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ABSTRACT

The manifestation of radiation and stored energy by electric currents on con-

ducting bodies is studied via modal expansions. The novel modal expansions

are based on the quadratic operators which map a current distribution to

each quantity. Adaptations of the continuous forms of these operators into

the Method of Moments is reviewed. The discrete modal expansions are stud-

ied on several example objects, leading to conclusions regarding the sparsity

of the radiation mode spectrum. Analytic forms for the sparse radiation

modes on electrically small objects are derived. Negative energy current dis-

tributions are studied using the energy storage modal expansions. The role

of ground plane radiation on the determination of an embedded antenna’s

Q factor is studied using radiation modes, giving a new perspective on the

convergence behavior of this parameter with respect to ground plane size.

Leveraging the invariance of radiation modes on small objects, an example

procedure for the design of an embedded antenna array using radiation modes

is presented.
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NOTATION

r Spatial location vector, shorthand for the special vector field ~r (see
next definition). Vector notation is dropped for clarity except when
needed to show explicit vector nature.

~a(r) Vector field in R3 which is a function of spatial location, r.

a Scalar.

a∗ Complex conjugate of a.

Â ~f(r) Vector field resulting from the operator Â acting on the vector field
~f .

A
(
~f
)

Scalar value returned from the functional A acting on the vector

field ~f .

a N by 1 vector object.

A M by N array (matrix) object.

aH Complex (Hermitian) transpose of a.
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CHAPTER 1

INTRODUCTION

This dissertation focuses on tying together modern electromagnetic analysis

techniques (both analytic and computational) with practical insight that can

be applied to antenna design. In particular, we focus on problems related

to small antennas mounted to larger conducting objects, e.g., a miniaturized

antenna mounted next to the circuit board in a mobile phone. Throughout

this dissertation these types of systems will be referred to as embedded anten-

nas. The research described here includes a new approach to understanding

radiation and energy storage in such systems by way of a set of eigenvalue

expansions. Because all antenna parameters are determined by these quan-

tities, this approach yields novel insight into physical processes underlying

an antenna’s performance. Specifically, radiation and energy storage mech-

anisms can be effectively isolated, allowing for a critical examination of the

colloquial “ground plane as a radiator” and “antenna as a matching network”

notions.

Chapter 2 begins with an overview of the state-of-the-art source-based

techniques used in contemporary antenna analysis and design. Following

that introduction, Poynting’s theorem is discussed in the context of the elec-

tric field integral equation, the backbone of the computational method of

moments. Contemporary research on stored electromagnetic energy and its

application in antenna design is then summarized and discussed both in terms

of analytic approaches and the method of moments. The chapter concludes

with a presentation of the novel set of radiation and energy storage eigenvalue

problems used throughout the dissertation.

Because this research utilizes various numerical methods, the development

of method of moments code is outlined in detail in Chapter 3. Therein we

discuss various discretization techniques, a popular method for dealing with

singular integral components, and problems related to tracking eigenvalue

solutions over frequency.
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In Chapter 4, we present examples of identifying the current mechanisms

responsible for radiation and energy storage in antenna systems. In all of

these examples, the novel expansions proposed in Chapter 2 are implemented

using code making use of the techniques outlined in Chapter 3. As mentioned

previously, this research is largely motivated by embedded antennas, or an-

tennas mounted next to larger conducting objects. As such, the examples

in this chapter include both a canonical antenna design and an embedded

antenna topology. These examples shed light on the physical implications of

the matrix properties of the maps connecting a current to its radiated power

and stored energies.

Observations regarding the expansion associated with radiated power moti-

vate the analytic studies presented in Chapter 5. There we derive closed-form

expressions for the dominant solutions to the radiation eigenvalue problem

on simple conducting structures. These analytic expressions are validated

against numerical calculations. The result of these analyses is a connection

between the readily-available electric-field integral equation impedance ma-

trix and an object’s canonical radiating moments.

To calculate stored electric magnetic energies from arbitrary currents we

use a recently-developed matrix operator technique. In the literature, the

mathematical properties of the matrices associated with this method are

commonly quoted as being indicative of non-physical and therefore erroneous

calculations of “negative energy” on electrically large objects. In Chapter 6,

we use the energy storage modal expansion to study the loss of positive-semi-

definiteness of the energy storage matrices responsible for this anomalous

behavior. Results show that the threshold for energy matrix loss of positive-

semi-definiteness depends on geometry. Further, the currents responsible for

“negative energy” are simple.

In Chapter 7 we use several metrics, including the novel radiation mode

expansion, to study the effective electrical size of an antenna system con-

sisting of a small driven element mounted on or near a finite ground plane.

Using radiation mode expansion, we quantify the relation between ground

plane size and radiation complexity in order to describe the design regimes

where ground plane radiation is dominant over that of the small antenna ele-

ment. Additionally, the quality factor of the antenna systems are calculated

as functions of ground plane size, giving some indication as to the capability

of a finite ground plane to add to the electrical size (and thus increase the
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bandwidth) of a small antenna. Three metrics for quality factor are used; and

their comparison shows that the loss of positive-semi-definiteness discussed

in the Chapter 6 has little effect in the calculation of Q for electrically large,

low bandwidth systems.

The derivation of analytic forms of radiation modes in Chapter 5 corrobo-

rate the observations from examples in Chapter 3. Using the knowledge that

electrically small objects radiate via only a few low-order radiation modes, a

novel approach to beamforming with these modes is proposed in Chapter 8.

Instead of treating several antennas mounted to a finite ground plane as ra-

diators, the small antennas are treated merely as feeds to a radiating ground

plane. The basic structure of this approach has been proposed before using

characteristic modes, however in this chapter we demonstrate the utility and

advantages of a radiation modes for this particular application. The pro-

posed method, along with an example design of a two-element null-steering

array is presented.

An overview of the methods and results from each component of the re-

search is given at the beginning of each chapter. These results are reiterated

and discussed in detail in the summary contained in Chapter 9. There we

also propose further research questions, both fundamental and applied.
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CHAPTER 2

RADIATION AND ENERGY STORAGE
MODES

2.1 Overview

Motivation and background is provided for techniques primarily focused on

the calculation of antenna performance parameters in terms of source current

distributions. State-of-the-art techniques for calculating physical quantities

such as radiated power and stored energy are discussed in both continuous

and discrete implementations. Novel radiation and energy storage eigenvalue

problems are presented based on these contemporary calculation techniques.

2.2 Source-based analyses

The Institute of Electrical and Electronics Engineers (IEEE) defines an an-

tenna as “the part of a transmitting or receiving system that is designed to

radiate or receive electromagnetic waves” [1]. A more useful definition may

define an antenna as a system component used to transduce signals between

guided and unguided form. Here guided refers to signals and systems an-

alyzable by circuit theory (waveguide systems, shielded cable components,

printed circuit boards, fiber optic connections, etc.), whereas “unguided”

refers to signals analyzed by electromagnetic field analysis in an unbounded

space (radiation, near-field energy, etc.). From a practical point of view,

antennas under this definition bridge the gap between the circuit and free-

space aspects of a wireless system. As such, a designer will have objectives

and concerns in both worlds. Of primary interest on the circuit side is the

antenna’s input impedance and its behavior over frequency. This will deter-

mine the impedance match of the antenna to the “guided” portion of the

system as well as its operating bandwidth. In the unguided regime, design
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objectives include radiation pattern, radiation efficiency, and polarization.

These parameters describe how energy is converted between guided signals

and waves in free-space. Both the circuit and radiation performance of an

antenna are of great importance for proper system performance. Generally,

the task of designing an antenna is decoupled into two components, that of

achieving proper circuit performance and that of obtaining desirable radia-

tion characteristics. Both of these sets of properties are governed implicitly

by the antenna geometry and its feeding structure, as shown schematically

in Figure 2.1. The link between the structure of an antenna and its real-

ized performance is its excited current distribution, generally including sur-

face currents on conducting surfaces, polarization currents in dielectrics, and

equivalent magnetic currents formed by aperture fields. A current distri-

bution is present in both transmit and receive modes of operation, but for

simplicity here language is restricted that of a transmitting antenna. In this

dissertation, focus is put on perfect electrically conducting (PEC) antennas

with electric surface currents. As shown in Figure 2.1, the antenna’s geome-

try, feed, and loading dictate its current distribution which in turn determine

both the circuit and field characteristics of the device. The design process

is represented by the backwards arrow: the role of the antenna designer is

to manipulate a structure so it will achieve certain performance expectations

by proxy of the currents it supports. Classical antenna design focused on

simple objects with predictable current patterns analyzable by closed-form

or heuristic methods [2], [3]. Performance of these designs was modified by

small perturbations to the geometry or feed location driven mainly by intu-

ition and similarity to other canonical problems. This approach is still widely

used today, though the process is often automated using iterative simulation

tools to optimize a baseline heuristic design.

Research into more modern antenna design strategies is driven in no small

part by the internalization of antennas within small portable devices [4].

In such devices, there may exist conducting bodies over which the antenna

designer has no control and the volume allocated for an antenna is rela-

tively small compared to the entire system. In these cases, the common

knowledge is that the larger conducting portions of the device will radiate

and that the mounted antenna acts mainly to excite currents on the chassis

[5]. Techniques involving the calculation and analysis of the currents on the

chassis and within the antenna design volume are termed “source-based” [6].
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DesignCurrents

Figure 2.1: Schematic of the process by which structural features of the an-
tenna influence its circuit and field characteristics by way of the currents
supported on its surface. The backwards arrow represents the inverse prob-
lem, i.e., the design process of synthesizing an antenna which has the desired
circuit and field parameters.

Source-based methods include applications of characteristic mode decompo-

sition [7, 8, 9], current-based Q calculations [10, 11], and optimal currents

for minimal stored energy [12, 13]. All of the aforementioned techniques in-

volve manipulation of matrices calculated via the method of moments and

inform which current mechanisms are available to achieve optimal perfor-

mance. While source-based tools offer simple, fast analysis of current distri-

butions, the missing link in antenna design is still how to design antennas

and feed structures which can support and excite the desired current. Recent

work has started to bridge this gap by incorporating source-based analyses

into automated design. In [14], energy storage calculations were included

in an optimization to design a pixelated antenna with minimal Q, maximiz-
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ing narrowband bandwidth. In [15], a multiband antenna was optimized to

support only one resonant characteristic mode at each operating frequency.

The authors of [16] used a pixelated approach to optimize an antenna with

a single resonant characteristic mode and addressed some of the problems

associated with the popular technique of pixelized optimization. In each of

these examples, source-based calculations were used to calculate costs in an

optimization routine. While in each paper there is discussion of basic design

choices (e.g., feed location, orientation, etc.), the end designs are not neces-

sarily intuitive and leave the questions “why did this come out this way?”

and “will it come out the same way if I run it again?” These questions do

not devalue the approaches used, but rather they elucidate work still to be

done in understanding the output of optimization tools using source-based

objectives. In contrast to these examples of fully automated optimization,

other source-based designs draw direct inspiration from canonical current

distributions which are known to have desirable properties. Examples in the

literature include several instances of designs using spherical geometries to

support currents with minimal Q [17] and which induce self-tuning using

characteristic modes [18]. While these designs are intuitively and analyti-

cally satisfying, their restrictive geometries make them ill-suited for antennas

mounted inside small devices.

In subsequent sections of this chapter, energy storage and radiation are

discussed in the context of source-based, method of moments techniques.

Following that, a new set of source-based modal decompositions is presented.

The goal of these novel decompositions is to isolate currents on a structure

which contribute most to stored electric energy, stored magnetic energy, and

radiated power. To do this, the approach used in characteristic modes of

making the modal expansions based on matrix operators derived from the

method of moments is adopted. Because of this, the expansions are inde-

pendent of feed location and easily manipulated during pixellization or other

automated design processes. The new expansions proposed in this chapter

differ from characteristic modes in that these eigenvalue problems do not

couple fields associated with radiation and stored energy. This allows for

clear views of radiation and energy storage current mechanisms, particularly

in embedded antenna systems.
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2.3 Energy and radiation functionals

In this section, the electric field integral equation (EFIE) is developed along

with the standard method of moments impedance matrix, Z. Splitting this

matrix into real and imaginary parts yields the radiation and energy dif-

ference matrix operators R and X, respectively. The continuous operators

associated with stored electric and magnetic energy are also discussed, along

with a modified method of moments calculation used to arrive at their dis-

crete matrix forms.

2.3.1 The electric field integral equation and the impedance
matrix

The electric field at an observation point r due to a current ~J distributed

over a surface S in free space is calculated using the dyadic Green’s function

via

~Esc(~r) = −jηk
4π

∫
S′

¯̄G(r, r′) · ~J(r′)dr′. (2.1)

The integral on the right-hand side can be expressed in three ways, containing

either derivatives of the free space Green’s function G0(r, r′)

~Esc(~r) = −jηk
4π

∫
S′

[
¯̄I +
∇∇
k2

]
G0(r, r′) · ~J(r′)dr′, (2.2)

derivatives of the source distribution

~Esc(~r) = −jηk
4π

∫
S′

[
~J(r′) +

1

k2
∇′∇′ · ~J(r′)

]
·G0(r, r′)dr′, (2.3)

or one derivative on each

~Esc(~r) = −jηk
4π

∫
S′

[
G0(r, r′) ~J(r′) +

1

k2
∇G0∇′ · ~J(r′)

]
dr′. (2.4)

Here the free space Green’s function G0(r, r′) is defined as

G0(r, r′) =
e−jk|r−r

′|

|r − r′|
. (2.5)

Making S a perfect electrical conductor (PEC) imposes the boundary condi-

tion that the total tangential electric field at observation points r ∈ S must
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be zero. This total field is the sum of both the field due the the current on S

(also called the scattered field), ~Esc, and the incident field ~Ei. Defining the

unit vector normal to S as n̂, the PEC boundary condition is written as

n̂×
(
~Esc + ~Ei

)
= 0, r ∈ S. (2.6)

Substituting (2.4) into the above expression gives an integral equation relat-

ing the the incident tangential electric field to the induced current on S,

n̂× ~Ei(~r) = n̂× jηk

4π

∫
S′

[
G0(r, r′) ~J(r′) +

1

k2
∇G0∇′ · ~J(r′)

]
dr′. (2.7)

This is a form of the electric field integral equation (EFIE) [19]. We can apply

the method of moments to discretize the system and convert the integral

operator on the right-hand side into a matrix operator. In matrix form,

the operator can easily be inverted to solve for the currents induced by a

given incident field. This inverse solution is particularly useful for antenna

analysis. Equation (2.7) has two important implications: first, (assuming

one can invert the integral operator) one can solve for the currents due to

an incident field; and second, given a current distribution one can easily

calculate its scattered field. We now test both sides of (2.7) with ~J∗ and

integrate over S. Because ~J is restricted to the surface of S, the normal

cross-product on both sides can be dropped. This yields

∫
S

~J∗(r) · ~Ei(~r)dr =∫
S

~J∗(r) · jηk
4π

∫
S′

[
G0(r, r′) ~J(r′) +

1

k2
∇G0∇′ · ~J(r′)

]
dr′dr. (2.8)

This can be rearranged using some manipulations involving the divergence

theorem to give

∫
S

~J∗(r) · ~Ei(~r)dr =

jηk

4π

∫
S

∫
S′

[
~J∗(r) · ~J(r′)− 1

k2
∇ · ~J∗(r)∇′ · ~J(r′)

]
G0(r, r′)dr′dr. (2.9)
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The left-hand side now resembles the expression used to denote “source

power” in Poynting’s theorem. If we assume for a moment that the inci-

dent field is localized to a small aperture (e.g., the gap feed on a dipole or

the opening on a coaxial cable on a probe-fed microstrip patch antenna), the

integrand of the left-hand side will be non-zero over only a small region. The

left-hand side then takes the form of P = I∗Vi, where P is the complex power

provided to the antenna by the feed, I is the current at the feed location,

and Vi is the driving voltage. In effect, (2.9) relates the complex power at

the antenna terminal to the current density over the whole surface S. We

put this observation aside for now, but it will be an important concept used

when discussing the non-linear functionals which give the radiated power and

stored energies from a current distribution. To discretize (2.9), a set of N

vector basis functions {~ψn} is introduced which are reasonably complete over

S. Both ~J and ~Ei can be expanded in terms of {~ψn} as

~J(r) =
N∑
n=1

Jn ~ψn (2.10)

and

~Ei(r) =
N∑
n=1

Vn ~ψn. (2.11)

The vectors J and V contain the coefficients {Jn} and {Vn}, respectively.

Inserting these expansions into (2.9) gives the quadratic form

JHV = JHZJ, (2.12)

where the elements of Z and V are

Zmn =
jηk

4π

∫
Sm

∫
Sn

[
~ψ∗m(r) · ~ψn(r′)

− 1

k2
∇ · ~ψ∗m(r)∇′ · ~ψn(r′)

]
G0(r, r′)dr′dr (2.13)

and

Vm =

∫
Sm

~ψ∗m(r) · ~Ei(~r)dr. (2.14)
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Drawing from the observations made before, (2.12) represents a discrete form

of Poynting’s theorem. In an alternate derivation, testing (2.8) with a single

basis function and following the same procedure, yields the linear system

V = ZJ. (2.15)

Equation (2.12) can be derived from (2.15), but the previous observation

regarding its relation to Poynting’s theorem is not necessarily obvious by

following that train of thought. Due to the explicit use of Galerkin’s testing,

the impedance matrix, Z, is symmetric. The elements of Z depend only

on the structure of S, the form of basis functions used, and the operating

frequency. All information about excitation is contained in the vector V.

Inverting Z in (2.15) is a straightforward method for calculating the currents

on an antenna for a given excitation.

We can split the impedance matrix into its real and imaginary parts

Z = R + jX, (2.16)

where R and X are symmetric and real-valued. Inserting this expansion into

(2.12) leads to

JHV = JHRJ + jJHXJ. (2.17)

By the symmetric real nature of R and X, both quadratics on the right-hand

side of (2.17) are real for all J. Comparing the real and imaginary parts of

the above expression with Poynting’s theorem we find

Prad = JHRJ (2.18)

and

2ω
(
W̄m − W̄e

)
= JHXJ. (2.19)

Note that J is rms normalized while ~J is peak normalized. The quadratics

in (2.18) and (2.19) are interpreted as the reaction integral of ~J with the

in-phase and quadrature components of the electric field which it produces.

From a practical standpoint, R and X are readily available from a complete

impedance matrix by taking the real and imaginary parts of Z. Thus, with

the impedance matrix constructed, we can calculate the radiated power and

11



time-average reactive energy difference due to any current representable in

J. In order to calculate other field-based quantities, such as radiation Q, it

is necessary to find the individual stored energy components, W̄e and W̄m,

which are not available using the preceding method of moments approach.

Section 2.3.2 covers the functionals derived in [10] which give the energy

quantities W̄e and W̄m individually in terms of a current distribution ~J . The

conversion of those functionals into matrix quadratic forms similar to those

in (2.18) and (2.19) is also discussed.

