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Abstract

This dissertation considers the robustness of private value and common value k-

double auctions when those markets are populated by regret minimizers. Regret

minimizing agents, unlike typical expected utility maximizers, need not commit to a

single prior in their decision rule. In fact, it is a feature of the minimax regret deci-

sion rule that is not based on any prior. This makes the decision rule an interesting

one for agents who face Knightian Uncertainty. A decision problem involves Knigh-

tian uncertainty if the agents know the possible outcomes but not those outcomes’

probabilities – as may be the case in a new market.

This dissertation shows that in a private value k-double auction, minimax regret

traders will not converge to price-taking behavior as the market grows. Similarly,

in a common value auction, traders’ behavior may depend on the parameter k, but

does not depend on the number of other traders in the market.

The invariance of regret minimizing traders’ strategies to the size of the markets

they inhabit is not an accident of the sealed bid double auction institution. In fact,

it is a consequence of the symmetry axiom. The final chapter in this dissertation

shows that any agents in a k-double auction who use decision rules that accord with

the symmetry axiom, then their bids and asks will not depend on the number of rival

traders.
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Chapter 1

Introduction

1.1 Motivation and Background

An important function of markets is that they convey information through prices.

In markets where each buyer has his or her own valuation for consuming the good

and each seller has his or her own cost for producing it (that is, a market with “pri-

vate valuations”), this aggregation of information is important because it allows the

market to realize an efficient allocation of resources (Hayek, 1945). In markets where

each trader attempts to estimate the unknown value of an asset (that is, a mar-

ket with “common valuations”), the information aggregation is important because it

reveals the asset’s true value.

Sealed-bid double auctions are models from which we can gain compelling insights

into the workings of markets, and their potential to aggregate information. It is well

known that no bilateral trading mechanism is efficient without outside subsidies

if it is incentive compatible and individually rational (Myerson and Satterthwaite,

1983). However, the private-value k-double auction converges to efficiency quickly

(Rustichini, Satterthwaite and Williams, 1994). Reny and Perry (2006) also use

a sealed-bid double auction to make a step toward a strategic foundation for the
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rational expectations equilibrium.

The expected utility maximizers that populate most double auction models posses

and use a great deal of information. They know the number of traders in the market,

and the distribution of other traders’ redemption values, and they coordinate their

strategies with those of other traders to reach an equilibrium. In some markets,

particularly new markets, it is unlikely that traders will have precise beliefs about all

of these things (Wilson, 1987; Harstad, Pekec and Tsetlin, 2008). This dissertation

considers the robustness of the k-double auction when traders face more severe forms

of uncertainty than the uncertainty generally accommodated in typical models.

1.2 The Sealed-Bid Double Auction

Agents submit sealed bids (denoted bi) and asks (aj) to the auctioneer. We assume

that the submitted bids (b1, b2, ..., bm) are positive real numbers that cannot exceed

the maximum valuation v. We assume that sellers submit asks (a1, a2, ..., an) that

cannot be less than the minimum cost c. For simplicity of notation, we will assume

that the range of acceptable bids and the range of acceptable asks is Z = [c, v], where

c < v.

These bids and asks determine a single price at which all units are traded and

identify which buyers and sellers will trade. The price p is set within the interval

[x, y] of prices such that the number of buyers whose bids exceed the price equals the

number of sellers whose ask is less than the price. The exact price selected within
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this interval of market-clearing prices depends on the exogenous parameter k ∈ [0, 1]:

p = (1− k)x+ ky. (1.1)

Example 1 Suppose that there are m = 3 buyers who submit bids (b1 = 4.50, b2 =

2.12, b3 = 7.00) and n = 4 sellers who submit asks (a1 = 1.00, a2 = 3.45, a3 =

10.30, a4 = 5.87). Then the market clears at any price between 3.45 and 4.50. If

k = .8, then the price set by the k-double auction is 4.29. Buyers 1 and 3 will trade

with sellers 1 and 2. (Since the units of the good are identical, and all traded units

are traded at the same price, it is irrelevant which buyer trades with which seller.)

It is useful to note that the price in the market depends on the mth and m+ 1st-

lowest bid or ask. Let (z(1), z(2), ..., z(m+n)) ∈ Zm+n be the ordered set of bids and

asks, with z(1) < z(2) < ... < z(m+n). In our example above, z = (z(1) = 1.00, z(2) =

2.12, z(3) = 3.45, z(4) = 4.50, z(5) = 5.87, z(6) = 7.00, z(7) = 10.30). The two values

that determined the price were z(3) and z(4). In fact, the interval of market-clearing

prices is always [z(m), z(m+1)].

In the case that z(m) = z(m+1), the interval of market clearing prices consists of

a single price, p = z(m). The number of sellers asking less than this price may not

equal the number of buyers bidding above this price. In that case, a fair lottery may

determine which of the traders on the long side of the market with bids (or asks)

equal to p will be allowed to trade (Satterthwaite and Williams, 1993).
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1.3 Decisions Under Knightian Uncertainty

In analyzing the market described in section 1.2, it is typical to think of the auction

as a game of incomplete information (Harsanyi, 1967) and to seek a solution in the

form of a Bayesian Nash equilibrium. In contrast, this paper treats the trader’s

situation as a decision problem under Knightian uncertainty (Knight, 1912). This

section provides a notational framework for the decision rules that the rest of the

paper will examine, and discusses how this paper’s approach to Knightian uncertainty

compares to the typical approach.

1.3.1 Notation for Decision Problems Under Knightian

Uncertainty

Decision problems involve a set of acts A available to the decision-maker, the set

of possible states of the world S, and the outcome u ∈ U that results in the state

s ∈ S given the decision-maker’s action a ∈ A. We may find it useful to think of the

decision-maker as having a payoff function u : S ×A → R.

A decision rule specifies what a decision maker will do given a menu A of possible

actions. The following chapters will introduce a variety of decision rules, and later

characterize some of them using axioms. Those axioms apply to decision makers’

preferences %. Let %A denote a preference relation over the actions available in the

menu A. A preference relation is defined to be a binary relation % that is reflexive

(a % a for all actions a) and transitive (if a1 % a2 and a2 % a3, then a1 % a3)

(Fishburn, 1970). From % we can derive relations � and ∼ in the usual way.
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Figure 1.1: Bidder Decision in Private-Value k-Double Auction: Game of Incomplete
Information

1.3.2 Contrasting Incomplete Information and Knightian

Uncertainty

When the double auction is treated as an incomplete information game, each trader

does not know the types of other traders. That is, in a private value auction they do

not know the private redemption values of other traders. In a common value auction,

they do not know the signals that other traders have observed about the asset’s true

value. However, the bidder does know the distributions from which the private

redemption values or signals are drawn. These distributions, together with some
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equilibrium belief about the traders’ strategies, is the foundation for the bidder’s

beliefs about the distribution of others’ bids and asks. Using this distribution of

others’ bids and asks, the bidder can calculate the expected profit of each of his own

possible bids. An expected utility maximizer chooses a bid that yields the greatest

expected profit. Figure 1.1 illustrates this approach to the private value double

auction.

In contrast, this paper treats the agent’s situation as a decision problem under

ambiguity, which is also known as Knightian uncertainty after Knight (1912). In this

approach, the set of possible states of the world (and the outcome in each state) is

known to the decision-maker, but the probability of each state of the world is not.

In our model, the traders know the range of possible types for the other traders.

They know their own redemption type with certainty. However, they do not know

the distribution of other traders’ types.

Two possible approaches to this decision problem for a private value double auc-

tion under Knightian uncertainty are depicted in Figures 1.2 and 1.3. The crucial

difference between these figures and Figure 1.1 is that knowledge about “Distribu-

tions of Other Agents’ Valuations” has been removed. Instead, traders know the

range of possible valuations of other traders – the support of the distribution, rather

than the distribution itself.
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Figure 1.2: Bidder Decision in Private-Value k-Double Auction: Decision Problem
Under Knightian Uncertainty (Bayesian Approach)
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Figure 1.3: Bidder Decision in Private-Value k-Double Auction: Decision Problem
Under Knightian Uncertainty (Minimax Regret))

1.4 The Double Auction Under Knightian

Uncertainty

Approaching the double auction as a decision problem under Knightian uncertainty

is a more general approach than studying the situation as a game. As pictured in

Figure 1.2, the agent could choose to resolve the decision problem by selecting an

equilibrium strategy given his subjective prior about the distribution of redemption

values and the strategies of other traders. But it is also possible to resolve the

8



decision problem using another decision rule.

One example of a decision rule that does not calculate expected profit, or use a

prior at all, is minimax regret. As pictured in Figure 1.3, a minimax regret bidder

in a k-double auction will choose his bid by analyzing the regret function associated

with each bid. No prior is used; all that is needed to make a decision is to know the

set of possible outcomes.

Minimax regret is a decision rule suggested by Savage (1951) as an alternative

to maxmin. Since then, it has been applied to a number of market models. Renou

and Schlag (2008) have applied minimax regret to price-setting environments, for

example. Hayashi and Yoshimoto (2012) have created and calibrated a risk- and

regret- averse model for bidders in first price auctions. Taking another tactic, Chiesa,

Micali and Zhu (2014) have studied Knightian “Self Uncertainty” in combinatorial

auctions. Linhart and Radner (1989) applied minimax regret to bargaining. The

work in this dissertation aligns most closely with Linhart and Radner’s approach,

but it extends their results from bilateral bargaining, with only one buyer and one

seller, to the sealed-bid double auction, with many buyers and many sellers. It also

considers common value auctions in addition to the private valuations of Linhart and

Radner (1989).

1.5 Summary and Intuition of Findings

The following chapters examine traders in auctions who face Knightian uncertainty.

Private value and common value settings are considered in turn.

9



In Chapter 2, each trader has a private redemption value (valuation or cost).

When such traders minimize maximum regret, they choose bids and asks that differ

from their true redemption values, leading to inefficient outcomes for any sized mar-

ket. Moreover, restricting Knightian uncertainty to the traders’ beliefs about one

another’s strategies, while allowing them to hold beliefs about the distribution of

private redemption values, does nothing to improve market efficiency. A third and

final attempt at inducing regret minimizers to converge to price-taking behavior in

large markets is successful, but only by endowing traders with a set of multiple pri-

ors. These results reinforce the power of some priors to prevent traders from realizing

gains from trade.

In Chapter 3, the assets being traded have the same value to all traders, and each

trader observes private signals about that true value. In the common value auction,

potential regret from discovering that the asset’s true value is lower than one’s signal

motivates minimax regret traders to submit cautious bids and asks; however, whether

the price can converge to the item’s true value as the market grows depends on the

choice of the auction rule k and on the distribution of signals.

A common thread runs through these results. The traders’ behavior does not

depend on the size of the market. This is markedly different from the behavior of

expected utility maximizers, whose bids and asks depend on beliefs about the number

of other traders.

We can gain some intuition for this difference between regret minimizers and

expected utility maximizers with a simple analogy. Think of the bids and asks of

other traders as strands in a net. If there are only a few traders in the market, there

10



are only a few strands in the net. Such a net will have many gaps through which

a trader could “fall” – that is, the trader’s bid or ask could easily turn out to be

“pivotal”, one of those bids and asks that determines the market clearing price p.

Then it is possible that the trader fails to maximize his profit (buyers will regret not

bidding less, and sellers will regret not asking more). Whether a trader is a regret

minimizer or an expected utility maximizer, the prospect of falling through a gap in

the “net” of rival bids and asks influences that trader to attempt to move the price

in his own favor.

Now consider what happens as more and more strands are added to the net.

Someone with an expectation that new strands, when they are added, could be

placed in any part of the net, would reason that as the strands in the net increase,

the likelihood of falling through a gap will decrease. The gaps will become narrower

and narrower, until no sizable gaps remain – so long as each space in the net has

some chance of being bridged by an additional strand. In the same way, a trader who

expects that his rivals’ bids and asks are distributed with full support will conclude

that for very large markets, his probability of being a pivotal trader is negligible.1

Since that is the case, the expected utility maximizer should put less and less weight

on the advantages of influencing the market price, as more and more traders as added

to the market.

Here is the vital difference in minimax regret. A minimax regret trader does

not expect that the gaps will be filled as strand after strand is added to the net.

1This is not a necessary condition for price-taking to be in the set of profit-maximizing actions
in a private value auction, but the condition supports our intuition for why large markets induce
price-taking behavior.
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He cannot have such an expectation, because he has eschewed expectations entirely.

Instead, the minimax regret’s choice is always influenced by the possibility that a

gaping hole remains in the net – that is, that he will turn out to be the pivotal trader,

and therefore regret any failure to influence the price in his favor.

To explain the invariance of regret minimizing traders more formally, Chapter 4

brings attention to the axiomatic characterization of the minimax regret decision rule

(as described in Stoye (2011b)). The invariance of minimax regret traders’ strategies

to the size of the market is not a special circumstance of the double auction. Rather,

it is stems from the decision rule’s adherence to the symmetry axiom. Chapter 4

demonstrates that any decision rule that adheres to the symmetry axiom will also

result in strategies that do not vary with the number of traders in the double auction.

Taken together, these results suggest some drawbacks to using minimax regret

as a decision rule in models of large markets. They reveal potential problems with

relying on large markets to achieve efficient allocations (for private value settings) or

informative prices (for common value settings). More generally, they illuminate the

importance of individuals’ beliefs about the markets in which they trade.

12



Chapter 2

Convergence to Price-Taking in
the Private Value k-Double
Auction

Abstract

This paper studies a variety of forms of regret minimization as the criteria with

which traders choose their bids/asks in a double auction. Unlike the expected utility

maximizers that populate typical market models, these traders do not determine

their actions using a single prior. The analysis proves that minimax regret traders

will not converge to price-taking as the number of traders in the market increases,

contrary to standard economic intuition. In fact, minimax regret traders’ bids and

asks are invariant to the number of other traders in the market. However, not

all regret-based decision rules fail to respond to market size. Introducing priors over

some part of the decision problem to minimize expected maximum regret, or multiple

priors to minimize maximum expected regret, have different effects. The robustness

of the sealed bid double auction is limited by the need to avoid priors that eliminate

traders incentive to truthfully reveal their redemption values.

