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Abstract

Dynamic resource provisioning, as an important data center software building block, helps to

achieve high resource usage efficiency, leading to enormous monetary benefits. Most existing

work for data center dynamic provisioning target on stateless servers, where any request can

be routed to any server. However, the assumption of stateless behaviors no longer holds for

subsystems that subject to data constraints, as a request may depend on a certain dataset

stored on a small subset of servers. Routing a request to a server without the required

dataset violates data locality or data availability properties, which may negatively impact

on the response times.

To solve this problem, this thesis provides an unified framework consisting of two main

steps: 1) determining the proper amount of resources to serve the workload by analyzing

the schedulability utilization bound; 2) avoiding transition penalties during cluster resizing

operations by deliberately design data distribution policies. We apply this framework to

both storage and computing subsystems, where the former includes distributed file systems,

databases, memory caches, and the latter refers to systems such as Hadoop, Spark, and

Storm. Proposed solutions are implemented into MemCached, HBase/HDFS, and Spark,

and evaluated using various datasets, including Wikipedia, NYC taxi trace, Twitter traces,

etc.
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Chapter 1: Introduction

Data centers have been serving as the foundation for the prospering Internet era for more

than a decade. Explorations of digital data and applications drive data centers to rapidly

grow in both its scale and population. Due to data centers’ enormous monetary value, both

industry and academia vigorously seek solutions to improve data center cost efficiency by

increasing the amount of served workloads or reducing the operational expenses. Advances

on both directions may benefit from resource proportionality which requires the data center

to consume a proportional amount of resources (e.g., power, number of servers, etc.) in

accordance with the amount of workloads. Under shared circumstances, resource propor-

tionality helps to pack a larger amount of heterogeneous workloads into a single data center

in a staggering and opportunistic fashion [1–5], generating higher revenue. In dedicated

clusters that serve a fluctuating amount of workloads, resource proportionality saves energy

by allowing the cluster to adaptively power off a subset of servers at non-peak load [6–10],

considerably reducing the operational expenses.

Data centers are complex systems composed of multiple subsystems, there is no single

solution to arm all subsystems with the ability of resource proportionality. However, various

solutions can be summarized into a common framework as shown in Figure 1.1. In this

framework, the system is the target to enable dynamic provisioning. The sensor component

monitors key performance metrics (e.g., response time, CPU utilization, Free disk space,

etc.) of the system, and reports system status to the policy. The scaling policy calculates the

resource demand based on the given workload, and the scaling manager gracefully increases

or decreases the amount of resources by taking care of transition penalties.

1



System

PolicyManager

Provision

Figure 1.1: Dynamic Resource Provisioning Framework

Plenty of work have proposed dynamic resource provisioning solutions for stateless web

servers [11–13], where any request can be routed to any web server. However, the assumption

of stateless behaviors no longer holds for subsystems that subject to data constraints. We

coarsely categorize those subsystems into two classes, storage and computing. The former

includes distributed file systems, databases, memory caches, and the latter refers to systems

such as Hadoop [14, 15], Spark [16–18], and Storm [19]. In these systems, properties such as

data locality and availability significantly impact response times. Due to the huge disparities

between these systems, each of them calls for specifically tailored solutions to achieve resource

proportionality. As summarized in Table 1.1, chapters of this thesis design policies and

managers for the storage and computing systems respectively. Below, we elaborate the

characteristics and design requirements of storage and computing systems for the policy and

manager components respectively.

Storage
computing

Randomly Partitioned Ordered Partitioned

Policy Solved in existing solutions Section 3: Packing Servers

Manager Section 4: Proteus Section 5: Pyro Section 6: Stark

Table 1.1: Categorization and Sections Summary
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1.1 Policy: Make Provisioning Decisions

Effective resource provisioning is the cornerstone for delivering resource proportionality. The

policy collects monitoring information of the entire cluster, and makes estimations on what is

the right amount of resources to reach given Quality of Services (QoS) objectives. Underesti-

mation would overload the service cluster, leading to unacceptably long response times, while

overestimation would under-utilize the cluster, unnecessarily wasting valuable resources. As

the amount of workloads fluctuates over time, the resource provisioning solution should ac-

commodate these dynamics adaptively. The decisions could be scaling CPU frequencies,

workload scheduling constraints, power on/off servers, etc.

In systems enforcing response times as QoS objectives, one solution would be to monitor

the system response time and increase (decrease) the number of running servers accordingly

when the response time rises (drops). Though effective for storage systems that answer IO

requests within milliseconds, this solution is inapplicable to distributed computing systems

such as Hadoop and Spark. The reason is that the response times of jobs in these systems

range from milliseconds to hours or even days, whose sheer value is inadequate to faithfully

indicate cluster resource utilization. Hence, the solutions for the storage and the computing

systems differ to a large degree. Therefore, policies need to be designed for the two different

types of systems accordingly.

1.1.1 Distributed Storage Systems

Data center distributed storage systems usually aim at serving IO requests with low response

times. Though distributed storage systems cover a wide spectrum of applications, such as

memory cache, distributed file systems, NOSQL database, the request complexities within

the same application vary within a small range. For example, getting a key-value pair from

memcached [20] takes a few millisecond, while reading an HBase [21, 22] block (64KB by

default) takes tens of milliseconds. The low latency and high throughput nature allows the

system to actively monitor system status that positively relates to the response time (e.g.,

3



number of concurrent requests, queue length, etc.), and tune the cluster capacity accordingly

in real time. Many existing solutions [11–13] have already solved this problem. So, this thesis

skips exploring this area.

1.1.2 Distributed computing Systems

As mentioned before, jobs in the same distributed computing system may diverse to a large

extend. Some of them may finish within hundreds of milliseconds, while others may last a

few hours or even days. Therefore, this information can neither be collected in real time

nor faithfully represent the cluster utilization. Moreover, as some jobs may occupy a huge

amount of resources for a relatively long period of time, it is preferred to estimate the amount

of required resources before executing the job, so that the system may provision resources

proactively. This thesis tackles this problem in Section 3 by introducing the theory of

Packing Servers that bridges the scheduling problem in distributed computing systems to

the abundance set of theory advances in the Real-time community.

1.2 Manager: Handle Resizing Penalties

Apart from stateless web servers, resizing storage and computing systems subjects to consid-

erable performance penalties. The reason is that distributed storage and computing systems

usually closely bind with data, where resizing the cluster could destroy amiable properties

such as data availability and data locality, negatively impacting the site performance.

1.2.1 Distributed Storage Systems

In distributed storage systems, data is associated with identifiers, where the identifier can

be the path to a file, the ID of a block, a key for a key-value pair, the primary key for a

row in a database, etc. Based on how the system distributes data into servers, they can be

categorized into randomly partitioned and ordered partitioned data storage systems. The

former randomly distributes data into servers. The latter divides the data into ranges based
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on their identifiers such that all identifier in the same range are hosted by the same server.

Disparities in key distribution policies lead to different types of performance penalties.

Randomly Partitioned Data Storage

Randomly partitioned data distribution policies work well for applications operating on

individual data pieces. In this case, the key distribution policy directly affects cluster load

balancing. Under static scenarios, one could achieve load balancing by randomly mapping

data identifiers to a large integer range using a consistent random function, and then applying

the modulo operator to wrap it to a valid cache server ID. However, this solution makes it

painful when resizing a cluster. For example, in an n-server cache cluster, if one more server is

added, this simple solution re-maps n
n+1

identifiers into different servers. Consistent hashing

alleviates the problem to some degree. Nevertheless, how to balance load under dynamics

and how to make dynamic server provisioning smooth enough still remain unsolved. Section 4

presents Proteus which creates an uneven amount of virtual nodes for physical servers, and

optimally places those virtual nodes on the consistent hashing ring to balance loads.

Ordered Partitioned Data Storage

In ordered partitioned storage systems, each server handles a continuous range of iden-

tifiers. This design helps to reduce the overhead of range queries by avoiding sending every

query to all servers in the cluster. The initial range boundaries are usually derived from

historical data or estimations on data distributions. During run time, systems resize the

cluster by splitting and merging ranges. Nevertheless, splitting and merging ranges destroy

the data locality benefits, leading to larger response times. The Pyro system described in

Section 5 tackles this problem by making use of data replications in lower layer distributed

file systems.

1.2.2 Distributed Computing Systems

Unlike in storage systems where IO requests query for specific data items from a single

dataset, computing system tasks often need to work on multiple datasets to perform opera-
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tions such as join and cogroup. Therefore, besides data locality properties, maintaining data

co-locality also significantly benefits the performance. In this case, splitting and merging

operations affects multiple co-located datasets. This thesis discussed this problem using the

in-memory computing system Spark as the context, and proposed an evolved system named

Stark in Section 6 that solves the aforementioned problems.
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Chapter 2: Principles and Contributions

In this thesis, we apply three principles to achieve dynamic resource provisioning in data

center:

• Reducing Parallelism: High parallelism is generally considered as a merit in distributed

systems that allows job executions to embrace resources from a cluster of servers. While

increasing parallelism usually helps to accelerate job execution, it may on the other hand

drive job makespans to become unpredictable, due to resources contentions among

multiple jobs. This unpredictability hinders the policy module from estimating the

proper amount of resources to satisfy job deadlines. Therefore, in Chapter 3, we explore

the trade-off between individual job parallelism and job makespan predictability.

Our model considers job graphs with deadlines, where edges in the graph represent the

precedence constraints among jobs. We develop the theory of packing server that limits

the execution of each job into the minimum parallelism without violating the deadline.

The reduced parallelism allows the scheduler to treat job graphs as independent jobs

with bounded utilization penalty, and derives schedulability utilization bounds that

beat best known results.

• Grouping Replicas : In distributed storage systems, data blocks are usually replicated

and randomly distributed to achieve fault tolerance. Besides this original and common

usage, we claim that data replicas may also help to deliver elasticity if grouped prop-

erly. Grouping replicas means that instead of randomly distributing data replicas into

servers, replicas are organized into groups, such that all data within the same group
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are stored in the same server. This design creates opportunities for higher layer ap-

plications to move computations to data when the computations require multiple data

pieces, avoiding the overhead of moving data around. In Chapters 5 and 6, we discuss

this principle in detail using HBase/HDFS stack and Spark as examples.

Chapter 5 presents the Pyro system developed based on the HBase/HDFS stack. Pyro

organizes HDFS block replicas into groups, which helps the higher layer HBase to

split/merge regions without losing the data locality benefits. Chapter 6 describes the

Stark systems built based on Spark. Stark organizes RDD partitions into groups, which

allows immutable RDDs to alter partitioning boundaries without re-construct the entire

dataset.

• Extending Hashes : Hash functions are widely used in data center subsystems to ef-

ficiently and evenly allocate both computation and data (keys) into servers (hashes).

To cope with the fluctuating volume of workload, hash functions need to be able to

extend/shrink the base of their hashes (i.e., turn on/off servers) based on the amount

of received workload. This extendability can help the Manager module minimize the

penalty when resizing the cluster. Chapters 4 and 6 evaluate two solutions that organize

the hashes into a ring structure and a tree structure respectively.

Chapter 4 introduces the Proteus memory cache system that tunes the virtual node

placement policy on consistent hashing rings to guarantee that workloads are evenly

distributed into all running servers during join and leave events. The Stark system

presented in Chapter 6 organizes RDD partition hashes into a tree structure, such

that leaf nodes represent partitions and internal nodes represent groups. In Stark,

each task process all data of a group, where a group may split into two children or

merge with its sibling into a parent group. The ability of extending/shrinking groups

helps to avoid excessively large task input dataset induced by the inconsistency between

partitioning scheme and dynamic input data distribution, keeping job makespans within

a reasonable range.
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We introduce and evaluate the above three principles into Hadoop, HBase, MemCached,

and Spark, resulting in several novel software systems with improved dynamic resource pro-

visioning performance. The contributions of this thesis can be summarized as follows:

• This thesis introduces the generalized packing server , which allows deriving schedula-

bility utilization bound for precedence-constrained tasks using existing techniques for

independent tasks. The utilization bound helps to efficiently determine the minimum

amount of resources to meet deadlines of all tasks, which can be used as a policy module

to make provisioning decisions.

• We propose and develop the first power proportional memory cache cluster by exploring

the virtual node placement schemes in the consistent hashing ring, which guarantees

minimum volume of data transferring during cluster resizing events.

• This thesis applies the same extendable hashing mechanism to both storage systems

and computing systems, which allows data distribution mechanisms to adapt to data

volume and request intensity dynamics, preserving data locality properties in the best

effort manner.

• This thesis develops Pyro as ordered-partitioned spatial-temporal data storage system

by introducing the extendable hashing mechanism to HBase/HDFS software stack.

It may split and redistribute a dataset multiple times without moving data around,

delivering both elasticity and data locality.

• This thesis also designs and implements Stark based on Spark, as an optimized in-

memory batch-processing system for dynamic dataset collections. We inject the extend-

able hashing mechanism to Spark’s data partitioning and caching modules, granting

immutable RDDs the ability to react to data and request dynamics.
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Chapter 3: Policy For Distributed

Computing Clusters

This chapter introduces the generalized packing server , which allows converting generalized

parallel tasks into a corresponding set of independent tasks for the underlying scheduler.

Hence, any schedulability results, previously derived for independent tasks on multiprocessors

become applicable to analyze the schedulability of generalized parallel tasks.

The generalized parallel task model was studied extensively in recent literature [23–30].

It refers to tasks that are described by workflow graphs, where some subtasks can execute

in parallel subject to precedence constraints. The new server packs computation time of

these tasks into budgets, while respecting precedence constraints. The resulting budgets,

however, can be treated by the underlying scheduler as independent tasks . To ensure that

the packing server can always successfully pack the original task set into budgets, we show

that the sum of the budgets should be larger by a certain factor than the sum of the original

computation times. As a result, a conversion factor is derived between schedulability bounds

derived in prior literature for independent tasks on multiprocessors (that therefore apply to

the budgets) and the corresponding bounds that apply to the schedulability of generalized

parallel tasks. The new bounds derived using the aforementioned conversion approach for

the generalized parallel tasks are shown to be better in many cases than the corresponding

best-known bounds for this task model.

The generalized packing server, described in this chapter, can use any work-conserving

scheduling policy to pack tasks into server budgets. Hence, results derived for this server are
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broadly applicable.

3.1 Task Model and Basic Concepts

Recent work introduced the generalized parallel task model, drawing an increasing amount

of attention to its expressiveness and broad applications [26–29]. The chapter addresses

the schedulability of generalized parallel tasks on multiprocessors, composed of a number of

identical processing elements (or cores). We first review the task model, then formalize the

notions of packing servers and conversion bounds, and finally outline the main result of the

chapter.

3.1.1 The Generalized Parallel Task Model

We adopt the generalized parallel task model, proposed by Baruah et al. [31]. In this model,

each task, τi, is represented by a Directed Acyclic Graph (DAG), denoted by G(Ni, Ei),

where the set of nodes, Ni, represents a set of jobs comprising a single instance of the task,

and the set of edges, Ei, represents their precedence constraints. Let the number of jobs

|Ni|, in τi, be denoted by ni, and let the total number of recurrent tasks be denoted by n.

The worst case execution time (WCET) of the jth job is cji . A job can be preempted and

then resumed on the same or a different core. The jth job of an instance of τi can only

start after all its predecessor jobs on the DAG have finished. Every Ti time units, a new

instance of task τi is released with relative deadline Di. In this chapter, we assume Di ≤ Ti.

The utilization ui of task τi is thus the total amount of computation over its deadline (i.e.,∑
j∈Ni

cji
Ti

). The set of recurrent generalized parallel tasks, denoted by τ = {τ1, τ2, ..., τn}, runs

on a platform of m cores.