2.3.2 Stored energy functionals

Antenna radiation Q is defined as the ratio of stored energy to radiated power

Q = 2ω
max{W̄e, W̄m}

Prad
, (2.20)

and is generally used as a metric of narrowband antenna bandwidth analo-

gously to how it is used for other circuit components [20], [21]. The history

of calculating antenna Q is long and varied; with many researchers taking

a wide range of approaches. The primary difficulty in finding a general ex-

pression for Q arises in calculating the non-propagating stored energies, W̄e

and W̄m. The total stored energies are classically defined from Poynting’s

theorem as

W̄e,T =
1

4

∫
V

ε| ~E(r)|2dV (2.21)

and

W̄m,T =
1

4

∫
V

µ| ~H(r)|2dV. (2.22)

The integrals in these definitions are taken over all space and include both

stored energies in the near-field (non-propagating) and those associated with

far-field radiation (propagating) [22]. The latter component is infinite and is

not relevant for Q calculations. To obtain the near-field energies alone, many

authors have used subtraction methods to remove the energy stored in the

far-field (e.g., [22], [23], [24]) but this technique works only when closed-form

expressions are known for the fields around the antenna or a canonical geome-

try is used. For general antennas, this method is difficult to apply. Following
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the approach used in [25] and [26], Vandenbosch derived general expressions

for the non-propagating stored energy around an antenna in terms of finite in-

tegrals over its source current distribution [10], [11]. That derivation involves

the use of a frequency derivative form of Poynting’s theorem and extensive

manipulations involving the scalar Green’s function and its derivatives. The

resulting expressions for these non-infinite stored energies are

2ωW̄m =
η0

4πk

∫
S

∫
S′
k2 ~J(r) · ~J(r′)

cos (k|r − r′|)
|r − r′|

−

k

2

[
k2 ~J(r) · ~J(r′)−∇ · ~J(r)∇′ · ~J(r′)

]
sin (k|r − r′|) drdr′ (2.23)

and

2ωW̄e =
η0

4πk

∫
S

∫
S′
∇ · ~J(r)∇′ · ~J(r′)

cos (k|r − r′|)
|r − r′|

−

k

2

[
k2 ~J(r) · ~J(r′)−∇ · ~J(r)∇′ · ~J(r′)

]
sin (k|r − r′|) drdr′. (2.24)

For compactness, the following functional notation is adopted to represent

the integrals on the right-hand sides of (2.23) and (2.24):

2ωW̄m = Xm( ~J), (2.25)

2ωW̄e = Xe( ~J). (2.26)

Using these relations, the non-propagating stored energies of any current

distribution can be calculated by finite integrals. This is a critical result

for calculating the Q of arbitrary currents and arbitrary antennas. The

derivation in [10] is arduous but rigorous with the exception of the assumption

that ∂ ~J/∂ω = 0. The implications of this assumption is discussed further

in Chapter 6. In a response to [10], an alternative derivation of the same

integral relations was presented using Poynting’s theorem, Foster’s reactance

theorem, and a few ad hoc assumptions [27]. The alternative formulation is

very compact; but as the original author points out, the assumptions made in

intermediate steps are guided more by the existing final result rather than the

underlying mathematics or physics [11]. In addition to the energy relations
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in (2.23) and (2.24), a similar expression for the radiated power in terms of

the source current is also presented in [10], given by

Prad =
η0

4πk

∫
S

∫
S′

[
k2 ~J(r) · ~J(r′)

−∇ · ~J(r)∇′ · ~J(r′)
]sin (k|r − r′|)
|r − r′|

drdr′. (2.27)

Adopting the same shorthand notation we write this as

Prad = R( ~J). (2.28)

To implement these integrals numerically, we follow the methods in [12] and

expand ~J using the same basis set used in creating the method of moments

impedance matrix. In this way, the integral operations in (2.23), (2.24), and

(2.27) are converted into matrix multiplications. Inserting the expansion

(2.10) into the above integral expressions we obtain the quadratic forms

2ωW̄m = JHXmJ, (2.29)

2ωW̄e = JHXeJ, (2.30)

and

Prad = JHRJ, (2.31)

where the elements of each matrix operator are

Xm,mn =
η0

4πk

∫
S

∫
S′
k2 ~ψm(r) · ~ψn(r′)

cos (k|r − r′|)
|r − r′|

−

k

2

[
k2 ~ψm(r) · ~ψn(r′)−∇ · ~ψm(r)∇′ · ~ψn(r′)

]
sin (k|r − r′|) drdr′, (2.32)
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Xe,mn =
η0

4πk

∫
S

∫
S′
∇ · ~ψm(r)∇′ · ~ψn(r′)

cos (k|r − r′|)
|r − r′|

−

k

2

[
k2 ~ψm(r) · ~ψn(r′)−∇ · ~ψm(r)∇′ · ~ψn(r′)

]
sin (k|r − r′|) drdr′, (2.33)

and

Rmn =
η0

4πk

∫
S

∫
S′

[
k2 ~ψm(r) · ~ψn(r′)

−∇ · ~ψm(r)∇′ · ~ψn(r′)
]sin (k|r − r′|)
|r − r′|

drdr′. (2.34)

By comparing (2.13) with (2.34) we see that Rmn = Re Zmn. Hence (2.18)

and (2.31) are identical and the discrete form of the integral relation for ra-

diated power derived in [10] is the same as the real part of the impedance

matrix obtained by the traditional method of moments using EFIE. Similarly,

comparison of (2.13), (2.32), and (2.33) shows that Xm,mn−Xe,mn = Xmn =

Im Zmn. Unfortunately, there is no way to separate Xe,mn and Xm,mn from

Xmn and these matrix elements must be calculated outside of a standard

method of moments routine. Approximate methods using frequency deriva-

tives of the impedance matrix have been reported and may result in agreeing

figures, though these methods are still to be quantitatively compared with

one another [28, 29, 30]. Inspecting the individual terms in (2.32) and (2.33)

we observe that they have the forms [13]

Xm,mn =
η0

4πk

(
X0
m,mn +Xem,mn

)
(2.35)

and

Xe,mn =
η0

4πk

(
X0
e,mn +Xem,mn

)
, (2.36)

where

X0
m,mn =

∫
S

∫
S′
k2 ~ψm(r) · ~ψn(r′)

cos (k|r − r′|)
|r − r′|

drdr′, (2.37)

X0
e,mn =

∫
S

∫
S′
∇ · ~ψm(r)∇′ · ~ψn(r′)

cos (k|r − r′|)
|r − r′|

drdr′, (2.38)
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and

Xem,mn = −
∫
S

∫
S′

k

2

[
k2 ~ψm(r) · ~ψn(r′)

−∇ · ~ψm(r)∇′ · ~ψn(r′)
]

sin (k|r − r′|) drdr′. (2.39)

Both X0
m,mn and X0

e,mn are the imaginary parts of terms already calculated

in Zmn. These terms are usually calculated separately in method of moments

code, so very little work is required to isolate them in existing code. These

changes are discussed further in Chapter 3. The only remaining piece of

the energy operators to calculate is then Xem,mn which is common to both

Xm,mn and Xe,mn. This term clearly resembles those in Zmn although it lacks

the 1/R singularity. Therefore, with minor additions to existing code, the

remaining integral term Xem,mn is straightforward to obtain and does not

require additional singularity treatment.

2.3.3 Comparing matrix and continuous operators

We can reconcile the quadratics forms in (2.29), (2.30), and (2.31) with the

integrals in (2.23), (2.24), and (2.27) by rearranging the latter into inner

products of ~J and the vector field returned from some operator acting upon

it. For example, repeated application of the divergence theorem allows us to

rewrite (2.27) as

Prad =
1

2

∫
V

J∗(r) · R̂ ~J(r)dV, (2.40)

where we have defined the radiation operator R̂ as

R̂ ~J(r) =
ηk

4π

∫
V ′

[
I +
∇∇
k2

]
sin (kR)

R
· ~J(r′)dV ′. (2.41)

The relations for electric and magnetic stored energy can be written in a

similar manner with the introduction of operators X̂e and X̂m. Continuing

with the radiation operator as an example, we note that R and R̂ are related

in the sense that product RJ returns a vector containing the coefficients of

the vector field R̂ ~J tested by each basis function in {~ψm}. More precisely,
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RJm =

∫
S

~ψm(r) · R̂ ~J(r)dr. (2.42)

While the structure and nature of R̂ ~J and RJ differ slightly due to this

testing property, their physical meanings are still similar enough to deem

them analogous. To reconstruct R̂ ~J from RJ we write it as a weighted

expansion using the same basis functions, i.e.,

R̂ ~J(r) =
∑
n

~ψnγn. (2.43)

Inserting this into (2.42) gives, after a few manipulations,

RJ = Pγ, (2.44)

where

Pmn =

∫
Vm

~ψm · ~ψndVm. (2.45)

The matrix P is called the scaling matrix and will be used to remove varia-

tions in R and other matrix operators caused by mesh effects.

2.3.4 Implications, applications, and issues of R, Xe, and Xm

The quadratics in (2.29), (2.30), and (2.31) provide a means to calculate the

stored magnetic energy, stored electric energy, and radiated power due to

any current representable in J. All three matrices are real and symmetric.

For all objects, R is positive-semi-definite, resulting in any current radiating

positive, real power. Some numerical inaccuracies can invalidate this physical

requirement, but such non-positive-semi-definite matrices can by corrected to

be positive-semi-definite easily with minimal consequence. For small objects

(ka < λ/3), Xm and Xe are also positive-semi-definite, corresponding to all

currents storing positive energy. However for larger objects (ka > λ/3), it

has been observed that both Xm and Xe can systematically have negative

eigenvalues [14]. Thus there exist, for larger objects, current distributions

which appear to store negative energy. The physical issues with this, as well

as more specifics on when it occurs, is the focus of Chapter 6. Assuming

that analysis is restricted to small objects with positive-semi-definite energy
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operators, the quadratics in (2.29), (2.30), and (2.31) can be used in (2.20)

to calculate Q for any current distribution via

Q = 2ω
max{JHXmJ,JHXeJ}

JHRJ
. (2.46)

As discussed before, the matrices Xm and Xe are easy to calculate provided

small changes in existing method of moments code can be made and the

above expression lends itself well to the study of Q of arbitrary small objects.

Bounds on Q for an arbitrary structure can be cast as a general optimiza-

tion problem where the objective is to find the current distribution on that

structure which generates minimum Q. Early attempts to do this involved

traditional optimization techniques [31], though more recently the same au-

thors adopted a modern approach using convex optimization [12, 13, 32, 33].

Furthermore, fast calculation of Q via (2.46) enables it to be incorporated as

a cost in automated antenna shape synthesis [14]. Equation (2.46) has also

been applied in the study of energy storage in characteristic modes [34]. The

quadratic forms in (2.29) and (2.30) have further been identified as an intu-

itive means by which to discern numerical and physical crossing avoidances

in characteristic mode eigenvalue tracking problems [35, 36].

2.4 Radiation and energy storage modes

Here the radiation and energy storage matrix operators discussed in previous

sections are used to analyze which components of a current distribution con-

tribute most to its total radiated power and stored energy. By doing this, we

intend to elucidate if given substructures are dominant in the manifestation

of these quantities. Observing where currents responsible for each quantity

on a structure we can quantitatively understand the role of different regions of

an object in producing radiation and stored energy. To do this, novel modal

current expansions based on the matrix operators R, Xm, and Xe (origi-

nally presented in [37]) are developed. By sorting eigenmode magnitude in

each expansion, a current distribution can be divided into contributing and

non-contributing components, i.e., a radiating and non-radiating component

from expansion in R; a capacitive component and a non-capacitive compo-

nent from Xe; and an inductive component and a non-inductive component
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from Xm.

2.4.1 Eigenvalue problems in R, Xe, and Xm

Define the matrix L to represent either R, Xe, or Xm. We cast an eigenvalue

problem related to L as

LJn = νnPJn. (2.47)

Because any choice of L is symmetric and real, the set of eigenmodes {Jn}
forms a complete orthogonal set over the dimension of L. We can normalize

the modes to satisfy

JlHm PJln = δmn. (2.48)

P is taken to be the scaling matrix with elements given by (2.45) and is used

here to remove eigenvalue dependence on meshing. Here the superscript l

denotes the choice of L. This notation is omitted for clarity in subsequent

sections unless needed to avoid ambiguity. Any current J can be expanded

into a particular eigenmode set by

J =
∑
n

αlnJ
l
n, (2.49)

where

αln = JlHn PJ. (2.50)

Setting L = R and substituting (2.49) into (2.18) using (2.47) and (2.48)

gives a new power relation in terms of modal radiated powers:

Prad =
∑
n

|αrn|2νrn =
∑
n

pnrad. (2.51)

Above, |αrn|2νrn = pnrad is the power radiated by the nth mode. Repeating this

procedure using the other choices of L, we arrive at similar expressions for

total energies in terms of modal stored energies:

2ωWm =
∑
n

|αmn |2νmn = 2ω
∑
n

Wm,n (2.52)

and
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2ωWe =
∑
n

|αen|2νen = 2ω
∑
n

We,n. (2.53)

2.4.2 Contributing and non-contributing current components

Here we propose that for each quantity (Prad, W̄e, and W̄m), the total current

J can be split into a contributing and a non-contributing components. For

example, looking at radiated power we postulate that the current J consists

of a radiating component Jr and a non-radiating component Jnr, i.e.,

J = Jr + Jnr. (2.54)

Using (2.18), it follows that these components should have the properties

JHr RJr ≈ Prad, (2.55)

JHnrRJnr ≈ 0, (2.56)

and

JHnrRJr ≈ 0. (2.57)

Examining (2.51) along with the above conditions, we can see that Jr must be

composed of the radiation modes present in J which have non-trivial modal

powers. For a modal power |αrn|2νrn to be non-trivial, both the excitation

coefficient αrn and the eigenvalue must be non-zero. Hence the eigenspectrum

of R indicates which modes are capable of radiating independent of excitation

while the coefficients give a metric of how much of the total current projects

onto each mode. Modes which are either not present in J or those which

have trivially small eigenvalues do not contribute to radiation. We denote K

as the minimum set of modes satisfying

P c
rad =

∑
n∈K

pnrad ≥ cPrad, (2.58)

where c ∈ [0, 1] is the minimum fraction of Prad accounted for by the set of

modes in K. For c sufficiently close to 1, the set K represents the minimum
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set of radiation modes responsible for the radiation due to the total current

distribution J. All factors relevant to radiation (total power, radiation resis-

tance, field patterns, etc.) can be attributed to the weighted sum of radiation

modes in a current. Thus by adding together the properly weighted radiation

modes in K we obtain the radiating current

Jcr =
∑
n∈K

αnJn. (2.59)

In general we set c ≥ 0.95 and drop the superscript notation. By this logic,

the non-radiating component of J is obtained by summing the modes not

contained in K, i.e.,

Jnr =
∑
n/∈K

αnJn. (2.60)

Thus, using the eigenmode expansion in (2.47) with L = R enables the

decomposition in (2.54) by identifying the set K which satisfies (2.58). The

exact same process can be followed using the energy storage operators Xm

and Xe to determine the modal mechanisms on a structure available for

storing magnetic and electric energy. The effectiveness of this technique is

demonstrated and discussed in Chapter 3.

21



CHAPTER 3

NUMERICAL METHODS

3.1 Overview

Numerical methods used to calculate the method of moments impedance ma-

trix Z and the energy storage matrix operators Xm and Xe are presented.

Basis function selection is covered with a discussion comparing Rao-Wilson-

Glisson (RWG) and rooftop functions. The procedure for calculating the

elements of Z, Xm, and Xe, including the special considerations required

to treat singular terms and maintain matrix operator symmetry, is also dis-

cussed. Techniques for tracking the eigenvalues of a parameterized matrix

is presented in the context of tracking eigenvalue solutions of frequency-

dependent matrices over broad bandwidths.

3.2 Basis function expansion

In order to calculate the matrix operators Z, Xm, and Xe for a given surface

S, we must first create a set of basis functions {~ψn} capable of supporting

any reasonable vector function confined to and tangential to S. The first step

in generating {~ψn} is to discretize S into Ns subdomains. The subdomains

are joined by Ne edges, each of which contacts exactly two subdomains.

Edges contacting more than two subdomains require a special treatment

which decomposes them into superpositions of two-domain edges. The set

of edges, subdomains, and joining vertices will be referred to as the mesh

of S throughout this dissertation. The nature exact nature of the basis

functions themselves will depend on the discretization method used, which

is the primary difference between Rao-Wilson-Glisson (RWG) and rooftop

basis functions.
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3.2.1 RWG basis functions

Established in [38], the RWG basis functions are an extremely common choice

of basis function for electromagnetic simulation [3, 19, 39]. Each RWG basis

function, ~Λn exists over the two triangular subdomains T+
n and T−n contacting

the associated edge en, as shown in Figure 3.1. The piecewise expressions for
~Λn are

~Λn(r) =

{
~Λ+
n = ln

2A+
n
ρ+ r ∈ T+

n

~Λ−n = ln
2A−n

ρ− r ∈ T−n ,
(3.1)

where ln is the common edge length and A±n is the area of T±n . The vectors

ρ± are given by

ρ± = ±r ∓ r±f , (3.2)

where r±f is the free vertex of T±. The integrals within the elements of Z,

Xm, and Xe also require the divergence of these basis functions, which has

the convenient form

∇ · ~Λn(r) =

{
ln
A+

n
r ∈ T+

n

− ln
A−n

r ∈ T−n .
(3.3)

The tapered nature of the RWG basis functions maintains continuity at

edges and triangle corners. Furthermore, the formulation of ~Λn ensures that

the outward component of a vector field goes to zero on the outer bound-

aries of S; a built-in way of enforcing conservation of current at the edges of

objects. Using triangular subdomains, objects with curved surfaces or high

length-scale contrast can be accurately and efficiently represented. However,

this comes at the cost of requiring adaptive meshing tools to generate ap-

propriate meshes for a given geometry (e.g., distmesh [40] and gmsh [41]).

In addition, locating edges in a mesh associated with a specific region and

field orientation can be difficult after the mesh has been created. While this

is not an issue if locations of feeds, ports, or loads are specified on an object

prior to meshing, it can create problems and extra overhead when working

with source-agnostic methods which study potential properties of arbitrary

feed locations (e.g., characteristic modes). In general, a new mesh must be

created for each geometry in order to appropriately conform to the object’s
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Figure 3.1: Schematic of an RWG basis function.

boundaries. That is, the mesh from one object cannot be truncated to syn-

thesize an arbitrary secondary object (an exception to this is when triangle

sizes are standardized and vertices restricted to a regular grid, as done in

[16] and [42]).

3.2.2 Rooftop basis functions

In contrast to the triangular subdomains used in RWG basis functions,

rooftop basis functions ~ψn are defined over two rectangles S+
n and S−n , joined

by the edge en, as shown in Figure 3.2. The expressions defining ~ψn and its

divergence are

~ψm(r) =

 ~ψ+
m =

(
1− d+·ρ+

|d+|

)
d+

|d+| r ∈ S+
m

~ψ−m =
(

1 + d−·ρ−
|d−|

)
d−

|d−| r ∈ S−m
(3.4)

∇ · ~ψm(r) =

{
−1
|d+| r ∈ S+

m

1
|d−| r ∈ S−m.

(3.5)

The use of rectangular subdomains has several implications. First, one
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Figure 3.2: Schematic of a rooftop basis function.

must either restrict study to objects containing only right angles or accept

pixelation errors at curved or oblique boundaries. Some curved objects can

be synthesized accurately with rectangular domains (e.g., open cylinders,

rings) but these are exceptional cases. Secondly, the rectangular grid re-

quires uniform or quasi-uniform meshing over the entire object. For surfaces

with high length-scale contrasts, this leads to unnecessarily large numbers of

elements and is computationally inefficient. Rooftop functions do offer sev-

eral advantages over RWG functions for certain problems. Uniform meshes

can be generated using simple procedures and do not require adaptive mesh-

ing tools. Furthermore, once a large planar object is meshed, other regular

planar shapes can be quickly created by truncating the mesh appropriately.

