≤ k+ 1 ≤ T
hmin

. Using Eq. (2.30) one

can show that k + 1 ≤ TCt
hmax

and substituting the same in the above equation (Eq. 2.71),
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‖Zk+1 − Z(tk+1)‖ < exp (TNfLMCβ)
{
Cz (hmax)

m+1 + TCtC0 (hmax)
m} , (2.72)

< exp (TNfLMCβ) {Czhmax + TCtC0} (hmax)
m . (2.73)

As we are concerned with the behavior of the global error as hmax → 0, it is safe to

assume that there exist a constant Ch such that hmax ≤ Ch, therefore the global error can

be written of the form,

‖Zk+1 − Z(tk+1)‖ < C (hmax)
m , (2.74)

where C= exp (TNfLMCβ) {CzCh + TCtC0}. Hence proved.

Essentially, Theorem 3 proves that if F[j] are sufficiently differentiable, then the solution

of MASM not only converges similar to its corresponding synchronous solution but also

shares the same order of convergence.

Even though the convergence of Adams type MASM method is shown in above theorems,

it can be extended to show convergence of non-Adams type MASM solution where A (2.40),

is a function of αi (2.2), using above theorems and Lemma 4.4 [28, Section III.4].

2.4 Numerical Studies and Discussion

In this section we present results for the MASM integrators applied to two test systems, a

single-degree-of-freedom linear spring-mass system and a high-dimensional nonlinear aerosol

dynamics problem. To compare the MASM results to those of synchronous Adams-Bashforth

multistep methods, we computed the error versus cost curves for each method.

The error was computed as the difference of the final system state to an analytical
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solution or a very accurate numerical solution. Accurate numerical solutions is computed

with a high-order adaptive synchronous multistep method (the ode113 routine in MATLAB)

with very low error tolerances. We used the two-norm ‖ · ‖2 for the spring-mass system and

the sup-norm ‖ · ‖∞ for the aerosol system. The sup-norm was chosen to avoid neglecting

the very small aerosol particles, as the key goal of such simulations is to accurately compute

the evolution of all particles in the system.

The measure of cost used for comparisons is the number of evaluations of the component

functions F[j] from (2.4). This is an appropriate measure of cost if the function evaluations

dominate the other simulation costs, such as solving for the
〈
βββ

[j]
k

〉
i

coefficients (2.29). As

discussed in Section 2.4.2, this is a valid assumption as the full aerosol condensation equations

are complicated implicit functions of the rates, so simply evaluating F[j] typically involves

a Newton iteration. This cost model, however, is not reasonable for simple linear systems,

such as the spring-mass problem of Section 2.4.1.

2.4.1 Linear mass-spring system

Consider a single-degree-of-freedom linear spring-mass system, as shown in Figure 2.2. The

governing equation is

Mẍ+ (K1 +K2)x = 0, (2.75)

which we split as

Ẋ =

ẋ
v̇

 =

 0 1/2

−K1/M 0


x
v


︸ ︷︷ ︸

F[1](X)

+

 0 1/2

−K2/M 0


x
v


︸ ︷︷ ︸

F[2](X)

. (2.76)

We took initial conditions x(0) = 0 and v(0) = 1, parameters M = 2, K1 = 1, and
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Figure 2.2: Spring-mass system used as a test-case in Section 2.4.1.

K2 = 100, and we chose the timestep for each component to be

∆t
[p]
0 =

2πh

10

√
M

Kp

, (2.77)

in terms of a parameter h.

To understand how the performance of the MASM integrators varies with different types

of systems, we assume that the costs δ[1] and δ[2] of evaluating the functions F[1] and F[2] are

not equal, and that

δ[2]

δ[1]
= γ (2.78)

for a constant parameter γ. During a simulation with N [j] evaluations of function F[j], each

at cost δ[j], the total cost is thus

δtotal = N [1]δ[1] +N [2]δ[2] (2.79)

=
N [1] + γN [2]

1 + γ
δ, (2.80)

where δ = δ[1] + δ[2] is the cost of evaluating the total vector field F (2.4).

Figure 2.3 shows the two-norm error of the system state at time t = 0.1 seconds, versus

cost δtotal normalized by δ for different choices of the cost ratio γ, with the curves showing

different choices of timestep scale h. Table 2.1 shows the slopes of the curves.

From Figure 2.3 and Table 2.1 we see that the m-step MASM integrators are indeed of

order m, as predicted by Theorem 1, and that they do not appear to exhibit instabilities for
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Figure 2.3: Error-versus-cost curves for the linear spring-mass system of Section 2.4.1 using
asynchronous MASM and synchronous ABM integrators, with varying timestep scale h and
with different cost scalings γ (2.78). The cost is δtotal/δ (2.80), while the error is the two-
norm state error at the final time. We observe that the m-step methods are of order m in
both the synchronous and asynchronous cases. The asynchronous methods do not offer any
improvement in efficiency except for very extreme values of γ. See Table 2.1 for the slopes
of each curve.

Table 2.1: Slopes of error-versus-cost curves in Figure 2.3 for the spring-mass system.
m = 2 m = 3 m = 4

MASM, γ = 1 −1.97 −2.97 −3.84
MASM, γ = 0.1 −1.99 −2.95 −3.86
MASM, γ = 0.01 −1.99 −2.97 −3.85
MASM, γ = 0.001 −2.00 −2.95 −3.89
ABM (synch) −2.00 −2.96 −3.95
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Table 2.2: Slopes of error-versus-cost curves in Figs. (2.4, 2.5) for the spring-mass system.
m = 2 m = 3 m = 4 m = 5

MASM, γ = 1 −1.97 −2.97 −3.84 −4.84
MASM, γ = 0.01 −1.99 −2.95 −3.86 −4.86
ABM (synch) −2.00 −2.96 −3.95 −4.95

this system. However, the cost of the MASM integrators is almost always higher than the

corresponding synchronous ABM integrator, except for very extreme values of the cost ratio

γ which make the fast component F[2] much cheaper than the slow component F[1].

This result is not surprising, as the two system components are very strongly coupled in

the system, and so there is little gain from computing one component much less accurately

than the other, unless the cost ratios are very skewed.

To explore the effect of coupling between different system components, we look at the

numerical performance from modeling (2.75), using a different force field splitting, which is

given by,

Ẋ =

ẋ
v̇

 =

 0 1

−K1/M 0


x
v


︸ ︷︷ ︸

F[1](X)

+

 0 0

−K2/M 0


x
v


︸ ︷︷ ︸

F[2](X)

. (2.81)

As can be seen the, the only difference when compared to the splitting employed ear-

lier (2.76) is that the momentum as a whole is updated using the smaller timestep. Simula-

tions are carried out using the same initial conditions and other parameter values including

the timestep (2.77) for each system component. Convergence of the two-norm global error

in the numerical solution obtained using different order MASM (i.e m = 2, 3, 4, 5) against

the scaling factor h are shown in Figs. (2.4,2.5). Figure 2.4 shows the numerical convergence

with cost scaling γ = 1, while the figure 2.5 shows the same for γ = .01. These plots also

show a comparison with the corresponding synchronous methods. Table 2.2 shows the slope

of the curves.
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Figure 2.4: Error-versus-cost curves for the linear spring-mass system of Section 2.4.1 using
asynchronous MASM with force field splitting (2.81) and synchronous ABM integrators,
with varying timestep scale h. The cost is δtotal/δ (2.80), while the error is the two-norm
state error at the final time. We observe that the m-step methods are of order m in both
the synchronous and asynchronous cases. The asynchronous methods show considerable
improvement in efficiency which can be as high as an order when cost ratio γ = 1 (2.78).
See Table 2.2 for the slopes of each curve.
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Cost (γ=.01)
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Figure 2.5: Error-versus-cost curves for the linear spring-mass system of Section 2.4.1 using
asynchronous MASM with force field splitting (2.81) and synchronous ABM integrators,
with varying timestep scale h. The cost is δtotal/δ (2.80), while the error is the two-norm
state error at the final time. We observe that the m-step methods are of order m in both
the synchronous and asynchronous cases. The asynchronous methods show considerable
improvement in efficiency which can be as high as two-orders when cost ratio γ = .01 (2.78).
See Table 2.2 for the slopes of each curve.
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From Figure (2.4, 2.5) and Table 2.2, it can be clearly seen that, the numerical solution

using MASM is considerably more efficient than its synchronous counterparts. The efficiency

gain can be as high as two-orders for smaller values of cost ratio γ. This result clearly

indicates the importance of the coupling between system components. We will explore this

aspect in detail, later in Chapter 4.

2.4.2 Nonlinear aerosol condensation system

We now consider a simplified model of water condensation onto aerosol particles. The full

dynamics of this process are complicated (see, e.g., Seinfeld and Pandis [55, Chapter 17]), so

for simplicity of exposition we use an extremely simple model here. The cost of evaluating

the vector field components F[j] for the full dynamics is very high, so measuring cost as the

total number of component evaluations is a reasonable measure for this system.

We take n aerosol particles with volumes V1, . . . , Vn in a parcel of air containing water

vapor with equivalent liquid-water volume W . We assume that water condensation onto

the aerosol particles is proportional to their surface areas and proportional to the water

vapor volume-equivalent. This simplified model neglects many key physical processes (e.g.

equilibrium vapor state, diffusion limits, curvature terms, etc) and is not at all accurate.

It does, however, capture the numerically important features of the full system and so

represents a good test case. The system dynamics are

V̇p = WV
2
3
p for p = 1, 2, .., n (2.82)

Ẇ = −
n∑
p=1

V̇p = −W
n∑
p=1

V
2
3
p . (2.83)

The key feature of this system is that the evolution of the various particles is only

sparsely coupled via the global W state, and that the relative growth rate V̇p/Vp of particles

is inversely proportional to their size, so small particles grow relatively quickly.

We split the system into the n + 1 components given by (2.82) and (2.83) and choose
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per-component timesteps

∆t
[p]
0 = h

Vp

|V̇p|
for p = 1, . . . , n (2.84)

∆t
[n+1]
0 = h

W

|Ẇ |
, (2.85)

where h is a scaling parameter.

The aerosol particle volumes were initially normally distributed, with a total of n = 72

particles having volumes Vp given by

Vp = ri+1Up + ri(1− Up) for ni−1 < p ≤ ni (2.86)

ri = 10−1 i

19
+ 10−8

(
1− i

19

)
for i = 0, . . . , 19 (2.87)

ni − ni−1 = [5 exp(−(ri − 0.1)2/0.009)] for i = 1, . . . , 19 and n0 = 0 (2.88)

Up ∼ Unif(0, 1), (2.89)

where [x] is the nearest integer to x, and W (0) = 20. The initial distribution had the largest

particle, about 1800 times the volume of the smallest particle, and the ratio of largest to

smallest initial timesteps was about 160.

Figure 2.6 shows the sup-norm error of the system state at time t = 1/10 versus the cost

(total number of component function evaluations). As discussed above, the sup-norm was

chosen to ensure that the error in the small particles was not completely dominated by the

error in the large particles, as in practical simulations it is important that all particles are

accurately simulated (indeed, often it is the small particles which are of most interest). The

timestep scaling h was varied to trace out the cost-error curves, and Table 2.3 shows the

slopes of these curves.