Let Li denote the critical path length of task τi. The critical path is the longest execution

path in the DAG. Hence, Li = maxpathk∈DAG
∑

j∈pathk c
j
i . We define the stretch of a gener-

alized parallel task, τi, denoted by ϕi, as the ratio of its relative deadline Di over its critical

path length Li. Let ϕ denote the minimum stretch of all tasks (i.e., ϕ = min{ϕ1, ϕ2, ..., ϕn}).
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Notation Description
n, m number of tasks and number of cores
τi task graph i
Ni job set of τi
Di deadline of τi
Li critical path length of τi
ui utilization of τi
ui total utilization of budgets converted from τi
ϕi the ratio of Di over Li (stretch)
β reverse of max individual budget utilization
cji WCET of job j in τi
D′i Di over β
xi the number of budgets for task graph τi
li the size of individual budget for task graph τi

Table 3.1: Packing Server Notation

3.1.2 Assumptions

As the first approach to pack precedence-constrained tasks to independent tasks, this chapter

makes three assumptions to simplify the problem:

• Tasks can be preempted and resumed with no penalties.

• The WCET of each individual task can be estimated a priori to its execution.

• Data locality does not affect task execution times.

These assumptions help us to derive neat theorems with concise proofs. Future works of

relaxing these assumptions will be presented in the discussion section.

3.1.3 Packing Servers

A packing server is a construct that allows the underlying scheduler to ignore precedence

constraints among jobs in the above model and focus on scheduling server budgets as in-

dependent entities. Each task, τi, in the above model, is assigned its own server that is

characterized by two parameters; a budget size, li, and a concurrency level, xi. The server

appears to the underlying scheduler as a set of xi independent tasks, each of computation
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time, li. These tasks (i.e., server budgets) can be scheduled independently on the multipro-

cessor (on the same or different cores) according to the underlying multiprocessor scheduling

policy. When the underlying scheduler invokes any of the server budgets, the server looks for

jobs of task, τi, whose predecessors are finished and runs them within its budget(s). When

a budget expires, the underlying scheduler stops executing it. This chapter shows that if

xi and li are appropriately chosen, the packing server always manages to fit all jobs of the

original task, τi, within its budgets, while respecting precedence constraints, regardless of

how the budgets are scheduled by the underlying scheduler. Hence, as long as the budgets

finish before the deadline of τi, the task is schedulable. Note that, analyzing schedulability

of server budgets is an independent task scheduling/schedulability analysis problem. Thus,

the server allows converting the original problem of scheduling generalized parallel tasks on

multiprocessors to the problem of scheduling independent tasks (the server budgets).

An analogy can be made between packing servers and servers for aperiodic tasks. Since

aperiodic tasks were harder to analyze than periodic ones, real-time scheduling literature

introduced the idea of aperiodic task servers [32–34], such that aperiodic tasks can be sched-

uled inside these servers, while the servers themselves appear to be periodic tasks to the

underlying scheduler. Scheduling and analysis techniques for periodic tasks could then be

extended to aperiodic task servers.

By analogy, the generalized packing server is introduced because scheduling tasks with

precedence constraints is more difficult than scheduling independent tasks. The server allows

scheduling and analysis techniques for independent tasks to be applied to generalized parallel

tasks.

3.1.4 Conversion Bounds

The “catch" in converting generalized parallel tasks to independent server budgets is that,

as we show in this chapter, the sum of server budgets assigned to task τi needs to be appro-

priately larger, in total, than the sum of execution times of the jobs in τi. If this condition

is met, then we show that any work-conserving scheduling policy will always succeed at fit-
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ting all jobs of a task within the corresponding server budgets, while respecting precedence

constraints, regardless of how these budgets are scheduled by the underlying multiprocessor

scheduler.

We call the ratio of the sum of execution times of jobs in τi to the sum of resulting

budgets, the conversion bound . The lower the bound, the less efficient the packing server.

This chapter introduces the simplest packing server and its conversion bound. Possible

improvements that may lead to better bounds are mentioned in the discussion section.

3.1.5 The Main Result

We show that, for the generalized packing server introduced in this chapter, the conversion

bound is equal to ϕ−β
ϕ

, where ϕ is as defined earlier in Section 3.1.1 and β is a tunable

parameter that controls the upper bound of the maximum individual server budget utilization

umax = li/Ti, such that umax ≤ 1
β
. We prove that if the utilization bound for scheduling

of independent tasks by the underlying multiprocessor scheduling policy, is UB, then the

generalized parallel task set is schedulable when its utilization does not exceed UB · ϕ−βϕ .

The observation allows us to map bounds for independent tasks to those for generalized

parallel tasks, essentially discovering new schedulability bounds for the latter in several

cases. As mentioned in the introduction, the chapter generalizes our prior work [35] which

derived a similar result for a special-case packing server that required a clairvoyant underlying

scheduler.

3.2 Generalized Packing Server

Figure 3.1 illustrates the high-level idea of the generalized packing server. The user must

create a server for every generalized parallel task. The underlying scheduler runs some

independent task scheduling algorithm, such as Global EDF (GEDF) [36] or EDF First

Fit (EDF-FF) [37]. When the underlying scheduler executes a budget, much like the case

with aperiodic task servers, the corresponding packing server executes jobs of the original
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Figure 3.1: Packing Server Overview

workflow task within that budget using any work-conserving scheduling policy. The policy

respects precedence constraints by assigning jobs whose predecessors are finished to the

running budgets. We show that this scheduler always succeeds at fitting all jobs into the

budgets, as long as the budgets are sized as described in this chapter.

When a server budget of task τi is invoked, if no job of τi is ready to execute in it (which

can happen if the number of budgets invoked concurrently exceeds the level of concurrency

of τi), the budget remains unutilized. We say that the budget, in this case, runs idle. In this

chapter, we analyze a very simple version of the packing server, where budgets that run idle

continue to occupy the CPU (i.e., the budget busy-waits) and continue to be decremented,

just as if they were executing jobs of τi. When a budget is depleted, it stops running. Should

a job become ready at any point prior to budget depletion, it can use the leftover. If a job

finishes before the underlying budget depletes, the server picks another ready job to feed

into that budget.

Section 3.2.1 discuss how to set server parameters such that any work-conserving sched-
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uler in the server can always finish the input task graph inside the budgets. Section 3.2.2

derives the resulting conversion bound achieved by the generalized packing server. Notations

are introduced near their first usage, and are also summarized in Table 3.1.

3.2.1 Deriving Server Parameters

Many existing utilization bounds for schedulability of independent tasks are a function of

granularity of individual tasks, often measured by the maximum individual task utiliza-

tion. When individual tasks have a lower maximum utilization, a higher utilization bound

can be derived for schedulability of various scheduling algorithms (e.g., EDF-FF [37] and

GEDF [29]). Translating to the context of server budgets, the above observation suggests

that it is preferable to have a smaller budget size, li. Therefore, we introduce a parameter β

to restrict budget size by imposing the constraint: li ≤ min{Di,
Ti
β
}. The constraint bounds

the maximum budget utilization at 1
β
. Later we shall determine the optimal value of β.

Hence, it is useful to define a modified deadline, D′i as:

D′i = min{Di,
Ti
β
} ≤ Di

β
. (3.1)

The following theorem states how to set the budget parameters of a packing server such

that any work-conserving scheduling policy, executed by the server, will always succeed to

pack the original task graphs within the available budgets, no matter how these budgets are

invoked by the underlying scheduler.

Theorem 1. Any work-conserving application scheduler can always fit τi into its xi identical

budgets of size li, regardless of how the underlying scheduler schedules those budgets, if:

xi =

⌈∑
j∈Ni c

j
i − Li

D′i − Li

⌉
(3.2)

li = Li +
1

xi

(∑
j∈Ni

cji − Li

)
. (3.3)
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Proof . To prove the theorem, consider an execution schedule that maps jobs of task τi onto

xi budgets of length li each. We do not make any assumptions on when individual budgets are

executed by the underlying scheduler. We merely assume that whenever a budget becomes

available, the server assigns jobs of task τi to it, in a work-conserving fashion, subject to

their precedence constraints. Let tstart be the first time that a job of τi started executing in

a budget, and let tfinish be the time that τi finished. Let us compute the maximum amount

of idle server budgets accrued between tstart and tfinish. Recall that a budget is said to

be “running idle" if it is invoked by the underlying scheduler but not used by the packing

server (to run a job of τi). In our implementation, such a budget simply busy-waits. This

happens if the underlying scheduler invokes more budgets than the number of jobs of τi that

are currently eligible (i.e., whose predecessors finished). Let us divide the time [tstart, tfinish]

into three types of intervals:

• (A) Intervals where no budgets belonging to τi are running.

• (B) Intervals where budgets are running and at least one budget is idle. Let the sum

of those intervals be denoted by I1.

• (C) Intervals where budgets are running and no budget is idle.

Note that, idle budgets exist only during intervals of type (B) above. The question is: what

is the maximum amount of idle budget execution that may be incurred?

To answer this question observe that when a budget is idle, it must be that the number of

available budgets exceeds the number of eligible jobs of τi (i.e., those jobs whose predecessors

in the task graph are finished). Accordingly, all eligible jobs of τi must be running at that

time. This condition is indistinguishable from running τi on a machine of infinite parallelism

(one that has infinite cores). Thus, the total time interval for which this condition can hold

(i.e., the sum I1) cannot be longer than Li (the length of the critical path of τi). This is true

because τi would always finish execution on a machine of infinite parallelism in time Li or

less.
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Clearly, in our schedule, intervals where a budget is idle (i.e., intervals of type (B)) are

interleaved with intervals of type (A) and (C). However, these other intervals do not increase

the workload and do not change the graph. Hence, the sum I1 remains bounded by what

would be enough for a machine with infinite parallelism to finish the original task graph.

In summary, the total duration of time during which at least one budget is idle cannot

exceed Li. Also, since the schedule used by the packing server is work conserving, at least

one budget must be busy as long as the task has not terminated. Hence, the number of

simultaneously idle budgets cannot exceed xi − 1. The maximum total idle budget time is

thus:

(xi − 1)Li. (3.4)

Therefore, by the time task τi terminates, it would have consumed budgets for a total

duration
∑

j∈Ni c
j
i (to run all its jobs), and a total budget time of no more than (xi − 1)Li

would have been left idle. This adds up to the following maximum total needed budget time:

xili =
∑
j∈Ni

cji + (xi − 1)Li. (3.5)

By dividing both sides with xi, we arrive at the li formula shown in Equation (3.3).

As suggested by Equation (3.5), there are multiple pairs of valid xi and li combinations.

However, as shown in Equation (3.4), the value of xi directly affects the amount of utilization

penalties introduced during the budget construction. Larger xi leads to larger penalties. On

the other hand, excessively small xi leads to larger li, which might violate the deadline D′i

constraints. Given the above two considerations, xi needs to be set to the smallest value

that respects the deadline D′i. Quantitatively, it means that using xi budgets respects D′i,

while using xi − 1 budgets violates D′i. Therefore, we have:
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Li +
1

xi

(∑
j∈Ni

cji − Li

)
≤ D′i (3.6)

Li +
1

xi − 1

(∑
j∈Ni

cji − Li

)
> D′i (3.7)

Expressing xi using Equations (3.6) and (3.7) respectively, we have:

∑
j∈Ni c

j
i − Li

D′i − Li
≤ xi <

∑
j∈Ni c

j
i − Li

D′i − Li
+ 1. (3.8)

As xi has to be an integer, Equation (3.2) follows. �

Next, we prove the resulting conversion bound.

3.2.2 The Conversion Bound

Task graphs can always fit within their budgets, when the budgets are parameterized as

described above. Hence, if the underlying scheduler can schedule all budgets by the original

task deadlines, then all tasks will be schedulable. The budget schedulability problem is

one of analyzing schedulability of independent tasks, for which utilization bounds have been

derived in literature. Let the utilization bound for schedulability independent tasks (by the

underlying scheduler) be UB. The utilization of the original task set must be smaller than

UB because the sum of budgets is larger than the sum of the original job execution times.

In this section, we use this observation to derive a utilization bound for the original task

set, such that the resulting budgets remain under the utilization bound, UB. We prove the

following theorem:

Theorem 2. If the underlying scheduler achieves a utilization bound of UB, the generalized

packing server guarantees that UB · ϕ−βϕ is a valid utilization bound for task graphs.

Proof . Remember that in computing xi, we found the smallest value that allows meeting
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the modified deadline, D′i. Hence, by construction, decreasing budgets to (xi−1) will violate

the modified deadline D′i. This results in:

Li +
1

xi − 1

(∑
j∈Ni

cji − Li

)
> D′i ≥

ϕ

β
· Li (3.9)

By reorganizing Equation (3.9), we have:

∑
j∈Ni c

j
i

xi − 1
>

∑
j∈Ni c

j
i − Li

xi − 1

>

(
ϕ

β
− 1

)
Li (3.10)

Then, we can represent the lower bound on the total execution time of the original task

graph as: ∑
j∈Ni

cji ≥ (xi − 1)(
ϕi
β
− 1)Li (3.11)

As the amount of idle budget contributed by a task graph is upper bounded by (xi − 1)Li,

we can compute the upper bound ratio of idle budget over original task graph total WCET:

xili − ui
ui

=
(xi − 1)Li∑

j∈Ni c
j
i

≤ (xi − 1)Li
(xi − 1)(ϕi

β
− 1)Li

Inequality (3.11)

=
β

ϕi − β
(3.12)

Finally we have: ∑
i

ui ≥
ϕ− β
ϕ

∑
i

xili, ϕ = min{ϕ1, ϕ2, ..., ϕn} (3.13)

Equation (3.13) agrees with the conversion bound claimed in Theorem 2. �

This conversion bound matches the one derived in literature [35]. However, compared to

literature [35], we completely remove the claivoyance requirement on the underlying sched-

uler, thereby promoting the packing server technique to a broader spectrum of applications.
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Figure 3.2: Bound Tightness

The conversion bound ϕ−β
ϕ

applies to all work-conserving schedulers used by the packing

server, with deadline equals to its period (Di = Ti). One natural question to ask is whether

the conversion bound is tight. For example, when proving the conversion bound, we do not

make use of proactive preemptions at all, where Proactive Preemption is the job preemption

issued by the application-level scheduler when the corresponding budget is not preempted

by the underlying scheduler. Hence, it is meaningful to know whether the conversion bound

can be further improved if the application scheduler is allowed to proactively preempt job

executions using some judicious algorithms.

Intuitively, proactive preemptions may help reduce the amount of required idle budget

(xi − 1)Li. For example, by enforcing a PFair-like scheduling policy in the application,

packing servers no longer need to worry about depleting a job too soon to preserve enough

parallelism to occupy all budgets. However, it turns out that the bound is still tight even if

the application scheduler uses unlimited proactive preemptions.

Consider a task graph τi as depicted in Figure 3.2 (a). The WCET of the first job is

c1i . The remaining (D′i−c1i )x
ε

jobs share the same WCET ε, and are all successors of the first

job. After converting task graph τi into xi budgets, we compute the ratio of the additional

computation time introduced as:
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xili − ui
ui

=
(x− 1)c1i

(D′i − c1i )x+ c1i

≈ (x− 1)Li(
ϕi
β
− 1
)
Lix+ Li

as Li = c1i + ε ≈ c1i

≈ β

ϕi − β
. when x is large (3.14)

In this example, proactive preemptions cannot help, as the conversion bound in this case

is still ϕ−β
ϕ

. Hence, the bound shown in Equation (3.13) is the optimal conversion bound

regardless of how the application scheduler fits jobs into budgets.

3.2.3 Computing the Optimal Beta

Using the conversion bound, shown in Equation (3.13), requires one to determine the value

of β that preferably yields the highest utilization bound. We demonstrate this process by

using GEDF-FF [37] and GEDF [29] as two examples.

Generalized packing servers may use any work-conserving independent task scheduling

policy in the underlying scheduler. As proven above, they achieve a utilization bound of

UB · ϕ−βϕ for task graphs, where UB is the utilization bound of the underlying independent

task scheduler. The survey [38] summarizes UB for both GEDF and EDF-FF. The value

of β affects the utilization bound in two competing directions: 1) Schedulability bounds for

the underlying scheduling algorithms usually favor smaller individual task utilization, and

hence larger β; 2) The conversion bound prefers a smaller β. Therefore, it is desired to find

an optimal β that balances these two requirements. Substituting for UB with the utilization

bound for schedulability of GEDF, the optimal β maximizes:

UB ·
ϕ− β
ϕ

=
(ϕ− β)(mβ −m+ 1)

mϕβ
. (3.15)

By taking derivatives with respect to β, and setting the derivative to 0, the highest utilization
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bound for the packing server over GEDF is achieved at:

β =

√
ϕ(m− 1)

m
. (3.16)

Similarly, one can show that the highest utilization bound for the packing server over EDF-

FF is achieved at:

β =

√
(ϕ+ 1)(m− 1)

m
− 1. (3.17)

The derived value of β determines the modified deadline D′i, which in turn affects the

budget size as shown in Equation (3.3). Packing servers use the optimal β to set D′i and

configure budgets accordingly.