Keywords: double auctions; regret minimization; Knightian uncertainty; deci-

sion theory; mechanism design
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JEL Classification Numbers: D44, D81, D82, C72

2.1 Introduction

Perfectly competitive markets are efficient only if traders act as price takers1, be-

havior that can be induced in large markets if traders recognize that the size of the

market attenuates each individual trader’s influence. The double auction models that

formally prove this familiar reasoning typically attribute a great deal of knowledge

to their traders. Traders are assumed to be capable of coordinating on an equilib-

rium in which each trader maximizes expected utility, something that is only possible

because they know the distribution of traders’ bids and asks. But are these strong

assumptions on traders’ knowledge and capabilities necessary, or could traders who

do not know the distribution of bids and asks still converge to price-taking behavior

as the market grows? Our confidence in a market’s robustness may depend on the

answer.

This chapter replaces the expected utility maximizers that populate a conven-

tional double auction model with regret minimizing traders. “Regret” here is the

difference between one’s actual payoff (a function of one’s action and the realized

state of the world), and the best possible payoff that could have been achieved in the

realized state (Savage, 1951; Linhart and Radner, 1989). Regret minimization can

be defined in a variety of ways, and this chapter examines three separate versions of

1By “price takers,” I mean that each buyer and seller truthfully reports their utility-maximizing
quantity to produce or consume at a given price, rather than attempting to manipulate prices.
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regret minimization. What all three versions of the regret minimizing trader have in

common is that none of them determines his action by referring to a specific belief

(a prior) about the distribution of other traders’ bids and asks.

Because this chapter’s regret minimizers do not rely on a particular prior, they

are equipped to handle a type of uncertainty that conventional models do not ad-

dress: Knightian uncertainty (Knight, 1912). Under Knightian uncertainty, the set

of possible states of the world (and the outcome in each state) is known to the

decision-maker, but the probability of each state of the world is not. For example,

if a person does not trust that a coin being tossed is a fair coin, then that person

faces Knightian uncertainty: the possible states of the world are known to be Heads

and Tails, but the probability of each state is unknown. In this chapter, traders

face Knightian uncertainty regarding other traders’ strategies, and perhaps also the

distribution of other traders’ underlying redemption values.

An expected utility maximizer’s response to Knightian uncertainty is to adopt a

subjective prior, this approach can be problematic, leading us to seek an alternative

approach. Each of the three problems discussed below relates to a specific version

of regret minimization and a separate result in this chapter. Taken together, the

chapter’s three results reveals how some priors can prevent convergence to price-

taking.

The first problem with relying on a single subjective prior applies when the deci-

sion maker is very unfamiliar with the decision problem. Complete ignorance cannot

be adequately reflected by any prior, even a uniform prior that treats each possi-

ble outcome as equally likely, because even adopting a uniform prior asserts some
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knowledge about the specification of the decision problem. If the decision maker’s

ignorance is so complete that he does not know which characteristics of events are

relevant and which are extraneous, then his decision rule ought not to depend on

the way he has chosen to specify the problem (Arrow and Hurwicz, 1972). Minimax

regret, the first version of regret minimization that this chapter considers, is well-

suited to situations of complete ignorance because it essentially accommodates all

priors at once. This chapter finds that minimax regret traders do not converge to

price-taking behavior.

The second problem with a single subjective prior extends to cases other than

complete ignorance. Even supposing that the trader does have a sense of the dis-

tribution of the other buyers’ and sellers’ redemption values, the trader may face

Knightian uncertainty regarding those traders’ strategies. The multiplicity of Bayes

Nash equilibria in a double auction makes this concern especially acute. A trader

that allows for the full range of rationalizable strategies on the part of his rivals to

calculate maximum regret, but then applies a prior over the rivals’ valuations and

costs, is said to be minimizing expected maximum regret. Linhart and Radner (1989)

have examined this decision rule in the case of bilateral trade; the present chapter

extends their analysis to larger markets, and finds that the decision rule does not

induce convergence to price-taking. On the contrary, such a bidder will shade his bid

more, not less, as the size of the market increases, approaching the minimax regret

bid.

The third problem with a single subjective prior is that real decision makers are

not always willing to commit to a single prior, even when they have a basis to do
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so. De Finetti (as quoted by Dempster (1975)) explained that in many situations

a decision-maker’s subjective prior will only be “vaguely acceptable”. Therefore

“it is important not only to know the exact answer for an exactly specified initial

position, but what happens changing in a reasonable neighborhood the assumed

initial opinion.” This justifies the use of decision rules that involve multiple priors.

A well-known example of such a decision rule is maxmin expected utility with a

non-unique prior (Gilboa and Schmeidler, 1989). Similarly, a decision maker can use

multiple priors to minimize maximum expected regret. The third and final result of

this chapter is that a trader who minimizes maximum expected regret may converge

to price-taking behavior as the market grows – even though such a trader may not

evaluate the possible bids according to a single prior, as an expected utility maximizer

would. However, the set of priors must satisfy certain conditions in order for minimax

expected regret traders to converge to price-taking.

Taken together, the chapter’s three results indicate the significance that individ-

ual beliefs may have for the efficiency of the entire market. Traders whose decision

rule is consistent with every prior fail to converge to price-taking (Theorem 1). The

failure to converge suggests that restricting the priors is key to inducing price-taking

behavior. But it is not enough to restrict only one aspect of the decision problem:

introducing prior beliefs about redemption values but not strategies does not ensure

convergence to price-taking (Theorem 2). Still, traders can converge to price-taking

as long as the set of priors they consult is restricted from the priors that would

prevent convergence for even expected utility maximizers (Theorem 3). Whether

bidders are expected utility maximizers or regret minimizers, eliminating “bad pri-
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ors” is essential for markets to function efficiently.

The following sections begin with an explanation of the traders, double auction

rules, and profit functions of the model (section 2.2)). The next three sections provide

formal definition of the decision rule, and analysis of the resulting outcome in the

double auction, for each of the three versions of regret minimization. Section 2.6

concludes.

2.2 Traders with Private Values

There are m buyers and n sellers. Each buyer i has a valuation vi ∈ [v, v] ⊂ R+,

which is the buyer’s maximum willingness to pay for a single unit of the good. Each

seller j has a cost cj ∈ [c, c] ⊂ R+ of producing a single unit of the good. We will

refer to both valuations and costs as the traders’ redemption values. Agents do not

supply or demand more than one unit of the homogeneous and indivisible good.

Place these traders with private valuations into the sealed bid double auction

described in section 1.2. The relationship between the trader’s profit and the outcome

of the auction is straightforward. Buyer i’s profit is vi − p if he trades and zero

otherwise. Seller j’s profit is p − cj if he trades and zero otherwise. Thus, given

a trader’s redemption value, a bid or ask determines a set of possible payoffs, the

realization of which depends on the bids and asks submitted in the double auction

by other traders. Let ζ = (ζ(1), ζ(2), ...ζ(m+n−1) denote the ordered set of the bids and

asks submitted by those other traders in the auction. Then if a buyer with valuation
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v submits bid b in the auction, his corresponding profit function ΠB is

ΠB(b, v, ζ) =


v − [(1− k)ζ(m) + kζ(m+1)] if ζ(m+1) < b

v − [(1− k)ζ(m) + kb] if ζ(m) < b < ζ(m+1)

0 if b < ζ(m)

. (2.1)

The profit function’s relationship to the realization of the bids/asks (ζ(m), ζ(m+1))

is pictured in figure 2.1. Since ζ(m) < ζ(m+1) always, the “state space” of possible

outcomes is the triangle above the 45 degree line. Two things are clear from the

figure. First, the bidder trades only if he bids more than ζ(m). Second, the bidder is

“pivotal” (influences the market price) only if his bid b lies between ζ(m) and ζ(m+1).

Likewise, if a seller with cost c submits ask a in the auction, his corresponding

profit function ΠA is

ΠA(a, c, ζ) =


[(1− k)ζ(m) + kζ(m+1)]− c if a < ζ(m)

[(1− k)a+ kζ(m+1)]− c if ζ(m) < a < ζ(m+1)

0 if ζ(m+1) < a

. (2.2)

See figure 2.2.
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ζ(m)

ζ(m+1)

45o

ΠB = v − [(1− k)ζ(m) + kζ(m+1)]

ΠB = v − [(1− k)ζ(m) + kb]

ΠB = 0

b

b

Figure 2.1: Bidder’s Profit from bid b

ζ(m)

ζ(m+1)

ΠA = [(1− k)ζ(m) + kζ(m+1)]− c

ΠA = [(1− k)a+ kζ(m+1)]− c

ΠA = 0

a

a

Figure 2.2: Sellers Profit from ask a
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2.3 First approach: minimizing maximum regret

This section formally defines minimax regret, and shows that minimax regret traders

generally do not report their true redemption values. Furthermore, they do not

converge to truthful bidding no matter how large the market grows.

2.3.1 Minimax Regret defined

The action(s) minimizing maximum regret are identified by calculating the maximum

regret that could be incurred under each action. The regret for a particular action

in a particular state is calculated by comparing that action’s payoff to the maximum

possible payoff in the same state.

Definition 2 An action a attains minimax regret if

a ∈ arg min
a∈A

max
s∈S
{max
a∗∈A

u(a∗, s)− u(a, s)}} (2.3)

From the standpoint of a person accustomed to working with expected payoffs, it

may seem that minimax regret operates by choosing a “pessimistic” prior – a prior

that assigns higher probability to events with very low or very high payoffs. The

truth is subtly different. The decision rule does not stick to a single pessimistic

prior by which each action is evaluated. Instead, a minimax regret trader evaluates

each action by focusing exclusively on the state in which regret is highest for that

action. Of course, this is equivalent to using a prior that assigns probability 1 to

the event that corresponds to this extreme outcome. However, the prior that is used
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to evaluate action a1 may be very different from the prior that is used to evaluate

action a2.

2.3.2 Minimax Regret in a k-Double Auction

The figure below shows a bidder’s regret if his private valuation is v and he chooses to

submit bid b. Note that the bidder’s regret decreases as the rival bid ζ(m) approaches

his bid (since there is less regret from overbidding in that case) and again as it

approaches his own valuation.

ζ(m)

ζ(m+1)

RB = k(ζ(m+1) − ζ(m))

RB = k(b− ζ(m))

RB = 0

RB = v − ζ(m)

v

v

b

b

Regret OverbiddingRegret Underbidding

Figure 2.3: Bidder’s Regret given bid b and valuation v
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Theorem 1 In a k-double auction, the bid bi that minimizes maximum regret for

a buyer with private valuation vi is bi = vi
1+k

. The ask ai that minimizes maximum

regret for a seller with private cost ci is ai = ci+(1−k)
1+(1−k)

The closer k is to 0, the less influence the buyer’s bid has on the price, and con-

sequently the closer the buyer minimax regret strategy will be to truthful revelation

of his value. The closer k is to 1, the greater the potential influence of the buyer’s

bid on the price, and consequently the further the buyer minimax regret strategy

will be from truthful revelation of his value. It is the opposite for a seller.

For k = 1
2
, these results are identical to the minimax regret strategies found by

Linhart and Radner (1989) using their first approach to bilateral bargaining under

incomplete information.

2.3.3 Large Markets and Efficiency

The minimax regret bids do not depend on the number of rivals. No matter how

many buyers and sellers participate in the auction, a trader minimizing maximum

regret under this approach will submit the same bid or ask. The strategies are also

unaffected by the number of buyers relative to the number of sellers.

Figure 2.4 illustrates how this will affect the expected number of trades, the price,

and the gains from trade when redemption values are uniformly distributed over [0,

1] as n,m→∞. The thin lines represent the true demand and supply in the market.

The thick lines show the demand and supply curves that result from aggregating the

minimax regret bids and asks.
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Figure 2.4: The Distribution of Bids and Asks Depends on k
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Depending on k, one side of the market or the other may misrepresent their

redemption values more. But whatever the value of k, the demand and supply

curves meet at a quantity smaller than the quantity where the true valuations meet

the true costs. Furthermore, the price may differ from the efficient price; it will favor

the side of the market that has greater influence on the price.

Since the buyers and sellers do not report their true valuations/costs, some op-

portunities for profitable trade will be missed. Since the strategies do not converge

to price-taking as the size of the market increases, the outcome will not approach

efficiency either.

2.4 Second Approach: minimizing expected

maximum regret

In this section, I find the bid and ask functions for traders that minimize expected

maximum regret. As the name of their decision rule implies, these traders apply

a prior to some part of their decision problem, unlike the minimax regret traders

in the previous section. Constraining priors in part – but not all – of the decision

problem clarifies the relationship between beliefs and outcomes. Although strategies

are not invariant to market size, traders still do not converge to price-taking behavior,

indicating the regret minimization can be troublesome if priors are unconstrained in

any part of the decision problem.
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2.4.1 Minimizing expected maximum regret in a k-Double

Auction

This decision rule supposes that traders have some information about the trading

environment, but do not know how other traders will choose to respond to that en-

vironment. Suppose that each trader knows the distribution of other sellers’ costs

and other bidders’ valuations, unlike a minimax regret bidder. However, each trader

remains in a state of Knightian uncertainty regarding the traders’ strategies. Any

rationalizable2 strategy is considered plausible, and the trader does not wish to dis-

tinguish between probable and improbable strategies, nor to assume that all traders

are coordinating on one of the auction’s multiple equilibria.

When the bidder faces Knightian uncertainty about other traders’ strategies but

not their redemption values, then bidder i can calculate the expected maximum regret

of a bid bi in the following way. First, calculate the maximum regret conditional on

the realization of the other traders’ valuations and costs, RB(bi|v, c). Then, take the

expectation of maximum regret, R̄(vi, bi) given the distribution of the other trader’s

valuations and costs.