From Figure 2.6 and Table 2.3 we see that the m-step MASM integrators are again

converging at order m, as we expect from Theorem 1, and that no instability is apparent.
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Figure 2.6: Error-versus-cost curves for the nonlinear aerosol condensation system of Sec-
tion 2.4.2 using the asynchronous MASM and synchronous ABM integrators, with varying
timestep scale h. The cost is proportional to the total number of component function evalu-
ations, while the error is the sup-norm state error at the final time. We see that the m-step
methods are of order m, as expected from Theorem 1, and that for this sparsely-coupled
system the MASM are more efficient than ABM. See Table 2.3 for the slopes of each curve.

Table 2.3: Slopes of cost-versus-error curves in Figure 2.6 for the aerosol system.
m = 2 m = 3 m = 4

MASM −1.98 −3.20 −4.10
ABM −1.95 −2.70 −3.84
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In contrast to the tightly-coupled spring-mass system in Section 2.4.1, here we see that the

MASM integrators are more efficient than the equivalent synchronous methods. This is due

to the wide range of timescales in this problem, and the fact that the different particles are

only sparsely coupled.

Considering the implementation cost alone, MASM methods are particularly efficient for

problems such as this aerosol simulation, as the component function evaluations F[j] need

to have only the non-zero components stored, and they are almost entirely zero.
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Algorithm 1 MASM algorithm (m-step explicit Adams type)

1: Input: final time tf , initial component times t
[j]
−i and states Φ−i for i = 0, . . . ,m− 1 and

j ∈ {1, . . . , Nf}
2: Initialize: k ← 0, `[j](k) ← 0 for j = 1, . . . , Nf and tk ← maxj t

[j]

`[j](k)
, with Φk the

corresponding state
3: Initialize: choose per-component timesteps ∆t

[j]

`[j](0)

4: Initialize: F
[j]

`[j](0)−i ← F[j](Φ`[j](0)−i, t
[j]

`[j](0)−i) for i = 0, . . . ,m− 1 and j = 1, . . . , Nf

5: while tk < tf do
6: ∆tk ← minj

(
t
[j]

`[j](k)
+ ∆t

[j]

`[j](k)
− tk

)
7: tk+1 ← tk + ∆tk
8: for j = 1 to Nf do
9: τ

[j]

`[j](k)−i ← (t
[j]

`[j](k)−i − tk)/∆tk for i = 0, . . . ,m− 1

10:

[
V

[j]
k

]
p+1,i+1

←
(
τ

[j]

`[j](k)−i

)p
for i, p = 0, . . . ,m− 1

11: 〈R〉p+1 = 1
p+1

for p = 0, . . . ,m− 1

12: Solve V
[j]
k βββ

[j]
k = R for the vector βββ

[j]
k

13: end for
14: Φk+1 ← Φk + ∆tk

∑m−1
i=0

∑Nf

j=1

〈
βββ

[j]
k

〉
i
F

[j]

`[j](k)−i
15: for j = 1 to Nf do
16: if tk+1 = t

[j]

`[j](k)
+ ∆t

[j]

`[j](k)
then

17: t
[j]

`[j](k+1)
← tk+1, F

[j]

`[j](k+1)
← F[j](Φk+1, tk+1)

18: t
[j]

`[j](k+1)−i ← t
[j]

`[j](k)−(i−1)
, F

[j]

`[j](k+1)−i ← F
[j]

`[j](k)−(i−1)
for i = 1, . . . ,m− 1

19: update timestep ∆t
[j]

`[j](k+1)
> 0

20: else
21: t

[j]

`[j](k+1)−i ← t
[j]

`[j](k)−i, F
[j]

j,`[j](k+1)−i ← F
[j]

j,`[j](k)−i for i = 0, . . . ,m− 1

22: if desired, choose new timestep ∆t
[j]

`[j](k+1)
> tk+1 − t[j]`[j](k)

23: end if
24: end for
25: k ← k + 1
26: end while
27: Finalize: compute final state Φf at time tf with an mth order interpolant.
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Chapter 3

Stability of MASM

The performance of methods addressing multiple-time-scale problems is often limited due

to issues related to stability. In this chapter, we address the stability of MASM [27]. We

show that MASM is conditionally stable and we study this conditionality in the case of

different force field splittings both analytically and numerically. The stability of numerical

solutions obtained using MASM for a choice of timesteps strongly depends upon the splitting

of the force fields. In a favorable splitting, the computational gain achieved is equivalent to

complete modal decomposition.

The outline of the chapter is as follows. Section 3.1 presents the analytical findings

addressing the linear stability of MASM. Section 3.2 then investigates the linear stability of

MASM via numerical experiments.

3.1 Stability

Similar to many non-symplectic methods, linear stability of MASM is necessary and sufficient

for numerical stability [54].

Linear stability of MASM can be studied using Dahlquist I (also called Zero-Stability)

and Dahlquist II criteria. Dahlquist I looks at the boundedness of the error in solution as the

timesteps approach zero i.e., ∆t→ 0. It can be clearly seen that Adams-type MASM (2.11),

when ∆tk = 0, is similar to Euler method and satisfy Dahlquist I criterion unconditionally.

According to Dahlquist II criteria, a numerical method is stable if there exists values of

∆t such that |λ| ≤ 1 (equal only when λ is simple), when applied to an ODE of the form

35



Ẋ(t) = λX(t) (X ∈ Rn), where λ is a scalar constant (λ ∈ C). Application of Dahlquist

II criteria to MASM would not be simple, given that we are dealing with more than one

timesteps. However, we will do so later in the section with certain assumptions and for the

rest we will explore the same numerically.

Stability of variable grid multistep methods has been studied in detail in [20, 70, 25, 11].

Adams type multistep methods are also shown to be unconditionally stable on variable

grid [20, 70]. These stability studies are performed following the definition of stability by

Luxemberg et. al. [36]. Following the definition of stability by Luxemberg [36], stability of

MASM is proven in the following theorem;

Theorem 4. When Adams-type MASM (2.11) modeling additively-split ODE system (2.4)

with timesteps {∆t[j]
`[j](k)
} for updating split force vectors, satisfy Eq. (2.30), then the numer-

ical solution obtained is stable.

Proof. Rewriting Eq. (2.11),

Φk+1 = Φk + ∆tk

Nf∑
j=1

Mk−1∑
i=0

〈β̃ββ
[j]

k 〉i
(
F[j](Φk−i, tk−i)− F[j](0, tk−i)

)
+ ∆tkλk+1 (3.1)

where,

λk+1 =

Nf∑
j=1

Mk−1∑
i=0

〈β̃ββ
[j]

k 〉iF[j](0, tk−i). (3.2)

Using intermediate value theorem,

Φk+1 = Φk + ∆tk

Nf∑
j=1

Mk−1∑
i=0

〈β̃ββ
[j]

k 〉if
[j]
Φ (ηk−i, tk−i)Φk−i + ∆tkλk+1, (3.3)

where ηk−i is an intermediate point between 0 and Φk−i, f
[j]
Φ = dF[j]

dΦ
. The above equation

can be rewritten as,
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Φk+1 = Φk + ∆tk

Mk−1∑
i=0

β̂k,iΦk−i + ∆tkλk+1, (3.4)

where,

β̂k,i =

Nf∑
j=1

〈β̃ββ
[j]

k 〉if
[j]
Φ (ηk−i, tk−i) (3.5)

is a scalar constant. Since timesteps {∆t[j]
`[j](k)
} satisfy Eq. (2.30), invoking Lemma 2 and

Lemma 1 we can reduce Eq. (3.2),

|λk| ≤
Nf∑
j=1

Mk−1∑
i=0

|〈β̃ββ
[j]

k 〉i|max
i,j
|F[j](0, ti)|, (3.6)

≤ NfMCβ max
i,j
|F[j](0, ti)|. (3.7)

where Mk ≤ M = (m + 1)NfCt. Similarly invoking Lemma 2 and Lemma 1, we can

reduce Eq. (3.5) to

Mk−1∑
i=0

|β̂k,i| ≤MNfCβL, (3.8)

where the fact that |f [j]
Φ | ≤ L (L is the lipschitz constant of F) is used. Using Eqs. (3.7, 3.8)

one can invoke Theorem 5 to give an upper bound to the numerical solution, given by

Φk+1 ≤ eNfMCβL(tk−tM−1)

[
Φ +NfMCβ max

i,j
|F[j](0, ti)| (tk − tM−1)

]
, (3.9)

where, Φ = max {Φ0,Φ1, . . . ,ΦM−1}. Hence the numerical solution obtained using

Adams-type MASM is stable.

The above Theorem proves that there exist timesteps such that numerical solution ob-

tained using MASM is stable in Luxumberg [36] sense. We will quantify the stability region,
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where the timesteps belonging to the stability region result in a stable numerical solution,

analytically in this section and numerically in the next section. To do so, we classify the

different kinds of force field splittings (2.4), which play a very important role.

Definition 4 (Asynchronous Splitting). Consider a linear ODE system with force vector

field splitting of the form,

Ẋ(t) = F(X, t) = AX(t) =

Nf∑
j=1

B[j]X. (3.10)

where A is diagonalizable. If (λi,νi) are the eigen pairs of A and

A[j] = λj (νj ⊗ νj) , (3.11)

then the force field splitting in (3.10) is called Asynchronous Splitting when αj,i ∈ {0, 1},

where

B[j] =
∑
i

αj,iA
[i]. (3.12)

Asynchronous splitting as defined in the Definition 4 is achieved when each eigen com-

ponent, νi, of the system is lumped with one of the split force vectors. When such an

idealistic splitting is achieved, each split force field evolves independently. When the num-

ber of component force fields that the force field is split into, is equal to Rank(A) and satisfy

asynchronous splitting criteria, it is equivalent to complete modal decomposition. Such an

idealized splitting is seldom achieved. More often than not, the eigen components are shared

among component force vectors. When an eigen component is shared between two or more

component force vectors we refer to it as time scale splitting.