3.2.4 Impact on Schedulability Analysis

The generalized packing server can cooperate with various independent task schedulers,

which not only improves task graph utilization bounds for some algorithms, but also unlocks

task graph utilization bounds for many more algorithms. We compare the utilization bounds

achieved with and without generalized packing servers. Table 3.2 presents the utilization

bounds (UB) for algorithms summarized in literature [38]. Assume the configurations satisfy

high platform parallelism (m � 1) and large task graph stretch (Di � Li). For simplicity,

instead of computing the optimal β and presenting task graph utilization bound formulas,

we further assume that β is set to 5 for packing servers, which allows direct comparisons

against existing results. Let UK and UP denote the best Known utilization bounds [29] and

the bounds achieved by Packing servers respectively.

Table 3.2, shows that packing server significantly improves the best known utilization

scheduling bound for G-EDF and G-RM. Moreover, with packing server, schedulers such as

EDF-FF, EDF-FFD, RM-ST, and EDZL embrace task graph utilization bounds which were

not available before.
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Task Scheduler UB Equation UK UP

G-EDF [29]
m(1− 1

β )+ 1
β

m 38.2% 80%

G-RM [29]
m
2 (1− 1

β )+ 1
β

m 25.8% 40%

Federated [29] NA 50% NA

EDF-FF [39]
mβ+1
β+1

m Unknown 80%

EDF-FFD [40]
m−m−1

β

m Unknown 80%

RM-ST [41]
(m−2)(1− 1

β )+1−ln 2

m Unknown 80%

EDZL [42] 1− 1
e Unknown 63%

Table 3.2: Examples of Improved Bounds (m,ϕ� 1, β = 5)

3.3 Evaluation

This section compares existing task graph schedulers, namely GEDF and Federated, to

packing servers using GEDF (independent tasks) and EDF-FF as the underlying schedulers.

Moreover, we evaluate how the stretch ϕ, the reverse of maximum individual task utilization

β, and task graph topology affect the accepted utilizations when using packing servers. The

evaluated schedulers are described as below:

• Packing/GEDF: The generalized packing server over GEDF as the underlying sched-

uler.

• Packing/EDF-FF: The generalized packing server over EDF First Fit (EDF-FF) [37]

as the underlying scheduler.

• GEDF: Global EDF is a well-known and widely used scheduler. It assigns the highest

priority to the workflow with the earliest absolute deadline. Its best-known utilization

bound is 2
3+
√
5
≈ 38.2% [29].

• Federated: Federated scheduling is the state-of-the-art generalized parallel task schedul-

ing algorithm [29]. It achieves the highest-known utilization bound of 50% for gener-
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(c) Summary

Figure 3.3: Varying Stretch ϕ

alized parallel tasks, when the stretch ϕ surpasses 2. The algorithm partitions tasks

based on their utilizations. For every task τi with utilization at least one (i.e., ui ≥ 1),

the algorithm allocates dCi−Li
Di−Li e dedicated cores to τi, where Ci =

∑
j c

j
i . All other

lower-utilization tasks share the remaining cores.

The simulations emulate 50 cores. In all figures, the shown utilization is divided by the

number of cores in the system to normalize it to a per-core value.

The DAG generation program generates task graphs using parameters that include the

number of hops on the critical path, the job WCET, the number of jobs in each DAG, and

the tightness of deadline. Detailed task graph generation policies will be described close to

corresponding experiments.

A large family of DAGs are generated first for each experiment. When load is increased

on the horizontal axis, more DAGs are drawn from the set. If there are unfinished jobs

when a DAG reaches its deadline, all remaining jobs are preempted and discarded, and

the experiment records the deadline-violation event. The experiments enforce no admission

controls.

The following experiments use the optimal β values to configure the packing server ac-

cording to the underlying scheduling policy, unless otherwise stated.
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Figure 3.4: Varying Budget Utilization Cap

3.3.1 Effect of ϕ

This section evaluates how the key parameter ϕ in the conversion bound affects the per-

formance of the generalized packing servers. During the task graph generation process, the

program first generates a random topology. Then, the deadline of the task graph is set to

the product of its critical path length Li and the given stretch ϕ (i.e., Di = Li · ϕ). In this

case, varying the parameter ϕ also affects the task utilization, which we shall show later

in Section 3.3.3 is an important parameter for the Federated scheduling policy. Tuning two

key parameters in the same experiment would cause confusion about which one is the true

driving factor of observed results. Therefore, we compensate by adding more jobs to keep

individual task around the same utilization.

We vary the value of ϕ from 5 to 30 with step 5, and compute optimal β for each different

ϕ using Equation (3.16) and (3.17). The results show that, although packing server does not

dominate other algorithms for every ϕ value, it beats the best-known generalized parallel

task utilization bound when ϕ is larger than 8. Moreover, to the best of our knowledge,

Packing/EDF-FF introduces the first known bound of 70% for EDF-FF algorithm with

ϕ = 30.

Figure 3.3 (a) depicts the ϕ = 20 case, where the utilization bounds for Packing/EDF-ff

and Packing/GEDF are 64% and 60% respectively, beating the best-known bound of 50%.

The generalized packing servers over EDF-FF and GEDF start to miss deadlines when the

submitted utilization surpasses 68% and 90% respectively. When ϕ is set to 30 as shown
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Figure 3.5: Unfavorable DAGs for GEDF and Federated Scheduling

in Figure 3.3 (b), the theoretical schedulability utilization bound for packing servers over

EDF-FF and GEDF further improve to 70% and 67% respectively.

The curves using GEDF-related schedulers dip at higher utilization to a value below the

bound. This is because no admission control is used. In the absence of admission control,

EDF suffers a domino effect when the system gets overloaded causing a sharp decline in the

utilization of tasks that actually meet deadlines. If admission control was used, all tasks

would meet their deadlines as is clear from the point on the x-axis where the submitted

utilization is equal to the bound.

Figure 3.3 (c) summarizes, in general, how the parameter ϕ affects the maximum ob-

served accepted utilization. The curves without markers indicate the theoretical utilization

bound for Packing/EDF-FF and Packing/GEDF respectively. For randomly generated task

graphs, both generalized packing servers accept higher utilizations at larger ϕ values, fol-

lowing the same trend shown by the theoretical bound. Additionally, comparing the bound

computed to the empirically obtained maximum schedulable utilization, we can conclude

that Packing/EDF-FF leads to the least degree of pessimism when scheduling randomly

generated workflows.

3.3.2 Effect of β

The other key parameter in the conversion bound is β. Although the optimal β can be derived

using Equations (3.16) and (3.17), it is still important to know how generalized packing
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servers behave when using different β values. Figure 3.4 plots how β influences accepted

utilizations, with β varying from 1 to 30 and ϕ fixed at 30. The optimal β values are 4.56

and 5.47 for Packing/EDF-FF and Packing/GEDF respectively. In Figure 3.4 (a) where

β = 5, Packing/EDF-FF and Packing/GEDF both achieve considerably high utilization

bounds, as β is close to the optimal value. Empirically, they also accepts more than 80%

utilization. The accepted utilization of Packing/EDF-FF dramatically drops to 65% when

β increases to 10, as shown in Figure 3.4 (b). The results confirm that β fundamentally

impacts accepted utilizations. As summarized in Figure 3.4 (c), there is a clear trend of

ascending followed by descending when β increases from 1 to 30. The pinnacle in the bound

curve conforms to the optimal beta value of 4.56 and 5.42. Again, Figure 3.4 shows that the

utilization bound for Packing/EDF-FF achieves the least degree of pessimism.

3.3.3 Effect of DAG Topology

In experiments using randomly generated task graphs, GEDF performs well, and accepts

more than 90% utilization in most cases. However, there are also cases where the generalized

packing servers significantly outperforms GEDF and Federated scheduling policies. Consider

three sets of implicit-deadline parallel tasks.

• Task set (I): Task τ1 consists of 100 parallel jobs , each with length ci1 = 1. Task

τ2 contains a single job of length c12 = 100. The deadlines for the two workflows are

D1 = 101, and D2 = 102 respectively.

• Task set (II): Compared to Task set I, the only difference is that ci2 shrinks to 25.

• Task set (III): Task τ1 consists of 27 parallel jobs, each with WCET ci3 = 3. The

deadline D1 is set to 80.

In the above three task sets, τ1 can be copied an arbitrary number of times to achieve a

desired task set utilization.
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Task sets (I) and (II) represent unfavorable task graphs for the GEDF scheduler. Fig-

ure 3.5 (I) plots the simulation results for task set (I). In this case, the GEDF scheduler

starts to miss deadline at a utilization of 4%, while generalized packing server servers accept

up to 99% task set utilizations. In this task set, τ2 contains a large job of length c12 = 100,

and subjects to a slightly larger deadline of D2 = 102, compared to other tasks. So, GEDF

schedules other tasks prior to τ2, forcing τ2 to miss its deadline at a very low task set uti-

lization. Packing servers handle these input tasks well due to the result of consolidating jobs

into less parallelism. By setting β = 1, every task is packed into a single budget, allowing

τ2 to enjoy its execution opportunity when the task set utilization is below 99%. Task set

(I) is out of the scope considered in literature [29], as the stretch ϕ is smaller than 3+
√
5

2
.

Task set (II) presents tasks with larger stretches where the 2
3+
√
5
≈ 38.2% utilization bound

is applicable. Figure 3.5 (II) elucidates the result. GEDF and Federated schedulers miss

deadlines when task set utilization reaches 76%, whereas packing servers accept all tasks

when the total utilization stays below 97%.

Task set (III) is unfavorable for the Federated scheduler. The simulation results are

presented in Figure 3.5 (III). The accepted utilization of the Federated scheduling policy

stays at 50%, which is its theoretical schedulability utilization bound. It is because, under

this configuration, Ci−Li
Di−Li = 81−3

80−3 = 78
77

is slightly larger than 1, forcing the Federated scheduler

to allocate 2 cores to each task. As a result, half of the resources in the platform are

wasted. From this perspective, Federated scheduling algorithm prefers higher individual

task utilizations. Generalized packing servers accept 72% task set utilization. GEDF does

not miss any deadline when the task set utilization is smaller than 90%.

These measurements convey that no single scheduler dominates all others. Therefore,

systems without prior knowledge of the DAG topology can only turn to the theoretically

utilization bound for schedulability guarantees.
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3.4 Discussion

The generalized packing server is a novel solution to schedule task graphs using independent

job scheduling algorithms. This chapter presents a simple packing server. It can be improved

along several directions.

• Non-Identical Budgets: The generalized packing server described in this chapter cre-

ates identical budgets. However, this requirement may not be necessary. Non-identical

budgets may potentially help reduce the amount of idle budget during execution, which

in turn improves the conversion bound. This is because the degree of concurrency in

the task graphmay differ from one point in execution to another.

• Budget Priority Exchange: In our model, every budget is dedicated to one task.

If a budget is invoked when no eligible job is left, the budget is completely wasted.

One possible improvement is to borrow the idea of Priority Exchange [33, 43, 44]

from earlier aperiodic server literature, which allows servers to loan unused capacity

to others. Similarly, an improved packing server could loan idle budgets to another

packing server, which would help reduce the total amount of idle budget over the entire

task set.

• Optimized Application Scheduler: This chapter presents a general result that

allows the server to use any work-conserving scheduling algorithm to determine which

jobs to run next. We prove that the bound is tight in the worst case if budgets are

constructed using our theorems. However, outside the worst case, or if budgets are

configured differently (e.g., are not identical), some scheduling algorithms might be

superior to others. In this case, it would be meaningful to develop scheduling algorithms

that help the packing server further improve the conversion bound.

• Distinguish Large and Small Stretch: As suggested by the conversion bound, the

stretch ϕ is a critical parameter that significantly affects the resulting conversion bound.

For simplicity, we use the minimum stretch of all task graphs to calculate the conversion
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bound. Inspired by the Federated scheduling algorithm [29], treating tasks with large

and small utilization differently would increase the schedulability bound. Similarly, the

conversion bound could also be improved by categorizing stretch into tight and loose

classes, and distinguish them during scheduling. The above improvements are left for

future work.

3.5 Related Work

The generalized parallel task scheduling problem has been recently studied on multiproces-

sor platforms. Baruah et al. [27] prove that EDF can achieve a 2X speedup bound for a

single recurrent workflow. Saifullah et al. [26] propose to arrange a workflow into stages, and

then the workflow’s deadline is split and assigned to each stage. If some optimal algorithm

can successfully schedule the original workflow, their solution is guaranteed to satisfy the

same deadline with 4X (speedup bound) speed processors. When the workflow is restricted

to a fork-join model [45, 46], Lakshmanan et al. [47] improve the speedup bound to 3.42.

Li et al. [28] develop a capacity augmentation bound of 4 − 2
m

for workflows, which im-

mediately leads to a simple and effective schedulability test. More recently, Li et al. [29]

improve the capacity augmentation bound to 2 using the federated scheduling algorithm

for implicit deadline workflows. They then prove the same result for stochastic parallel

tasks [48]. Analysis from literature [23] shows a speedup bound for the federated scheduling

algorithm to be
(
4− 2

m

)
when using arbitrary-deadline sporadic DAG models. Fonseca et

al. [24] further introduce conditional executions into the generalized parallel task models

to capture the conditional constructs, such as if-then-else clauses. Baruah et al. [25] later

prove a speedup factor of
(
2− 1

m

)
for the conditional sporadic generalized parallel tasks.

These efforts study the generalized parallel task scheduling problem by directly analyzing

its behavior on multiprocessor platforms.

Compared to above approaches, packing servers take a different path to solve the gener-

alized parallel task scheduling problem. Namely, they offer a mechanism for converting the

31



original task set into independent tasks. Unlike other conversion-based approaches, in pack-

ing servers the resulting independent tasks (server budgets) are subject to the same original

end-to-end deadlines. Since the deadlines are not broken into per-segment deadlines, no arti-

ficial deadline constraints are introduced, which improves schedulability. Our prior work [35]

analyzes the workflow scheduling problem under the assumption of a clairvoyant scheduler.

Specifically, the previous approach required that the packing server know the exact future

task execution timeline, in order to determine the exact time intervals when one of the

budgets will be scheduled on one of the resources in the future. This was accomplished by

simulation, which made the previous approach of limited applicability. In particular, it ap-

plied to Map/Reduce scheduling [49], where all execution it batched (and hence predictable)

and where schedulers are heavy-weight application-layer entities burdened by layers of cloud

middleware (making it possible to accommodate the overhead of simulating the execution of

the workload batch into the future to compute future start and end times of tasks). Clearly,

in the context of embedded computing, schedulers must be lighweight and efficient. More-

over, models such as sporadic tasks, or tasks that can finish early (before expiration of their

worst-case execution time) cannot be accommodated by prior work because they make it

impossible to predict exact future start and end times of tasks.

The generalized packing server, described in this chapter, no longer requires scheduler

clairvoyance. Instead, it can use any work conserving scheduling policy to pack tasks into

server budgets. Hence, results derived for this server are much more broadly applicable. With

the generalized packing server techniques, the generalized parallel task scheduling problem

will continuously benefit from the rich body of existing and future advances of independent

task scheduling algorithms and analysis.
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Chapter 4: Manager For Randomly Partitioned

Storage Systems

The previous chapter assumes that the workload can be distributed to any server with no

penalty. Though this assumption is valid in statless web servers, the memory cache cluster

cannot enjoy this simplicity.

The memory cache cluster usually sits in front of the database or distributed file system

tier to offer fast in-memory data access by running Memcached instances. The cache layer

is playing a very important role. For example, Facebook reported that their cache hit ratio

is higher than 95% [50], which significantly reduces the database workload. (Below, we use

cache and Memcached interchangeably.) In industry data centers, workload seen by the clus-

ter varies over time, and the peak workload can be as much as twice the valley workload [51].