The intuition for why the bid that minimizes expected maximum regret is gen-

erally different from the minimax regret bid has to do with the two sources of regret

for a bidder. A bidder may regret bidding too high, and winning at an unnecessarily

high price. This regret occurs if enough of the other traders’ bids and asks turn out

to be low, so that the lower bound on the range of market clearing prices is lower

2For a seller with cost ci, any ask ai ∈ [ci, c] is rationalizable. For a buyer with cost vi, any bid
bi ∈ [b, vi] is rationalizable.
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than the bidder’s bid. On the other hand, the bidder may regret bidding too low,

and missing a profitable trade. This regret occurs if enough of the other traders’ bids

and asks are relatively high, so that the lower bound on the range of market clearing

prices is greater than the bidder’s bid (but less than the bidder’s valuation).

Taking expectations affects the calculations of the bidders’ two sources of regret

differently. It is always possible under any realization of others’ redemption values

for the bidder’s bid to be too low, since the sellers could conceivably submit asks that

are higher than the bidder’s bid. On the other hand, a bid can only turn out to be

too high if at least one seller submitted an ask lower than v. But since no seller will

submit an ask below his actual cost, this is only possible under certain realizations

of others’ redemption values.

The consequence is that traders’ bids and asks will be closer to their redemption

values under this decision rule than they would under minimax regret, as stated in

the second result.

Theorem 2 Let F̃ denote the cumulative distribution function of the lowest cost

among the n sellers in the market. The bid bi that minimizes expected maximum

regret for bidder i with valuation vi satisfies

F̃ ( (k+1)bi−vi
k

) = F̃ (bi)
1+k

Such a bid bi exists on the interval
[
vi

1+k
, vi
]
.

Similarly, let G̃ denote the cumulative distribution function of the highest valua-

tion among the m sellers in the market. The ask ai that minimizes expected maximum

regret for seller i with cost ci satisfies
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G̃(ai(1+(1−k))−ci
1−k ) = G̃(ai)+(1−k)

1+(1−k)

Such a bid ai exists on the interval
[
ci,

ci+(1−k)
1+(1−k)

]
.

If the auction rule k is strictly between 0 and 1, then the bid that minimizes

expected maximum regret will be strictly greater than vi
1+k

, and the ask that min-

imizes expected maximum regret will be strictly less than ci+(1−k)
1+(1−k)

. Contrast this

result with the minimax regret bids and asks (when the traders do not use beliefs

about the distribution of other traders’ valuations and costs). Minimizing expected

maximum regret results in strategies closer to so-called “sincere bidding”.

2.4.2 Minimizing Expected Maximum Regret in Large

Markets

This decision rule results in strategies closer to sincere bidding, but that effect di-

minishes as the size of the market grows. The reason that minimizing expected

maximum regret results in more truthful bids and asks is that this approach puts

less weight on scenarios in which it is possible to regret bidding too high or asking

to little. But the more sellers there are in the market, the more likely it is that at

least one seller will have a cost lower than a given bid. And the more buyers there

are in the market, the more likely it is that at least one buyer will have a valuation

greater than a given ask.

As the number of traders on the other side the market increases, the trader

minimizing expected maximum regret misrepresents his redemption value more. In

the limit, the trader’s bid or ask converges to the fraction of his valuation or cost
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that we found using the first approach.

Corollary 1 Let b(v;n) denote the bid that minimizes expected maximum regret in

a k-double auction with n sellers. Then lim
n→∞

b(v;n) =
v

1 + k
.

Figure 2.5 demonstrate this point in the case that an equal number of buyers

and sellers with redemption values uniformly distributed over [0, 1] participate in a

1
2
-double auction. Each bold line in the left-hand figure denotes a bidding function

given a certain number of sellers. If there is only one seller, then the bidding function

is significantly closer to truth-telling (the dashed line showing the function V = v)

than it is to the minimax regret bid, V = v
1+k

= 2v
3

. The bidding function approaches

2v
3

rapidly as the number of sellers increases. Likewise, the right-hand figure shows

how a seller will overstate his cost for any number of bidders, and the amount of

overstatement increases to 2(c+1)
3

as the number of buyers increases.

Figure 2.5: Bids and asks for traders that minimize expected maximum regret, at
various market sizes
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2.5 Third Approach: minimizing maximum

expected regret

In this section, I find sufficient conditions for price-taking behavior when traders use

multiple priors to minimize maximum expected regret. Unlike the traders examined

in the previous two sections, these new regret-minimizers do not have completely

unconstrained priors in any part of the decision problem. This difference is key to

the possibility of convergence to price-taking behavior.

2.5.1 Minimizing Maximum Expected Regret defined

This decision rule Stoye (2011b) refers to as Γ-minimax regret; he defines it in this

way:

Definition 3 Let Γ denote a set of probability distriubtions on S. An action a

attains Γ-minimax regret if

a ∈ arg min
a∈A
{max
π∈Γ
{
∫

max
a∗∈A

u(a∗, s)− u(a, s)dπ}}} (2.4)

This decision rule bridges the gap between expected utility maximization and

minimax regret, via the choice of the set of priors Γ. If Γ includes all possible priors,

then the prior(s) π that will maximize the expected regret of action a will be the

prior(s) assigning probability 1 to the event that u(a, s) = mins∈S u(a, s). Then

minimax expected regret will correspond to minimax regret. On the other hand, if

Γ is a singleton π, then the maximum expected regret of each action is simply the
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expected payoff under π. Then minimax expected regret will correspond to expected

utility maximization.

2.5.2 Sufficient Conditions for Convergence to Truthful

Bidding by Maximum Expected Regret Minimizers

Convergence to price-taking under this decision rule will depend on which priors the

trader includes in his set of priors Γ. This is clear from the range of decision rules

that are included in minimax expected regret. Minimax expected regret includes

minimax regret, which does not induce convergence to price-taking, when all priors

are included in Γ. It also includes expected utility maximization, which can induce

convergence to price-taking, when Γ is a singleton. The conditions on Γ that allow

for convergence is the subject of this section.

We introduce some additional notation here, in order to discuss clearly the possi-

bility of convergence to price-taking under a set of priors Γ. Converge will take place

(or fail) as the market grows, so we must specify how the market grows, as well as

the prior(s) that the agent applies to each market.

Let {(mi, ni)}∞i=1 be a sequence of markets. Market i has mi buyers and ni

sellers. Let Γ = {Γi}∞i=1 be the sequence of the bidder’s set of priors over the rival

bids and asks. Γi is the set of priors over ζ for market i. A typical member of Γ is

Gγ = {Gγ,i}∞i=1 where Gγ,i ∈ Γi is a joint distribution of the mth
i and mi + 1th order

statistics in the market of size (mi, ni).

Theorem 3 Suppose that the following conditions hold for Γ = {Γi}∞i=1:
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1. For each sequence of priors {Gγ,i} ∈ {Γi}∞i=1, for every ε ∈ (0, v), there exists

N(ε, Gγ) ∈ N such that for all i ≥ N(b,Gγ):

∫
u(v − ε, ζ(mi), ζ(mi+1))dFγ,i(ζ(mi), ζ(mi+1))

>

∫
u(b′, ζ(mi), ζ(mi+1))dGγ,i(ζ(mi), ζ(mi+1)) (2.5)

for all b′ < v − ε. That is, under each prior {Gγ}∞i=1 ∈ {Γi}∞i=1, the utility-

maximizing bid converges to v over the sequence of markets.

2. There exists a well-defined function

N(ε) = max
Gγ∈Γ
{N(ε, Gγ)} (2.6)

Then the bid that minimizes maximum expected regret under {Γi}∞i=1 converges to

truthful bidding over the sequence of markets {(mi, ni)}∞i=1.

This Theorem states that if the growth of the market, and the priors over the

distribution of bids and asks as the market grows, are such that an expected utility

maximizer would converge to truthful bidding under each of the priors in the set

(and the priors are bounded away from any priors which would fail to satisfy that

condition), then a minimax expected regret bidder will also converge to price-taking

behavior. Note that the growth of the market has been purposefully left undeter-

mined, as has been the ratio of buyers to sellers in the limit.

These are sufficient conditions for convergence to truthful bidding by traders

that minimize expected maximum regret. Are these conditions “easy” or “hard” to
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satisfy? Some examples of straightforward priors easily satisfy the conditions.

For example, if the trader believes that all of the bids and asks are iid draws from

some distribution f(·) which is bounded away from zero, then the regret minimizing

bid will approach truthful bidding as the number of other bidders becomes large.

From the theorem above, we can therefore conclude that a maximum expected regret

minimizer will converge to truthful bidding in any market in which the number of

bidders increases without bound, so long as each prior f in the set of priors Γ satisfies

f(x) > ε for some positive ε, for all x in the range of possible bids and asks.

Lemma 1 Let {(mi, ni)}∞i=1 be a sequence of markets in which the mi buyers ap-

proaches infinity. Let each Gγ = {Gγ,i}∞i=1 in Γ be a joint distribution of the mth
i and

mi + 1th order statistics in which all bids and asks are treated as (mi + ni − 1) iid

draws from a distribution fγ(x), where fγ(x) > ε > 0.

Then the bid that minimizes the maximum expected regret will approach truthful

bidding as i→∞.

2.6 Conclusion

This exploration of regret minimizing traders’ behavior in k-double auctions sug-

gests that including even one “bad” prior can wreak havoc on a trader’s tendency

to converge to price-taking behavior. If permitted to take into account any and all

such pathological priors, as in minimax regret, then traders will misrepresent their

redemption values, and never adjust their bids and asks in response to the market.

Restricting traders’ beliefs only regarding the other traders’ valuations and costs,
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but imposing no beliefs or equilibrium condition on traders’ strategies beyond ra-

tionalizability, does nothing to improve market outcomes. Minimax expected regret

using multiple priors can induce convergence to price-taking, if the “bad” priors are

avoided.
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Chapter 3

Information Aggregation in the
Common Value k-Double Auction

Abstract

This chapter studies minimax regret as the criteria with which traders choose their

bids/asks in auctions with common values. The analysis proves that minimax regret

traders change their bids as the number of traders in the market increases. In fact,

minimax regret traders’ bids and asks are invariant to the number of other traders

in the market. Whether traders can avoid the winner’s curse depends on the auction

rule and the distribution of private signals.

Keywords: double auctions; regret minimization; Knightian uncertainty; deci-

sion theory; mechanism design; common values

JEL Classification Numbers: D44, D81, D82, C72
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3.1 Introduction

The previous chapter dealt with sealed-bid auctions in which each trader has a private

redemption value. In this chapter, we turn our attention to common value auctions.

In a pure common value auction, the item(s) traded have the same value to all trader

in the market, but this true value is unknown to the traders. Instead, each trader

observes a private signal and estimates the true value.

An important question is how well the market will aggregate information – that

is, whether the market price will converge to the true value. The rational expecta-

tions hypothesis (Lucas, 1978) assumes that the price reflects all of the information

in the market. Since that idea’s introduction to economics and finance, the search

has been on for micro foundations to support it. Radner (1979) shows that if there

is a finite number of alternative states of initial information, a rational expectations

equilibrium is generic. Another step toward establishing such a micro foundation

is Reny and Perry (2006). In that model, traders have interdependent values and

affiliated private information. In a sealed bid double auction, the price converges to

the asset’s true value as the market grows. This convergence stems from individ-

ual bidders’ diminishing incentive to attempt to manipulate the price as the market

grows. That incentive diminishes in larger markets because the probability of be-

ing pivotal decreases in larger markets. The mechanism by which competition in

this market achieves convergence of the price to the true value strongly resembles

the mechanism by which a private-value double auction achieves convergence of the

market allocation to efficiency.

This chapter asks whether minimax regret traders will bid (and ask) in such a
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way that the resulting price(s) in an auction (or double auction) will converge to

the good’s true value. Minimax regret traders in common value auctions have been

studied before: Hayashi and Yoshimoto (2012) have created and calibrated a risk-

and regret- averse model for bidders in first price auctions. However, these traders

have not been studied in the double auction institution.

One of the contributions of this chapter is the introduction of a solution concept

that is similar to an equilibrium, but that is suitable for traders facing Knightian

uncertainty. Since equilibrium concepts generally involve correct beliefs about other

players, defining such a solution concept requires that Knightian Uncertainty extend

to only part of the decision problem. It is important to distinguish between the

different types of information that a trader playing the Bayes Nash equilibrium in

this game would use to determine his or her bid. The trader could be in a state

of Knightian uncertainty regarding the true value of the item (in which case, the

distribution of ω is unknown), or of the distribution of signals (in which case, the

distribution of s is unknown), or of the strategies of the other players, or of some other

aspect of the environment, such as the number of other bidders. In order for traders

to play an “equilibrium” strategy, they must have some beliefs about the strategies of

other players. It is still possible for traders to face Knightian uncertainty regarding

the distribution of other trader’s redemption values, while still holding beliefs about

what those traders will do given their redemption values. This is the approach to

“mutually minimizing maximum regret” defined in this chapter.

The following section sets up a pure common value model, and begins with exam-

ining one-sided auctions with minimax regret bidders. In a common value Vickrey

37



auction, the minimax regret bid is to bid one’s signal, and there is a winner’s curse.

In a common value first price sealed bid auction, the minimax regret bid is reduced

from one’s signal, and it is possible that the bidders will avoid the winner’s curse.

In fact, there is a “minimax regret equilibrium” in which the bidders make the most

“pessimistic” bids (that is, the bid equals the lowest possible value of the asset, given

the observed signal) and the price will converge to the true value of the asset as the

number of traders grows.

We next turn our attention to the k-double auction. In a common value k-

double auction, it is possible to induce both sides of the market to truthfully reveal

their signals when k = 1
2
. In this case, if the number of buyers and the number of

sellers converged to equal amounts as the market grows, then the market price would

converge to the value of the median signal.