Application of Dahlquist II criteria, when force field splitting employed in MASM satisfy

asynchronous splitting criteria, is very straight forward. In the case of time scale splitting,

application of Dahlquist II criteria is studied numerically in the next section.
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Application of Dahlquist II criteria is equivalent to the application of Lagrange Method

to MASM for linear ODE system 3.10, where A is diagonalizable and (λi,νi) are its eigen

pairs. Expressing X(t) =
∑

i ai(t)νi, one can reduce the linear multistep method to system

of equations of the form,

ai(tk+1)− ai(tk)− µ
∑
j

βjai(tk−j) = 0,

where µ = ∆t× λmax. For stability, we solve for ζ(µ), where ai(tk+1) = ζ × ai(tk), such

that

ζn+1 − ζn − µ
∑
i

βiζ
n−i = 0, (3.13)

satisfied. Linear stability region of linear multistep methods can be given by,

S = {µ ∈ C |Root of Eq. (3.13) satisfy, |ζ(µ)| ≤ 1} (3.14)

Using a very similar approach, one can reduce application of MASM to ODE sys-

tem (3.10) which satisfies asynchronous splitting criteria, to a system of characteristic equa-

tions of the form,

ζn+1 − ζn − µ[j]

(
m−1∑
i

β
[j]
i ζ

n−i

)
= 0. (3.15)

where µ[j] = ∆t[j]×max{|λi|
∣∣νTi B[j]νi 6= 0}. Therefore, MASM when modeling an ODE

system (3.10), where the forcing field splitting satisfy asynchronous splitting criteria, is stable

if only if

µ[j] ∈ S (see Eq. 3.14) for all j. (3.16)

While solving real engineering problems, the force vector splitting seldom satisfy Asyn-
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chronous Splitting criteria. Often in a force vector splitting, some of the eigen components

are split between the component force vectors. As a result any force vector splitting is a

combination of certain eigen components being lumped in a single component force vector,

while others are split between different component force vectors, which is referred to as time

scale splitting. We will only explore the stability criteria in the case of 2-component time

scale splitting in this study.

3.2 Numerical Studies and Discussion

While the linear stability of the MASM and the stability criteria on systems where asyn-

chronous splitting is achieved is proven in the previous section, in this section we will nu-

merically study the stability criterion in the case of time scale splitting, especially when the

eigen component is split between two component force fields.

Stability of the numerical method is studied using the following methodology. Given

Ψ∆tk : RMk×M → RM is the one-step integrator of MASM applied to differential equations

given by Eq. (2.4) whose vector field can be split into several components also given by

Eq. (2.4), MASM can be represented by,

Xk+1 = Ψ∆tk

(
{t1,k−i}m−1

i=0 , . . . , {tN,k−i}m−1
i=0

)
{Xk−i}Mk−1

i=0 . (3.17)

In the case of linear systems, such as the examples studied in this section, numerical

method can be written as,

Zk+1 = AΨZk, (3.18)

where ZT
k = [XT

k . . .X
T
k−(Mk−1)] and AΨ is a coefficient matrix. Eigenvalues of AΨ de-

termine the stability of the method i.e. the numerical method is stable if |λmax(AΨ)| ≤ 1 (

strictly < 1 when algebraic multiplicity of λmax(AΨ) is greater than 1 ), where λmax(AΨ) is
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the eigen value of AΨ with maximum absolute value. In the following numerical studies, AΨ

is determined for different values of the parameters and its eigenvalues are used to determine

the maximum value of timesteps for which the method is stable.
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3.2.1 Conservative Systems

The governing equations of a sdof linear spring-mass system is given by,

Ẋ(t) =

 0 1

−kt 0


x(t)

v(t)

 , (3.19)

where kt is the total stiffness, and x, v are the position and velocity variables respectively.

With the eigenvalues of the same being ±
√
−kt, it is a single time scale system and it

represents any conservative eigen component in a multiscale system. In this section we are

only studying the case where an eigen component is shared between two component force

vectors. The same can be represented by,

Ẋ =

ẋ
v̇

 =

 0 1

−kt 0


x
v


︸ ︷︷ ︸

F=AX

=

(
rs

1 + rs

) 0 1

−kt 0


x
v


︸ ︷︷ ︸

F[1](X)=B[1]X

+

(
1

1 + rs

) 0 1

−kt 0


x
v


︸ ︷︷ ︸

F[2](X)=B[2]X

(3.20)

= α

 0 1

−kt 0


x
v


︸ ︷︷ ︸

F[1](X)=B[1]X

+ (1− α)

 0 1

−kt 0


x
v


︸ ︷︷ ︸

F[2](X)=B[2]X

(3.21)

where rs = ‖F[1]‖/‖F[2]‖ is the ratio of the norm of component force vector that is

updated using the smaller timestep, ∆ts, against the norm of component force vector updated

using larger timestep, ∆t`. Henceforth, rs will be referred as splitting ratio in this thesis.

Eq. (3.21) shows a different parameterization than in Eq. (3.20), where α represents the

fraction of the eigen component updated using the smaller timestep. In this study, we

predominantly employ the parameters used in Eq. (3.20) and the reasons for the same will

be touched upon later in the discussion.

Applying MASM to the above governing equations (3.20), matrix AΨ in Eq. (3.18) can
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be calculated. Note that the matrix,

AΨ = AΨ(rs, kt, {∆t[j]k } ∀ k ≥ 0 and j) = AΨ(rs, kt,∆ts,∆t`), (3.22)

is a function of system dynamics, splitting ratio (rs), as well as the component timesteps

chosen. Also note that, while Aψ explicitly depends upon the quantities inside the paren-

thesis, it also implicitly depends upon m. In Eq. (3.22), the second equality results from the

fact that the component timesteps chosen are assumed to remain constant for simplicity in

the present analysis. Eigenvalues of the matrix AΨ determine the stability of the numerical

method for this system, i.e the method is stable if |λmax(AΨ)| ≤ 1 ( strictly < 1 when

algebraic multiplicity of λmax(AΨ) is greater than 1 ).

In multistep methods, the largest eigenvalue, λmax(A) (see Eq. 3.20), of the system times

the timestep, i.e µ = ∆t × λmax(A), determine the stability. µ (∼ ∆t/Tmax(A)), where

Tmax(A) is the time period of the eigen component with largest eigenvalue, is a measure of

how fast the numerical solution is updated compared to the fastest time scale of the system.

Similarly, in MASM µ` (= ∆t` × λ(A)) and µs (= ∆ts × λ(A)) are the key parameters that

determine stability. Variation of maximum stable value of µ` and µs as splitting ratio, rs,

is varied or as n is varied ( where n = ∆t`/∆ts is the ratio of timesteps, which will also

be referred as timestep ratio in this thesis) are studied. The results from these studies are

compared with when two component timesteps are the same i.e n = 1, which represents the

corresponding linear multistep method or its synchronous counterpart.

The variation of the maximum stable values of µ` and µs as the splitting ratio, rs, is varied

for different values of the timestep ratio, n, are shown in Figs. (3.1, 3.2) respectively. From

Figs. (3.1, 3.2) when rs � 1, µs assumes values which are steadily smaller for increasing

values of n, while µ` remains the same for all n (including n = 1). This clearly shows that

stability is determined by µ` and the stability limit is same as the stability limit for its

synchronous counterpart (n = 1). This behavior is similar to any traditional synchronous
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Figure 3.1: This figure shows the variation of maximum stable value of |µ`| = ∆t` ×
|λ(A)| (see Eq. 3.20) as the splitting ratio, rs (see Eq. 3.20), is varied for different values of
timestep ratio (n), for conservative spring-mass system studied in Section 3.2.1. Variation
of α (Eq. 3.21) is also shown. When the fraction of the forcing updated by smaller timestep,
∆ts, is smaller, i.e when rs � 1, the stability is determined by the larger timestep, ∆t`. The
stability criterion that µs needs to satisfy is same as the stability criterion in the synchronous
case (n = 1). As the fraction of the forcing updated by the smaller timestep (∆ts), increases,
µ` and µs undergo transition from larger timestep, ∆t`, determining stability to the smaller
timestep, ∆ts, determining stability.

method, where the largest µ determine the stability.

When rs � 1, i.e when the fraction of the forcing updated by the smaller timestep is

significantly larger than the fraction updated by the larger timestep, µ` and µs go through

a transition. During the transition, they transitions from larger timestep determining the

stability to smaller timestep determining stability. This transition happens at different

values of splitting ratio, rs, for different values of the timestep ratio, n. For larger values of

n, the transition occurs at larger values of rs and beyond this transition, µs determine the

stability.

Figs. (3.1, 3.2) also show the variation of α with the timestep ratio, where one can see that
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Figure 3.2: This figure shows the variation of maximum stable value of |µs| = ∆ts ×
|λ(A)| (see Eq. 3.20) as the splitting ratio, rs (see Eq. 3.20), is varied for different values of
timestep ratio (n), for conservative spring-mass system studied in Section 3.2.1. Variation of
α (Eq. 3.21) is also shown. The smaller timestep, ∆ts, seems to determine the stability only
when larger fraction of the forcing is updated using the smaller timestep, i.e when rs � 1,
especially after µs and µ` undergo transition. The stability criterion that µs needs to satisfy
is same as it is for its synchronous counterpart (n=1).

the transition happen at much larger values of α (> 0.9). Parameterization in Eq. 3.21 was

employed in few studies, but using Eq. 3.20 allowed us to study the dynamics of transition

better.

Since one can easily vary timestep ratio (n) during simulations using timestep adaptation,

it is more interesting to see the variation of maximum stable value of µ` and µs as n is varied.

The same can be see in Figs. (3.3, 3.4), where the variation of µ` (Fig. 3.3) and µs (Fig. 3.4)

are shown as n is varied for different values of rs. It can be seen that, for values rs � 1, µ`

grows while n increases, at the same time µs remains constant. This clearly indicates that

µs determine stability for smaller values of n. As n increases µ` peaks to a certain value

before transitioning to a lower value. This transition is nothing but the transition seen in
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Figure 3.3: This figure shows the variation of maximum stable value of |µ`| as the timestep
ratio, n (= ∆t`/∆ts), is varied for different values of the splitting ratio, rs (see Eq. 3.20), in
the case of conservative spring-mass system studied in Section 3.2.1. When the fraction of
the forcing that is updated by smaller timestep is large enough, the maximum stable larger
timestep, ∆t`, grows with n and peaks before transitioning to a value similar to n = 1.
When rs � 1, ∆t` determines the stability.

Figs. (3.1, 3.2). Beyond this transition, one can see that µs monotonically reduces, while µ`

remains constant, again indicating that µ` determines the stability for larger values of n.

The overall behavior of maximum stable values of µs and µ` as splitting ratio, rs, or as

timestep ratio, n, is varied can be divided into two regions. In Region I, ∆t` determines the

stability and ∆ts determines stability in Region II. These two regions are separated by the

transition region. As was seen in the Figs. (3.1 - 3.4), the values of timestep ratio, n, grow

with increasing values of splitting ratio in transition region. These values of splitting ratio

and timestep ratio in the transition region are plotted in Fig. 3.5 for m = 3 and m = 4.

From which one can clearly see that,

n ∼ r1/m
s , (3.23)
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Figure 3.4: This figure shows the variation of maximum stable value of |µs| as the timestep
ratio, n (= ∆t`/∆ts), is varied for different values of the splitting ratio, rs, in the case of con-
servative spring-mass system studied in Section 3.2.1. When the fraction of the forcing that
is updated by smaller timestep is large enough, smaller timestep (∆ts) determine stability
before µs and µ` undergo transition.

where n and rs are in transition region. One can also observe from Fig. 3.5, when n is

large enough and as we move from smaller values of rs to larger values, we move from Region

I to Region II, which is also observed in Figs. (3.1, 3.2). Similarly, with rs large enough, we

move from Region II to Region I as we choose larger values of n, also seen in Figs. (3.3, 3.4).