This property offers us golden opportunities to apply dynamic server provisioning policies,

such that when the workload is light, a subset of the servers is turned off to save energy. As

the cache cluster may consist of hundreds or thousands of servers[52], the monetary benefits

brought by energy management could be large.

Dynamic server provisioning, a common energy management methodology, is widely used

for both stateless web servers and distributed replicated file systems. Unfortunately, due

to distinct characteristics of cache clusters, directly applying dynamic server provisioning

will suffer from severe performance degradation during provisioning dynamics (i.e., when

servers are turned on or off). For stateless web servers, a reasonable assumption is that one

request can be handled by any server without much performance penalty. Nevertheless, this

33



assumption does not hold for the cache cluster. If one request is directed to some cache server

that does not have the requested data, the request will have to reach the database tier (or

DFS), which induces high response time. For distributed File systems, requests are usually

directed by using deterministic load distribution policies. Many current designs employ

master server [53], name node [54], or meta servers [55] to store the data chunk location

information. One request will first reach the master server to look up the corresponding

chunk server address, and then communicate with the chunk server to fetch data. However,

given that the cache servers are designed for fast in-memory data access for a large number

of data items, similar look-up operations, which involve one or more disk seeks, are too slow

to serve the cache tier.

Under static scenarios, achieving load balancing is trivial: The web server can simply

hash the requested data ID to a large integer range, and then apply the modulo operator to

wrap it to a valid cache server ID. Reddit, a popular social news website, did use this scheme

before. However, they soon experienced the pain of expanding cache clusters for capacity

upgrades [56]. This is because, in an n-server cache cluster, if one more server is added,

this simple solution will re-map n
n+1

data IDs to cache servers where the requested data is

not in-memory. Therefore, in expectation, n
n+1

of the requests will reach the database tier

simultaneously, and the databases are easily overloaded. The same problem happens when

dynamic server provisioning is used to turn servers on or off. Consistent hashing alleviates

the problem to some degree. Nevertheless, how to balance load under dynamics and how

to make dynamic server provisioning smooth enough are still problems that are yet to be

solved.

4.1 Problem Formulation and Assumptions

Along this direction, we aim at eliminating the performance penalties caused by dynamic

cache cluster provisioning in a 3-tier server cluster as shown in Fig. 4.1. Time is divided

into slots. Let N denote the total number of cache servers, and n(t) denote the number of
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Figure 4.1: Simplified Information Flow

running cache servers in the tth time slot. The data key keyd can be a page title in Wikipedia,

a user ID in Facebook, etc. With keyd, the web server cluster fetches corresponding data

d from either the cache server md or the database tier, and then presents the response to

users. Cache servers store data in the form of (key, data) pairs. We define a piece of data

as “hot” if it is touched at least once during the past TTL seconds. Please note that, we do

not make any assumptions on the cache eviction strategy (LRU, fixed expiration duration,

etc.). At one time instance, a cache server is called active if it hosts “hot” data and serves

requests. Otherwise, it is called inactive, and operates in low power status.

Assumptions

• Each object in cache is of the same size. Even though the size of pages or user accounts

would vary considerably, they can be divided into fixed-size pieces. One piece is con-

sidered as the basic unit of objects in cache. Actually, modern storage clusters already

employ such idea [53–55].

• The load of requests have temporal behavior, and the gap between the peak and the

nadir load is huge. Our study of Wikipedia’s traces supports this assumption.

Objectives

• Balance load distribution in cache tier under dynamics : We define the load as the

amount of data objects served by the cache cluster. In static environments, the load

can be easily balanced by using hash and modular operations. We pursue the same

level of load balance in face of dynamic server provisioning.
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• Minimize data movements during re-balancing transitions : Proteus should achieve min-

imum data migration, such that only at most |n(t+1)−n(t)|
max{n(t+1),n(t)} of the in-cache data is

remapped when the number of active servers changes from n(t) to n(t+ 1).

• Eliminate re-balancing transition delay spikes : Dynamic server provisioning should

never hurt the performance too much. We aim at managing energy with no delay

penalty.

Generally, our goal is to design a provisioning actuator that executes decisions according

to server provisioning policy without degrading the system performance in terms of response

time. Please note that designing the best provisioning policy is not our focus. Different

policies [11, 57, 58] can cooperate with Proteus with no confliction.

4.2 Load Balance under Dynamics

In this section, we describe an algorithm that not only deterministically balances load dis-

tribution under provisioning dynamics but also guarantees migrating minimum amount of

data during each re-balancing transition. Our algorithm inherits ideas of consistent hashing

and virtual nodes [59, 60], and focuses on generating a virtual node placement strategy.

Load balance under dynamics requires each server handles equal amount of objects even

if the number of active servers dynamically changes. As already used in many Memcached

clusters [61], consistent hashing and virtual nodes help to balance load among multiple cache

servers to some degree [59, 60]. In consistent hashing, data keys and servers are hashed into

the same key space, which forms a hashing ring. The ring acts as an indirect layer of index

for the hash. Each obejct will be stored in the first server that succeeds the data key on

the ring. When one server is turned off, its direct successor takes care of its workload. One

physical server may have multiple direct successors by placing multiple virtual nodes on the

hashing ring. Therefore, the load of one server can be spread out to more physical servers

when necessary. However, without careful design, consistent hashing and virtual nodes alone
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do not guarantee load balance in face of provisioning dynamics. In this section, we borrow

the idea of consistent hashing, and improve it by designing and analyzing a virtual node

placement algorithm that deterministically balances workload among all active Memcached

servers.

4.2.1 Fixed Provisioning Order

In data centers, every individual server is under control. Hence, it is possible to turn on/off

servers according to any fixed order. We argue that, a provisioning scheme with a fixed

order is not any weaker than the one that adapts to arbitrary orders. The reason is that,

when no failure presents, the fixed order can be maintained easily. If some server crashes,

we have already lost the data in cache, and both schemes need some fault tolerant solutions

for reconstructing the cache or directing the requests to some redundant caches.

Fixing provisioning order eliminates one dimension of freedom of the load balance prob-

lem, thus simplifies the algorithm design. Well designed order further improves power sav-

ings. For example, the decreasing order of server efficiency should be better than a random

order, where server efficiency is defined as the amount of workload served per unit of energy.

The system administrators should be responsible for choosing a reasonable order, which is

not the focus of this chapter. Our solutions are able to cooperate with any fixed order.

Define the list (s1, s2, ..., sN) as the fixed order for dynamic provisioning, where N is the

number of servers. Let n(t) denote the number of active servers in the tth time slot. In other

words, servers in set {si | 1 ≤ i ≤ n(t)} are active in the tth time slot.

4.2.2 Optimal Number of Virtual Nodes

Let Vi = {vi1, vi2, vi3, ...} denote the set of virtual nodes of the server si. Any request within

the key range between the virtual node vij and its direct predecessor on the hashing ring will

be served by virtual node vij, and thus, physical node si. We call this key range the host

range of the virtual node vij. As the provisioning algorithm turns on and off physical nodes
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Figure 4.2: An example of virtual node placement

dynamically, the direct successor of vij varies as well. However, recall that the order for

provisioning is static, vij always precedes the same direct successor if the number of active

servers is the same. We define vij’s final successor as the direct successor when i− 1 servers

are on. Denote viki → vjkj as the relation between two virtual nodes viki and vjkj , such that

vjkj is the final successor of viki on the consistent hashing ring. Let Psi denote the set of final

successor servers of server si (as illustrated in Fig. 4.2), i.e.,

Psi = {sj | ∃vjkj ∈ Vj,∃viki ∈ Vi, s.t. viki → vjkj}.

In order to achieve load balance under provisioning dynamics, the virtual node placement

policy should satisfy the following conditions: (1) when one physical node is turned off,

objects served by this node should be evenly migrated to all other running physical nodes,

and (2) when one physical node is turned on, it should take an identical amount of objects

from all other active physical nodes. We call this condition the Balance Condition (BC).

Obviously, among all solutions that satisfies BC, the one with minimum number of virtual

nodes is preferred, since less virtual nodes introduce less overhead in terms of both space

consumption and query complexity. We now prove that N2−N
2

+ 1 is the lower bound on the

number of virtual nodes in order to meet BC.

Theorem 3. At least N2−N
2

+ 1 virtual nodes are required to satisfy BC.

Proof. We first introduce a necessary condition of BC, which we call the pseudo BC :

Psi ⊃ {sj | 1 ≤ j ≤ i− 1}.
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The pseudo BC states that to achieve load balance, the final successor set Psi should at

least cover sj,∀j < i. Otherwise, if ∃j < i, sj 6∈ Psi , si’s workload will not be directed to sj

when si is turned off. Hence the load is not balanced. Please note that the pseudo BC does

not guarantee the feasibility of host ranges. 1.

One virtual node can only have one final successor on the hashing ring. Since |Psi | ≥ i−1,

si needs at least i − 1 virtual nodes to precede i − 1 final successors. The corner case

is i = 1, where s1 needs to have at least 1 virtual node. Therefore, altogether, at least

1 +
∑N

i=2(i− 1) = N2−N
2

+ 1 virtual nodes are required.

4.2.3 Virtual Node Placement

In this section, we elaborate the virtual node placement algorithm. Assume the key space

size is K. When generating the placement solution, physical nodes are served one by one

according to the fixed provisioning order. For si (i > 1), the algorithm places i − 1 virtual

nodes on the consistent hashing ring, denoted by {vij|1 ≤ j ≤ i − 1}. When placing vij,

the algorithm borrows K
i(i−1) continues host range from one feasible virtual node of sj, and

assigns it to vij. Fig. 4.2 shows an illustrative example with 6 physical nodes. In Section

4.2.4, we prove that the algorithm is correct and the host ranges are balanced among all

physical nodes.

As each virtual node can be identified by its host range, placing virtual node is equivalent

to assigning an unique host range to each virtue node. Below, we use host range and virtual

node interchangeably. The pseudo code is shown in Algorithm 4.1. The algorithm takes 2

inputs: the number of physical nodes N , and the consistent hashing ring range K. Line 2−3

adds s1’s only virtual node v1,0 into s1’s host range set R[1]. Initially, v1,0 covers the entire

consistent hashing ring. The loop starting on line 4 enumerates all si, i > 1 to add their

virtual nodes. Line 5 − 15 iterates to place each of si’s virtual node vij. For vij, the inner

loop on line 6 searches for one feasible virtual node r of sj whose host range is larger than
1Counter Example: Place the virtual nodes clockwise on the consistent hashing ring with the following order:

1, 2, 3, ..., n, 2, 3, 4, ..., n, ..., (n− 3), (n− 2), (n− 1), n, (n− 2), (n− 1), n, (n− 1), n. The numbers are corresponding to
physical server ID. When n > 6, it is not possible to have all responsible ranges positive.
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K
i(i−1) . When found, vij borrows K

i(i−1) from r, and the algorithm inserts vij into si’s virtual

node set R[i].

Algorithm 4.1 Virtual Node Placement
Input: Number of physical nodes N , consistent hashing ring range K.
Output: Virtual node placement strategy vps.
1: R← an array of N empty set

/* Host range set array for all physical vertices. */
2: v1,0.start← 0, v1,0.len← K
3: R[1]← {v1,0}

⋃
R[1]

/* Initially, the host range of s1’s only virtual node starts at 0 with length K*/
4: for i← 2 to n do /* enumerate all si */
5: for j ← 1 to i-1 do /* compute host range for vij */
6: for r in R[j] do

/* borrow host range from one feasible virtual node of sj*/
7: if r.len > K

i(i−1)
then

8: vij .start← r.start, vij .len← K
i(i−1)

9: r.len← r.len− K
i(i−1)

10: r.start← r.start+ K
i(i−1)

11: R[i]← {vij}
⋃

R[i]
12: Break
13: end if
14: end for
15: end for
16: end for
17: vps← ∅ /*serialize host ranges in a sorted array for fast access*/
18: for i ← 1 to N do
19: for r in R[i] do
20: vps← vps

⋃
{r}

21: end for
22: end for
23: sort vps based on vps[·].start
24: Return vps

4.2.4 Algorithm Analysis

We prove the virtual node placement solution generated by Algorithm 4.1 balances the sum

of host ranges assigned to each physical server.

Proof. basis: If N = 1, there is only one node. Hence the host range is trivially balanced.

Inductive Step: Assume the algorithm is correct for N = k (i.e., the host range of each

physical node is K
k
). For N = k + 1, the host range of each physical node should be K

k+1
.

Hence, to achieve load balance, the (k + 1)th node needs to deduct K
k(k+1)

from at least one

virtual node of each physical node with smaller ID, which is done in line 6 ∼ 14 in Algorithm

4.1. We now show that it is always possible to find one feasible virtual node from R[j] whose
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host range length is at least K
k(k+1)

. By contradiction, we assume that for some si, (i < k+1),

the host range length of all vij, (j < i) is smaller than K
k(k+1)

. Therefore, the sum of host

range length deducted from si by physical nodes set {sl|i < l < k + 1} is at least at least

(i− 1)

(
K

i(i− 1)
− K
k(k + 1)

)
. (4.1)

According to the algorithm, each sl, l > i borrows K
l(l−1) from si. So, we also have,∑k

l=i+1
K

l(l−1) = K
i
− K

k
, which is smaller than formula (4.1),

(i− 1)

(
K

i(i− 1)
− K
k(k + 1)

)
−
(
K
i
− K
k

)
= K ik − i2

ik(k − 1)
> 0. (4.2)

Hence, the assumption does not hold. It is always possible to borrow K
k(k+1)

host range

length from at least one virtual node of each physical node si, (i < k). Therefore, the host

ranges are balanced in N = k + 1 case.

4.2.5 Fault Tolerance

Given the scale of data centers, server failure is not an exception, instead, it occurs frequently.

For the sake of fault tolerance, Proteus can easily extend to embrace redundancies. For

example, if Proteus is set to keep r replications for each piece of (key, data) pair, it just

needs to construct r consistent hashing rings with r different hash functions. Different

hashing rings share the same virtual nodes placement policy. If a key falls in the host range

of any virtual node of si on any hashing ring, si will store one copy of the (key, data) pair.

This strategy does not guarantee that the r replications will be stored in r different servers.

However, the confliction probability will be low. If the hash function distributes the keys

evenly and randomly. The probability that no confliction occurs is:

Pnc =

r−1∏
i=0

n(t)− i
n(t)

. (4.3)

As r is usually a small number (e.g., 2 or 3), and n(t) is much larger (e.g., a few thousand),

Pnc for each data piece should be close to 1.
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4.3 Smooth Provisioning Transition

In this section, we elaborate an efficient solution for smooth provisioning transition, which

is executed before turning on/off any cache server.

Each Memcached server may host tens or hundreds of gigabyte “hot” data [62]. If we

turn off the Memcached servers brutally, we will lose a considerable amount of in-cache

data. As consequences, some users might see delay spikes. We propose Smooth Provisioning

Transition to avoid such spikes. Our high level idea is that when turning off si, si postpones

this operation by TTL seconds to migrate “hot” data to its final successor on demand. Define

Ht as the consistent hash in tth time slot. Let keyd and md
t denote the data key and the

corresponding Memcached server ID for data d in tth time slot. Since (keyd, d) may reside in

both md
t and md

t+1 during the transition stage, web servers need to know which cache server

they should query.

Three objectives must be satisfied. First, the transition must be unblocking. Memcached

is designed as a fast key value store. The performance of the Memcached tier should not be

interfered too much, otherwise the solution is useless. Second, only the “hot” data should

be transferred, otherwise bandwidth and computational resources are wasted. Third, the

transition delay should be small and bounded. The number of Memcached servers is tuned

to catch up with load dynamics. Thus, long transition delay harms the system agility.

To achieve these objectives, we propose to use one Counting Bloom Filter [63, 64] as the

content digest for each cache server. Below, we elaborate the details of maintaining and

configuring the counting Bloom filter.

4.3.1 MemCached Digest

Bloom filter is a data structure that stores a set of elements and supports membership queries.

Counting Bloom filter is a variant of Bloom filter that supports both element insertion and

deletion. In our solution, each Memcached server maintains one counting Bloom filter for
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in-cache keys. We call the counting Bloom filter the digest. Let Fi denote the digest of si.