3.2 Regret Minimizers in Common Value

Sealed-Bid Auctions

3.2.1 The Model

There are m buyers for at item. The true value of the item is ω ∈ Ω. This true value

is unknown to the bidders. Instead, each bidder observes a signal si ∈ (ω− ε, ω+ ε).

As a minimax regret decision maker who does not use a prior over the distribution

of his own or other signal, therefore, each bidder knows only that the true value ω is

within the range (si − ε, si + ε). It follows that any other bidders’ signals could be
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sj ∈ (si − 2ε, si + 2ε), depending on the state of the world.

3.2.2 Vickrey Auctions: Truthful Bidding, Winner’s Curse

Theorem 4 In a common value Vickrey auction, the minimax regret bid is bi = si.

This minimax regret strategy does not change with the number of bidders.

As a result of this truthful bidding, the price will be equal to the second-highest

signal. As long as the distribution of signals is such that the second-order statistic

approaches the maximum possible value for the signals (ω+ε), the price will converge

to ω+ε as the number of bidders increases. These minimax regret bidders do nothing

to avoid the winner’s curse in a Vickrey auction.

3.2.3 First Price Auction: Pessimistic Bidding, Reduced

Winner’s Curse

Lemma 2 In a common value first price sealed bid auction, a bidder who observed

signal si has the following maximum regret function:

supR = max{bi − inf{max
j 6=i

bj}, bi − si + ε, si + ε− bi} (3.1)

It is clear from the maximum regret function that the bidder’s minimax regret

bid depends on the lowest possible bid that the other bidders could place in the first

price auction. One way to approach this would be to define the set of feasible bids

(perhaps, any bid between zero and the highest possible value of the asset), and to

always take the lowest value in that set as the lowest possible bid.
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Lemma 3 Suppose that the minimax regret bidder in the first price auction always

considers a set of possible rival bids with minimum value of zero (no matter what

signal he observes). Then the bid which minimizes his maximum regret is

bi =


si if si ≤ ε

si+ε
2

if si > ε

(3.2)

The above approach does not take into account the bidder’s information about

other bidders’ signals that is provided by his own signal. However, a bidder who

observes the signal si knows that the other bidders’ signals cannot possibly be less

than si−2ε or greater than si+2ε. Therefore, an alternative approach readily suggests

itself. Instead of supposing that the other bidders could bid the lowest feasible bid,

no matter what signals they can have observed, the bidder might instead suppose

that the other bidders are using the same strategy that he himself is using, and that

their bids will only differ from his based on the difference in the signals that they

observe. It follows that the lowest rival bid that the bidder could observe, given his

own signal si and his bidding function b(·), would be b(si − 2ε).

Definition 4 Let b = (b1, b2, · · · , bn) be a vector of bidding functions in the first price

auction. If for for each bidder i, their bid minimizes the maximum regret function

given the bidding functions of the other bidders,

bi = arg min max{bi −max
j 6=i

bj(si − 2ε), bi − si + ε, si + ε− bi} (3.3)

then the bidders may be said to be mutually minimizing maximum regret.
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This alternative approach can be thought of as subjecting the distribution of

signals to Knightian uncertainty, but allowing bidders to form beliefs about the

strategies of their rivals.

The notion of finding a profile of strategies such that each trader is making his

or her best response to the others has some resemblance to an equilibrium concept.

The difference that distinguishes my approach from an equilibrium is that traders do

not use one particular belief for the distribution of other traders’ signals when they

choose their best response – much less an accurate belief about that distribution,

which is typically part of the equilibrium in a game of incomplete information. In

other words, traders do not have correct beliefs about the behavior of the “player”

Nature. However, they do have correct beliefs about the strategies of fellow-traders.

This approach can be justified if Nature is inscrutable in a way that other traders

are not. A trader may find it easy to imagine that other traders make decisions

in a manner similar to himself, for example; but the processes that determine how

traders’ information relates to the asset’s underlying value may be far more complex.

Theorem 5 If each bidder believes that the other bidders will reduce their bid from

their own signal by the maximum possible error,

b(s) = s− ε, (3.4)

Then this same bidding function will minimize the bidder’s own maximum regret.

Thus, bidders who reduce their bids from their signals by the maximum error ε will

mutually minimize maximum regret.
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When each bidder uses this minimax equilibrium strategy, the bidder with the

highest signal wins the item and pays the price p = si − ε. If it is the case that the

first order statistic of the signals converges to the highest possible signal ω+ ε as the

number of bidders grows, then the price converges to the true value of the asset ω.

The bidders do not experience a winner’s curse.

3.3 Regret Minimizers in Common Value

k-Double Auctions

We are now prepared to turn our attention to a more complicated setting: the k-

double auction.

3.3.1 The Model

As in the previous section, let the true value of the asset be ω, and let each trader

draw a signal si ∈ (ω − ε, ω + ε).

Let there be m sellers and n buyers. Each seller posses 1 unit of the asset.
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3.3.2 Minimax Regret Bid

Lemma 4 Let ζ̌(m) denote the lowest possible value of ζ(m) given the signal si ob-

served by the bidder. Then the minimax regret bid is

b =


s if s ≤ ε

k
+ ζ̌(m)

s+ε+kζ̌(m)

1+k
if s > ε

k
+ ζ̌(m)

(3.5)

Note that the buyer’s bid will be equal to or less than his signal.

3.3.3 Minimax Regret Ask

Lemma 5 Let ζ̂(m+1) denote the highest possible value of ζ(m+1) given the signal si

observed by the seller. Then the minimax regret ask is

a =


s if s ≥ ζ̂(m+1) − ε

1−k

s−ε+(1−k)ζ̂(m+1)

1+(1−k)
if s < ζ̂(m+1) − ε

1−k + ζ̌(m)

(3.6)

3.3.4 Mutual Minimax Regret Bids and Asks for Some

Values of k

Theorem 6 The following bid and asks functions mutually minimize maximum re-

gret.

1. If k = 0: b = s, and a = s+ ε
2
.

2. If k = 1: b = s− ε
2
, and a = s.
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3. If k = 1
2
: b = s, and a = s.

It is interesting that in a k-double auction with k = 1
2
, both the buyers and sellers

find that truthful bidding minimizes their maximum regret. With truthful bidding

in a common value auction, if the numbers of buyers and sellers is kept equal as

the market grows, the price will converge to the median signal – which for many

distributions would be the true value of the asset.

3.4 Conclusion

In general, the results of these pure common value models are not in line with the

experimental literature. In the laboratory as well as in the field, economists have

observed a winner’s curse. Bidders are not as “pessimistic” as the minimax regret

bidders in a first price auction. This should make us cautious about taking the

results of the model at face value. Nevertheless, it is instructive that minimax regret

bidders, although they do not use a prior over the distribution of signals, can be

induced to submit their true signals. The results for k-double auctions indicate that

balancing the influence of the buyers and sellers on the price can be important in

this setting for soliciting the true signals of both buyers and sellers.
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Chapter 4

The Symmetry Axiom and
Strategies Invariant to the
Number of Players

Abstract

We consider whether competitive pressures can induce traders to truthfully re-

port their private redemption valuations under Knightian uncertainty. Traders face

Knightian uncertainty if they know the possible outcomes of each available action,

but do not know each outcome’s probability. Such uncertainty may motivate use

of a decision rule other than expected utility maximization. Two such alternative

decision rules are maxmin and minimax regret. Stoye’s (2011) axiomatic charac-

terization of these decision rules reveals that there is one axiom that maxmin and

minimax regret share, and that distinguishes them from Bayes rule: the axiom of

symmetry.

We find that if agents use decision rules that accord with the symmetry axiom,

then their strategies will be invariant to the number of other players in the game.

Consequently, a market populated by traders that follow the symmetry axiom will

not converge to efficiency as the market grows.

Keywords: double auctions; regret minimization; Knightian uncertainty; deci-
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sion theory; mechanism design

JEL Classification Numbers: D44, D81, D82, C72

4.1 Introduction

4.1.1 Motivation and Background

A crucial aspect of the perfect competition model is that buyers and sellers are price-

takers who truthfully report their utility-maximizing quantity to produce or consume

at the market price, and do not attempt to manipulate prices. This is important

because when agents act as price-takers, the market outcome is efficient.

The justification for assuming price-taking behavior by strategic agents is that

in a market with many buyers and sellers, each individual is unlikely to affect the

terms of trade, and if he were to do so, his effect would be negligible. Thus, agents

that make their choices strategically to maximize their individual profit will find

that they cannot manipulate the market price in their favor by misrepresenting their

preferences. The same agent who would curtail supply if he had a monopoly will,

when competing with many other sellers, produce the quantity at which his marginal

cost equals the market price, taking the market price as given. For this reason,

efficiency can be predicted for a market populated by many agents, each of whom

believes that the size of the market attenuates the influence of individual traders of

similar size. The greater the number of buyers and sellers, the closer the market

outcome to efficiency.

46



A double auction market provides a model where the above reasoning can be

proven formally (Wilson, 1987). A complete model of such a market must specify

the information, preferences, and behavior of its agents. Typically, these models

assume that agents are strategic and capable of coordinating on an equilibrium in

which each agent maximizes von Neumann Morgenstern expected utility, calculated

based on prior beliefs which are common knowledge to all market participants. If we

take a broader view of possible ways to characterize agents in these models, we can

think of the agent as confronted with a decision problem that he may or may not

use prior beliefs to solve.

Given the importance of market efficiency, it is worthwhile to examine the extent

to which efficient market outcomes depend on the market participants’ information

and capabilities. We want to better understand what sort of agent will act as a

price-taker in a large double auction in order to identify the conditions under which

we can predict an efficient outcome for a market.

Efficiency of some double market institutions has been well established for cer-

tain types of agents. For example, we know that bidders who play Bayesian Nash

Equilibrium strategies in a k-double auction will converge to efficiency as the market

grows large (Rustichini, Satterthwaite and Williams, 1994). However, the Bayesian

Nash equilibrium solution concept brings with it significant limitations.

It may not be realistic to assume that traders have the capacity to calculate

and coordinate on a Bayesian Nash Equilibrium. One important reason for this is

that the traders may face Knightian uncertainty – uncertainty about the underlying

distribution of other traders’ types, along with uncertainty about the realization of
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those types (Luce and Raiffa, 1957). A Bayesian trader’s response to such Knightian

uncertainty is to adopt a prior, but we may have good reason to reject this approach.

Even adopting a uniform prior asserts some knowledge about a decision problem,

knowledge that the decision maker may not have: the knowledge of which states of

the world are relevant and how they relate to the decision-makers payoffs. If the

decision-maker’s ignorance is so complete that he does not know what the relevant

characteristics of events are, then his decision rule ought not depend on the way he

has chosen to specify the problem (Arrow and Hurwicz, 1972). A decision rule that

reflects this kind of uncertainty will be significantly different from Bayesianism.

Since alternatives to Bayesian traders have these attractions, it is worthwhile to

consider carefully what we are giving up when we give up Bayesianism. We can take

alternative decision rules (such as minimax regret and maxmin) on a case-by-case

basis, but the conclusions that follow are then very narrow. Instead, this chapter

investigates the axioms that may characterize agents’ decision rules. Considering the

axioms that underpin the decision rules allows us to draw conclusions about whole

classes of decision rules.

4.1.2 Related Work

This chapter is related to the literature on decision-making under Knightian uncer-

tainty, and more particularly to work that applies alternatives to expected utility

maximization to bargaining and auctions.

Linhart and Radner (1989) have studied bilateral bargaining for minimax regret

agents. They find that players minimizing maximum regret will realize expected gains
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from trade equal to half of the potential expected gains from trade. In contrast, the

Bayesian Nash equilibria in the same setting yield expected gains from trade ranging

from 0 in the no-trade equilibrium, to 84.4% in the “second-best” equilibrium that

can be achieved under incomplete information (p. 173).

One application of our main result is that the per capita expected gains from

trade realized by minimax regret agents do not improve if we change the setting

from the bilateral case to a larger market. In contrast, the “second best” Nash

equilibrium converges to efficiency as market size increases (Aldo Rustichini, Mark A.

Satterthwaite and Steven R. Williams, 1994, Theorem 3.2), as per capita market

inefficiency is O(1/m2), where m is the number of buyers.

Thus, you could say that we are faced with a tradeoff. On the one hand, the

minimax regret approach has the advantage of offering a single and straightforward

recommendation to the decision-maker. On the other hand, this same recommenda-

tion is made in all markets regardless of the market’s size! If this offends our intuition

of how we think traders ought to behave in large markets, or how we expect traders

actually do behave, then we may conclude that the large double market is one of the

cases in which minimax regret simply does not seem plausible.

Finding a limitation in the usefulness of minimax regret does not negate that

decision rule’s value. It is certainly legitimate to vary one’s choice of decision rules

depending on the type of decision being made. However, we may have a broader

goal in mind – a goal to understand what assumptions on human behavior do the

best job of generating intuitive results for both bilateral bargaining and large market

settings. It is with this goal in mind that this chapter investigates the characteriza-
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tion and consequences of a variety of decision rules. Stoye (2011b) provides a helpful

overview of decision rules for Knightian uncertainty; his characterizations of Bayes

Rule, maxmin, and minimax regret, are the basis of this chapter’s approach.

4.2 Decision Problems Under Knightian

Uncertainty

This section will consider decision rules from a more general perspective than the

double auction. We will return to the double auction in section ??ecision problems

involve a set of acts A available to the decision-maker, the set of possible states

of the world S, and the outcome u ∈ U that results in the state s ∈ S given the

decision-maker’s action a ∈ A. We may find it useful to think of the decision-maker

as having a payoff function u : S ×A → R.

Example 5 Suppose that a decision-maker has a choice between two actions, a1 and

a2, whose payoffs depend on the realization of random variable s that has support [0, 1]

and unknown distribution:

u(a1, s) =


5 if 0 ≤ s < 1

2

1 if 1
2
≤ s < 1

(4.1)
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u(a2, s) =


1.5 if 0 ≤ s < 1

3

2.5 if 1
3
≤ s < 2

3

3.5 if 2
3
≤ s < 1

(4.2)

In Figure 4.1, the payoff of a1 is shown in a solid line and the payoff of a2 is shown

in a dashed line.