From computational cost point of view, the computational savings compared to its syn-

chronous counterpart is minimal when the larger timestep determines stability, i.e when in

Region I. The most optimal choice of timesteps from computational savings point of view

when in Region I, is when the timesteps are equal, i.e n = 1, where MASM is equivalent to

its synchronous counterpart. However, when in Region II where the smaller timestep deter-

mines the stability allowing the larger timestep to be larger. This results in fewer functions

evaluations of the fraction of the force vector that is updated by larger timestep, it leads
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Figure 3.5: Parameter values of timestep ratio, n, and the splitting ratio, rs (see Eq. 3.20),
at the transition are plotted against each other, in the case of conservative spring-mass
system studied in Section 3.2.1. Transition curve separate Region I, where ∆t` determines
stability, and Region II, where ∆ts determines stability. Maximum computational savings
are achieved for the parameter values in the transition region. In the transition region,
timestep ratio, n, is proportional to 1/mth power of splitting ratio, rs (see Eq. 3.23).

to computational savings. Therefore maximum computational savings are achieved in the

transition region. Fig. 3.6 shows the computational gain achieved in transition region for

different values of cost ratio, γ (see Eq. 2.78). Cost ratio curves in Fig. 3.6 clearly show

that the computational gain can be significant even in the case of time scale splitting with

favorable cost ratio (i.e γ � 1), when optimum parameter values are chosen (i.e in transition

region).

However, the choice of larger timestep also depends upon other eigen components shared

by the respective component force field, F[2] (see Eq. 3.20). Therefore, when the component

force field, F[1], that is updated by smaller timestep shares a larger fraction of an eigen

component, it allows the component force vector (F[2]) that is updated by larger timestep

(∆t[2]) to choose large timestep leading to computational savings.
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Figure 3.6: Computational cost ratio curves in the case of time scale splitting for m = {3, 4}
and for different values of cost ratio, γ (see Eq. 2.78) are shown for spring-mass system
studied in Section 3.2.1. Computational cost using MASM is estimated for the parameter
values, (rs, n), in the transition region. When the cost of evaluating the fraction of the
forcing updated using the smaller timestep is smaller, i.e when γ � 1, the efficiency gain
that can be achieved using MASM can be of several orders even in the case of time scale
splitting in conservative systems.

3.2.2 Non-Conservative Systems

In the case of non-conservative systems, we study a sdof spring-mass-damper system whose

governing equations are given by,

Ẋ =

ẋ
v̇

 =

 0 1

−kt −ct


x
v


︸ ︷︷ ︸

F=AX

=

(
rs

1 + rs

) 0 1

−kt −ct


x
v


︸ ︷︷ ︸

F[1](X)=B[1]X

+

(
1

1 + rs

) 0 1

−kt −ct


x
v


︸ ︷︷ ︸

F[2](X)=B[2]X

(3.24)

where ct is the damping in the system. The natural frequencies remain complex conjugate
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and represent a single time scale system or an eigen component as long as ct ≤ 2
√
kt ( i.e

when the damping ratio ξ(= ct/2
√
kt) ≤ 1 ).

Figs. (3.7, 3.8) not only show the variation of maximum stable values of µ` and µs against

variation of rs for different values of n, but also for different values of the damping ratio

ξ = { 0.0, 0.05, 0.5, 1.0 }. It can be clearly seen that as the damping increases, the transition

is no more dependent upon n. As a result, the timestep that determines the stability is only

a function of the fraction of the forcing it updates, i.e rs, when updating eigen modes with

reasonable damping. The same can also be seen in Figs. (3.9, 3.10) where with little damping,

µ` either monotonically grows with n or remains constant.
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Figure 3.7: This figure shows the variation of maximum stable value of |µ`| = ∆t` ×
|λ(A)| (see Eq. 3.20) as the splitting ratio, rs (see Eq. 3.20), is varied for different values of
timestep ratio (n) and for different values of damping ratio, ξ = {0.0, 0.05, 0.5, 1.0}, in spring-
mass-damper system studied in Section 3.2.1. For systems with damping, the timestep that
determines stability is completely determined by the splitting ratio, rs. Smaller fractions of
forcing, that is updated using the smaller timestep, are needed with increasing damping in
the system at the transition point.

For ξ = { 0.05, 0.5, 1.0 }, the transition happens at rs = { 80, 9, 8 }. This implies that
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when a non-conservative eigen component is shared between two component force vectors,

the smaller timestep determines stability when the fraction of the component forcing updated

by the smaller timestep is greater than { 98.7%, 90%, 88.8% } for ξ = { 0.05, 0.5, 1.0 }

respectively. Therefore, the probability that a splitting could allow an independent choice

of larger timestep in non-conservative systems increases with damping. Note that when an

independent choice of larger timestep can be made, it potentially could lead to significant

computational gains.
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Figure 3.8: This figure shows the variation of maximum stable value of |µs| = ∆ts ×
|λ(A)| (see Eq. 3.20) as the splitting ratio, rs (see Eq. 3.20), is varied for different values of
timestep ratio (n) and for different values of damping ratio, ξ = {0.0, 0.05, 0.5, 1.0}, in spring-
mass-damper system studied in Section 3.2.1. For systems with damping, the timestep that
determines stability is completely determined by the splitting ratio, rs. Smaller fractions of
forcing that is updated using the smaller timestep are needed with increasing damping in
the system, for the smaller timestep to determine stability.

Fig. 3.11 shows the changes in the stability region of µs in complex plane as n is varied

across the transition, (for rs = 102) also shown in Fig. 3.1. From this one can clearly see that

for larger values of n, the conservative systems and systems with little damping transition
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from µs determining stability to where µ` determines the stability. Fig. 3.12 shows the

growth of complex stability region of µs as the fraction updated by the smaller timestep,

rs, grows for n = 100. This figure clearly shows that the complex stability region of µs

grows with rs. The figure also show that with higher damping one needs smaller fraction

of the forcing to be updated by smaller timestep, such that the smaller timestep determine

stability.
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Figure 3.9: This figure shows the variation of maximum stable value of |µ`| as the timestep
ratio, n (= ∆t`/∆ts), is varied for different values of the splitting ratio, rs (see Eq. 3.20),
and for different values of damping ratio, ξ = {0.0, 0.05, 0.5, 1.0}, in the spring-mass-damper
system studied in Section 3.2.2. With resonable damping in the system and with the fraction
of the forcing that is updated by smaller timestep being large enough, the maximum stable
value of larger timestep, ∆t`, grows monotonically as timestep ratio (n) increases. Indicating
that with reasonable damping, the smaller timestep, ∆ts, completely determines the stability.

Until now we have only studied the effect of parameters such as rs and n, on maximum

stable µs and µ`. kt affects the time scale of the system or the eigen mode via the largest

eigen value λ(A) which is considered in the parameters µs = λ × ∆ts and µ` = λ × ∆t`.

Therefore, when the total stiffness increases, it results in reducing the timesteps uniformly,
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Figure 3.10: This figure shows the variation of maximum stable value of |µs| as the timestep
ratio, n (= ∆t`/∆ts), is varied for different values of the splitting ratio, rs (see Eq. 3.20),
in the spring-mass-damper system studied in Section 3.2.1. In the case of systems with
reasonable damping, the splitting ratio (rs) completely determines which timestep governs
stability.

since µs and µ` have to satisfy the same stability criterion. Results similar to Figs. 3.1 -

3.12, which were generated using three point forcing history, i.e m = 3, are also shown for

different values of m in Figs. 3.13 - 3.26.

Figs. (3.13, 3.14) show the variation of maximum stable value of µs and µ` as the splitting

ratio, rs, is varied for different values of n. Similarly Figs. 3.15, 3.16 show the variation of

maximum stable value of µs and µ` as n is varied for different values of splitting ratio, rs.

Results in these plots are obtained using MASM which uses four historical force evaulations,

i.e m = 4. From these plots, one can see that when splitting ratio is small, i.e rs � 1, ∆t`

determines the stability and for larger values of rs past the transition point, ∆ts determines

the stability. It can also be seen that at the transition point, potential computational savings

are the highest. The relationship between n and rs at the transition point is already shown
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in Fig. 3.5 and given by Eq. 3.23. The computational savings that could be achieved at the

transition point for m = 4 is already shown in the Fig. 3.6. These results are very similar

to the results we have seen in the case of m = 3.

Figs. 3.17-3.20 show the effect of damping on the variation of maximum stable values of

µs and µ` as the splitting ratio and timestepratio is varied, in the case for m = 4. These plots

show that with reasonable damping, the splitting ratio completely determines the timestep

that determines the stability, similar to the results in the case of m = 3.

Similar to the results in the case of m = 3, Figs. (3.21-3.26) show that the changes to the

stability region of µs in complex plane as n and rs are varied when m = 2, m = 4 and m = 5.

Similar to the case when m = 3, Figs. (3.21,3.23,3.25) show that as n is varied, conservative

eigen modes as well as the eigen modes with reasonable damping undergo transition from

µs determining stability to where µ` determines the stability for m = 2, m = 4 and m = 5

respectively. Similarly, Figs. (3.22,3.24,3.26) clearly show that with higher damping, one

needs smaller fraction of the forcing to be updated by smaller timestep, such that the smaller

timestep determine stability for m = 2, m = 4 and m = 5 respectively.
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Figure 3.11: Complex stability region of µs with different values of timestep ratio, n, when
rs = 100, are shown. The conservative eigen modes are the first to undergo transition and
extend to slightly damped eigen modes with increasing the timestep ratio (n).
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Figure 3.12: Complex stability region of µs is shown for different values of the splitting ratio,
rs (see Eq. 3.20), and when n = 100. Larger the damping ratio is in an eigen mode, smaller
is the value of splitting ratio, rs, that is sufficient to allow the choice of larger timestep to
be independent.
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Figure 3.13: (m=4) This figure shows the variation of maximum stable value of |µ`| =
∆t`×|λ(A)| (see Eq. 3.20) as the splitting ratio, rs (see Eq. 3.20), is varied for different values
of timestep ratio (n), for conservative spring-mass system studied in Section 3.2.1. Variation
of α (Eq. 3.21) is also shown. When the fraction of the forcing updated by smaller timestep,
∆ts, is smaller, i.e when rs � 1, the stability is determined by the larger timestep, ∆t`. The
stability criterion that µs needs to satisfy is same as the stability criterion in the synchronous
case (n = 1). As the fraction of the forcing updated by the smaller timestep (∆ts), increases,
µ` and µs undergo transition from larger timestep, ∆t`, determining stability to the smaller
timestep, ∆ts, determining stability.
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Figure 3.14: (m=4) This figure shows the variation of maximum stable value of |µs| =
∆ts × |λ(A)| (see Eq. 3.20) as the splitting ratio, rs (see Eq. 3.20), is varied for different
values of timestep ratio (n), for conservative spring-mass system studied in Section 3.2.1.
Variation of α (Eq. 3.21) is also shown. The smaller timestep, ∆ts, seems to determine the
stability only when larger fraction of the forcing is updated using the smaller timestep, i.e
when rs � 1, especially after µs and µ` undergo transition. The stability criterion that µs