When keyd and its data are inserted into (or deleted from resp.) si, Fi will also be updated

accordingly. We do not assume any cache replacement policy, as long as Fi is consistent

with si’s content, our solution works.

At the beginning of the transition stage, digests (a few KB each) will be broadcasted to

all web servers. Then, the web server knows what is in-cache and what is not. The algorithm

for data retrieval is described in Algorithm 4.2. Line 2 ∼ 4 checks whether the data is in

smdt+1
. If hit, the algorithm returns the data and does not go any deeper. If miss, line 6

checks whether the data resides in smdt . If yes, it retrieves the data. Since Bloom filter may

have false positives, line 8 further checks if the data is indeed retrieved. If and only if both

attempts miss, will the request reach the database tier. Therefore, the database tier will not

realize transition dynamics is taking place. If the data is retrieved from either smdt or the

database tier, the algorithm also updates smdt+1
.

Algorithm 4.2 Data Retrieval
1: procedure Fetch_Data(keyd)
2: data ← smdt+1

.get(keyd)
3: if NULL 6= data then
4: return data /* found in new server. */
5: else
6: if Fmdt .check(key

d) then /* data is “hot”. */
7: data ← smdt

.get(keyd)
8: end if
9: if NULL = data then /* false positive or “cold” data. */
10: data ← database.get(keyd)
11: end if
12: smdt+1

.put(keyd, data)
13: return data
14: end if
15: end procedure

The algorithm has two important properties. First, for “hot” data d, only the first request

will reach smdt , all subsequent requests will find the data in smdt+1
. Therefore, no bandwidth

and computational resources are wasted. Second, Memcached servers can be safely turned

off after TTL seconds. Because, if one piece of data d is touched in the past TTL second, it

has already been transferred to smdt+1
. If it is not touched in the past TTL second, it is no

longer “hot”, and can be safely discarded.
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Symbol Description
h Number of different hash functions
κ Number of inserted keys
l Number of counters in Bloom filter
b Number of bits in each counter

Table 4.1: Bloom Filter Parameters and Descriptions I

4.3.2 Bloom Filter Configuration

The Bloom filter employs a bit array with h hash functions. All bits in the array are

initialized to 0. When an element ei is inserted, bits at position hash1(ei), hash2(ei), ...,

hashh(ei) will be set to 1. When querying the membership of ei, the Bloom filter checks

the bits at position hash1(ei), hash2(ei), ..., hashh(ei). If all of them are 1, the Bloom filter

answers “yes”. Otherwise, it answers “no”. Bloom filter may have false positives.

Counting Bloom filter is a variant of Bloom filter, which uses counters rather than bits.

When one element is inserted/deleted, the corresponding counters will increase/decrease by

1. The Counting Bloom filter suffers from both false positive and false negative issues. False

negative is caused by either deleting an absent element (due to false positive) or counter

overflow. In our scenario, the first case will never happen. The deletion from digest is

only triggered by the deletion from Memcached. The Memcached deterministically knows

whether an element is in-cache or not. Therefore, deleting absent element from digest

will never happen. However, counter overflow may occur. In order to achieve low false

negative rate, the Bloom filter should curb its counter overflow probability. Otherwise,

if counter overflows, underflow will also be possible, which triggers false negatives. The

counter overflow probability decreases with the increase of the counter size and the number

of counters. However, more and larger counters lead to more memory consumption and

higher overhead when broadcasting digests. We now compute Bloom filter configurations

to achieve minimum memory consumption subject to given false positive and false negative

rate constraints (pp, pn). Table 4.1 shows the descriptions of symbols.

The probability that one counter remains 0 after inserting κ keys into l counters with h
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hash functions is (1− 1/l)κh. Hence, the false positive rate is,

(1− (1− 1/l)κh)κ ≈ (1− e−
κh
l )h. (4.4)

As Memcached is designed as a high performance software, fewer hash functions are preferred.

Therefore, we take h as a parameter.

As we have stated above, the counter overflow (and hence, underflow) is the only reason of

false negatives in our system. The probability that any counter is greater than 2b is [63, 64],

Pr
(
max(counter) ≥ 2b

)
≤ l
(
κh

2b

)
1

l2b
≤ l
(
eκh

2bl

)2b

(4.5)

Let Gp(l) = (1−e−κhl )h and Gn(l, b) = l( eκh
2bl

)2
b represent the false positive and false negative

rate respectively. Then, our objective is:

Minimize lb

s.t. Gp(l) ≤ pp Gn(l, b) ≤ pn (4.6)

where pp and pn are given false positive and false negative probability bounds.

Take partial derivatives of Gn(l, b) with respect to l, and b respectively, we have

∂Gn(l, b)

∂b
= C

(
b

2
ln
eκh

2bl
− ln 2

)
< C

(
b

2
ln
eκh

2bl

)
∂Gn(l, b)

∂l
= Gn(l, b)

1− 2b

l
> −C 1

l
(4.7)

where C = Gn(l, b)2b. When

bl

2
>

(
ln

2bl

eκh

)−1
(4.8)
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Scenario Server Provisioning Workload Distribution
Static All servers are on simple hash with modular
Naive Dynamically tuned simple hash with modular

Consistent Dynamically tuned Consistent hashing
Proteus Dynamically tuned Proteus’s algorithms

Table 4.2: Bloom Filter Parameters and Descriptions II

we have

∂Gn(l, b)

∂b
<
∂Gn(l, b)

∂l
. (4.9)

Please note that 4.8 is almost always true, since 2bl need to be much larger than eκh to

achieve low false positive and false negative rate. Therefore, fixing lb, Gn(l, b) decreases with

the decrease of l. Hence, the optimal point is reached at the minimum possible l, which can

be derived from the inequality Gp(l). Hence, the optimal solution is

l =
−κh

ln
(

1− p
1
h
p

) , b = ln
(
βeW(− ln γ

β )
)

(4.10)

where β = eκh
l
, γ = pn

l
, and the function W(x) is the inverse of xex (Lambert func-

tion [65]).In practical, b is an integer with a very small range. Therefore, we can enumerate

all possible values of b and pick the optimal one. For example, with (κ = 104, h = 4,

pp = pn = 10−4), (l = 4 × 105, b = 3) is more than enough, which takes about 150KB

memory per digest.

4.4 Performance Evaluation

In the evaluation part, we compare four different scenarios: Static, Naive, Consistent, and

Proteus. The detailed description is shown in Table 4.2.

In this chapter, we attack the performance penalty when applying dynamic cluster pro-

visioning. For the sake of fairness, we use the same cluster provision feedback loop. Due the
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Figure 4.3: WikiPedia Workload
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Figure 4.4: Load Balancing

limit of space, the details of the feedback loop is omitted here. We run the feedback control

algorithm along with Proteus with the delay bound set to 0.5 second. The feedback loop

reference point is set to 0.4 second to tolerate overshot. The loop updates its status every

30 minutes. After this experiment, we know the number of running cache servers assigned

to each 30-minute time slot, which is shown as the curve with small circles in Fig. 4.3. Here

we use the number of requests as the workload based on which we do dynamic provision-

ing. It is true that the number of data being visited should be the real workload, because

the bottleneck resource in Memcached cluster is the main memory. However, although the

number of requests is not strictly linear proportional with the number of data being visited,

it is a reasonable estimation and it is also easy to get. Please also note that our major focus

is not designing optimal provisioning algorithm but the load balancing and smoothness of

transition during provisioning dynamics. Then we apply the same cluster provisioning re-

sult, Wikipedia data and Wikipedia workload to all 4 different scenarios. In this way, the

only differences of 4 scenarios are the load balancing algorithm and their behavior in face of

provisioning transition.

4.4.1 Load Balancing under Dynamics

We first evaluate how our load balancing algorithm works with real Wikipedia workload [66].

The trace contains timestamp and requested URL for every single user request. We first do

some preliminaries to distill the requests that hit English Wikipedia. Then we sort all the
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request by timestamp, and count the number of requests inside every 1-hour time window.

The result workload is depicted as the curve with dots in Fig. 4.3. Due to the lack of

Wikipedia image data, our system cannot serve the real workload, and hence the response

time for real workload is not measured. However, given that we are evaluating whether the

load is balanced or not under dynamics in Memcached tier, we do not actually need the real

image data. All we need is to measure whether the number of requests handled by each

Memcached server is roughly the same. Again, as we stated before, the chapter does not

focus on how to build an efficient and accurate feedback loop for server provisioning. Here,

we use the provisioning result as shown as the curve with circles in Fig. 4.3.

In Fig. 4.4, we study the performance of load balancing of the algorithms by depicting

the ratio of min{Lti|i < n(t)} over max{Lti|i < n(t)} for all t, where Lti is the workload on

Memcached server i in tth time slot. The curve with dimonds shows the load distribution by

using Proteus, while the curves with small circles and triangles show the load distribution by

using naive and static solutions (hash and modular) respectively. Clearly, Proteus achieves

as good performance as the static and naive solutions. The curve with squares depicts the

load distribution using consistent hashing with O(log n) randomly placed virtual nodes. The

result is much worse than Proteus in face of real Wikipedia workload. Then we increase the

number of virtual nodes for Consistent to n2

2
, and the result is shown by the curve with stars.

It is better than the O(log n) case but is still much worse than Proteus.

4.4.2 False Positive and False Negative

The counting Bloom filter is the key feature used as a digest for the Memcached data in

the smooth transition phase. Both Memcached server and Bloom filter should be configured

carefully, so that the cache achieves high hitting rate and the Bloom filter has low false

positive and false negative rate. We apply the real Wikipedia trace [66] to evaluate Bloom

filter settings. Fig. 4.5 shows how does the Memcached cache size affect hit ratio. When

each Memcached server uses 1GB memory (with 4KB data per page), the hit ratio reaches

above 80% (i.e., roughly 2,560,000 pages in cache). With this setting, we proceed to tune
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the Bloom filter. As we stated before, using more hash functions in the Bloom filter induces

higher overhead. Therefore, we choose to use only 4 non-encryption hash functions and tune

the Bloom filter size instead. Fig. 4.6 and Fig. 4.7 present the relationship between the

Bloom filter size and the false positive/negative ratio. As shown, with 512KB memory, the

Bloom filter achieves negligible false positive and false negative rate. So, we set the Bloom

filter to use 512KB memory when doing other evaluations.

4.4.3 Response Time

In this section, we will evaluate the service response time by applying synthetic workload

to the server cluster. The response time is measured on the RBE side, which records the

time duration from submitting one HTTP request to receiving the corresponding response.

Each RBE server simulates hundreds of independent users with think time 0.5 second. As we

have 10 RBE servers, altogether, there will be approximately a few thousand user requests

per second. Each user has an independent page set of 50 pages. Every time generating one

request, the user thread will choose one page from her page set, and contact the web server

to perform server side logic. The user requests will be uniformly randomly directed to all

web servers.

Fig. 4.8 shows the experiment result. The recorded response time data are grouped

into 480 slots according to physical time. We look at the response time locating at 99.9%

percentile. The delay is plotted logarithmically. The curve with squares shows the response
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Figure 4.9: Power Consumption

time for the Naive solution where the requests are directed by using simple hash and modular

operation. Obviously, there is a huge response time spike when the number of running

Memcached servers changes. As we explained before, it is because, when the number of

running Memcached server changes, the mapping between data key and Memcached server

ID changes significantly. A large number of requests will see misses in cache tier and will

reach the database tier, hence induce a spike in response time. The curve with triangles

depicts the response time when using consistent hashing with exactly n2

2
virtual nodes.

The virtual nodes are placed randomly using Java Random class. All web servers share

the same random seed (0) to generate virtual node positions. Therefore, the view of all

web servers are consistent. The consistent hashing solution shows much better performance

during dynamics. But there are still considerable performance degradation during transition.

The curve with circles demonstrates the response time when using Proteus. The delay spike

is clearly removed, and users see almost no difference during the transition stages. Proteus’s

performance match what the static solution achieves as shown by the curve with diamonds.
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4.4.4 Power Consumption

In previous sections, we have shown that, by using Proteus, the performance degradation

induced by dynamic server provisioning is almost eliminated. Now, we compare the power

consumption of the four different scenarios. We measure the real power reading by using the

Avocent 3000 Power Distribution Unit. The data is sampled every 15 seconds. We take the

entire cluster (web servers, cache server, and database servers) into consideration to see total

power saving, rather than considering only the Memcached tier. Fig. 4.9 shows the power

consumption over time. The Static scenario consumes roughly the same level of power during

the whole experiment. The power consumption actually decreases slightly as the workload

decreases. However, when compared with the power saving induced by server provisioning

(as shown in the other three scenarios), the difference is almost unnoticeable. The curve with

small dots shows the power draw of Proteus. It is clear that, Proteus not only eliminates

performance degradations, but also saves the same amount of energy compared to Naive and

Consistent cases. The total energy consumption during the experiments is shown in Fig.

4.10. The final result is that, with Proteus, we are able to save roughly 10% energy over the

entire cluster, and 23% over the cache cluster without delay penalty.
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Chapter 5: Manager For Ordered Partitioned

Storage Systems

The popularity of mobile devices is growing at an unprecedented rate. According to the

report published by the United Nations International Telecommunication Union [67], mo-

bile penetration rates are now about equal to the global population. Thanks to positioning

modules in mobile devices, a great amount of information generated today is tagged with

geographic locations. For example, users can share tweets and Instagram images with loca-

tion information with family and friends; taxi companies collect pick-up and drop-off events

data with geographic location information as well. The abundances of geo-tagged data give

birth to a whole range of applications that issue spatial-temporal queries. These queries,

which we call geometry queries, request information about moving objects within a user-

defined geometric area. Despite the urgent need, no existing systems manage to meet both

the scalability and efficiency requirements for spatial-temporal data. For example, geospatial

databases [68] are optimized for spatial data, but usually fall short on scalability on handling

big-data applications, whereas distributed data stores [69–72] scale well but quite often yield

inefficiencies when dealing with geometry queries.

Distributed data stores, such as HBase [69], Cassandra [70], and DynamoDB [71], have

been widely used for big-data storage applications. Their key distribution algorithms can

be categorized into two classes: random partitioning and ordered partitioning. The former

randomly distributes keys into servers, while the latter divides the key space into subregions

such that all keys in the same subregion are hosted by the same server. Compared to random
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partitioning, ordered partitioning considerably benefits range scans, as querying all servers

in the cluster can then be avoided. Therefore, existing solutions for spatial-temporal big-

data applications, such as MD-HBase [73], and ST-HBase [74], build index layers above the

ordered-partitioned HBase to translate a geometry query into a set of range scans. Then, they

submit those range scans to HBase, and aggregate the returned data from HBase to answer

the query source, inheriting scalability properties from HBase. Although these solutions

fulfill the semantic level requirement of spatial-temporal applications, moving hotspots and

large geometry queries still cannot be handled efficiently.

Spatial-temporal applications naturally generate moving workload hotspots. Imagine a

million people simultaneously whistle taxis after the New Year’s Eve at NYC’s Times Square.

Or during every morning rush hour, people driving into the city central business district

search for the least congested routes. Ordered partitioning data stores usually mitigate

hotspots by splitting an overloaded region into multiple daughter regions, which can then

be moved into different servers. Nevertheless, as region data may still stay in the parent

region’s server, the split operation prevents daughter regions from enjoying data locality

benefits. Take HBase as an example. Region servers in HBase usually co-locate with HDFS

datanodes. Under this deployment, one replica of all region data writes to the region server’s

storage disks, which allows get/scan requests to be served using local data. Other replicas

spread randomly in the entire cluster. Splitting and moving a region into other servers

disable data locality benefits, forcing daughter regions to fetch data from remote servers.

Therefore, moving hotspots often lead to performance degradation.

In this chapter, we present Pyro, a holistic spatial-temporal big-data storage system

tailored for high resolution geometry queries and moving hotspots. Pyro consists of PyroDB

and PyroDFS, corresponding to HBase and HDFS respectively. This chapter makes three

major contributions. First, PyroDB internally implements Moore encoding to efficiently

translate geometry queries into range scans. Second, PyroDB aggregately minimizes IO

latencies of the multiple range scans generated by the same geometry query using dynamic

programming. Third, PyroDFS employs a novel DFS block grouping algorithm that allows
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Figure 5.1: Pyro Architecture

Pyro to preserve data locality benefits when PyroDB splits regions during hotspots dynamics.