Examples of this procedure are shown in Figure 3.3. This truncation is

extremely efficient to implement in the calculation of EFIE-related matrix

operators and is the basis of fast, efficient analysis of pixellated objects.

3.3 Calculation of matrix operators

The elements of Z, Xm, and Xe are given in (2.13), (2.33), and (2.32) respec-

tively. Though we are also interested in R for performing radiation mode
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Figure 3.3: Examples of truncating a planar rectangular mesh (top left) to
create other shapes (other frames).

analysis, separate calculation of the elements (2.34) is not required as they

can be obtained via Rmn = Re(Zmn). Here the evaluation of these integrals

is laid out for rooftop basis functions and is easily adaptable to RWG ba-

sis functions. Examining equations (2.13), (2.33), and (2.32), the following

terms can be identified,

Amn = k2

∫
Sm

∫
Sn

~ψm(r) · ~ψn(r′)G0(r, r′)dr′dr (3.6)

Φmn =

∫
Sm

∫
Sn

∇ · ~ψm(r)∇′ · ~ψn(r′)G0(r, r′)dr′dr (3.7)
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Xem,mn = −k
2

∫
Sm

∫
Sn

[
k2 ~ψm(r) · ~ψn(r′)

−∇ · ~ψm(r)∇′ · ~ψn(r′)
]

sin (k|r − r′|) drdr′. (3.8)

Elements of Z, R, X, Xm, and Xe consist of only these terms,

Zmn =
jη0

4πk
(Amn + Φmn) (3.9)

Rmn = Re (Zmn) (3.10)

Xmn = Im (Zmn) (3.11)

Xe,mn =
η0

4πk
Re (Φmn) +Xem,mn (3.12)

Xm,mn =
η0

4πk
Re (Amn) +Xem,mn. (3.13)

When evaluating the interaction between the mth and nth edge elements,

these integrals need only be evaluated over the support of ~ψm and ~ψn. From

the piece-wise expressions for ~ψ and ∇ · ~ψ in (3.4) and (3.5) it is clear that

both Amn and Φmn will consist of four contributions from each combination

of the S+ and S− rectangles from the mth and nth basis function, e.g.,

Amn = A++̃
mn + A+−̃

mn + A−+̃
mn + A−−̃mn , (3.14)

where the superscripts define the component of the mth and nth basis function

being used. The choice of ± rectangle for the nth basis function is denoted

with a tilde. This allows for the components of Amn, Φmn, and Xem,mn to be

written generally as

A±±̃mn = k2

∫
S±m

~ψ±m(r) ·
∫
S±̃n

~ψ±̃n (r′)
e−jk|r−r

′|

|r − r′|
dr′dr (3.15)

Φ±±̃mn =

∫
S±m

∇ · ~ψ±m
∫
S±̃n

∇′ · ~ψ±̃n
e−jk|r−r

′|

|r − r′|
dr′dr (3.16)
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X±±̃em,mn = −k
2

∫
S±m

∫
S±̃n

[
k2 ~ψ±m(r) · ~ψ±̃n (r′)

−∇ · ~ψ±m(r)∇′ · ~ψ±̃n (r′)
]

sin (k|r − r′|) drdr′. (3.17)

3.3.1 Quadrature evaluation of non-singular integrals

When S±m does not overlap with S±̃n , the integrals in (3.15), (3.16) and (3.17)

can be calculated using Gaussian quadrature by dividing S±m and S±̃n into

K and L subrectangles, respectively. Denoting {ri} and {rj} as the set

of subrectangle centers for S±m and S±̃n , respectively, the integrals in (3.15),

(3.16) and (3.17) become

A±±̃mn = k2

K∑
i=1

L∑
j=1

wiwj ~ψ
±
m(ri) · ~ψ±̃n (rj)

e−jk|ri−rj |

|ri − rj|
(3.18)

Φ±±̃mn =
K∑
i=1

L∑
j=1

wiwj∇ · ~ψ±m(ri)∇ · ~ψ±̃n (rj)
e−jk|ri−rj |

|ri − rj|
(3.19)

X±±̃em,mn = −k
2

K∑
i=1

L∑
j=1

wiwj
[
k2 ~ψ±m(ri) · ~ψ±̃n (rj)

−∇ · ~ψ±m(ri)∇ · ~ψn±̃(rj)
]

sin (k|ri − rj|) , (3.20)

where {wi} are the appropriate weights for a chosen quadrature rule. To en-

sure matrix operator symmetry, we set K = L. This is in contrast to many

procedures which setK = 1, L > 1 [39]. While usingK 6= L can provide com-

putational speed up, it inherently breaks the symmetry condition Imn = Inm.

For many applications, this asymmetry is of minimal consequence. However,

when working with eigenvalue problems of matrix operators generated by

these numerical methods, matrix symmetry is of the utmost importance as

it maintains orthogonality and completeness of eigenmodes [43]. Through-

out this dissertation wherever rooftop basis functions are selected, four point

equal-area quadrature is used for each of the above non-singular integrals,

that is K = L = 4 and wi = A/4 (A being the area of the integration do-

main S±m or S±̃n ). Note that elements of Xem,mn are always non-singular and
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as such can always be calculated using the above quadrature technique.

3.3.2 Duffy integration for singular components

When S±m overlaps with S±̃n , the Green’s function in A±±̃mn and Φ±±̃mn becomes

singular and must be treated with care. Here a Duffy transform technique

[44] is used to evaluate the singular integral when S±m = S±̃n . This rectangle

will be denoted as S. The singular integrals then take the form

I =

∫
S

∫
S

f(r)g(r′)G0(r, r′)dsds′, (3.21)

where f and g are non-singular. To deal with the singularity at r = r′ in

the free-space Green’s function, G0, the integrating rectangle is divided into

four equal area subrectangles (the same as used in the non-singular 4 × 4

quadrature), i.e.,

I =
A2
S

16

4∑
i=1

4∑
j=1

f(ri)g(rj)G0(ri, rj). (3.22)

In this form, issues only arise in the terms where i = j. These need to be

integrated differently. Separating these the singular terms gives

I =
A2
S

16

(
4∑
i=1

∑
j 6=i

f(ri)g(rj)G0(ri, rj) +
4

AS

∑
k

f(rk)g(rk)Ik

)
, (3.23)

where

Ik =

∫
Sk

G0(rk, r
′)ds′. (3.24)

This can be evaluated by dividing Sk into four subtriangles tk,p, each with a

vertex at two bounding corners of Sk (r1 and r2) and its center, rk. Equation

(3.24) then becomes

Ik =
4∑
p=1

∫
tk,p

G0(rk, r
′)ds′. (3.25)

Now each subintegration over tk,p has a singularity located at the vertex rk.

Using the Duffy transform the singularity can be removed via
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Ik =
4∑
p=1

2At

∫
u1

∫
u2

u1G(rk, r(u1, u2))du1du2 (3.26)

with

At = |(r1 − rk)× (r2 − rk)| (3.27a)

r(u1, u2) = u1(1− u2)r1 + u1u2r2 + (1− u1)rk. (3.27b)

In the above equations, r1, r2, and rk are the same as r1, r2, and rk in (3.26)

with bold notation to explicitly show their vector properties. The integral in

(3.26) must, in general, be evaluated using adaptive quadrature in order to

ensure good removal of the singularity. However, because the Green’s func-

tion and integration domain are usually the same (here we assume uniform

area rectangular basis functions) in each evaluation of (3.26), it suffices to

study the convergence of Ik with respect to domain size and quadrature or-

der. For basis function domain size on the order of λ/12, the integration area

in (3.26) is a triangle with side length on the order of λ/25. With this size of

integration area and using a two-dimensional Gaussian quadrature rule [45]

in u1, u2 space, nine integration points (m = 3 quadrature) was observed to

be sufficient for evaluation of (3.26). This mesh size is therefore used as a

guideline with m = 3 quadrature used throughout. Similar convergence can

be studied for RWG basis functions.

3.4 Eigenvalue tracking

In order to examine the behavior of any modal solutions (e.g., characteristic

modes, radiation modes) as functions of frequency, care must be taken in

order to properly sort and track individual modes between discrete frequency

points where the method of moments calculations are performed. One can

think of the the eigenvalue problem in (2.47) with L = R as a single instance

of a problem involving a parameterized matrix. In this case, the parameter

is frequency, ω. This dependence can be written explicitly as

[RJ = νPJ]ω . (3.28)

30



Using an eigenvalue solver at each ω gives eigenvector / eigenvalue pairs

sorted according to some scheme. For example, the MATLAB functions

eigs or eig [46] sort based on eigenvalue magnitude. Problems arise when,

in neighboring frequency steps, eigenvectors exchange rank in the sorting

scheme. Using eigs or any other sorted-output routine, this occurs when

eigenvalues or their absolute values cross. If the goal is to track how a

single modal current distribution changes over frequency it is necessary to

adopt some eigenmode tracking procedure to maintain continuity through

these crossings. This problem is well-documented in the characteristic mode

literature, where it is also prevalent. Procedures using matrix integration

[47], orthogonality of modes [48], correlation matrices [49], far-field patterns

[50], and Pearson correlations [51] have all been reported with mixed success.

All of these methods, in some way or another, depend on closely-spaced values

of ω to provide satisfactory results. Here we follow an equivalent method as

presented in [48], but tailored for radiation and energy storage modes. We

start by making assuming the frequency step ∆ω is small enough that the

current distribution of a given mode changes very little in each step, allowing

the approximation

(Ji(ω + ∆ω))TPJj(ω) ≈ δij (3.29)

based on (2.48). To track a single modal current distribution, a mode is

selected from the output of an eigenvalue solver at some starting frequency.

We denote the eigenvector of this mode as xn and its eigenvalue as λn. At

the next frequency, K eigenvectors are obtained using the same solver. These

eigenvectors are written {yk} and are assembled as columns in Y. All vectors

are normalized as in (2.48). The orthogonality relation in (3.29) can be used

to form a vector containing errors between xn and {yk}

ε =


ε1
...

εK

 = (1− |YTPxn|)2. (3.30)

Finding the minimum εk gives the index of the mode in {yk} corresponding

to xn. An upper threshold should be set on acceptable ε to stop tracking

when the mode being tracked is no longer present in the K eigenvectors

obtained from eigs. Repeating this orthogonality check procedure gives
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Figure 3.4: Unsorted (a) and sorted (b) radiation modes of a rectangular
plate (aspect ratio 1.3) over a range of frequencies 0.1 < ka < 6.

continuous tracking of a current distribution and its eigenvalue as it changes

with frequency. Figure 3.4 compares the unsorted and sorted eigenvalues

of radiation modes from a small rectangular plate (aspect ratio 1.3) over a

broad range of frequencies.

This method has proven robust in situations where eigenvalue crossings

and avoidances are ambiguous, as discussed in the context of characteris-

tic modes in [35]. However, this technique is not well suited to discerning

individual eigenmodes when many elements of the eigenspectra have nearly

equal eigenvalues over broad frequency ranges, as is frequently encountered

in energy storage analysis. This is discussed further in Chapter 6.
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CHAPTER 4

ANALYSIS EXAMPLES

4.1 Overview

Radiation and energy storage modal analyses are demonstrated on two ex-

ample antenna types. The formulation in Chapter 2 for these eigenvalue

problems is implemented using numerical results from the methods developed

in Chapter 3. Decomposition of a current into radiating and non-radiating

components is demonstrated using radiation mode expansion. Numerical re-

sults show that energy storage mode expansion does not allow for such a

separation. Radiation modes are demonstrated to be relatively invariant to

small geometry changes.

4.2 Problems studied

The two examples studied here using radiation and energy storage modal

expansions are a simple dipole and an antenna designed for digital televi-

sion signals (DTV) mounted to a tablet-sized L-shaped ground plane. The

dipole example is intended to ground the results obtained from these analy-

ses in a well-known, well-understood example. We examine results from the

dipole over a broad range of frequencies in order to gain some insight into

the general behavior of radiation and energy storage modes on this canonical

structure. The DTV antenna is a more complex example and is examined

in detail only at its design frequency. It represents an embedded antenna;

i.e., an small driven antenna element mounted to a larger conducting ground

structure. Antennas of this type are often designed by rote optimization

of heuristic topologies due to the complex interaction between the designed

antenna element and the finite ground plane. This example shows how radia-
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tion and energy storage modal analysis can inform and quantify some of these

interactions in novel ways. Analysis of both examples originally appeared in

[37].

4.2.1 Dipole antenna

A thin strip dipole with length-to-width ratio of L/w = 500 is simulated over

the frequency range l = λ/30 to l = λ. Over all frequencies, 200 uniform

rectangular mesh subdomains are used to represent the surface. Feeding is

implemented using delta-gap excitation at the center of the dipole.

4.2.2 Tablet-sized DTV antenna

An antenna designed for digital television (DTV) signals is simulated within

its operating band at 569 MHz. The antenna geometry is represented by

uniform rectangular basis functions with subdomain size on the order of

λ/100. The geometry consists of two main components: an L-shaped ground

plane and a bent monopole antenna element. The bent monopole measures

0.171λ and the entire structure is bounded by a 0.342λ × 0.262λ rectangle.

Feeding is implemented by a delta-gap source located at the base of the

antenna element. The system is shown in Figure 4.1, with the feed location

drawn in blue with an orange arrow indicating the feed field orientation.

4.3 Radiation mode analysis

4.3.1 Separation of Jr and Jnr

The radiation mode expansion of the thin strip dipole is presented first. The

inversion problem in (2.15) is solved to obtain the driven current J. Note

that this inversion and subsequent manipulations of currents, matrices, and

expansions are implicitly done at each frequency in the simulated band. The

radiation modes of the dipole are found by solving (2.47) with L = R, i.e.,

RJ = νPJ. (4.1)
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Figure 4.1: DTV antenna system geometry. The bounding rectangle of the
system measures 0.342λ× 0.262λ and the monopole length is 0.171λ at 569
MHz. The delta-gap feed location is shown in blue, with the field orientation
of the feed indicated by an orange arrow.

Once the modes are found, the excitation coefficients are calculated via

(2.50). Modal radiated powers are then given by (2.51). For clarity, all

total current distributions (e.g., the driven current J) are normalized to ra-

diate unit power. The radiation mode eigenvalues, excitation coefficients,

and modal powers for the center-driven thin strip dipole are shown at l =

λ/30, λ/3, and λ in Figures 4.2, 4.3, and 4.4, respectively.

From these calculations, several points are apparent. First, only a few

radiation modes at each frequency have non-trivial eigenvalues. Second, at

each frequency many radiation modes are present in the total driven cur-

rent distributions. Finally, across all frequencies only the lowest-order mode

(n = 1) contributes to radiation, i.e., p1
rad ≈ 1 or equivalently using the nota-

tion of (2.58), K = {1}. Furthermore, this implies that across all frequencies

examined here, Jr ≈ α1J1 and Jnr ≈ J − α1J1. Using these relations, the

driven current and its radiating and non-radiating components are plotted at

l = λ/30, λ/3, and λ in Figure 4.5. There we observe that at each frequency,

radiation is due to the uniform component of the total driven current. The

non-radiating component, consisting of radiation modes with small eigen-

values and/or small excitation coefficients, appear to enforce the boundary
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Figure 4.2: Radiation eigenvalues (top), excitation coefficients (middle) and
modal powers (bottom) obtained by radiation mode expansion of the driven
current on a thin-strip dipole at l/λ = 1/30.
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Figure 4.3: Radiation eigenvalues (top), excitation coefficients (middle) and
modal powers (bottom) obtained by radiation mode expansion of the driven
current on a thin-strip dipole at l/λ = 1/3.

conditions at the end of the dipole while not significantly contributing to the

radiated power.

Using the same methodology, the DTV system is analyzed at its design
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Figure 4.4: Radiation eigenvalues (top), excitation coefficients (middle) and
modal powers (bottom) obtained by radiation mode expansion of the driven
current on a thin-strip dipole at l/λ = 1.
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Figure 4.5: Driven current (solid) and its radiating (dotted) and non-
radiating (dashed) components on a thin strip dipole at l/λ = 1/30 (top),
1/3 (middle), and 1 (bottom).

frequency of 569 MHz. The total driven current is shown in Figure 4.6. The

current maximum is near the feed location while lower amplitude currents

exist over the support of the ground plane. Calculating the radiation modes
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of this structure we can obtain the modal eigenvalues, excitation coefficients,

and modal powers, shown in Figure 4.7
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Figure 4.6: Total driven current at 569 MHz. The delta-gap feed location is
shown in blue, with the field orientation of the feed indicated by an orange
arrow.

These results show similar characteristics as those observed in the dipole

data. It is observed that only a few radiation modes have non-trivial eigen-

values. While there are many radiation modes present in the total current,

the inclusion of ν in the expression for modal powers effectively masks out all

radiation modes except for those with significant eigenvalues. This is seen in

the bottom pane of Figure 4.7, where it is clear that only the first three ra-

diation modes contribute significantly to the system’s radiation, accounting

for 99.3% of the total power radiated. Of those three modes, the n = 1 mode

is the most dominant, contributing 86% of the radiated power. Using this

result, we can set K = {1, 2, 3} and calculate the radiating and non-radiating

components of the driven current according to (2.59) and (2.60). The three

dominant radiation modes are displayed in Figures 4.8-4.10 while the radi-

ating and non-radiating current components are shown in Figures 4.11 and

4.12. Similar to the dominant radiation mode in the dipole example, the

main radiation mechanisms on this structure, J1 and J2, appear to be uni-

form current distributions across the support of the object differing only in

their orientation. These two modes also have similar eigenvalues, as seen in
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Figure 4.7: Radiation eigenvalues (top), excitation coefficients (middle) and
modal powers (bottom) obtained by radiation mode expansion of the driven
current on the DTV antenna system at 569 MHz.

Figure 4.7. The third radiation mode, J3, has spatial variation resembling a

loop and a significantly lower eigenvalue than the uniform modes. These two

classes of modes are found on every planar object of this electrical size and

typically constitute the main sources of radiation. The forms of these types

of modes are studied in more detail in Chapter 5.

4.3.2 Radiation mode contributions to radiation patterns

The radiation pattern due to a current distribution ~J can be written in the

following operator forms

~Eγ(θ, φ) = Fγ

(
~J
)

(θ, φ) =

∫
S′
γ̂ · ~J(r′)e−jk|r−r

′|ds′, (4.2)

where γ represents the choice of θ or φ polarization and ~Eγ(θ, φ) is the far-

zone electric field at the angle (θ, φ). Some constants are omitted for clarity.

Note that r is located on an infinite sphere. These operators are linear and

can easily be discretized as

Eγ = FγJ. (4.3)

39



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

00.050.1

x
, 

m

y, m

Figure 4.8: First radiation mode J1, p1
rad = 86.4%Prad.
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Figure 4.9: Second radiation mode J2, p1
rad = 8.08%Prad.