needs to satisfy is same as it is for its synchronous counterpart (n=1).
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Figure 3.15: (m=4) This figure shows the variation of maximum stable value of |µ`| as
the timestep ratio, n (= ∆t`/∆ts), is varied for different values of the splitting ratio rs, in
the spring-mass system studied in Section 3.2.1. When the fraction of the forcing that is
updated by smaller timestep is large enough, the maximum stable value of larger timestep,
∆t`, grows with n and peaks before transitioning to a value similar to n = 1. When rs � 1,
∆t` determines the stability.
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Figure 3.16: (m=4) This figure shows the variation of maximum stable value of |µs| as the
timestep ratio, n (= ∆t`/∆ts), is varied for different values of the splitting ratio rs, in the
spring-mass system studied in Section 3.2.1. When the fraction of the forcing that is updated
by smaller timestep is large enough, smaller timestep (∆ts) determines stability, before µs

and µ` undergo transition.
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Figure 3.17: (m=4) This figure shows the variation of maximum stable value of |µ`| =
∆t` × |λ(A)| (see Eq. 3.20) as the splitting ratio, rs (see Eq. 3.20), is varied for different
values of timestep ratio (n) and for different values of damping ratio, ξ = {0.0, 0.05, 0.5, 1.0},
in spring-mass-damper systems studied in Section 3.2.1. For systems with damping, the
timestep that determines stability is completely determined by the splitting ratio, rs. Smaller
fractions of forcing, that is updated using the smaller timestep, are needed with increasing
damping in the system at the transition point.
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Figure 3.18: (m=4) This figure shows the variation of maximum stable value of |µs| =
∆ts × |λ(A)| (see Eq. 3.20) as the splitting ratio, rs (see Eq. 3.20), is varied for different
values of timestep ratio (n) and for different values of damping ratio, ξ = {0.0, 0.05, 0.5, 1.0},
in spring-mass-damper systems studied in Section 3.2.1. For systems with damping, the
timestep that determines stability is completely determined by the splitting ratio, rs. Smaller
fractions of forcing that is updated using the smaller timestep are needed with increasing
damping in the system, for the smaller timestep to determine stability.
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Figure 3.19: (m=4) This figure shows the variation of maximum stable value of |µ`| as the
timestep ratio, n (= ∆t`/∆ts), is varied for different values of the splitting ratio rs and for
different values of damping ratio, ξ = {0.0, 0.05, 0.5, 1.0}, in the spring-mass-damper system
studied in Section 3.2.2. With resonable damping in the system and with the fraction of
the forcing that is updated by smaller timestep being large enough, the maximum stable
larger timestep, ∆t`, grows monotonically as timestep ratio (n) increases. Indicating that
with reasonable damping, smaller timestep, ∆ts, completely determines stability.
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Figure 3.20: (m=4) This figure shows the variation of maximum stable value of |µs| as the
timestep ratio, n (= ∆t`/∆ts), is varied for different values of the splitting ratio rs, in the
spring-mass system studied in Section 3.2.1. In the case of systems with reasonable damping,
the splitting ratio (rs) completely determines which timestep governs stability.
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Figure 3.21: (m=2) Complex stability region of µs with different values of timestep ratio, n,
when rs = 100, are shown. The conservative eigen modes are the first to undergo transition
and extend to slightly damped eigen modes with increasing the timestep ratio (n).
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Figure 3.22: (m=2) Complex stability region of µs is shown for different values of the splitting
ratio, rs (see Eq. 3.20), and when n = 100. Larger the damping ratio in an eigen mode,
smaller value of splitting ratio, rs, is sufficient to allow the choice of larger timestep to be
independent.
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Figure 3.23: (m=4) Complex stability region of µs with different values of timestep ratio, n,
when rs = 100, are shown. The conservative eigen modes are the first to undergo transition
and extend to slightly damped eigen modes with increasing the timestep ratio (n).
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Figure 3.24: (m=4) Complex stability region of µs is shown for different values of the splitting
ratio, rs (see Eq. 3.20), and when n = 100. Larger the damping ratio in an eigen mode,
smaller value of splitting ratio, rs, is sufficient to allow the choice of larger timestep to be
independent.
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Figure 3.25: (m=5) Complex stability region of µs with different values of timestep ratio, n,
when rs = 100, are shown. The conservative eigen modes are the first to undergo transition
and extend to slightly damped eigen modes with increasing the timestep ratio (n).
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Figure 3.26: (m=5) Complex stability region of µs is shown for different values of the splitting
ratio, rs (see Eq. 3.20), and when n = 100. Larger the damping ratio in an eigen mode,
smaller value of splitting ratio, rs, is sufficient to allow the choice of larger timestep to be
independent.
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Chapter 4

Time Step Selection

In this chapter, we develop a time-step selection (TSS) method for solving multiple-time-

scale ODEs using MASM. There are many such variable timestep implementations that have

been studied [43, 40, 42, 56, 64, 59, 8, 57]. Here we only explore a basic implementation of

TSS using MASM. We also present a sparse implementation of MASM useful for large scale

simulations as well as parallel implementation.

The outline of this chapter is as follows: Section 4.1 presents the sparse implementation

of MASM. In section 4.2 we develop the TSS scheme for MASM. We numerically study

the performance of this TSS method on two examples: (1) a linear spring-mass system, (2)

sparsely-coupled (i.e., has fewer non-diagonal terms in the Jacobian, dF
dX

) nonlinear aerosol

problem in Section 4.3. We will see that MASM, while being as efficient as a synchronous

method when modeling single timescale systems, improves the efficiency by several orders

when applied to problems with varied time scales.

4.1 Sparse Implementation of MASM

In the implementation of MASM (see Algorithm 1), at each timestep, the entire state vector,

X(t), is updated, even if only a small section of the solution is used for forcing component

evaluation. This results in several parts of the solution being updated several times before

being employed in a force field evaluation. Sparse implementation of MASM avoids this

inefficiency. Parts of the solution that affects the component force field to be evaluated,

are only updated. Such an implementation, besides avoiding unnecessary updates of other
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parts of the solution, also leads to easier implementation. It also avoids computational over-

heads related to updating entire state vector at each step, which can be large for large scale

simulations. In addition, you will also see that sparse implementation of MASM is suitable

for parallel computing.

In this implementation, instead of updating full state vectors we updated component

state vectors given by,

〈Φ[j]〉p =


〈Φ〉p when p ∈ S[j]

0 when p /∈ S[j]

(4.1)

where S[j] is a set of vector element indices of non-zero quantities in F[j]. Essentially, a

component state vector, say Φ
[j]
p , is the part of the state vector whose dynamics is affected

by a component force vector, i.e F
[j]
p in the case of Φ

[j]
p . The corresponding component vector

field evaluations are F
[j]
p = F[j](Φp, t

[j]
p ) = F[j]({Φ[q]

p }q∈K[j] , t
[j]
p ), where,

K[j] =

{
q

∣∣∣∣ dF[j]

dΦ[q]
6= 0

}
, (4.2)

i.e K[j] is a set of component indices of component state vectors that effect F[j]. In sparse

systems, Φ[j] and F[j] have several quantities which are identically zero, therefore we define

local vectors as,

φφφ[j] = A[j]Φ (4.3)

f [j] = A[j]F[j] = A[j]F (4.4)

where, φφφ[j] is the jth component local state vector, f [j] is jth component local force vector

and
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[A[j]]p,q =


1 q ∈ S[j]&q is pthnon-zero quantity of F[j]

0 otherwise.

(4.5)

A[j] is a vector operator which returns a vector of the elements of the argument vector,

where the corresponding elements in F[j] have a non-zero value. For simplicity we assume

that, S[j], K[j] and A[j] do not change with time.

Note that
⋃
j S

[j] = {1, . . . , N} where N is the dimensionality of Φ and dimension-

ality of φφφ[j] and f [j] are much smaller than N for sparse systems. Note also that when⋂
j S

[j] = {1, . . . , N}, then sparse implementation of MASM is equivalent to the earlier im-

plementation of MASM introduced in Section 2.1.3, which is suitable for modeling vector

field splitting problems. In the case when
⋂
j S

[j] = {} (null set), its equivalent to variable

splitting problem. Therefore, the sparse implementation of MASM generalizes both vector

field splitting and variable splitting problems and exploits the degree of sparsity in the prob-

lem in eliminating unnecessary computations and also reducing the computational over head

in dealing with large vectors.

An m-step MASM integrator proceeds in a sequence of steps, indexed by k, by updating

component local state vectors φφφ[j] by,

φφφ
[j]

`[j](k+1)
= φφφ

[j]

`[j](k)
+ ∆t

[j]

`[j](k)

m−1∑
i=0

〈βββ[j]
k 〉if

[j]

`[j](k)−i (4.6)

where ∆t
[j]

`[j](k)
are component timesteps and βββ

[j]
k can be determined by Eq. 2.19. At step

k we assume that for each component j we have m previous local component states φφφ
[j]

`[j](k)−i,

i = 0, . . . ,m−1, that represent the component state at times t
[j]

`[j](k)−i, i = 0, . . . ,m−1. The

corresponding component local vector field evaluations are f
[j]

`[j](k)−i = A[j]F
[j]

`[j](k)−i.

Given component timesteps ∆t
[j]

`[j](k)
for each component j, we choose the component jk

such that,

t
[jk]

`[j](k)
+ ∆t

[jk]

`[j](k)
= min

j∈{j|t[j]
`[j](k)

<tf}

(
t
[j]

`[j](k)
+ ∆t

[j]

`[j](k)

)
. (4.7)
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Now the component local state vector φφφ[jk] is updated using,

φφφ
[jk]

`[jk](k+1)
= φφφ

[jk]

`[jk](k)
+ ∆t

[jk]

`[jk](k)

m−1∑
i=0

β
[jk]

`[jk](k)−if
[jk]

`[jk](k)−i. (4.8)

Since the jthk component force field needs to be evaluated, {φφφ[j]}j∈K[jk]−jk are temporarily

updated by,

φφφ
[j]

`[j](k+1)
= φφφ

[j]

`[j](k)
+
(
t
[jk]

`[jk](k)
+ ∆t

[jk]

`[jk](k)
− t[j]

`[j](k)

)m−1∑
i=0

〈βββ[j]
k 〉if

[j]

`[j](k)−i. (4.9)

These temporary values are discarded after f
[jk]

`[jk](k+1)
= A[jk]F[jk]({φφφ[j]

`[j](k+1)
}j∈K[jk] , t

[jk]

`[jk](k+1)
)

is evaluated. As a result, the computational costs are minimized exploiting the sparsity in

the system, while generating numerical solution of the same accuracy as in Section 2.1.3.

Similar to earlier implementation of MASM, we need a starting procedure to compute the

first m− 1 steps for each component j. We also use a standard interpolation to evaluate the

solution at particular times, including the final time. The coefficients 〈βββ[j]
k 〉i must generally

be determined at each step, as described in Section 2.2, as the local incremental step sizes

are varying. The data that must be maintained for sparse implementation of MASM is

the current component local state vector, φφφ
[j]

`[j](k)
, and the m previous function evaluations,

f
[j]

`[j](k)−i, i = 0, . . . ,m− 1, for each system component j = 1, . . . , N .

