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Abstract

The fork–join paradigm of concurrent expression has gained popularity in
conjunction with work-stealing schedulers. Random work-stealing schedulers
have been shown to effectively perform dynamic load balancing, yielding
provably-efficient schedules and space bounds on shared-memory architec-
tures with uniform memory models. However, the advent of hierarchical,
non-uniform multicore systems and large-scale distributed-memory architec-
tures has reduced the efficacy of these scheduling policies. Furthermore,
random work stealing schedulers do not exploit persistence within iterative,
scientific applications.

In this thesis, we prove several properties of work-stealing schedulers that
enable online tracing of the tasks with very low overhead. We then de-
scribe new scheduling policies that use online schedule introspection to un-
derstand scheduler placement and thus improve the performance on NUMA
and distributed-memory architectures. Finally, by incorporating an inclusive
data effect system into fork–join programs with schedule placement knowl-
edge, we show how we can transform a fork–join program to significantly
improve locality.
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CHAPTER 1
Introduction

The demand for increased computational capacity has corresponded with
increased hardware complexity in commodity and high-end computing sys-
tems. Processor frequency limitations have engendered the multi-processor
era, leading to hierarchical, non-uniform memory access (NUMA) subsys-
tems, and a host of intricate architecture designs that ostensibly enable large-
scale science to be performed efficiently. However, it is challenging for do-
main scientists to maintain complex codes, co-evolving them with new com-
putational abstractions while ensuring the correctness of their algorithms.
Strategic oversight from stake-holders may inhibit momentum toward new
concurrent programming models, as the staying power of new models may
be unpredictable, especially in research contexts.

Two decades of extensive research on fork–join (or, task-parallel) program-
ming idioms have demonstrated their utility in expressing concurrency, while
maintaining performance-portability and theoretical optimality under spe-
cific conditions. The fork–join idiom has proliferated both commercially on
multi-core systems and, more experimentally, on large-scale supercomputers.
Many runtimes and languages now support fork–join, including OpenMP
3.0 [2], Cilk [3], X10 [4], Habanero Java [5], NESL [6], Intel Thread Building
Blocks [7], Java Concurrency Utilities [8], etc.

The Cilk language—an exemplar fork–join model—augments the C lan-
guage with two linguistic constructs: spawn and sync. With the spawn con-
struct, a procedure or function can be described as concurrent with the fol-
lowing continuation in the enclosing function scope. The sync keyword ex-
presses the limits the concurrency within that scope, ensuring that all recur-

1



sively spawned functions are completed. With these two keywords, fork–join
concurrency can be expressed concisely.

Extensive theoretical work on random work-stealing schedulers in a uni-
form multi-core setting has proven that work-stealing, in conjunction with
strict forkâĂŞjoin models, produces provably-optimal schedules with under-
standable space and time bounds. Moreover, work stealing has been shown
to be effective for dynamic load balancing. Compared to other load bal-
ancers that are activated periodically, and thus cannot address immediate
imbalances that may arise, random work stealing can balance loads within a
phase of the application.

Overdecomposition—exposing more work units than the available hard-
ware threads—allows such models to diminish load imbalance, even in the
face of unpredictable, dynamically varying loads. Instead of decomposing
the application directly to the available parallelism, the application is writ-
ten to expose more concurrency, enabling work units to be shuffled by the
runtime system as the application unfolds. In the models studied, applica-
tions will typically expose work units of a medium grain size: larger than a
few FLOPs, but orders of magnitude more concurrency than the available
hardware threads.

This thesis addresses several challenges that arise in scheduling in the
context of random work stealing:

• Random work stealing produces efficient schedules at runtime depend-
ing on load. However, these schedules are different every time the
application is executed, making them difficult to understand and ana-
lyze. The sheer number of work units exposed inhibits naïve methods
of capturing and storing the schedule. Effectively tracing the appli-
cation, or capturing where and when each work unit is executed, can
enable many optimizations and analyses both online and offline. Can a
random work-stealing schedule be captured without explicitly storing
where each work unit is executed?

• On shared-memory NUMA architectures, random work-stealing can in-
flate execution time because as work units are stolen between processor
cores, the memory domain that work units access may be different from
where the data is mapped. Different memory polices, such as first-touch
or interleaved, change the nature of the initial data mapping further

2



complicating the problem. Can random work stealing schedulers be
adapted to be aware of NUMA locality without explicitly mapping
work units?

• Traditionally, random work stealing has been confined to shared-
memory architectures. Many challenges inhibit adapting work-stealing
algorithms to distributed-memory contexts. Random work stealing typ-
ically starts with a single task on one processor and spreads the work
throughout the machine by steals, which may limit an application’s
scalability with high ramp-up costs. Random steals may also inter-
rupt execution when implemented with message passing. Additionally,
migrating work units may be prohibitively expensive. Can random
work stealing be applied to distributed-memory contexts in a way that
is comparable to/competitive with persistence-based load balancers?
Can random work stealing be applied to distributed-memory contexts
and how does it compare with persistence-based load balancers?

• The fork–join model limits the expression of concurrency to series-
parallel DAGs (directed acyclic graphs). Many of the advantages (i.e.
efficiency proofs) stem from this limitation, but it also inhibits certain
locality-based optimizations. A wealth of compiler research has stud-
ied automatic locality optimizations for for-loop codes (e.g. Pluto),
but this research not applicable to recursive programs written in fork–
join models. Can the performance advantages gained through state-of-
the-art compile-time locality optimization be achieved through runtime
reordering of task trees in fork–join models?

This thesis tackles the preceding challenges in the context of random work
stealing and addresses the associated questions. In Chapter 4, we prove
several properties of help-first and work-first scheduling polices, presenting
tracing algorithms that capture work-stealing schedules with very low over-
head. In Chapter 5, we devise retentive work stealing, a new scheduling
policy that scales to large distributed-memory machines, and compare it to
persistence-based load balancers. In Chapter 6, we present constrained work
stealing algorithms that improve the performance of random work stealing
in NUMA contexts. Finally, in Chapter 7, we present dynamic splicing: run-
time algorithms that recursively interleave distinct phases of an application
to accrue significant cache locality benefits.
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CHAPTER 2
Background and Notation

For the work presented in this thesis, we shall make several assumptions
about the nature of fork–join expression of concurrency and the underlying
work-stealing schedulers that map them to hardware resources.

2.1 Spawn-Sync and Async-Finish Concurrency

An async/spawn statement identifies the associated statement as a task (for-
mally defined in Section 2.2), the basis unit of concurrent execution. A task
identified by the async/spawn statement can be executed in parallel with
the enclosing task, referred to as the parent task. A finish/sync statement
identifies the bounds of concurrency. All computation enclosed by a finish
statement, including nested concurrent tasks, is required to complete before
any statement subsequent to the finish can be executed.

This async-finish parallelism model, supported in X10, enables both fully
strict and terminally strict computations. In fully strict computations, ex-
emplified by Cilk, a sync statement implicitly encloses all execution in a task,
requiring all tasks transitively nested within a task to complete before it re-
turns. The async-finish model extends the fully strict model by supporting
escaping asyncs, allowing a task to return before its nested concurrent tasks
complete.
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2.2 Notation

We define a continuation step (or simply step) to be the dynamic sequence of
instructions with no interleaving async/spawn, finish/sync, at, or when state-
ments. Each continuation step will be executed by exactly one thread and
cannot be migrated between threads during execution.
A continuation is the portion of execution, in terms of continuation steps,

reachable from a given continuation step. In other words, a continuation
represents the remainder of the execution that begins with the given contin-
uation step.
A task is a continuation marked by an async/spawn or finish statement,

representing all encapsulated continuation steps. In shared-memory environ-
ments, all continuations of a task occupy the same storage and transform the
state from one continuation step to the next. The term continuation is used
in places where a task is used, except when we intend to specifically distin-
guish a task from a continuation. A partial continuation is a continuation
that represents a proper subset of the computation represented by a task.
A task is said to spawn another task when the task’s execution encounters

an async/spawn statement. Without changing program semantics, we treat
a finish statement synonymously with a finish async. Thus a finish statement
leads to the spawning of a task as well.
All child tasks spawned from a given task are referred to as siblings and

are ordered from left to right. We also refer to a task’s left and right siblings,
if they exist.

2.3 Work Stealing Schedulers

We shall assume that the computation begins with a single task and ter-
minates when the task and its descendents complete execution. Concurrent
tasks can be executed in parallel by distinct threads or processes. Each
thread maintains a local deque of tasks and alternates between two phases
until termination. In the working phase, each thread executes tasks from
its local deque. When no more local work is available, a thread enters the
stealing phase to steal from a victim’s deque. A stealing thread (a thief)
attempts to steal a task until work is found or termination is detected. The
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thief pushes the stolen task onto its local deque and enters a new working
phase. Each thread pushes and pops tasks from the local end of its deque,
while the thief steals from the other end (steal end) of the victim’s deque.
Work stealing schedulers differ in the task creation strategy, victim selec-

tion policy, and action taken when a concurrent task is encountered. We
will consider random work stealing, where the victim is chosen at random, in
the ensuing discussion, though the presented algorithms can support other
victim selection policies as well. Lazy task creation postpones the creation
of task descriptors to reduce overhead, but does not change the fundamental
scheduling strategy.

We study and build upon two scheduling policies that are outlined in Fig-
ure 2.1 for async-finish programs identified by Guo et al. [9]. In the work-first
scheduling policy, a thread, upon encountering an async or a finish statement,
pushes the currently executing task onto the deque and begins to execute the
nested task identified. A thief can steal the partially-executed task (a contin-
uation) once it is pushed onto the deque. In the absence of steal operations,
this policy mirrors the sequential execution order and has been shown to
exhibit efficient space and time bounds.
In the help-first policy, the working thread continues to execute the current

task, pushing any encountered concurrent tasks onto the deque. Encounter-
ing a finish or sync statement, the current task’s continuation is pushed onto
the deque to complete processing of the tasks nested within the finish scope.
Finish scopes or sync statements constrain the help-first scheduler, requiring
the tasks in the finish scope to be processed before tasks sequentially follow-
ing the finish scope can be spawned. This scheduling policy was shown to
speedup work propagation by Guo et al. [9].
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@async(Task t, Cont this):
deque.push(t);

@finish(Task t, Cont this):
deque.push(this);
process(t);

@taskCompletion:
t = deque.pop();
if (t) process(t);
// else this phase ends

@steal(Cont c, int victim):
c = attemptSteal(victim);

(a) Help-first scheduler

@async(Task t, Cont this):
deque.push(this);
process(t);

@finish(Task t, Cont this):
deque.push(this);
process(t);

@taskCompletion:
// same as help first minus
// some finish scope management

@steal(int victim):
// same as help−first

(b) Work-first scheduler

Figure 2.1: Basic actions in the two scheduling policies
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CHAPTER 3
Related Work

3.1 Tracing and Performance Analysis

Several papers have noted for work-first schedulers that steals can be recorded
for the purposes of maintaining series-parallel relationships using the SP-
hybrid algorithm—for data-race detection [10, 11] and for optimizing trans-
actional memory conflict detection [12]. However, these do not provide a
general tracing algorithm and require a global lock to store “threads” of work.
We provide a general tracing algorithm that does not require global synchro-
nization or locking. We are not aware of any prior work on tracing the more
complex help-first scheduling policy. The limitations of the prior work in
tracing work stealing schedulers is evidenced by the fact that some of the
most recent work on data-race detection for async-finish programs [1] does
not exploit the steal relationship—a beneficial approach that we demonstrate
later in this chapter.

Work stealing has typically been studied empirically [13]). Tallent and
Mellor-Crummey [14] presented blame shifting to relate lack of parallel slack
in work stealing to code segments. They assume global information about
the number of active and idle workers.

3.2 Load Balancing

Load imbalance is a well-known problem and has been widely studied in
the literature. Applications involving regular data structures, such as dense
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matrices, achieve load balance by choosing a data distribution (e.g., multipar-
titioning [15]) and carefully orchestrating communication. These approaches
are specialized for regular computations and do not directly extend to other
classes.

Iterative calculations on less regular structures (e.g., sparse matrices [16]
or meshes [17]) employ an inspector-executor approach to load balancing
where the data and associated computation balance is analyzed at runtime
before the start of the first iteration to rebalance the work (e.g., CHAOS [18])
Typical approaches to such start-time load balancing employ a partitioning
scheme [19]. Scalable parallelization of such partitioners [20, 21] is non-
trivial.

Overdecomposition is instantiated in a variety of forms by different com-
pilers and runtimes, including Cilk [22], Intel Thread Building Blocks [7],
OpenMP [23], Charm++ [24], Concurrent Collections [25], and ParalleX [26].
Many application frameworks that understand domain-specific data struc-
tures implicitly employ this approach [27].

Charm++ [24] supports a variety of persistence-based load balancing algo-
rithms. The typical approach involves gathering statistics for objects, mea-
suring the amount of imbalance, and executing the corresponding rebalancing
algorithms in either a centralized or hierarchical [28] fashion. Such hierarchi-
cal persistence-based load balancers are employed in several scalable appli-
cations [29]. Unlike the hierarchical schemes considered by Zheng et al. [28],
we focus on the development of a localized rebalancing algorithm that also
incurs lower space overheads due to greedy rebalancing.

Irregular algorithms whose workload cannot be predicted at start-time,
or work partitioned into sub-units, pose a significant challenge to the above
load balancing approaches. Applications in this class include state-space
search, combinatorial optimization, and recursive parallel codes. Work steal-
ing is a popular approach to load balancing such applications. Cilk [22] is a
widely-studied depth-first scheduling algorithm for fully-strict computations
with optimal space and time bounds. It has been shown to scale well on
shared memory machines and implementations are available for networks of
workstations [30] and wide-area networks [31]. Prior work on extending
work stealing to distributed-memory adapted the algorithm to employ re-
mote memory access (RMA) operations using ARMCI [32], demonstrating
scaling to 8192 cores [33]. An implementation in X10 extended this algorithm
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to reduce the interference caused by steal operations [34]. These approaches
employed work stealing in a memoryless fashion. We present work stealing
for distributed-memory machines using a threaded active message library
developed on MPI, demonstrating scaling to significantly higher core counts.

Work stealing has not been evaluated at this scale (100,000+ cores on mul-
tiple platforms) for any application on any hardware platform using any prior
algorithm. The largest prior demonstration was on up to 8192 cores [33]. The
domains employing work stealing and persistence-based load balancing have
traditionally been disjoint. We are not aware of any prior work comparing
the effectiveness of these two schemes for iterative applications, or any other
application domain.

3.3 NUMA-Aware Scheduling

Cilk [35] employs random work stealing with a work-first execution strat-
egy. Guo et al. [36] studied help-first scheduling policies to improve the
load balance achieved in practice. Hierarchical place trees [37] and related
approaches [38, 39] adapt the work stealing to promote localized steals, indi-
rectly improving data locality. These schemes preferentially access local data
but can result in different remote accesses across phases. Parallel depth-first
scheduling [40] improves locality of access to shared caches in nested-parallel
computations, rather than across sequentially composed nested-parallel com-
putations. We consider the complementary problem of locality optimization
across phases.

Locality-aware scheduling is supported in X10 [41] through explicit invoca-
tion of task execution at the location of specific data elements. This approach
imposes the burden of data distribution and load balance on the programmer.
The property we exploit in incremental optimization of data placement is re-
ferred to as the principle of persistence—the same computation structure
is repeated and can be optimized for. Charm++ [42] explicitly associates
computation with data objects and performs persistence-based load balanc-
ing [43] that is coupled with data migration. Our approach does not impose
such tight binding of computation and the data it operates upon.

Nikolopolous et al. [44] studied reusing loop schedules to improve memory
affinity for OpenMP looping constructs. Olivier et al. [45] observed that non-
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locality memory accesses lead to an inflation in an OpenMP task’s execution
time. They present API support that explicitly specifies locality domains
and placement of tasks on them. Explicit data placement and layout specifi-
cations [46, 47, 48] and modifications to the random work stealing policy [49]
also have been considered for OpenMP task programs.

The Pochoir compiler [50] performs scheduling across iterations for stencil
computations. The transformed code is generated in Cilk and scheduled as
a Cilk program. While time tiling improves data reuse, the Pochoir compiler
does not specifically optimize for data locality. Our approach to constraining
work stealing computations with data locality can be used to improve the
scheduling of computations generated by a compiler such as Pochoir.

Grain size control has been studied in many different contexts. Static
compile-time approaches [51] have been employed. Charm++ has adaptive
grain size control for state space search [52]. Other work has focused on
only splitting grain sizes when a worker is in need of work, which is feasible
with a managed runtime [53, 54, 55]. Lazy task creation has been used to
increase granularity [56], while other work has focused on increasing the steal
granularity [57, 58], which is different than our approach.

Our approach is applied to the Cilk work-first scheduling runtime and
can be adapted to other fork/join models. It can be directly applied to
other work-stealing models, such as a help-first scheduler. However, for more
divergent models, efficient tracing and constrained execution algorithms will
be required to effectively implement our methodology.

3.4 Cache Locality Optimization and Effect Systems

3.4.1 Compile-time Analysis and Transformation for Fork/join
Programs

Burstall and Darlington presented a system of rules for transforming recursive
programs [59]. Nandivada et al. [60] presented a transformation framework
to optimize exposed concurrency in task-parallel programs. Neither takes
data locality into account. The work by Rugina et al. [61, 62, 63] on static
analysis of pointer and array index references in recursive programs can aid
the construction of the effects used in this paper.
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3.4.2 DSLs and Library Composition

Domain-specific languages (DSLs) allow information related to data locality
and dependences to be expressed at a higher-level of abstraction enabling
aggressive optimizations [64]. Pochoir [50] is an example stencil DSL that
exploits language-level information to generate optimized stencil programs
in Cilk. Chandra et al. [65] present the Cool language, an extension of C++
for task-parallel programs, that allows specification of affinity and migration
hints to the runtime scheduler, effectively an approach to user-controlled
NUMA-like locality. Active libraries exploit domain information and associ-
ated optimizations without the need for distinct language syntax [66]. Just
as in DSLs, active libraries result in the generation of optimized code based
on transformation of the source code being analyzed. Use of library anno-
tations to optimize across libraries without requiring their source code has
been extensively studied [67, 68, 69]. Unlike our runtime approach, these
approaches typically exploit the library annotations to generate optimized
implementations at compile-time.

3.4.3 Runtime Locality-aware Scheduling of Fork/join
Programs

Our scheduling strategy—explore the continuation of an invoked function
for splicing—is similar to the help-first scheduling strategy presented by Guo
et al. [36]. Guo et al. focus on exposing additional parallelism for load
balancing rather than optimizing data locality. Parallel depth-first schedulers
are designed to enable constructive cache sharing among concurrent tasks in
a fork-join programs [70]. Guo et al. presented SLAW—scalable locality-
aware work stealing—to schedule tasks to places based on locality hints [71].
These runtime approaches optimize locality within a phase, represented by
a single recursive function or task.

3.4.4 Scheduling Based on Effect Information

TWEJava [72] exploits effect information to extract deterministic parallelism.
Legion [73, 74] and HJp [75] exploit information on memory accesses by
tasks to ensure deterministic parallelism. These approaches focus on au-
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tomatic extraction of parallelism and determinism guarantees, but do not
tackle data locality. Specifically, Legion [74] does not attempt to refine the
dependences to the finest possible granularity, which is required for cache
locality optimization, to minimize runtime costs. Pen and Pai [76] employ
a hardware-software approach to managing last level cache for input an-
notated task-parallel programs using the OmpSs task-parallel programming
model. Jo and Kulkarni [77] exploit access information to schedule concur-
rent threads operating on shared data to optimize inter-thread data locality
for tree traversals. Philbin et al. [78] is most related to our work. They ex-
tract sub-computations in a sequential program into parallel threads, which
are then executed in an order that minimizes cache misses. However, their
strategy does not tackle dependences, does not consider interleaved execu-
tion of the threads to further reduce cache misses, cannot handle recursive
programs, and does not inter-operate with a dynamic parallel scheduler such
as Cilk.

3.4.5 Thread/task Management

The splicing optimization can be implemented using various user-level
thread libraries that support lightweight context switching (e.g., scott [79],
qthreads [80], boost [81]). Our management of dependences involving delayed
steps is similar to various task graph schedulers (e.g., Nabbit [82], CnC [83],
Supermatrix [84], and X10 [85]).
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CHAPTER 4
Tracing Work Stealing Schedulers

While several properties have been proven about work stealing schedulers,
their dynamic behavior remains hard to analyze. In particular, the flexibility
exhibited by work stealing in responding to load imbalances leads to less
structured mapping of work to threads, complicating subsequent analysis.

In this chapter, we focus on studying work stealing schedulers that operate
on programs using async and finish statements—the fundamental concurrency
constructs in modern parallel languages such as X10 [86]. In particular, we
derive algorithms to trace work stealing schedulers operating on async-finish
programs.

Tracing captures the order of events of interest and is an effective approach
to studying runtime behavior, enabling both online characterization and of-
fline analysis. While useful, the size of a trace imposes a limit on what can be
feasibly analyzed, and perturbation of the application’s execution can make
it impractical at scale. Tracing individual tasks in an async-finish program
is a prohibitive challenge due to the fine granularity and sheer number of
individual tasks. Such programs often expose far more concurrency than the
number of computing threads to maximize scheduling flexibility.

In this chapter, we derive algorithms to efficiently trace the execution
of async-finish programs. Rather than trace individual tasks, we exploit
the structure of work stealing schedulers to coarsen the events traced. In
particular, we construct a steal tree: a tree of steal operations that partitions
the program execution into groups of tasks. We identify the key properties of
two scheduling policies—help-first and work-first [9]—that enables the steal
tree to be compactly represented.
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In addition to presenting algorithms to trace and replay async-finish pro-
grams scheduled using work stealing, we demonstrate the usefulness of the
proposed algorithms in two distinct contexts—optimizing data race detection
for structured parallel programs [1] and supporting retentive stealing without
requiring explicit enumeration of tasks for distributed-memory, described in
Section 5.7.

The following are the primary contributions of this chapter:

• identification of key properties of work-first and help-first schedulers
operating on async-finish programs to compactly represent the stealing
relationships;

• algorithms that exploit these properties to trace and replay async-finish
programs by efficiently constructing the steal tree;

• demonstration of low space overheads and within-variance perturbation
of execution in tracing work stealing schedulers; and

• reduction in the cost of data race detection using an algorithm that
maintains and traverses the dynamic program structure tree [1].

4.1 Problem Statement

An example async-finish program is shown in Figure 4.1a. In the figure,
s1, s2, etc. are continuation steps. Tasks spawned using async statements
need to be processed before the execution can proceed past the immediately
enclosing finish statement. async statements that are not ordered by a finish
statement (e.g., the async statements enclosing s5 and s9) can be executed
in any order. The objective is to compactly track the execution of each
continuation step.

Each task is associated with a level. The initial task in a working phase is
at level 0. A level of a spawned task is one greater than that of the spawning
task.

The execution in each worker is grouped into phases with each phase ex-
ecuting continuation steps in a well-defined order, starting from a single
continuation. In each working phase, the computation begins with a single
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fn() {
s1;
async { s5; async x; s6; }
s2;
async {
s7;
async { s9; async x; s10;

async x; s11; .. }
s8; ..

}
s3;
async { s12; finish {s13;..} ..}
s4;

}

(a) async-finish program

S1 S2 S3

S5 S12 f... S7 ... ...

S4

S13 ...

deque

steal
end

local
end S5S7f

(b) Help-first

S1 S2 S3

S5 S6 S7 S8 ...

S9 S10 S11 ...

...

deque

steal
end

local
end

S3S8S11

(c) Work-first

Figure 4.1: An example async-finish parallel program and a snapshot of its
execution. Legend: > represents the root task; ⊥ represents a sequential
task; a circle represents a step; a diamond represents an async statement; a
hexagon represents a finish statement; ‘..’ represents a continuation; an arrow
represents a spawn relationship; a rectangular box represents a task; and the
shaded region represents the region that is stolen. The deque depicted at the
bottom has a steal end that is accessed by thieves and a local end that is
accessed by the worker thread.
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continuation step and involves the execution of all steps reached from the
initial step minus the continuations that were stolen. The tracing overheads
(space and time) can be significantly reduced if the steps executed in each
working phase can be compactly represented.

Note the difference in the stealing structure between the work-first and
help-first schedulers in Figure 4.1. While continuations stolen in the work-
first schedule seem to follow the same structure across all the levels shown, the
help-first schedule can produce more complicated steal relationships. This
distinction is the result of the difference in the scheduling actions of the
two policies—especially when an async statement encountered, as shown in
Figure 2.1. The challenge is to identify the key properties of help-first and
work-first scheduling policies to compactly identify the the leafs of the tree
of steps rooted at the initial step in each working phase.

4.2 Tracing Help-First Schedulers

Under help-first scheduling, spawned tasks are pushed onto the deque, while
the current task is executed until the end or a finish scope is reached. Chil-
dren of task spawned by async statements are in the same finish scope as
the parent. Encountering a finish statement, the current task’s continuation
is enqueued onto the deque and the spawned task in the new finish scope is
immediately executed. When all the tasks nested within the finish statement
have been processed, the finish scope is exited and the execution of the parent
task is continued, possibly spawning additional tasks. We refer the reader to
Guo et al. [9] for the detailed algorithm.
Figure 4.1b shows a snapshot of the help-first scheduling of the program

in Figure 4.1a. The steps in the outermost task, represented by fn()—s1,
s2, s3, and s4—are processed before any other steps.

Observation 4.2.1. Two tasks are in the same immediately enclosing finish
scope if the closest finish scope that encloses each of them also encloses their
common ancestor.

Lemma 4.2.2. A task at a level is processed only after all its younger siblings
in the same immediately enclosing finish scope are processed.
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Proof. A work-first scheduler enqueues the spawned tasks from the start of
the task’s lexical scope. The spawned tasks are enqueued onto the deque
with the newer child tasks enqueued closer to the local-end than the older
ones. The child tasks are enqueued until the executing task completes or a
finish statement is encountered. Tasks under the encountered finish statement
are immediately processed and the execution continues with enqueuing tasks
spawned using the async statement. This property, combined with the fact
that tasks popped from the local end are immediately processed, requires all
younger siblings of a task to be processed before it can be processed.

Lemma 4.2.3. A task is stolen at a level only after all its older siblings in
the same immediately enclosing finish scope are stolen.

Proof. Recall that all async statements in a task are in the same immediately
enclosing finish scope, and finish statements introduce new finish scopes.

1. Consider the case when two async statements in a task have no interven-
ing finish statement. In this case, the corresponding tasks are pushed
onto the deque with the older sibling first. Thus the older sibling is
stolen before the younger sibling.

2. Now consider the case where siblings in the same immediate finish scope
are separated by one of more intervening finish statements. In particu-
lar, consider the execution of the following sequence of statements in a
task: async n; ... finish p; ... async m. Tasks n and m are in the same
immediately enclosing finish scope, while task p is not. Task n is first
enqueued onto the deque. When the finish statement is processed, the
current task’s continuation c is then pushed onto the deque with the
worker immediately processing statement p. At this point, if a steal
occurs, n and c are at the steal end of the deque followed by tasks
spawned from p. Hence, all older siblings (n and c) in the same im-
mediately enclosing finish scope will be stolen before tasks generated
from p. The execution proceeds past the finish statement only after
all the tasks nested by p are complete. Once they are executed, the
continuation of the current task c is dequeued (unless it was stolen)
and task m is enqueued on top of n in the deque. The execution now
devolves onto case 1 and the older sibling is stolen before the younger.
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Lemma 4.2.4. At most one partial continuation is stolen at any level and
it belongs to the last executed task at that level.