The linear nature of Fγ further leads to an expression of the far-field in terms

of the patterns due to weighted sums of current distibutions, i.e.,

Eγ = Fγ

N∑
n

αnJn =
N∑
n

αnFγJn. (4.4)

In the antenna literature, far-field radiation patterns are typically reported

40



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
00.050.1

x
, 

m

y, m

Figure 4.10: Third radiation mode J3, p1
rad = 4.82%Prad.
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Figure 4.11: Radiating component of the driven current in Figure 4.6.

in terms of radiated power of one or both polarizations. For a single polar-

ization, we denote this power

gγ = Eγ ◦ Eγ, (4.5)

where ◦ is the Hadamard product. For the total power pattern we use
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Figure 4.12: Non-radiating component of the driven current in Figure 4.6.

g = E ◦ E, (4.6)

where

E =
√

Eθ ◦ Eθ + Eφ ◦ Eφ. (4.7)

Clearly, the power patterns of one or both polarizations is non-linear and

cannot be written in the sum form given in (4.4). However, owing to the

properties of radiation modes and their orthogonality in R, the total power

radiated by a set of radiation modes is the sum of the individual modal

powers. Therefore, while the power patterns gγ and g behave non-linearly

in their appropriating of the radiated power to the far-field, the total power

present in the far-field due to a collection of radiation modes will be the sum

of the powers present in the modal far-fields.

We now test the following concept using radiation modes: currents which do

not radiate do not affect far-field radiation. In the Section 4.3.1, the radiating

component of the driven current distribution on a DTV antenna system was

identified. The radiating component, Jr, consisted of a weighted set of three

radiation modes. The power radiation patterns gγ for these three current

modes are shown individually in Figure 4.13.

Summed and properly weighted, these three current modes account for 99.3%
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Figure 4.13: Radiation patterns of the three dominant radiation modes on
the DTV antenna system.

of the radiated power by the system. Thus we expect that the radiation

pattern of the system is due only to the sum of these three modes as well.

Figure 4.14 shows partial weighted sums of the dominant radiation modes

as well as the radiation pattern of the total current. The pattern due to

the sum of modes 1, 2, and 3 is nearly identical to that of the total current

distribution. Hence we have demonstrated that Jr not only accounts for

nearly all of the radiated power of the system, but it also determines the

radiation pattern of the driven current. Conversely, the non-radiating modes

present in the total current distribution do not contribute to the radiation

pattern.

4.3.3 Comparison to characteristic mode analysis

The novelty of the radiation mode expansion technique demonstrated here

is the ability to identify the radiating and non-radiating components of an

arbitrary current distribution. In short, this is accomplished by identifying
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Figure 4.14: Patterns of partial sums of weighted radiation mode currents.
The third and fourth rows of patterns are those of Jr and J, respectively.

the set of radiation modes contributing to the total power output. A similar

procedure is commonly applied using characteristic modes. In this section

the two techniques are compared, highlighting some of the advantages of

radiation mode analysis in identifying radiation mechanisms. Characteristic

modes are solution to the eigenvalue problem

XJ = λRJ, (4.8)

where R and X are the real and imaginary parts, respectively, of the impedance

matrix Z [7, 8]. For clarity, quantities associated with characteristic modes

will be labeled cm. By the assumed symmetry of R and X, the modal solu-
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tions {Jcmn } can be normalized in the following ways,

Jcm,Ti RJcmj = δij (4.9)

Jcm,Ti XJcmj = λiδij. (4.10)

Any current on the object described by Z can be expanded into characteristic

modes via

J =
N∑
n

βnJ
cm, (4.11)

where the expansion coefficients are commonly written in terms of the cur-

rent’s driving voltage, V, as,

βn =
VTJcmn
1 + jλn

. (4.12)

Using these expressions, the modal contributions to radiation and energy

storage are written

Prad =
N∑
n

|βn|2 (4.13)

2ω (Wm −We) =
N∑
n

λn|βn|2. (4.14)

Note that, because Xe and Xm were not used, only the reactive energy differ-

ence of characteristic modes can be studied. Comparing the radiation mode

and characteristic mode contributions to the total power in (2.51) and (4.13)

we see an important distinction: radiation modal powers are proportional to

both the modal eigenvalue ν and the excitation coefficient α. This allows

for radiation modes to be present (large α) while not radiating (small ν).

Clearly this is not the case for characteristic modes, where the modal power

contributions depend solely on β. Thus, all characteristic modes radiate ac-

cording to their excitation. Attempting to form constructions analogous to

(2.59) and (2.60) is therefore much more difficult using characteristic modes,

especially since characteristic modes include high-magnitude non-radiating

currents on low-order modes. This highlights the utility and uniqueness of
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radiation mode expansion in its ability to separate the radiating and non-

radiating components of a current distribution. Intuition and physical under-

standing regarding systems with small, reactive antenna elements mounted

to finite ground planes (such as the DTV antenna described in Section 4.2.2)

are greatly enhanced by the process of separating the high-magnitude, non-

radiating currents from the low-amplitude radiating mechanisms.

4.4 Energy storage analysis

Examining energy storage mechanisms using the eigenmodes of Xm and Xe

follows the same procedure used with R to investigate radiation. Here we

cover the results of energy storage analysis of the dipole and DTV antenna

examples. Of particular interest is the vastly different nature of the data

obtained from energy storage analysis compared with those calculated by

radiation mode expansion.

The electric energy storage modal expansion is performed on the thin

strip dipole at the same frequencies used in the radiation mode analysis.

The eigenvalues, expansion coefficients, and modal electric energies for these

three frequencies are shown in Figures 4.15-4.17. Several features distinguish

this expansion from the radiation mode analysis. First, the entire eigenspec-

trum is non-trivial. This alone indicates that the masking effect exploited to

isolate the radiating currents in the previous section may not apply to the

energy storage operators. Second, we note that only a few capacitive modes

are required to synthesize the total current distribution. This is in contrast

to the radiation mode expansion where many modes were required. Because

of the fully populated eigenspectrum, the excitation coefficients correspond

more or less directly to the modal stored energy quantities. In light of this,

the electric energy mode expansion allows for the identification of a sparse

set of capacitive current mechanisms while not allowing for the separation of

capacitive and non-capacitive components as was done in the radiation prob-

lem. Though the eigenspectrum of Xm shows a slightly different character,

the inductive mode expansion shares many of the features seen in the elec-

tric energy problem. The eigenspectrum, expansion coefficients, and modal

energies from the magnetic energy expansion of the three dipole calculations

are shown in Figures 4.18-4.20.
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Figure 4.15: Electric energy eigenvalues (top), excitation coefficients (middle)
and modal powers (bottom) obtained by electric energy mode expansion of
the driven current on a thin-strip dipole at l/λ = 1/30.
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Figure 4.16: Electric energy eigenvalues (top), excitation coefficients (middle)
and modal powers (bottom) obtained by electric energy mode expansion of
the driven current on a thin-strip dipole at l/λ = 1/3.

We also apply the electric and magnetic energy storage expansion to the

DTV antenna example. There we see the same trends as observed in the

analysis of the thin strip dipole. However, the added complexity of the
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Figure 4.17: Electric energy eigenvalues (top), excitation coefficients (middle)
and modal powers (bottom) obtained by electric energy mode expansion of
the driven current on a thin-strip dipole at l/λ = 1.
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Figure 4.18: Magnetic energy eigenvalues (top), excitation coefficients (mid-
dle) and modal powers (bottom) obtained by magnetic energy mode expan-
sion of the driven current on a thin-strip dipole at l/λ = 1/30.

DTV antenna system results in some interesting effects. Two of the pre-

vailing capacitive modes are shown in Figures 4.21 and 4.22. Each of these

modes contributes a significant amount of the stored electric energy in the
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Figure 4.19: Magnetic energy eigenvalues (top), excitation coefficients (mid-
dle) and modal powers (bottom) obtained by magnetic energy mode expan-
sion of the driven current on a thin-strip dipole at l/λ = 1/3.
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Figure 4.20: Magnetic energy eigenvalues (top), excitation coefficients (mid-
dle) and modal powers (bottom) obtained by magnetic energy mode expan-
sion of the driven current on a thin-strip dipole at l/λ = 1.

system, though each can be roughly defined as existing primarily on the

ground plane or on the driven antenna element. While summing all of the

capacitive (or inductive) modes to separate the current into contributing
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and non-contributing components is less effective here than in the radiation

problem, there is still information to be gained by examining the distinct

energy-storing current mechanisms which are excited on this structure. The

fact that in both the electric and magnetic energy problems there exist modes

whose support is one substructure or the other corroborates the intuition that

a small antenna element can act as a non-radiating matching network which

couples power from the feed to the radiating ground plane. The classifica-

tion used here in deeming a mode either ground-plane- or element-localized is

done by visual inspection and in future work a more robust criterion should

be established. For now, however, we can examine the contributions to ra-

diated power and stored energies on an approximate level using the results

from the previous modal expansions. Contributions to these quantities are

shown in Figure 4.23. Note that modes which weren’t easily classified are

labelled “mixed”.
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Figure 4.21: Capacitive mode accounting for 56.3% of the stored electric
energy due to the driven current in Figure 4.6. While currents appear on
both the ground plane and the antenna element, the high-magnitude ground
plane currents are the key distinguishing feature of this mode, contrasted for
example with the driven current.
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Figure 4.22: Capacitive mode accounting for 39.0% of the stored electric
energy due to the driven current in Figure 4.6. Most of the currents in this
mode are confined to the driven element.
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Figure 4.23: Estimated substructure contributions to radiation and energy
storage.

4.5 Effect of antenna element on radiation modes

In this section, the effect of the antenna element on the radiation modes of

the DTV system’s ground plane are examined. Because the dominant radia-

tion mode in this example are very simple in their structure, we hypothesize

that the eigenmodes of the radiation matrix are tolerant to changes in ge-

ometry. To test this, the bent monopole element is removed from the DTV

antenna system. The radiation modes of this ground-plane-only geometry are
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calculated then in the usual manner. The eigenvalues of the dominant radia-

tion modes are compared to the original, full DTV antenna system in Table

4.1. The current distributions associated with these modes are also shown

in Figures 4.24-4.26. The difference in eigenvalues is small, less than 6% for

all three modes. Further, the modal current distributions appear relatively

unchanged by the removal of the antenna element. This is important as it

suggests that the radiation modes (and hence available mechanisms governing

radiated power, far-field patterns, and polarization) of a finite ground plane

can be analyzed and understood before the design of a mounted antenna. In

addition, these results imply that there exist a common set of modes for pla-

nar objects, relatively independent of geometry. This is explored analytically

in Chapter 5.

Table 4.1: Radiation mode eigenvalues for a ground plane with and without
an attached monopole element

Ground plane Ground plane and monopole ∆
l1 8.73 x 10−4 9.22 x 10−4 5.6 %
l2 8.12 x 10−4 8.42 x 10−4 3.6 %
l3 1.53 x 10−4 1.61 x 10−4 4.5 %
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Figure 4.24: First radiation mode of the DTV antenna system with the
antenna element removed.
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Figure 4.25: Second radiation mode of the DTV antenna system with the
antenna element removed.
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Figure 4.26: Third radiation mode of the DTV antenna system with the
antenna element removed.

4.6 Summary of findings

The results from this chapter’s examples of radiation and energy mode ex-

pansions yield several key points. First, the radiation mode spectrum for

electrically small objects appears to be sparse. This enables the splitting of
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radiating and non-radiating components of arbitrary current distributions.

Furthermore, the most significant radiation modes are smooth current dis-

tributions over the entire support of an object and are relatively invariant to

small perturbations to the object geometry. The spectra obtained by energy

mode expansions are not as sparsely populated and this encroaches on the

ability to split contributing and non-contributing current components. In

light of this, it appears that the actual excited energy storage modes still

form a relatively sparse set, enabling the decomposition of energy storage

into a few primary current mechanisms. By examining the relative support

of modes from these different expansions, the contributions for different sub-

structures within a complex object can be examined. Furthermore, radiation

modes are observed to be simple current distributions with only very loose

dependence on the fine details of the object under consideration.

54



CHAPTER 5

RADIATION MODES OF CANONICAL
CONDUCTING SURFACES

5.1 Overview

Closed-form solutions to the radiation mode eigenvalue problem are derived

based on small-antenna approximations. The resulting solutions represent

simple radiation sources (e.g., dipoles, loops) with simple behavior over fre-

quency. Numerical validation shows that these solutions are valid for objects

with size up to ka = 1.0 (largest dimension on the order of λ/3). This

demonstrates that solving the discrete radiation mode eigenvalue problem is

a fast, intuitive method for understanding the classical multipole expansion

method of small radiating sources.

5.2 Introduction

In Chapter 4, radiation and energy storage modal expansions were demon-

strated on two objects. In terms of radiation, several observations were made

regarding the structure and sparseness of the active modes. In general, the

radiating modes were simple in nature and had support over the entire ob-

ject under consideration. This is in line with observations that small objects

generally radiate via simple equivalent sources [20, 16, 52]. From this it

was further concluded, in the case of the embedded DTV antenna, that the

ground plane was the dominant source of radiation in the system and that its

radiation properties were relatively unaffected by the driven antenna element.

This implies that the antenna element simply acted to excite radiation mode

currents on the ground plane. This conclusion is in line with many studies

regarding the effects of finite ground planes on antenna performance (e.g.,

[5, 53, 54]) while providing novel quantitative understanding of the source
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of radiation in the system. In light of this, it appears that when designing

an embedded antenna it may be worthwhile to analyze and understand the

radiation modes of the finite ground plane; as those will be the mechanisms

primarily responsible for the radiation properties of the system. In this chap-

ter, we generalize the analysis of small antennas and finite ground planes by

deriving analytic solutions to the radiation eigenvalue problem on simple

conducting structures. Electrically small assumptions are used to derive so-

lutions to the continuous eigenvalue problem, though it is then shown that

the two lowest-order classes of solutions maintain their derived character for

structures with maximum dimension up to λ/3.

5.3 The continuous and discrete radiation eigenvalue

problem

In previous chapters, radiation mode analysis was carried out using the dis-

crete eigenvalue problem

RJ = νPJ. (5.1)

Using the notation in (2.40) and (2.43), the analogous continuous eigenvalue

problem is

R̂ ~J(r) = ν ~J(r), (5.2)

where

R̂ ~J(r) =
ηk

4π

∫
S′

[
I +
∇∇
k2

]
sin (kR)

R
· ~J(r′)dr′. (5.3)

It is important to note that (5.1) and (5.2) are analogous but not the same,

as RJ and R̂ ~J(r) are related in ways discussed in Section 2.3.3.

For electrically smaller objects (ka < 3), it has been observed that the

eigenmodes of R tend to be simple, full-support current distributions with

predictable structures independent of surface geometry [37, 55]. In subse-

quent sections we examine the continuous problem in (5.2) in order to derive

closed-form expressions for radiation eigenmodes on small, canonical struc-

tures.
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5.3.1 Special forms of R̂

The operator R̂ takes on two special forms in the electrically small limit.

First, we examine the zeroth-order approximation to the real component of

the dyadic Green’s function in (5.3). Expanding sin kR/R into its Taylor

series representation gives

sin(kR)

R
=
∞∑
n

(−1)n
k2n+1R2n

(2n+ 1)!
. (5.4)

Keeping only the first two terms gives

sin(kR)

R
≈ k − k3R2

3!
. (5.5)

This truncation is accurate to 10% for kR < 1.66 (ka = 0.83, largest dimen-

sion on the order of λ/4). We apply the first gradient operator in (5.3) to

this approximation and get

∇sin(kR)

R
≈ −k

3

3
(x̂(x− x′) + ŷ(y − y′) + ẑ(z − z′)) . (5.6)

Applying an outer multiplication with the second ∇ operator we arrive at

the dyad form

∇∇sin(kR)

R
≈ −k

3

3
I. (5.7)

We can insert this approximation into (5.3) to obtain a greatly simplified

approximate form for R̂ ~J applicable in the small antenna limit,

R̂ ~J(r) =
ηk2

6π

∫
S′

~J(r′)dr′. (5.8)

Alternatively, the integrand in (5.3) can be rearranged as follows using

integration by parts,

R̂ ~J(r) =
ηk

4π

∫
S′

[
~J +

1

k2
∇′∇′ · ~J

]
sin kR

R
dr′. (5.9)

Assuming a divergence-free current (such as that of a small loop), the second

special form of R̂ is obtained as

R̂ ~J(r) =
ηk

4π

∫
S′

~J(r′)
sin kR

R
dr′. (5.10)

57



.

5.4 Solutions to the continuous radiation eigenvalue

problem on simple shapes

This section is organized in three parts examining solutions to (5.2) on dif-

ferent choices of canonical surfaces for S.

5.4.1 Planar objects

Inserting (5.8) into (5.2) and restricting S to a planar surface yields the

eigenvector / eigenvalue pair

~J = âJ0 (5.11)

ν =
ηAk2

6π
. (5.12)

These modes are predicted to be uniform in nature over the support of S,

independent of the particular geometry, and have eigenvalues proportional

to the area, A, of S. On any two-dimensional object, two such modes would

form a quasi-degenerate two-dimensional eigenspace. In light of the uniform,

linear nature of this class of modes, we associate them as electric dipole

moments. This designation is consistent with the classic multipole expansion

in [56].

Using the alternate special form of R̂ given in (5.10) requires a specific

choice of geometry. Suppose S to be a disk of radius a, centered at the origin

with a normal vector in the ẑ direction. Assuming a divergence-free current,

we guess the following form for an eigenmode:

~J = φ̂f(ρ), (5.13)

where f is an unknown function of radial distance ρ. Inserting this into (5.10)

leads to

R̂ ~J(r) =
ηk

4π

∫ a

0

∫ 2π

0

φ̂′f(ρ′)
sin kR

R
ρ′dφ′dρ′, (5.14)
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where, in terms of radial coordinates,

R =
√

(ρ− ρ′ cosφ′)2 + (ρ′ sinφ′)2. (5.15)

By taking advantage of symmetry in the angle φ of the chosen geometry,

r can be assigned the x̂-axis. Applying this to the above expression and

rearranging terms gives

R̂ ~J(r) = φ̂
ηk

4π

∫ a

0

f(ρ′)g(ρ, ρ′)ρ′dρ′, (5.16)

where

g(ρ, ρ′) =

∫ 2π

0

cosφ′
sin kR

R
dφ′. (5.17)

The function g(ρ, ρ′) can be interpreted as the scaled φ̂-directed field at

distance ρ produced by a uniform current ring of radius ρ′. We examine the

behavior of g(ρ, ρ′) by plotting it over ρ for various ring sizes ρ′. In Figure

5.1 we see that the generated field differs only by a scaling factor when the

ring radius is small (ρ′ < 0.3λ). However, as the ring size becomes greater

(ρ′ > 0.5λ), the profile of the generated field becomes highly dependent on

ring size, as shown in Figure 5.2.
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Figure 5.1: g(ρ, ρ′) evaluated as a function of ρ for several small values of ρ′.
This is related to the real field produced by a uniform current ring of radius
ρ′ at an observation distance ρ in the same plane as the ring.
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Figure 5.2: g(ρ, ρ′) evaluated as a function of ρ for several larger values of ρ′.
This is related to the real field produced by a uniform current ring of radius
ρ′ at an observation distance ρ in the same plane as the ring.

The similar nature of g in Figure 5.1 suggests that g may be written as two

separable functions of ρ and ρ′ when ρ′ is small, i.e.,

g(ρ, ρ′) = g1(ρ)g2(ρ′), (5.18)

which could greatly simplify the eigenvalue problem in (5.16). To obtain the

form of g for small ρ′ we apply the Taylor series for sine with small argument

kR to the general expression of g,

g(ρ, ρ′) =

∫ 2π

0

cosφ′k
∑
n=0

(−1)n(kR)2n

(2n+ 1)!
dφ′. (5.19)

Here we keep the first two (n = 0, 1) terms in order to have a non-vanishing

right-hand side. Assuming kR < 1.5 (a < λ/4), keeping only these first two

terms maintains reasonable accuracy. Truncating the series in (5.19) in this

way gives

g(ρ, ρ′) =

∫ 2π

0

cosφ′dφ′ −
∫ 2π

0

cosφ′k
(kR)2

3!
dφ′. (5.20)

The first integral is identically zero, leaving

g(ρ, ρ′) = −
∫ 2π

0

cosφ′k
(kR)2

3!
dφ′, (5.21)
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which is separable in the way predicted in 5.18. Inserting the expression for

R and rearranging we have

g(ρ, ρ′) = −k
3

3!