The algorithmic description of sparse implementation of MASM is given in Algorithm (2)

and a graphical depiction of the variable indexing is shown in Figure 2.1 (right panel). Note

that Algorithm (2) is written without in-place updating of variables (except k). In practical

implementations, only single m × dimSj arrays are stored for times t
[j]
k,i, states φφφ

[j]
k,i, and

components fff
[j]
k,i and these are updated in-place.
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Algorithm 2 MASM sparse algorithm (m-step explicit Adamstype)

1: Input: final time tf , initial component times t
[j]

`[j](0)−i and states φφφ
[j]

`[j](0)−i(= A
[j]Φ

[j]

`[j](0)
,

refer Eq. (4.3)) for i = 0, . . . ,m− 1 and j = 1, . . . , Nf

2: Initialize: k ← 0, tk ← maxj t
[j]

`[j](0)
, with Φk(=

∑
j Φ

[j]

`[j](0)
) the corresponding state

3: Initialize: choose per-component timesteps ∆t
[j]

`[j](0)

4: Initialize: fff
[j]

`[j](0)−i ← A[j]F[j]({φφφ[p]

`[p](0)−i}p∈K[j] , t
[j]

`[j](0)−i) for i = 0, . . . ,m − 1 and j =

1, . . . , Nf

5: while tk < tf do
6: tk+1 ← minp

(
t
[p]

`[p](k)
+ ∆t

[p]

`[p](k)

)
∀ p such that t

[p]

`[p](k)
< tf

7: jk ← p such that tk+1 = t
[p]

`[p](k)
+ ∆t

[p]

`[p](k)

8: while p ∈ K[jk](refer Eq. (4.2)) do

9: τ
[p]

`[p](k)−i ← (t
[p]

`[p](k)−i − t
[jk]

`[jk](k)
)/(t

[jk]

`[jk](k)
+ ∆t

[jk]

`[jk](k)
− t[p]

`[p](k)
) for i = 0, . . . ,m− 1

10: (V
[p]
k )p,i ← (τ

[p]

`[p](k)−i)
p for i = 0, . . . ,m− 1

11: 〈R〉i = 1
i+1

for i = 0, . . . ,m− 1

12: Solve V
[p]
k βββ

[p]
k = R for the vector βββ

[p]
k

13: φ̃̃φ̃φ
[p]

`[p](k+1)
← φφφ

[p]

`[p](k)
+ (t

[jk]

`[jk](k)
+ ∆t

[jk]

`[jk](k)
− t[p]

`[p](k)
)
∑m−1

i=0 〈βββ
[p]
k 〉ifff

[p]

`[p](k)−i
14: end while
15: t

[jk]

`[jk](k+1)
← tk+1, φφφ

[jk]

`[jk](k+1)
← φ̃̃φ̃φ

[jk]

`[jk](k+1)
, fff

[jk]

`[jk](k+1)
← A[jk]F[jk]({φ̃̃φ̃φ[p]

`[p](k+1)
}p∈K[jk] , tk+1)

16: t
[jk]

`[jk](k+1)−i ← t
[jk]

`[jk](k)−(i−1)
, φφφ

[jk]

`[jk](k+1)−i ← φφφ
[jk]

`[jk](k)−(i−1)
, fff

[jk]

`[jk](k+1)−i ← fff
[jk]

`[jk](k)−(i−1)
for

i = 1, . . . ,m− 1
17: update timestep ∆t

[jk]

`[jk](k+1)

18: k ← k + 1
19: end while
20: Finalize: compute final state Φf at time tf with mth order interpolant

4.2 Timestep Size Selection

The theory of solving ODEs numerically is well developed and TSS play a very important

role in realizing the optimum choice of the timestep in real time for greater efficiency. An

optimum timestep choice changes with the ODE and the physics it represents and for non-

autonomous systems, the optimum timestep changes with time. Rarely does it happen that

the user would know in advance the optimum timestep and its time dependency. TSS thereby

not only improves the computational efficiency, but also reduces human time to obtain the

numerical solution efficiently. Many of the present day ODE solvers use strategies and
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ideas developed by Krogh[41] and Gear[19]. For more detailed discussion, one can refer [58]

and [22].

In this section, we will develop the TSS suitable for MASM. The theory behind TSS with

changing dynamics is reasonably well understood. However, in the case of MASM, we are

looking to determine more than one timestep. Each component timestep choice now not only

depends upon the overall dynamics, but also the dynamics of the component force vector

fields and/or their corresponding component timestep values. Note that the dependence of

optimum component timestep on the dynamics of the respective component force field is

similar to that in synchronous methods. Essentially, the optimum timestep in synchronous

methods is chosen such that certain accuracy is maintained in the numerical solution. It is

a proven fact that, as the upper bound to local discretization error (τ)→ 0, the global error

in the numerical solution is ∼ O(τ) [58]. As a result, the timestep selection is made based

on the local discretization error, which ensures a certain order of accuracy in the numerical

solution. Therefore understanding the interdependence of optimal component timesteps is

critical for developing an effective TSS strategy for modeling ODEs using MASM. Following

lemma will help us in doing the same.

Lemma 3. Local discretization error when Adams type m-step MASM applied to Eq. 2.4 is

given by,

L∆tk
m (tk) =

∑
j

L[j]∆tk
m (tk) +O (∆tk)

m+2 (4.10)

where,

L[j]∆tk
m (tk) = C

[j]
k F[j](m)(tk)∆t

m+1
k +O (∆tk)

m+2 , (4.11)
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C
[j]
k =

1

(m+ 1)!

[
1− (m+ 1)

(
m−1∑
i=0

〈βββ[j]
k 〉i

(
τ

[j]

`[j](k)−i

)m)]
, (4.12)

and

τ
[j]

`[j](k)−i =

t[j]`[j](k)−i − tk
∆tk

 . (4.13)

Proof. The Linear difference operator, in case of MASM is given by,

L∆tk
m (tk) = Γ∆tk(Φk)−Ψ∆tk

m (Φk), (4.14)

where Γ∆tk : RN → RN is a one-step integrator for the exact solution and Ψ∆tk
m is the

one-step integrator for numerical solution of Adams type m-step MASM.

L∆tk
m (tk) =

(
Ψ∆tk
m+1(Φk)−Ψ∆tk

m (Φk)
)

+
(
Γ∆tk(Φk)−Ψ∆tk

m+1(Φk)
)

(4.15)

=
(
Ψ∆tk
m+1(Φk)−Ψ∆tk

m (Φk)
)

+O (∆tk)
m+2

=

(
Φk + ∆tk

∑
j

m∑
i=0

〈βββ′[j]k 〉i
∞∑
p=0

F[j](p)(tk)
(
τ

[j]

`[j](k)−i

)p ∆tpk
p!

)

−

(
Φk + ∆tk

∑
j

m−1∑
i=0

〈βββ[j]
k 〉i

∞∑
p=0

F[j](p)(tk)
(
τ

[j]

`[j](k)−i

)p ∆tpk
p!

)
+O (∆tk)

m+2

(4.16)

where, τ
[j]

`[j](k)−i is given by Eq. 4.13, βββ′
[j]
k satisfy

∑m
i=0〈βββ′

[j]
k 〉i

(
τ

[j]

`[j](k)−i

)p
= 1

p+1
for p =

0, . . . ,m and similarly, 〈βββ[j]
k 〉i satisfy

∑m−1
i=0 〈βββ

[j]
k 〉i

(
τ

[j]

`[j](k)−i

)p
= 1

p+1
for p = 0, . . . ,m−1. Now

using the definitions of βββ′
[j]
k and βββ

[j]
k , the linear difference operator (4.16) can be reduced to,
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L∆tk
m (tk) = ∆tk

(∑
j

F[j](m)(tk)
(∆tk)

m

m+ 1!
+O (∆tk)

m+1

)

−∆tk

(∑
j

(
m−1∑
i=0

〈βββ[j]
k 〉i

(
τ

[j]

`[j](k)−i

)m)
F[j](m)(tk)

∆tmk
m!

+O (∆tk)
m+1

)
+O (∆tk)

m+2 ,

(4.17)

=
∑
j

(
C

[j]
k F[j](m)(tk)

(∆tk)
m+1

m+ 1!

)
+O (∆tk)

m+2 , (4.18)

where,

C
[j]
k =

1

(m+ 1)!

[
1− (m+ 1)

(
m−1∑
i=0

〈βββ[j]
k 〉i

(
τ

[j]

`[j](k)−i

)m)]
. (4.19)

Hence proves Eqs. (4.10-4.12).

The expression in Eq. 4.10 highlights only the leading order term in the linear difference

operator, which is a good approximation. It also assumes that the component timesteps,

∆t
[j]
k , are small enough such that component force fields, F[j], do not vary much, which is a

standard assumption made in numerical analysis. It also helps decouple the contributions

from each component force fields.

Lets recall the expression for local discretization error, which is a standard textbook

result in the case of ABM (See [28]), which is given by,

L∆tk
m (tk) = Cm+1F

(m)(ηk) (∆tk)
m+1 , (4.20)

where Cm+1 = 1
(m+1)!

(
1− (m+ 1)

∑m−1
i=0 βi(−i)m

)
and ηk ∈ [tk, tk+1]. Note that βi satisfy∑m−1

i=0 βi(−i)n = 1/(n+ 1), where n = 0, . . . ,m− 1.

To understand the efficacy of ABM in modeling multiscale problems, we consider linear
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systems (2.4), which are assumed to be autonomous, i.e F(t) = AX(t). We also assume that

A is diagonalizable where (λi,νi) are the eigen pairs. Then one can express

F(m)(tk) =
∑
i

ci(tk)λ
m+1
i νi, (4.21)

where Φk =
∑

i ci(tk)νi and F(m) = dmF/dtm. Using which the linear difference operator

(Eq. 4.20) can be expressed as,

L∆tk
m (tk) = Cm+1

(∑
i

ci(tk)λ
m+1
i νi

)
∆tm+1

k +O (∆tk)
m+2 . (4.22)

Linear difference operator in Eq. 4.22 shows the contribution of each eigen component

to local discretization error. In case of stiff systems where max{λi} � min{λi}, the con-

tribution from larger eigen values dominate and hence determine the timestep, while the

contribution from smaller eigenvalues is small or negligible. This has been the drawback of

traditional single timestep methods.

In the case of Adams m-step MASM method, the linear difference operator in Eq. 4.10

has a contribution from each component force vector field. The contribution from each

component force field, L
[∗]∆tk
m (tk), for the time interval [tk, tk+1] is a scaled version of the

component linear difference operator, given by,

L[j]
m (t

[j]

`[j](k)
) = C

[j]

`[j](k)
(∆t

[j]

`[j](k)
)F

[j](m)

`[j](k)

(
∆t

[j]

`[j](k)

)m+1

+O
(

∆t
[j]

`[j](k)

)m+2

(4.23)

where,

C
[j]

`[j](k)
(∆t

[j]

`[j](k)
) =

1

(m+ 1)!