Proof. A task’s partial continuation is enqueued only when it encounters a
finish statement. Consider such a task. When the task is being processed,
its parent’s continuation is in the deque, or it has completed processing.
Based on lemma 4.2.2, all the parent’s younger siblings have been processed.
Hence, the queue has the parent’s older siblings followed by a possible partial
continuation of the parent followed by this task’s older siblings, then this task.
By lemma 4.2.3, this task’s partial continuation will not be stolen until all
the parent’s older siblings are stolen. By lemma 4.2.2 all younger siblings of
this task, if any, have been processed at this point. Thus the deque only has
the partial continuation’s children, all of which are at levels higher than this
task. After this task’s partial continuation is stolen, all subsequent tasks will
be at higher levels, making this task the last one at this level.

Lemma 4.2.5. All tasks and continuations stolen at a level l are immediate
children of the last task processed at level l − 1.

Proof. We first prove by contradiction that the all tasks stolen at a given level
are children of the same parent task. Let two stolen tasks at a given level be
children of distinct parent tasks. Let ta be the lowest common ancestor of of
these tasks, and t1 and t2 be the immediate children of ta that are ancestors
of the two tasks of interest. t1 and t2 are thus sibling tasks. Without loss
of generality, let t1 be the older sibling. By lemma 4.2.2, t2 is processed
before t1. By lemma 4.2.3, t1 is stolen before any descendent of t2 can be
stolen. Thus no descendent of t1 can be enqueued if a descendent of t2 is
stolen, resulting in a contradiction: either the steals will be at different levels
because descendents of t1 cannot be enqueued, or they will be children of the
same parent task.

We now prove that the parent task q of all tasks stolen at level l is the last
task processed at level l − 1. Let t be any task at level l − 1 that is not q.
By lemma 4.2.2, task t must be an older sibling of the parent task q. From
lemma 4.2.3, any task t must be stolen before q. By the above proof, any
task with a higher level y must be a child of the same parent task. We now
show by contradiction that y must be a child of q, the last task processed at
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level l− 1. If y is a child of some task t, then t is currently being processed.
By lemma 4.2.2, q is processed before t. q has not been processed, hence we
have a contradiction.

Lemma 4.2.6. The parent q of the tasks stolen at level l + 1 is a sibling of
the tasks stolen at level l.

Proof. We prove this by contradiction. By lemma 4.2.5, q is last task pro-
cessed on level l. By lemma 4.2.2, all younger tasks on level l have been
processed. If q is not a sibling of the tasks stolen at level l, q could not have
been processed. Thus the stolen tasks at level l + 1 could not have been
created, resulting in a contradiction.

Lemma 4.2.7. The parent of the tasks stolen at level l + 1 is either the
immediate younger sibling of the last stolen task at level l, or the immediate
younger sibling of the last stolen task at level l in the same immediately
enclosing finish scope.

Proof. From lemmas 4.2.4, 4.2.5, and 4.2.6, the last task in the same imme-
diately enclosing finish scope that is executed is the closest younger sibling
of stolen task that is in the same enclosing finish scope. Thus the last task
executed at that level is either the immediate right sibling of the last stolen
task, say t1, or the closest right sibling in the immediate enclosing finish
scope, say t2. When both are identical, the outcome is clear. When they
are distinct, the immediate younger sibling of the last stolen task is in a
distinct finish scope. If the finish statement is stolen, no further tasks can
be processed that are not descendents of this statement, making t1 the last
executed task. If the finish statement is not stolen, no descendent tasks of
this statement can be stolen, making t2 the last executed task.

Theorem 4.2.8. The tasks executed and steal operations encountered in each
working phase can be fully described by (a) the level of the root in the total
ordering of the steal operations on the victim’s working phase, and (b) the
number of tasks and step of the continuation stolen at each level.

Proof. The tasks stolen at a level can be determined from the number of tasks
stolen at that level and the identification of these tasks’ parent (by lemma
4.2.7) (transitively until level 0 which has just one task). The position of
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the partial continuation stolen at a level can be determined from the fact
it is the last processed task at a given level (lemma 4.2.4) and from the
number of tasks stolen at that level in the same finish scope as the parent.
Together with the step information tracking, this uniquely identifies all stolen
continuations.

Illustration. A snapshot of execution under the help-first work stealing
policy is shown in Figure 4.1b. Steps s1, s2, s3, s4, and s11 have been
executed. Because s13 is encountered in a finish scope, s12 spawns the task
starting with step s13 and continues recursive execution before continuing
the execution past the finish scope. Meanwhile, the deque consists of tasks
s5, s7, and the continuation past the finish scope, represented by f, and
were stolen. Note that the help-first scheduler steals from left-to-right when
stealing full tasks, and right-to-left (similar to a work-first scheduler) when
stealing a partial continuation.
The subtrees executed in each working phase form a steal tree. The root

of the tree is the subtree that includes the main continuation that began
the program. Each child is a subtree stolen from the victim’s subtree. Each
node in the steal tree contains information about the continuations stolen
from it, bounding the actual steps executed in that subtree. Each edge in
the steal tree contains information about the position of the steal from the
parent subtree.
In Figure 4.2, we present another example program, along with how the

program is unfolded in snapshots as the scheduler run. Then, based on steals
occurring from the steal end of the deque, we show how the steal tree is built.

4.3 Tracing Work-First Schedulers

Under work-first scheduling, spawning a task involves pushing the currently
executing step’s successor onto the deque, with the execution continuing with
the first step in the spawned task.
The continuation that starts the working phase is at level 0, referred to as

the root continuation. Tasks spawned by continuations at level l are at level
l + 1. The work-first scheduling policy results in exactly one continuation
at levels 0, . . . , l − 1, where l is the number of continuations in the deque.
We observe the tasks spawned during a working phase and prove that there
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is at most one steal per level, and a steal at all levels 0, . . . , l − 1 before a
task can be stolen at level l. This allows us to represent all the steals for
a given working phase as a contiguous vector of integers that identify the
continuation step stolen at each level, starting at level 0.

Observation 4.3.1. The deque, with l tasks in it, consists of one continua-
tion at levels 0 through l − 1 with 0 at the steal-end and the continuation at
level i spawned by the step that precedes the continuation at level i− 1.

The execution of the work-first scheduler mirrors the sequential execution.
The task executing at level l is pushed onto the deque before spawning a task
at level l+1. Thus the deque corresponds to one path from the initial step to
the currently executing task in terms of the spawner-spawnee relationship.

Lemma 4.3.2. When a continuation is stolen at level l (a) at least one task
has been stolen at each level 0 through l−1, (b) no additional tasks are created
at level l.

Proof. The first part follows from observation 4.3.1 and the structure of the
deque—because stealing starts from the steal-end tasks at levels 0 through
l − 1 must stolen before level l.
We prove the second part by induction. Consider the base case when the

root of the subtree is the only continuation at level 0 in the deque. After
the root of the subtree is stolen, no continuation exists at level 0 to create
another task at level 1. Let the lemma be true for all levels 0, . . . , l. When
a continuation at level l is stolen, no further tasks can be created at level l.
Now consider the lemma for level l + 1. After a steal at level l, no further
tasks can be created at level l + 1. Once the current continuation at level
l + 1 is stolen, no subsequent tasks are created at level l + 1.

Theorem 4.3.3. The tasks executed and steal operations encountered in each
working phase can be fully described by (a) the level of the root in the total
ordering of the steal operations on the victim’s working phase, and (b) the
step of the continuation stolen at each level.

Proof. By lemma 4.3.2, steal operations on a victim are totally ordered,
implying that each task stolen from a victim during distinct working phase
is at a unique level. Because no additional tasks can be created at that level
(again by lemma 4.3.2), the step of the continuation stolen at that level is
sufficient to uniquely identify it.

24



These observations allow the steal points to be maintained in a contiguous
array. The size of the array corresponds to the number of steals in this
working phase, and the value at position l in the array corresponds to the
index of the continuation stolen at level l. The stolen continuations can
be identified to absolute or relative indices. Absolute indices—counting the
number of steps executed in this phase at each level—does not effectively
support retentive stealing, as explained later. We employ relative indices,
with the value at index l corresponding to the number of steps executed in
the last task executed at this level. Note that the last task executed at level l
is a child of a predecessor step of the continuation stolen at level l−1. Given
there is only one task at level 0, we store the number of steps by this worker
for this initial step.
Illustration. A snapshot of execution under the work stealing scheduler

is shown in Figure 4.1c. The thread began execution from step s1 and has
completed execution of s1, s2, s5, s6, s7, s9, and s10. It is currently
executing the task spawned by s10 with the the deque consisting of steps
s3, s8, and s11—bottom to top. These steps have been created but not
yet processed. During some point in the execution, these tasks have been
stolen by thieves. The steal order is s3, s8, followed by s11. Note that the
execution in the work-first scheduling policy is left-to-right, while the steals
are right-to-left.

4.4 Tracing and Replay Algorithms

We now present the algorithms for tracing and replay based on the prop-
erties identified for help-first and work-first schedulers. in Sections 4.2 and
4.3. These properties simplify the state to be managed to trace and replay
both schedulers. The algorithms rely on some state in addition to the basic
scheduler actions. This shared state is shown as C++-style pseudo-code in
Figure 4.3.
Every continuation and task has an associated ContinuationHdr that stores

the level and step. When a new working phase is started or an async or finish
is encountered, the bookkeeping keeps track of the current level for each
continuation. Each working phase that is executed by a worker maintains
the state shown in WorkingPhaseInfo as part of the trace. A worker’s trace
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struct ContinuationHdr {
int level; //this task’s async level
int step; //this continuation’s step

};
struct Task : ContinuationHdr { ... };
struct Cont : ContinuationHdr { ... };
struct WorkingPhaseInfo {
// victim stolen from
int victim;
//step stolen at each level, init to −1
vector<int> stepStolen;
// list of thieves
vector<int> thieves;

};
struct WorkerStateHdr {
//state for each working phase
vector<WorkingPhaseInfo> wpi;

};

WorkerStateHdr wsh[NWORKERS]; //one
per worker

//initializing computation’s first task
@init(Task initialTask):
initialTask.victim=−1;//victim set to −1

//start of working phase with continuation
@startWorkingPhase(Cont c):
// level of starting frame
c.level = 0;

//spawning task t when executing task ‘
this’

@async(Task t, Cont this):
t.level=this.level+1;
t.step=0; this.step+=1;

//spawning task t in new finish scope
when executing task ’this’

@finish(Task t, Cont this):
t.level = this.level + 1;
this.step += 1;

Figure 4.3: Common data structures and level management for all algorithms

is an ordered list of working phases it has executed so far, retained as one
WorkerStateHdr object per worker. The root task of the entire computation is
not stolen and its victim is set to -1. Each continuation’s step is tracked as
an integer and is updated on each async or finish statement.

4.4.1 Tracing

The tracing algorithms augment the steal operation to track the steal rela-
tionship and construct the steal tree. From the earlier discussion, we know
that, unlike work-first schedulers, help-first schedulers allow multiple tasks
to be stolen at each level. Thus for tracing a help-first scheduler, we store
the number of tasks stolen at each level:

struct HelpFirstInfo : WorkingPhaseInfo {
vector<int> nTasksStolen; //num. tasks stolen at each level, init to 0

};

When a continuation is stolen under help-first scheduling, the thief marks
the steal in the victim’s HelpFirstInfo. The HelpFirstInfo for the current working
phase on the victim can only be accessed by a single thief, and hence requires
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no synchronization. myrank is the thief thread’s rank. Note that just the
number of stolen tasks at each level and the partial continuation’s step is
sufficient to reconstruct all information about the tasks executed in a given
working phase.

@steal(Cont c, int victim, int myrank):
// c is the continuation stolen by the thief
if c.step == 0: // this is a full task
wsh[victim].wpi.back().nTasksStolen[c.level] += 1;

else: //this is a partial continuation
wsh[victim].wpi.back().stepStolen[c.level] = c.step;

wsh[victim].wpi.back().thieves.push_back(myrank);
WorkingPhaseInfo phase;
phase.victim = victim;
wsh[myrank].wpi.push_back(phase);

When a continuation is stolen under work-first scheduling, the following
marks the steal in the victim’s WorkingPhaseInfo. For the work-first policy, the
actions required are less complex because at most one task can be stolen per
level.

@steal(Cont c, int victim, int myrank):
wsh[victim].wpi.back().stepStolen[c.level] = c.step;
wsh[victim].wpi.back().thieves.push_back(myrank);
WorkingPhaseInfo phase;
phase.victim = victim;
wsh[myrank].wpi.push_back(phase);

Note that none of these actions require additional synchronizations, and
all the tracing overhead incurred is on the steal path.

4.4.2 Replay

The collected traces include timing information, which allows the traces to be
replayed. During replay, each thread executes the working phases assigned
to it in order. Whenever a stolen task is spawned, rather than adding it to
the deque, the corresponding thief is informed of its creation. Each thread
executes its set of subtrees at the same time point as in the original run, after
ensuring that the given subtree’s root task has been spawned by the corre-
sponding victim. The creation of the initial task in working phase indicates
that all dependences before a task in that working phase have been satisfied.
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During replay, each task tracks whether its children could have been stolen
in the trace, i.e., the task is at the frontier, using the following additional
field in the ContinuationHdr:

struct ReplayContinuationHeader : ContinuationHdr {
bool atFrontier; // could any of its children have been stolen, initially false

};

When a worker encounters a task that was stolen, it marks it as stolen
and notifies (in shared-memory) or sends (in distributed memory) the task
to the thief. When a thread starts the execution of a working phase, it waits
for the initial task to be created by the victim. The worker with the initial
task for the entire computation begins execution, identifying the initial task
as being at the frontier.

markStolen(Task t):
// enqueue ’t’ for sending or directly send to the next thief in current working phase

info’s thieves
// drop ’t’ from execution on this worker

@startWorkingPhase(WorkingPhaseInfo wpi):
// get initial task from wpi.victim, if wpi.victim>=0

@init(Task initialTask, int myrank):
if(wsh[myrank].wpi[0].victim == −1):
initialTask.atFrontier = true;

The above actions are used to replay traces from both help-first and work-
first schedulers.

When help-first traces are replayed, the number of child tasks spawned by
each task in the same finish scope is tracked by augmenting the following to
the HelpFirstInfo structure.

struct HelpFirstReplayInfo : HelpFirstInfo {
vector<int> childCount; //num children for current executing task

};

// at the beginning of execution of a task
@taskEntry(Task this, int myrank):
wsh[myrank].childCount[this.level + 1] = 0;

A task spawned by an async statement is marked as being at the frontier
if it is the immediate younger sibling of the last child task stolen from this
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task. When the executing task is at the frontier and the child count is less
than the number of tasks stolen at the next level, the spawned task is marked
as stolen. A task spawned by a finish statement can mark the executing task
as stolen as well. If the partial continuation of the finish statement is not
stolen, none of its descendents is stolen either.

@async(Task t, Continuation this, int myrank, WorkingPhaseInfo current_wpi):
t.level = this.level + 1; t.step=0; this.step+=1;
if this.atFrontier:
if wsh[myrank].childCount[t.level] < current_wpi.stealCount[t.level]:
markStolen(t);

else if wsh[myrank].childCount[t.level] == current_wpi.stealCount[t.level]:
t.atFrontier = true;

wsh[myrank].childCount[t.level] += 1;

@finish(Continuation t, Continuation this, int myrank, WorkingPhaseInfo
current_wpi):

// t does not contribute to calculation of childCount
t.level = this.level+1;
if this.atFrontier:
if this.step == wsh[myrank].stepStolen[this.level]:
markStolen(this); // continuation of this after spawning the finish
t.atFrontier = true; // only child of stolen parent is −− also at frontier
if wsh[myrank].childCount[t.level] < current_wpi.stealCount[t.level]:
assert(wsh[myrank].childCount[t.level] == current_wpi.stealCount[t.level]−1);
markStolen(t);

When replaying work-first traces, the primary action is determining
whether a task is at a frontier. When an async or finish statement is en-
countered, the following actions are executed:

@async(Task t, Cont this, int myrank):
t.level = this.level+1; t.step=0; this.step += 1;
if this.atFrontier:
if this.step == wsh[myrank].stepStolen[this.level]:
markStolen(this);
t.atFrontier = true;

@finish(Task t, Cont this, int myrank):
//same action as for async(t, this, myrank)
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Figure 4.4: The ratio of mean execution time with tracing versus without
tracing with a sample size of 15 on the POWER 7 architecture using the
shared-memory Cilk runtime. The error bars represent the error in the dif-
ference of means at 99% confidence, using a Student’s t-test.

4.4.3 Space Utilization

The space overhead can be quickly computed from the data structures em-
ployed in the algorithms. In the following formulæ, bh and bw describe the
total number of bytes required to trace help-first and work-first schedulers,
respectively:

bh =
n∑

i=0

v(1 + si) + si(m + k) (Total bytes for help-first)

bw =
n∑

i=0

v(1 + si) + sim (Total bytes for work-first)

where n is the total number of working phases, v is the number of bytes
required for a thread identifier, si is the number of steals in a working phase,
m is the number of bytes required for a step identifier, and k is number of
bytes required to store the maximum number of tasks at a given level.

For Figures 4.5 and 4.7 that graph the storage required, we use integers to
store the thread and step identifiers, and assume that the maximum number
of tasks spawned at a given level does not exceed the size of an integer:
k = m = v = sizeof(int) = 4 bytes.
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4.5 Applications

4.5.1 Data-race Detection for Async-Finish Programs

Raman et al. [1] perform data race detection by building a dynamic program
structure tree (DPST) at runtime that captures the relationships between
async and finish instances. The async and finish nodes in the tree are internal
and the leaves are step nodes that represent a step (same as the continuation
step in this paper) in the program execution where data accesses may occur.
The DPST is built dynamically at runtime by inserting nodes into the tree in
parallel. Raman et al. present a DPST implementation that exploits the tree
structure to insert nodes into the DPST in parallel without synchronization
in O(1) time. Here, we summarize the key cost factors in that implementation
and refer readers to Raman et al. [1] for the full description.

To detect races, if an application performs a data access during a step, a
reference to the step is stored in shadow memory so other steps that read-
/write this same address can reference it. If two steps access the same mem-
ory address, the structure of the tree is used to determine if these steps can
possibly execute in parallel for any possible schedule. Conflicting access to
the same memory location by concurrent steps is detected as a data race.

Two steps can execute concurrently, identified as satisfying the
dynamically-may-happen-in-parallel relationship, if their lowest common an-
cestor (LCA) in the DPST tree is an async node. Each memory location is
associated with two steps that read the location and one that last wrote that
location. The two read operations form the extremal bounds of a DPST sub-
tree that contains all concurrent reads to the memory location since the last
synchronization point. Rather than comparing with every step performing
a read, a step performing a write-operation might be flagged as causing a
data race if it can execute concurrent with the three steps whose reads and
writes are being tracked. Data-race detection for read operations is similar
but also involves operations to track the extremal bounds of the sub-tree of
concurrent reads.

It can be seen that computing the lowest common ancestor (LCA) of two
steps in computing the dynamically-may-happen-in-parallel relation is a per-
formance critical operation, invoked several times for each read and write
operation. In particular, finding the LCA is among the most expensive parts
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of the data-race detection. The DPST creation takes constant time and re-
quires no synchronization and updating the memory address locations atom-
ically only happens when a memory address is written or read and the step
is higher in the tree than the previous steps that read. On the other hand,
computing the LCA between two steps involves walking the DPST from the
two steps to their parent, with the cost proportional to the number of edges
walked. Because the DPST contains the entire async-finish tree, it may be
very deep if the application is fine-grained, leading to very expensive LCA
calculations.

We observe that the steal tree can be used to partition the DPST based on
the steal relationships. In particular, it can be seen that the LCA of two steps
in distinct working phases is the LCA of the initial steps of the two working
phases. Exploiting this additional structural information allows us to bypass
potentially large portions of the tree when traversing upward to locate the
LCA. We relate a step/async/finish in the DPST with the steal tree as we
create the DPST. For each node (step, async, or finish) in the DPST a pointer
is added to store the working phase it belongs to. If a step accesses data, a
reference to that step may be stored in the shadow memory. We compute and
track the absolute level of the initial task executed in each working phase,
referred to as the depth of the subtree executed in that working phase. The
algorithm below shows how we traverse the tree when two steps accessing
the same memory address are executed in different working phases. If the
depths of the subtrees are different, we traverse up the deeper one. If they
are equal we traverse up both until the depths are different or the ancestors
of both steps are in the same working phase subtrees. Once we are in the
same subtree, we invoke the LCA method in [1] on the initial tasks of the
two subtrees.

subtreeLCA(Cont s1, Cont s2):
while(s1 and s2 are in different subtrees):
while(s1 subtree depth != s2 subtree depth):
if (s1 subtree depth < s2 subtree depth):
s1 = initial task in s1’s working phase

else:
s2 = initial task in s2’s working phase

if((s1 subtree depth == s2 subtree depth) &&
(s1 and s2 in different subtrees)):
s1 = initial task in s1’s working phase

33



s2 = initial task in s2’s working phase
return LCA(s1,s2) //Raman et al.’s algorithm

4.6 Experimental Evaluation

The shared-memory experiments were performed on a POWER 7 system
composed of 128 GB of memory and a quad-chip module with eight cores
per chip running at 3.8 GHz and supporting four-way simultaneous multi-
threading. The distributed-memory experiments were performed on the
OLCF Cray XK6 ‘Titan’, an 18688-node system with one AMD sixteen-core
2.2GHz ‘Bulldozer’ processor and 32GB DDR3 memory per node.

The implementations were compiled with GCC 4.4.6 on the POWER 7
and PGI 12.5.0 on Titan. The distributed-memory benchmarks used MPI
(MPICH2 5.5.0) for communication. We implemented the tracing algorithms
for shared-memory systems in Cilk 5.4.6. The distributed-memory experi-
ments use the implementation discussed in detail in Section 5.4.

4.6.1 Tracing on Shared-Memory Systems

We evaluated seven of the example benchmarks in the Cilk suite and have
added two more—Nbody and AllQueens; the configurations are shown in Ta-
ble 4.2. AllQueens is a variant of the NQueens Cilk benchmark that searches
for all valid board configurations rather than just one. The Nbody bench-
mark is from the “Computer Language Benchmarks Game” suite [87]; we
have parallelized the benchmark by spawning a task per nbody calculation
and using synchronization between iterations for the n-body updates.
For these nine benchmarks, we graph the ratio of execution time with our

tracing versus the execution time without tracing in Figure 4.4. Each bar is
the ratio of the mean of 15 runs with and without tracing for each benchmark
and the error bars are the standard error in the difference of means at 99%
confidence, using a Student’s t-test [88]. This figure shows that our tracing
overhead is low and within the run-to-run variability on the machine. We
performed these same comparisons on another shared-memory architecture
(an AMD x86-64 system) and observed the same trend: low overhead but
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high variability between runs.
Figure 4.5 shows the storage overhead in KB/thread that was incurred

with tracing as we strong-scale the nine Cilk benchmarks. The error bars
represent the standard deviation from a sample of 15 runs. For all the runs
the standard deviation is low, demonstrating that different random stealing
schedules do not significantly impact storage overhead. To make the trends
more visible, we graph six of the benchmarks that have less overhead on
the left and three on the right that have more overhead with different y-
axis. For the first few scaling points all the benchmarks increase in storage
per thread, but this increase scales sub-linearly (note that the threads are
doubled each time, except for the 96-thread point) with thread count. This
graph demonstrates that our storage requirements are small, grow slowly
with thread count, and have low variation even with differing schedules. The
total storage overhead continues to increase with thread count, reflecting the
fact that increasing thread counts increases the number of steals. Despite
this increase, we observe that the total trace size, even on 120 threads, is
small enough to be analyzed on a commodity desktop system.

The traces were replayed to determine the utilization across time. Some
of the results are shown in Figure 4.8. These plots, quickly computed from
the traces, show the variation in executing identical iterations of Heat on
120 threads and the significant under-utilization when running LU even at
moderate thread counts.
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4.6.2 Tracing on Distributed-Memory Systems

For distributed-memory, we evaluate four benchmarks with two different
scheduling strategies to measure the execution time and storage overhead
that our tracing incurs (the configurations are shown in Table 4.2). The Al-
lQueens (AQ) benchmark is a distributed-memory variant of the AllQueens
benchmark. When the depth of recursion exceeds a threshold the benchmark
executes an optimized sequential kernel. SCF and TCE are computational
chemistry benchmarks described in detail in Section 5.5.1. PG is a work
stealing implementation of the pair-wise sequence alignment application de-
signed by Wu et al. [89]. We refer the readers to the corresponding paper for
details.

We execute the four benchmarks under both work-first and help-first
scheduling policies. Figure 4.6 shows the ratio of execution time with tracing
versus the execution time without tracing. For all the configurations, the
overhead is low and mostly within the error bars, which represent the stan-
dard error in the difference of means at 99% confidence, using a Student’s
t-test. Some of the variation is due to obtaining a different job partition on
the machine between runs (most likely the reason a couple points execute
faster with tracing).

Figure 4.7 shows the storage overhead in KB/core that we incur with our
tracing schemes. Note that for all the configurations except for AQ-WF,
the overhead is less than 75 KB/core and is constant or decreases with core
count. At 32,000 cores the total storage for the traces, assuming 75 KB/core,
is 2.3 GB, which would allow performance analysis to be performed easily
on a shared-memory machine or a medium-scale work station. The AQ-WF
configuration shows a somewhat different trend because the grain size for AQ
is very fine and the WF scheme reduces parallel slack compared to the HF
scheme.

4.6.3 Space Comparison Study using the StealTree

To study the benefits of tracing with the proposed framework using the steal
tree, we have selected five shared-memory benchmarks in Cilk for an in-depth
analysis of the space overheads. For each configuration experimentally eval-
uated, we have selected two problem sizes for each benchmark and three
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Benchmark Configuration Sequential Cutoff

AllQueens nq = {14,15} b = {6,3,1}
Heat nt = 5, n = {16k2,32k2} cols = {8,4,1}
Fib n = {43,35} b = {10,5,1}

Matmul n = {30002,40002} b = {64,16,8}
Cholesky (n,zeros) = {(2k2,20000),(1k2,10000} b = {8,4,2}

Table 4.1: Benchmarks for space comparison (Figure 4.10).

sequential cutoffs, shown in Table 4.1. We limit the depth of recursive ex-
pansion to the sequential cutoff for each benchmark and invoke a sequential
kernel. Hence, as the sequential cutoff increases less concurrent tasks will be
created, reducing the space requirements.

For the AllQueens and Fib benchmark, the sequential cutoff is invoked by
sequentially executing a kernel when that cutoff is reached while recursively
subdividing the problem. For Matmul and Cholesky, the sequential cutoff is
the matrix block size that is used after recursively subdividing the matrix.
For Heat, which uses a 1-D column decomposition, the sequential cutoff is the
number of columns that are executed sequentially after recursive subdivision.