∫ 2π

0

cosφ′
(
ρ2 + ρ′2 − 2ρρ′ cosφ′

)
dφ′. (5.22)

Two of the three integral terms vanish leaving

g(ρ, ρ′) =
ρρ′πk3

3
. (5.23)

Inserting this approximation for g into the eigenvalue problem in (5.16) gives

νf(ρ) =
ρηk4

12

∫ a

0

f(ρ′)ρ′2dρ′. (5.24)

Guessing the form

f(ρ) = f0ρ (5.25)

and substituting into the above equation yields

νf(ρ) =
f0ρηk

4

12

∫ a

0

ρ′3dρ′ (5.26)

νf(ρ) =
f0ρηa

4k4

48
. (5.27)

Thus the eigenmode / eigenvalue pair for this solution is

~J = φ̂ρJ0 (5.28)

ν =
ηk4a4

48
. (5.29)

This divergence-free mode is φ̂ directed and grows linearly with radial dis-

tance form the origin of the disk. Its eigenvalue grows with frequency as

k4a4. While the choice of a disk for S was mathematically convenient for

this derivation, this mode exists on all small planar geometries, regardless of

shape as demonstrated in [55]. When S is not a disk, the eigenvalue of this

mode still roughly follows a k4a4 trend, (here a is the radius of the circum-

scribing circle around S), though it is also scaled by the relative area of S.

Because this mode is loop-like in nature, we associate it as a magnetic dipole

moment.
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5.4.2 Cylinders

In this subsection, S is chosen to be an open cylindrical surface (no top or

bottom) of height h and radius b. The cylinder is centered at the origin

oriented along the ẑ-axis. In studying planar objects, the role of the n̂×
operation in the continuous eigenvalue problem played no part in determining

the eigenmodes of the system. In the cylindrical case, however, this operation

gives rise to two distinct classes of modes associated with the electric dipole

moment.

Applying (5.8) with this choice of S gives

n̂× R̂ ~J(r) = n̂× ηk2

6π

∫ h/2

−h/2

∫ 2π

0

~J(r′)bdφ′dz′. (5.30)

We can break ~J into its ẑ and φ̂ components and use ẑ′ · φ̂ = 0 to examine

the individual tangential components of R̂ ~J , i.e.,

ẑ · R̂ ~J(r) =
ηk2

6π

∫ h/2

−h/2

∫ 2π

0

ẑ · ẑ′Jzbdφ′dz′ (5.31)

φ̂ · R̂ ~J(r) =
ηk2

6π

∫ h/2

−h/2

∫ 2π

0

φ̂ · φ̂′Jφbdφ′dz′. (5.32)

Clearly there is no coupling between the mismatched components of ~J and

R̂ ~J . Therefore each of the above equations could potentially lead to solutions

of (5.2). Inserting (5.31) into the continuous eigenvalue problem quickly leads

to another electric dipole moment eigenvector / eigenvalue pair

~J = ẑJ0 (5.33)

ν =
ηk2bh

3
. (5.34)

Like the electric dipole modes of planar surfaces, this mode is uniform over

the support of the cylinder, linearly directed, and proportional to the surface

area of the cylindrical surface. Using (5.32) in (5.2) requires a few more

steps. Noticing that φ̂ · R̂ ~J(r) has φ dependence owing to the φ̂ · φ̂′ within

its integrand, any eigenvector must also have φ dependence. Specifically, by

using φ̂ · φ̂′ = cos(φ− φ′), we see from
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φ̂ · R̂ ~J(r) =
ηk2

6π

∫ h/2

−h/2

∫ 2π

0

(cosφ cosφ′ + sinφ sinφ′)Jφbdφ
′dz′. (5.35)

that for any eigenmode Jφ must have a sinφ or cosφ dependence. Inserting

a simple hypothesis form of Jφ = C cosφ+D sinφ into (5.35) yields

φ̂ · R̂ ~J(r) =
ηk2bh

6
(C cosφ+D sinφ) . (5.36)

Once again inserting this into result and our hypothesis for Jφ into the eigen-

value problem in (5.2) gives an eigenvector / eigenvalue pair

~J = φ̂ (C cosφ+D sinφ) (5.37)

ν =
ηk2bh

6
. (5.38)

This class of modes also resembles an electric dipole polarization in the direc-

tions perpendicular to the axis of the cylinder. The modes have φ dependence

and have eigenvalues following the same k2bh trend seen in the ẑ-directed

electric dipole modes, though with an added factor of 1/2. Thus in contrast

with planar surfaces, this cylindrical topology yields two distinct classes of

electric dipole eigenmodes, owing to the behavior of the n̂× operator in the

continuous eigenvalue problem.

We construct a divergence-free current distribution of the form

~J = φ̂p(z) (5.39)

and insert it into the alternative special form in (5.10). Here the derivation

of the associated eigenvector / eigenvalue pair follows a similar path as taken

with the study of the magnetic dipole mode on the planar disk. Though

the distance R in this case has z′-dependent components, all of those terms

vanish in the integration over φ′. The implication of this is that p(z) is

necessarily a constant, leading to the eigenvector / eigenvalue pair

~J = φ̂J0 (5.40)
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ν =
ηb3h

12
. (5.41)

This divergence-free eigenmode shares several properties with the magnetic

dipole moment mode derived for planar objects, including its loop appearance

and invariance in φ. Because the cylindrical surface exists at only one radial

coordinate but has finite height, the dependence on the relative dimensions

of S here is k4b3h as opposed to k4a4 in the planar disk case.

5.4.3 Spheres

Here S is assigned as a sphere of radius a centered at the origin. Because

both components of any tangential vector on the sphere must have coordinate

dependence (e.g., φ̂ · φ̂′ depends on r and r′), we expect that the uniform elec-

tric dipole modes seen on planar surfaces and cylinders will not be present.

We begin by hypothesizing a general form for an electric dipole mode

~J = θ̂f(θ). (5.42)

Inserting this into (5.8) with our particular choice of S yields

n̂× R̂ ~J(r) = n̂× ηk2

6π

∫ 2π

0

∫ π

0

θ̂′f(θ′)a2 sin θ′dθ′dφ′. (5.43)

Because our guess of ~J is symmetric in φ, we can place r at φ = 0 without

loss of generality. Thus the two tangential components become

φ̂ · R̂ ~J(r) =
ηk2

6π

∫ 2π

0

∫ π

0

f(θ′)a2 cos θ′ sinφ′ sin θ′dθ′dφ′ (5.44)

θ̂ · R̂ ~J(r) =
ηk2

6π

∫ 2π

0

∫ π

0

f(θ′)a2(cos θ cos θ′ cosφ′

+ sin θ′ sin θ) sin θ′dθ′dφ′. (5.45)

Working through the integrations shows that the φ̂ component is identically

zero, while the θ̂ component reduces to

θ̂ · R̂ ~J(r) =
ηk2a2

3
sin θ

∫ π

0

f(θ′) sin2 θ′dθ′. (5.46)
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Using this in (5.2) necessitates f(θ) = sin θ, giving rise to the eigenvector /

eigenvalue pair

~J = θ̂ sin θ (5.47)

ν =
4ηk2a2

9
. (5.48)

Repeating the procedure with the aim of finding a mode analogous to the

perpendicular polarization mode found on a cylinder shows that this type of

mode is not supported. Thus, the electric dipole moments of the sphere are

represented by three degenerate eigenmodes of the above form.

Deriving a divergence-free mode on the sphere again follows the same pro-

cedure as the magnetic dipole moments on the disk and cylinder. Guessing

a form

~J = φ̂f(θ) (5.49)

and using (5.10) in (5.2) with lengthy manipulations leads to the eigenvector

/ eigenmode pair

~J = φ̂ sin θ (5.50)

ν =
ηk4a4

9
. (5.51)

Hence the magnetic dipole moment mode of a sphere also follows the k4a4

eigenvalue dependence observed for the planar disk.

5.5 Comparison with numerical results

The radiation eigenvalue problem in (5.1) is simple to implement with exist-

ing method of moments code. Calculating the matrix P is the only additional

difficulty, which is simple enough to accomplish provided the basis function

data used in simulation are available. In this section we calculate the ma-

trices R and P for the objects studied in the previous section and solve the

general eigenvalue problem in (5.1). Note that the standard eigenvalue prob-

lem (omitting P) from [37] can also be solved, however those solutions will
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have mesh-dependent eigenvalues which cannot be directly compared to the

analytic forms derived in this paper. For planar objects, a rectangle of aspect

ratio ξ = {1, 2, 10} is used. The open cylinder is also simulated at these three

values of ξ. Each geometry is sized according to its circumscribing sphere

radius, a (drawn in Figure 5.3), and simulated over the range 0.1 < ka < 6.1.

The broad bandwidth is specifically chosen to examine the electrical sizes at

which the assumptions used to derive (5.8) and (5.10) break down. Each

mesh contains approximately 1500 edge elements.

  

Figure 5.3: Relevant dimensions of the rectangular plate, cylinder, and sphere
examined.

For each object, (5.2) is solved and the modes corresponding to the lowest-

order solutions derived in this chapter are selected. The eigenvalues of these

modes are compared with their derived forms and the error is quantified by

three metrics. First, the error as ka → 0 is calculated as the difference in

eigenvalues at the smallest simulated electrical size, ka = 0.1. Second, the

electrical size where the method of moments eigenvalue differs from the ana-

lytic solution by 10% and 25% are assigned to ka10 and ka25, respectively. A

sample plot of the eigenvalue of electric dipole moment of a rectangular plate

of aspect ratio ξ = 1 is shown in Figure 5.4, along with the aforementioned

error metrics. The general trends seen in Figure 5.4 hold for all of the geome-

tries examined. The error metrics for each geometry, aspect ratio, and mode

are listed in Table 5.1. For the rectangular plate, electric dipole modes along

the short and long axes of the plate are listed as x and y, respectively, while
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the magnetic dipole moment is labeled l. Similarly, the electric dipole mode

on the cylinders are labeled as z and φ, depending on the current orientation.

There the same l designation is used for the magnetic dipole modes. On the

sphere, the modes are labeled simply as electric, e, and magnetic, m.
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Figure 5.4: Eigenvalue of the x-directed uniform electric dipole mode on a
rectangular plate of aspect ratio ξ = 1. Values obtained from solving (5.1)
(solid) and the asymptotic analytic form in (5.12) (dashed) are drawn.

For all of the geometries examined, the solutions to (5.1) closely match

those derived by (5.2) for electrical sizes ka < 1. All numerical eigenvalues

are less than predicted by the analytic forms derived in this chapter using

the ka→ 0 limit. Not all modes diverge from their asymptotic derived forms

at the same pace, as shown by varying values of ka10 and ka25. Because

the rectangular plate is not the geometry used to derive the magnetic loop

mode on planar objects, this mode is labeled with a *, as we expect the

analytic solution to be potentially less well-fit. The eigenvalue for this mode

is calculated using (5.29) with b = 1/
√

2. This approximate comparison

holds well for the ξ = 1, 2 cases, but breaks down at the higher aspect ratio

ξ = 10. The mode predicted by (5.12) as a quasi-degenerate pair of electric

dipole moments associated with the short (x) and long (y) dimensions of

the rectangular plate. As low frequencies and near-unity aspect ratios, the

eigenvalues are nearly the same. At higher frequencies and at high aspect

ratios, the eigenvalues diverge.

The data in Table 5.1 show that different shapes, aspect ratios, and ra-

diation mechanisms have different persistence of their “electrically small”

behavior. By examining ka10 and ka25 values, we see that different modes
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Table 5.1: Comparison of analytic and numerical eigenvalues

Geometry ξ mode equation
error

(ka = 0.1) ka10 ka25

plate 1 x (5.12) -2.13% 0.9 1.7
y (5.12) -2.13% 0.9 1.7
l* (5.29) 1.20% 2.6 3.0

2 x (5.12) -1.53% 1.1 1.9
y (5.12) -3.67% 0.8 1.5
l* (5.29) 4.61% 2.4 2.8

10 x (5.12) -0.74% 1.3 2.2
y (5.12) -8.50% 0.4 1.3
l* (5.29) -235.00% 0.2 0.2

cylinder 1 z (5.34) -6.22% 0.5 1.0
φ (5.38) -0.39% 0.7 1.1
l (5.41) -0.42% 1.0 1.6

2 z (5.34) -4.24% 0.8 1.6
φ (5.38) -0.52% 1.0 1.6
l (5.41) -0.75% 1.4 2.3

10 z (5.34) -1.78% 2.1 3.9
φ (5.38) -1.05% 1.6 2.8
l (5.41) -1.06% 2.3 4.1

sphere 1 e (5.48) -1.02% 0.5 0.8
m (5.51) -1.57% 0.7 1.2

keep their similarity with their small-scatterer limit up to much higher fre-

quencies than others. This brings into question the validity of a single limit

(e.g., ka < 1) to define an electrically small object. For instance, from Table

5.1 we observe that a high aspect ratio (ξ = 10) cylinder radiating mainly in

the electric dipole mode with polarization along its long axis (z mode) loses

its low-frequency behavior at much higher frequency than a square (ξ = 1)

rectangular plate operating in the analogous (x) mode.

The radiation modes associated with electric dipoles on planar objects have

no dependence on the particular geometry, rather they depend only on the

total surface area A. Similarly, while a circularly symmetric geometry was

used to derive the planar loop moment, this radiation mode also shows very
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weak dependence on the specific geometry under study, as demonstrated in

Figure 5.5 (from [55]) where a rectangular plate is subjected to two kinds

of modifications. Hence for small planar objects, the lowest-order radiation

modes maintain their character regardless of particular geometry and have

eigenvalues that scale predicable with total surface area. This makes them

ideal candidates for describing the radiation properties of optimized embed-

ded antennas, where each design iteration is some small modification of the

previous iteration’s geometry [42]. This concept is used in Chapter 8 to per-

form pattern specification on a two-element null-steering embedded antenna

system.
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Figure 5.5: The magnetic dipole (electric loop) radiation mode on a solid
plate (top), the same plate with two major regions removed (middle), and
the same plate with random pixels removed (bottom).
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5.6 Conclusions

The solutions to the continuous radiation eigenvalue problem for a given sur-

face represent simple current distributions which add their powers linearly

while not enforcing any orthogonality in energy storage. As demonstrated

in this chapter, the lowest-order forms of these modes on electrically small

objects take the form of electric and magnetic dipole moments. Hence the

solutions to the radiation eigenvalue problem correspond with the low-order

multipole expansion terms native to the object under consideration. Using

data from existing method of moments code, the discrete form of the radi-

ation eigenvalue problem can be solved to obtain the discretized version of

these fundamental radiation mechanisms. Here we have introduced the scal-

ing matrix P to ensure that solutions to the discrete problem are not mesh

dependent. For objects smaller than ka = 1, the analytic solutions obtained

using small-scatterer approximations match very well with those obtained

by solving the discrete problem. At higher frequencies, the numerically cal-

culated eigenvalues diverge from the low-frequency asymptotes, though at

rates which depend on the type of mode, geometry, and aspect ratio being

examined.

A key distinction between this and other modal analyses (e.g., character-

istic modes [7, 8]) is the lack of coupling between radiation mechanisms and

energy storage. This has the effect of reducing the variability of modal cur-

rents when small changes to geometry are made. For example, the electric

dipole modes of a planar object in the small antenna limit were shown to

have no dependence on geometry, rather depending only on total area. This

suggests that, in problems where tailoring of radiation properties is desired,

that specification of design parameters in terms of radiation eigenmodes may

make for a more consistent comparison between an initial geometry and an

altered design iteration. For example, comparing the radiation modes of

a finite ground plane before and after a driven antenna element has been

added may be a more one-to-one comparison than the same analysis per-

formed with characteristic modes due to the lack of high-magnitude reactive

currents introduced near the element in characteristic modes. If both spec-

ified resonance (or otherwise specified impedance) and radiation properties

are required in a design, a hybrid design and analysis procedure making use

of the strengths of both characteristic modes and radiation eigenmodes may

70



be the logical solution.

Additionally, the derived forms for the radiation mode eigenfunctions closely

resemble those of the classic multiple moment calculations found in [56].

This connection demonstrates how the readily available method of moments

impedance matrix can be used to calculate those radiating moments in a

straightforward manner without resorting to the continuous integrals usually

used to define them.
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CHAPTER 6

A MODAL VIEW OF THE BREAKDOWN
OF XE AND XM

6.1 Overview

The loss of positive-semi-definiteness in the matrices Xe and Xm is system-

atically studied via eigenmode expansion. Simple current distributions with

positive eigenvalues are observed to transition into negative eigenvalue modes

as frequency is increased. The frequency at which negative value eigenmodes

first appear depends on the particular structure being studied. Negative

value eigenmodes are observed on structures as small as ka = 1.5 (largest di-

mension on the order of 0.4λ). Current distributions associated with negative

value eigenmodes at lower frequencies are generally simple current distribu-

tions, likely to be excited in a driven antenna.

6.2 Introduction

The matrices Xe and Xm, defined in Chapter 2, provide a simple method

for calculating the Q of arbitrary currents. Useful as they are, the loss of

a matrix property, positive-semi-definiteness, in Xe and Xm under certain

conditions inhibits their use in bounding Q on electrically larger objects. In a

physical context, a non-positive-semi-definite Xe or Xm implies that currents

must exist which produce non-physical “negative energy”. In contrast to the

energy matrices, the radiation matrix R is always positive-semi-definite; i.e.,

a current never radiates “negative power”. In this chapter, a modal approach

is taken to methodically demonstrate the breakdown of Xe and Xm in order

to better understand the limitations of these matrices in calculating stored

energy and antenna Q.
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6.3 Observations of non-positive-semi-definite energy

operators

6.3.1 Expectations of positive-semi-definiteness

A positive-semi-definite matrix has entirely non-negative eigenvalues [57].

For any positive-semi-definite matrix A,

xHAx ≥ 0, ∀x. (6.1)

Conversely, any matrix satisfying the above condition must be positive-semi-

definite. Examining the quadratics in (2.29)-(2.31) and assuming that physi-

cal quantities such as radiated power and stored energy due a causal, passive

system must be inherently positive, it follows that R, Xe, and Xm should

be always positive-semi-definite. Small errors introduced by the numeri-

cal calculation of these matrices commonly create extremely small negative

eigenvalues which can be numerically removed without substantial changes

to the matrix itself. In this chapter, these kinds of negative eigenvalues are

not considered and are assumed to be removed from the matrices before

discussion of systematic loss of positive-semi-definiteness.

In [58] it is stated that certain structures produce non-positive-semi-definite

Xe and Xm when the maximum dimension exceeds approximately λ/3. Thus

an eigenmode of one of these matrices which has a negative eigenvalue repre-

sents a current distribution which stores “negative energy”. Such a current

distribution will be discussed in this chapter as a negative energy mode. From

a physical perspective, this type of current is quite perplexing. Several ques-

tions arise:

• First, what kinds of currents are represented by negative energy modes;

are they simple or exotic, systematic or highly-variable?

• Second, what is the physical interpretation of negative energy modes?