State s

u(a, s)

a1

a2

Figure 4.1: A Decision Problem Example

Section 4.2.1 explores three decision rules, and considers how each one handles

this straightforward decision problem.

4.2.1 Three Decision Rules

A decision rule specifies what a decision maker will do given a menu A of possible

actions. In the following sections, we will characterize various decision rules using

axioms that apply to decision makers’ preferences %. Let %A denote a preference

relation over the actions available in the menu A. A preference relation is defined
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to be a binary relation % that is reflexive (a % a for all actions a) and transitive (if

a1 % a2 and a2 % a3, then a1 % a3) (Fishburn, 1970). From % we can derive relations

� and ∼ in the usual way.

Expected Utility

Maximizing expected utility depends on a prior that assigns a probability to each

state of the world.

Definition 6 Let π be a probability distribution on S. An action a maximizes ex-

pected utility under prior π if

a ∈ arg max
a∈A

∫
u(a, s)dπ. (4.3)

Example 6 (continued) An expected utility maximizer’s preferences over a1 and

a2 depend, of course, on his subjective prior concerning the probability of the possible

realizations of s. If, for example, the decision maker has a uniform prior (treating

all possible values of s as equally likely) then the expected payoff of a1 is 3 and the

expected payoff of a2 is 2.5, so a1 would be preferred.

Maxmin

This decision rule was first proposed by Wald (1945).

Definition 7 An action a attains maxmin payoff if

a ∈ arg max
a∈A

min
s∈S

u(a, s) (4.4)
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Example 7 (continued) Under maxmin, a2 % a1. The minimum payoff under a2

is 1.5, which is higher than the minimum payoff under a1 of 1.

Minimax Regret

Minimax regret was suggested by Savage (1951) as an alternative to maxmin.

Definition 8 An action a attains minimax regret if

a ∈ arg min
a∈A

max
s∈S
{max
a∗∈A

u(a∗, s)− u(a, s)}} (4.5)

The action(s) minimizing maximum regret are identified by calculating the max-

imum regret that could be incurred under each action. The regret for a particular

action in a particular state is calculated by comparing that action’s payoff to the

maximum possible payoff in the same state.

Example 8 (continued) In our example decision problem, the optimal action in

each state of the world is:

a∗ =


a1 for s < 1

2

a2 for s ≥ 1
2

(4.6)
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Therefore, the regret function R(a, s) for each action is:

R(a1, s) = u(a∗(s), s)− u(a1, s) =


0 for s < 1

2

1.5 for 1
2
≤ s < 2

3

2.5 for 2
3
≤ s < 1

(4.7)

R(a2, s) = u(a∗(s), s)− u(a2, s) =


3.5 for s < 1

3

2.5 for 1
3
≤ s < 1

2

0 for 1
2
≤ s < 1

(4.8)

Thus, when we apply the minimax regret decision rule to our example, a1 % a2. The

maximum regret when a2 is chosen is 3.5. The maximum regret when a1 is chosen

is 2.5.

From the standpoint of a person accustomed to working with expected payoffs,

it may seem that the maxmin and the minimax regret decision rules operate by

choosing a “pessimistic” prior – a prior that assigns higher probability to events

with very low or very high payoffs. The truth is subtly different. These decision

rules do not stick to a single pessimistic prior by which each action is evaluated.

Instead, these decision rules evaluate each action by focusing exclusively on the state

in which the payoff is lowest or the regret is highest for that action. Of course, this

is equivalent to using a prior that assigns probability 1 to the event that corresponds

to this extreme outcome. However, the prior that is used to evaluate action a1 may

54



be very different from the prior that is used to evaluate action a2.

4.3 Axioms for Decision Problems Under

Knightian Uncertainty

4.3.1 Four Key Axioms

Stoye (2011) supplies a useful axiomatic analysis of decision rules under Knightian

uncertainty. Completeness, von Neumann Morgenstern independence, independence

of irrelevant alternatives, and symmetry are four key axioms in his formulation.

Completeness

Definition 9 For any actions a1, a2, and menu A containing {a1, a2}: a1 %A a2 or

a2 %A a1.

In other words, any two payoff functions can be compared with one another.

von Neumann Morgenstern Independence

Definition 10 a1 % a2 ⇔ δa1 + (1− δ)a3 % δa2 + (1− δ)a3 for all δ ∈ [0, 1].

In defense of this axiom, Stoye puts forward the following example. Suppose that

a person is considering two payoff functions, a1 and a2. If the decision maker is told

that his choice will only be enacted with probability δ, and that otherwise he will get

payoff function a3, will that have any effect on his preferences? The independence

axiom says no – even if a3 provided a hedge against a2.
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Because independence is foundational to expected utility theory, this indepen-

dence condition seems very reasonable – especially to a person accustomed to eval-

uating alternatives based on expected payoffs. Human behavior does not always

conform to this axiom, however. This is demonstrated in the Allais paradox.1

Abandoning independence in order to conform to the preferences revealed in the

Allais paradox is costly. If a decision rule does not satisfy independence (but is an

ordering that respects stochastic dominance), then it will fail “sequential coherence”

(Seidenfeld, 1988, p. 281)

Given its importance for guaranteeing coherent choices, independence seems to

be a reasonable axiom in the context of an auction.

Independence of Irrelevant Alternatives

In decision theory, Marschak and Radner (1954) formulated Independence of Irrele-

vant Alternatives (IIA-RM) in the following way.2

Definition 11 If a1 %{a1,a2} a2, then for any menu A containing {a1, a2}, a1 %A a2.

1Maurice Allais constructed two decision problems, each a choice between two lotteries. A
decision-maker is first asked to choose between the following two lotteries: lottery A yields a payoff
of 100 with certainty; lottery B yields a payoff of 500 with probability .1, 100 with probability .89,
and zero with probability .01. In the second decision problem, lottery C yields a payoff 100 with
probability .11 and zero with probability .89; lottery D yields a payoff of 500 with probability .1,
and zero with probability .9. Faced with these two decision problems, decision-makers often prefer
lottery A over lottery B but prefer lottery D over lottery C. In fact, lotteries C and D are the same
as lotteries A and B, respectively, with the simple change that an 89% chance of winning 100 is
replaced with an 89% chance of winning nothing. Thus, preferring A to B but preferring lotteries
D to C violates von Neumann Morgenstern Independence. One way to interpret this inconsistency
of revealed preferences is that people over-value complete certainty.

2There are multiple versions of Independence of Irrelevant Alternatives. The title has been given
to conditions used in social welfare theory, decision theory, and probabilistic choice (Ray, 1973).
Arrow (1987) described the difference between IIA-RM and his definition of a related idea that he
used in his famous impossibility theorem in this way: IIA-RM “refers to variations in the set of
opportunities, mine to variations in the preference orderings.”
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The appeal of Independence of Irrelevant Alternatives is easily illustrated. It would

be strange for a decision maker to select apple pie from a menu of apple and blueberry,

but switch his order to blueberry once he is informed that cherry pie is also available.

On the other hand, it may be reasonable to violate IIA if the existence of alternatives

reveals information (Luce and Raiffa, 1957, p. 288).

In the context of an auction, the existence of alternatives is unlikely to reveal

information about the rival bids. One might consider, however, the possibility that

strategic considerations could cause a bidder to violate IIA. If a bid becomes avail-

able or unavailable, it is worthwhile to consider the possibility that knowing this

could influence the strategy of other bidders and therefore the expected payoff of the

bidder’s bid.

For its role in providing a foundation in evaluating outcomes based on expected

utility, however, Independence of Irrelevant Alternatives is unlikely to be rejected in

an auction setting.

Symmetry

The axiom of symmetry is motivated by a desire not to give undue weight to any

state of the world. The agent is unwilling to express preferences that would imply

a knowledge of the relative likelihood of separate events. Therefore, a preference for

one action over another should be unaffected if the outcome attributed to a certain

state – or set of states – is swapped with the outcome of another state. Essentially,

the symmetry axiom requires that the decision rule not be manipulable by changes

in the way that the outcomes are associated with states of the world. A change to
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the list of states can be conceived as a function ψ : S → S. The definition below

specifies what sort of changes to the state space are permissible.

Condition 12 ψ : S → S preserves the profile of outcomes if ψ(s1) = ψ(s2) ⇒

u(a, s1) = u(a, s2) for all actions a ∈ A.

We make a few observations about this way of transforming the set of states

before introducing the axiom of symmetry.

First, any simple re-labeling of states preserves the profile of outcomes. For

instance, in our example with state space S = [0, 1], the transformation

ψ(s) = 1− s (4.9)

is a bijection that clearly preserves the profile of outcomes. In fact, any bijection

ψ : S → S will satisfy the above definition, simply because ψ(s1) = ψ(s2) implies

that s1 = s2.

Second, in some decision problems, the measure of some events could be expanded

while the measure of other events could be reduced. This is possible for a decision

problem in which multiple states of the world have identical outcomes, as in example

2 above. A “constant payoff event” (that is, a set of states, all of which yield the

same payoff under each action available to the agent) can be swapped with a constant

payoff event that has a very different measure. Such a transformation is described

below for our decision problem example.

Finally, as long as a transformation ψ preserves the profile of outcomes, we cannot

“lose” any event completely. That is, if there is some state of the world s, then some
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state of the world s̃ = ψ(s) so that u(a, s̃) = u(a, ψ(s)). Most notably, the minimum

payoff and the maximum payoff achieved by each action will remain unchanged.

Armed with this understanding of preserving the profile of outcomes, we supply

a formal definition of the symmetry axiom.

Definition 13 Consider an agent’s preferences over actions A. Let ψ : S → S be

any function that preserves the profile of outcomes. Define a transformation of the

payoff of each act ai ∈ A in the following way: u′(ai, s) ≡ u(ai, ψ(s)). Then %A

satisfies the axiom of symmetry if: a1 % a2 in the original problem ⇔ a1 % a2 in the

transformed decision problem.

Example 14 Consider the decision problem from the previous example. We will

demonstrate an application of the symmetry axiom for this decision problem.

Take two disjoint events E and F , each of which yields constant profit under

a1 and a2. Let E be the event that s ∈ [0, 1
3
). For any s ∈ E, u(a1, s) = 5 and

u(a2, s) = 1.5. Let F be the event that s ∈ [1
2
, 2

3
). For any s ∈ F , u(a1, s) = 1 and

u(a2, s) = 2.5.

Consider the effect of exchanging the payoffs under events E and F for each

action. This can be accomplished by any number of transformations ψ. For example,

ψ(s) =



1
2

if 0 ≤ s < 1
3

0 if 1
2
≤ s < 2

3

s otherwise

(4.10)
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It is straightforward to verify that this transformation preserves the profile of

outcomes.

In effect, we now have a new decision problem, where the payoffs of a1 and a2 are

u′(a1, s) =


1 if 0 ≤ s < 1

3

5 if 1
3
≤ s < 2

3

1 if 2
3
≤ s < 1

(4.11)

u′(a2, s) =


2.5 if 0 ≤ s < 1

2

1.5 if 1
2
≤ s < 2

3

3.5 if 2
3
≤ s < 1

(4.12)

State s

u(a, s)

a1

a2

State s

u′(a, s)

a1

a2

Figure 4.2: A Transformation of Decision Problem Example
Figure 4.2 illustrates this transformation. The payoffs of action a1 are shown in
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solid lines; payoffs of action a2 are shown in dashed lines. Symmetry requires that if

a1 % a2 in the decision problem pictured on the left, those same preferences hold in

the decision problem pictured on the right.

In each decision problem, a2 maximizes the minimum payoff, and a1 minimizes

maximum regret. This consistency is to be expected, since those decision rules satisfy

the axiom of symmetry.

However, consider the case of a utility maximizer. It is obvious that his choice

betwen a1 and a2 depends on his prior, and that even if a1 % a2 in the first decision

problem it need not follow that a1 % a2 in the transformed decision problem. For

example, if he applies the uniform prior to the transformed decision problem, then

the expected profit of a1 is 21
3

and the expected profit of a2 is 22
3
, so that a2 % a1, even

though a1 % a2 under the uniform prior in the original decision problem. Applying

the uniform prior violates the axiom of symmetry in this example.

Section 4.3.2 discusses the difference between symmetry and the principle of in-

sufficient reason.

4.3.2 Further Discussion of Symmetry

It may be surprising that a Bayesian decision-maker using uniform prior will fail to

satisfy symmetry, since a uniform prior assigns the same probability to each state of

the world. Take for example the following decision problem.

We might imagine that one could guarantee that one was treating each state

“equally” if the preferences over a1 and a2 were unchanged when the outcome of two

states were swapped, as in the following decision problem.
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s1 s2 s3

a1 3 3 9
a2 6 6 0

Table 4.1: A Decision Problem with Three States

s1 s2 s3

a1 3 9 3
a2 6 0 6

Table 4.2: Swapping Columns in a Decision Problem

The second decision problem can be derived from the first by a bijection on the

states of the world, ψ : S → S such as:

ψ(si) =


s1 if i = 1

s2 if i = 3

s3 if i = 2

(4.13)

Note that under a uniform prior (where the probability of si = 1
3

for all si), the

expected utility of a1 is 5 and the expected utility of a2 is 4 in each decision problem.

In fact, relabeling the states of the world (when there is a finite countable number

of states) will not change the expected utility of any action, under a uniform prior.

(On the other hand, if the number of states is uncountable, as when the state of

the world is a random variable z ∈ [0, 1], then we must be careful not to change the

measure of any event by our transformation.)