Pyro is implemented by adding 891 lines of code into Hadoop-2.4.1, and another 7344 lines of

code into HBase-0.99. Experiments using NYC taxi dataset [75, 76] show that Pyro reduces

the response time by 60X on 1km×1km rectangle geometries. Pyro further achieves 10X

throughput improvement on 100m× 100m rectangle geometries.

5.1 Design Overview

Pyro consists of PyroDB and PyroDFS. The design of PyroDB and PyroDFS are based on

HBase and HDFS respectively. Figure 5.1 shows the high-level architecture, where shaded

modules are introduced by Pyro.
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5.1.1 Background

HDFS [14] is an open source software based on GFS [53]. Due to its prominent fame and

universal deployment, we skip the background description.

HBase is a distributed, non-relational database running on top of HDFS. Following the

design of BigTable [77], HBase organizes data into a 3D table of rows, columns, and cell

versions. Each column belongs to a column family. HBase stores the 3D table as a key-value

store. The key consists of row key, column family key, column qualifier, and timestamp. The

value contains the data stored in the cell.

In HBase, the entire key space is partitioned into regions, with each region served by

an HRegion instance. HRegion manages each column family using a Store. Each Store

contains one MemStore and multiple StoreFiles. In the write path, the data first stays in the

MemStore. When the MemStore reaches some pre-defined flush threshold, all key-value pairs

in the MemStore are sorted and flushed into a new StoreFile in HDFS. Each StoreFile wraps

an HFile, consisting of a series of data blocks followed by meta blocks. In this chapter, we

use meta blocks to refer to all blocks that store meta, data index, or meta index. In the read

path, a request first determines the right HRegions to query, then it searches all StoreFiles

in those regions to find target key-value pairs.

As the number of StoreFiles increases, HBase merges them into larger StoreFiles to reduce

the overhead of read operations. When the size of a store increases beyond a threshold,

its HRegion splits into two daughter regions, with each region handles roughly half of its

parent’s key-space. The two daughter regions initially create reference files pointing back to

StoreFiles of their past parent region. This design postpones the overhead of copying region

data to daughter region servers at the cost of losing data locality benefits. The next major

compaction materializes the reference files into real StoreFiles.

HBase has become a famous big-data storage system for structured data [78], includ-

ing data for location-based services. Many location-based services share the same request

primitive that queries information about moving objects within a given geometry, which
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we call geometry queries. Unfortunately, HBase suffers inefficiencies when serving geome-

try queries. All cells in HBase are ordered based on their keys in a one-dimensional space.

Casting a geometry into that one-dimensional space inevitably results in multiple disjoint

range scans. HBase handles those range scans individually, preventing queries to be aggre-

gately optimized. Moreover, location-based workloads naturally create moving hotspots in

the backend, requiring responsive resource elasticity in every HRegion. HBase handles work-

load hotspots by efficiently splitting regions, which sacrifices data locality benefits for newly

created daughter regions. Without data locality, requests will suffer increased response time

after splits. Above observations motivate us to design Pyro, a data store specifically tailored

for geometry queries.

5.1.2 Assumptions

This chapter focuses on spatial-temporal applications, such that each data entry associates

with a geo-tag and a timestamp. Data entries are ordered-partitioned into a cluster of servers

based on their geographic location tags. The amount of data and requests falling in a certain

server varies over time. Based on our observations, we make the assumption that, the request

ratio of peak time over nadir time is within four times.

5.1.3 Architecture

Figure 5.1 shows the high-level architecture of Pyro. Pyro internally uses Moore encoding

algorithm [79–82] to cast two-dimensional data into one-dimensional Moore index, which is

enclosed as part of the row key. For geometry queries, the Geometry Translator module

first applies the same Moore encoding algorithm to calculate scan ranges. Then, the Multi-

Scan Optimizer computes the optimal read strategy such that the IO latency is minimized.

Sections 5.2.1 and 5.2.2 present more details.

Pyro relies on the group-based replica placement policy in PyroDFS to guarantee data

locality during region splits. To achieve that, each StoreFile is divided into multiple shards
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based on user-defined pre-split keys. Then, Pyro organizes DFS replicas of all shards into

elaborately designed groups. Replicas in the same group are stored in the same physical

server. After one or multiple splits, each daughter region is guaranteed to find at least one

replica of all its region data within one group. To preserve data locality, Pyro just need

to move the daughter region into the physical server hosting that group. The details of

group-based replica placement are described in section 5.2.3.

Pyro makes three major contributions:

• Geometry Translation: Apart from previous solutions that build an index layer above

HBase, Pyro internally implements efficient geometry translation algorithms based on

Moore encoding. This design allows Pyro to optimize a geometry query by globally

processing all its range scans together.

• Multi-Scan Optimization: After geometry translation, the multi-scan optimizer ag-

gregately processes the generated range scans to minimize the response time of the

geometry query. By using storage media performance profiles as inputs, the multi-scan

optimizer employs a dynamic programming algorithm to calculate the optimal HBase

blocks to fetch.

• Block Grouping: To deal with moving hotspots, Pyro relies on a novel data block

grouping algorithm in the DFS layer to split a region quickly and efficiently, while

preserving data locality benefits. Moreover, by treating meta block and data block

differently, block grouping helps to improve Pyro’s fault tolerance.

5.2 System Design

We first present the geometry translation and multi-scan optimization in Sections 5.2.1 and

5.2.2 respectively. These two solutions help to efficiently process geometry queries. Then,

Section 5.2.3 describes how Pyro handles moving hotspots with the block grouping algorithm.
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Figure 5.2: Spatial Encoding Algorithms of Resolution 2

5.2.1 Geometry Translation

In order to store spatial-temporal data, Pyro needs to cast 2D coordinates (x, y) into the

one-dimensional key space. A straightforward solution is to use a fixed number of bits to

represent x, and y, and append x after y to form the spatial key. This leads to the Strip-

encoding as shown in Figure 5.2 (a). Another solution is to use ZOrder-encoding [73] that

interleaves the bits of x and y. An example is illustrated in Figure 5.2 (b). These encoding

algorithms divide the 2D space into m×m tiles, and index each tile with a unique ID. The

tile is the spatial encoding unit as well as the unit of range scans. We define the resolution

as log2(m), which is the minimum number of bits required to encode the largest value of x

and y.

In most cases, encoding algorithms inevitably break a two-dimensional geometry into

multiple key ranges. Therefore, each geometry query may result in multiple range scans.

Each range scan requires a few indexing, caching, and disk operations to process. Therefore,

it is desired to keep the number of range scans low. We carry out experiments to evaluate

the number of range scans that a geometry query may generate. The resolution ranges from

25 to 18 over the same set of randomly generated disk-shaped geometry queries with 100m

radius in a 40, 000, 000m× 40, 000, 000m area. The corresponding tile size ranges from 1.2m

to 153m. Figure 5.3 shows the number of range scans generated by a single geometry query

under different resolutions. It turns out that Strip-encoding and ZOrder-encoding translate

a single disk geometry to a few tens of range scans when the tile size falls under 20m.

To reduce the number of range scans, we developed the Geometry Translator module. The
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Figure 5.3: Translate Geometry to Key Ranges

module employs the Moore-Encoding algorithm which is inspired by the Moore curve from

the space-filling curve family [79–82]. A simple example is shown in Figure 5.2 (c). A Moore

curve can be developed up to any resolution. As shown in Figure 5.4 (a), resolutions 1 and

2 of Moore encoding are special cases. The curve of resolution 1 is called a unit component.

In order to increase the resolution, the Moore curve expands each unit component according

to a fixed strategy as shown in Figure 5.5. Results plotted in Figure 5.3 show that Moore-

Encoding helps to reduce the number of range scans by 40% when compared to ZOrder-

Encoding. Moore curves may generalize to higher dimensions [83], Figure 5.4 (b) depicts the

simplest 3D Moore curve of resolution 1. Implementations of the Moore encoding algorithm

are presented in Section 5.3.

5.2.2 Multi-Scan Optimization

The purpose of multi-scan optimization is to reduce read amplification. Below, we first

describe the phenomenon of read amplification, and then we present our solution to this

problem.

5.2.2.1 Read Amplification

When translating geometry queries, range scans are generated respecting tile boundaries at

the given resolution. But, tile boundaries may not align with the geometry query boundary.
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In order to cover the entire geometry, data from a larger area is fetched. We call this

phenomenon Read Area Amplification. Figure 5.3 plots the curve of read area amplification

ratio, which is quantitatively defined as the total area of fetched tiles over the area of the

geometry query. The curves show that, solely tuning the resolution cannot achieve both a

small number of range scans and a low ratio of read area amplification. For example, as

shown in Figure 5.3, restricting each geometry query to generate less than 10 scans forces

Pyro to fetch data from a 22% larger area. On the other hand, limiting the area amplification

ratio to less than 5% leads to more than 30 range scans per geometry query. The problem

gets worse for larger geometries.

Moreover, encoding tiles are stored into fixed-size DB blocks on disks, whereas DB blocks

ignore the boundaries of encoding tiles. An entire DB block has to be loaded even when

there is only one requested key-value pair fallen in that DB Block, which we call the Read

Volume-Amplification. Please notice that, DB blocks are different from DFS blocks. DB

blocks are the minimum read/write units in PyroDB (similar to HBase). One DB block is

usually only a few tens of KiloBytes. In contrast, a DFS block is the minimum replication

60



unit in PyroDFS (similar to HDFS). DFS blocks are orders of magnitudes larger than DB

blocks. For example, the default PyroDFS block size is 64MB, which is 1024 times larger

than the default PyroDB block size.

Besides read area and volume amplifications, using a third-party indexing layer may also

force the data store to unnecessarily visit a DB block multiple times, especially for high

resolution queries. We call it the Redundant Read Phenomenon. Even though a DB block

can be cached to avoid disk operations, the data store still needs to traverse DB block’s data

structure to fetch the requested key-value pairs. Therefore, Moore encoding algorithm alone

is not enough to guarantee the efficiency.

For ease of presentation, we use the term Read Amplification to summarize the read area

amplification, read volume amplification, and redundant read phenomena. Read amplifica-

tion may force a geometry query to load a significant amount of unnecessary data as well as

visiting the same DB block multiple times, leading to a much longer response time. In the

next section, we present techniques to minimize the penalty of read amplification.

5.2.2.2 An Adaptive Aggregation Algorithm

According to Figure 5.3, increasing the resolution helps to alleviate read area amplification.

Using smaller DB block sizes reduces read volume amplification. However, these changes

require Pyro to fetch significantly more DB blocks, pushing disk IO to become a throughput

bottleneck. In order to minimize the response time, Pyro optimizes all range scans of the

same geometry query aggregately, such that multiple DB blocks can be fetched within fewer

disk read operations. There are several reasons for considering IO optimizations in the DB

layer rather than relying on asynchronous IO scheduling in the DFS layer or the OS layer.

First, issuing a DFS read request is not free. As a geometry query may potentially translate

into a large number of read operations, maintaining those reads alone elicits extra overhead

in all three layers. Second, performance of existing IO optimizations in lower layers depend

on the timing and ordering of request submissions. Enforcing the perfect request submission

ordering in the Geometry Translator is not any cheaper than directly performing the IO
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Figure 5.6: Storage Media Profile

optimization in PyroDB. Third, as PyroDB servers have the global knowledge about all p-

reads from the same geometry request, it is the natural place to implement IO optimizations.

Pyro needs to elaborately tune the trade-off between unnecessarily reading more DB

blocks and issuing more disk seeks. Figure 5.6 shows the profiling results of Hadoop-2.4.1

position read (p-read) performance on a 7,200RPM Seagate hard drive and a Samsung

SM0256F Solid State Drive respectively. In the experiment, we load a 20GB file into the

HDFS, and measure the latency of p-read operations of varies sizes at random offsets. The

disk seek delay dominates the p-read response time when reading less than 1MB data. When

the size of p-read surpasses 1MB, the data transmission delay starts to make a difference.

A naïve solution calculates the disk seek delay and the per-block transmission delay, and

directly compares whether reading the next unnecessary block helps to reduce response time.

However, the system may run on different data storage media, including hard disk drives,

solid state drives, or even remote cloud drives. There is no guarantee that all media share

the same performance profile. Such explicit seek delay and transmission delay may not even

exist.

In order to allow the optimized range scan aggregation to work for a broader scenarios,

we propose the Adaptive Aggregation Algorithm (A3). A3 uses the p-read profiling result to

estimate delay of p-read operations. The profiling result contains the p-read response time

of various sizes. A3 applies interpolation to fill in gaps between profiled p-read sizes. This
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design allows the A3 algorithm to work for various storage media.

Before diving into algorithm details, we present the abstraction of the block aggregation

problem. Suppose a geometry query hits shaded tiles (3, 4, 12, 15) in Fig 5.2 (c). For the

sake of simplicity, assume that DB blocks align perfectly with encoding tiles, one block per

tile. Figure 5.7 shows the block layout in the StoreFile. A3 needs to determine what block

ranges to fetch in order to cover all requested blocks, such that the response time of the

geometry query is minimized. In this example, let us further assume each block is 64KB.

According to the profiling result shown in Figure 5.6, reading one block takes about 9 ms,

four blocks takes 14 ms, while reading thirteen blocks takes 20 ms. Therefore, the optimal

solution reads blocks 3-15 using one p-read operation.

A3 works as follows. Suppose a geometry query translates to a set Q of range scans.

Block indices help to convert those range scans into another set B′ of blocks, sorted in the

ascending order of their offsets. By removing all cached blocks from B′, we get set B of n

requested but not cached blocks. Define S[i] as the estimated minimum delay of loading the

first i blocks. Then, the problem is to solve S[n]. For any optimal solution, there must exist

a k, such that blocks k to n are fetched using a single p-read operation. In other words,

S[n] = S[k − 1]+Estimate(k, n), where Estimate(k, n) estimates the delay of fetching

blocks from k to n together based on the profiling result. Therefore, starting from S[0],

A3 calculates S[i] as min{S[k − 1]+Estimate(k, i)|1 ≤ k ≤ i}. The pseudo code of A3 is

presented in Algorithm 5.1.

In Algorithm A3, the nested loop between line 3 − 7 leads to O(|B|2) computational

complexity. If B is large, the quadratic computational complexity explosion can be easily

mitigated by setting an upper bound on the position read size. For example, for the hard

drive profiled in Figure 5.6, fetching 107 bytes result in about the same delay as fetching
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Algorithm 5.1 A3 Algorithm
Input: blocks to fetch sorted by offset B
Output: block ranges to fetch R
1: S← an array of size |B|; initialize to ∞
2: P← an array of size |B|; S[0]← 0
3: for i← 1 ∼ |B| do
4: for j ← 0 ∼ i− 1 do
5: k = i− j; s←Estimate(k, i) +S[k − 1]
6: if s < S[i] then S[i]← s; P[i]← k
7: end if
8: end for
9: end for
10: i← |B|; R← ∅
11: while i > 0 do
12: R← R ∪ (P[i], i); i← P[i]− 1
13: end while
14: return R
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5 × 106 bytes twice. Therefore, there is no need to issue position read larger than 5 × 106

bytes. If block size is set to 64KB, the variable j on the 5th line in Algorithm 5.1 only needs

to loop from 0 to 76, resulting in linear computational complexity.

5.2.3 Block Grouping

Moore encoding concentrates range scans of one geometry query into fewer servers. This

may lead to performance degradation when spatial-temporal hotspots exist. To handle mov-

ing hotspots, a region needs to gracefully split itself to multiple daughters to make use of

resources on multiple physical servers. Later, those daughter regions may merge back after

their workloads shrink.

In HBase, the split operation creates two daughter regions on the same physical server,

each owning reference files pointing back to StoreFiles of their parent region. Daughter

regions are later moved onto other servers during the next cluster balance operation. Using

reference files on one hand helps to keep the split operation light, but on the other hand
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prevents daughter regions from taking advantage of data locality benefits. Because, after

leaving the parent region’s server, the two daughter regions can no longer find their region

data in their local disks until daughters’ reference files are materialized. HBase materializes

reference files during the next major compaction, which executes at a very low frequency

(e.g., once a day). Forcing earlier materialization does not solve the problem. It could

introduce even more overhead to the already-overwhelmed region, as materialization itself is

a heavy operation.