In Figure 4.10, we show a space comparison with and without the steal
tree. Each bar is the mean storage of five runs and the error bars represent
standard deviation. The ‘Enum’ bars represent the amount of storage (in kB)
that is required to explicitly trace the tasks by storing the processor on which
each task executed. The ‘StealTree’ bars show the amount of space required
to store the entire steal tree, using the formulas in Section 4.4.3. The graphs
show a consistent pattern for the benchmarks tested: explicit enumeration
of tasks requires orders of magnitude more space than using the steal tree
to obtain an equivalent trace of the computation. The steal tree results are
not independent of the number of processor cores, because the trace becomes
more fragmented as more steals occur to keep all the workers busy. The total
space requirements approximately increase linearly with the number of cores.
Hence, we can predict that even on much larger shared-memory machine, the
storage costs will most likely be significantly lower than explicit enumeration.
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Figure 4.10: Space comparison between naïvely tracing tasks using explicit
enumeration (Enum) and using the proposed tracing framework (the steal
tree). Using the steal tree to trace each application requires orders of mag-
nitude less storage than naïve tracing.
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Shared-memory

Benchmark Configuration

AllQueens nq = 14, sequential cutoff 8
Heat nt = 5, nx = 4096, ny = 4096
Fib n = 43

FFT n = 67108864
Strassen n = 4096
Nbody iterations = 15, nbodies = 8192

Cholesky n = 2048, z = 20000
LU n = 1024

Matmul n = 3000

Distributed-memory

AQ nq = 19, sequential cutoff 10
SCF 128 beryllium atoms, chunk size 40
TCE C[i, j, k, l]+ = A[i, j, a, b] ∗B[a, b, k, l]

O-blocks 20 14 20 26, V-blocks 120 140 180 100
PG 13K sequences

Table 4.2: Benchmark configurations.

4.6.4 Optimizing Data-Race Detection

For several benchmarks in Cilk, we show in Figure 4.9 the percent reduction
of tree traversals achieved by exploiting the subtree information to bypass
traversing regions of the tree. For the Heat benchmark we observe over a 70%
reduction in tree traversals; for Matmul around 50–60% reduction; for Nbody
over 30% reduction; for LU around a 40–50% reduction; and for AllQueens
around a 20–30% reduction. The general trend is that increasing the thread
count partitions the tree more, causing a further reduction in the number of
tree traversals required. Depending on the structure, further segmentation
beyond some point may not be beneficial if the LCA is high up in the tree.
Heat has this behavior where the best partitions are few and high up in the
tree, with further segmentation causing an increase in tree traversals.
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CHAPTER 5
Retentive Work Stealing

Applications often involve iterative execution of identical or slowly evolv-
ing calculations. Many such applications exhibit significant complexity and
runtime variation to preclude effective static load balancing, requiring incre-
mental rebalancing to improve load balance over successive iterations.

A popular approach to addressing the load balancing challenge is overde-
composition. Rather than parallelize to a specific processor core count, the
application-writer exposes parallelism by decomposing work into medium-
grained tasks. Each task is coarse enough to enable efficient execution (tiling,
vectorization, etc.) and potential migration, while being fine enough to ex-
pose significantly higher application-level parallelism than is required by the
hardware. This allows the middleware to manage the mapping of the tasks
to processor cores, and rebalance them as needed.
This chapter focuses on balancing the computational load across processor

cores for overdecomposed applications, where static or start-time approaches
are insufficient in achieving effective load balance. Such applications require
periodic rebalancing of the load to ensure continued efficiency.
Applications that retain the computation balance over iterations, with

gradual change, are said to adhere to the principle of persistence. Persistence-
based load balancers redistribute the work to be performed in a given iter-
ation based on measured performance profiles from previous iterations. We
present a hierarchical persistence-based load balancing algorithm that at-
tempts to localize the rebalance operations and migration of tasks. The al-
gorithm greedily rebalances “excess” load rather than attempting a globally
optimal partition, which could potentially incur high space overheads.
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Work stealing is an attractive alternative for applications with significant
load imbalance within a phase, or applications with workloads that can-
not be easily profiled. Work stealing ameliorates these problems by actively
attempting to find work until termination of the phase is detected. This ap-
proach has been successfully employed in domains where the load imbalance
cannot be computed a priori or varies significantly across consecutive invo-
cations [90]. We present an active-message-based work stealing algorithm
optimized for iterative applications on distributed memory machines. The
algorithm minimizes the number of remote roundtrip latencies incurred, re-
duces the duration of locked operations, and takes into account data transfer
time when stealing tasks across the communication network. Retentive work
stealing augments this algorithm with knowledge of execution profiles from
the previous iteration to enable incremental rebalancing.

The scalability and overheads incurred by these algorithms are evaluated
using candidate benchmarks. We observe that the persistence-based load bal-
ancer produces effective load distributions with low overheads. We demon-
strate work stealing at over an order of magnitude higher scale than prior
published results. While more scalable than widely believed, work steal-
ing does not perform as well as persistence-based load balancing. Retentive
stealing, which borrows from the persistence-based load balancer to retain
information from the previous iteration, is shown to adapt better to iterative
applications, achieving higher efficiencies and lower stealing overheads.

The primary contributions of this chapter are:

• a hierarchical persistence-based load balancing algorithm that performs
greedy localized rebalancing;

• an active-message-based retentive work stealing algorithm optimized
for distributed memory machines;

• first comparative evaluation of persistence-based load balancing and
work stealing;

• most scalable demonstration of work stealing — on up to 163,840 cores;

• demonstration of the benefits of retentive stealing in incrementally re-
balancing iterative applications; and
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• application of tracing using the steal tree presented in Chapter 4 to
reduce the cost of retentive work stealing.

5.1 Challenges

An effective load balancer should achieve good load balance at scale while
incurring low overheads. In particular, the cost of rebalancing should be
related to the degree of imbalance incurred and not the total work. In an
iterative application, the load balancing overhead should decrease as the cal-
culation evolves towards a stable state, increasing only when the application
induces additional load imbalance.

Persistence-based load balancers cannot adapt to immediate load imbal-
ance and incur periodic rebalancing overheads. If a processor runs out of
work too early in a phase, it needs to wait until the end of the phase for
the imbalance to be identified and corrected. Minimizing task migration for
such load balancers can be beneficial by retaining data locality and topology-
awareness that guided the initial distribution.

Work stealing algorithms typically employ random stealing to quickly
propagate available work. This interferes with locality optimizations and
topology-aware distributions. Termination detection is a challenge at scale
on distributed-memory machines. While hierarchical termination detectors
approximate the cost of tree-based reduce operations in principle, they in-
cur higher costs in practice. Termination detectors run concurrent with the
application, introducing additional overheads throughout the application’s
execution.

The cost of stealing itself is significant on a distributed-memory machine
due to the associated communication latency and time to migrate the stolen
work. Work stealing also ignores prior rebalancing, incurring repeated steal-
ing costs across iterations. Due to these reasons, work stealing has tradi-
tionally been confined to shared-memory systems. In addition, given all the
“noise” introduced by work stealing, it is typically employed in applications
that incur significant load imbalance and are not amenable to an initial distri-
bution. Typical approaches to distributed-memory load balancing consider
hierarchical schemes due to the perceived limitations associated with work
stealing.
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5.2 Programming Model

The algorithms presented in this chapter are implemented in the context of
a MPI-based runtime library. The runtime acts both as a user-level library
for distributed memory task-based execution and as the runtime target for
language constructs such as X10 async [91] that support non-SPMD execu-
tion modes. All processes in a group or an MPI communicator collectively
switch between SPMD and task processing phases. The code snippet below
illustrates the repeated execution of a task processing phase as part of an it-
erative application. Throughout the chapter, we employ C++ style notation
except for a few shorthands in place of detailed implementation-specific API.

TslFuncRegTbl ∗frt = new TslFuncRegTbl();
TslFunc tf = frt−>add(taskFunc);
TaskCollProps props;
props.functions(tf,frt)

.taskSize(sizeof(Task))

.localData(&procLocalObj,sizeof(procLocalObj))

.maxTasks(localQueueSize);
UniformTaskCollSplit utc(props); //collective
for (..) {
Task task(..); //setup task
utc.addTask(&task, sizeof(Task)); //local operation

}
while(..) {
utc.process(); //collective
utc.restore(); //implicit collective

}

The fundamental construct in the computation is a task collection seeded
with one or more tasks. The library supports several task collection vari-
ants, each specialized to exploit specific properties of the task collection
known at runtime. The above example shows a task collection, called
UniformTaskCollectionSplit, which optimizes for a collection of tasks of identical
size, with a known upper bound on the number of tasks on any individual
processor core, and additional information common across all tasks (provided
as the opaque struct procLocalObj). Function pointers associated with a task
execution are translated into portable handles using the function registration
table, TslFuncRegTbl. These properties are used to construct a task collection
object that implements the split queue work stealing algorithm, explained
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in Section 5.4. The choice of task collection can be explicitly specified by
the programmer or chosen by the runtime depending on the task collection
properties specified. The task collection objects are collectively created on a
per-process or a per-thread basis.

The task collection objects are then seeded with tasks to begin execution.
This allows for distributed locality-aware initialization. The copy overhead of
task insertion in the above illustration can be avoided through in-place task
initialization. The task collection, once seeded, is processed in a collective
fashion using the process() method. Tasks, during their execution, can create
additional tasks to be executed as part of the same or another task collection.
The process() method returns when all tasks, seeded and subsequently created,
have been executed and the task collection is empty, determined through
a distributed termination detection algorithm. The process() method is the
runtime equivalent of an X10 finish statement and corresponds to a terminally-
strict sub-computation.

In an iterative computation, the task queue can be restored to its state
prior to invocation of process() using the restore() method. This resets the
termination detector and the task distribution enabling re-execution of the
task collection. Execution profiles from the previous execution of the task
collection can be used to adapt the seeding of tasks and scheduling algorithms
employed for subsequent iterations.

5.3 Persistence-based Load Balancer

On each processor core, the persistence-based load balancer collects statisti-
cal data on the durations of each task executed in the current iteration. This
load database is then used to rebalance the load for the next iteration after
the current iteration has terminated.
The first step in utilizing the persistence properties that an application

might exhibit is collecting data. Each task that is executed by a core is
timed and stored in a local database. Storing the exact duration of each
task (assuming a double-precision timer), requires Θ(n) doubles and Θ(n)

task descriptors, where n is the number of tasks that each core executes.
To reduce the amount of storage required, the scheduler times each task,
truncates the duration, and bins it with other tasks that are of approximately
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Algorithm 1: Centralized load balancer
1 begin
2 peLoad ⇐ { this processor’s load };
3 lbD ⇐ { database of tasks };
4 localTaskPool ⇐ { empty task pool };
5 sumLoad ⇐ { distributed reduction };

6 avgLoad ⇐ sumLoad

number of cores
;

7 while peLoad > C · avgLoad do
8 task ⇐ removeSmallestTask(lbD);
9 addTask(localTaskPool, task);

10 peLoad -= getDuration(task);
11 sendTo0 (localTaskPool, peLoad);
12 if processor = 0 then
13 taskPool ⇐ { received tasks };
14 peLoads ⇐ { load for each PE };
15 makeMaxHeap(taskPool);
16 makeMinHeap(peLoads);
17 while t ⇐ removeMaxTask(taskPool) do
18 assign(t, getMinPE (peLoads));
19 { send out new tasks to each PE };
20 else
21 { receive new load from PE 0 };

the same duration. This reduces the storage to Θ(n) + b, where n is the
number of task descriptors and b is the number of bins. These bins are kept
in a sorted structure, allowing the load balancer to access the database in
roughly duration order.

5.3.1 Centralized Load Balancing

The baseline strategy, referred to as the centralized scheme, performs load
balancing on one core, much like RefineLB as described by Zheng et al. [28].
Algorithm 1 details this strategy. First, the average load is calculated in par-
allel using a sum-reduction. If a core’s load is sufficiently above the average
load, the core removes the shortest duration task from its load database and
moves it into a local task pool, until its load is below a constant, referred
to as C, times the average load. These tasks (descriptors that compactly
represent the task) in the local task pool, along with the core’s new load, are
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(c) Starting at the root, the excess load is distributed
to each child applying the centralized greedy algorithm:
maximum-duration task is assigned to minimum-loaded
child.

Figure 5.1: The hierarchical persistence-based load balancing algorithm for 6
cores. The rectangles represent work units; a shaded rectangle with a dotted
border indicates the work unit moves during that step.
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sent to core 0, which attempts to redistribute the load.
Core 0 receives the donated tasks from overloaded cores, storing them into

a task pool. It also receives each core’s total load. From this data it creates
a min-heap of the loads of each core and a max-heap of the durations in the
task pool. It then assigns the longest task to the most underloaded core until
the task pool is empty. These assignments are then sent to the cores.

To maximize the scalability of this approach, the local task pool from
each core is collected on core 0 using MPI_Gatherv, and new assignments are
redistributed using MPI_Scatterv.

5.3.2 Hierarchical Load Balancing

Algorithm 2 details the procedure and Figure 5.1 illustrates the structure of
the load-balancing tree. The cores are organized as an n-ary tree where every
core is a leaf. First, the average load across all cores is determined. Each
core locally chooses its shortest tasks to donate while reducing its anticipated
load to be below the average times a threshold.

An underloaded core contains an empty set of tasks to be donated. Each
core then sends its load information together with the set of donated tasks
to its parent. Each core above the first level in the tree then receives the
tasks and load from each child. These cores redistribute the donated tasks to
balance the lightly loaded cores using the same procedure as the centralized
algorithm. Each core then sends the total surplus or deficit in its sub-tree,
together with donated tasks left over from the distribution, to its parent.
This algorithm is repeated recursively up the tree to the root. The root
redistributes leftover tasks down the tree to further improve load balance.
Any tasks provided by a core’s parent are redistributed down the tree to the
leaf nodes, where they are enqueued for the next iteration.

This algorithm is greedy since it locally optimizes for the children of a node
as work moves up the tree, assigning tasks to underloaded children, and down
the tree to distribute the work. The average child load (total load of that
subtree divided by the subtree size) at each node is used to make a local
decision about which child to assign work. Such a greedy approach reduces
communication and the amount of storage required at each level by consider-
ing only the immediate children and assigning them work immediately. This
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(a) addTask()

itail ctailstailsplithead split’

(b) releaseToShared()

Figure 5.2: Routines related to adding tasks into the deque

itail ctailstailhead,split split’

(a) acquireFromShared()

itail ctailstailsplithead’head

(b) getTask()

Figure 5.3: Routines for a worker getting tasks from its deque

also reduces the amount of time to rebalance at each level because fewer tasks
must be considered. In addition, tasks are assigned to locally deficit cores,
better preserving data and topology locality than the centralized rebalancing
scheme.

On the other hand, the quality of the load balance may diminish when
the tree is extremely unbalanced because local decisions based on averages
do not cause work to be migrated aggressively. Also, when there is a great
disparity in the work unit size, large work units may be assigned to a locally
deficit core rather than the most underloaded core, not effectively addressing
the load imbalance problem.

Note that tasks themselves can be distributed directly from the donating
core to the designated core, rather than through the tree. The greedy algo-
rithm can also be applied to other organizations of the cores (e.g., torus) to
better match the underlying communication network’s topology.

5.4 Retentive Work Stealing

In this section, we present our implementation of distributed memory work
stealing. Work stealing begins with all participating cores seeded with zero or
more tasks. A core with local work takes the role of a worker, processing local
tasks, as long as they are available. Once local work is exhausted, a worker
becomes a thief, searching for other available work. A thief randomly chooses
a victim and attempts to steal work from the victim’s collection of tasks. On
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Algorithm 2: Hierarchical greedy load balancer
1 begin
2 peLoad ⇐ { this processor’s load };
3 lbD ⇐ { database of tasks };
4 localTaskPool ⇐ { empty task pool };
5 sumLoad ⇐ { distributed reduction };

6 avgLoad ⇐ sumLoad

number of cores
;

7 while peLoad > C · avgLoad do
8 task ⇐ removeSmallestTask(lbD);
9 addTask(localTaskPool, task);

10 peLoad -= getDuration(task);
11 sendToParent(localTaskPool, peLoad);
12 { wait for children };
13 if processor is not root then
14 { wait for children };
15 taskPool ⇐ { received tasks };
16 peLoads ⇐ { load for each child PE };
17 makeMaxHeap(taskPool);
18 makeMinHeap(peLoads);
19 while t ⇐ removeMaxTask(taskPool) do
20 ∧
21 getMinPELoad(peLoads) < D · avgLoad;
22 assign(t, getMinPE (peLoads));
23 else
24 { wait for children };

HF-Be256 HF-Be512 (20/40) TCE

Total tasks 84.9M 21.7B / 1.36B 470K
Non-null tasks 213K 9.10M / 862K 470K

Figure 5.4: Number of tasks in first (all tasks) and subsequent iterations
(non-null tasks). The chunk size for HF-Be512 is shown in parentheses.
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itail ctailstailsplithead stail’

(a) Mark tasks stolen at stail and initiate
transfer of stolen tasks

itail ctailstailsplithead

(b) Atomically increment itail on comple-
tion of transfer

ctailstail,itailsplithead

(c) Worker updates ctail using the invari-
ant in Equation 5.1

Figure 5.5: Steps in a steal operation

a successful steal, a thief returns to the worker state, continuing to process
its local tasks. This procedure repeats until all workers have exhausted their
tasks and termination is detected.
The randomness in the choice of the victim ensures quick distribution of

work even in highly imbalanced cases (e.g., only one worker starts with all
the work). If sufficient parallel slack is present, generally more cores will
be in worker state rather than searching for work as a thief. Therefore,
work stealing implementations, as pioneered by Cilk, attempt to avoid the
overheads of synchronization or atomic operations on the executing worker,
forcing much of the synchronization overhead on the thieves.
Shared memory implementations employ a deque in which the worker in-

serts the tasks on one end (referred to as the head), while thieves steal from
the other end (the tail). Fence instructions are employed by the worker to
ensure that its insertions at the head are visible to potential thieves in the
correct order. A thief obtains a lock on the deque to preclude other con-
current steals. More details of the algorithm can be found in Blumofe et al.
[22]
We employ a distributed-memory work stealing algorithm that considers

the differing costs involved in distributed-memory machines.

Task taskBuf[BSIZE];//array holding tasks on the deque
Lock lock; //lock to arbitrate access to the deque
int head; //head: accessed only by worker
volatile int split; //split: worker reads/writes; thief reads
volatile int stail; //position of next steal; thief reads/writes; worker reads
volatile int itail; //intermediate tail: worker reads, thief writes

51



int ctail; //completed tail: accessed only by worker
Initial values:
lock.unlock();
head = split = stail = itail = ctail = 0;

A distributed-memory implementation of work stealing requires tasks to be
copied to local memory, rather than just obtaining a pointer. On many
architectures, such data transfer is more efficient from a contiguous memory
rather than an arbitrary data structure (such as a linked list of tasks). We
therefore employ a bounded-buffer circular deque implementation on a fixed-
sized array.

The operations on the deque are depicted in Figures 5.2, 5.3, and 5.5. The
dotted arrows correspond to locked or atomic operations, while the vertical
dotted lines depict updated values for the variables being modified.

Each worker (a processor core in our case) allocates such a deque and asso-
ciated state variables. The reuse of taskBuf allows it to reside in “registered”
memory, enabling efficient data transfer. Rather than allowing all tasks in
the deque to be stolen by a thief, we employ a split deque. All tasks between
head and split are local to the worker owning the deque and cannot be stolen
by a thief. This enables a worker to add and remove tasks at the head, with-
out the potential need for fence instructions. The tasks past the split are in
the shared portion of the deque and are available for stealing by thieves.

Individual remote memory operations (obtaining a lock, adjusting indices,
releasing a lock, etc.) incur significant latencies. This not only increases
the cost of a steal but slows down work propagation by precluding other
steals. In order to enable contesting thieves to make quick progress, a split-
phase stealing protocol is employed so that stolen tasks can be concurrently
transferred while other thieves make progress. The shared portion between
split and stail represents tasks that are available to be stolen. The shared
portion between stail and ctail corresponds to stolen tasks that are being copied
into the thieves’ local memories.
The state of the deque can be identified by the following:

bool full() {
return head==ctail && (split!=head || split!=ctail);

}
bool sharedEmpty() { return split==stail; }
bool localEmpty() { return head==split; }

52



int sharedSize() { return (split−stail+BSIZE)%BSIZE;}
int localSize() { return (head−split+BSIZE)%BSIZE;}

Note that the state of the deque queried without holding a lock is specu-
lative if any of the variables associated with computing the state is marked
as volatile. The only exception is split, which can only be modified by the
worker and therefore can be read by it without holding the lock.

Adding a task into the deque by a worker (addTask()) involves inserting the
task at the head. The method also resets the space available for insertion by
adjusting ctail. This employs the invariant:

(itail==stail) ≡ no pending steals on taskBuf[stail..ctail] (5.1)

void releaseToShared(int sz) {
memfence();
split = (split+sz)%BSIZE;

}
void addTask(Task task) {
do {
if(itail==stail) ctail = stail;

} while(full());
taskBuf[head] = task;
head = (head+1)%BSIZE;
if (sharedEmpty())
releaseToShared(localSize() / 2);

}

When a worker observes the shared portion of its deque to be empty,
it releases tasks from its local portion, shown by the routine releaseToShared().
Note that a memory fence operation is required while adding or getting tasks
only when releasing work to the shared portion of the deque.

bool acquireFromShared() {
lock();
if(sharedEmpty()) return false;
int nacquire = min(sharedSize()/2,1);
split = (split − nacquire + BSIZE) % BSIZE;
unlock();
return true;

}
bool getTask(Task ∗task) {
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if(localEmpty())
if(!acquireFromShared()) return false;
∗task = taskBuf[head];
head = (head − 1 + BSIZE) % BSIZE;
if (sharedEmpty())
releaseToShared(localSize() / 2);

return true;
}

Extracting a task from the deque first involves transferring tasks from the
shared to the local portion, if the local portion is empty. The task at the
head is then returned.

When a worker runs out of local work (getTask() returns false), it attempts
to steal work from a random worker proc. This is implemented as an active
message executed on the victim. The block of code executed as an active
message is annotated by @proc in the code snippet. The victim’s deque is
locked and any tasks to be stolen are marked (using stail) before unlocking
the deque. The stolen tasks are then transferred to the thief through an
asynchronous operation (sendResponse()). When that operation is complete
(detected by other runtime system components), the completion is noted
in the deque by atomically updating itail. Note that multiple thieves could
initiate the transfer of stolen tasks and complete the transfers out-of-order.
Hence, ctail, which denotes completed steals, cannot be updated by a thief
upon completion of its transfer, but needs to be updated by the worker using
the invariant shown in Equation 5.1.

bool steal(int proc) {
if(hasTerminated()) return false;
//post a recv for incoming response
@proc { //active message executed on proc
lock();
if(sharedEmpty()) { sendResponse(NULL); }
int nsteal = min((sharedSize()+1)/2, BSIZE−stail);
int oldtail = stail;
int newtail = (stail + nsteal) % BSIZE;
int nshift = newtail − oldtail;
stail = newtail;
unlock();
sreq = sendResponse(taskBuf[oldtail..(oldtail+nsteal)]);
when sreq.localComplete() {
atomic itail += nshift;
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}
}
//wait on recv
if(recvSize()>0) {
lock();
// adjust head, split, ...
unlock();
return true;

}
return false;

}

The stolen tasks are directly transferred from the victim’s deque to the
thief’s deque, without additional copy operations. In the meanwhile, any
attempts to steal from the thief would fail since the state variables denote
the deque to be empty. On completion of a successful data transfer, and
receipt of non-zero number of tasks, the state variables are updated under a
lock to denote the availability of tasks.

void process() {
while (!hasTerminated()) {
Task task;
while (getTask(&task)) {
executeTask(&task);

}
bool got_work = false;
while(got_work == false && !hasTerminated()) {
do {
p = rand() % nproc();

} while (p == me());
got_work = steal(p);

}
}

}

The overall execution procedure is shown above. All participating pro-
cessor cores execute this routine. Each core executes all local tasks in the
worker role, then turns into a thief searching for work. On finding work, the
thief turns back into a worker. This cycle is repeated until termination is
detected.

The tasks executed by each core are logged throughout the execution. In
the next iteration, the processing begins with each core’s local queue seeded
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with tasks executed by it in the previous iteration. Given that work stealing
attempts to dynamically balance the load each time it runs, this retained
task distribution is anticipated to be more balanced than the initial seeding.

Essentially by retaining the previous execution profile, the advantages of
persistence-based load balancing are applied to work stealing, and depend-
ing on the degree to which the persistence principle applies, the number of
attempted and successful steals diminish in subsequent iterations with this
optimization (shown in Figures 5.9 and 5.10). This strategy also maintains
the primary advantage of work stealing: the ability of the runtime to adapt
to major dynamic imbalances during an iteration.

set<Task> executedTasks;
void executeTask(Task task) {
executedTasks.insert(task);
// execute task

}
void restore() {
foreach task in executedTasks {
addTask(task);

}
executedTasks.clear();

}
while(..) {
process();
restore();

}

Note that the balance determined by the work stealing algorithm includes
associated overheads. Therefore significant imbalance, together with work
stealing, can still be expected in subsequent iterations. In Section 5.5, we
show that this approach incrementally improves the load balance while also
reducing the work stealing overheads.

Termination detection is done using Francez’s termination detection algo-
rithm [92], involving a tree in which thieves propagate termination messages
in the form of rounds up and down the tree. Any round is invalidated by
a thief that was a victim of a steal since the last round. Termination is
detected when all workers have turned thieves, participated in the termina-
tion detection procedure, and none of them have been stolen from since the
last round. The organization of the workers/thieves into a tree results in a
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theoretical logarithmic overhead of termination detection after all tasks have
been executed.

5.5 Experimental Evaluation

The experiments were performed on three systems: Cray XE6 NERSC Hop-
per [93], IBM BG/P Intrepid [94], and Cray XK6 Titan [95]. Hopper is
a 6384-node system, each node consisting of two twelve-core 2.1GHz AMD
‘MagnyCours’ processors and 32GB DDR3 memory. Titan is a 18688-node
system, each node consisting of one sixteen-core 2.2GHz AMD ‘Bulldozer’
processor and 32GB DDR3 memory. Hopper and Titan employ the Gem-
ini interconnection network with a peak of 9.8GB/s bandwidth per Gemini
chip. The Intrepid system consists of 40960 nodes, each with one quad-core
850MHz PowerPC 450 processor and 2GB DDR2 memory.

Our codes were compiled using the Intel compiler suite versions 12.0.4.191
and 12.1.1.256 on Hopper and Titan, respectively. Cray MPICH2 XT
versions 5.3.3 and 5.4.1 were used on Hopper and Titan, respectively.
On Intrepid, our codes were compiled with IBM XL C/C++ version
9.0. All communication was performed using two-sided MPI operations
(MPI_Isend(), MPI_Irecv(), and MPI_Wait()), except the collectives employed
in the persistence-based load balancing, as specified in Section 5.3. We de-
veloped a thread-based implementation with one thread pinned to each core
throughout the execution, all of them sharing data, with MPI initialized in
MPI_THREAD_MULTIPLE mode. We evaluated various configurations by vary-
ing the number of worker threads and “server” threads, and found that the
best performance (in all the configurations we evaluated) was achieved with
23 worker threads and 1 server thread on Hopper, 15 worker threads and 1
server thread on Titan, and 3 worker threads and 1 server thread on Intrepid.
We report all our results for these configurations. Given the server thread is
still employed in communication progress for the application, we report all
results as if the application is utilizing all the cores.
We evaluated the following schemes:

• StealAll Work stealing of all tasks in the calculation

• Steal Work stealing non-null tasks (same as StealAll for TCE)
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• StealRet Retentive work stealing on non-null tasks

• PLB Persistence-based load balancing

• Ideal Ideal scaling expected, for comparison

5.5.1 Benchmarks

The algorithms presented were evaluated using the following two benchmarks:

5.5.1.1 Tensor Contraction Expressions

Tensor Contraction Expressions (TCE) [96] comprise the entirety of Coupled
Cluster methods, employed in accurate descriptions of many-body systems
in diverse domains. Tensors are generalized multi-dimensional matrices or-
ganized into dense rectangular tiles. A tensor contraction can be viewed as a
collection of tile-tile products. The sparsity in the tensors, which can be al-
gebraically determined through inexpensive local integer operations, induces
inhomonegenity in the computation of dense tile-tile contractions, which vary
widely in their computational requirements, spanning in structure from inner
products to outer products.