The above example outlines how a uniform prior can select an action consistently

even after a careful relabeling of states. However, adoption of a uniform prior asserts
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a confidence in the agent’s understanding of the structure of the decision problem

– confidence that an agent faced with Knightian uncertainty may not possess. Ar-

row and Hurwicz (1972) described the difficulty eloquently: “a state of nature is a

complete description of the world. But how we describe the world is a matter of

language, not of fact.” After all, if in the decision problem above, the agent were to

discover that states of the world s1 and s2 correspond to the descriptions “the next

vehicle is a red bus” and “the next vehicle is a blue bus,” respectively, whereas s3

corresponds to the description of the world “the next vehicle is a taxi or a shuttle,”

the decision-maker might want to change the structure of the decision table! He

could do so, while still preserving the profile of payoffs, with a transformation such

as the following:

ψ(si) =


s1 if i = 3

s3 otherwise

(4.14)

This function ψ preserves the profile of outcomes. It swaps the constant payoff event

{s1, s2} with the constant payoff event {s3}.

Applying ψ, we have a new decision problem:

s1 s2 s3

a1 9 3 3
a2 0 6 6

Table 4.3: Duplicating and Combining Columns in a Decision Problem

Effectively, we have combined two columns in the decision problem, while simul-

taneously duplicating another column.
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Thus, we can think of the axiom of symmetry as allowing us to relabel columns,

and also to combine or duplicate columns in a decision problem. In a decision

problem with a finite and countable number of states, such as the example discussed

here, this power to combine or duplicate columns has some limitations, if it can

only be accomplished via a transformation ψ : S → S as we defined in Condition 12.

However, this simple example demonstrates that even in a decision problem involving

just three states of the world and two constant-payoff events, Bayes Rule may run

into serious problems with the axiom of symmetry. Even when using a uniform prior,

Bayes Rule and the axiom of symmetry are incompatible.

4.3.3 Additional Axioms

The following axioms are also key to Stoye’s formulation, although he does not

emphasize them as he does the axioms above.

Definition 15 Mixture Continuity. For any acts a1, a2, a3 and menu A containing

{a1, a2, a3}: The sets {δ ∈ [0, 1] : δa1 + (1 − δ)a3 %A a2} and {δ ∈ [0, 1] : a2 %A

δa1 + (1− δ)a3} are closed.

Definition 16 Ambiguity Aversion. For any acts a1, a2 and menu A containing

{a1, a2}, a1 ∼A a2 implies δa1 + (1− δ)a2 %A a2 for all δ ∈ (0, 1).
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4.4 Axiomatic Characterization of Decision

Rules

Consider an ordering over the actions in action set A that satisfies mixture continuity

and ambiguity aversion. Then:

(i) An ordering satisfies completeness, von Neuman Morgenstern independence and

independence of irrelevant alternatives if and only if it is Bayes’ Rule (Fishburn,

1970).

(ii) An ordering satisfies completeness, independence of irrelevant alternatives, and

symmetry if and only if it is maxmin (Milnor, 1954).

(iii) An ordering satisfies completeness, von Neuman Morgenstern independence,

and symmetry if and only if it is minimax regret (Stoye, 2011b).

Symmetry, then, is what distinguishes Bayes rule from maxmin and minimax

regret; Bayes rule does not satisfy symmetry, while the other two decision rules do

satisfy symmetry. So, in order to better understand what we give up when we give

up Bayesianism and turn to either maxmin, minimax regret, or any other decision

rule that satisfies symmetry, we turn to a study of the symmetry axiom and what

its introduction implies for agents’ behaviors in an auction market.
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4.5 Consequences of the Symmetry Axiom in

k-Double Auctions

We begin with some general observations on applying the axiom of symmetry to a

model of a double auction.

First, it is well-understood that the symmetry axiom excludes the use of priors.

This has important implications for how a bidder will choose his bid in a double

auction. Economists are accustomed to assuming that bidders will maximize their

expected profit (or expected utility) according to their beliefs about the distribution

of rival bids. If instead a bidder is unwilling or unable to calculate expected profit,

then his decisions will be based on the various possible payoffs given a certain action,

but not on how likely it is that each payoff will be realized.

Second, symmetry may offend our intuition about the relative “size” of events in

a double auction. This is a direct result of the first point.

Third, it may (frequently) be the case that the bidders in an auction have enough

knowledge of the market environment that symmetry is unreasonable. The relative

“size” of events may be something that we expect bidders to have a basis for a

subjective prior, even if they are not familiar with the details of a particular auction

setting.

Fourth, we cannot deem symmetry to be “reasonable” or “unreasonable” for

a particular market institution. The symmetry axiom was formulated for decision

problems with complete uncertainty. Such a radical form of uncertainty may be rare,

but when it holds, requiring symmetry is reasonable. Since we do not believe that the
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institution necessarily implies anything about the bidder’s knowledge or ignorance of

the the proper description of the states of the world, we cannot make any assertions

about the appropriateness of requiring symmetry in a particular market institution.

4.5.1 In a k-Double Auction, the Symmetry Axiom Results

in Bid Invariance to Market Size

Suppose that a trader in a k-double auction selects his bid or ask using a decision

rule that satisfies the symmetry axiom. We can prove that such a trader will choose

the same action regardless of the size of the market.

In order to show that this is the case, we need to define events in such a way

that swapping the consequences of disjoint constant-profit events will transform the

profit function of a given bidding strategy to the profit function of the same bidding

strategy given a different number of bidders. With this in mind, we define the state

of the world so that it includes information applicable to two hypothetical markets

of different sizes: one with m buyers and n sellers, and the other with m′ buyers and

n′ sellers. Let the state of the world be

s = (ζ(1), ζ(2), ..., ζ(m+n−1), ξ(1), ξ(2), ..., ξ(m′+n′−1))

where ζ(1) < ζ(2) < ... < ζ(m+n−1) are the submitted bids and asks of m − 1 buyers

and n sellers, and ξ(1) < ξ(2) < ... < ξ(m′+n′−1) are the submitted bids and asks of

m′ − 1 buyers and n′ sellers.3 Note that in a double auction with m buyers, what

3We do not consider how these bids and asks may be derived from bid and ask functions and
underlying distributions of valuations and costs, because we are not concerned with finding an
equilibrium.
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matters to a bidder’s payoff are the mth and m + 1th highest bids/asks. We may

therefore abbreviate the state of the world’s description:

s = (ζ(m), ζ(m+1), ξ(m′), ξ(m′+1)).

We define ui(z) as the trader’s utility from placing the bid bi against the m−1 other

buyers and n sellers whose actions result in ζ(m) and ζ(m+1). We assume that this

payoff is a strictly increasing function of the trader’s profit.

Let % be the bidder’s preferences over a menu of payoff functions {ui}i∈M . Appli-

cation of the symmetry axiom requires that for any menu of payoff functions {u′i}i∈A

that can be derived from swapping the payoffs of constant-profit events, the same

preferences must hold. We will transform the payoff functions in such a way that

the new payoff functions {u′i}i∈A are the payoffs from the bidder’s profit when he is

bidding against the m′ + n′ − 1 rivals that place bids (ξ(1), ξ(2), ..., ξ(m′+n′−1)).

This set-up is not intended to model a situation in which the bidder does not

know how many bidders he will face. It may be more helpful to imagine instead

that the bidder has been placed in a room with a certain number of traders, and

that another auction, being conducted in the next room, has a different number of

traders. We will show that in such a scenario, his behavior would be the same no

matter which room he was placed in.

Lemma 6 For any ζ ∈ Zm+n−1, there exists ξ ∈ Zm′+n′−1 such that u(b, ζ) = u(b, ξ)

for any possible bid b ∈ Z.

Theorem 7 Suppose that a bidder’s preferences over possible bidding strategies %S

satisfies the symmetry axiom. Consider a menu of possible bids A containing at least
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two possible actions, bids b1 and b2. If b1 %SA b2 when there are n sellers and m− 1

rival bidders, then b1 %SA b2 when there are n′ sellers and m′−1 rival bidders. In fact,

all of the preferences over actions in A remain unchanged regardless of the number

of traders in the market.

The proof is given in the appendix. The intuition behind this result is quite

simple. Any bidding strategy that satisfies symmetry does not depend on the prob-

ability that the bid will win - something that changes with the number of bidders.

It depends, instead, on extreme outcomes - for example, the best and/or the worst

payoffs possible given his bid, or perhaps the maximum possible regret - something

that does not change with the number of bidders. Therefore, it is clear that the

number of bidders will not affect the bidding strategy.

4.5.2 Discussion

The fact that symmetry requires that bidder’s strategies be invariant to the size of

the market has important implications for the market’s convergence to efficiency.

The proofs for convergence of double auctions to efficiency which assume that bid-

ders play their Bayesian Nash Equilibrium strategies usually prove that the outcome

converges to efficiency because when there are more traders in the market, the advan-

tage of misrepresenting one’s own true redemption value diminishes. Each trader’s

strategy converges to truthful reporting, so the outcome of the auction converges to

the efficient outcome.

In contrast, if the market is populated by traders whose strategies are not based

on these considerations, but instead are selected to satisfy symmetry, then increasing
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the size of the market will not matter. As long as the “best case” and “worst case”

outcomes remain unchanged, the asks and bids of such traders will remain the same.

If they act as price-takers even in the bilateral case, then they will achieve efficiency

in large markets as well. But increasing the size of the market will not bring their

behavior closer to price-taking. This “negative result” concerning decision rules

that satisfy the axiom of symmetry sharpens our understanding of the necessary

conditions for convergence to price-taking behavior.

4.6 Conclusion

These results sharpen our understanding of the beliefs necessary for a market to

converge to efficiency as the number of traders in the market grows. The theorem

demonstrates that an trader with unrestricted beliefs about the distribution of rival

bids and asks will not change his behavior even if he knows that the size of the

market has changed. This reinforces the lessons learned in Chapters 2 of this dis-

sertation. Unrestricted beliefs prevent convergence to price taking in private value

double auctions. Unrestricted beliefs will result in invariant strategies in common

value double auctions, as well.

Moreover, this insight into the nature of minimax regret and maxmin – and any

other decision rule that satisfies the axiom of symmetry – has implications beyond

the double auction. Not only in the double auction, but in any game for which the

number of players does not change the “profile of outcomes”, such decision rules will

choose strategies invariant to the number of players. This result could be applied to
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the public contribution games, in which the size of the group is typically thought to

affect the group’s chances of funding a public good (Chamberlin, 1974).

71



Appendix A

Proofs for Chapter 2

Theorem 1 In a k-double auction, the bid bi that minimizes maximum regret for

a buyer with private valuation vi is bi = vi
1+k

. The ask ai that minimizes maximum

regret for a seller with private cost ci is ai = ci+(1−k)
1+(1−k)

Proof: Buyer i’s profit is his valuation minus the price if he wins a unit of the

good, and zero if he does not win. In the case that he wins, the price that he pays

will be kζ(m+1) + (1− k)ζ(m) if his own bid is greater than ζ(m+1), or kbi + (1− k)ζ(m)

if his own bid is between ζ(m) and ζ(m+1):

ΠB =


vi − (kζ(m+1) + (1− k)ζ(m)) if ζ(m+1) < bi

vi − (kbi + (1− k)ζ(m)) if ζ(m) < bi < ζ(m+1)

0 if bi < ζ(m)

(A.1)

For any set of rival bids and offers ζ, the supremum of buyer i’s possible profit is

Π∗B =


vi − ζ(m) if ζ(m) ≤ vi

0 if ζ(m) > vi

(A.2)
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Then the buyer’s regret function is

RB =



k(ζ(m+1) − ζ(m)) if ζ(m) ≤ vi and ζ(m+1) < bi

k(bi − ζ(m)) if ζ(m) ≤ vi and ζ(m) < bi < ζ(m+1)

vi − ζ(m) if ζ(m) ≤ vi and bi < ζ(m)

0 if ζ(m) > vi and bi < ζ(m)

(A.3)

In the first two cases, the buyer’s regret is from winning at a higher price than

necessary; in the third case, the buyer regrets failing to win a unit when the price is

less than his valuation. The buyer’s regret is zero if ζ(m) is higher than his valuation.

We omit the case that the buyer wins at a price higher than his own valuation,

because the regret resulting from that action will always be at least as great as

bidding vi, and sometimes greater, so we eliminate the possibility of bidding more

than vi.

The supremum of the buyer’s regret function is

supRB = max(kbi, vi − bi, 0) (A.4)

The first term is increasing in buyer i’s bid bi; the second term is decreasing in bi.

(Each of the first two terms are greater than zero for all bi < vi.) The maximum

regret is minimized when kbi = vi − bi. Therefore, a buyer choosing his bid pj to

minimize this function will bid vi
1+k

.

The calculations for the seller’s minimax regret ask are similar to the calculations
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for the buyer.

ΠS =


(kζ(m+1) + (1− k)ζ(m))− ci if ai < ζ(m+1)

(kζ(m+1) + (1− k)ai)− ci if ζ(m) < ai < ζ(m+1)

0 if ai > ζ(m+1)

(A.5)

For any set of rival bids and offers ζ, the supremum of seller i’s possible profit is

Π∗S =


ζ(m+1) − ci if ci ≤ ζ(m+1)

0 if ζ(m+1) < ci

(A.6)

Then the seller’s regret function is

RS =



(1− k)(ζ(m+1) − ζ(m)) if ζ(m+1) ≥ ci and ai < ζ(m+1)

(1− k)(ζ(m+1) − ai) if ζ(m+1) ≥ ci and ζ(m) < ai < ζ(m+1)

ζ(m+1) − ci if ζ(m+1) ≥ ci and ai > ζ(m+1)

0 if ζ(m+1) < ci and ai > ζ(m+1)

(A.7)

The supremum of the seller’s regret function is

supRB = max((1− k)(1− ai), ai − ci, 0) (A.8)

The first term is decreasing in the seller’s ask ai; the second term is increasing in

ai. (Each of the first two terms are greater than zero for all ai > ci.) The maximum
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regret is minimized when (1 − k)(1 − ai) = ai − ci. Therefore, a seller choosing his

ask ai to minimize this function will choose ai = ci+(1−k)
1+(1−k)

. �

Theorem 2 Let F̃ denote the cumulative distribution function of the lowest cost

among the n sellers in the market. The bid bi that minimizes expected maximum

regret for bidder i with valuation vi satisfies

F̃ ( (k+1)bi−vi
k

) = F̃ (bi)
1+k

Such a bid bi exists on the interval
[
vi

1+k
, vi
]
.