An ideal solution should keep both split and materialization operations light, allowing

the system to react quickly when a hotspot emerges. Below, we present our design to achieve

such ideal behaviors.

5.2.3.1 Group Based Replica Placement

Same as HBase, Pyro suggests users to perform pre-split based on expected data distribu-

tion to gain initial load balancing among region servers. Pyro relies on the expected data

distribution to create more splitting keys for potential future splits. Split keys divide Store-

Files into shards, and help to organize DFS block replicas into replica groups. PyroDFS

guarantees that DFS blocks respect predefined split keys. To achieve that, PyroDFS stops

writing into the current DFS block and start a new one as soon as it reaches a predefined

split key. This design relies on the assumption that, although moving hotspots may emerge

in spatial-temporal applications, the long-round popularity of different geographic regions

changes slowly. Results presented in evaluation Section 5.4.1 confirm the validity of this

assumption.

Assume blocks are replicated r times and there are 2r−1−1 predefined split keys within a

given region. Split keys divide the region key space into 2r−1 shards, resulting in r ·2r−1 shard

replicas. Group 0 contains one replica from all shards. Other groups can be constructed

following a recursive procedure:

1 Let Ψ be the set of all shards. If Ψ contains only one shard, stop. Otherwise, use the

65



median split key κ in Ψ to divide all shards into two sets A and B. Keys of all shards

in A are larger than κ, while keys of all shards in B are smaller than κ. Perform step

2, and then perform step 3.

2 Create a new group to contain one replica from all shards in set A. Then, let Ψ← A,

and recursively apply step 1.

3 Let Ψ← B, and then recursively apply step 1.

Replicas in the same group are stored in the same physical server, whereas different groups

of the same region are placed into different physical servers. According to the construction

procedure, group 1 starts from the median split key, covering the bottom half of the key space

(i.e., 2r−2 shards). Group 1 allows half of the regions workload to be moved from group 0’s

server to group 1’s server without sacrificing data locality. Figure 5.8 demonstrates an

example of r = 3. PyroDFS is compatible with normal HDFS workload whose replicas can

be simply set as no group specified. Section 5.2.3.2 explains why group 1 and 2 are placed

at the end rather than in the beginning of the StoreFile.

Figure ?? also shows how Pyro makes use of DFS block replicas. The shaded area

indicates which replica serves workloads falling in that key range. In the beginning, there

is only one region server. Replicas in group 0 take care of all workloads. As all replicas in

group 0 are stored locally in the region’s physical server, data locality is preserved. After

one split, the daughter region with smaller keys stays in the same physical server, hence still

enjoys data locality. Another daughter region moves to the physical server that hosts replica

group 1, which is also able to serve this daughter region using local data. Subsequent splits

are carried out under the same fashion.

To distinguish from the original split operation in HBase, we call the above actions the

soft split operation. Soft splits are designed to mitigate moving hotspots. Daughter regions

created by soft splits eventually merge back to form their parent regions. The efficiency of

the merge operation is not a concern as it can be performed after the hotspot moves out

of that region. Please notice that the original split operation, which we call the hard split,
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is still needed when a region grows too large to fit in one physical server. As this chapter

focuses on geometry query and moving hotspots, all splits in the following sections refer to

soft splits.

5.2.3.2 Fault Tolerance

As a persistent data store, Pyro needs to preserve high data availability. The block grouping

algorithm presented in the previous section affects DFS replica placement schemes, which

in turn affects Pyro’s fault tolerance properties. In this section, we show that the block

grouping algorithm allows Pyro to achieve higher data availability compared to the default

random replica placement policy in HDFS.

Pyro inherits the same HFile format [69] from HBase to store key-value pairs. According

to HFile Format, meta blocks are stored at the end of the file. Losing any DFS block of

the meta may leave the entire HFile unavailable, whereas the availability of key-value DFS

blocks are not affected by the availability of other key-value DFS blocks. This property

makes the last shard of the file more important than all preceding shards. Therefore, we

choose two different objectives for their fault tolerance design.

• Meta shard: Minimize the probability of losing any DFS block.

• Key-value shard: Minimize the expectation of the number of unavailable DFS blocks.

Assume there are n servers in the cluster, and f nodes are unavailable during a cluster

failure event. For a given shard, assume it contains b blocks, and replicates r times, where g

out of r replications are grouped. PyroDFS randomly distributes the grouped g replications

into g physical servers. The remaining (r − g)b block replicas are randomly and exclusively

distributed in the cluster. If the meta fails, it must be the case that the g servers hosting the

g grouped replications all fail (i.e.,
(
f
g

)
/
(
n
g

)
), and at least one block in each r− g ungrouped

replications fails. Hence, the probability of meta failure is
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Figure 5.9 plots how the number of grouped replications g affects the failure probability.

In this experiment, n and r are set to 10,000, and 3 respectively. According to [84–86], after

some power outage, 0.5%-1% of the nodes fail to reboot. Hence, we vary f to be 50, and

100. The results show that the meta failure probability decreases when g increases. Pyro

sets g to the maximum value for the meta shard, therefore achieves higher fault tolerance

compared to default HDFS where g equals 1.

For key-value shards, transient and small-scale failures are tolerable, as they do not affect

most queries. It is more important to minimize the scale of the failure (i.e., the number of

unavailable DB blocks). The expected failure scale is,

E [failure scale|failure occurs] =
b
(
f−g
r−g

)(
n−g
r−g

) . (5.2)

The failure scale decreases with the increase of grouped replication number g. Therefore,

placing replica groups 1 and 3 at the end of the StoreFile minimizes both the meta shard

failure probability and the failure scale of key-value shards.
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Figure 5.10: Geometry Translation Delay

5.3 Implementation

PyroDFS and PyroDB are implemented based on HDFS-2.4.1 and HBase-0.99 respectively.

5.3.1 Moore Encoding

As previously shown in Figure 5.4 and Figure 5.5, each unit of Moore curve can be uniquely

defined by the combination of its orientation (north, east, south, and west) and its rotation

(clockwise, counter-clockwise). Encode the orientation with 2 bits, d1 and d0, such that 00

denotes north, 01 east, 10 south, and 11 west. With more careful observations, it can be seen

that the rotation of a Moore curve component unit completely depends on its orientation.

Starting from the direction shown in Figure 5.4 (a), the encodings in east and west oriented

units rotate clockwise, and others rotate counter-clockwise.

With a given integer coordinate (x, y), let xk and yk denote the kth lowest bits of x and y

in the binary presentation. Let dk,1dk,0 be the orientation of the component unit defined by

the highest r − k − 1 bits in x, and y. Then, the orientation dk−1,1dk−1,0 can be determined

based on dk,1, dk,0, xk, and yk [79–82].

dk−1,0 = d̄k,1d̄k,0ȳk | d̄k,1dk,0xk

| dk,1d̄k,0yk | dk,1dk,0x̄k (5.3)

= d̄k,0 (dk,1 ⊕ ȳk) | dk,0 (dk,1 ⊕ x) (5.4)

dk−1,1 = d̄k,1d̄k,0xkȳk | d̄k,1dk,0x̄kyk

| dk,1d̄k,0x̄kyk | dk,1dk,0xkȳk (5.5)

= dk,1 (x̄k ⊕ yk) | (xk ⊕ yk) (d0 ⊕ xk) (5.6)

The formula considers all situations where dk−1,0 and dk−1,1 should equal to 1, and uses a
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logic or to connect them all. For example, the term d̄k,1d̄k,0ȳk states that when the previous

orientation is north (d̄k,1d̄k,0), the current unit faces east or west (dk−1,0 = 1) if and only if

yk = 0. The same technique can be applied to determine the final Moore encoding index ω.

ω2k+1 = d̄k,1d̄k,0x̄k | d̄k,1dk,0ȳk

| dk,1d̄k,0xk | dk,1dk,0yk (5.7)

= d̄k,0 (dk,1 ⊕ x̄k) + dk,0 (dk,1 ⊕ ȳk) (5.8)

ω2k = x̄k ⊕ yk (5.9)

Then, each geometry can be translated into range scans using a quad tree. Each level

in the quad tree corresponds to a resolution level. Each node in the tree represents a tile,

which is further divided into four smaller tiles in the next level.

The translating algorithm only traverses deeper if the geometry query partially overlaps

with that area. If an area is fully covered by the geometry, there is no need to go further

downwards. Figure 5.10 shows the delay of translating a 5km× 5km square geometry. The

delay stays below 11ms even using the finest resolution.

5.3.2 Multi-Scan Optimization

After converting a geometry query into range scans, the multi-scan optimizer needs two more

pieces of information to minimize the response time: 1) storage media performance profiles,

and 2) the mapping from key ranges to DB blocks. For the former one, an administrator

may specify an HDFS path under the property name hbase.profile.storage in the hbase-

site.xml configuration file. This path should point to a file containing multiple lines of

(p-read size, p-read delay) items, indicating the storage media performance profile result.

Depending on storage media types in physical servers, the administrator may set the property

hbase.profile.storage to different values for different HRegions. The file will be loaded during

HRegion initialization phase. For the latter one, HBase internally keeps indices of DB blocks.

Therefore, Pyro can easily translate a range scan into a serious of block starting offsets and
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Figure 5.11: Manhattan Taxi Pick-up/Drop-off Hotspots
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block sizes. Then, those information will be provided as inputs for the A3 algorithm.

5.3.2.1 Block Grouping

Distributed file systems usually keep replica placement policies as an internal logic, main-

taining a clean separation between the DFS layer and higher layer applications. This design,

however, prevents Pyro from exploring opportunities to make use of DFS data replications.

Pyro carefully breaks this barrier by exposing a minimum amount of control knobs to higher

layer applications. Through these APIs, applications may provide replica group informa-

most significant 32 bits 

of Linux timestamps

32 bits of 

encoded location

Row

Key

Figure 5.13: Row Key
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tion when writing data into DFS. It is important to choose the right set of APIs such that

PyroDFS applications do not need to reveal too much about details in the DFS layer. At

the same time, applications are able to fully make use of data locality benefits of all block

replicas.

In our design, PyroDFS exposes two families of APIs which help to alter its internal

behavior.

• Sealing a DFS Block: PyroDB may force PyroDFS to seal the current DFS block and

start writing into a new DFS block, even if the current DFS block has not reached

its size limit yet. This API is useful because DFS block boundaries may not respect

splitting keys, especially when there are many StoreFiles in a region and the sizes of

StoreFiles are about the same order of magnitude of the DFS block size. The seal API

family will help StoreFiles to achieve full data locality after splits.

• Grouping Replicas: PyroDB may specify replica namespace and replica groups when

calling the write API in PyroDFS. This usually happens during MemStore flushes and

StoreFile compactions. Under the same namespace, replicas in the same replica group

will be placed into the same physical server, and replicas in different groups will be

placed into different physical servers. If there are not enough physical servers or disk

spaces, PyroDFS works in a best effort manner. The mapping from the replica group to

the physical server and corresponding failure recovery is handled within PyroDFS. Py-

roDB may retrieve a physical server information of a given replica group using grouping

APIs, which allows PyroDB to make use of data locality benefits.

5.4 Evaluation

Evaluations use NYC taxi dataset [75, 76] that contains GPS pickup/dropoff location infor-

mation of 697,622,444 trips from 2010 to 2013. The experiments run on a cluster of 80 Dell

servers (40 Dell PowerEdge R620 servers and 40 Dell PowerEdge R610 servers) [35, 87–94].
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The HDFS cluster consists of 1 master node and 30 datanodes. The HBase server contains

1 master node, 3 zookeeper [95] nodes, and 30 region servers. Region servers are co-located

with data nodes. Remaining nodes follow a central controller to generate geometry queries

and log response times, which we call Remote User Emulators (RUE).

We first briefly analyze the NYC taxi dataset. Then, Sections 5.4.2, 5.4.3, and 5.4.4

evaluate the performance improvements contributed by Geometry Translator, Multi-Scan

Optimizer, and Group-based Replica Placement respectively. Finally, in Section 5.4.5, we

measure the overall response time and throughput of Pyro.

5.4.1 NYC Taxi Data Set Analysis

Moving hotspot is an important phenomenon in spatial-temporal data. Figure 5.11 (a)

and (b) illustrate the heat maps of taxi pick-up and drop-off events in the Manhattan area

during a 4 hour time slot starting from 8:00PM on December 31, 2010 and December 31,

2012 respectively. The comparison shows that the trip distribution during the same festival

does not change much over the years. Figure 5.11 (c) plots the heat map of the morning

(6:00AM-10:00AM) on January 1st, 2013, which drastically differs from the heat map shown

in Figure 5.11 (b). Figure 5.11 (d) illustrates the trip distribution from 8:00PM to 12:00AM

on July 4th, 2013, which also considerably differs from that of the New Year Eve in the same

year.

Figures 5.11 (a)-(d) demonstrate the distribution of spatial-temporal hotspots. It is

important to understand by how much hotspots cause event count to increase in a region. We

measure the increase as the ratio, event count during peak hours
event count during normal hours .The CDF on 16X16 Manhattan

area is shown in Figure 5.12. Although hotspots move over time, the event count of a region

changes within a reasonably small range. During New Year midnight, popularity of more

than 97% regions grow within four folds.

When loading the data into HBase, both spatial and temporal information contribute to

the row key. The encoding algorithm translates the 2D location information of an event into
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Figure 5.14: Reducing the Number of Range Scans

a 32-bit spatial-key, which acts as the suffix of the row key. Then, the temporal strings are

parsed to Linux 64-bit timestamps. We use the most significant 32 bits as the temporal-key.

Each temporal key represents roughly a 50-day time range. Finally, as shown in Figure 5.13,

the temporal-key is concatenated in front of the spatial key to form the complete row key.

5.4.2 Moore Encoding

Figure 5.14 shows how much Moore encoding helps to reduce the number of range scans

at different resolutions when translating geometry queries in a 40, 000, 000m× 40, 000, 000m

area. Figures 5.14 (a) and (b) uses disk geometry and rectangle geometries respectively. The

two figures share the same legend. For disk geometries, Moore encoding generates 45% fewer

range scans when compared to ZOrder-encoding. When a long rectangle is in use, Moore

encoding helps to reduce the number of range scans by 30%.

To quantify the read volume amplification, we encode the dataset coordinates with Moore

encoding algorithm using the highest resolution shown in Figure 5.3, and populate the data

using 64KB DB Blocks. Then, the experiment issues 1Km × 1Km rectangle geometries.

Figure 5.15 (a) shows the ratio of fetched key-value pairs volume over the total volume

of accessed DB Blocks, which is the inverse of read volume amplification. As the Strip-

encoding results in very high read volume amplification, using the inverse helps to limit
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the result in interval [0, 1]. Therefore, readers can easily distinguish the difference between

Moore-encoding and ZOrder-encoding. We call the inverse metric the effective data ratio.

As Moore encoding concentrates a geometry query into fewer range scans, and hence fewer

range boundaries, it also achieves higher effective data ratio.

Figures 5.15 (b)-(d) plot the CDFs of redundant read counts when processing the same

geometry query.It is clear that the number of redundant reads increases when using higher

resolutions. Another observation is that, Moore-encoding leads to large read redundancy.

Thanks to the multi-scan optimization design, this will not be a problem, as all redundant

reads will be accomplished within a single DB block traverse operation.

5.4.3 Multi-Scan Optimization

In order to measure how A3 algorithm works, we load data from the NYC taxi cab dataset

using Moore encoding algorithm, and force all StoreFiles of the same store to be compacted

into one single StoreFile. Then, the RUE generates 1Km×1Km rectangle geometry queries

with the query resolution set to 13. We measure the internal delay of loading requested DB

blocks individually versus aggregately.

The evaluation results are presented in Figure 5.16. The curves convey a few interesting

observations. Let us look at the A3 curve first. In general, this curve rises as the block size

increases, which agrees with our intuition as larger blocks lead to more severe read volume

amplification. The minimum response time is achieved at 8KB. Because the minimum data
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Figure 5.17: Response Time at Splitting Event

unit of the disk under test is 4KB, further decreasing block size does not help any more.