5.5.1.2 Hartree-Fock

The Hartree-Fock (HF) method is a single-determinant theory [97] that forms
the basis for higher-level electronic structure theories such as Møller-Plesset
perturbation theory and Coupled Cluster theory. The benchmark consists of
the two-electron contribution component of Hartree-Fock, the computation-
ally dominant part of the method. The work to be performed is divided into
smaller units based on the user-specific tile size. The work to be performed
is determined by the schwarz screening matrix. Unlike the TCE benchmark,
the sparsity induced by the schwarz matrix depends on the specific input and
cannot be determined at compile-time. The screening produces variability in
the execution time of individual tasks and potentially results in null tasks,
i.e., tasks that do not perform any work. These null tasks are pruned in
subsequent iterations.
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5.5.1.3 Experimental Setup

For the Hartree-Fock benchmark, we considered two different molecular sys-
tems for evaluation, one consisting of 256 beryllium atoms (HF-Be256) and
the other 512 atoms (HF-Be512). The matrices involved in the Hartree-Fock
calculation (schwarz, fock, and dens matrices) were block-cyclically distributed
amongst the cores with a tile size of 40 for evaluation on Hopper. A tile size
of 20 was used on Titan and Intrepid to expose additional parallelism and
enable evaluation on larger core counts. The number of total and non-null
tasks is shown in Table 5.4. Note that the number of non-null tasks quadru-
ples when the number of atoms is doubled. The tasks themselves do not
necessarily incur the same execution time due to the sparsity induced by the
schwarz matrix.

For TCE, we evaluate the following expression:

C[i, j, k, l]+ = A[i, j, a, b] ∗B[a, b, k, l]

Each dimension is split into four spatial blocks. Indices i, j, k, and l are
organized into spatial blocks 240, 180, 100, and 210; indices a and b are of
size 84 and are organized into spatial blocks 20, 24, 20, and 20. The tensors
are partitioned into dense blocks with a tile size 20 and distributed in the
global address space. Detailed explanation of the benchmark can be found
in Baumgartner et al. [96]

5.6 Experimental Results

We observed that applications converged faster to the best achievable ef-
ficiency on Hopper and present five iterations for each application. Both
schemes required many more iterations to converge to the best possible effi-
ciency on Titan and Intrepid. We present results for the first fourteen iter-
ations on these systems. Complete results for all configurations considered
are not presented due to space limitations.

Persistence-based load balancing is typically performed only when signifi-
cant load imbalance is detected to amortize the cost of load balancing. We
load balance every iteration to quickly evaluate the effectiveness of load bal-
ancing. For the experiments, the load balancer constants C (Algorithm 1)
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and D (Algorithm 2) were set to 1.003; the branching factor used in the
hierarchical version was 3. The results presented do not include the load
balancing cost, which is evaluated separately in section 5.6.2.

5.6.1 Scalability and Efficiency

The execution times of the various schemes for both applications are shown
in Figure 5.6. For the HF benchmark, the execution time for stealing all
tasks corresponds to the zero-th iteration of all runs, before pruning the null
tasks, while other times presented correspond to the last iteration for the
respective runs. Lines marking ideal speedup (with respect to the smallest
core count shown in the corresponding graph as the baseline) are shown for
comparison. For the HF benchmark, executing all tasks is significantly more
expensive than executing only the non-null tasks. This is primarily due to the
communication and computation associated with identifying the null tasks
(checking the schwarz matrix). The schemes also scale well with increase
in core count. Traditional work stealing scales better when executing all
tasks, given the increased degree of available parallelism. This demonstrates
that random work stealing can scale to large core counts provided sufficient
parallelism.

When executing only the non-null tasks, work stealing is less strong-
scalable than the other approaches evaluated. Persistence-based load balanc-
ing and retentive stealing achieve the best performance. The TCE bench-
mark exhibits super-linear scaling due to the working set fitting in the cache.
This effect is countered by load imbalance at higher scales. Retentive work
stealing appears to address the problems associated with work stealing as we
increase the number of processor cores but keep the problem size fixed.

In order to better evaluate the observed performance and evolution of the
schemes with iterations, we plotted their efficiency for each of the iterations
on the non-null tasks. For each problem size, the efficiency is measured with
respect to the best performance achieved by any of the schemes at any core
count considered for that problem size.

The efficiency of retentive work stealing is shown in Figure 5.8. The ef-
ficiency of traditional work stealing is that achieved by the first iteration.
Retentive work stealing steadily improves its efficiency with subsequent iter-
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Figure 5.6: Execution times for first and last iteration. x-axis — number of
cores; y-axis — execution time in seconds
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Figure 5.7: Efficiency of persistence-based load-balancing across iterations
for the three system sizes, relative to the ideal anticipated speedup. x-axis
— number of cores; y-axis — efficiency
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Figure 5.8: Efficiency of retentive work stealing across iterations relative to
ideal anticipated speedup and tasks per core. x-axis — core count; left y-axis
— efficiency; right y-axis — tasks per core (error bar: std. dev.)

63



 0

 2000

 4000

 6000

 8000

 10000

 12000

 4800  9600  19200  38400  76800  146400

AllSteals-1

AllSteals-2

AllSteals-5

(a) TCE-Hopper

 0

 2000

 4000

 6000

 8000

 10000

 12000

 2400  4800  9600  19200  38400

AllSteals-1

AllSteals-2

AllSteals-5

(b) HF-Be256-Hopper

 0

 5000

 10000

 15000

 20000

 25000

 9600  19200  38400  76800

AllSteals-1

AllSteals-2

AllSteals-5

(c) HF-Be512-Hopper

 0

 50000

 100000

 150000

 200000

 250000

 16384  32768  65536  163840

AllSteals-1

AllSteals-2

AllSteals-5

(d) HF-Be512-Intrepid

 0

 10000

 20000

 30000

 40000

 50000

 8000  16000  32000  64000  128000

AllSteals-1

AllSteals-2

AllSteals-5

(e) HF-Be512-Titan

Figure 5.9: Average (error bar: standard deviation) number of attempted
steals for the first, second, and fifth iteration of retentive stealing. x-axis —
number of cores; y-axis — average number of steals.
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Figure 5.10: Average (error bar: standard deviation) number of successful
steals for the first, second, and fifth iteration of retentive stealing. x-axis —
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It
er Avg / Std Avg / Std

All Success All Success

4800 Cores 9600 Cores
1 3745/1294 0.7/1.3 3735/1350 0.6/0.7
2 2347/1086 0.2/0.4 2507/1155 0.1/0.4
5 1610/868 0.1/0.4 1864/964 0.1/0.3

19200 Cores 38400 Cores
1 8691/1840 0.7/0.9 7694/1987 0.7/1.0
2 4563/1306 0.2/0.4 4570/1325 0.2/0.4
5 3291/1049 0.1/0.3 3381/1095 0.04/0.2

78600 Cores 146000 Cores
1 7573/2196 0.6/1.0 8859/2238 0.4/0.7
2 5426/1496 0.3/0.5 5967/1663 0.2/0.4
5 4944/1019 0.1/0.2 4109/739 0.1/0.2

(a) TCE-Hopper

It
er Avg / Std Avg / Std

All Success All Success

2400 Cores 4800 Cores
1 5168/1831 18/8.7 8662/3034 12/6.9
2 2436/1356 1.2/1.9 2209/1056 1.2/2.1
5 1333/667 0.3/0.7 1192/498 0.3/0.7

9600 Cores 19200 Cores
1 4190/1221 8.6/5.7 4073/1476 5.5/4.7
2 2298/966 1.1/1.9 2275/873 1.2/2
5 1171/412 0.3/0.8 1066/360 0.3/0.7

38400 Cores
1 6837 / 2178 3.1 / 2.6
2 3528 / 1186 1.2 / 2.1
5 2015 / 715 0.5 / 0.9

(b) HF-Be256-Hopper

9600 Cores 19200 Cores
1 5661/1897 21/9.6 4975/1602 14/7.3
2 2428/1047 1.7/2.4 2336/1020 1.4/2.1
5 1202/549 0.3/0.8 1375/457 0.3/0.7

38400 Cores 76800 Cores
1 5471/1571 9.4/5.7 14899/3267 6.1/4
2 2512/965 1.5/2.2 3382/1278 2.3/3.1
5 1430/412 0.4/0.8 1537/439 0.4/0.9

(c) HF-Be512-Hopper

16384 Cores 32768 Cores
1 18220/1569 59.0/20.6 21736/1615 40/15
2 4386/633 2.8/3.1 13522/844 2.5/2.8
5 1697/231 0.7/1.1 6548/373 0.9/1.3

65536 Cores 131072 Cores
1 48315/3026 30/14 174496/6860 21/11
2 28249/1583 3.4/3.2 32904/1793 3.7/3.4
5 3694/318 1.2/1.6 27914/1620 1.1/1.5

163840 Cores
1 157353/6307 19/10
2 32368/1813 3.3/3.2
5 29479/1516 1/1.4

(d) HF-Be512-Intrepid

8000 Cores 16000 Cores
1 2461/356 110/42 2994/410 79/31
2 538/113 7.3/6.9 1652/142 5.4/5.5
5 320/87 6.5/6.1 714/84 4.2/4.5

32000 Cores 64000 Cores
1 9592/713 63/24 15180/1225 42/17
2 770/118 5.6/5.3 4680/412 6.8/5.7
5 631/76 2.6/3.1 814/86 1.6/2.1

128000 Cores
1 33844/2634 24/11
2 22725/1571 8.0/5.8
5 2155/217 1.0/1.4

(e) HF-Be512-Titan

Figure 5.11: Average (Avg) number and standard deviation (Std) of at-
tempted and successful steals for retentive work stealing for TCE, HF-Be256,
and HF-Be512 benchmarks on Hopper Cray XE6, Intrepid IBM BG/P, and
Titan Cray XK6.
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(a) HF-Be256-Hopper, 2400 cores: iterations are Steal, StealRet (last iteration), and
PLB; corresponding timings are 50, 48.9, and 49 seconds.

(b) HF-Be256-Hopper, 9600 cores: iterations are Steal, StealRet (final iteration), and
PLB; corresponding timings are 13.6, 12.6, and 12.2 seconds.

Figure 5.12: Utilization over time for all worker threads over time. Green
region — task; Blue region — steal; x-axis — time; y-axis — percent utiliza-
tion.

ations; for HF-Be512 the best points achieve over 90% efficiency on 76,800
cores of Hopper, over 91% efficiency on 163,940 cores of Intrepid, and over
81% efficiency on 128,000 cores of Titan. Given that the effectiveness of
work stealing is influenced by the parallel slack, we plot the average num-
ber of tasks, with error bars showing the standard deviation across different
processor cores, for each core count. This plot shows the similarity of task
distributions across the problem sizes. For each problem size, the efficiency
begins to deteriorate when less than 10 tasks per processor core are available
on average. For a given number of tasks per processor core, the efficiency
decreases with core count.

5.6.2 Cost and Effectiveness of Persistence-Based Load
Balancers

In this section, we evaluate the effectiveness of the centralized and hierar-
chical persistence-based load balancers using micro-benchmarks constructed
from the execution times for each task in the HF-Be256 run on Hopper. In
order to simulate various degrees of load imbalance and stress the load bal-
ancers, the tasks are sorted by duration and distributed to the cores in a
round-robin fashion, favoring every n-th core by giving it m tasks. For ex-
ample, when n = 2 and m = 4 every other core receives 4 tasks, instead of 1
task.
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Load Balancer Execution Time (seconds)

2400 4800 9600 19200 38400
n m C / H C / H C / H C / H C / H

1 1 1.57 / 1.42 1.98 / 1.12 5.76 / 1.08 14.8 / 1.92 35.6 / 1.04
2 2 4.83 / 0.07 6.33 / 0.16 8.42 / 0.81 13.0 / 0.77 43.8 / 1.00
2 4 7.40 / 0.35 10.0 / 0.66 13.0 / 0.33 18.3 / 0.31 37.7 / 1.14
2 8 9.24 / 0.34 11.4 / 0.30 13.0 / 0.33 18.4 / 1.62 45.2 / 4.40
4 2 1.40 / 0.08 2.00 / 0.30 3.82 / 0.48 16.9 / 0.82 39.5 / 0.75
4 4 2.84 / 0.09 4.13 / 0.20 6.65 / 0.56 13.4 / 0.36 37.0 / 0.65
4 8 4.34 / 0.28 6.27 / 0.97 9.07 / 0.58 15.1 / 0.26 43.0 / 0.85
8 2 0.45 / 0.04 0.75 / 0.11 2.73 / 0.25 15.0 / 0.79 36.2 / 0.36
8 4 0.98 / 0.06 1.52 / 0.07 3.03 / 0.19 11.9 / 0.65 38.1 / 0.55
8 8 1.88 / 0.06 2.70 / 0.10 5.01 / 0.49 11.4 / 0.38 36.7 / 0.63

Table 5.1: Execution time (seconds) on Hopper for rebalancing 12 initial
distributions of tasks of the HF-Be256 system, comparing centralized (C)
and hierarchical (H) persistence-based schemes. The ideal execution times
are 48, 24, 12, 6, and 3 seconds, respectively.

By varying m and n, the performance of both schemes is evaluated under
severe amounts of load imbalance. As the problem is scaled on more cores,
due to the number of tasks remaining constant, much more load imbalance
arises because there is more variance in duration between the tasks that each
core selects. For example, when n = 4 and m = 4, on 2400 cores, the core
with the highest load has 252% the average amount of work; on 38400 cores,
the highest loaded core has 691% the average. As illustrated by these data
points, the imbalance increases with the number of cores, necessitating that
substantially more tasks be migrated.

Table 5.1 shows execution times and Table 5.2 shows the quality of the load
balance achieved by both schemes on Hopper. The quality of load balance is
measured as percentage deterioration in the execution time over the ideal load
balance. The execution time for a given distribution of tasks is defined by the
load on the core with the maximum load, while the ideal is the average of the
load across all cores. Since the ideal load balance is not always achievable,
we compare the hierarchical algorithm with the centralized algorithm.

The centralized load balancer achieves a consistently good load balance,
given its global view of the computation at all scales. The variations in the
load balance quality are due to the differences in tasks assigned to different
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Load Balancer Quality (percent over ideal)

2400 4800 9600 19200 38400
n m C / H C / H C / H C / H C / H

1 1 0.03 / 0.06 0.03 / 0.18 0.03 / 0.4 0.03 / 2.0 5.8 / 12
2 2 0.03 / 0.14 0.03 / 0.54 0.03 / 1.1 1.7 / 6.6 5.8 / 12
2 4 0.03 / 0.26 0.03 / 0.68 0.03 / 4.0 0.03 / 7.1 5.8 / 12
2 8 0.03 / 0.28 0.03 / 2.2 0.03 / 3.7 0.1 / 7.3 5.8 / 18
4 2 0.03 / 0.17 0.03 / 0.53 0.03 / 1.3 2.8 / 5.7 5.8 / 11
4 4 0.03 / 0.29 0.03 / 0.60 0.03 / 2.4 1.3 / 7.4 5.8 / 15
4 8 0.03 / 0.29 0.03 / 0.58 0.03 / 3.9 0.03 / 6.9 5.8 / 13
8 2 0.03 / 0.30 0.03 / 0.73 0.03 / 1.2 2.9 / 5.4 6.6 / 13
8 4 0.03 / 0.50 0.03 / 1.0 0.03 / 3.1 2.3 / 7.6 5.8 / 12
8 8 0.03 / 0.49 0.03 / 1.0 0.03 / 4.6 0.9 / 7.9 5.8 / 15

Table 5.2: LHS — execution time (seconds) on Hopper for rebalancing 12
initial distributions of tasks of the HF-Be256 system, comparing centralized
(C) and hierarchical (H) persistence-based schemes. RHS — load balance
quality, computed as the maximum percentage over the ideal execution time
(perfectly balanced load). The ideal execution times are 48, 24, 12, 6, and 3
seconds, respectively.

cores. The hierarchical algorithm suffers from worse load balance quality due
to the greedy rebalancing employed. At scale, the few tasks available per core
exacerbates the challenges encountered by greedy rebalancing. However, it is
still competitive given sufficient number of tasks to rebalance. The execution
times of the load balancers clearly demonstrate the benefits of the hierarchical
approach.

5.6.3 Quantifying Work Stealing Overheads

In order to study the improvements in performance obtained by retentive
stealing, we measured the number of attempted and successful steals for the
various problems. Figure 5.9 and Table 5.11 show the number of attempted
steal operations for the first, second, and fifth iterations. We observe that
the number of steals, of any form, does not increase dramatically with an
increased process count. For example, on iteration 1 of HF-Be512 on Hopper,
the average number of attempted steals decreases from 5661 on 9600 cores
to 5471 on 38400 cores.
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If sufficient parallelism is present, the number of steals is influenced more
by the problem size and initial task distribution than the number of con-
current executing cores. When the degree of application parallelism dries
out, as happens in our application in the highest scale considered for each
problem, steal attempts significantly increase. For iteration 1 of HF-Be512
on Hopper, increasing the number of cores from 38400 to 76800 increases the
average number of attempted steals from 5471 to 14898. This trend is due
to a lack of parallel slack. The high standard deviation shows that different
cores are provided with different initial loads and attempt a varying number
of steals to find work.

In order to examine work stealing overheads when there is sufficient par-
allel slack, we collected performance statistics for the HF benchmark on 300
cores of Titan not using retentive stealing. We found that the tasks take
up over 85% of the total iterative time, and only 15% of the time is due
to stealing and most of this time falls during the ramp-down time. In this
experiment, because the application has sufficient parallel slack, the perfor-
mance is good. Figure 5.13 and 5.14 depict a usage graph and time profile
graph of the execution; red bars indicate stealing time whereas blue indicate
task execution time. A histogram, shown in Figure 5.15, (log scale) of task
duration shows for this particular problem how the the task duration is dis-
tributed. Note the long tail that ranges into over 2 seconds for the longest
tasks. This contributes to the long ramp-down time during the end of the
iteration.

The number of attempted steals provides insight into the improvements
in the performance achieved by retentive stealing. As the load balancing
becomes iteratively refined with retentive stealing, the number of attempted
steals decreases and stabilizes across process counts. In addition, the gradual
balancing of the load is accompanied by a lower standard deviation. Intu-
itively, when each processor core finishes the work initially assigned to it, all
cores reach a similar state and the entire application is close to completion.
For iteration 5 of HF-Be512 on Hopper, increasing the number of cores from
38400 to 76800 after retentive stealing has been applied for several iterations,
only increases the average number of attempted steals from 1430 to 1537.

The number of successful steals, shown in Figure 5.10 and Table 5.11,
confirms our intuition from the number of attempted steals. A successful steal
depends on the availability of pending work, which decreases with increase
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Figure 5.13: Usage graph of HF-Be32 on 300 Cores of Titan. Red represents
stealing time and blue represents task execution time.

Figure 5.14: Time profile graph of HF-Be32 on 300 Cores of Titan. Red
represents stealing time and blue represents task execution time.
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Figure 5.15: Histogram of task size for HF-Be32.

in core count. More importantly, retentive stealing balances the load well
enough that for the last iteration the number of successful steals is very
small. For iteration 5 of HF-Be512 on Hopper, for core counts 9600, 19200,
38400, and 76800, the average number of successful steals are 0.3, 0.3, 0.4,
and 0.4, respectively.

The efficiency of persistence-based load balancing, using the hierarchical
load balancer, is shown in Figure 5.7. The first iteration plotted on the
graph is the efficiency of work stealing after the null tasks have been pruned.
The significant change in the work distribution from iteration 0 to 1 renders
persistence-based load balancing ineffective, resulting in large observed exe-
cution times. Instead, we resorted to work stealing in the first iteration, in
this evaluation.

For the second iteration, to show the overhead of work stealing, tasks are
seeded based on the previous iteration, but work stealing is disabled and no
load balancer is used. Efficiency improves slightly in this case because the
overheads associated with stealing and termination detection are removed.
In subsequent iterations, the hierarchical load balancer is executed before the
start of the iteration, using the data collected from the previous iteration.
The first time the hierarchical load balancer is run, load balance improves
significantly; for example, on Hopper efficiency increases by 7% on 76800
cores for the TCE calculation, 24% on 38400 cores for the HF-Be256 system,
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and 22% on 76800 cores for the HF-Be512 system. The second application
of the load balancer improves the performance slightly in the HF-Be256 case
on Hopper. The third application does not seem to have much impact on
Hopper, but Titan and Intrepid require more applications of the load balancer
before HF-Be512 converges.

Figure 5.12 shows the processor utilization over time for two HF-Be256
runs on 2400 and 9600 cores of Hopper. The graph demonstrates that for
the first iteration of the computation, before retentive stealing is applied,
performance is low due to many cores spending time trying to steal tasks.
As the problem is strong scaled, the amount of time spent stealing increases
dramatically. Retentive work stealing reduces this time in both cases, in-
creasing the amount of time spent executing tasks. With retention, work
stealing performs almost as well as persistence-based load balancing.

5.7 Applying the Steal Tree to Retentive Work
Stealing

While retentive stealing addresses the performance issues of work stealing in
the distributed-memory context, this approach relies on explicit enumeration
of tasks to enable retentive stealing. This not only increases the storage over-
head, but is also infeasible when intervening finish statements are involved.
The key insight in enabling retentive stealing is to allow the execution in
each worker to begin with the working phases in the previous iteration, while
also allowing work stealing to improve load balance. We observe that re-
tentive stealing can be applied to recursive parallel programs by building on
the replay algorithms presented in Chapter 4. In particular, we explain the
extensions to the replay algorithms to allow stealing of tasks from a working
phase being replayed.

During normal execution, a worker can execute a stolen task to completion
barring synchronization constraints imposed by the finish statement. How-
ever, a working phase being replayed completes execution when all the tasks
in that phase are complete. In particular, the tasks at the frontier of a work-
ing phase need to be distinguished from other tasks. When stealing from a
working phase, we therefore check whether the stolen task is at the frontier.
In addition to the replay actions, a steal operation correctly identifies the
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steps represented by the stolen continuation, which can be extracted from
the WorkingPhaseInfo structure. A task can be at the frontier, i.e., its descen-
dents stolen in the current working phase, only if its parent is at the frontier.
Thus a thief stealing a step not at the frontier can execute all tasks reach-
able from that step. When a stolen task is at the frontier, the WorkingPhaseInfo

structure associated with victim’s current working phase is also copied. This
allows the thief to ensure that it does not execute steps reachable from the
stolen continuation past the work represented by the victim’s working phase.
The calculations that use the task’s level to determine the frontier during
replay are adapted to take into account the level of the stolen task in the
victim’s working phase.
In this approach, steals of tasks not at frontier just steal the step informa-

tion and incur the same cost as a steal during normal execution. Steals at the
frontier, also need to copy the frontier information from the victim’s work-
ing phase, and thus incur greater data movement overhead on distributed-
memory systems. Stealing from working phases to enable retentive stealing
can also lead to working phase “fragmentation”, potentially increasing the
number of working phases and hence the storage overhead as the iterations
progress. In the following section, we show experimentally that these over-
heads do not adversely impact performance and the storage required stays
well below the amount required to explicitly enumerate all tasks.

5.7.1 Experimental Results using the Steal Tree with Retentive
Stealing

We evaluated retentive stealing for the two iterative distributed-memory
benchmarks: Self-Consistent Field (SCF) and Tensor Contraction Engine
(TCE) (retentive stealing is not applicable for the others). In Figures 5.16a
and 5.17a we show the scaling behavior of both benchmarks after several
warm-up iterations and then running them 10 iterations to convergence with
retentive stealing. The help-first and work-first schemes scale almost per-
fectly and the scaling results are comparable to the result in the previous
section. We graph the full task enumeration scheme used earlier in this
chapter as TCE-Enum and SCF-Enum. We are able to reproduce this result
without incurring the overhead of enumerating every task and storing them.
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For SCF, fully enumerating the tasks requires 20.7 KB/core on 2K cores; for
TCE, full enumerating the tasks requires 8.3 KB/core on 2K cores. For both
benchmarks, the steal tree uses significantly less storage per core compared
to enumerating all the tasks. For instance, on 2K cores of SCF with help-first
scheduling we only require 0.34 KB/core to store the traces; this decreases
to 0.26 KB/core on 32K cores.
Also, our queue size is bounded by d (where d is the depth of the com-

putational tree) for the work-first scheme or bd (where b is the branching
factor) for the help-first scheme. With explicit enumeration the queue size
is bounded by the number of tasks, which may require signification memory
overhead.
In Figures 5.16b, 5.16c, 5.17b and 5.17c we graph the amount of storage

per core required over time for retentive stealing because steals in subse-
quent iterations cause more partitioning of the work. We observe that the
convergence rate is application- and scale-dependent. For the SCF bench-
mark, the convergence rate increases with scale under strong scaling as the
benchmark approaches the limits of its concurrency. We thus anticipate the
storage overhead to remain constant or increase very slowly for such an iter-
ative application at large scales. TCE appears to be very well-behaved, with
subsequent iterations causing almost no increase in storage overhead.
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Figure 5.16: Retentive stealing using our tracing algorithms on recursive
specification of the SCF benchmark on Cray XK6 Titan.

76



 1

 10

 100

 2000  4000  8000  16000  32000  64000

E
x
ec

u
ti

o
n
 T

im
e 

(s
ec

o
n
d
s)

Number of Cores

TCE-HF
TCE-WF

TCE-Enum
Ideal

(a) Scaling

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10

K
B

/
co

re

Iteration

2000 Cores
4000 Cores
8000 Cores

16000 Cores
32000 Cores
64000 Cores

(b) Help-First

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10

K
B

/
co

re

Iteration

2000 Cores
4000 Cores
8000 Cores

16000 Cores
32000 Cores
64000 Cores

(c) Work-First

Figure 5.17: Retentive stealing using our tracing algorithms on recursive
specification of the TCE benchmark on Cray XK6 Titan.
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CHAPTER 6
NUMA Locality for Work Stealing

A fork/join parallel program scheduled using work stealing is typically obliv-
ious to data locality and incurs data access penalties on multi-core systems
with non-uniform memory and caches. Aligning the work performed, thus
the data accesses, by a given processor across similar phases of a computation
reduces its data access costs, potentially improving performance. However,
this needs to be achieved without interfering with the essential dynamic load
balancing benefits of fork/join programs scheduled using work stealing.

In this chapter, we present an approach to improve data locality across the
phases of a fork/join program while ensuring load balance. We begin with the
efficient extraction of an initial load balanced schedule for a given phase in
the form of a steal tree. We present user-specified and automated approaches
to steal tree extraction. User specification allows precise control over parti-
tioning, while automated extraction minimizes user effort. The actions of the
work stealing scheduler in subsequent phases are then constrained to match
this initial schedule. A fixed schedule ensures data locality across phases, but
it might not be effective in supporting phases with similar but not identical
characteristics. Therefore, we design three constrained scheduling algorithms
that follow a given schedule with varying degrees of fidelity: strict ordered,
to precisely follow a given schedule; strict unordered, to improve schedule
flexibility when waiting on steals; and relaxed, to permit additional steal op-
erations while respecting the given schedule. We demonstrate the usefulness
of these algorithms by devising two optimizations for fork/join programs.

Programs with non-cache resident working sets operating on systems with
non-uniform memory access latencies can further benefit from data redistri-
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bution. We treat data distributions as execution schedules of a fork/join ini-
tializer. This allows us to align data distributions with computation phases.
We show these elements can be flexibly combined to improve the data locality
and, in turn, the scalability of fork/join programs.