[
1− (m+ 1)

(
m−1∑
i=0

〈βββ[j]
k 〉i (−i)

m

)]
. (4.24)

Note that by replacing ∆t
[j]

`[j](k)
and F

[j](m)

`[j](k)
with ∆tk and F

(m)
k respectively, Eqs. (4.23,4.24)

can be reduced to Eqs. (4.20). Since the timestep ∆tk is smaller than the component

timesteps, ∆t
[j]
k , the contribution from each component force fields are accordingly scaled.

71



Note that, many a times the contribution from component force fields are updated several

times within the component timestep, which can also be see in Fig. 2.1 (right figure). The

same issue has also been touched upon in Section 4.1. When all the component timesteps

are same or when all component timesteps are equivalent to timestep, ∆tk, one can see that

Eq. 4.10 or Eq. 4.11 respectively reduces to Eq. 4.20.

Now in the case of the linear, autonomous and diagonalizable systems (2.4) with split

force vector field, Eq. 4.10 can be expressed as,

L∆tk
m (tk) =

∑
j

C
[j]
k

 ∑
{i|νTi B[j]νi 6=0}

c
[j]
i (tk)λ

m+1
i νi

 (∆tk)
m+1 +O (∆tk)

m+2 (4.25)

where C
[j]
k is defined by Eq. 4.12, and

F[j](m)(t) = B[j]X(t) =
∑

{i|νTi B[j]νi 6=0}

c
[j]
i (t)λm+1

i νi. (4.26)

Since MASM uses more than one timestep, one can choose these component timesteps

such that the contribution from different component force fields is of the same order. In case

if the smaller eigen values of the system are a dominate contributors of local discretization

error from a component force field, it allows the use of larger timestep for respective compo-

nent force field resulting in computational savings while marginally changing the numerical

accuracy of the solution.

MASM is a method which allows you to use arbitrarily large number of timesteps for

modeling the ODEs (2.4), whose force vector field can be split. From Eq. 4.10, it is evident

that by proper choice of component force fields and component timestep such that, L[j]

contribute equally to local discretization error, the inefficiency of synchronous methods while

modeling stiff systems can be avoided.

TSS strategy developed here is based on component local discretization error, L
[j]
m , where
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in the component timesteps are chosen such that local discretization error is equally con-

tributed by all components, local discretization error, and that the local discretization error

does not exceed the specified error tolerance (τ). This results in the global error being O(τ)

as τ → 0 [58]. It would seem from Eq. 4.10 that, when optimum values of component

timesteps are chosen, the contributions from each component force field to local discretiza-

tion error will be the same. Since the contributions from each component force field at

each time tk is scaled by (∆tk/∆t
[j]
k ), the above approach at each timestep could lead to

unnecessary frequent timestep changes of the component timesteps. We will see ahead that

it also effects the accuracy of error estimation which assumes constant timestep. Therefore

the component timesteps are chosen such that L
∆t

[j]

`[j](k)
m (t

[j]

`[j](k)
) are scaled. Depending upon

the vector norm that is used, the component timesteps are chosen such that,

∥∥∥∥∥L∆t
[j]

`[j](k)
m (t

[j]

`[j](k)
)

∥∥∥∥∥
p

≤


τ p = 0

τ/Nf p 6= 0

(4.27)

Similar to High-order multistep, TSS based MASM needs starting values and hence are

not self starters. Often one needs to generate the starting values using other methods. By

varying order and step size, one can also make MASM a self starter, but at the same time

maintaining the required accuracy.

4.2.1 Convergence and Stability

In Section 2.3, we have proven the convergence (Theorem 2, Theorem 3) of numerical

solution, obtained using MASM on variable grid where the component timesteps satisfy

Eq. (2.30), as hmax → 0 (see Eq. 2.30). However, when timestep choice is made such that

local discretization error is below a specified error tolerance (τ), more relevant convergence

of the numerical solution is when τ → 0. For any timestep adaptation, the above numerical

convergence is achieved when as τ → 0, hmax → 0 while satisfying Eq. (2.30). Its trivial to

see that hmax → 0 as τ → 0, however, the only scenario when Eq. (2.30) can still be violated
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is when one or more component timesteps are driven to zero much faster than hmax. Which

is unlikely given that time step selection strategy is such that contributions from component

force fields to local discretization error is equally distributed.

As was discussed in Section 3.1, instability in a numerical solution occurs as timestep

is driven to zero (see Dahlquist I criterion) or when the timestep is too large to make

a reasonable approximation (see Dahlquist II criterion). In timestep adaptation, since the

timestep choice is based on the local error, the instability due to larger timestep is avoided as

whenever the error grows, the timestep accordingly is reduced. In cases where monotonous

increase in error happen, the timestep are driven to zero and the simulations essentially

halts. Also the instability due to larger timestep happens during a simulation. Instability

due to smaller timestep, is seen when smaller timestep choice is made as τ → 0. The

same has already been established in the numerical solution obtained using MASM (see

Theorem 4). Since numerical convergence of MASM with time step selection strategy, is

already established. That also proves the Zero-Stability of the numerical solution using

MASM with time step selection strategy.

Both these results can also be extended to variable order methods, provided the maximal

order is bounded.

4.2.2 Error Estimate

Estimation of local discretization error contributed by different component force fields is key

for the timestep size selection strategy to be effective. From Lemma 3, its clear that the

local discretization error from component force field can be estimated by,
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ε[jk](∆t
[jk]

`[jk](k)
) =

∥∥∥L[jk](Φ
[jk]

`[jk](k)
, t

[jk]

`[jk](k)
)
∥∥∥

= ‖Γ
∆t

[jk]

`[jk](k)(Φ
[jk]

`[jk](k)
)−Ψ

∆t
[jk]

`[jk](k)
m (Φ

[jk]

`[jk](k)
)‖

= ‖Ψ
∆t

[jk]

`[jk](k)

m+1 (Φ
[jk]

`[jk](k)
)−Ψ

∆t
[jk]

`[jk](k)
m (Φ

[jk]

`[jk](k)
) + Γ

∆t
[jk]

`[jk](k)(Φ
[jk]

`[jk](k)
)−Ψ

∆t
[jk]

`[jk](k)

m+1 (Φ
[jk]

`[jk](k)
)‖

≈ ‖Ψ
∆t

[jk]

`[jk](k)

m+1 (Φ
[jk]

`[jk](k)
)−Ψ

∆t
[jk]

`[jk](k)
m (Φ

[jk]

`[jk](k)
)‖. (4.28)

Similar to the synchronous methods, the accuracy of the estimate is good under the

assumption that the component force vector is not changing much within the timestep.

4.2.3 Timestep Size Selection

Unlike in the case of single timestep methods, where timestep size selection is made before the

numerical solution is calculated, timestep size selection is made after the numerical solution

is calculated. To avoid backward time marching (see Eq. 4.7), timestep size selection is

not made within the timestep. Instead, after the numerical solution is computed at time

(tk+1) and the component forcing vector (F
[jk]
k+1) is evaluated, the local discretization error

contributed by the component (jk), at time tk+1, is estimated and accordingly the component

timestep (∆t
[jk]

`[jk](k+1)
) size selection is made according to the rules stated in Eq. 4.29.

∆t
[jk]

`[jk](k+1)
=



0.5×∆t
[jk]

`[jk](k)
When

 0.5× τ [jk]

ε[jk]
(

∆t
[jk]

`[jk](k)

)
 1

m+1

< 0.5

∆t
[jk]

`[jk](k)
When 0.5 <

 0.5× τ [jk]

ε[jk]
(

∆t
[jk]

`[jk](k)

)
 1

m+1

< 2.0

2.0×∆t
[jk]

`[jk](k)
When 2.0 <

 0.5× τ [jk]

ε[jk]
(

∆t
[jk]

`[jk](k)

)
 1

m+1

(4.29)
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In linear multistep methods, using a similar strategy as in (4.29) essentially results in the

timestep being predominantly constant in phases and therefore the error estimator (4.28)

would be accurate. Similarly, since component timesteps are chosen such that the local

discretization error matches the specified tolerance, TSS strategy (4.29) results in component

timestep being predominantly constant in phases leading to the error estimator (4.28) being

accurate. In a way, with a proper choice force field splitting, TSS-MASM does not have to

deal with issues related to modeling stiff systems while modeling them.

4.3 Numerical Studies and Discussion

In this section, we will study the performance of TSS strategy (see Section 4.2.3) that can

be employed while using MASM for numerically solving ODEs. The performance of the

above TSS-MASM method is tested against a sdof spring-mass system, as well as against

a nonlinear aerosol condensation model. We have seen in Section 2.4, that splitting of the

force field play a key role in determining the performance of MASM. We explore the same

in the context of TSS-MASM, more precisely against force field splitting that satisfy time

scale splitting criterion as well as the force field splitting that satisfy asynchronous splitting

criteron. Spring-mass model is an autonomous single timescale system. It allows us to study

the performance when splitting a single timescale or eigen component, i.e time scale splitting.

In case of aerosol dynamics problem, we simulate the evolution of volume of the aerosol

particles as it interacts with water vapor in the atmosphere and grow via, condensation

process. The scale at which each particle grows depend upon the size of the particle and as

the size of the particle evolve, so does the scale at which it evolves. The evolution of aerosol

particles have a weak interdependence and that is via water vapor concentration. As a result

by choosing a different timestep to update the evolution of each aerosol particle, leads to a

splitting that is very close to asynchronous splitting.
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4.3.1 Linear mass spring system

Consider a single-degree-of-freedom linear spring-mass system, as shown in Figure 2.2. The

governing equation are given by

ẍ+ ktx = 0, (4.30)

where kt = k1 + k2. The split first order ODE form chosen is given by,

Ẋ =

ẋ
v̇

 =

 0 rs
1+rs

−( rs
1+rs

)kt 0


x
v


︸ ︷︷ ︸

F[1](X)

+

 0 1
1+rs

−( 1
1+rs

)kt 0


x
v


︸ ︷︷ ︸

F[2](X)

, (4.31)

We took initial conditions x(0) = 0 and v(0) = 1, parameter kt = 100, and we chose the

timestep for each component to be

∆t
[p]
0 =

2πh

10

√
1

kt
, (4.32)

in terms of a parameter h.

Given (4.30) is an conservative system, split vector field (4.31) represent time scale split-

ting example. Performance of MASM with timestep adaptation studied in Section 4.2.3,

ABM with and without a similar timestep adaptation discussed in Section 4.2.3. The only

difference in timestep adaptation employed with ABM being, the timestep correction is made

before the numerical solution is calculated, which has been the approach in synchronous

methods. The cost of a simulation is given by δtotal/δ (See Eq. 2.80) with γ = 1.0.

Each figure in the panel of figures shown in Fig. 2.3, shows the two-norm error of the

system state at time t = 2 seconds, versus cost (δtotal/δ) curves, obtained using TSS-MASM

and the same is compared with the curves obtained using TSS-ABM and ABM. Different

figures in the panel are for m = {2, 3, 4, 5}. One can see that TSS-ABM is no more efficient

than ABM for m = {2, 3, 4, 5}, which can be explained from the fact that the spring-
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mass model is an autonomous system. TSS-MASM curves also found to be as efficient as

TSS-ABM for m = {2, 3, 4, 5}.