Similarly, let G̃ denote the cumulative distribution function of the highest valua-

tion among the m sellers in the market. The ask ai that minimizes expected maximum

regret for seller i with cost ci satisfies

G̃(ai(1+(1−k))−ci
1−k ) = G̃(ai)+(1−k)

1+(1−k)

Such a bid ai exists on the interval
[
ci,

ci+(1−k)
1+(1−k)

]
.

Proof: Each seller’s ask is bounded below by his cost. Each bidder’s bid is

bounded above by his valuation. It follows that:

• The lower bound of ζ(m) is the lowest realized cost, c(1). Since there are m

buyers, the lowest m bids not including bidder i’s bid must include at least one

seller. The m− 1 buyers can submit arbitrarily low bids. In every state of the

world, it is possible for all of the rival bidders to submit bids of 0 - however

“farfetched” that may seem. The lowest ask, however, cannot be less than c(1).

• The upper bound of ζ(m+1) is 1. It is possible for n − 1 sellers to all submit

asks of 1, since their asks are bounded above only by the highest price that

any buyer could conceivably be willing to accept.
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For this reason, we need only consider the distribution of the lowest realized cost,

c(1), when we calculate the expected maximum regret1. The maximum regret for a

bid bi < vi given the realization of costs c and values v is

RB(bi|v, c) =


0 if c(1) > vi

max{vi − bi, k(bi − c(1))} if vi ≥ bi ≥ c(1)

vi − c(1) if vi ≥ c(1) > bi

(A.9)

In the second case, where the lowest realized cost c(1) is less than the bidder’s bid bi,

the maximum regret could result from bidding more than necessary or from bidding

less than necessary, depending on the value of c(1):

vi − bi < k(bi − c(1)) (A.10)

⇒ c(1) <
(k + 1)bi − vi

k
(A.11)

Since costs of the sellers are independently and identically distributed with cdf F ,

the smallest cost realized by n sellers is has cdf F̃ (c) = 1− (1− F (c))n. Therefore,

RB(bi|vi) =

∫ b∗

0

k(bi − c)dF̃ (c) +

∫ bi

b∗
(vi − bi)dF̃ (c) +

∫ vi

bi

(vi − c)dF̃ (c) (A.12)

Where b∗ = (k+1)bi−vi
k

. If bi ≤ vi
1+k

, then the first term disappears:

RB(bi|vi) =

∫ bi

0

(vi − bi)dF̃ (c) +

∫ vi

bi

(vi − c)dF̃ (c) (A.13)

1The following discussion follows Linhardt and Radner (1989) closely.
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Integrating by parts,

RB(bi|vi) =


k

∫ (k+1)bi−vi
k

0

F̃ (c)dc+

∫ vi

bi

F̃ (c)dc if bi >
vi

1+k∫ vi

bi

F̃ (c)dc if bi ≤ vi
1+k

(A.14)

Differentiating the expected regret function with respect to bidder i’s bid bi,

d

dbi
RB =


(k + 1)F̃ ( (k+1)bi−vi

k
)− F̃ (bi) if vi

1+k
≤ bi ≤ vi

−F̃ (bi) if 0 ≤ bi ≤ vi
1+k

(A.15)

This derivative is continuous, and it is non-positive for bi = vi
1+k

and non-negative

for bi = vi. Then there exists a bid bi such that the derivative of the expected regret

function is zero, where the expected maximum regret is minimized.

The maximum regret for a bid ai > ci given the realization of costs c and values

v is

RS(ai|v, c) =


0 if v(m) < ci

max{ai − ci, (1− k)(v(m) − ai)} if ai ≥ v(m)

v(m) − ci if ci ≥ v(m) < ai

(A.16)

In the second case, where the highest realized valuation v(m) is less than the seller’s

ask ai, the maximum regret could result from asking more than necessary or from
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asking less than necessary, depending on the value of v(m):

ai − ci < (1− k)(v(m) − Ci) (A.17)

⇒ v(m) >
(1 + (1− k))ai − ci

1− k
(A.18)

Since costs of the buyers are independently and identically distributed with cdf G,

the highest valuation realized by m sellers is has cdf G̃(v) = G(v)n. Therefore,

RS(ai|ci) =

∫ ai

ci

(v − ci)dG̃(v) +

∫ C∗

ai

(ai − ci)dG̃(v) +

∫ 1

C∗
(1− k)(v − ai)dG̃(v)

(A.19)

Where C∗ = (1+(1−k))ai−ci
1−k . If ai ≥ ai+(1−k)

1+(1−k)
, then the last term disappears:

RS(ai|ci) =

∫ ai

ci

(v − ci)dG̃(v) +

∫ 1

ai

(ai − ci)dG̃(c) (A.20)

Integrating by parts,

RS(ai|ci) =


(1− k)(1− ai)−

∫ ai

ci

G̃(v)dv −
∫ 1

C∗
(1− k)G̃(v)dv if ai >

ci+(1−k)
1+(1−k)

(ai − ci)−
∫ ai

ci

G̃(v)dv if ai <
ci+(1−k)
1+(1−k)

(A.21)
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Differentiating the expected regret function with respect to seller i’s asm ai,

dRS(ai|ci)
dai

=


−(1− k)− G̃(ai) + (2− k)G̃( (1+(1−k))ai−ci

1−k ) if ai >
ci+(1−k)
1+(1−k)

1− G̃(ci) if ai <
ci+(1−k)
1+(1−k)

(A.22)

This derivative is continuous, and it is non-negative for ai = ci+(1−k)
(1+(1−k)

and non-positive

for ai = ci. Then there exists a bid ai such that the derivative of the expected regret

function is zero, where the expected maximum regret is minimized. �

Corollary 1 Let b(v;n) denote the bid that minimizes expected maximum regret in

a k-double auction with n sellers. Then lim
n→∞

b(v;n) =
v

1 + k
.

Proof: Suppose not. Then there exists some valuation v and ε > 0 such that

lim
n→∞

b(v;n) >
v

1 + k
+ ε

Since the derivative of expected maximum regret at b(v;n) is zero, and since the

derivative of the expected maximum regret is strictly increasing, v
1+k

+ ε < b(v;n)

implies that the derivative of expected maximum regret at v
1+k

+ ε is less than zero

in the limit:

lim
n→∞

[
(k + 1)F̃

(
(k + 1)( v

1+k
+ ε)− v

k

)
− F̃

(
v

1 + k
+ ε

)]
< 0 (A.23)

(k + 1) lim
n→∞

F̃

(
(k + 1)ε

k

)
− lim

n→∞
F̃

(
(k + 1)ε

k + 1

)
< 0 (A.24)

(k + 1)(1)− 1 < 0 (A.25)
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This is a contradiction. �

Theorem 3 Suppose that the following conditions hold for Γ = {Γi}∞i=1:

1. For each sequence of priors {Gγ,i} ∈ {Γi}∞i=1, for every ε ∈ (0, v), there exists

N(ε, Gγ) ∈ N such that for all i ≥ N(b,Gγ):

∫
u(v − ε, ζ(mi), ζ(mi+1))dFγ,i(ζ(mi), ζ(mi+1))

>

∫
u(b′, ζ(mi), ζ(mi+1))dGγ,i(ζ(mi), ζ(mi+1)) (A.26)

for all b′ < v − ε. That is, under each prior {Gγ}∞i=1 ∈ {Γi}∞i=1, the utility-

maximizing bid converges to v over the sequence of markets.

2. There exists a well-defined function

N(ε) = max
Gγ∈Γ
{N(ε, Gγ)} (A.27)

Then the bid that minimizes maximum expected regret under {Γi}∞i=1 converges to

truthful bidding over the sequence of markets {(mi, ni)}∞i=1.

Proof: (A.27) implies that for i ≥ N(ε),

∫
max
b∗∈[0,v]

u(b∗, ζ)− u(v − ε, ζ(mi), ζ(mi+1))dGγ,i(ζ(mi), ζ(mi+1))

<

∫
max
b∗∈[0,v]

u(b∗, ζ)− u(b′, ζ(mi), ζ(mi+1))dGγ,i(ζ(mi), ζ(mi+1)),∀b′ < v − ε (A.28)

80



holds for each Gγ ∈ Γ. In other words, for markets subsequent to (mN(ε), nN(ε)),

expected regret is minimized at a bid within ε of truthful bidding, for each prior

Gγ ∈ Γ.

∫
R(v − ε, ζ(mi), ζ(mi+1))dFγ,i(ζ(mi), ζ(mi+1))

<

∫
R(b′, ζ(mi), ζ(mi+1))dGγ,i(ζ(mi), ζ(mi+1)),∀b′ < v − ε (A.29)

Therefore, for i > N(ε),

max
Gγ,i∈Γi

∫
R(v − ε, ζ(mi), ζ(mi+1))dFγ,i(ζ(mi), ζ(mi+1))

< max
Gγ,i∈Γi

∫
R(b′, ζ(mi), ζ(mi+1))dFγ,i(ζ(mi), ζ(mi+1)),∀b′ < v − ε (A.30)

For suppose not. Then there would exist G∗ ∈ Γ such that for some j ≥ N(ε), for

some b′ < v − ε,

∫
R(v − ε, ζ(mj), ζ(mj+1))dG∗,j(ζ(mi), ζ(mi+1))

> max
Gγ,j∈Γj

∫
R(b′, ζ(mj), ζ(mj+1))dGγ,j(ζ(mi), ζ(mi+1)) (A.31)

implying

∫
R(v − ε, ζ(mj), ζ(mj+1))dG∗,j(ζ(mi), ζ(mi+1))

>

∫
R(b′, ζ(mj), ζ(mj+1))dG∗,j(ζ(mi), ζ(mi+1)) (A.32)
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which contradicts (A.29).

We conclude that the maximum expected regret-minimizing bid can be arbitrarily

close to bidding v, given a sufficient number of competitors. As equation A.30

establishes, for a number of bidders greater than or equal to N(ε), the optimal bid

must be within ε of bidding one’s true valuation. �

Lemma 1 Let {(mi, ni)}∞i=1 be a sequence of markets in which the mi buyers ap-

proaches infinity. Let each Gγ = {Gγ,i}∞i=1 in Γ be a joint distribution of the mth
i and

mi + 1th order statistics in which all bids and asks are treated as (mi + ni − 1) iid

draws from a distribution fγ(x), where fγ(x) > ε > 0.

Then the bid that minimizes the maximum expected regret will approach truthful

bidding as i→∞.

Proof:

If the rival bids and asks in a market of size (mi, ni) are independently and

identically distributed according to some distribution with cdf F and pdf f , then the

joint distribution of the mt
ih and mi + 1th order statistics is

f(mi)(mi+1)(x, y) =
(mi + ni − 1)!

(mi − 1)!ni!
(x)f(x)f(y)Fmi−1[1− F (y)]ni (A.33)

The subscripts i denoting the market will be omitted in the following proof. For

brevity, let (m+n−1)!
(m−1)!n!

= Cm,m+1.
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We can calculate the expected regret of a bid b under the prior f :

E[RB] =

∫ b

0

∫ b

x

k(y − x)Cm,m+1f(x)f(y)F (x)m−1[1− F (y)]ndydx

+

∫ b

0

∫ 1

b

k(b− x)Cm,m+1f(x)f(y)F (x)m−1[1− F (y)]ndydx

+

∫ v

b

∫ 1

x

(v − x)Cm,m+1f(x)f(y)F (x)m−1[1− F (y)]ndydx

(A.34)

dE[RB]

db
=

∫ b

0

k(b− x)Cm,m+1f(x)f(b)F (x)m−1[1− F (b)]ndx

−
∫ b

0

k(b− x)Cm,m+1f(x)f(b)F (x)m−1[1− F (b)]ndx

+

∫ b

0

∫ 1

b

kCm,m+1f(x)f(y)F (x)m−1[1− F (y)]ndydx

−
∫ 1

b

(v − b)Cm,m+1f(b)f(y)F (b)m−1[1− F (y)]ndy

(A.35)

dE[RB]

db
=

∫ b

0

∫ 1

b

kCm,m+1f(x)f(y)F (x)m−1[1− F (y)]ndydx

−
∫ 1

b

(v − b)Cm,m+1f(b)f(y)F (b)m−1[1− F (y)]ndy

(A.36)
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Then the first-order condition to minimize expected regret is:

∫ b

0

∫ 1

b

kf(x)f(y)Fm−1(x)[1− F (y)]ndydx =

∫ 1

b

(v − b)f(b)f(y)Fm−1(b)[1− F (y)]ndy

(A.37)

k

∫ b

0

f(x)F (x)m−1dx =(v − b)f(b)F (b)m−1 (A.38)

k
F (b)m

m
=(v − b)f(b)F (b)m−1 (A.39)

kF (b)

mf(b)
=(v − b) (A.40)

Therefore, if f(b) > 0, the amount that the bidder shades her bid will converge

to zero as the number of other bidders grows large. �
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Appendix B

Proofs for Chapter 3

Theorem 4 In a common value Vickrey auction, the minimax regret bid is bi = si.