The performance of fork/join programs is significantly impacted by the
amount of work encapsulated in each task. Fine-grained tasks allow effec-
tive load balancing while potentially incurring significant task management
overheads. Coarse-grained tasks can reduce these overheads but potentially
suffer from load imbalance due to lack of sufficient parallelism. Manual tun-
ing of task granularity is a non-trivial challenge. We demonstrate the use of
constrained work-stealing algorithms to dynamically coarsen the tasks in an
iterative fashion.

These algorithms are implemented in the context of the Cilk runtime. The
experimental evaluation demonstrates that initial schedules can be efficiently
constructed, the constrained work-stealing algorithms effectively combine
data locality and load balance, and these can be combined to greatly im-
prove overall performance. The evaluation also demonstrates that dynamic
coarsening automatically adapts the execution to achieve the performance
benefits of manual coarsening while providing sufficient parallelism to ensure
load-balanced execution.

The primary contributions of this chapter are:

• programmatic support for specifying work-stealing schedules to allow
user guidance on data locality;

• constrained work-stealing algorithms that expose varying degrees of
exactness and adaptivity;

• demonstration of data locality and dynamic coarsening optimizations;
and

• implementation and detailed evaluation in the context of Cilk, demon-
strating low overheads and performance improvements up to a factor
of 2.5x on 80 cores compared to traditional random work stealing.
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6.1 Background

In this section, we briefly describe the Cilk scheduler and its data access
behavior. More detailed descriptions can be found elsewhere [35, 98].

A Cilk closure refers to the data structured in Cilk used to store the par-
tially executed state of a task, or the state of the local variables in the
function invocation. Execution begins with one of the threads executing the
closure corresponding to the main() function. The actions of the scheduler
can be described by the following loop:

void Cilk_Scheduler():
foreach (w in workers):
while (/∗not terminated∗/):
Closure cl = try_steal_from_deque(w);
if (!cl) cl = Closure_steal(w, random_victim());
if (cl) execute_closure(cl);

void execute_closure(Closure∗ cl):
// execute the corresponding closure starting at continuation

While shown to be provably space- and time-efficient, Cilk does not take
data locality into account. In particular, we consider two challenges asso-
ciated with executing fork/join programs that incur non-trivial data access
costs. First, the lack of locality-awareness across computation phases sig-
nificantly impacts performance. For example, we evaluated the execution
time for performing a parallel memory copy between two 8 GB arrays on an
80-core system after both arrays have been initialized (system configuration
is detailed in Section 6.3.3.4). The memory copy is organized as concurrent
tasks operating on contiguous blocks of the array. A statically scheduled
OpenMP loop aligned the initialization and copy operations and took 169
ms to perform the memory copy. Conversely, implementations using Cilk
and OpenMP tasks took 436 ms.

Second, the performance of such programs is very sensitive to task gran-
ularity. The preceding results were obtained using a 512 KB block size, the
best performing Cilk and OpenMP tasks version. Other block sizes, ranging
from 4 KB (page size) to a few MBs, performed worse than this. While
compute-bound programs can be optimized in terms of the smallest task
granularity that maximizes sequential performance, optimizing data access
costs imposes additional challenges.
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6.2 Overview

In this section, we present an overview of our approach to data locality opti-
mization for fork/join programs. Our objective is to match the actions of the
work-stealing scheduler across different phases of a fork/join program. For
example, making the same worker thread execute the initialization and copy
tasks on a given data block would improve data locality and thus perfor-
mance, resulting in the same performance as the OpenMP statically sched-
uled loops.

Here, we focus on a runtime approach to data locality optimization by
matching the task execution schedules across different phases with user guid-
ance. This involves efficient construction of a template schedule and algo-
rithms to constrain the actions of the work-stealing scheduler to execute
subsequent phases to follow a previously constructed template schedule.

We exploit the fact that the schedule for a fork/join program scheduled
using work stealing can be described in terms of steal operations involved.
These steal operations can be combined to construct a steal tree that repre-
sent a phase’s execution schedule. We present two approaches to construct
the template schedules. The first approach involves efficiently tracing the
execution of a phase to extract the corresponding steal tree. The second
approach involves user-specified partitioning of the work, where the user
constructs a synthetic steal tree as the program is executed. Automated
extraction of the steal tree (in Section 6.3.1) minimizes user effort but can-
not immediately optimize for data locality and load balance. User-specified
steal trees (discussed in Section 6.3.2) provide direct control to the user while
requiring additional user effort.
We describe three constrained schedulers (discussed in Section 6.3.3) that

present different trade-offs between faithfully preserving the template sched-
ule and continuing to improve load balance. The two strict schedulers pre-
serve the steal tree provided and can avoid the costs associated with work
stealing. The relaxed replay scheduler incrementally load balances the com-
putation, starting from the template schedule.
The following code snippet illustrates the optimization approach:

spawn initialization(); sync;
// s <− extract schedule from initialization
for (i = 0; i < numIters; i++)
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if (!converged):
// s <− use relaxed scheduler with s on kernel
spawn kernel(); sync;
// use strict scheduler with s on data relocation code

else:
// use strict scheduler with s to maintain locality
spawn kernel(); sync;

In this snippet, the user is interested in matching the schedules for the ini-
tialization (the initialization() spawn) and iterative kernel (the kernel() spawn)
phases. The user extracts the schedule for the initialization phase into s.
This schedule may not be optimal due to data locality inefficiencies in the
initialization phase itself. In addition, the extracted schedule might not re-
sult in a load-balanced execution for the kernel phase. Therefore, the user
employs the relaxed replay scheduler for the kernel phase. The data used
in the kernel is redistributed to match this new relaxed schedule. When the
performance has sufficiently stabilized (converged is true), the user disables
work stealing and data redistribution and switches to the strict scheduler to
ensure data locality for subsequent kernel phases.
To manipulate the data distribution, the user must write a fork/join ini-

tializer, a code that traverses the data with the same spawn/sync structure
as the kernel, but instead copies and hence reinitializes the data. We use
the fork/join initializer with the strict ordered scheduler so the data locality
matches how the kernel was executed.
The following code snippet summarizes the application programmer inter-

face to construct, manipulate, and replay schedules. The rest of the chapter
examines the API and the associated algorithms in detail.

// extract Steal Tree from previous spawn
StealTree extractSchedulePrevious();
// map continuation to worker thread after next spawn
void designateAfterNextSpawn(int worker);
// apply ordered scheduler to next spawn
void applyStOWS(StealTree t);
// apply unordered scheduler to next spawn
void applyStUWS(StealTree t);
// apply relaxed scheduler to next spawn
void applyRelWS(StealTree t);
// prune the Steal Tree
void pruneTree(StealTree t, int percent);
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6.3 Detailed Design

6.3.1 Automated Schedule Extraction

Cilk programs often are fine-grained to maximize the concurrency exposed to
the runtime. Therefore, efficiently recording the schedule may be expensive
to capture and store in terms of time and space. Thus, we use the steal tree
described in Chapter 4 to record the schedule for the entire program. We use
the theory presented in that chapter but employ a different design. Our goal
beyond that chapter is to allow the extraction of a steal tree at any spawn in
the computation. To implement this, we associate and track the information
needed to construct the steal tree with every closure. When a steal occurs,
we partition the steal tree at the closure, creating a new branch for the stolen
continuation. For each steal, the steal tree stores a pointer to a child tree
indexed by the continuation that was stolen.

struct StealTree:
int thd; // the worker that ran this continuation
int cont; // continuation starting point (parent’s branch index)
int seq; // unique sequence number for this worker−(thd,seq)
map<int, StealTree> br; // the branches at each stolen continuation

struct Closure:
// internal Cilk data, function ptr, etc.
int curSpawn; // current spawn in scope being executed
int level; // global spawn−tree level
StealTree tree; // the steal tree for this closure

struct ThreadLocalData:
int curSequence;

ThreadLocalData data[NUM_WORKERS];

The StealTree data structure completely specifies the mapping of continuations
to workers, and the seq field specifies the order in which the continuations
were executed. When a steal occurs, the newly allocated Cilk Closure is popu-
lated with a new StealTree. The corresponding branch in the old StealTree,
indexed by the current spawn, is set to point to the new StealTree.
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6.3.2 User-Specified Schedule Construction

In addition to extracting the schedule from a given phase of the computation,
we present an approach to programming construct steal trees. In particular,
the user can specify a mapping of a given continuation to a worker using
the designateAfterNextSpawn() call. The following example specifies
that the continuation beginning at spawn y() is to be executed by worker
1, and the continuation beginning at spawn z() is to be executed by worker
2.

void fn():
designateAfterNextSpawn(1); // map cont. after x to worker 1
spawn x();
designateAfterNextSpawn(2); // map cont. after y to worker 2
spawn y();
spawn z();

The call to designate a continuation should precede the spawn whose contin-
uation is being designated. User specification of the exact order in which the
continuations mapped to a worker need to be executed is a non-trivial chal-
lenge. The strict unordered scheduler addresses this concern. A worker, on
encountering this function, steals from itself and inserts the created closure
into the steal tree as follows:

int designation[NUM_WORKERS] = {−1..−1};
void designateAfterNextSpawn(int worker):
designation[get_current_worker()] = worker;

void pushed_spawn(int worker, int spawn, int curLev, Closure c):
int contThd = designation[worker];
designation[worker] = −1;
if (contThd != −1 && contThd != worker):
check_validity(c, curLev);
// steal continuation from self
Closure cont = Closure_steal(worker, worker);
// transfer current steal tree to stolen continuation
cont.tree = c.tree;
// discard transferred steal tree from current continuation
c.tree = c.tree.br[spawn];
donate_continuation(contThd, cont);

We ensure that programmatically created steal trees follow the same prop-
erties as a steal tree constructed at runtime by the Cilk work-stealing sched-
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uler. Principally, if a continuation in a task is mapped to a worker, the parent
task (the task that spawned this one) also should have a stolen continuation
based on the proofs in Chapter 4. This is true when the number of nested
steals at this point equals the number of nested spawns minus one. If this is
not true, then the parent task did not have a stolen continuation.

void check_validity(Closure cl, int curLevel):
assert(curLevel == cl.level+1);

6.3.2.1 Schedule Extraction API

At this point, the schedule constructed can be extracted using the routine
extractSchedulePrevious(). This routine returns a StealTree structure representing
the steal tree rooted at the immediately preceding spawn. Note that the
statements following the spawn can be executed while the spawned task,
and those spawned transitively, continue to be executed. Therefore, a call
to extract the steal tree must be preceded by a sync to ensure that the
steal tree has been completely constructed before it is extracted. Given that
the steal tree is requested a posteriori, we construct the steal tree for every
spawn throughout the computation. An optimized implementation could
include a split-phase design if a specification of the intent to extract a steal
tree triggered the steal tree construction for a spawn. However, we observe
that the overheads of steal tree construction are marginal in practice due to
the fact that the steal tree construction operations are proportional to the
number of steals, which are a small fraction of the total number of tasks in
a fork/join program with sufficient concurrency.

6.3.3 Constrained Work Stealing

We have implemented three different scheduling algorithms that constrain a
work-stealing scheduler to a template schedule with varying levels of fidelity.
Depending on how refined and effective a schedule is for a given computation,
it may need to be exactly followed or revised to adapt to changes in the
environment (e.g., changes in the locality of data accessed). In Figure 6.1,
we depict how the three types of constrained schedulers can improve a default
schedule:
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• StOWS The strict, ordered work-stealing scheduler exactly follows
a template schedule t by guiding each worker to execute the tasks
in the order prescribed by t.

• StUWS The strict, unordered work-stealing scheduler approxi-
mates a template schedule t by guiding each worker to execute the
same tasks it executed in t, but it allows them to greedily deviate
in order (ensuring that all dependencies are followed).

• RelWS The relaxed work-stealing scheduler approximates a tem-
plate schedule t by guiding each worker to execute the tasks it exe-
cuted in t in any order, while allowing further steals when a worker
is idle.

Constraining the execution to a template schedule requires coordinating
the workers so that each worker steals the same closures as dictated by the
schedule. Depending on the level of fidelity, the order may matter or further
steals may be allowed. A possible method to implement this involves coor-
dinating the thieves so they steal from the same victims as specified during
the designated working phase. However, this may slow down the victim if
it has to wait for the thief to steal due to perturbations in the execution or
schedule variations from lower levels of fidelity (unordered or relaxed work
stealing). Hence, we have implemented all of the scheduling algorithms using
a donation protocol: when a continuation marked as stolen in the template
schedule is encountered, the victim steals the next continuation from itself
and donates the closure to the worker designated in the steal tree.
The common operation in constrained work stealing executes a closure in

the current constrain mode. Once a spawn is encountered and pushed on the
stack, if there exists a steal point in the steal tree for the continuation after
the spawn, the worker steals from itself and passes the stolen continuation
to the worker designated as thief. Henceforth, we shall refer to the thief that
steals a continuation in a template schedule as the designed worker for that
continuation.

enum constrain_mode {RWS, StOWS, StUWS, RelWS};
constrain_mode current_mode = RWS;

void execute_closure(Closure cl, constrain_mode m):
// set global work stealing constrain mode
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current_mode = m;
// execute continuation

// executed after a spawn is encountered and pushed on the stack,
// incrementing the current level
void pushed_spawn(int worker, int spawn, int curLevel, Closure cl):
if (current_mode != RWS):
int contThd = cl.tree.br[spawn+1].thd;
if (contThd != worker):
// steal continuation from self
Closure cont = Closure_steal(worker, worker);
// transfer current steal tree to stolen continuation
cont.tree = cl.tree;
// discard transferred steal tree from current continuation
cl.tree = cl.tree.br[spawn];
if (current_mode == RelR || current_mode == StUR):
donate_continuation(contThd, cont);

else if (current_mode == StOR):
int seq = cont.tree.br[spawn+1].seq;
seqs[contThd][seq].cur = cont;
seqs[contThd][seq].ready = true;

The spawn/sync structure of the computation being constrained does not
have to exactly match the template schedule. While the structure can be
arbitrarily different, it can only deviate in two ways to be semantically valid.

Rule 6.3.1. The template schedule and constrained computation may vary
in task depth. The template may have steal points beyond the computational
structure, or the computation may have deeper tasks. Deeper tasks in the
computation are constrained by the deepest parent task in the template with
a steal point.

Rule 6.3.2. To match, the spawn/sync structure must be aligned until the
position of the continuation. This could be followed by an arbitrary task
structure of spawns and syncs.

6.3.3.1 Strict Ordered (StOWS) Scheduling

This scheduling policy is used when the template schedule exactly matches
the computation and is known to provide good load balance and data local-
ity. This policy exactly reproduces a template schedule: the mapping of a
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Figure 6.1: Example computation scheduled with the default scheduler and
then modified with three types of constrained work stealing. Default sched-
uler: all workers begin busy with work then attempt to steal when they
finish. StOWS reproduces this schedule without having to search for work.
StUWS is able to revise the order on thread 0, reducing the time. RelWS
performs an additional steal, further balancing the workload.
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continuation to a worker and the order in which each worker executes the
continuations. Compared to the default Cilk scheduler, the StOWS sched-
uler has the advantage that workers do not have to search for work, which
reduces the execution overhead. The donations do not incur much overhead
because they require little coordination between the workers.
To reproduce the order of previous execution, each worker creates an or-

dered list of steal tree branches that it executed previously from the desig-
nated spawn. This list is built by traversing the steal tree at that spawn
and finding the minimum and maximum sequence numbers for each worker.
This operation can be parallelized by performing a parallel tree traversal and
using Cilk++ reducers [98] or an equivalent Cilk implementation to find the
global minimum and maximum for each worker in the subtree.
Once the ranges are found, sequence arrays are built for each worker for

following the sequence of closures to execute during StOWS:

struct Sequence:
boolean ready = false;
Closure cur;

Sequence seqs[NUM_WORKERS];

void buildWorkerSequences():
foreach (w in NUM_WORKERS):
int phases = range[w].max − range[w].min;
seqs[w] = allocate_init(phases);

During StOWS, workers do not perform random work stealing. Instead,
they start at the beginning of their sequence arrays and wait for the next
element in the sequence to become ready (ready field set to true) and the
closure to be passed to that worker by setting the cur field. The first closure
is given to the thread that executed the root of the subtree. After a thread
pushes a spawn, it checks the steal tree to determine if there was a steal, and
donates the continuation if there was by setting the cur field in the proper
location in the sequence specified by the steal tree.
The following algorithm describes the StOWS scheduler. The initial clo-

sure is passed to the starting sequence. Then each worker waits until the
next closure activates in the sequence.

void StOWS_Scheduler(Closure starting):
buildWorkerSequences(seqs);
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int startThd = starting.tree.thd;
int startSeq = stating.tree.seq;
seqs[startThd][startSeq].ready = true;
seqs[startThd][startSeq].cur = initial;
foreach (w in workers):
for (i = 0; i < length(seqs[w]); i++):
while (!seq[w][i].ready)
;

execute_closure(seq[w][i].cur, StOR);

6.3.3.2 Strict Unordered (StUWS) Scheduling

The strict unordered scheduling policy is used when a template schedule pro-
vides a good mapping of tasks to threads, but the ordering in the schedule
must be refined to maximize performance or the ordering is unspecified (e.g.,
a user-specified schedule construction). The advantage of this algorithm over
the other schedulers is that it allows the system to adapt to small pertur-
bations in the execution without incurring the overhead of attempting and
coordinating steals.

The strict unordered scheduler ensures that each worker executes the same
work as the template schedule, following the computational dependencies,
but relaxes the order in which concurrent stolen tasks are executed. More
specifically, if two concurrent tasks were executed by a worker in the previous
schedule, they will both be executed by the same worker, but possibly in a
different order than what the template schedule dictates.

Unordered execution is achieved by using the steal tree to determine the
mapping of tasks to threads, but ignoring the sequence information. To
store donations from multiple concurrent workers, each worker maintains a
bounded buffer that is protected by a lock. If the bounded buffer is empty
and the worker is idle, the worker spins, waiting for work to arrive. The
bounded buffer may grow in size up to a system-imposed limit. When the
limit is reached, any donating workers spin until a closure is removed from
the buffer. The management of the bounded buffer causes this scheme to
incur slightly more time and space overhead compared to StOWS.

The following algorithm describes the scheduler. The initial closure is
deposited into the designated bounded buffer, then each worker checks the
buffer for any new closures. If the continuation following a spawn is desig-
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nated to be stolen, the worker donates it to the appropriate worker’s buffer.

void StUWS_Scheduler(Closure starting):
int startThd = starting.tree.thd;
donate_continuation(startThd, starting);
foreach (w in workers):
while (/∗not terminated∗/):
while (/∗ no continuations ready∗/)
;

Closure cl = try_extract_continuation(w);
if (cl):
execute_closure(cl, StUR);

6.3.3.3 Relaxed (RelWS) Scheduling

Due to environmental changes, such as the data locality of tasks, growing
load imbalances, or execution perturbations due to noise, a template sched-
ule may need to be revised. We have developed the RelWS algorithm for
approximating a template schedule by following it as much as possible, but
deviating from it when a worker is idle, indicating that the schedule has a
deficiency at this point.

Similar to StUWS, RelWS does not follow the order and uses the
bounded buffer to transfer continuations between workers. When the
bounded buffer is empty, the worker becomes a thief. If the worker per-
forms a successful steal, it continues to follow the template schedule for the
stolen continuation. Any descendent continuations from this stolen contin-
uation that are marked as stolen in the template schedule continue to be
treated as steals and get donated to the designated worker. Therefore, each
overriding steal only modifies, at most, one branch of the tree.

The primary advantage of RelWS is that it can adapt to changes that
may arise. However, it does incur the most overhead of the three polices due
to its use of the bounded buffer and the stealing overhead when the buffer is
empty.

The following algorithm shows how the relaxed scheduler functions:

void RelWS_Scheduler(Closure starting):
int startThd = starting.tree.thd;
donate_continuation(startThd, starting);
foreach (w in workers):
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while (/∗not terminated∗/):
Closure cl;
if /∗ ready continuations of w not empty ∗/:
cl = try_extract_continuation(w);

if (cl):
execute_closure(cl, RelR);

else:
cl = Closure_steal(w, random_victim());

if (cl):
execute_closure(cl, RelR);

We now evaluate the overhead of building the steal tree and adaptability
of using the constrained schedulers with the recursive Fibonacci benchmark
(fib) implemented in Cilk. For all of the experiments conducted with fib, we
calculate the 48th Fibonacci number, unless specified differently. When we
reach the depth of fib(30), we invoke a sequential kernel.

6.3.3.4 Experimental Setup

All of the experiments in this chapter were performed on an Intel 80-core
machine, composed of eight 2.27 GHz E7-8860 processors, each with 10 cores.
They are connected via Intel QPI 6.4 GT/s, and the machine has 2 TB of
DRAM. All our codes were compiled with GNU GCC version 4.3.4, using the
MIT Cilk 5.4.6 translator [35] or just with GCC and OpenMP 3.0 (version
200805). For the OpenMP results, we tried using ICC with the Intel OpenMP
implementation, but found no significant scaling difference. The machine
runs Red Hat Linux version 4.4.7-3 and has been configured to use a page
size of 4096 bytes. All of our codes set the affinity of created threads that
pins each thread (in Cilk or OpenMP) to a specific core during the execution.
The first 10 threads created are pinned to a single socket.

6.3.3.5 Overhead Evaluation

In Figure 6.2a, the first set of bars plots the normalized execution time com-
pared to executing fib without tracing for the four different configurations.
Building the steal tree, shown as “Trace” on the plot, incurs very little over-
head and is within the standard deviation. We observe that the strict ordered
scheduler speeds up execution by 1.4%, but unordered and relaxed work steal-
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Figure 6.2: The overhead of the fib microbenchmark with tracing and three
scheduling schemes (6.2a) along with benchmarks to show how RelWS
adapts to dynamic variations (6.2b, 6.2c).
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ing incur an execution time penalty of about 6.8% and 7.8% with standard
deviations of 0.8% and 2.2%, respectively. This matches our expectation that
the strict ordered scheduler slightly improves performance if the computation
is sufficiently load balanced and the schedule is appropriate, but unordered
or relaxed schedulers may impose overheads if they are not needed to refine
the schedule.

6.3.3.6 Adaptability Evaluation

In the second set of bars, we test the efficacy of RelWS by using a schedule
from a smaller problem size for a larger problem to observe how it adapts.
We first execute fib(48), extract the schedule, and use that schedule as a
template for fib(48 + 6). We compare this to running fib(48 + 6) with the
default Cilk scheduler. We find that using the strict ordered scheduler incurs
a performance penalty of around 8% due to scheduling deficiencies. This
is from the mismatch between the template schedule and the work being
performed.

The strict unordered scheduler causes high average overhead but with a
large standard deviation, indicating that the execution time is unpredictable,
because the unordered scheduler has varying performance depending on the
order of execution. However, RelWS recovers the lost performance entirely
by adapting to the new problem size, achieving performance close to the
native schedule.
In Figure 6.2b, we vary the number of working threads to further show

the flexibility of the RelWS scheduler. The first bar in each set plots the
execution time from fib(48) with p− 10 threads. The second bar shows the
execution time with p threads. In the third bar, we show the execution time
using the schedule produced with p− 10 threads as a template for p threads.
We observe the performance almost matches a schedule natively generated
by Cilk for the scenario with RelWS. In the case of p = 20, the performance
is within 0.35% of the native. For p = 40, it is 2.6%, and for p = 60, it is
3.97%.
In the final fib experiment shown in Figure 6.2c, we present the baseline

execution time for fib(48). Then, we arbitrarily slow down a single worker by
inflating the size of every task at the bottom of the tree for only those tasks
the slow worker executes. This is performed by enlarging every task the slow
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worker executes from fib(n) to fib(n + 3). Using the strict ordered scheduler
with a slow worker increases the execution time by a factor of 4. Using
RelWS on this same schedule restores the performance almost entirely by
stealing work away from the slow worker.

6.4 Whole Program Data Locality Optimization

We demonstrate the usefulness of the algorithms presented for optimizing
data locality for six benchmarks. To iteratively optimize data locality, we
start with a template schedule that may be extracted from the data initial-
ization code, depending on whether of not the initialization code has similar
structure to the kernel. If not, the initial template schedule is derived from
applying random work stealing on the kernel code. After we apply RelWS

to the template schedule for the kernel, we redistribute the data by invoking
a fork/join initializer that copies and reinitializes the data constrained by the
strict ordered scheduler. We iteratively apply this method to gradually local-
ize data and correspondingly load balance the schedule. For the benchmarks
tested, we found that the schedules and data distributions converge quickly,
within about three to five iterations. This process is shown in Figure 6.3.

spawn initialization(); sync;
StealTree t = extractSchedulePrevious();
for (i = 0; i < numIter; i++):
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if (!converged):
applyRelWS(t); spawn kernel(); sync;
t = extractSchedulePrevious();
applyStOWS(t); spawn forkjoin_initializer(); sync;

else
applyStOWS(t); spawn kernel(); sync;

For iterative computations, we employ two metrics to determine when
the execution can be considered to have converged to a good schedule: (1)
idle time and (2) number of non-uniform memory access (NUMA)-remote
accesses. Time spent waiting for a closure to be ready or looking for work
is considered idle time. A schedule can be considered to have converged
in terms of load balance if the idle time does not improve in subsequent
iterations. The number of accesses to NUMA-remote accesses can increase
the task execution time. This can be measured by tracking each memory
access. Alternatively, we indirectly measure improvements in data locality in
terms of the decrease in the task execution times. When the total time spent
executing the tasks stabilizes, we consider the schedule to have converged in
terms of NUMA-remote accesses.

For non-iterative applications, we use the strict unordered scheduler to
constrain the schedule to the data locality induced by the initialization struc-
ture. Similar to the iterative code, the user extracts the schedule from the
initialization then calls applyStUWS(...) before the spawn of the non-iterative
computational kernel.

Table 6.1 shows the problems and configurations for each benchmark. For
each application, we used the block size that performed best. The heat bench-
mark solves the two-dimensional (2D) heat equation and is included with the
MIT Cilk package as a test benchmark. The finite-difference time-domain
(fdtd) benchmark is a grid-based 2D finite difference time domain method
from the PolyBench Benchmark Suite [99]. The floyd-warshall benchmark
finds the shortest paths in weighted graphs. While floyd-warshall is akin
to matrix-matrix multiplication, the in-place nature and arithmetic opera-
tions involved complicate tiling along the lines of matrix multiplication. The
correct recursive version of floyd-warshall, similar to the Cilk version for
matrix-matrix multiplication, is effectively serial due to the dependencies in-
volved [100]. Therefore, we implemented a version that performs one in-place
outer-product update, implemented as 2D recursive loops, per iteration. The
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conjugate gradient (cg) benchmark is a sparse numerical solver that uses the
conjugate gradient method and was taken from the NAS Parallel Bench-
mark suite [101], implemented in C and OpenMP [102]. The multi-grid (mg)
benchmark is an implementation of the multi-grid numerical method for solv-
ing partial differential equations using a hierarchy of calculations at varying
resolutions. The pattern of the computation is a V-cycle, where calculations
are performed from coarsest to finest then back to coarsest. The benchmark
was taken from the NAS Parallel Benchmark suite [101], implemented in C
and OpenMP [102]. The parallel prefix benchmark performs a prefix sum on
an array of doubles in parallel [103].

For each benchmark, we demonstrate data locality optimization using (a)
user-specified work partitioning with constrained work stealing and (b) iter-
ative optimization using RelWS.