This result is not surprising, since system components share the same eigenvalue. This

results in TSS-MASM choosing the same timestep and therefore is equivalent to TSS-ABM.

No computational gain can be achieved even when the cost ratios are skewed (i.e γ < 1),

when the component timesteps chosen are the same.

4.3.2 Nonlinear aerosol condensation system

We now consider a simplified model of water condensation onto aerosol particles, which was

also studied in Section 2.4.2. The full dynamics of this process are complicated and for

simplicity of exposition we use a extremely simple model here, whose governing equations

are given by (2.82 - 2.83). The initial population of aerosol particles and their distribution

is given by (2.86), with initial water vapor concentration, W (0) = 20.

Aerosol condensation problem (2.82 - 2.83) was studied using MASM with timestep

adaptation introduced in Section 4.2.3, i.e TSS-MASM. These results are compared with

the results from MASM’s synchronous version with (TSS-ABM) and without (ABM) a

similar timestep adaptation discussed in Section 4.2.3. The only difference between timestep

adaptation used in TSS-ABM is that the timestep is adapted before the numerical solution

is calculated at each time.

All the simulations using TSS-ABM and ABM are initialized with constant timestep

given by,

∆t0 = .15× V1

|V̇1|
(4.33)

where V1 is the smallest aerosol particle in the initial populations chosen (2.86). However,

in simulations using MASM, we split the system into the n+ 1 components given by (2.82)
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Figure 4.1: Error-versus-cost curves for the linear spring-mass system of Section 4.3.1 using
asynchronous TSS-MASM integrator with force field splitting (4.31) and synchronous TSS-
ABM integrators, with varying error tolerance τ . Error-versus-cost curves obtained using
ABM are also shown for comparison. The cost is δtotal/δ (2.80), while the error is the
two-norm state error at the final time. We observe that the m-step methods are of order
m in both the synchronous, with or without timestep adaptation, and asynchronous cases.
Synchronous methods, with or without timestep adaptation have identical error-cost curves,
owing to the fact that spring-mass system is an autonomous system. Asynchronous TSS-
MASM also seems to be as efficient as synchronous methods, because of the time scale
splitting (4.31) for the force vector field
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and (2.83) and choose per-component timesteps

∆t
[j]
0 = .15× V1

|V̇1|
for j = 1, . . . , n+ 1 (4.34)

Error-versus-cost curves obtained using TSS-MASM, TSS-ABM and ABM are shown in

Fig. 4.2 for m = {2, 3, 4, 5}. Given the aerosol model in Eq. 2.82 is nonlinear in nature,

TSS-ABM, as expected, is more efficient than ABM. Unlike the spring-mass system studied

in Section 4.3.1, which is a single timescale system, aerosol model (2.82 - 2.83) is multiple-

time-scale system, with each aerosol particle evolving at different timescale. Given that the

evolution of an aerosol particle does not directly depend upon dynamics of other particles,

but indirectly through water vapor concentration, its is also a loosely coupled model. In

simulations using MASM, the system split as in Eq. 4.34. Such a choice of system split falls

very close to asynchronous splitting, with the system components being loosely coupled. As

a result, the TSS-MASM is found to be more efficient than TSS-ABM, even without any

favorable cost distribution of component system evaluations.

Top figure in Fig. 4.3 shows the evolution of aerosol particles with time, including the wa-

ter vapor concentration. Bottom figure in Fig. 4.3 shows the evolution of different timesteps

tracking the evolution of different aerosol particles under TSS-MASM. The bottom plot in

Fig. 4.3 also the time variation of the timestep chosen in TSS-ABM and ABM simulations.

Given the spread in the component timestep chosen in bottom plot in Fig. 4.3, it clearly

shows the potential computational gain that could be achieved with favorably skewed cost

ratios of component force vector evaluations.
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Figure 4.2: Error-versus-cost curves for the nonlinear aerosol condensation system of Sec-
tion 4.3.2 using the asynchronous TSS-MASM and synchronous ABM and TSS-ABM in-
tegrators, with varying cost. The cost is proportional to the total number of component
function evaluations, while the error is the sup-norm state error at the final time. We see
that the m-step methods are of order m, with or without timestep adaptation as discussed
in Section 4.2.1. Nonlinear aerosol condensation model being a non-autonomous system,
ABM show significant gain in efficiency by employing timestep adaptation similar to the one
introduced in Section 4.2.3. As the aerosol model is a sparsely-coupled system with several
timescales, the TSS-MASM is found to be more efficient than its synchronous version, TSS-
ABM. With skewed cost distribution of component force vector evaluations, the efficiency
gain can be much larger when using TSS-MASM.
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Figure 4.3: (Top figure) Shows the evolution of aerosol particles with time because of con-
densation studied in Section 4.3.2. Whose governing equations are given by Eqs. (2.82,
2.83). (Bottom figure) Shows the evolution of timesteps chosen for capturing the dynamics
of different aerosol particles against time when modeling Eqs. (2.82, 2.83) using MASM with
timestep selection strategy introduced in Section 4.2.3. The plot also shows the timestep
evolution curves when using synchronous integrators such as TSS-ABM and ABM. As ex-
pected each timesteps used in TSS-MASM evolve with changing dynamics of each aerosol
particle, whereas the timestep in TSS-ABM simulation evolve with overall dynamics. The
timesteps chosen for each aerosol particle under asynchronous method are wide spread and
show great potential to exploit any favorable cost distribution of component force vector
evaluations.
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Chapter 5

Conclusions

We have presented a new family of asynchronous multistep methods, the Multistep Asyn-

chronous Splitting Methods (MASM), which are able to use a different timestep for each

component of an additively-split ODE. These methods generalize both classical multistep

integrators for ODEs [28] as well as Asynchronous Splitting Methods (ASM) [45]. We fo-

cused on MASM integrators of Adams type, with only the most recent system state being

used in the update rule. We have shown that the MASM solution converges provided the

ratio of timesteps chosen are bounded from above. We also proved that an m-step method

of this type can have order m global error in the numerical solution of a sufficiently regular

ODE system. This results was also demonstrated numerically on both linear and nonlinear

systems.

The MASM integrators are generally more expensive per-step than a classic linear mul-

tistep method, as the method parameters 〈βββ[j]
k 〉i must be solved for each component at

every step with (2.29). Coupling between the split force fields play an important role in

determining the performance of MASM. For strongly-coupled split vector fields, such as the

spring-mass problem of Section 2.4.1, it is unlikely that MASM integrators will be superior

to synchronous multistep methods. For sparsely-coupled split vector fields, however, such as

the aerosol condensation problem of Section 2.4.2, we saw that MASM integrators can be

much more efficient than the corresponding synchronous method.

We have also studied the stability of MASM [27] and have shown that MASM are stable

in the Luxumberg [36] sense if the ratio of the largest and smallest timestep used is bounded

from above, i.e., (maxj,k ∆t
[j]
k /minj,k ∆t

[j]
k ) ≤ Const. The stability criterion also strongly
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depends upon on the splitting of the force field. In case of diagonalizable linear systems, any

force field splitting can be classified into asynchronous splitting, where each eigen-component

is lumped with one of the component force fields, and time scale splitting, where an eigen-

component is split between two or more component force fields. We have shown that in the

case of asynchronous splitting, µj(= ∆t[j]×λmax) connected with each component force field,

which is the product of the component timestep ∆t[∗] and the largest eigenvalue of system’s

Jacobian λmax, need to satisfy the same stability criterion as its synchronous counterpart.

In the case of time scale splitting, we studied the stability of the method numerically

using a single-degree-of-freedom spring-mass-damper system. We also restricted our study

to 2-component analysis, where an eigen-component is shared between two component force

fields. It was found that the timestep that determines stability is determined by the ratio

of the split force vector norm and the ratio of timesteps, for conservative systems. In non-

conservative systems, the timestep that determines stability is completely determined by the

ratio of split force vector norms. As a result, when the fraction of each eigen-component

of the force vector that is updated by smaller timestep is large enough, time scale splitting

is equivalent to asynchronous splitting. As in asynchronous splitting, the timestep that

determines stability in time scale splitting, approximately needs to satisfy the same stability

criterion as its synchronous counterpart.

We also developed an adaptive timestep selection (TSS) strategy that can be used with

MASM. We have shown that, in the case of MASM, the time adaptation strategy should

be based on choosing the largest component timestep such that the contribution from all

the component force fields to local discretization error are equal and together is below the

specified tolerance. The timestep selection strategy was tested against single-degree-of-

freedom spring-mass systems, as well as the nonlinear aerosol condensation problem. The

performance of MASM with TSS strongly depends upon the splitting of the force vector field.

For the spring-mass-damper model, where the force field splitting is time scale splitting,

MASM based timestep selection strategy is as efficient as the similar timestep selection
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strategy using synchronous ABM. However, in the case of nonlinear aerosol condensation

problem, where different timesteps are used for the evolution of each aerosol particle, MASM

with TSS is found to be more efficient than its synchronous counterpart. The efficiency gain

can be further extended, when the cost distribution of split force vector evaluations are

favorably skewed.
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Appendix A

Theorem applicable to variable grid
multistep methods

For the benefit of the readers, here we have reproduced a theorem from [70] whose result is

used in Theorem 4.

Theorem 5. Consider the linear difference equation

Yk+1 = Yk + ∆tk

K̃−1∑
i=0

β̂k,iYk−i

+ Λk+1

 . (A.1)

Let B, Λ, Y be non-negative constants such that,

K̃−1∑
i=0

|β̂k,i| ≤ B for k ≥ 0 (A.2)

|Λk| ≤ Λ for all k ≥ 0 (A.3)

Yk ≤ Y for all 0 ≤ k ≤ K̃ − 1. (A.4)

Then

|Yk| ≤ eB(tk−tK̃−1)
[
Y + Λ

(
tk − tK̃−1

)]
.

Proof.

Yk+1 = Yk + ∆tk

K̃−1∑
i=0

β̂k,iYk−i

+ Λk+1

 . (A.5)
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Let {Wi} such that,

W0 = Y0 (A.6)

Wi = max {|Yi|,Wi−1} i = 1, 2, . . . (A.7)

|Yk+1| ≤Wk + ∆tk

K̃−1∑
i=0

|β̂k,i|Wk−i + ∆tkΛk+1, (A.8)

≤ (1 + ∆tkB) Wk + ∆tkΛ. (A.9)

It obvious that,

Wk ≤ (1 + ∆tkB) Wk + ∆tkΛ. (A.10)

Since Wk+1 = max (|Yk+1|,Wk),

Wk+1 ≤ (1 + ∆tkB) Wk + ∆tkΛ, (A.11)

≤ e(∆tkB)Wk + ∆tkΛ, (A.12)

It can be shown that,

Wk+1 ≤ eB(tk+1−tK̃−1)
(
Y + Λ

(
tk+1 − tK̃−1

))
. (A.13)
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