Do they represent a true physical state or an inaccurate calculation?

• Finally, does the frequency (or electrical size) at which Xe or Xm lose

positive-semi-definiteness indicate a hard threshold up to which Q cal-

culated via (2.20) is accurate? If a current distribution produces both
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negative electric and magnetic stored energy, is there a proper inter-

pretation of negative Q or is this completely inaccurate?

In the following subsection, the second question regarding the physical ex-

planation of negative energy modes is addressed with the most recent theories

from the literature. Later in the chapter, the accuracy of Q and nature of

negative energy modes is examined by novel eigenmode analysis.

6.3.2 Explanations of negative energy current distributions

The physical interpretation of negative, time harmonic stored energies is still

a matter of debate, but it is generally believed to be an artifact of working

strictly in the steady-state frequency domain and neglecting transient effects

[59, 60, 61]. One explanation is that positive energy is required to start and

stop the steady-state currents which produce negative energy in the frequency

domain. In [60], it was shown that incorporation of these positive “setup” and

“shutdown” energies always results in net positive stored energy. In light of

this explanation, it is still important to understand when issues with positive-

semi-definiteness affect Q calculations. For example, the method for using

convex optimization to bound Q on arbitrary objects given in [58] ceases

to work when one or both energy matrices are non-positive-semi-definite.

Additionally, a current which produces negative electric and magnetic energy

would necessarily have a negative quality factor. From either a bandwidth or

time-constant interpretation, negative Q does not make physical sense. The

work in this chapter avoids discussing the physical implication of negative

energy modes, but rather investigates the occurrence and behavior of such

modes to inform the use of the energy matrix operators in calculations of Q.

6.4 Modal analysis of the loss of

positive-semi-definiteness in Xe and Xm

6.4.1 Experimental procedure

Several canonical shapes are studied over wide a wide frequency range in or-

der to determine the electrical size at which positive-semi-definiteness is lost
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in Xe and Xm. For each object, the energy storage matrices Xe and Xm are

generated at 101 logarithmically-spaced points over the range ka ∈ [0.1, 10].

The shapes selected for this study represent common antenna topologies as

well as those of finite ground planes. Each geometry and its relative dimen-

sions are shown in Figure 6.1. The eigenmodes of Xe and Xm were calculated

at each frequency point in order to obtain frequency-dependent eigenspectra

of the energy operators. Within these spectra, eigenmodes with negative

eigenvalues were identified and singled out for examination. In studying the

eigenspectra of Xe and Xm, it became apparent that both matrices display

high number of eigenmodes with nearly degenerate eigenvalues which cross

and avoid in complex ways over frequency. With this kind of data even well-

tuned eigenmode tracking algorithms, such as the one described in Section

2.4, have difficulty tracking individual eigenvalue traces over frequency. In

light of this, the eigenspectra presented in this study are given in unsorted

form. To examine a given eigenmode over frequency, manual tracking was

employed and shift-and-invert techniques [62] were used to isolate particular

eigenmodes at specific frequencies.

The objects selected for study consist of basic geometries, rather than

specific antenna types. The details of the strip dipole and elliptical ring are

elaborated on in the following section. The plate and perturbed plate are

chosen to examine the effect of small structural changes on energy storage

matrix behavior. Similarly, a cube is chosen to highlight the effect of higher

dimensionality on the appearance of negative energy modes.

6.4.2 Results

The eigenspectra of Xe and Xm for each geometry are presented and negative

energy modes are identified. The simplest geometry is that of the strip dipole,

the eigenspectra of which is shown in Figure 6.2. The strip a rectangle with a

length / width ratio of 1000. The spectrum of Xe is simple in nature, with all

modes showing generally decreasing eigenvalues with increasing frequency.

Two modes, labeled Modes 1 and 2 in Figure 6.2 become negative energy

modes within the studied frequency range. All eigenmodes of the magnetic

energy storage matrix generally show increasing eigenvalues with increasing

frequency and no negative energy modes are observed.
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Figure 6.1: Geometries studied in this chapter. Top row, left to right: strip
dipole, elliptical loop, and cube. Bottom row, left to right: rectangular plate
and perturbed rectangular plate.

To examine the nature of the negative energy modes on this structure the

modal currents of Modes 1 and 2 (as identified in Figure 6.2) are plotted

near their zero-crossings in Figure 6.3. Neither modal current distribution

changes significantly with frequency as its eigenvalue crosses zero. The two

modes are the first- and second-order dipole-like current distributions over

the length of the dipole. Mode 1, the first-order dipole mode, has a zero

crossing near ka = 4.4, or equivalently l = 1.4λ. The second-order mode

crosses near ka = 8.2 or l = 2.6λ. From these data it’s clear that negative

energy modes can be basic current distributions which do not necessarily

undergo significant changes as they transition to storing “negative energy”.

A loop is examined to continue study of canonical radiating structures. To

avoid degeneracies among axially-symmetric eigenmodes, a slight eccentricity

is applied such that the loop is actually elliptical. The major and minor axes

are a = 1 and b = 0.9, respectively. Both sets of energy storage eigenmodes

of the ellipse are shown in Figure 6.4. In this example, the eigenspectra of

Xe shares some features with that of the strip dipole. Most modes appear to
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Figure 6.2: Eigenspectra of the energy storage matrices Xe (top) and Xm

(bottom) for a strip dipole.

have decreasing eigenvalues with increasing frequency, and several of these

transition to negative energy modes within the studied spectrum. In addition

to these, there are also many eigenmodes with eigenvalues which oscillate

around zero as functions of frequency. One mode sharing similar eigenvalue

characteristics with those previously seen is labeled Mode 2 on Figure 6.4.

The zero-crossing of this mode’s eigenvalue occurs at ka = 3.26, or a = 0.52λ.

Additionally, the first observed mode with an oscillating eigenvalue is labeled

as Mode 2. The first zero-crossing of Mode 1 is at ka = 1.4, or a = 0.23λ.

The current distributions of both modes are plotted near their zero-crossings

in Figure 6.5.

The dipole moment represented by Mode 2 changes little through its zero

crossing. Mode 1 is a uniform loop moment which changes minimally through

its first zero-crossing. Slight irregularity is apparent in the current distribu-

tion of Mode 2 after its zero crossing, but this is likely due to coupling effects

with Mode 1 near their eigenvalue crossing avoidance [35].
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Figure 6.3: Negative energy modal current distributions of a strip dipole near
their eigenvalue zero crossings, as labeled in Figure 6.2.

Unlike the strip dipole, whose magnetic energy matrix stays positive-semi-

definite throughout the studied frequency range, the matrix Xm of the ellipse

admits negative energy modes at higher frequencies. One such mode is la-

beled as Mode 3 on Figure 6.4. The modal current distributions associated

with Mode 3 near its zero crossing, as shown in Figure 6.5, shows that this

particular negative energy mode has two features which makes it unlikely to

be encountered in physical radiating currents on this structure. First, the

currents of Mode 3 have extremely high spatial variation, with several sign

changes around the perimeter of the ellipse. Second, the currents are ori-

ented radially along the width of the ellipse, suggesting that this mode could

only be excited by excitation normal to that typically used to feed such a

ring. Other negative energy modes appearing in Xm at high frequencies share

these features.

The other geometries previously shown in Figure 6.1, are also studied in

this manner. The results from the dipole and ellipse represent the consistent
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Figure 6.4: Eigenspectra of the energy storage matrices Xe (top) and Xm

(bottom) for an elliptical ring.

features seen in all examples. In most of the examples, the electric energy

storage matrix loses positive-semi-definiteness at lower frequencies than the

electric energy storage matrix. The only exception to this is the three dimen-

sional box model. The frequency at which the first negative energy mode in

each matrix appears is reported for each geometry in Table 6.1. Negative

energy modes from both matrices resemble simple dipole- and loop-type cur-

rents which change little through their transition from positive to negative

energy storage. For objects which support loop-type currents, uniform cir-

culating current modes represent the first negative energy mode appearing

in either energy storage matrix. The geometry of the object under study

plays a large role in when negative energy modes occur, though the small

differences in the plate and perturbed plate analyses show that the general

structure of an object, not its fine details, determine the frequency at which

the energy storage matrices lose positive-semi-definiteness.
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Figure 6.5: Negative energy modal current distributions of an elliptical ring
near their eigenvalue zero crossings, as labeled in Figure 6.4.

6.4.3 Characteristic modes as negative energy modes

In Section 6.4.2, current distributions which yield negative stored energies

were isolated by eigenmode expansions in energy storage matrices. To fur-

ther test the idea that simple, easily realizable currents, the negative energy

properties of characteristic modes (see Section 4.3.3 for formulation) are ex-

amined. Data in [35] suggests that the characteristic modes of a strip dipole

produce negative energy above their resonant frequencies. Similar data is

presented here using the shapes studied in this chapter. The stored electric

and magnetic energies of the ith characteristic mode are

2ωW̄ i
e = JTi XeJi (6.2)

and

2ωW̄ i
m = JTi XmJi. (6.3)

The spectral properties of the characteristic mode problem are much more

conducive to broadband frequency tracking than the energy storage modes.
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Table 6.1: Summary of first negative energy modes on several objects

Geometry First Xe NEM First Xm NEM
ka (2a/λ) ka (2a/λ)

Strip dipole 4.40 (1.40) n/a
Elliptical loop 1.40 (0.44) n/a
Plate 1.84 (0.56) 2.90 (0.92)
Perturbed plate 1.84 (0.56) 3.08 (0.98)
Box 1.45 (0.46) 1.30 (0.41)

Because of this, the characteristic modes’ energies can be plotted easily as

functions of frequency. Figure 6.6 shows the modal energies of the first sev-

eral characteristic modes of the strip dipole studied earlier in the chapter.

Negative energies in characteristic modes can only occur when the energy

storage matrices are non-positive-semidefinite. Comparing Figure 6.6 with

the energy storage eigenspectra in Figure 6.2, it appears that the characteris-

tic modes of this simple system become negative energy current distributions

as soon as negative energy modes are present. Because Xm does not sup-

port negative energy modes on this structure, characteristic modes with both

negative electric and negative magnetic energies do not exist. This means

that no characteristic modes within this frequency range would broach the

difficult result of negative Q, which as stated before is difficult to interpret

in either a bandwidth or time-constant perspective.

A contrasting case exists for the rectangular plate. Table 6.1 shows that

both energy matrices lose positive-semi-definiteness on this geometry. Exam-

ination of the characteristic modal energies in Figure 6.7 shows that indeed

there exist characteristic modes which produce both negative electric and

magnetic energies. The negative Q modes here are three dipole moments

(Modes 1, 2, and 4) and a loop moment (Mode 3). Because characteristic

modes are commonly thought of as an approachable, realizable set of current

distributions supported on an object, the presence of negative Q characteris-

tic modes is even more concerning than the loss of positive-semi-definiteness

of the energy storage operators. Reporting ofQ values of a similar strip dipole

in [34] using several methods suggests that the energy storage approach to

Q calculations may be accurate even when one energy storage matrix is non-

positive-semi-definite. These calculations have been validated using the code

used in this dissertation as well. However, in that paper, no negative Q val-
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Figure 6.6: Individual stored electric (top) and magnetic (bottom) energies
of the three lowest-order characteristic modes of the previously studied strip
dipole. The vertical red dashed line indicates where the associated energy
storage matrix loses positive-semi-definiteness.

ues are reported. It should be noted that, as discussed in [34, 35, 63], the

orthogonality conditions imposed on characteristic modes do not imply linear

addition of individual stored energies. While these non-linear effects are gen-

erally small compared to individual modal energies, the net energy storage

determining Q of a total current may not be perfectly represented by the Q

properties of its constituent characteristic modes. Study of large plate-like

objects in Chapter 7 shows that, for high Q systems, the presence of negative

Q modes may not be detrimental to the calculation of total system Q.

6.5 Conclusions

The purpose of the study in this chapter was to add further specification to

the nature of the eigenvalue components responsible for the loss of positive-

semi-definiteness in the energy storage matrices Xe and Xm. The loss of

positive-semi-definiteness was previously understood in two regards: first, it

represents an interesting physical scenario that indicates a lack of complete-

ness in frequency-domain calculations; second it clouds the applicability of

the energy storage matrices to the calculation and bounding of Q. In terms of
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Figure 6.7: Individual stored electric (top) and magnetic (bottom) energies
of the three lowest-order characteristic modes of the previously studied rect-
angular plate. The vertical red dashed line indicates where the associated
energy storage matrix loses positive-semi-definiteness.

the first point, this study adds little to the physical understanding of negative

energy modes and what they represent. To understand the balance of tran-

sient and steady state calculations of energies, certainly more research along

the line of [59, 60] and [34, 64] is required. On the second point, the existing

knowledge, summarized in [14], was that objects larger than λ/3 should be

avoided when using this method for the calculation and bounding of Q, with

the added note that loops were observed to lose positive-semi-definiteness, a

fact first exposed in [31].

The results from this chapter indicate that the frequency (or electrical

size) at which an object loses positive semi-definiteness is dependent on the

shape of the object under test. Indeed, of the objects studied the loop-type

structure shows one of the earliest appearances of negative energy modes,

corroborating the analytic work in [31]. Small perturbations to geometry ap-

pear to have minimal effect on negative energy modes, rather it is the overall

shape and dimensional support which dictates their appearance. The data

also indicate that many simple radiating current distributions become nega-

tive energy modes at high frequencies. In fact, all of the first appearing neg-

ative energy modes (i.e., the first causes of loss of positive-semi-definiteness)

83



are such simple mechanisms. This provides the insight that negative energy

modes (and whatever their interpretation is in a complete physical picture)

arise not from exotic current distributions, but rather from currents of a

type frequently encountered in antenna systems. This notion is further rein-

forced by the observation that characteristic modes themselves may become

negative energy modes. The uncovering of these new aspects of negative en-

ergy modes were largely enabled by the energy storage eigenvalue expansion

utilized in this chapter.

Using optimization methods to bound Q using the energy storage matrices

clearly breaks down when positive-semi-definiteness is lost, as currents with

zero or negative energy storage can be readily synthesized. However, this

says nothing of the actual accuracy of Q as calculated by these means when

negative energy modes are present. In fact, several sources in the literature

(e.g., [34]) report accurate Q calculations using the energy storage matrix

method on electrically large objects. The comparative accuracy of Q on

larger objects is discussed further in Chapter 7.
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CHAPTER 7

CONVERGENCE OF PHYSICAL
RADIATION MECHANISMS WITH

RESPECT TO GROUND PLANE SIZE

7.1 Overview

The effects of ground plane size are studied in the context of Q and radiation

mode expansion. Using the results from this study, saturation of Q is associ-

ated with the transition from single-mode radiation to multi-mode radiation.

Thus the size of the finite ground plane only affects the potential bandwidth

of the entire antenna system when it itself supports the low-order radiation

mode moments over most of its surface. Using square ground planes of varied

sizes and a variety of antenna elements with fixed maximum dimensions on

the order of λ/5, this transition in radiation mechanisms was observed to

occur as ground plane side length approached λ/2.

7.2 Introduction

Though many analysis problems in antenna theory begin with an assumed in-

finite ground plane, in practice all ground planes are of finite size. The effects

of this truncation are small in some cases, e.g., when the finite ground plane

is large enough compared to both the operating wavelength and the antenna

element. In other cases, the effects are drastic; particularly when the ground

plane (or generally, ground structure) is reduced to the order of a wavelength

and when the driven antenna is electrically-small. In this scenario, radiation

patterns tend to be highly dependent on the relative positioning of the an-

tenna element with respect to the ground plane [5]. Similarly, the size of

a finite ground plane plays a key role in the antenna’s matched impedance

[54] and bandwidth [65, 66, 53]. For these reasons, when an electrically-small

antenna is mounted to a finite ground structure it is colloquially said that

85



the ground plane is a radiating part of the antenna. When discussing these

kinds of systems in terms of Q or electrical size, it is understood that the

electrical size needs to encompass part or all of the ground plane to give an

accurate prediction of system performance informed by size-based metrics,

e.g, those in [20]. This inclusion makes sense for systems which have small

ground planes: the larger the ground plane, the larger the effective electri-

cal size. However, in the case of an ever-increasing ground plane size, we

expect the effective electrical size of the system to converge to that of the

electrically-small driven antenna element. This expected behavior is drawn

schematically in Figure 7.1 where ka, kb, and kc are the electrical-size of the

antenna element, ground plane, and total system, respectively.

Figure 7.1: Schematic of proposed behavior of “effective electrical size” kc as
a function of ground plane size kb (solid). Also drawn are the ground plane
size kb and antenna element size ka (labeled, dashed). Points 1, 2, and 3
are accompanied by sketches of the antenna / ground plane system and its
effective circumscribing circle of radius kc (dashed circle).

We propose three key regions to be identified in Figure 7.1. Near point 1,

the ground plane size kb is on the order of the electrical size of the antenna

element ka. We expect from a radiation point of view that the ground plane

size should be taken into account to the effective system size kc, i.e., as the

ground plane size kb grows, the system size kc grows also. At a certain point

this trend should end, as in the infinite ground plane limit (kb → ∞) the

system size kc must converge to a size on the order of the antenna element
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ka. We denote this transition region by point 2 while point 3 represents

convergence to the infinite ground plane limit. The hypothesized trends in

Figure 7.1.

In this chapter, several measures are examined as functions of ground plane

size for small antenna systems. These measures include input impedance, Q,

and the modal analyses introduced in previous chapters. Through these stud-

ies, the hypothesized model in Figure 7.1 is tested and operating regions (in

terms of ground plane size) are classified. The framework of the experments

in this chapter originally appeared in [67].

7.3 Design examples

In all of the following examples, a small antenna structure is near or attached

to a square ground plane of side-length L. The orientation, placement, and

design of the examples studied here were chosen to represent both canonical

radiating systems (e.g., a dipole current over a conducting plane) as well

as practical antenna designs (e.g., an edge-mounted planar monopole). For

the purposes of drawing general conclusions regarding the physical effects

associated with ground plane size, emphasis is placed on studying many

different antenna configurations and topologies as opposed to the detailed

parametric treatment of one particular design.

7.3.1 Canonical systems

A slot within an infinite ground plane and a small electric dipole above an

infinite ground plane are examples of simple radiating systems whose nature

is most commonly analyzed using equivalence principle techniques. In the

case of the slot, the problem is typically converted to one of an equivalent

radiating magnetic current using the equivalence principle on the infinite

ground plane. For the radiating current above a ground, the infinite con-

ducting plane is typically removed and replaced with an equivalent image

current. In these examples, convergence to the asymptotic infinite ground

plane scenario is studied as the finite ground plane size is varied. Both the

slot and dipole are assigned lengths of l = λ/5 and widths w = λ/55. The

dipole is center-fed using a delta-gap source while the slot is fed using a cen-
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trally located pin of width wf = λ/100. The dipole is oriented parallel to

and at height h = λ/15 above the ground plane. Both examples are drawn

schematically in Figures 7.2 and 7.3.

Figure 7.2: Schematic of slot antenna in a square finite ground plane of
dimension L. The slot has length l, width w and is fed by a centrally located
feed pin of width wf .

Figure 7.3: Schematic of dipole antenna above a square finite ground plane
of dimension L. The dipole has length l, width w and is fed by a centrally
located delta-gap source.