The benchmarks can be classified into four groups:

6.4.1 Iterative, Matching Structure

The heat, fdtd, and floyd-warshall benchmarks have a similar structure for
initialization and their corresponding kernels, so the template is extracted
from the initialization loops and RelWS is used for five iterations until
convergence. For the user-specified work partitioning, the programmatically
constructed steal tree is used for both phases.

6.4.2 Iterative, Differing Structure

The cg benchmark has a more complex access pattern across phases. There-
fore, we start with random work stealing on the kernel and iteratively refine
that schedule. For user-specified work partitioning, we programmatically
construct multiple steal trees that match each phase.

6.4.3 Non-iterative, Matching Structure

The parallel prefix sum benchmark is not iterative. Hence, we extract the
steal tree from the initializer and use it to constrain all of the phases of the
parallel prefix kernel, scheduling them with StUWS. For user-specified work
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Benchmark Problem Configuration Tasks

heat nx = ny = 32768 block = 64x8192 2k
floyd-warshall n = 32768 block = 64x4096 4k

fdtd ey = ex = hz = 32768 block = 64x8192 2k
cg NA=221, NNZ=15 rows = 1024 2k
mg N{X,Y,Z}=1024,LM=11 block=16x16x4MB 64–4k

scan N = 256 MB block = 512 512

Table 6.1: Benchmark configurations (for mg, the number of tasks depends
on the level).

partitioning, we programmatically construct a steal tree that is used for all
of the phases.

6.4.4 Iterative, Multiple Structures

The V-cycle in the mg benchmark results in phases of several different sizes,
corresponding to different grid resolutions. We evaluate three approaches to
optimize this benchmark. In the first scheme, we extract the steal tree from
one kernel at each grid resolution and use that to iteratively optimize the data
locality for all other kernels at the same grid resolution. In the second scheme,
we extract the steal tree from the finest grid resolution and use that to
iteratively optimize the data locality of all kernels at all grid resolutions using
unordered work stealing. In the third scheme, we programmatically construct
a steal tree for each grid resolution and use that to constrain execution.

For each benchmark, we implemented two OpenMP schemes: one using
parallel-for loops with a static schedule and the other with OpenMP tasks.
We found that OpenMP static scheduling performed better than OpenMP
dynamic or guided for all of the benchmarks. For the OpenMP tasks, we
used recursive tasks, similar to a recursive Cilk implementation. The Cilk
first-touch and interleaved curves on each graph are the result of running the
baseline Cilk code with either the first-touch or interleaved memory policies
enforced by the numactl Linux utility. For of the OpenMP task versions, we
used the interleaved memory policy because it performed better. For all the
constrained work stealing versions and OpenMP static, we used the default
first-touch policy.
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6.4.5 Empirical Evaluation

6.4.5.1 Measuring Overheads

We first measure the overhead of tracing and the constrained schedulers. We
compare the execution time using a baseline Cilk (MIT Cilk version 5.4.6) to
a modified version of Cilk that traces the computation using the steal tree.
Figure 6.4 shows the normalized execution time compared to the baseline
Cilk without tracing on 80 cores. We also present the normalized execution
time for the three types of constrained work stealing. We observe that trac-
ing incurs very low overhead. The heat benchmark incurs the most overhead,
about 1.5% with a standard deviation of 0.2%. The strict ordered scheduler,
which exactly reproduces the execution, speeds up execution in some cases.
For example, the floyd-warshall benchmark has a 2.1% decrease in execution
time. The strict unordered scheduler executes any ready task without regard
for the original order executed. We expect this may incur some overhead in
cases were ordering is important within the composed schedule. The scan
benchmark shows the most overhead, about 6.3% with a 2% standard devia-
tion. Finally, RelWS has the most overhead due to following the template
schedule and overriding steals. The heat benchmark has the most overhead,
incurring 10.4% with a 2.2% deviation. Although the benchmarks exhibit
overhead with RelWS, we intend to use it primarily to adapt schedules.
Hence, the overhead will be amortized once the adaptation is complete.
Figure 6.5 shows the speedup of all six benchmarks on up to 80 threads. In

the speedup plots, we do not include the data redistribution overhead because
this cost will be amortized once the schedule converges. The “Constrained
Iter. RelWS” label corresponds to the result of using our iterative data
locality optimization scheme over five iterations. The “Constrained User-
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Figure 6.5: Speedup achieved strong scaling to 80 cores with respect to a
single thread (legend shown above). Cilk first-touch is the baseline using the
default Cilk scheduler with no tracing overhead and first-touch. Compared to
Cilk interleaved, OMP schedule(static), OMP tasks on all the loops. Speedup
shown for constrained work stealing with a user-specified partitioning, and
automatic data locality optimization using RelWS. Each point is the mean
of five runs. Error bars are the standard deviation.
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Figure 6.6: Speedup achieved for three grain sizes using relaxed work stealing
iteratively. These are compared with using a dynamic grain size, starting
with a small user-specified grain size.
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Figure 6.8: Histograms that depict the dynamic grain size distribution after
convergence for three samples per benchmark.

Specified” label corresponds to the result of constraining the scheduler using
a user-specified partitioning with StUWS. The “Constrained StUWS” label
corresponds to the result of extracting the steal tree from one phase followed
by StUWS in subsequent phases.
We observe that maximum speedup obtained for any benchmark is about

45x. This is due to the lack of memory bandwidth available within a sin-
gle NUMA domain. This can be observed by the sub-linear scalability of
all the benchmarks up to 10 threads. Beyond 10 threads, which constitutes
one NUMA domain, an increase in threads is matched by a corresponding in-
crease in the number of memory controllers, and hence the aggregate memory
bandwidth.
We observe that Cilk first-touch, Cilk interleaved, and OpenMP tasks

achieve the lowest scalabilites of all the schemes, achieving around a 15x
speedup on 80 cores. This is due to the lack of locality awareness in these
schedulers. For the cg benchmark, the Cilk interleaved and OpenMP tasks
interleaved perform better, achieving more than a 20x speedup, due to the
less-regular access patterns in the benchmark.
The constrained user-specified scheme and OpenMP static scheme often

perform the best, achieving a speedup up to 46x. This is due to the potential
for a perfect match in access patterns across the different phases of the com-
putation. We observe that OpenMP static performs significantly worse for cg
and mg, achieving speedups of 10x and 28x, respectively. This is due to the
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Benchmark heat fdtd floyd cg mg prefix

KB/Thread RelWS 1.9 1.9 1.75 1.6 1.2 N/A
KB/Thread User-Specified 1.5 1.5 1.5 1.2 5.8 0.6

Table 6.2: Space utilization for Steal Tree.

non-trivial specification required to match the data access pattern across the
different phases. The user-specified partitioning scheme can express these
complex relationships, consistently achieving high speedups.

The iterative data locality optimization scheme consistently improves upon
the baseline Cilk schemes, achieving a speedup of up to 2.5x over the Cilk
first-touch scheme. In many cases, it approaches the performance of the
user-specified and OpenMP static schemes.

For the mg benchmark, unordered work stealing for all grid resolutions,
based on the steal tree from the finest resolution, performs surprisingly well
(even better than OpenMP static), achieving a speedup of 30.7x. For the par-
allel prefix sum benchmark, despite the infeasibility of iterative data locality
optimization, we observe a significant speedup (1.8x) compared to OpenMP
tasks and the Cilk schemes.

RelWS may cause the steal tree to become more partitioned over time,
incurring storage costs for the template schedule that also increase over time.
We observe that the size of the steal tree converges quickly, along with the
performance. In table 6.2, we show the average amount of memory required
to store the steal tree on 80 cores after five iterations. We find that the
standard deviation of five runs is negligible. For mg, we present the sum
of all the steal trees sizes for each resolution. We also show the amount
of memory required to store the user-specified steal tree on 80 cores. The
highest amount of memory required is 464 KB total memory for 80 threads
when using a user-specified steal tree for mg.

To redistribute the data, we tried explicitly migrating pages using the
move_pages system call but found it to be more expensive. Instead, we used
the fork/join initializer that copies and reinitializes the data in a constrained
manner. Figure 6.7 plots the amount of time taken to execute the fork/join
initializer to redistribute the data based on the current template schedule
to localize the accesses. We observe that the amount of time taken scales
with thread count until we are beyond a single NUMA domain (10 threads).
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Benchmark heat fdtd floyd cg mg prefix

Baseline Cilk 123 53 86 570 1319 100
Locality-Optimized 138 68 104 594 1336 117

Table 6.3: Lines of code (using David WheelerâĂŹs SLOCCount) with and
without locality optimization API.

Beyond this point, the time taken increases likely due to limitations in mem-
ory controller bandwidth or kernel contention in allocating pages in parallel.
The time varies based on the amount of data in each benchmark that must
be redistributed.

6.4.6 Productivity

To demonstrate the productivity of our approach, we measured the lines of
code (using David WheelerâĂŹs SLOCCount) with and without our locality
optimization. For each benchmark, the iterative data locality optimization
includes API calls for extracting the template schedule, invoking constrained
work stealing to schedule the work, and calling the fork/join initializer to
redistribute the data. The line counts including the entire source code for
each benchmark, are shown in Table 6.3.

We observe that adding our locality optimization only requires around 20
additional lines of code, and this does not increase with the benchmark size.

6.5 Dynamic Task Coarsening

Finding the ideal grain size for a given application is a challenging problem.
Selecting a grain size too large will lead to load imbalance, while a small grain
size will increase runtime overheads. A coarser grain size also enables the
use of efficient sequential implementations as the base case, further improving
performance. Ideally, the user could specify the minimum grain size allowed,
and the system could adapt that to the largest grain size that maintains a
good load balance. We describe a method to automatically select grain size
using the algorithms described in this chapter. The programmer selects a
small grain size, and the system automatically coarsens it to be sufficiently
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large to amortize runtime overheads and improve NUMA locality.
The key observation enabling this optimization is that all parts of the steal

tree do not equally contribute to locality and load balance. Steals higher up
in the steal tree correspond to large portions of work and fundamentally char-
acterize a schedule. Steals deeper in the tree typically correspond to smaller
amounts of work and result from the work stealing scheduler reacting to mi-
nor load imbalances. As such, these steals are not fundamental to ensuring
data locality or load balance. Even worse, such steals fragment the schedule,
interfere with coarse-grained data distribution and work partitioning, and
preclude efficient sequential implementations of coarser-grained tasks.

We observe that the load imbalance addressed by these steals deeper in
the tree can be addressed by the RelWS scheduler. Thus, we begin with
a schedule derived from a random work stealing scheduler to derive a tem-
plate schedule. However, the lower steals in the steal tree are pruned before
applying the schedule to subsequent phases. Performing this procedure it-
eratively, we encourage and retain stealing of coarser units of work, making
the steals move higher in the steal tree. We continue this until the schedule
does not improve in subsequent iterations. The resulting tree has many more
coarse-grained steals than the initial schedule. A code snippet employing this
approach follows:

#define PRUNE_ITER 5
spawn initialization(); sync;
StealTree t = extractSchedulePrevious();
for (i = 0; i < numIter; i++):
if (i < PRUNE_ITER):
pruneTree(t,85); applyRelWS(t); spawn kernel(); sync;
t = extractSchedulePrevious();
applyStUWS(t); spawn forkjoin_initializer(); sync;

else if (i == PRUNE_ITER):
pruneTree(t,85); applyStUWS(t); spawn kernel(); sync;
t = extractSchedulePrevious();

else:
applyStOWS(t); spawn kernel(); sync;

In the algorithm, we call pruneTree(t,85) before invoking the constrained
scheduler. This prunes the steal tree in level order, retaining the top 15% of
the steal tree. After using the relaxed scheduler for a few iterations, we use
the strict unordered scheduler that prunes the steal tree for the last time,
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composing a final schedule. After this, we use the final schedule as a template
for the strict ordered scheduler.

The pruneTree() function includes a parameter p that indicates what
percentage of steal points the system should prune from the steal tree. The
pruning is implemented by traversing the steal tree nodes in level order and
removing the specified percentage of steal points from the bottom of the tree.
We achieve this by (a) counting the number of steal points in the steal tree,
(b) traversing the steal tree and marking the top 100 − p% steal points as
persistent, and (c) deleting all of the non-persistent steal points.

void pruneTree(t, p):
int count = StealTreeNumPoints(t); //total number of steals
int numPersistant = count ∗ (100−p)/100;
for (i = 0; i < t.numLevels and numPersistent > 0; i++):
for (node in t.level): node.persist = true; numPersistent−−;

for (node in t): if (!node.persist): node.delete();

Under strict (ordered or unordered) work stealing, a coarser sequential
kernel can be employed for a given task if it is guaranteed that no task
transitively spawned by it can be stolen. Each task queries the steal tree
to check this condition and appropriately chooses between spawning sub-
tasks and performing a coarser sequential computation. This enables the
runtime to dynamically coarsen the tasks and improve performance without
impacting load balance.

Figure 6.6 shows the results of applying dynamic coarsening to some of the
benchmarks. Due to space limitations, we only show the result for three of
the six benchmarks. We plot the speedup obtained using the iterative relaxed
method presented previously with three different block sizes. We observe that
smaller block sizes perform much worse. The graphs indicate that increasing
the block size improves performance. In fact, for our experimental evaluation
(featured in the previous section), we used the best-performing block size,
which is the largest shown for each benchmark. Increasing the block size
beyond this results in reduced performance for the default Cilk schemes and
OpenMP tasks due to insufficient parallelism.

We observe that our dynamic coarsening optimization (labeled as “Dy-
namic” in the figure) performs competitively with the largest, static grain
size shown, despite starting with the smallest grain size evaluated. In Fig-
ure 6.8, we present three histograms (sampling three different executions) per
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benchmark that show the block size distribution resulting from our dynamic
algorithm after convergence in five iterations. The histograms for each bench-
mark are similar, demonstrating that the scheduler converges to about the
same dynamic grain sizes each time. For each set of bars, we observe that one
set is much smaller than the rest. This indicates that small blocks are used
to refine the schedule, while the large blocks provide an initial coarse-grained
partitioning.
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CHAPTER 7
Dynamic Splicing: Recursive Cache
Locality Optimization

Maximizing application performance requires careful orchestration of the ex-
ecution to best match the given architecture. Manually performing this task
is expensive and error-prone due to non-obvious performance implications of
source code transformations. The two most common automated approaches
consist of compiler analysis and optimization, possibly coupled with auto-
mated exploration of the optimization space, or application composition from
calls to carefully optimized libraries. Automated approaches can be applied
to large programs, but are limited in the class of programs handled, types of
transformations considered, and architectural features optimized for. Equally
important, such optimizers often generate complicated code that adversely
impacts other optimization phases (e.g. register allocation, vectorization).
Tuned libraries provide a set of commonly used functions that have been
carefully optimized for a given architecture. However, an application com-
posed of library calls might not exploit optimization opportunities across
function boundaries.

In general, applications are composed of multiple functions embedded in
different libraries, motivating the need for inter-procedural locality analysis
and optimization. We exploit data access (effect) annotations to identify the
data reuse opportunities. Effect annotations specify the regions of data read
and written by a function invocation. Prior efforts have employed such anno-
tations to determine concurrency between sequentially ordered function in-
vocations at the coarsest possible granularity to minimize runtime overheads.
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Cache locality optimization requires us to go one step further: schedule the
invocations such that the data remains in cache between consecutive uses of
a data region across function boundaries.

We dynamically interleave (splice) their execution to increase the chances
of cache reuse between access to the same data by the leading and trailing
functions. The effect information is tracked in the call stack as the func-
tions are executed. When the trailing function attempts an operation that
would violate dependences inferred from the effect annotations, it is delayed
and enqueued as waiting on the frame in the leading function it depends on.
Depending on its effects, some sub-computations in the trailing function’s
invocation might be delayed while others continue to be interleaved. We
attempt to maximally interleave the executions while satisfying the depen-
dences.

Often, recursive programs are parallelized using nested fork/join program-
ming systems. Fork/join programming systems divide a given work into
sub-tasks that can be executed concurrently. These programming models
underpin several popular approaches to multicore parallelization (e.g., the
Cilk family [104, 35, 105], Thread Building Blocks [106], Task Parallel Li-
brary [107], OpenMP [2], and X10 [108]). Many common idioms, such as
sequential and parallel loops, and data iterators, can be represented as using
nested fork/join parallelism. Fork/join programs are typically load balanced
using a work-stealing scheduler that balances the load across idle processes.
We present an algorithm that further exploits data effects to automatically
generate a fork/join program, combining depth-first execution of a nested
fork-join program and dependence-driven task-graph scheduler to execute
the delayed sub-computations. The entire scheduling strategy co-exists with
a work-stealing scheduler.

We implement our approach in the MIT Cilk framework [109] and demon-
strate that the effect system, concurrency and locality checks, and interleaved
execution can be managed efficiently to accrue cache locality benefits. We
also show that the space overheads of delayed execution are low. We evaluate
the benefits of dynamic splicing as compared to the state-of-art approaches
to optimizing loop programs. These approaches were chosen due to the abil-
ity of compiler optimizations to achieve the best performance. Specifically,
we demonstrate that our approach can dynamically splice multiple function
invocations to achieve performance comparable to optimized programs gener-
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ated by Pluto, a polyhedral optimizer for affine loop programs, and Pochoir,
a domain-specific language for stencil programs.

The primary contributions of this chapter are:

• Dynamic splicing as an approach to optimizing cache locality.

• Techniques to efficiently track effects and detect interference.

• An efficient scheduler that combines depth-first execution of func-
tion invocations, dependence-driven task scheduling for delayed sub-
computations, and work-stealing-based load balancing.

• Experimental evaluation demonstrating that dynamic splicing can
match performance achieved, in serial and in parallel, by complex
compile-time transformations such as diamond tiling.

7.1 Problem Statement

Consider the example program in Figure 7.1a. It involves two operations
each copying array A to a different array. This program can be implemented
as two calls to the optimized memcpy() routine in the C library1. On the
system described in Section 7.7, such an implementation involves four array
transfers across the memory hierarchy—once for B and C and twice for A. A
compile-time optimizer can fuse the two operations to avoid moving array A

twice across the memory hierarchy.
While the compile-time techniques improve performance, applying them

in the context of recursive programs involves overcoming several challenges.
The data accesses in a recursive function invocation might be known only at
runtime. Even if it can be approximated at compile-time, effecting such a
compiler transformation across function boundaries can be non-trivial task.
Finally, compiler transformation assumes that the source code is available for
all functions of interest and in a specific form amenable to analysis transfor-
mation (e.g., non-linearized indices [110]). In this chapter, we focus on a run-
time approach to achieving the benefits of compile-time fusion for recursive
programs. For example, we consider a runtime approach to optimize locality
for the recursive version of the example program shown in Figure 7.1b.

1For simplicity, we will restrict ourselves to the C language and library
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char A[M], B[M], C[M]
for (i = 0; i < M; i++): B[i] = A[i]
for (i = 0; i < M; i++): C[i] = A[i]

(a) A sequence of copy operations

copy(A, B, M)
copy(A, C, M)

def copy(A, B, n):
if n < threshold:
for (i = 0; i < n; i++): B[i] = A[i]

else:
mid = n/2
copy(A, B, mid)
copy(A+mid, B+mid, n−mid)

(b) Recursive implementation of the
copy operation

spawn copy(A, B, M)
spawn copy(A, C, M)

def copy(A, B, n):
if n < threshold:
for (i = 0; i < n; i++):
B[i] = A[i]

else:
mid = n/2
spawn copy(A, B, mid)
spawn copy(A+mid, B+mid,

n−mid)

(c) Fork/join implementation of
the copy operation

def copy(A, B, n):
if n < threshold:
if /∗dependences satisfied∗/:
for (i = 0; i < n; i++)
B[i] = A[i]

else:
/∗delay step∗/

else:
mid = n/2
/∗yield to next thread∗/
copy(A, B, mid)
/∗yield to next thread∗/
copy(A+mid, B+mid, n−mid)

(d) Illustration of splicing for cache
locality

Figure 7.1: Example copy program implemented sequentially (with for-
loops), recursively, concurrently with fork/join, and transformed for splicing.
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v ∈Z [Values]

b ∈{true, false} [Booleans]

p ∈{p1, p2, . . . , pk} [Parameters]

l ∈{l1, l2, . . . } [Locals]

g ∈{g1, g2, . . . } [Globals]

eb ∈ BExprs ::= fb(e1, e2, . . .)

prf ∈ FPragmas ::= #pragma splice func Reads(e) Writes(e)
prc ∈ CPragmas ::= #pragma splice cont Reads(e) Writes(e)
prs ∈ SPragmas ::= #pragma splice step Reads(e) Writes(e)

e ∈ Exprs ::= v | l | g | p | eb | fv(e1, e2, . . .)

s ∈ Stmts ::= return | s; s | l := e | g := e

| if eb then s else s | while (eb) s

| prc f(e1, e2, . . . , ek)

ss ∈ StepStmts ::= prs s

m ∈ Method ::= prff(p1, . . . , pk) ss

pgm ∈ Program ::= m pgm | ss

Figure 7.2: Language for effect-annotated recursive programs.

Specifically, given a sequential recursive program, we try to answer the
following questions:

• How can we efficiently capture dependence and reuse information across
function invocations at a fine enough granularity?

• How can we adapt the runtime schedule to exploit the identified data
reuse across function invocations?

7.2 Solution Approach

In this section, we present our runtime approach that dynamically splices
or interleaves recursive function invocations in a sequential program to im-
prove memory hierarchy data reuse. Our approach is based on the following
observations:

• Inclusive effect annotations can help compactly capture and track data
access and dependences in recursive programs.
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RangeE:
void ∗ptr, ∗ptr2;

RangeE RE(void∗ ptr,void∗ ptr2); /∗constructor∗/

#pragma splice cont Reads(RE(A,A+M),RE(C+1,C+M)) Writes(RE(C,C+M),RE(D,D+
M−1))

copy(A, B, M)
#pragma splice cont Reads(RE(C+1,C+M)) Writes(RE(D,D+M−1))
copy(A, C, M)
#pragma splice cont Reads() Writes()
copy(C+1, D, M−1)

#pragma splice func Reads(RE(A,A+n)) Writes(RE(B,B+n))
def copy(A, B, n):
if n < threshold:
#pragma splice step Reads(RE(A,A+n)) Writes(RE(B,B+n))
for (i = 0; i < n; i++)
B[i] = A[i]

else:
mid = n/2
#pragma splice cont Reads(RE(A+mid,A+n)) Writes(RE(B+mid,A+n))
copy(A, B, mid)
#pragma splice cont Reads() Writes()
copy(A+mid, B+mid, n−mid)

Figure 7.3: Illustration of effect annotations. The RE function call returns
an effect object.
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• The order of execution of work within distinct function invocations can
be controlled by interleaving user-level threads executing the function
invocations on the same hardware thread, similar to coroutines [111].

7.2.1 Effect Annotations

Key to splicing is the tracking of execution in consecutive function invoca-
tions to ensure that no dependences are violated. In order to track these
dependences, we consider functions written in a recursive form with effect
annotations. The language for effect-annotated recursive programs is shown
in Figure 7.2. The effect annotations associated with a function definition
specify the data regions read or written by an invocation in terms of its
formal parameters. A function invocation also specifies the effects of its con-
tinuation, the remaining computation in the body of the invoking function.
An effect-annotated copy function is shown in Figure 7.3.

7.2.2 Spliced Execution using Lightweight Threads

To enable inter-invocation splicing, we must explore the enclosing scope to
discover future function invocations that may be spliced. When normal ex-
ecution encounters a function invocation marked to be spliced with its con-
tinuation, we begin spliced execution by creating a new user-level thread,
referred to as the trailing thread, and execute the function invocation in one
thread and its continuation in another, referred to as the leading and trailing
threads. The continuation is explored to reach the next function invocation.
Once we have two function invocations, each in its own stack, we execute
them in an interleaved fashion.

7.2.3 Maintaining Multiple Call Stacks

During interleaved execution, we maintain the call trees for the two invoca-
tions in a symmetric fashion. That is, every function invocation (and return)
in one stack is matched with a corresponding invocation (and return) in the
other. The sequential yet interleaved execution of user-level threads in the
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same hardware thread dynamically produces an effect similar to compile-time
fusion of the functions.

7.2.4 Dependence Management

Two consecutive function invocations with only shared read effects can be
fully spliced. Opportunities for cache locality optimization also arise be-
tween dependent invocations. For example, the last two copy operations in
Figure 7.3 can benefit from splicing, even though the array C produced by
the second statement is used in the third. Naively splicing such invocations
can violate dependences and lead to incorrect execution. We check the effects
of statements in the trailing thread for interference with the pending contin-
uations in the leading thread. Subtrees of the trailing thread’s call tree that
might interfere are delayed (placed in the heap) for execution at a later point
in time. This allows the runtime to continue spliced execution. When a de-
layed subcomputation’s dependences are satisfied, it is immediately executed
to exploit any possible reuse.

Figure 7.1d illustrates the interleaved execution of the copy function. On
encountering a step (line 4), we check that its dependences are satisfied. If
true, we immediately execute the step.

In the rest of the chapter, we address several challenges in making this
approach work in practice. The frequent switching between thread contexts
can be expensive. The dependence tracking requires additional information
on data accesses. Dependence management needs to be optimized to avoid
checking for dependences between every step in one task with every step in
another. In addition, dependences need to be tracked for any postponed
step. Significantly improving cache locality might require spliced execution
of several function, further increasing the runtime cost.

7.3 Data Effect Annotations for Recursive Programs

To correctly splice function invocations, the runtime system must be cog-
nizant of the data accesses. The runtime obtains this information in the form
of effect annotations on function invocations, their continuations, and steps
(statement blocks between function invocations). An effect annotation spec-
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ifies the data regions being read and written. An example effect-annotated
program is shown in Figure 7.3.

A step’s effect annotation specifies the data regions it reads and writes.
The effect annotation associated with a function call or a continuation in-
cludes all transitive effects encountered during its execution. In other words,
the read (write) effects of a function invocation are a subset of the read
(write) effects of the invoking function as well as a subset of the effects of the
continuations that enclose the call site. A step’s effect is specified immedi-
ately preceding the statement block. The effect annotation associated with a
function definition specifies the effects of a function invocation in terms of the
function’s formal parameters. Each function call site is annotated with the
effects corresponding to its continuation. Continuations with empty effects
need to be explicitly specified to be considered for splicing. A continuation
with no effect specification will not be considered for splicing.

This inclusive, hierarchical structure of the effect specification enables the
runtime to quickly determine whether locality benefits can be accrued and if
a step’s execution will lead to a conflict. The key requirement that enables
efficient runtime check for interference is the specification of continuation ef-
fects. After each function invocation, the continuation in the current enclos-
ing function scope must be annotated with the combined effects remaining
in that scope. This enables the runtime to determine if a step in a trail-
ing sub-computation will conflict with future accesses encapsulated by the
continuation.

While our approach is applicable to a wide range of recursive programs,
specifying and managing arbitrary effects can be expensive. Many recursive
applications employ coarse base cases to minimize the cost of recursion. This
also helps reduce the cost of managing the effects at runtime. The shared
state modified by various function calls can often be compactly described—
array sections, sub-trees, spatial regions, etc. In general, the most compact
description of read/write effects depends greatly on the computation being
performed. Therefore, we allow the user to define the effect types and the
associated operators. For example, RangeE is a user-defined effect type in Fig-
ure 7.3. Side-effect-free functions (RE() in the example) are used to construct
the effect objects.

Any effect type needs to support an interference operator is used at run-

116



time to ensure dependencies are met while accruing locality benefits2. The
language specification for expressing an effect-annotated program is shown
in Figure 7.2.