Proof: The bidder’s profit function in a Vickrey auction is:

π =


ω −maxj 6=i bj if bi > maxj 6=i bj

0 otherwise

(B.1)

The greatest profit that a bidder can achieve, given the state ω, is:

π∗ =


ω −maxj 6=i bj if bi > maxj 6=i bj

0 otherwise

(B.2)

Therefore, the bidder’s regret function is:

R(b, ω) =


ω −maxj 6=i bj − (ω −maxj 6=i bj) if bi > maxj 6=i bj

0 otherwise

(B.3)
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Maximum regret for a given bid bi is therefore

supR(bi, si) = max{bi − si + ε, si − bi + ε, 0} (B.4)

To minimize the maximum regret, therefore, the bid bi should satisfy the condition

bi − si + ε = si − bi + ε (B.5)

This condition is met when bi = si. �

Lemma 2 In a common value first price sealed bid auction, a bidder who observed

signal si has the following maximum regret function:

supR = max{bi − inf{max
j 6=i

bj}, bi − si + ε, si + ε− bi} (B.6)

Proof: In the first price auction, the bidder’s profit function is

π =


ω − bi if bi > maxj 6=i bj

0 if bi ≤ maxj 6=i bj

(B.7)

The greatest profit that a bidder can achieve, given the state ω, is:

π∗ =


ω −maxj 6=i bj if ω > maxj 6=i bj

0 if ω < maxj 6=i bj, bi < maxj 6=i bj

(B.8)
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Therefore, the regret function is

R(b, ω) =



bi −maxj 6=i bj if ω > maxj 6=i bj, bi > maxj 6=i bj

bi − ω if ω < maxj 6=i bj, bi > maxj 6=i bj

ω −maxj 6=i bj if ω > maxj 6=i bj, bi < maxj 6=i bj

0 if ω < maxj 6=i bj, bi < maxj 6=i bj

(B.9)

In the first case, there is opportunity to win the asset at a profit, and the bidder does

win the asset; any amount that the winning bidder bids above the highest rival bid

is regretted. This regret is greatest, then, when the highest rival bid turns out to be

at the lowest possible value. Call this lowest possible value for the highest rival bid,

inf{maxj 6=i bj}. Note that if the decision maker’s signal conveys information about

other bidder’s signals, then the range of possible rival bids that the bidder considers

could depend on his own signal.

sup{bi −max
j 6=i

bj} = bi − inf{max
j 6=i

bj} (B.10)

In the second case, the true value of the asset is less than the bid required to

win it; therefore, the bidder regrets winning at an unprofitable price. This regret

is greatest when the asset ω is at its lowest possible value, given bidder’s signal:

ω = si − ε.

sup{bi − ω} = bi − (si − ε) (B.11)

87



In the third case, there is opportunity to win the asset at a profit, but the bidder

does not win the asset; the losing bidder regrets the foregone profit. This regret is

greatest when the asset is at its highest possible value (given the bidder’s signal, that

is, ω = si + ε) and the rival bid has just barely edged out the bid bi.

sup{ω −max
j 6=i

bj} = si + ε− inf
maxj 6=i bj>bi

{max
j 6=i

bj} (B.12)

= si + ε− bi (B.13)

Therefore, the supremum of the regret function given the bidder’s signal si and the

maximum possible error ε is

supR = max{bi − inf{max
j 6=i

bj}, bi − si + ε, si + ε− bi} (B.14)

�

Theorem 5 If each bidder believes that the other bidders will reduce their bid from

their own signal by the maximum possible error,

b(s) = s− ε, (B.15)

Then this same bidding function will minimize the bidder’s own maximum regret.

Thus, bidders who reduce their bids from their signals by the maximum error ε will

mutually minimize maximum regret.
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Proof: If all of the other bidders bid bj = sj − ε, then

inf{max
j 6=i

bj} = inf
sj∈(si−2ε,si+2ε)

{sj − ε} (B.16)

= si − 3ε (B.17)

Therefore, the maximum regret for a bidder’s bid bi is

supR = max{bi − si + 3ε, bi − si + ε, si + ε− bi} (B.18)

= max{bi − si + 3ε, si + ε− bi} (B.19)

Note that maximum regret is increasing in bi− si + 3ε, and decreasing in si + ε− bi.

Maximum regret will be minimized when each scenario obtains the same level of

regret:

bi − si + 3ε = si + ε− bi (B.20)

2bi = 2si − 2ε (B.21)

bi = si − ε (B.22)

�

Lemma 4 Let ζ̌(m) denote the lowest possible value of ζ(m) given the signal si ob-
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served by the bidder. Then the minimax regret bid is

b =


s if s ≤ ε

k
+ ζ̌(m)

s+ε+kζ̌(m)

1+k
if s > ε

k
+ ζ̌(m)

(B.23)

Proof: The calculation for the profit function and the regret function in this

model is similar to the calculations for those functions in the case of interdependent

values. The buyer’s regret function is

RB =



k(ζ(m+1) − ζ(m)) if ζ(m) ≤ ω, ζ(m+1) < bi

k(bi − ζ(m)) if ζ(m) ≤ ω, ζ(m) < bi < ζ(m+1)

ω − ζ(m) if ζ(m) ≤ ω, bi < ζ(m)

(kbi + (1− k)ζ(m))− ω if ζ(m) > ω, ζ(m) < bi < ζ(m+1)

(kζ(m+1) + (1− k)ζ(m))− ω if ζ(m) > ω, ζ(m+1) < bi

0 if ζ(m) > ω, bi < ζ(m)

(B.24)

In the first two cases, the bidder’s regret comes from bidding more than necessary

in order to win an asset, although the asset’s value of ω is worth buying at the

minimum price ζ(m). Note that this regret is greatest when ζ(m+1) is as great as

possible, and ζ(m) is as low as possible, ie, ζ̌(m).

In the third case, the buyer regrets failing to purchase a unit of the asset when

it would be profitable to do so at the price ζ(m). This regret is maximized when the

asset’s true value is as high as possible (given the signal observed by the buyer), and

90



the price is as low as possible (given that the buyer was not able to secure one with

his bid bi).

In the fourth and fifth case, the bidder regrets paying more for the item than it

is worth. This regret is maximized when the asset’s true value is as low as possible

(given the buyer’s signal si).

In the last case, the bidder has no regret from not purchasing an asset, because

the required bid is too high.

Thus, the maximum regret function is

supRB = max{k(bi − ζ̌(m)), si + ε− bi, bi − si + ε} (B.25)

If k(bi − ζ̌(m)) > bi − si + ε, then maximum regret is minimized at

k(bi − ζ̌(m)) = si + ε− bi (B.26)

(1 + k)bi = si + ε+ kζ̌(m) (B.27)

bi =
si + ε+ kζ̌(m)

1 + k
(B.28)

If bi − si + ε > k(bi − ζ̌(m)), then maximum regret is minimized at

bi − si + ε = si + ε− bi (B.29)

2bi = 2si (B.30)

bi = si (B.31)

�
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Lemma 5 Let ζ̂(m+1) denote the highest possible value of ζ(m+1) given the signal si

observed by the seller. Then the minimax regret ask is

a =


s if s ≥ ζ̂(m+1) − ε

1−k

s−ε+(1−k)ζ̂(m+1)

1+(1−k)
if s < ζ̂(m+1) − ε

1−k + ζ̌(m)

(B.32)

Proof: The seller’s regret function is

RS =



(1− k)(ζ(m+1) − ζ(m)) if ζ(m+1) ≥ ω, ai < ζ(m)

k(ζ(m+1) − ai) if ζ(m+1) ≥ ω, ζ(m) < ai < ζ(m+1)

ζ(m+1) − ω if ζ(m+1) ≥ ω, ζ(m+1) < ai

ω + (kai + (1− k)ζ(m)) if ζ(m+1) < ω, ζ(m) < ai < ζ(m+1)

ω + (kζ(m+1) + (1− k)ai) if ζ(m+1) < ω, ai < ζ(m)

0 if ζ(m+1) < ω, ζ(m+1) < ai

(B.33)

The supremum of the regret function is

supRS = max{(1− k)(ζ̂(m+1) − a), a− s+ ε, s+ ε− a} (B.34)
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If (1− k)(ζ̂(m+1) − s) > ε, then maximum regret is minimized at

(1− k)(ζ̂(m+1) − a) = a− s+ ε (B.35)

a =
s− ε+ (1− k)ζ̂(m+1)

1 + (1− k)
(B.36)

If (1− k)(ζ̂(m+1) − s) < ε, then maximum regret is minimized at

a− s+ ε = s+ ε− a (B.37)

a = s (B.38)

�

Theorem 6 The following bid and asks functions mutually minimize maximum re-

gret.

1. If k = 0: b = s, and a = s+ ε
2
.

2. If k = 1: b = s− ε
2
, and a = s.

3. If k = 1
2
: b = s, and a = s.

Proof: Whenever the bid function is less than or equal to the ask function at

each signal si, the following statements hold:

• For each bidder i, the value of inf ζ(m) depends on the lowest possible ask from

a seller. This lowest possible ask is determined by the ask function and the

lowest possible signal that the seller could observe, given buyer i’s signal si:
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since the lowest possible state is si − ε, the lowest signal that a seller could

observe is si − 2ε. If the buyer believes that sellers will bid truthfully, then

inf ζ(m) = si − 2ε.

• Similarly, for each seller i, the value of sup ζ(m+1) depends on the highest pos-

sible bid from a buyer. This highest possible bid is determined by the bid

function and the lowest possible signal that the buyer could observe, given

seller i’s signal si: since the highest possible state is si + ε, the highest signal

that a buyer could observe is si + 2ε. If the seller believes that the buyers are

bidding truthfully, then sup ζ(m+1) = si + 2ε

1. If k = 0, then buyers have no influence on the price. Since the bidder faces no

regret from being a pivotal trader, he has no reason to shade his bid:

supRB = max{(0)(bi − ζ̌(m)), si + ε− bi, bi − si + ε} (B.39)

The bid that minimizes this maximum regret function is bi = si. On the other

hand, the seller’s maximum regret function is:

supRS = max{s+ 2ε− a, a− s+ ε, s+ ε− a} (B.40)

because the seller knows that the bidders will bid their signals. The ask that

minimizes this maximum regret function is ai = si − ε
2
.

2. The proof for k = 1 is similar, with the seller’s and buyer’s situations reversed.
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3. If k = 1
2
, we can verify that truthful bids and asks satisfy the conditions in the

two previous lemmas:

b =
s+ ε+ 1

2
(s− 2ε)

3
2

= s (B.41)

and

a =
s− ε+ 1

2
(s+ 2ε)

3
2

= s (B.42)

�
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Appendix C

Proofs for Chapter 4

Lemma 6 For any ζ ∈ Zm+n−1, there exists ξ ∈ Zm′+n′−1 such that u(b, ζ) = u(b, ξ)

for any possible bid b ∈ Z.

Proof: u(b, ζ) is determined by the relationship between ζ(m), ζ(m+1), and b.

There exists ξ ∈ Zm′+n′−1 such that ξm′ = ζ(m) and ξ(m′+1) = ζ(m+1). For example,

define ξ as

ξ(i) =



min{Z} for i < m′

ζ(m) for i = m′

ζ(m+1) for i = m′ + 1

max{Z} for i > m′ + 1

(C.1)

A conscientious reader may ask whether it will be possible for a double auction with

m′− 1 rival bidders and n′ sellers to submit rationalizable bids and asks that satisfy

this criterion. There may be some realizations of the other traders’ valuations and

costs such that the above actions are not rationalizable. However, since it is within

the realm of possibility for all buyers to have valuations equal to v, and for all sellers
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to have costs equal to c, any set of bids and asks ζ ∈ Zm+n−1 or ξ ∈ Zm′+n′−1 could

be rationalizable.

For any bid bi, the payoff ui(ξ) will be

ui(ξ) =


v − [(1− k)ξ(m) + kξ(m+1)] if ζ(m+1) = ξ(m+1) < bi

v − [(1− k)ξ(m) + kbi] if ζ(m) = ξ(m) < bi < ζ(m+1) = ξ(m+1)

0 if bi < ζ(m) = ξ(m)

(C.2)

exactly equal to the payoff ui(bi, ζ).

Another way of expressing this result is that the set Ui of possible payoffs of bid

bi is the same for all m and n. �

Theorem 7 Suppose that a bidder’s preferences over possible bidding strategies %S

satisfies the symmetry axiom. Consider a menu of possible bids A containing at least

two possible actions, bids b1 and b2. If b1 %SA b2 when there are n sellers and m− 1

rival bidders, then b1 %SA b2 when there are n′ sellers and m′−1 rival bidders. In fact,

all of the preferences over actions in A remain unchanged regardless of the number

of traders in the market.

Proof: The idea is to show that there exists ψ such that swapping constant

profit events can transform the profit function of bidding bi against m+ n− 1 rivals

into the profit function of bidding bi against m′ + n′ − 1 rivals. This function ψ can

be defined for each state z in the following way:

• For state (ζ, ξ), calculate the payoff from bids b1 and b2, when there are n

sellers and m− 1 rival bidders:
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u1(ζ, ξ) = Π(b1, ζ) and u2(ζ, ξ) = Π(b2, ζ).

• Calculate also the payoff from bids b1 and b2, when there are n′ sellers and

m′ − 1 rival bidders:

u′1(ζ, ξ) = Π(b1, ξ) and u′2(ζ, ξ) = Π(b2, ξ).

• Applying proposition 1, find a state of the world (ζ̃ , ξ̃) such that ui(ζ̃ , ξ̃) =

u′i(ζ, ξ) and ui(ζ, ξ) = u′i(ζ̃ , ξ̃) for every possible bid.

That is, Π(bi, ζ̃) = Π(bi, ξ) and Π(bi, ξ) = Π(bi, ζ̃) for every permissible bid bi.

• Set ψ((ζ, ξ)) = (ζ̃ , ξ̃). Then u′i(ζ, ξ) = ui(ψ(ζ, ξ)) = ui(ζ̃ , ξ̃), for all i. That is,

Π(bi, ξ) = Π(bi, ζ̃) for all i.

Note that this function ψ preserves the profile of outcomes. If ψ((ζ, ξ)) = ψ((ζ̂ , ξ̂)) =

(ζ̃ , ξ̃), then ui(ζ̃ , ξ̃) = u′i(ζ, ξ) = u′i(ζ̂ , ξ̂).

From symmetry, we have that b1 %S b2 in the original decision problem if and

only if b1 %S b2 in the transformed decision problem. �
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