7.3.2 Edge-mounted antennas

In mobile devices, antennas are frequently mounted on or near the edge

of the conducting chassis acting as a ground plane [4]. In contrast to the
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previously discussed examples, intuitive forms for the asymptotic behavior

with respect to ground plane size are not, in general, available for edge-

mounted topologies. The examples of edge-mounted antennas studied in

this chapter can be classified by the following features: placement along the

ground plane edge and dimensionality. Several of the examples studied have

feeds located at the center of a ground plane edge. Thus as the ground

plane becomes larger, it extends away from the antenna feed point evenly in

three directions leading to a quasi-infinite half-plane. In contrast, antennas

mounted on the corner of a ground plane experience ground plane growth

in only two directions, giving rise to a quasi-infinite quarter plane. These

configurations are drawn schematically in Figure 7.4. The dimensionality

of particular examples refers to whether the designs are exist entirely in

the same plane as the ground plane or whether they extend into the third

dimension.

Figure 7.4: Schematic of center (left) and corner (right) locations for edge-
mounted antennas on a square ground plane of side-length L.

All of the edge-mounted antennas studied here are variations of a monopole.

Three straight monopoles are shown in the top row of Figure 7.5 in pla-

nar, corner-planar, and folded configurations. Three bent monopoles, or

L-monopoles are also studied as shown in the bottom row of Figure 7.5 in

planar, vertical, and folded configurations. In all of these designs, the an-

tenna has a total length λ/5 and is fed at its junction with the ground plane

by a delta-gap source. In both folded models, the antenna has a height λ/40

over the ground plane.
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Figure 7.5: Geometries of the six edge-mounted antennas studied. All anten-
nas are displayed on 0.5λ square ground planes. Top row left to right: planar
monopole, corner planar monopole, folded monopole (top and side views).
Bottom row left to right: planar L, vertical L, folded L. All antennas have
dimension on the order of λ/5. Folded models have height λ/40 above the
ground plane.

7.4 Input impedance convergence

The input impedance, Zin, is a logical first step in analyzing antenna perfor-

mance as a function of ground plane size. Figures 7.6 and 7.7 show the input

resistance, Rin, and input reactance, Xin, of each antenna design as it varies

with ground plane size L.

All antenna models’ input resistances, Rin, converge or show signs of con-

verging by L/λ = 2. Trends in Rin increasing or decreasing with L in the

small L limit are not consistent. Models with the same feed location (e.g.

planar monopole and folded monopole) share many similarities in the shape

of Rin as a function of L/λ, though the relative scales are very different.

With the exception of the slot antenna, all input reactances, Xin are nega-

tive (overall capacitor-like behavior) and become more positive with increas-

ing L/λ. Unlike the input resistances, very few similarities can be observed
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Figure 7.6: Input resistance, Rin, of each antenna type as a function of
ground plane size L. All x-axes are L/λ.

between models’ input reactances. Examining the input impedances in this

way gives clues as to the general convergence behavior of the system as a

function of ground plane size. It appears that the convergence behavior of

input resistance depends heavily on feed location, while input reactance is

dependent on the specifics of the model being examined. Both real and imag-

inary components of the input impedance appear to begin convergence (i.e.,

oscillating about some asymptotic value) between L/λ = 0.5 and L/λ = 0.75.

While Xin represents the net energy storage difference as seen by the feed, it

gives no information as to the individual electric and magnetic stored energies

without multi-frequency sampling. Similarly, the input resistance converges,
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Figure 7.7: Input reactance, Xin, of each antenna type as a function of ground
plane size L. All x-axes are L/λ.

but examination of that alone doesn’t elucidate the roles that the ground

plane and driven antenna element play in manifesting radiation.

7.5 Q convergence

To investigate the role of the ground plane in “adding electrical size” to the

small antenna element, the quality factor Q is calculated for each model as

a function of L/λ. As studied in previous chapters, the accuracy of Q as

calculated by the matrices Xe and Xm may be compromised as the object
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under study becomes electrically large. Interestingly, in the limit of an infinite

ground plane, two of the antennas (the dipole and slot) should converge to

effective electrical sizes on the order of λ/5. In the case of the dipole, the

infinite ground plane system can be substituted for one containing the dipole

and its image. For the slot, the infinite ground plane system can be replaced

by a magnetic radiator with dimensions equal to those of the slot. Hence

the study of these two examples will not only aid in the testing of the trends

proposed in Figure 7.1, but also will examine the behavior of the energy

storage matrices for electrically large objects with small effective electrical

size.

Two other quality factor calculations are use as baseline comparisons for

the accuracy of Q as calculated by Xe and Xm. The first, commonly denoted

QZ in the literature, is calculated using the input impedance differentiated

with respect to frequency. Derived in [26], this derivative method is given by

QZ =
ω

2Rin

∣∣∣∣∂Zin∂ω

∣∣∣∣ . (7.1)

In [26], several conditions are listed as necessary for the accuracy of QZ ;

though throughout the authors’ several antenna examples no exceptions to

these conditions are found. As discussed in Chapter 2, the practical im-

portance of Q is its functional relation to tuned impedance bandwidth. In

general, this functional relation can be quite complex [21], though for suffi-

ciently narrowband systems, the inverse relation Q ∼ 1/FBW approximates

the relationship well. Here fractional bandwidth, FBW , about a center fre-

quency ω0 is defined as

FBW =
ω+ − ω−

ω0

, (7.2)

where ω+ and ω− are the upper and lower band edges, respectively, for a

given impedance mismatch. Defining the maximum tolerable VSWR as s,

the quality factor of a narrowband system is given by [26],

QB =
2
√
β

FBW
,
√
β =

s− 1

2
√
s
. (7.3)

Both QB and QZ assume relatively narrowband signals, i.e., FBW < 1. The

quality factor, as calculated by the energy matrices and the two aforemen-

tioned methods, is shown in Figure 7.8 as a function of ground plane size.
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The bandwidth-based calculation QB, is very computationally expensive to

compute and is only shown at two points for the planar monopole, vertical L,

and corner planar monopole models. In calculating QB, a maximum VSWR

of s = 1.5 (
√
β = 0.2041) was selected following the convention described in

[26].

For high values of Q (> 20), all methods agree very well. For values lower

than this, the energy matrix method consistently over-estimates Q, while

QZ an QB stay in agreement except in cases of extremely low Q, when the

narrowband assumptions break down. With the exception of the dipole and

folded monopole, all example antenna systems have consistent ∂Q/∂L < 0 in

the low L/λ limit. This indicates that, in this regime, adding more material

to the system increases radiated power faster than stored energies. This

behavior ends for most models near L/λ = 0.4. With the exception of the

slot and dipole models, Q remains in the vicinity of its minima reached at

L/λ = 0.4 for increasing L/λ. This suggests that, for antennas of this size,

the ground plane contributions to radiation and energy storage saturate once

L > 0.4λ. It appears that the ground plane stops increasing the effective

electrical size of the antenna system past this point. Ideally, bounds on Q as

a function of ground plane size with fixed antenna volume could be used to

corroborate this statement. However, as demonstrated here and in Chapter

6, the current state-of-the-art technique for bounding Q using the energy

storage matrices breaks down due to the loss of positive-semi-definiteness in

the energy storage matrices for structures larger than λ/3. Although Q can

be calculated for currents on large structures, Q bounds can’t be calculated

for antenna volumes greater than this size using these kinds of techniques.

The asymptotic forms of the slot and dipole models can be made electri-

cally small using equivalence principles. Interestingly, these two models show

very different behavior of Q with respect to ground plane size, particularly

in the small ground plane limit. The dipole is a much higher-Q system and

shows increasing Q for small ground plane sizes, suggesting that the domi-

nant radiation mechanism on this particular model carries with it high energy

storage properties. On the other hand, the Q of the slot is lowered with in-

creasing ground plane size in the small ground plane limit, indicating that

the dominant radiation mechanism (i.e., the dipole moment of the ground

plane) is able to radiate more per stored unit of energy as more material is

added to the ground plane in this regime. Both models show convergence
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toward the asymptotic infinite ground plane Q as L approaches 2λ.
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Figure 7.8: Radiation Q of each antenna type as a function of ground plane
size L. All x-axes are L/λ.

7.6 Radiation mode convergence

Using the radiation mode eigenvalue problem

RJi = νiPJi, (7.4)

the total radiated power by a driven current distribution can be broken into

modal contributions. By examining the (usually very sparse) set of modes
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which contribute to radiated power, the radiating component of the driven

current can be separated from the non-radiating component. The details

of this procedure were previously described in Chapter 4. For each model,

the modal radiated powers were calculated using this method. Because the

physical geometry of each model changes as a function of L/λ, comparing in-

dividual radiation modes over this parameter is very difficult. In light of this,

the modal radiated powers are presented in Figure 7.9 without association

across L/λ. In Figure 7.9, each driven current was normalized to radiate unit

power. Each dot represents the fractional power radiated by a given mode

within the driven current distribution.

All of the models studied share several distinguishing features in their

modal power spectra. In the small L/λ limit, one or two radiation modes

account for nearly all of the radiated power. These modes gradually lose

dominance as the ground plane size is increased. For most of the models

studied here, this event occurs in the vicinity of L/λ = 0.5. In the corner-

mounted models, two radiation modes are present in the extreme low L/λ

limit. These are the two degenerate dipole modes acting as one diagonal

dipole moment across the ground plane. Comparing the single-mode behav-

ior with the Q in Figure 7.8, we see that the initial lowering (or raising, in the

case of the dipole and folded monopole) of Q in the small L/λ limit appears

to end as more radiation modes come into play, i.e., Q follows a monotonic

trend while only one radiation mode represents most of the radiated power.

In each model, the number of radiation modes continues to increase after

one mode loses dominance, suggesting more complex and localized radiation

mechanisms at at work. As more modes contribute to radiation, the state-

ment that the ground plane is the dominant source of radiation becomes

invalidated. With many modes present, the total radiating current begins

to more closely resemble the driven current localized to the driven antenna

element.

7.7 Summary and discussion

Though the actual lower bound on Q is not calculated, the above study of Q

as a function of ground plane size demonstrates the consistency of a cutoff

where adding more volume to the antenna ceases to improve bandwidth.
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Figure 7.9: Radiation modal powers of each antenna type as a function of
ground plane size L. All x-axes are L/λ.

This addresses the notion that electrically small elements on finite ground

planes have effective electrical sizes encompassing some or all of the finite

ground plane. Taking Q as a proxy for electrical size, this study shows that

ground plane contributions to lowering bandwidth typically saturate between

L/λ = 0.4 and L/λ = 0.6. These numbers may be specific to the square

ground plane and base electrical size of the elements used here and further

studies with general rectangular ground planes and varying sizes of antenna

elements may return slightly different ranges.

The physical mechanism causing this saturation is clearly elucidated by

the study of the modal radiated powers. In many of the examples studied,

the saturation of Q with ground plane size correlates strongly with the loss
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of single radiation mode behavior, suggesting that further increasing the

ground plane size past this saturation point does not continue to increase

the effective area of the simple radiating sources. Rather, the high number

of radiation modes appearing after the saturation point represent the more

complex modal currents required to synthesize the radiating current which is

more and more localized (in comparison to the increasing scale of the ground

plane) to the region near the driven antenna element. Thus, the ground plane

only acts to directly modify the Q of the antenna system when the low-order

radiation modes are being excited over the full support of the ground plane,

i.e., when the ground plane effectively radiates like a simple dipole moment.

In many instances, the ground plane size or shape are not parameters

which can be influenced by the antenna designer. Rather, a ground plane

or conducting chassis is assigned to a device onto which an antenna must

be mounted within an allocated design volume. Though the data from the

Q and radiation mode analyses will change based on the specific antenna

and ground plane geometries at hand, the data from this chapter can be

used to develop a priori intuitions as to the physical mechanisms governing

radiation and bandwidth for a given embedded antenna design template.

For example, a small corner mounted planar L antenna on a cell-phone sized

device will have a ground plane (in the form of the conducting phone chassis)

of approximately 0.3λ× 0.2λ at 850 MHz. From the data in Figures 7.8 and

7.9, it is apparent that we can expect the dipole moment of the ground plane

to be the dominant source of radiation and that the bandwidth of the system

will depend heavily on both the antenna element and the given ground plane

size. In a different scenario, the same antenna may be placed on a tablet

sized device and tuned for operation near 2.45 GHz. In this setup, the ground

plane on the order of 2λ. Again, referring to Figures 7.8 and 7.9 we would

expect that the localized currents on and around the antenna element will

be the primary effective radiators and determinants of bandwidth. In this

way, the study in this chapter provides guidelines for physical mechanisms

governing embedded antenna systems which may inform both their design

and specification expectations.

98



CHAPTER 8

BEAMFORMING USING THE RADIATION
MODES OF FINITE GROUND PLANES

8.1 Overview

Radiation modes are used as a basis for determining the optimum current

for a pattern-specification problem. Using this technique and leveraging

the invariance of radiation modes with respect to geometry perturbations, a

straightforward parametric study is used to design a two-element null steering

array mounted on a 0.3λ× 0.18λ rectangular plate.

8.2 Pattern specification methods

An pattern specification problem is one in which an antenna is designed such

that its realized power pattern, |fγ|2 best approximates some desired power

pattern |gγ|2. Throughout this chapter, the superscript γ denotes a particular

choice of polarization. Many metrics can be constructed to quantify the

relative error between the realized and specified patterns. One simple metric

is a weighted squared-error integration over the farfield sphere, i.e.,

ε =

∫
Ω

(|fγ|2 − |gγ|2)wdΩ, (8.1)

where Ω denotes the farfield sphere and w is a weighting function. In (8.1),

f is the field radiated by the designed antenna. Abstractly, a pattern-

specification design procedure should be an ordered set of steps laid out

to minimize ε within some constraints. There are many existing approaches

to this type of problem, each with strengths and weaknesses. Two such meth-

ods are discussed here, along with proposed modifications for the use of the

radiation mode set developed in previous chapters.
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8.2.1 Array perspective

Consider an array designed with N elements, each with active element field

patterns fγn and driven with an excitation coefficient βn. Assuming the array

design itself is fixed, the set of excitation coefficients β which minimizes the

design error term ε can be obtained by solving the optimization problem

β̃ = arg min
β

∫
Ω

(|
N∑
n

βnf
γ
n |2 − |gγ|2)wdΩ. (8.2)

In this problem, there are 2N unknowns in the real and imaginary compo-

nents of β. Assuming a global solution to the above problem is found, the

design procedure is finished. If the solution has insufficiently low design error

(i.e., the designed array pattern does not sufficiently match the specified pat-

tern), then some changes must be made to the physical design of the array

in order to alter the active element patterns fγn . From this approach, little

insight is gained by the solution of the above problem which could inform

which design modifications would enable or inhibit improvement of the design

error. This detriment is offset by the simple nature of the above optimization

problem and its relatively low number of unknowns.

8.2.2 Full current optimization

As discussed in previous chapters, the mapping between a current and its

radiated field is linear. Denoting the map from a current onto its farfield

pattern in a given polarization as F̂ γ, the current which best approximates

the specified pattern is given by the optimization

J̃ = arg min
~J

∫
Ω

(|F̂ γ ~J |2 − |gγ|2)wdΩ. (8.3)

Assuming some surface is specified as the support of the current, ~J , the

discrete method of moments notation for this problem is

J̃ = arg min
J

M∑
m

(|FγJ|2m − |gγ|2m)wm, (8.4)

where Fγ is the matrix mapping a current to its farfield pattern at M sam-

pling locations. In the above expressions g and w are also assumed to be
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sampled at those same locations, denoted by the subscript m. Written in

this way, the above problem closely resembles the class of problems studied

in [13], where bounds on certain antenna parameters were studied in terms

of the structure on which current was allowed to exist. There however, vari-

ants of the above current optimization were used such that the problem was

tightly constrained by energy storage and pattern specification was limited

to single directions and polarizations. These modifications have the advan-

tage of linearizing the power pattern fitting cost, but come at the expense of

limited applicability to multi-angle pattern specification. As written above,

the design error function is unbounded in the sense that the current deemed

optimum could be arbitrarily complex within the K basis functions used to

express J. This high number of unknowns (2K) as well as the lack of any

guarantee that the optimum J would be physically realizable makes this form

of the pattern specification problem very ill-posed. However, a redeeming

quality of this approach is that the optimization is done in terms of physi-

cal currents, which could conceivably inform the iterative design alterations

required to realize those currents on an antenna.

8.2.3 Sparse modal current representations

The array approach to pattern specification is well constrained and has a

small number of unknowns. However, the lack of feedback or useful insight

from the optimization of excitation coefficients makes it weak when the array

itself (elements, spacings, etc.) need to be designed from scratch. In contrast,

the full current optimization technique returns currents on a predetermined

surface which a designer may then try to match to the driven currents on

a physical antenna through informed design iterations. The main disadvan-

tage of the full current optimization technique is its lack of constraints and

arbitrarily high number of unknowns.

Using a modal current model, the advantages of both methods are lever-

aged. Starting with the full current optimization method, the number of

unknowns can be reduced by restricting the current J to a linear combina-

tion of a set of P predefined modal currents, i.e.,

J =
P∑
p

αpJp = Φα, (8.5)
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where Φ is a matrix containing the P modal currents Jp as columns and α

is a vector containing the complex modal excitations αp. Inserting this form

of J into the full current optimization problem yields

α̃ = arg min
α

M∑
m

(|FγΦα|2m − |gγ|2m)wm. (8.6)

With this modification the problem is still one of optimizing a current but

with added constraints on which types of currents can be used. The advan-

tage of this is twofold. First, the number of unknowns can be greatly reduced,

forcing the system to look more like that of the array coefficient optimization

method. Second, the complexity of the current synthesized can be directly

controlled by choice of the modal basis {Jp}. By choosing a modal basis

consisting of well-behaved, potentially realizable currents, the designer can

automatically exclude optimized current distributions which, though they

may generate very low pattern match error, are completely unattainable.

8.3 Selection of modal basis

To use the modal basis form of the pattern matching optimization problem,

a set of basis currents must be chosen. Previously these were referred to as

modal currents, though in reality the basis need not be constructed of any

truly modal quantities. In order to best take advantage of the modal form of

the pattern matching problem, the basis set should be chosen such that the

basis currents do the following:

• Represent unique radiation characteristics. Full pattern orthogonality

is not necessary, but it does ensure linear addition of powers radiated

by the individual currents.

• Can constrain the complexity of the total optimized currents. Ideally

the basis would be chosen such that the number of modes used, P ,

has direct control over the complexity of the optimized currents, e.g.,

raising P allows for more complex solutions.

• Change little with perturbations to the starting surface. In practice,

antennas are modified through each design iteration, effectively per-

turbing the surface over which the current optimization is performed.

102



Ideally, the modal basis would change little through each of these per-

turbations.