7.4 Splicing Scheduler

7.4.1 Initiating Spliced Execution

Splicing is initiated by the runtime through a user API that provides a hint to
the runtime that splicing may be appropriate. The TrySplice(int n) API tells the
runtime to examine the next n effect-annotated functions to determine if it
can splice them and measure whether it may be beneficial for locality. Upon
encountering TrySplice the runtime begins unraveling the sequential program
in the current scope in a breadth-first manner, instead of following program
order. It ensures this execution order is valid as it goes, by checking for
interference between the inclusive effects of functions encountered in program
order and any steps that may be interleaved. If it encounters interfering steps
or unannotated steps or continuations, it cannot safely proceed and does not
attempt to further unravel the scope.

Otherwise, it continues until it finds n annotated functions and saves func-
tion pointers and packs the corresponding evaluated parameters into structs
for future execution. If the user supplies a effect size and intersection oper-
ator, the runtime uses a heuristic to determine if splicing may be beneficial
by checking the size of the intersection between each function discovered. If
the intersection is sufficiently large (a tunable parameter in the runtime),
the system uses the stored function pointers and structs to launch user-level
threads corresponding to each function that should be spliced. At this point,
the splicing scheduler begins interleaved execution, relying on the recursive
effects within the distinct function call stacks to ensure correctness. The
following pseudo-code snippet shows a simplified sketch of how the top-level
splicing scheduler is initiated for the example copy program, assuming that
the user inserted a TrySplice(3) before the first copy.

ss.funcs = 3; ss.counter = 0 // from TrySplice(3)

2We shall treat these as polymorphic functions. In the implementation, these are
handled in C using name mangling
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if (ss.funcs != −1):
f_eff = Reads(RE(A,A+M)) Writes(RE(B,B+M))
c_eff = Reads(RE(A,A+M),RE(C+1,C+M)) Writes(RE(C,C+M),RE(D,D+M−1))
ss.ults[ss.counter].{f_eff,c_eff} = {f_eff,c_eff}
ss.ults[ss.counter++].handle = { copy, struct { A, B, M} }

else: copy(A, B, M)
if (ss.counter == ss.funcs) try_splice_local(ss)
if (ss.funcs != −1):
f_eff = Reads(RE(A,A+M)) Writes(RE(C,C+M))
c_eff = Reads(RE(C+1,C+M)) Writes(RE(D,D+M−1))
ss.ults[ss.counter].{f_eff,c_eff} = {f_eff,c_eff}
ss.ults[ss.counter++].handle = { copy, struct { A, C, M} }

else: copy(A, C, M)
if (ss.counter == ss.funcs) try_splice_local(ss)
if (ss.funcs != −1):
f_eff = Reads(RE(C+1,C+1+M−1)) Writes(RE(D,D+M−1))
c_eff = NULL
ss.ults[ss.counter].{f_eff,c_eff} = {f_eff,c_eff}
ss.ults[ss.counter++].handle = { copy, struct { C+1, D, M−1} }

else: copy(C+1, D, M−1)
if (ss.counter == ss.funcs) try_splice_local(ss)

A runtime structure ss is used to track the number of functions passed to
TrySplice and the how many found so far (ss.counter). As it encounters anno-
tated functions, it saves the required data to postpone function execution.
When try_splice_local is called, it uses the heuristic to determine whether splic-
ing will be fruitful, and if not executes the stored functions in program order
instead of splicing them.

The following section focuses on the algorithms for maintaining correctness
and efficiency while interleaving function call stacks that the scheduler has
decided to splice.

7.4.2 Interleaving Functions’ Execution

At compile time, the splicing scheduler uses the effect annotations to embed
calls to construct and manage the data effects. It inserts hooks to manage
dependences and yield to other spliced functions. It also uses live variable
analysis and a continuation-passing transform to enable delaying steps that
cannot be executed immediately.

118



The following is pseudo-code of the copy program after the splicing com-
piler pass is applied:

def copy(A, B, n):
if n < threshold:
s_eff = Reads(RE(A,A+n)) Writes(RE(B,B+n))
canExecute = splice_step(ss.cur_ult, s_eff)
try_context_switch_ult((ss.cur_ult+1) % ss.funcs);
if canExecute:
for (i = 0; i < n; i++):
B[i] = A[i]

else:
/∗ save stack frame and live vars to heap, and unwind ∗/

else:
mid = n/2
if (ss.inSplicedMode):
f_eff = Reads(RE(A,A+mid)) Writes(RE(B,B+mid))
c_eff = Reads(RE(A+mid,A+n)) Writes(RE(B+mid,B+n))
splice_func_cont(ss.cur_ult, f_eff, c_eff)
try_context_switch_ult((ss.cur_ult+1) % ss.funcs);

copy(A, B, n)
if (ss.inSplicedMode):
f_eff = Reads(RE(A+mid,A+n)) Writes(RE(B+mid,B+n))
c_eff = NULL
splice_func_cont(ss.cur_ult, f_eff, c_eff)
try_context_switch_ult((ss.cur_ult+1) % ss.funcs);

copy(A+mid, B+mid, n−mid)

On encountering a step or function pragma, the compiler emits code to
create the effect and pass it the appropriate runtime function: splice_step or
splice_func_cont. These functions store the effect in the corresponding stack
frame and perform the required interference checks. A subsequent yield call
is inserted (try_context_switch_ult()) to pass control to the next spliced thread,
effectively interleaving the user-level threads spliced together. The context
switch function tracks the depth of each user-level thread to keep the stacks
executing together as much as possible. A thread-local variable ss is used
to track the current user-level thread ss.cur_ult and the number of functions
spliced together ss.funcs. When a step is encountered, interference checks
determine if the step can execute immediately or must be delayed for future
execution until all dependencies are satisfied.
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Figure 7.4: Illustration of two phases (function invocations) spliced together,
comparing (a) matching dependency with no delayed steps and (b) an offset
dependency, which requires steps to be delayed.

7.4.2.1 Illustration

Figure 7.4 depicts a snapshot of two spliced phases of a recursive program.
Each circle represents a recursive function invocation, a square represents
the continuation following the invocation, and each hexagon represents a
step, a block with no interleaved spliceable functions. The numbers on each
shape denote the logical time at which the phases are executed when spliced
together. For each function invocation in a trailing phase, we aggressively
execute the function until a sequential block is encountered that will con-
flict. Figure 7.4a shows the resulting execution order when the phases have
a matched dependence structure: i.e., every sequential block in the second/-
trailing phase depends on the corresponding sequential block in the first/lead-
ing phase. In this case, as soon as a block finishes in the first invocation, we
execute the corresponding block in the second invocation. In Figure 7.4b,
the sequential block accesses are offset in the trailing phase, i.e., the i-th leaf
in the trailing phase accesses the data produced by the (i + 1)-th leaf in the
leading phase. Here, each trailing function invocation depends on the contin-
uation at the same level in the leading phase as indicated by the blue arrows
in the figure. The spawn operations leading to the first leaf are perfectly
interleaved between the two phases, as shown by the alternating logical time
steps. However, the leaf in the trailing phase is delayed as it depends on
the continuation of the invocation at time step 4, shown by the blue array
labeled (x). When subsequent execution expands this continuation, the (x)
dependence is refined to the invocation at time step 7, shown by the red
arrow (y). After this dependency is satisfied at time step 9, the delayed step
is immediately executed at time step 10 to reap locality benefits. Note that
although the first leaf in the trailing phase is delayed, the call stacks are
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expanded in an interleaved fashion in time steps 7 and 8.

7.4.2.2 Dependence Checks

Before providing the detailed algorithms, we describe the key notions of in-
terference and checking dependences. A step, function invocation, or a con-
tinuation is said to interfere with effect if their effects share a data region
(non-null intersection) and one of the shared effects is a write. Interfering
operations need to be executed in the specified program order to preserve
dependences. In particular, when splicing two phases, a step in the trail-
ing phase can be executed only if it does not interfere with the remaining
execution to be performed by the leading phase. In the case of any interfer-
ence, this step needs to be delayed until any computation it interferes with
in the leading phase has been executed. In a recursive program, the remain-
ing execution in a phase is captured by the continuations in the call stack.
Therefore, interference of a step is checked with this stack of continuations.
A trailing phase step interfering with multiple leading phase continuations is
marked as being dependent on the oldest such continuation. Such a contin-
uation would be executed last and thus represents the “boundary” for that
interference.

We now expand this high-level description of dependence management
and explain the runtime actions taken by the scheduler corresponding to the
hooks introduced in the preceding discussion.

7.4.2.3 Encountering a Spliced Function Invocation.

Each continuation tracks the steps in the trailing phase that depend on it.
The corresponding actions are taken by the splice_func_cont function and
are shown in the Algorithm 3. When a non-null continuation is expanded, a
function invocation may be discovered along with a follow-on continuation.
To refine the dependencies, we inspect all the dependent steps (stored in
p.deps) to check if each step in p.deps solely depends on the the newly discovered
function. If they are confined to that function, we refine the dependency to
eagerly release it when the function is finished executing. In Algorithm 3, p
is the parent continuation that was expanded, and the refinement occurs on
line 8.
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Algorithm 3: Actions taken when encountering a spliced function invo-
cation. || and ��|| denote non-interference and interference, respectively.
Input: t : current user-level thread running

1 s : effect specification for function and continuation
2splice_func_cont(t, sfunc, scont);
3begin
4 d = t.cur_stack_depth;
5 p = t.stack[d− 1];
6 t.stack[d].func← sfunc;
7 t.stack[d].cont← scont;
8 s.deps← { step | step ∈ p.deps, step || scont };
9 p.deps← { step | step ∈ p.deps, step ��|| scont };

7.4.2.4 Encountering a Step

The actions taken on a spliced step are shown in Algorithm 4. When en-
countering a step, we check for interference with preceding threads by calling
find_add_dependencies in Algorithm 4 on line 5. If the step has no dependen-
cies, it is executed immediately. Otherwise, we delay the step’s execution by
storing the current state (live variables) in a heap-allocated object and wait
for its dependencies to be released.

7.4.2.5 Managing Dependencies for a Step

Step dependencies are managed by checking for continuations in preceding
spliced threads that interfere with a step (shown in Algorithm 5). The leading
thread—or first thread being spliced—does not need to check for interference
since it is executed in program order. However, all trailing threads must
check their interference with preceding threads to ensure they can execute
without violating a data dependency. The delayed steps in the heap are
structured as a task graph, with each step tracking the number of incoming
dependencies and the steps that depend on it (outgoing dependencies). A
delayed step is considered ready when all its incoming dependences have
been satisfied. When such a step is executed it notifies all its outgoing
dependencies. These actions consist of three major non-interference checks
required to ensure correctness.

First, the current step checks for non-interference with future work in any
preceding thread. Because the set of continuations compactly captures fu-
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ture work in a thread, we check all continuations in all preceding threads
for interference. This check is shown in Algorithm 5 on line 8. Second, any
delayed step must be checked for dependence on previously delayed steps in
preceding threads (shown on line 11). In Section 7.6, we describe an opti-
mization to find potentially interfering past delayed steps efficiently. Third,
if the above two checks detect a dependence for the given step, then the
step cannot be executed at this point in time. In this case, the step is de-
layed and stored in the heap, and steps in trailing threads that depend on it
are marked to be notified. We perform this operation by incrementing the
dependent steps’ join counter and tracking then in this step’s deps field, as
shown in Algorithm 5 on line 17.

Algorithm 4: Actions taken when encountering a step during spliced
execution.
Input: t : current user-level thread running

1 s : the encountered step
2splice_step(t, s);
3begin
4 d = t.cur_stack_depth;
5 find_add_dependencies(s, t, d);
6 if s.join_counter == 0 /*has no dependencies*/ then
7 execute s;
8 else
9 delay step execution and place it in the heap;

7.4.2.6 Releasing Dependencies

When a stack frame s completes execution and is ready to be destroyed, all
steps tracked as being dependent on it (s.deps) are released by decrementing
their join counter. If any of these steps have no more dependences, they are
immediately executed. This can cause more frames to be destroyed, enabling
more steps. All such transitively enabled steps are executed immediately
(shown in Algorithm 6).
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Algorithm 5: Dependency checks for steps.
Input: s : step to be checked for interference

1 t : current user-level thread running
2 d : current stack depth
3find_add_dependencies(s, t, d);
4begin
5 for u← 1 to t− 1 do
6 for l← 0 to d do
7 if s ��|| u.stack[l].cont then
8 u.stack[l].cont.deps+ = {s};
9 atomic s.join_counter+ = 1;

10 break;
11 foreach { p | p ∈ u.delayed, p ��|| s } do
12 p.deps+ = s;
13 s.join_counter ++;
14 if s.join_counter 6= 0 /*has dependency*/ then
15 for u← t+ 1 to number of spliced threads do
16 foreach { p | p ∈ u.delayed, p ��|| sstep } do
17 s.deps+ = {p};
18 atomic p.join_counter+ = 1;

Algorithm 6: Actions taken when a stack frame is destroyed.
Input: t : current user-level thread running

1 s : the stack frame being destroyed
2@stackframe_destroy(t, s);
3begin
4 foreach { x | x ∈ s.deps } do
5 decrement join counter for x;
6 if x has no dependencies then
7 execute x;
8 recursively decrement join counter, and execute enabled steps that

depend on x;
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7.5 Splicing in Parallel

In this section, we describe how the data effect system and splicing approach
can be utilized to generate a nested, parallel programs scheduled with work
stealing.

Recursive programs can be translated into nested fork/join programs using
a few simple keywords. The example copy program parallelized using Cilk
primitives is shown in Figure 7.1c. The spawn keyword notes that the function
invocation can be processed concurrent with the code that follows. The
sync keyword signifies a dependence between one of more of the spawned
functions that precede the sync and any statements that follows it. In other
words, the sync statement acts as an ordering constraint, stating that the
computation past the sync cannot begin until all computation preceding the
sync in the task is complete. The two keywords—spawn and sync—or their
variants constitute the key components of a large class of nested fork/join
programs [35, 112, 113]. This specific spawn-sync model, together with the
work-stealing scheduler, is used in the Cilk Plus C/C++ language extensions,
now widely available in several mainstream compilers: Intel ICC, GNU GCC,
and Clang. This scheduling policy provides provably-good space and time
bounds [114] within a constant factor.
In the parallel context, a step is a sequence of instructions with no inter-

leaving spawn or sync. Each step is executed by exactly one thread and can
not be migrated once it begins execution. Each spawn has an associated
level, also referred to as its stack depth. The initial task has a level of 0. A
task’s level is defined as one greater than the level of the task that spawned
it. The program is executed using a work-stealing scheduler. One worker
thread begins execution with one task and other worker threads begin execu-
tion in an idle state. An idle worker enters the stealing phase and attempts
to steal work from a randomly chosen victim, repeating this process until it
finds work. On finding work, a worker begins a working phase, which ends
once its local double-ended queue (deque) of tasks is empty.
Note that these worker threads are often operating system threads, one

per hardware core, and are meant to exploit all available hardware paral-
lelism. We discuss the splicing of task invocations using lightweight (user-
level) threads on top of the hardware threads employed by the work-stealing
scheduler.
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7.5.1 Transforming the Recursive Program to Cilk

The inclusive effect system described in the context of a recursive program
lends itself naturally to automatically building a nested, fork/join program.
Because the inclusive effect for a function and continuation are both present,
we can determine at runtime if a sync is required between the function and
following continuation. Thus, we eagerly insert a spawn for every function/-
continuation pair that has a data effect present and conditionally insert a
sync.

We perform the transformation by inserting a spawn for every function and
continuation that is exposed with effect pragmas. We insert a spawn before
the function call, and then immediately after the function call generate code
to check if the function’s effect interferes with the continuation’s effect. If
it does at runtime, we execute a sync, inhibiting parallel execution past
this point. In this way, we ensure that the transformed concurrent program
executes correctly in parallel. The following is the second half of the example
copy program with automatically inserted spawns and syncs:

mid = n/2
{
f_eff = Reads(RE(A,A+mid)) Writes(RE(B,B+mid))
c_eff = Reads(RE(A+mid,A+n)) Writes(RE(B+mid,B+n))
if (ss.inSplicedMode):
splice_func_cont(ss.cur_ult, f_eff, c_eff)
try_context_switch_ult((ss.cur_ult+1) % ss.funcs);

spawn copy(A, B, n)
if (effects_interfere(f_eff, c_eff)): sync

}
{
f_eff = Reads(RE(A+mid,A+n)) Writes(RE(B+mid,B+n))
c_eff = NULL
if (ss.inSplicedMode):
splice_func_cont(ss.cur_ult, f_eff, c_eff)
try_context_switch_ult((ss.cur_ult+1) % ss.funcs);

spawn copy(A+mid, B+mid, n−mid)
if (effects_interfere(f_eff, c_eff)): sync

}
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7.5.2 Tracking Global Dependencies

The dependency structure as discussed so far only considers local dependen-
cies, which is sufficient when the program is interleaved sequentially. How-
ever, in the presence of steals, global dependencies must be maintained be-
tween working phases to ensure correct execution. In a Cilk program, work
is moved between threads during a stealing phase when a thief successfully
steals a continuation from a victim that has a task on the remote end of the
deque. We have modified the Cilk stealing protocol during spliced execu-
tion to steal a set of symmetric continuations from all the spliced user-level
threads which are stored as a n-tuple in the victim’s deque.

A thief must determine which global conflicts may exist when a steal oc-
curs so it does not execute interfering steps across user-level threads. The
effects that may interfere are the effects at the spawn where the steal occurs
for each spliced thread. Thus, the thief copies the effect set at that spawn
for each user-level thread and checks for interference with the spawn’s effect
before executing any step. Because the stolen continuation is still present
in the victim’s stack, the victim will not execute any steps that may con-
flict with it (they will be dependent on a continuation that is never locally
expanded). Thus, a steal during splice execution does not impose extra syn-
chronization on the victim, beyond traditional work stealing. When future
thieves successfully steal from the victim, they add to their global conflict
list the set of previously stolen continuations from the victim’s working phase
to ensure non-interference between the previous thieves. Using this protocol,
the global conflict set is propagated between distinct working phases as steals
occur.

Algorithm 7: Actions taken on global tier when a steal occurs.
Input: v : the victim of the steal operation

1 t : the thief stealing from v
2 d : the depth at which the steal occurs
3@steal(v, t, d) begin
4 for i← 1 to number of spliced threads do
5 t.global_tier+ = i.stack[d].func v.global_tier+ = i.stack[d].cont

The actions described in Algorithm 7 are taken when a steal occurs, and
the collection of effects in the global tier are copied to a local working phase
when it starts. During this working phase, instead of only checking for local
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dependencies (shown in Algorithm 5 on line 3), each step is checked with the
global tier before the local. If it conflicts globally, the step will be delayed
until the original synchronization point. Once the leading thread has finished
execution up to the original synchronization point, any delayed steps and
continuations due to global dependencies are released for each trailing thread
in turn, starting with the first, until each trailing thread completely finishes
execution up to the synchronization point.

7.6 Additional Optimizations

Thus far, we have presented the key aspects of effect-directed runtime
scheduling and load balancing to optimize for locality. In this section, we
discuss further optimizations employed and constraints imposed in our im-
plementation to lower overheads and make the approach useful in practice.

7.6.1 Splicing Multiple Threads

At the top-level when splicing is initiated by the runtime, often multiple
function invocations will be spliced to maximize cache locality. When mul-
tiple function invocations are spliced using distinct user-level threads, the
threads are ordered based on the function invocation order. Each thread’s
execution needs to check for interference with all preceding threads to pre-
serve dependences. This can lead to quadratic dependence checking costs.
Where possible, we reduce this overhead by exploiting transitive dependen-
cies between preceding threads. For example, if an effect is equivalent or a
subset of a preceding thread’s effect, it is sufficient to wait until that preced-
ing thread’s effect is ready to execute, instead of searching and waiting on all
dependencies in every preceding thread. We discover transitive dependencies
by searching for equivalent or subset effects in preceding threads at the same
level of the stack. If we find such an effect, we wait for that effect to be
ready to execute instead of searching all preceding threads. For benchmarks
that iteratively execute and often have a symmetric effect pattern, we find
that this optimization significantly decreases the overhead of tracking depen-
dencies. For this optimization to be available to the runtime, the user must
supply an equivalence-subset operator for effects.
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7.6.2 Fast Dependence Searches

Whenever we encounter a step in a trailing thread, we must check if that step
interferes with each preceding thread. Transitive effects may reduce this cost
to effectively checking a single preceding thread. However, performing this
check naively requires checking that the step does not interfere with all the
continuations on the stack. We reduce the cost of this check by incrementally
checking for interference each time we encounter a function invocation during
execution, instead of waiting until we encounter a step. When we encounter
a function invocation in a trailing thread, we store the deepest level of each
preceding thread’s continuation for which it does not interfere. Due to the
inclusiveness of the effect system, we can start at the deepest level stored with
the parent function invocation when computing interference for the child.
This incremental computation greatly reduces the number of interference
checks required. This optimization is shown in Algorithm 8 and can be
augmented to the basic Algorithm 3.

Algorithm 8: Fast dependency checks by incrementally checking for
continuation interference.
1 for u← 1 to t− 1 do
2 t.level[u]← p.level[u];
3 for i← p.level[u] + 1 to d do
4 if sfunc || u.stack[i].cont then
5 t.level[u]← i;
6 else
7 break;

The second dependence optimization we implement is for locating delayed
work in preceding threads that may interfere. Instead of searching through
a list of delayed steps for a given thread, we recursively walk the tree of live
stack frames that lead to the steps; any live delayed step must be reach-
able from the root where splicing started. We search all paths from the root
recursively, eliminating paths where the effect at that subtree does not in-
terfere with the step being checked. This is valid due to the inclusive nature
of the effect system. We find that this optimization increases performance
substantially compared to the naive approach of searching through lists of
delayed steps.
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7.6.3 Step Pipelining

An executable step in the computation may encompass a large amount of
sequential work that may benefit from being interleaved with other steps in
other threads. Because we are not modifying or analyzing the sequential code
in a step, we can not interleave it with other steps without help from the
user. To enable step interleaving, we allow the user to write a slice operator
for an effect, that constructs a pair of partial effects that can be executed
distinctly. For this optimization to be applied, the user must also write a
parametric variant of the step that takes as input an effect and performs the
corresponding computation. When the runtime encounters a parametrically
defined step with a sliceable effect, it invokes the slice operator on the effect,
and applies the first partial effect. It then context switches to the next user-
level thread and if there is a matching parametric step the runtime slices it
and only executes the partial effect immediately if there is no interference.
This pattern continues for all the threads, enabling a tight interleaving of
matching steps across user-level threads. The system iteratively calls the
slice operator until slicing is not possible or the effect is empty. By defining
the slicing operator, the user controls the granularity of the resulting partial
step that is executed by the system.

Algorithm 9: Pipelining of parametric steps with slicing (this opera-
tion is performed at line 6 of Algorithm 4).
1 if s is parametric ∧ sstep is sliceable then
2 snext ← sstep;
3 repeat
4 (scur, snext)← slice(snext);
5 if scur does not interfere then
6 parametric_fn(sstep)(scur);
7 context switch to next ult ;
8 else
9 delay scur ∧ snext to the heap;

10 context switch to next ult ;
11 break;
12 until snext = ∅;
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7.7 Experimental Evaluation

All experiments were executed on an eight-socket system with 1 TB DRAM,
comprised of eight 10-core 2.27 GHz Intel E7-8860 processors. Our splicing
scheduler is implemented in MIT Cilk 5.4.6 and all generated codes compiled
with GCC 5.2.0. To comparatively evaluate our splicing scheduler, we chose
MIT Cilk and two compiler frameworks, Pochoir [50] and Pluto [115]. Pluto
and Pochoir have been shown to generate highly-optimized implementations
based on extensive prior research [116, 50]. Thus, we selected benchmarks
that are statically analyzable, regular, and suitable for optimization by these
compiler suites.

7.7.1 Benchmarks Evaluated

The benchmarks and configurations evaluated are shown in Table 7.3; these
were taken from the Polybench [99] and Pochoir benchmark suites. Each
benchmark has multiple phases that can benefit from data reuse. Four of the
benchmarks are stencils (Jacobi-2D, FDTD-2D, Seidel-2D, APOP) that have
significant data reuse potential between multiple iterations (often referred to
as time tiling). The other benchmarks, MVT and BICG, have two distinct
phases that can benefit from interleaved execution. We evaluated the four
stencil benchmarks with both the Pochoir and Pluto compilers. The MVT
and BICG benchmarks cannot be written in Pochoir, because it exclusively
expresses stencil patterns. For the stencil benchmarks, we selected timestep
counts that resulted in the best performance for each scheduler evaluated.

7.7.2 Evaluation with Pluto

Pluto is a polyhedral source-to-source compiler transformation framework
for affine loop nests that optimizes locality and automatically parallelizes
them. Pluto uses deep, static dependency analysis to time-tile and paral-
lelize affine loops nests by generating C code annotated with OpenMP prag-
mas. For applicable loops, it has been shown to generate highly-optimized
parallel implementations that rival other locality optimizing frameworks and
the best production compilers. To evaluate our runtime approach, we com-
pared against the latest version of Pluto [115] that uses diamond tiling (on
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the pet branch). For the codes tested, the Pluto generated code naturally
achieves good NUMA locality, due to the matched structure of the gener-
ated for loops. We compiled an analyzable for-loop version of all the codes
in the Pluto transformation framework with --parallelize, --lbtile,
and --tile. These options are mentioned as obtaining the best perfor-
mance in a recent work by Pluto’s authors [117]. For all the benchmarks,
we tested several tile sizes (for L1 and L2 cache) to find the best performing
configurations; the tiles we selected for Pluto are shown in Table 7.3.

7.7.3 Evaluation with Pochoir

Pochoir [50] is a compiler and runtime framework that transforms a stencil-
specific DSL embedded in C++ code to a concurrent multicore execution
using Cilk. The underlying Pochoir algorithm creates a cache-oblivious par-
allelization of time-stepped multidimensional grids using “hyperspace cuts”,
an asymptotic improvement over trapezoidal decompositions. Thus, Pochoir
does not require any user input on tiling or NUMA placement. We evalu-
ated a version of each benchmark written in Pochoir, backed with the Intel
ICPC compiler, version 14.0.3, due to the limitations in compiling Pochoir-
generated code using GCC3. We used the following flags for compiling the
Pochoir codes: -O3 -funroll-loops -fno-alias -fno-fnalias

-fp-model precise.

7.7.4 Evaluation with Splicing Scheduler: Sp

We implemented each benchmark in recursive form with the data effect an-
notations. For the stencils, we provided a hint to the splicing scheduler at the
top-level timestepping loop to attempt splicing the subsequent Ts timesteps
(an tunable parameter). For each stencil, we evaluated several block sizes
and values for Ts and found the best performing block and time-tile sizes,
presented in Table 7.3. To obtain the best performance for the stencil bench-
marks, we implemented an parametric variant of the kernel that executes a
partial effect, allowing the runtime to pipeline the kernel’s execution. We

3We compiled Pochoir programs on a system with Intel compilers (but fewer cores) and
executed the binary on this system.
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found that without this optimization, the very small block sizes required to
obtain cache reuse at high levels of the cache (L1/L2) were prohibitively
expensive due to runtime effect management and Cilk overheads. For the
non-stencil benchmarks (MVT and BICG), we provided a similar hint imme-
diately preceding the two phases of each benchmark to the splicing scheduler.

7.7.5 Evaluation with Cilk: Cilk

For each benchmark, we evaluate the version equivalent to the Cilk code
generated from the effect system. All effect-related actions are removed and
the code is executed as a conventional Cilk program.

7.7.6 Evaluation with NUMA-Optimized Cilk: CilkN

Cilk, and the underlying random work-stealing scheduling algorithm, has
been shown in past work to cause performance degradations in the NUMA
contexts when the data accessed in a task is not executed where the page
is mapped by the system. For instance, in the first-touch policy, if the data
initialization, and thus page allocation, occurs in a different memory do-
main than use, the task time may be inflated. By using a random work-
stealing scheduler, the locale of page allocation and subsequent use is often
mismatched. Hence, our splicing algorithm when used in conjunction with
random work stealing suffers of these effects. In a work by Lifflander et
al. [118], the authors demonstrate a variant of Cilk that is augmented with
NUMA optimizations that performs comparable to OpenMP for stencil-like
benchmarks. We consider this version for evaluation as well.

7.7.7 NUMA-Optimized Splicing Scheduler: SpN

To reap the NUMA benefits from CilkN, we have built a version of our
splicing scheduler on top of their scheduling algorithm, relaxed work stealing.
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7.7.8 Experimental Speedup Comparison

In Figure 7.5, we compare the speedup achieved by the various scheduling
and locality optimizers for the benchmarks evaluated. The speedup is calcu-
lated relative to serial execution time scaled by the number of cores. Each
benchmark was written with standard for-loops and compiled with GCC 5.2.0
using -O3; serial timings are shown in Table 7.3. Except for Pochoir, all the
generated codes were compiled with the same version of GCC. Each data
point on the graphs is the arithmetic mean of five executions and the error
bars show the standard deviation.

On the speedup graphs, the Cilk bars represent the speedup achieved with
the working-stealing Cilk scheduler. The scaling is limited by memory band-
width and NUMA locality for these benchmarks. The CilkN bars show the
speedup achieved by incorporating NUMA optimizations [118]. At sixteen
cores, beyond a single memory domain, the scaling significantly improves
with CilkN.
The SpN and Sp bars show the speedup obtained using the spliced sched-

uler with and without NUMA optimization, respectively, by interleaving Ts

timesteps (shown in Table 7.3). Across all benchmarks and scales, the splic-
ing scheduler significantly outperforms native Cilk code. Compared to Cilk,
Sp performs around 2×–3× better overall. To summarize the relative im-
provement, Table 7.1 presents the mean speedup over all the benchmarks,
delineated by NUMA regime. By incorporating NUMA optimizations, per-
formance is further improved beyond eight cores. Compared to Cilk beyond
eight cores, SpN executes 3.84× faster (arithmetic mean over the bench-
marks), shown in Table 7.1. Compared to the NUMA-optimized Cilk, CilkN

executes 2.42× faster beyond eight cores.
Across the benchmarks, our splicing scheduler is competitive with Pluto

and Pochoir. Pluto and Pochoir both extract dependencies at compile-time
either through static polyhedral analysis or expressed in the DSL. Although
we pay the runtime cost of managing dependencies, context switching be-
tween user-level threads, and postponing tasks, we still improve performance
of the native Cilk program significantly! In general, Pluto and Pochoir ex-
tract reuse at all levels of cache, including the L1 cache. Our scheduling
mechanism is not able to optimize as well for L1 cache reuse, due to the
overheads of executing a user-defined kernel. Without compile-time trans-
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formations, the cost of a function call for each kernel limits the reuse that
is possible without incurring prohibitive overheads. For the one-dimensional
APOP benchmark in particular, Pluto performs better due to tight fusion of
the kernel that is not limited by complex boundary conditions.

The MVT and BICG benchmarks involve a reduction-like operation from a
matrix to a vector. Thus, Pluto is not able to generate an efficient parallel
implementation in OpenMP because it does not detect and optimize for the
reduction-like pattern. The effects of this limitation can be observed in Fig-
ure 7.5e and 7.5f: the performance decreases with scale. For the recursive
versions we wrote, we used an accumulator to combine results into the vector.
Thus, the two phases in MVT and BICG can be spliced without delaying work
and decreasing concurrency. This implementation accrues locality benefits
and scales much further than Pluto.

7.7.9 Hardware Performance Counters

To further explain the behavior of the splicing scheduler, we collected cache
and TLB miss rates and instruction counts using hardware counters accessed
through the Linux kernel API provided with perf. These results are pre-
sented in Table 7.5 for all the benchmarks. The instruction counts are higher
for all locality optimized codes compared to the serial implementation. Pluto
increases instruction count due to the conditionals and min/max operations
it performs for tiling and parallelization. Pochoir’s runtime performs com-
plex hyperspace cuts, which significantly increases the instructions executed.
Compared to Cilk and serial miss rates, the splicing scheduler reduces L2
and L3 misses, which correlate strongly with the performance improvement.
The spliced version reduces the L2 miss rate by 3.7× compared to Cilk. Of
the L3 accesses, the spliced version has 2× fewer misses compared to Cilk.
The TLB accesses are reduced by 9× compared to Cilk, although the per-
cent of TLB misses increases significantly. These factors demonstrate that
the splicing performance improvements are correlated with better memory
hierarchy reuse.
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Domain Arithmetic Mean
SpN CilkN Pluto Pochoir Cilk

Cores 1-8 (within NUMA) 1.01 2.00 0.93 1.17 1.99
Cores 16-64 (across NUMA) 0.70 1.69 0.66 0.58 2.89

Domain Geometric Mean
SpN CilkN Pluto Pochoir Cilk

Cores 1-8 (within NUMA) 1.01 2.14 0.95 1.21 2.13
Cores 16-64 (across NUMA) 0.73 1.96 0.84 0.60 3.24

Table 7.1: Overview of trends across all benchmarks. Each number is the
arithmetic or geometric mean of execution time ratios for all benchmarks
between x, the column header, and the splicing (Sp) scheduler. For example,
the first column is SpN/Sp.

7.7.10 Overheads

In Table 7.4 on the left, we present statistics on the splicing scheduler’s oper-
ations to concurrently interleave while ensuring correctness on 64 cores. For
Jacobi-2D, Seidel-2D, and FDTD-2D, the system performs tens of millions in-
terference checks to splice the program and execute it concurrently. Because
APOP is one-dimensional with simple boundary conditions, it requires fewer
interference checks. The two phases spliced for MVT and BICG are effectively
concurrent, and thus do not pause steps or have any dependencies. Overall, a
large number of runtime operations are required to extract cache locality and
parallelism. Thus, efficient effect description and runtime design are required
to obtain high performance.
In Table 7.4 on the right, we present an upper bound on the amount

of extra space required to store delayed steps during spliced execution. In
general, the number of extra stack frames allocated will be proportional to
the number of iterations spliced together and the number of conflicts. Beyond
this, the size of each delayed step corresponds to the amount of state (live
variables) on the stack that must be saved on the heap to be executed when
ready. For the benchmark evaluated, we find that the space overheads due
to delayed steps are low: the maximum extra space required is 16MB on
64 cores for the Jacobi-2D benchmark. MVT and BICG do not require extra
space because the spliced phases are concurrent and thus never delayed.
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Domain Arithmetic Mean
Sp CilkN Pluto Pochoir Cilk

Cores 1-8 (within NUMA) 0.98 1.99 0.92 1.16 1.97
Cores 16-64 (across NUMA) 1.32 2.42 0.94 0.83 3.84

Domain Geometric Mean
Sp CilkN Pluto Pochoir Cilk

Cores 1-8 (within NUMA) 0.99 2.12 0.94 1.20 2.11
Cores 16-64 (across NUMA) 1.38 2.69 1.15 0.85 4.46

Table 7.2: Overview of trends across all benchmarks with respect to SpN.
Each number is the arithmetic or geometric mean of execution time ratios
for all benchmarks between x, the column header, and the NUMA-optimized
splicing (SpN) scheduler. For example, the first column is Sp/SpN.

Benchmark Problem Cilk, CilkN, Sp, SpN Pluto
Ts Block Pipelining Block Timesteps

Jacobi-2D 327682 16 1024 · 4096 Yes L1=128 · 128 · 128, L2=8 · 8 · 8 128
Seidel-2D 327682 8 512 · 8192 Yes L1=128 · 128 · 128, L2=8 · 8 · 8 128
FDTD-2D 163842 8 512 · 4096 Yes L1=128 · 128 · 128, L2=8 · 8 · 8 128

APOP 268435456 16 1048576 Yes L1=512 · 512 16384
MVT 163842 N/A 32 · 1024 No L1=8 · 128 · 8, L2=8 · 2 · 8 N/A
BICG 327682 N/A 32 · 1024 No L1=8 · 128 · 8, L2=8 · 2 · 8 N/A

Benchmark Pochoir Serial Time
Timesteps Per Iter. (s)

Jacobi-2D 256 4.7± 0.03
Seidel-2D 256 8.0± 0.20
FDTD-2D 256 3.8± 0.05

MVT N/A 1.7± 0.02
BICG N/A 7.0± 0.07
APOP 16384 2.6± 0.03

Table 7.3: Benchmark configurations evaluated. For each benchmark the
best tile/block size and Ts (number of spliced timesteps) was selected.
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Figure 7.5: Mean speedup of five runs achieved over a hypothetical perfectly
scaled serial implementation run on a single core (mean execution time

serialtime/c
, where c is

the number of cores). The Pluto compiler time tiles and parallelizes the codes
with OpenMP. The Cilk and CilkN vars correspond to using Cilk without
and with NUMA optimizations. The Sp and SpN bars correspond to using
splicing scheduler without and with NUMA optimizations. x-axis—number
of cores; y-axis—speedup; error bars—standard deviation.
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Benchmark Interference Context Delayed Total
(64 cores) Checks Switches Steps Deps.

Jacobi-2D 69,753,410 3,960,272 15,102 66,414
Seidel-2D 59,253,018 2,022,304 30,076 132,712
FDTD-2D 31,047,246 1,998,240 15,100 48,528
APOP 216,225 2,032,848 7,392 19,584
MVT 262,124 98,870 0 0
BICG 1,048,556 393,782 0 0

Benchmark Space Overhead (1–64 cores, in MB)
1 2 4 8 16 32 64

Jacobi-2D 0.8 2 4 7 12 14 16
Seidel-2D 0.5 1 4 4 8 13 16
FDTD-2D 0.5 0.9 2 3 5 7 10
APOP 0.2 0.4 0.8 2 3 5 8
MVT 0 0 0 0 0 0 0
BICG 0 0 0 0 0 0 0

Table 7.4: Runtime statistics using our spliced scheduler.

Benchmark Config L1 A. L1 M. L2 M. L3 M. TLB A. TLB M. Inst

Jacobi-2D Splice 1.6B 0.27B 0.018B 0.004B 0.10B 0.0020B 2.9B
Jacobi-2D Cilk 1.4B 0.26B 0.068B 0.033B 0.91B 0.0016B 2.7B
Jacobi-2D Serial 1.2B 0.26B 0.075B 0.036B 0.78B 0.0014B 2.3B
Jacobi-2D Pluto 1.4B 0.18B 0.058B 0.00051B 0.87B 0.0067B 3.4B
Jacobi-2D Pochoir 2.1B 0.21B 0.092B 0.00024B 1.3B 0.018B 4.4B

FDTD-2D Splice 1.0B 0.11B 0.010B 0.0029B 0.63B 0.0013B 1.92B
FDTD-2D Cilk 0.93B 0.11B 0.046B 0.023B 0.59B 0.0011B 1.8B
FDTD-2D Serial 0.72B 0.12B 0.063B 0.031B 0.46B 0.0013B 1.55B
FDTD-2D Pluto 1.4B 0.054B 0.029B 0.00035B 0.91B 0.0045B 3.5B
FDTD-2D Pochoir 1.5B 0.23B 0.12B 0.00060B 0.95B 0.021B 3.0B

Seidel-2D Splice 2.1B 0.33B 0.024B 0.0031B 1.36B 0.0018B 11B
Seidel-2D Cilk 2.1B 0.32B 0.052B 0.024B 1.32B 0.0014B 9.1B
Seidel-2D Serial 1.7B 0.31B 0.082B 0.037B 1.1B 0.0013B 4.54B
Seidel-2D Pluto 2.8B 0.084B 0.050B 0.0017B 1.83B 0.015B 6.1B
Seidel-2D Pochoir 2.1B 0.42B 0.18B 0.00048B 1.4B 0.034B 14B

APOP Splice 0.38B 0.083B 0.010B 0.0020B 0.24B 0.00098B 1.1B
APOP Cilk 0.36B 0.080B 0.032B 0.016B 0.23B 0.00088B 1.08B
APOP Serial 0.36B 0.074B 0.032B 0.016B 0.23B 0.0034B 1.03B
APOP Pluto 0.47B 0.0021B 0.00011B 0.000055B 0.30B 0.0039B 1.5B
APOP Pochoir 0.70B 0.00039B 0.000010B 0.000001B 0.43B 0.0000020B 1.8B

MVT Splice 0.63B 0.0275 0.0097B 0.0030B 0.48B 0.00050B 1.8B
MVT Cilk 0.73B 0.0275 0.013B 0.0063B 0.48B 0.00040B 1.8B
MVT Serial 0.36B 0.052B 0.020B 0.0091B 0.23B 0.00030B 1.0B
MVT Pluto 0.42B 0.18408 0.10B 0.0090B 0.25B 0.084B 1.5B

BICG Splice 2.9B 0.11B 0.033B 0.013B 1.92B 0.0019B 7.1B
BICG Cilk 2.9B 0.11B 0.052B 0.025B 1.92B 0.0017B 7.1B
BICG Serial 1.45B 0.21B 0.082B 0.038B 0.91B 0.0014B 4.13B
BICG Pluto 1.7B 0.92B 0.41B 0.038B 1.0B 0.34B 5.8B

Table 7.5: Cache, TLB, and instruction count instrumentation on 1 core for
all benchmarks.
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7.8 Example Program Transformation Walkthrough

To elucidate the transformation process that the compiler undergoes to
splice a code, we have written a sketch of the transformation sequence for
a simple one-dimensional stencil. The following is the baseline stencil pro-
gram. It contains a call to the splicing scheduler to initiate splicing every
SPLICE_TIMESTEPS timesteps, which will not be effective because effect an-
notations are not currently present:

1 void kernel(A, B, lo, hi) {
2 for (int i = lo; i < hi; i++)
3 A[i] = 0.333 ∗ (B[i]+B[i−1]+B[i+1]);
4 }
5

6 void stencil1D(A, B, lo, hi) {
7 if (hi−lo > THESHOLD1) {
8 mid = (hi−lo)/2+lo;
9 stencil1D(A, B, lo, mid);

10 stencil1D(A, B, mid, hi);
11 } else
12 kernel(A, B, lo, hi);
13 }
14

15 void main() {
16 double∗ M[2];
17 M[0] = malloc(sizeof(double)∗N);
18 M[1] = malloc(sizeof(double)∗N);
19 /∗ initalize M[1] ∗/
20 for (t = 0; t < TIMESTEPS; t++) {
21 if (t % SPLICE_TIMESTEPS == 0)
22 TrySplice(MIN(SPLICE_TIMESTEPS, TIMESTEPS−t))
23 int t0 = t % 2 == 0
24 stencil1D(M[t0], M[!t0], 0, N)
25 }
26 }

In the next code snippet, we present an implementation of an example 1-D
effect: declaration, construction, interference check, slicing function, subset-
equal operator to optimize transitive effect checks, and a sizeof-intersection
operator to allow the system to determine whether splicing is viable. These
functions are sufficient to enable all the runtime optimizations described in
Section 7.6.
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1 typedef struct { void∗ ptr; int lo, hi; } 1deffect;
2 1deffect∗ 1D(void∗ ptr, int lo, int hi) {
3 1deffect∗ e = malloc(sizeof(1deffect))
4 e−>ptr = ptr; e−>lo = lo; e−>hi = hi;
5 return e;
6 }
7 int 1deffect_interfere(const 1deffect∗ a, const 1deffect∗ b) {
8 return a.ptr == b.ptr && a−>lo <= b−>hi && b−>lo <= a−>hi;
9 }

10 int 1deffect_subset_equal(const 1deffect∗ a, const 1deffect∗ b) {
11 return a.ptr == b.ptr && b−>lo >= a−>lo && b−>hi <= a−>hi;
12 }
13 int 1deffect_sizeof_intersection(const 1deffect∗ a, const 1deffect∗ b) {
14 return MIN(a−>hi,b−>hi)−MAX(a−>lo,b−>lo);
15 }
16 void 1deffect_slice(const 1deffect∗ a, 1deffect∗∗ p1, 1deffect∗∗ p2) {
17 if (a−>hi−a−>lo < 1024) { ∗p1 = a; ∗p2 = NULL; }
18 else {
19 int hi = MIN(a−>lo+1024, a−>hi);
20 ∗p1 = 1D(a−>ptr, a−>lo, hi);
21 ∗p2 = 1D(a−>ptr, hi, a−>hi);
22 }
23 }

In the next code snippet, we present the final user code that is given to
the compiler that is spliceable. It contains the added effects, highlighted
in orange, that are supplied by the user to enable the system to interleave
execution of multiple timesteps of this stencil. Additionally, it includes a
parametric kernel to enable pipelining of the base case.

1 /∗ pipelined version of the kernel using partial effect ∗/
2 void kernel_pipeline(1deffect∗ e, A, B, lo, hi) { kernel(A, B, e−>lo, e−>hi); }
3

4 void kernel(A, B, lo, hi) {
5 for (int i = lo; i < hi; i++)
6 A[i] = 0.333 ∗ (B[i]+B[i−1]+B[i+1]);
7 }
8

9 #pragma splice func Writes(1D(A,lo,hi)), Reads(1D(B,lo−1,hi+1))
10 void stencil1D(A, B, lo, hi) {
11 if (hi−lo > THESHOLD1) {
12 mid = (hi−lo)/2+lo;
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13 #pragma splice cont Writes(1D(A,mid,hi)), Reads(1D(B,mid−1,hi+1));
14 stencil1D(A, B, lo, mid);
15 #pragma splice cont Reads() Writes()
16 stencil1D(A, B, mid, hi);
17 } else {
18 #pragma splice cont Reads() Writes()
19 #pragma splice step(pipeline, kernel) Writes(1D(A,lo,hi)), Reads(1D(B,lo−1,hi+1))
20 kernel(A, B, lo, hi);
21 }
22 }
23 void main() {
24 double∗ M[2];
25 M[0] = malloc(sizeof(double)∗N);
26 M[1] = malloc(sizeof(double)∗N);
27 /∗ initalize M[1] ∗/
28 for (t = 0; t < TIMESTEPS; t++) {
29 if (t % SPLICE_TIMESTEPS == 0)
30 TrySplice(MIN(SPLICE_TIMESTEPS, TIMESTEPS−t));
31 int t0 = t % 2 == 0;
32 #pragma splice cont Writes(1D(M[t0],0,N), 1D(M[!t0],0,N));
33 stencil1D(M[t0], M[!t0], 0, N);
34 }
35 }

The next snippet of code includes the generated code that saves the effect
pragma declarations in the stack (e.g. f_eff), shown highlighted in orange.
Highlighted in green is the code generated to transform the program using
fork/join concurrency by inserting spawn and sync in the appropriate places,
using the effects to test at runtime if a sync is required.

1 void stencil1D(double∗ A, double∗ B, int lo, int hi) {
2 if (hi−lo > THESHOLD1) {
3 mid = (hi−lo)/2+lo;
4 {f_eff = Writes(1D(A,lo,mid)), Reads(1D(B,lo−1,mid+1));
5 c_eff = Writes(1D(A,mid,hi)), Reads(1D(B,mid−1,hi+1));
6 spawn stencil1D(A, B, lo, mid);
7 if (effects_interfere(f_eff, c_eff)) sync;}
8 {f_eff = Writes(1D(A,mid,hi)), Reads(1D(B,mid−1,hi+1));
9 c_eff = NULL;

10 spawn stencil1D(A, B, mid, hi);
11 if (effects_interfere(f_eff, c_eff)) sync;}
12 } else {
13 {s_eff = Writes(1D(A,lo,hi)), Reads(1D(B,lo−1,hi+1));
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14 c_eff = NULL;}
15 kernel(A, B, lo, hi);
16 }
17 }
18

19 void main() {
20 double∗ M[2];
21 M[0] = malloc(sizeof(double)∗N);
22 M[1] = malloc(sizeof(double)∗N);
23 /∗ initalize M[1] ∗/
24 for (t = 0; t < TIMESTEPS; t++) {
25 if (t % SPLICE_TIMESTEPS == 0)
26 TrySplice(MIN(SPLICE_TIMESTEPS, TIMESTEPS−t));
27 int t0 = t % 2 == 0
28 {f_eff = Writes(1D(M[t0],0,N)), Reads(1D(M[!t0],0,N));
29 c_eff = Writes(1D(M[t0],0,N), 1D(M[!t0],0,N));
30 spawn stencil1D(M[t0], M[!t0], 0, N);
31 if (effects_interfere(f_eff, c_eff)) sync;}
32 }
33 }

The final snippet includes blue highlighted regions that are generated to
initiate splicing (in the main function) and interleave execution if splicing
is chosen at runtime in the stencil1D function. It includes a rough sketch
of the runtime structures used to manage the splicing state and perform
bookkeeping to track effects and required synchronization.

1 typedef struct {
2 /∗ ’handle’ to store fnptr and packed parameters ∗/
3 effect f_eff, c_eff;
4 } ult;
5 typedef struct {
6 bool hasSync = false, inSplicedMode = false;
7 int counter = 0, funcs = −1, cur_ult = 0;
8 ult ults[MAX_SPLICE_ULTS];
9 } splice_state;

10 pthread_local splice_state ss;
11

12 void try_splice_local(ss) {
13 ss.inSplicedMode = true;
14 /∗ use heuristic to determine of splicing is beneficial ∗/
15 /∗ if so, create and interleave ss.funcs user−level threads on this pthread ∗/
16 /∗ else, execute functions in program order ∗/
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17 }
18

19 void stencil1D(A, B, lo, hi) {
20 if (hi−lo > THESHOLD1) {
21 mid = (hi−lo)/2+lo;
22 {f_eff = Writes(1D(A,lo,mid)), Reads(1D(B,lo−1,mid+1));
23 c_eff = Writes(1D(A,mid,hi)), Reads(1D(B,mid−1,hi+1));
24 if (ss.inSplicedMode) {
25 splice_func_cont(ss.cur_ult, f_eff, c_eff);
26 try_context_switch_ult((ss.cur_ult+1) % ss.funcs);
27 }
28 spawn stencil1D(A, B, lo, mid)
29 if (effects_interfere(f_eff, c_eff)) sync;}
30 {f_eff = Writes(1D(A,mid,hi)), Reads(1D(B,mid−1,hi+1));
31 c_eff = NULL;
32 if (ss.inSplicedMode) {
33 splice_func_cont(ss.cur_ult, f_eff, c_eff);
34 try_context_switch_ult((ss.cur_ult+1) % ss.funcs);
35 }
36 spawn stencil1D(A, B, mid, hi)
37 if (effects_interfere(f_eff, c_eff)) sync;}
38 } else {
39 {s_eff = Writes(1D(A,lo,hi)), Reads(1D(B,lo−1,hi+1));
40 c_eff = NULL;
41 if (ss.inSplicedMode)
42 partial_effect = s_eff;
43 while(splice_step(ss.cur_ult, s_eff, &partial_effect)) {
44 kernel_pipeline(partial_effect, A, B, lo, hi)
45 }
46 if (partial_effect != NULL)
47 /∗ suspend this stack frame ∗/
48 } else
49 kernel(A, B, lo, hi);
50 }
51 }
52

53 void main() {
54 for (t = 0; t < TIMESTEPS; t++) {
55 if (t % SPLICE_TIMESTEPS == 0)
56 ss.funcs = MIN(SPLICE_TIMESTEPS, TIMESTEPS−t)
57 t0 = t % 2 == 0
58 {f_eff = Writes(1D(M[t0],0,N)), Reads(1D(M[!t0],0,N))
59 c_eff = Writes(1D(M[t0],0,N), 1D(M[!t0],0,N))
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60

61 if (ss.funcs != −1) {
62 ss.ults[ss.counter].{f_eff,c_eff} = {f_eff,c_eff}
63 ss.ults[ss.counter++].handle = { stencil1D, struct { M[t0], M[!t0], 0, N } }
64 } else
65 spawn stencil1D(M[t0], M[!t0], 0, N);
66

67 if (ss.counter == ss.funcs) try_splice_local(ss)
68

69 if (effects_interfere(f_eff, c_eff)) {
70 if (ss.counter != −1) ss.ults[ss.counter−1].hasSync = true;
71 else sync;
72 }}
73 }
74 }

7.9 Discussion

Compile-time optimization across function boundaries are inherently limited
by the inter-procedural analysis and the availability of enough information—
source code, effects, or higher-level semantics—to enable such transfor-
mations. Achieving the best performance with any strategy—traditional
compiler analysis, compilation from domain-specific languages, or runtime
optimization—requires a careful tuning of a large parameter space. Our
results cannot be used to claim any strategy as being definitively superior
across all the benchmarks and configurations considered. The alternative
strategies considered can reason in a richer dependence space and perform a
greater number of transformations—permutation, reversal, tiling, duplicated
execution, etc.—that we do not consider in this work. While these strate-
gies can often handle more general dependence patterns, our approach works
best with local dependences that enable continued splicing with a limited
number of delayed steps. We consider our approach a complement to the
compile-time optimizers, to be used when they cannot be applied.
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CHAPTER 8
Conclusion

The widespread use of work stealing necessitates the development of mech-
anisms to study the behavior of individual executions. The algorithms pre-
sented in Chapter 4 allow the efficient construction of steal trees that enable
low overhead tracing and replay of async-finish programs scheduled using
work-first or help-first work stealing schedulers. We also demonstrated the
broader applicability of this work, beyond replay-based performance analy-
sis, by demonstrating its usefulness in optimizing data race detection and
extending the class of programs that can employ retentive or constrained
stealing.

In Chapter 5, we presented scalable algorithms for persistence-based load
balancing and work stealing. The hierarchical persistence-based load balanc-
ing algorithm presented locally rebalances the load in a greedy fashion. The
work stealing algorithm is optimized for distributed memory machines, by
coalescing remote operations, reducing the duration of locked operations, and
enabling concurrent steal operations that allow overlapped task migration.
We presented retentive stealing to further adapt work stealing for iterative
applications.

Work stealing is traditionally considered not to scale beyond small core
counts, due to its perceived limitations: randomization, the need to repeat-
edly rebalance, the cost of termination detection, and the potential inter-
ference with application execution. While not universally applicable, we
demonstrate that work stealing scales better than commonly believed. Re-
tentive stealing is also shown to improve execution efficiency by incrementally
improving the load balance and reducing the overheads associated with steal-
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ing.
In Chapter 6, we present an approach to optimize fork/join programs for

data locality and grain size selection. We describe two different methodolo-
gies: (1) user-specified steal tree construction that requires additional pro-
grammer effort and is not adaptive and (2) an automatic iterative optimiza-
tion scheme that nearly converges to the same performance. The evaluation
demonstrates that we can obtain up to 2.5x performance improvement using
our iterative scheme. We show that high performance still can be obtained
without the application-specific knowledge user specification requires while
maintaining the efficiency and automatic load balancing that work stealing
provides.

In Chapter 7, we demonstrate a approach to cache locality optimiza-
tion across function invocations of effect-annotated recursive functions. We
demonstrated significant performance improvements using our strategy, com-
petitive with the best alternative optimization strategies. This included ef-
ficiently tracking effects, preventing dependence violations, and lightweight-
thread-based scheduling to interleave execution of function invocations. In
particular, we demonstrated splicing across multiple time iterations in stencil
computations to mimic the complex diamond-tiling transformation in Pluto
and time tiling in Pochoir.

Building on the techniques presented in Chapter 7, structuring libraries
as collections of effect-annotated recursive functions can enable automatic
runtime optimization of applications composed of such functions.
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