Two candidate basis sets studied here are characteristic modes and radi-

ation modes. Other modal sets, such as Inagaki modes [68, 69] may also

be used but their discussion is omitted here. Both sets are generated by

eigenvalue problems governed by the surface on which current is allowed to

exist, i.e., a conducting design. Within each eigenvalue problem, both sets

of modes have the property

Ji
TRJj = δij, (8.7)

meaning that the powers radiated by each mode add linearly. By this prop-

erty, it follows that the modal farfields must be orthogonal as well, i.e.,

(FγJ)Ti FγJj ≈ δij, ∀γ. (8.8)

The approximation in the above expression becomes exact as the number of

sampling points in the farfield matrix Fγ becomes infinite. Thus, both char-

acteristic modes and radiation modes satisfy the condition of having unique

radiation patterns. Similarly, it is well known (e.g., [9, 70]) that characteristic

modes typically form a sparsely-excited set and represent relatively simple

current distributions. In the previous chapters, this was also shown to be

true of radiation modes. The key distinction between the two modal sets is

the inclusion or omission of energy storage properties. Characteristic modes

include the matrix operator related to net reactive energy, X, while the radi-

ation mode problem does not. The inclusion of X in the characteristic mode

eigenvalue problem gives rise to several important features of that expansion

technique, such as the convenient forms of modal impedances and excitation

coefficients. However, this inclusion also ties the solutions of the character-

istic mode problem to the highly-geometry dependent mechanisms of energy

storage. This leads to characteristic modal currents changing drastically with

small perturbations to the surface being studied. In Chapter 4, it was shown

that radiation modal currents and eigenvalues have very weak dependence

on the fine-scale features of an object, depending mainly on the total sup-

port or surface area. This difference in geometry sensitivity is demonstrated

in Figure 8.1, where a characteristic mode and radiation mode are shown

103



for a rectangular plate before and after the addition of a small geometrical

perturbation. The radiation mode is largely unchanged by the perturbation

whereas the characteristic mode is significantly altered in the region near the

change in geometry.

  
(d) (e) (f)

(c)(b)(a)(a)
x

y

Figure 8.1: Mesh (left), example radiation mode (middle), and example char-
acteristic mode (right) of a 0.3λ×0.18λ rectangular plate with (bottom row)
and without (top row) a small perturbation.

With these considerations of the conditions outlined above, radiation modes

seem best fit for the pattern specification optimization problem. If, in ad-

dition to pattern specification, impedance or resonance properties were also

required, then a hybrid technique involving both characteristic modes and

radiation modes may be necessary.

8.4 Solving the modal pattern specification

optimization problem

To demonstrate the procedure, an example is constructed where the goal is

to create a two-element null-steering array mounted on a cell-phone-sized
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rectangular conducting plate. This example is motivated by the scenario

where a desired link (e.g., between a mobile user and a base station) is gov-

erned by Raleigh scattering [71]. In this mobile scenario, link performance

is typically improved by adding antenna diversity to statistically reduce the

number of outages caused by destructive interference or shadowing [72, 73].

Analysis and design of diversity antennas has been explored through many

means; popular methods include optimization of pattern envelope correla-

tion coefficients [74], though measurements often show drastically different

enhancements in performance depending on the specific scattering milieu,

e.g., [75, 76]. While this diversity approach works well to improve the base-

station/mobile link, the mobile user may be susceptible to interference by

other users on the same band by predominately line-of-sight, or Rician, mech-

anisms [71]. In this example, the goal is to create a null steering array on a

small mobile platform to selectively reduce this kind of line-of-sight interfer-

ence. This example was first presented in [77].

The rectangular plate, or chassis, is 0.06 m × 0.1 m. At the cellular

communications band near 900 MHz, the chassis is 0.18λ× 0.3λ. Using the

impedance matrix of the chassis and the radiation eigenvalue problem

RJi = νiPJi, (8.9)

the radiation modal currents and eigenvalues are calculated. The leading-

order radiation modes of the chassis are shown in Figure 8.2. As predicted

by the expressions derived in Chapter 4, the dominant three radiation modes

are two quasi-degenerate dipole modes (labeled Modes 1 and 2) and an elec-

tric loop, or magnetic dipole moment (labeled Mode 3). Higher-order modes

resemble multipoles. Because the radiation mode spectrum is very sparse,

only a few modes should realistically be included in the basis for the modal

optimization problem. This does not imply that the total current on a fin-

ished design must match the optimized linear combination exactly. Rather,

the radiating component of the total current must match the optimized linear

combination of radiation modes. The non-radiating component is defined as

consisting of currents lying in or near the null-space of R and will not affect

the overall radiation pattern.

In this example, the desired radiation pattern |gγ|2 depends on the null

steering parameter Ωnull. For simplicity, only the yz-cutplane and θ polar-
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Mode 1 Mode 2 Mode 3 Mode 4

Figure 8.2: First four radiation modes of a 0.18 x 0.3 λ rectangular plate.

ization is considered, such that Ωnull = θnull and γ = θ. Taking advantage of

the symmetry of the problem, Ωnull ranges from 0o (endfire direction) to 90o

(broadside direction). To specify a null at Ωnull while maintaining a uniform

pattern elsewhere, the following goal function is used,

|gθ|2(Ω,Ωnull) = 1− δ(Ω− Ωnull). (8.10)

To enforce priority of the null as opposed to an unrealistic isotropic pattern,

the weight function w is chosen as

w(Ω,Ωnull) = 1 + 100δ(Ω− Ωnull). (8.11)

Thus we expect to obtain a set of optimized radiation mode coefficients

α̃(Ωnull) by solving at (8.6) each null steering angle Ωnull using the above

goal and weight functions. The matrix Fθ is constructed to map currents on

the chassis to a radiated farfield in the θ polarization at 91 evenly spaced

angles between 0o and 90o within the yz-cutplane. The null-steering angle is

swept through all 91 of these values, leading to 91 instances of α̃ from the

same number of optimizations of (8.6).

The non-linear optimization problem in (8.6) can be solved by a number of

methods. Here a basic gradient-descent algorithm [57] is used. To avoid local

minima and to assess the repeatability of the optimization solution, multiple

random initializations of α are used at each instance of Ωnull. Regularization

is done post hoc by iteratively removing modes whose presence in the opti-

mized solution minimally affects the minimal error value ε. In this example,

P was initially set to 10, but through regularization the basis was reduced
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such that only Modes 1 and 4 (see Figure 8.2) remained. To account for the

arbitrary normalization of the excitation coefficients and radiation patterns,

α1 was fixed to unity. Figure 8.3 shows the optimized modal coefficients as

functions of null steering angle. The optimized patterns for selected values

of Ωnull are drawn in Figure 8.4.
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Figure 8.3: Amplitude (top) and phase (bottom) of modal coefficients opti-
mized as functions of Ωnull. α1 is fixed at 1∠0o.
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Figure 8.4: Radiation patterns optimized for nulls at Ωnull = 0o, 30o, 60o and
90o. Amplitude shown in dB re: pattern maximum.

The optimized modal coefficients have a maximum dynamic range of 47 dB.

The intermodal phasing is under 90o, except in the case of near-broadside
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null steering. Near broadside, Mode 4 becomes very dominant, and inter-

modal phasing can be relaxed. Limiting the null steering to 80o decreases

the dynamic range to 25 dB. The resulting patterns clearly display a null in

the specified direction when Ωnull > 30o. When the null is steered closer to

the endfire direction, the pattern consists of one tipped lobe.

8.5 Heterogeneous antenna design

Two antenna elements must now be designed to excite the modal coefficients

as specified by the optimization procedure. It is assumed that some ampli-

tude and phase control will be implemented on at least one of the antennas

to enable null scanning. In this example, two antennas will be used and two

modes are required for the specified performance with coefficients determined

as functions of the null steering as calculated in the previous section. Denot-

ing the two antenna elements with subscripts A and B, the active element

current on both antennas produce modal excitation coefficient vectors αA

and αB. To minimize the required phase shift and dynamic range of the

scanning components, the antennas should be designed such that these vec-

tors span the space of modal excitation coefficients, i.e., the antennas’ modal

excitations of Modes 1 and 4 should be as different as possible. This sug-

gests using heterogeneous elements. Because the structure and behavior of

radiation modes is relatively invariant with small perturbations to the base

geometry, modal ratios can be fairly compared between models.

The antenna designs are restricted to the two opposite short edges of the

ground plane. Three simple edge-mounted, planar antennas are chosen as

candidates for this design, shown in Figure 8.5. None of the geometries are

optimized for impedance match. A parametric study of modal excitations

as functions of the feed location is run for each antenna to determine the

best combination of antennas and feeds for diversity in Modes 1 and 4. The

feed is displaced from 0.00 m (corner) to 0.03 m (center). Figure 8.6 dis-

plays the relative magnitude, |α4/α1|, and phase ∠ (α4/α1) of the Mode 1

and 4 excitation coefficients at each trial feed displacement. All three an-

tenna topologies have modal magnitude ratios between -4 and -7 dB. The

magnitude ratio changes slightly between the models, as does its dependence

on feed displacement. Intermodal phasing stays constant with feed location
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and changes only by a few degrees between antenna types.

  

Figure 8.5: Planar L (top), meander monopole (middle), and plate monopole
(bottom) antenna prototypes. All antennas shown with zero feed displace-
ment, i.e., antennas mounted at the corner of the ground plane.

Using these data, two antennas are selected for maximum modal phase

and amplitude difference. Antenna A is assigned as a meander monopole

with feed offset of 0.02 m. Antenna B is a plate monopole with no feed

displacement. The combined system is shown in Figure 8.7. Up until this

point, both antennas have been considered in isolation. To examine the

effects of mutual coupling on the radiation mode excitation coefficients, the

active element current of each antenna was evaluated by driving the elements

separately with the non-driven antenna terminated with a 50 Ω load [2]. The

individual and combined modal excitations for each antenna are listed in

Table 8.1. With mutual coupling included in this particular example, the

antennas maintain their diverse relative modal magnitudes but now have

nearly identical intermodal phasing. This suggests that in future design

cycles modal diversity should be evaluated with the whole system intact,

as opposed to separately on individual elements. This modification to the

design methodology is discussed further at the end of the chapter.
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Figure 8.6: Relative excitation magnitude (top) and phase (bottom) of Modes
1 and 4 as a function of feed displacement location evaluated for the three
antenna types shown in Figure 8.5.

To steer a null using this two-antenna configuration, the proper antenna

excitation ratios must be determined at each null-steering angle. Using the

antenna radiation mode coefficient (column) vectors αA and αB, the antenna

excitations βA (Ωnull) and βB (Ωnull) are given by[
βA (Ωnull)

βB (Ωnull)

]
=
[
αA αB

]−1 [
α (Ωnull)

]
, (8.12)

where α (Ωnull) is the column vector of modal coefficients previously calcu-

lated by the pattern-fitting optimization procedure. The results of this cal-

culation are shown in Figure 8.8 where the antenna driving voltages βA and

βB have been normalized to radiate constant at all null steering angles. All

excitation magnitudes are further normalized to the same global maximum,

for clarity. The phase of βA is fixed at 0o.

Covering the entire range of null scan angles requires approximately 10 dB

and 20 dB of gain control on antennas A and B, respectively. Upwards of

80o of phase variation on antenna B is also required. Most of these ranges
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Figure 8.7: Combined antenna system. Antenna A, a meander monopole
with 0.02 m feed displacement is located at the bottom of the ground plane.
Antenna B, a plate monopole with no feed displacement is located at the
top.

come from the span of 10o < Ωnull < 30o. Abandoning null steering within

this range reduces the gain controls to less than 10 dB on both antennas,

while reducing the required phase span on antenna B to approximately 40o.

In practice, a small device would likely not contain the circuitry required for

precise null steering but rather would use reconfigurable circuitry to define a

discrete set of pattern configurations.

8.6 Summary and future improvements

The design of the two element null-steering array in this chapter demon-

strates the applicability of using radiation modes as proxy objectives for

pattern-specification design problems. Using the modal current optimization

objective keeps the number of unknowns involved in pattern optimization to

a minimum while maintaining a physical picture of radiation mechanisms.

This is particularly useful for antennas mounted on ground planes and con-
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Table 8.1: Relative modal magnitude and phasing of both antennas calcu-
lated individually and within the combined system

Individual Individual Combined Combined
|α4/α1| ∠(α4/α1) |α4/α1| ∠(α4/α1)

Antenna A −4.63 dB 20.40o −3.44 dB 39.92o %
Antenna B −9.29 dB 28.18o −9.97 dB 39.77o %
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Figure 8.8: Antenna excitations βA and βB as functions of null-steering angle
Ωnull. Excitation magnitudes are normalized to a global maximum and result
in constant total radiated power over all steering angles.

ducting chassis, where the dominant sources of radiation are ground plane

currents, not the antenna elements themselves. While characteristic modes

have many useful properties, the lack of energy storage involvement in the

calculation of radiation modes makes them less of a “moving target” when

making small alterations to a structure (as illustrated in Figure 8.1).

The design example in this chapter consists of two main components: cal-

culating the optimized radiation mode coefficients for achieving specific pat-

terns, and designing antennas to best implement those modal combinations.

The gradient descent method proved to be a fast, reliable way of solving the

non-linear modal pattern optimization problem. In designing the antenna

elements, a simple parametric study of three antenna types was used. For

smaller, tuned antennas with specific impedance properties, radiation mode

objectives could be combined with the geometry optimization techniques in
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[16]. The fact that radiation modes are invariant to geometry changes on

small objects make them powerful in comparing optimized antenna geome-

tries, and could be combined with characteristic modes for efficient auto-

mated design of resonant, pattern-specified embedded antennas [42].

The presence of terminated ports in the multi-antenna system in this chap-

ter results in significant mutual coupling which altered the effective modal

excitations of the individual antenna elements. This suggests that radia-

tion mode excitations should be evaluated within a complete system, not

for individual antenna elements in isolation. To accomplish this, subdomain

characteristic mode techniques [15] may be useful in expediting the calcula-

tion of active element currents in a multi-antenna system.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

9.1 Summary of findings

The goal of this research was to study the mapping between current distri-

butions on conducting objects and antenna design deliverables such as band-

width, radiation patterns, and efficiency. Instead of working directly with

these engineering metrics, we studied the intermediate mapping of currents

to radiated power an energy storage, as all antenna parameters ultimately

arise from these quantities. Through the study of those mappings, the role

of current mechanisms in manifesting antenna design metrics (bandwidth,

radiation pattern, etc.) is made more approachable. An application area

benefiting from this kind of analysis is embedded antennas, or small anten-

nas near larger conducting bodies. As such, this class of systems were the

focus of the later chapters of this dissertation.

The approach used in existing source-based analyses was summarized in

Chapter 2, laying the groundwork for the novel radiation and energy storage

mode expansions implemented throughout the dissertation using the numer-

ical techniques outlined in Chapter 3. The mathematical properties of the

matrix operators related to radiation and energy storage were used to draw

conclusions about the physical mechanisms responsible for these quantities in

practical antenna systems. The null space of the radiation matrix enables the

separation of radiating and non-radiating currents. This null space also indi-

cates the sparsity of radiation mechanisms and the presence of a large class

of currents which can be arbitrarily added to a system with no consequence

to radiation properties. In contrast, the lack of a large null space in the

energy storage operators doesn’t allow for a contributing / non-contributing

separation, but modal mechanisms can still be identified. Radiation mode

expansion facilitates the quantification of radiation sources in embedded an-
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tennas, enabling quantification of the assumption that small ground planes

are dominant sources of radiation in such systems, as demonstrated in Chap-

ter 4.

In Chapter 5, it was shown via analytic means that radiation modes rep-

resent a fast method for calculating the low-order multipole moments of ar-

bitrary currents and structures. The analytic study carried out in Chapter 5

also corroborates empirical observations regarding the invariance of radiation

modes on electrically-small objects. As a current expansion basis, radiation

modes provide a convenient way to describe and quantify radiation patterns

during the design of embedded antennas due to this inherent invariance. This

finding was used in Chapter 8, where radiation modes on a ground plane were

used as a basis for pattern specification. The procedure for using a modal

current expansion for the design of pattern-specified antennas has been previ-

ously reported in several capacities, but in this dissertation the advantages of

radiation modes over characteristic modes was explicitly illustrated; namely,

radiation modes’ geometry invariance.

In Chapter 7, the behavior of ground plane radiation was linked to changes

in quality factor and bandwidth by using radiation mode expansion. The

dependence of Q (and by proxy bandwidth) with ground plane size was ob-

served to correspond with the transition from single- to multi-mode radiation

behavior. Generally speaking, this transition indicates the threshold where a

larger ground plane ceases to increase effective electrical size, and thus ceases

to improve bandwidth performance. This information can be used to pro-

vide a designer with a priori expectations which components in an embedded

system will govern and bound radiation and bandwidth properties.

The loss of positive-semi-definiteness is a known issue preventing the cal-

culation of Q bounds by convex optimization on larger structures. By using

the energy storage eigenmode expansions, the current distributions associ-

ated with this loss of positive-semi-definiteness were isolated and character-

ized. The results from this analysis show that not only are negative energy

modes simple in nature, they tend to represent fundamental radiating mech-

anisms. Characteristic modes of simple objects are also shown to produce

negative energies. The combined data from Chapter 6 and 7 demonstrate

that, while the loss of positive-semi-definiteness makes bounding Q by exist-

ing means impossible, the calculation of Q via the energy storage operators

matches closely with “ground truth” values obtained by impedance or band-
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width means for electrically large objects with Q > 20; even when the energy

storage matrices are non-positive-semi-definite. This suggests that the loss

of positive-semi-definiteness on large structures does not necessarily mean

inaccurate results for Q calculations on high-Q systems.

9.2 Added engineering intuition

While this research focuses heavily on abstract problems, the mathemati-

cal and physical results can be synthesized into several useful additions to

engineering intuitions.

The difference in matrix properties of radiation and energy storage opera-

tors elucidates interesting physical properties of electric currents. The large

null space of the radiation matrix can be interpreted as allowing a large class

of currents which do not radiate. In contrast, the lack of a null space of

the energy matrices dictates that all currents must store energy. This con-

firms the concept that there exist many currents, particularly of those of

electrically small support, which radiate in the same manner; leading to the

conclusion that there exist many added degrees of freedom when designing an

antenna with particular radiation properties. In other words, the radiating

component of a current can be combined with any arbitrary non-radiating

current with no effect on the radiation properties of the system. This is par-

ticularly interesting in the design of embedded antennas, where colloquially

the antenna acts as a matching network and the ground plane is understood

to be the dominant radiator. Using radiation mode expansion, this sort of

ground plane radiation is quantified in a novel way. Later chapters of this

dissertation explored the ground plane / element relations in terms of band-

width (Q), radiation patterns, and negative energy storage; demonstrating

how these expansions can be used on a variety of electromagnetic problems.

9.3 Open questions and future work

The development of radiation and energy storage modes and the findings

in the later chapters of this dissertation leave many possibilities for future

investigations.
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Combining the pattern specification technique in Chapter 8 with the au-

tomated resonant embedded antenna design procedure described in the lit-

erature adds a dimension of control and efficiency to the field of automated

antenna geometry synthesis. The use of radiation modes as an expansion

basis in conjunction with automated design algorithms (e.g., genetic algo-

rithm geometry optimization) may enable the bounding of radiation pattern

complexity on embedded antennas. Continuing the work done in Chapter

8 on multi-port embedded MIMO antennas in the context of effective effi-

ciency, bit-error-rate (BER) and other system-level metrics will help connect

the physical concepts involved with radiation mode expansion to practical

antenna design.

Further study on the validity of the energy storage matrices for calculating

Q on large structures is required. From the results in Chapter 6 it appears

that the loss of positive-semi-definiteness doesn’t degrade the accuracy of

Q calculations of high-Q currents. Further investigation via measurement of

projections of negative energy modes in driven currents would help determine

intuitive guidelines for the applicability of these methods, even when opti-

mization Q-bounds are intractable. Explorations of the transient properties

of currents represented by negative energy modes would also help connect

these seemingly anomalous occurrences with physical phenomena.

The study of radiation modes, impedance, and Q in Chapter 7 spanned

many antenna types, but did not explore in detail the effect of small design

changes. A more in-depth examination of radiation mode convergence prop-

erties may aid in classifying antenna structures (e.g., PIFAs, loaded loops)

which benefit from careful tailoring of ground plane size and could unify the

conflicting or seemingly disparate results reported in the literature.
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