On the computation side, using smaller block size results in larger input scale for the A3

algorithm. That explains why the response time below 8KB slightly goes up as the block

size decreases. The "individually" curve monotonically decreases when the block size grows

from 1KB to 100KB. It is because increasing block size significantly reduces the number

of disk seeks when the block is small. When the block size reaches between 128KB and

4MB, two facts become true: 1) key-value pairs hit by a geometry query tend to concentrate

in less blocks; 2) data transmission time starts to make impacts. The benefits of reducing

the number of disk seeks and the penalties of loading DB blocks start to cancel each other,

leading to a flat curve. After 4MB, the data transmission delay dominates the response time,

and the curve rises again. Comparing the nadirs of the two curves concludes that A3 helps

to reduce the response time by at least 3X.

5.4.4 Soft Region Split

To measure the performance of soft splitting, this experiment uses normal scan queries

instead of geometry queries, excluding the benefits of Moore encoding and multi-scan opti-

mization. A table is created for the NYC’s taxi data, which initially splits into 4 regions.

Each region is assigned to a dedicated server. The HBASE_HEAPSIZE parameter is set

to 1GB, and the MemStore flush size is set to 256MB. Automatic region split is disabled to

allow us to manually control the timing of splits. Twelve RUE servers generate random-sized

small scan queries.
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Figure 5.17 shows the result. The split occurs at the 240th second. After the split

operation, HBase suffers from even longer response time. It is because daughter region B

does not have its region data in its own physical server, and has to fetch data from remote

servers, including the one hosting daughter region A. When the group based replication is

enabled, both daughter regions read data from local disks, reducing half of the pressure on

disk, cpu, and network resources.

5.4.5 Response Time and Throughput

We measure the overall response time and throughput improved by Pyro compared to the

state-of-the-art solution MD-HBase. Experiments submit rectangle geometry queries of size

1km×1km and 100m×100m to Pyro and MD-HBase. The request resolutions are set to 13

and 15 respectively for two types of rectangles. The block sizes vary from 8KB to 512KB.

When using MD-HBase, the remote query emulator initiates all scan queries sequentially

using one thread. This configuration tries to make the experiment fair, as Pyro uses a single

thread to answer each geometry query. Besides, experiments also show how Pyro performs

when using ZOrder-encoding or/and A3 algorithm. Figures 5.18 and 5.19 plot experiment
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results. The legend on the upper-left corner shows the mapping from colors to block sizes.

PyroM and PyroZ represent Pyro using Moore- and ZOrder- encoding respectively. PyroM-

A3 and PyroZ-A3 correspond to the cases with the A3 algorithm disabled.

When using PyroM and PyroZ, the response times grow with the increase of block size

regardless of whether the rectangle geometry is large or small. It is because larger blocks

weaken the benefits of block aggregation and force PyroM and PyroZ to read more data from

disk. After disabling A3, the response time rises by 6X for 1km×1km rectangles, and 2X for

100m× 100m rectangles. MD-HBase achieves the shortest response time when using 64KB

DB blocks, which is 60X larger compared to PyroM and PyroZ when handling 1km× 1km

rectangle geometries. Reducing the rectangle size to 100m×100m shrinks the gap to 5X. An

interesting phenomenon is that using 512KB DB blocks only increases the response time by

5% compared to using 64KB DB blocks, when the request resolution is set to 13. However,

the gap jumps to 33% if the resolution is set to 15. The reason is that, higher resolution

leads to more and smaller range scans. In this case, multiple range scans are more likely

to hit the same DB block multiple times. According to HFile format, key-value pairs are

chained together as a linked-list in each DB block. HBase has to traverse the chain from the

very beginning to locate the starting key-value pair for every range scan. Therefore, larger

DB block size results in more overhead on iterating through the key-value chain in each DB

block.

Figure 5.20 shows the throughput evaluation results of the entire cluster. Pyro regions are

initially partitioned based on the average pick up/drop off event location distribution over the

year of 2013. Literature [75] presents more analysis and visualizations of the dataset. During

the evaluation, each RUE server maintains a pool of emulated users who submit randomly

located 100m×100m rectangle geometry queries. The reason of using small geometries in this

experiment is that MD-HBase results in excessively long delays when handling even a single

large geometry. The distribution of the rectangle geometry queries follows the heat map from

8:00PM to 11:59PM on December 31, 2013. The configuration mimics the situation where

an application only knows the long-term data distribution, and is unable to predict hotspot
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Figure 5.20: 100m×100m Geometry Throughput

bursts. When setting 600ms to be the maximum tolerable response time, Pyro outperforms

MD-HBase by 10X.

5.5 Related Work

As the volume of spatial-temporal data is growing at an unprecedented rate, pursing a

scalable solution for storing spatial-temporal data has become a common goal shared by

researchers from both the distributed system community and the database community. Ad-

vances on this path will benefit a great amount of spatial-temporal applications and analytic

systems.

Traditional relational databases understand high dimensional data well [81, 82, 96, 97] due

to extensively studied indexing techniques, such as R-Tree [98], Kd-Tree [99], UB-Tree [100,

101], etc. Therefore, researchers seek approaches to improve the scalability. Wang et al. [102]

construct a global index and local indices using Content Addressable Network [103]. The

space is partitioned into smaller subspaces. Each subspace is handled by a local storage.

The global index manages subspaces, and local indices manage data points in their own

subspaces. Zhang et al. [104] propose a similar architecture using R-tree as global index and

Kd-tree as local indices.

From another direction, distributed system researchers push scalable NoSQL stores [69–

72, 77, 105–107] to better understand high dimensional data. Distributed key-value stores

can be categorized into two classes. One class uses random partition to organize keys. Such
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systems include cassandra [70], DynamoDB [71], etc. Due to the randomness on key distri-

bution, these systems are immune to dynamic hotspots concentrated in a small key range.

However, spatial-temporal data applications and analytic systems usually issue geometry

queries, which translate to range scans. Random partitioning cannot handle range scans

efficiently, as it cannot extract all keys within a range with only the range boundaries. Con-

sequently, each range scan needs to query all servers. Other systems, such as BigTable [77],

HBase [69], couchDB [108], use ordered partitioning algorithms. In this case, the primary key

space is partitioned into regions. The benefits are clear. As data associated with a contin-

uous primary key range are also stored consecutively, sorted partitioning helps to efficiently

locate the servers that host the requested key range.

The benefits of ordered partitioning encouraged researchers to mount spatial-temporal

application onto HBase. Md-HBase [73] builds an index layer on top of HBase. The index

layer encodes spatial information of a data point into a bit series using ZOrder-encoding.

Then, a row using that bit series as key is inserted into HBase. The ST-HBase [74] develops

a similar technique. However when serving geometry queries, the index layer inevitably

translates each geometry query into multiple range scans, and prevents data store from

aggregately minimizing the response time.

As summarized above, existing solutions either organize multiple relational databases

together using some global index, or build a separate index layer above some general purpose

distributed data stores. This chapter, however, takes a different path by designing and

implementing a holistic solution that is specifically tailored for spatial-temporal data.
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Chapter 6: Manager For Distributed

Computing Clusters

In the past few years, in-memory computing frameworks [16–18, 109–116] have made big-

data analytics fast, supercharging a rapidly increasing number of applications in the fields

of social networks, e-commerce, finance, and telecommunications [117]. Spark [18], as the

state-of-the-art in-memory computing system, attracts a tremendous amount of attention

from both academia and industry. Many Spark applications operate on dynamic collections

of datasets. For example, an advertising optimization system [118] may store user browsing

histories into a dataset every hour, and execute algorithms using data of the past few hours.

An IT administrator may dynamically load and evict various system log datasets for diagno-

sis [119, 120], and run interactive queries on subsets of those datasets. Another example is

Spark Streaming [16], which divides stream data into timesteps, and relies on batch-process

functionality of Spark core to operate on multiple timesteps within a time window. These

applications require Spark core to not only process a single dataset efficiently, but also excel

at computations across a dynamic collection of datasets.

Spark delivers high efficiency when tasks are scheduled to servers with all input data

cached in local RAM. Violating this data locality condition would force Spark to access disk

and network to construct and load data into memory, leading to deteriorated delay. Default

Spark relies on the delay scheduling policy [121] to preserve data locality, which allows a

task at front of the queue to wait for a small amount of time if its data-local servers are

all busy. Although this policy may achieve high data locality probability for applications
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dealing with a single dataset, data co-locality may still be a far less likely contingency when

applications work on a collection of datasets. Data co-locality refers to the property that

multiple input datasets are partitioned using the same scheme and cached in the same set of

servers correspondingly. Without proper management, a data-local execution slot may not

even exist, as multiple input data partitions of the same task can fall into different servers,

leaving no chance for the scheduling policy to chase the co-locality property. Moreover, even

if the system preserves the co-locality property, time-varying data volume and distribution

may result in excessive data re-partitions and transfers, which would inevitably slow down

the entire job.

In this chapter, we present Stark, a system specifically designed for optimizing in-memory

computing on dynamic dataset collections. Stark achieves data co-locality by judiciously

managing partitioning strategies and data placement policies. There are three major con-

tributions. First, Stark allows applications to preserve data partitioning strategy across a

collection of datasets, and arranges corresponding partitions into the same set of physical

servers (i.e., co-locality), avoiding huge data shuffling overheads when processing multiple

datasets. Second, Stark handles time-varying data volume and distribution by delivering

elasticity into partitions, such that partitions may split or merge without re-partitioning the

entire dataset collection. Third, Stark achieves bounded failure recovery delay with mini-

mum checkpointing overhead. Stark is implemented based on Spark-1.3.1 by adding 2.9K

lines of Scala code. Experiments on a 50-server cluster show that Stark reduces the delay

by 4X and improves the throughput by 6X compared to Spark.

6.1 Design Overview

This section first provides a high level explanation of how Spark works in 6.1.1, and then

discusses stark’s architecture design in 6.1.2.
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Figure 6.1: Stark Architecture

6.1.1 Spark Background

Spark [16–18] is a renowned open-source in-memory computing system that offers both

streaming and batch processing capabilities. It has attracted immense attentions from both

industry and academia. This section explains two of its major components, Spark Core [18]

and Spark Streaming [16].

A Spark job involves a driver program, a cluster manager, and a set of worker nodes.

The driver program takes care of the task scheduling of the job. Cluster manager monitors

and manages worker nodes who host executors to run tasks and cache data partitions.

Spark Core is the cornerstone of the entire project. Its fundamental programming ab-

straction is Resilient Distributed Datasets (RDD)1, an immutable logical collection of data

partitioned across machines. RDDs can be created from importing external data or apply-

ing transformations on existing RDDs. Transformations indicate dependency relationships

between RDDs, connecting RDDs into a Directed Acyclic Graph (DAG) which is called the

lineage graph. The immutability allows RDDs to be recomputed when corrupted or lost
1Dataset and RDD are used interchangeably in this chapter.
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using only the lineage information and data of any cut on the DAG. Spark Core materializes

RDDs in a lazy fashion, such that an RDD will only be materialized if some action requires

its descendants or itself. Spark supports two types of transformation dependencies, narrow

and wide, judged by whether the transformation shuffles data to alter the partitioning strat-

egy. A chain of narrowly dependent transformations is packed into a single stage. Barriers

between the map and the reduce phases in wide transformations form stage boundaries. For

the sake of accelerating failure recovery, shuffle maps always commit outputs into persistent

storage (e.g., HDFS). Spark Core achieves in-memory batch processing that may reduce the

response time down to milliseconds.

Spark Streaming, stacked on top of Spark Core, works as a micro-batching stream pro-

cessing framework. It batches incoming stream data of each timestep into in-memory data

blocks, and creates an RDD per timestep. Such series of RDDs are named as a DStream.

Further transformations and actions on those RDDs are handled by the Spark Core compo-

nent.

6.1.2 Architecture

Although, by orchestrating various components of Spark, a large set of applications have

significantly boosted their efficiency [122], applications that operate on dynamic dataset col-

lections can still be improved in the following three aspects. First, in order to maintain the

co-locality property, applications need to deliberately organize the in-memory data layout

across the cluster. However, Spark randomly scatter partitions of independent RDDs into

servers, exposing no control over partition placements. Second, as applications dynamically

load and evict datasets, the data volume and computational demand received by the col-

lection may vary over time. This requires those immutable RDDs in the collection to react

to size and popularity dynamics, retaining load balancing. Third, dynamic collections of

interdependent datasets may foster an ever-growing lineage graph. The system needs to

minimize the overhead to achieve data persistency, and at the same time preserve failure

recovery delay bounds. Therefore, we design Stark to handle these three problems accord-
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ingly. Figure 6.1 illustrates the high level architecture of Stark. Besides enhancing multiple

important building pieces of Spark, Stark introduces three novel components:

• LocalityManager enforces the same partitioner across multiple user-specified RDDs, and

allocates corresponding partitions into same worker nodes in the best-effort manner. This

helps to achieve data co-locality that could significantly benefit operations working on

multiple RDDs (e.g., cogroup and join).

• GroupManager introduces an extendable hashing policy to achieve partition elasticity,

which allows immutable RDDs to shrink or expand partitions without repartitioning.

• CheckpointOptimizer employs a variant of network flow algorithm to optimally select

the minimum amount of data to checkpoint, and at the same time fulfil a user defined

failure recovery delay bound.

6.2 System Design

This section elaborates the design details of LocalityManager, GroupManager, and Check-

pointOptimizer in 6.2.1, 6.2.2, and 6.2.3 respectively.

6.2.1 Locality Manager

Partition is the unit for computation and storage management in Spark. Co-partition and

co-locality are two important features that closely relate to system performance. The former

partitions multiple RDDs using the same partitioning strategy, which helps to avoid shuffling

overhead. Let us use the notion collection partition to denote the corresponding partitions

across co-partitioned RDDs. For example, collection partition 1 of two RDDs refers to the

first partitions in both RDDs. The latter (co-locality) places an entire collection partition

into the same executor, avoiding the cost of aggregating the data. Users may easily achieve

co-partition by passing the same deterministic partitioner when constructing RDDs, while

co-locality is more difficult to preserve. Spark randomly places partitions in the cluster,

which means it is unlikely that data in the same collection partition would reside in the
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Figure 6.2: Example of Violating Co-Locality

same server. Figure 6.2 demonstrates an example that violates data co-locality. The dataset

collection contains two RDDs with each divided into three partitions. The number inside

each partition represents its ID. In this example, a join or cogroup operation will create

three tasks to process the three collection partitions respectively. Regardless of how Spark

schedules those tasks, every task will encounter at least one remote RDD partition, as no

collection partition locates in the same server.

To understand the importance of data co-locality, Section 6.2.1.1 explains default Spark

behaviors and induced inefficiencies in greater details. Then, Section 6.2.1.2 presents the

design of LocalityManager that allows users to preserve collection partition co-locality.

6.2.1.1 Observations

Before investigating the benefits of data co-locality, let us first discuss how a Spark job

could benefit from data locality. In Spark, the lineage graph of an RDD refers to all of its

ancestors and corresponding transformations. Spark relies on this lineage graph to create

stages when a user runs an action on the RDD. More specifically, a transformation with

wide dependency generates a ShuffledRDD which contains a map phase and a reduce phase.

Spark breaks the lineage graph at the barriers between the map and the reduce phases,

leaving each connected component as a stage. Each stage contains a set of tasks with the

same computational behavior. The task can be either a ShuffleMapTask or a ResultTask,

depending on whether the stage ends at the map phase or the final RDD. The ShuffleMapTask

commits map output data into persistent storage, from where the reducers retrieve data to

continue the computation. Therefore, as reducers read map outputs from multiple servers

through network, the reducing phases of ShuffledRDDs gain little performance improvements

from enforcing data locality. However, data locality significantly reduces the execution time

of transformations with narrow dependencies. For example, the code below generates two
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Figure 6.3: Data Locality Benefits

jobs, C.count and D.count. The lineage graph is shown in Figure 6.3 (a).

val A = sc.textFile(...).map(_ => (getTime(_), _))

val B = A.partitionBy(new HashPartitioner(2))

val C = B.filter(_ => _.startsWith("ERROR"))

val D = C.filter(_ => _.length > 30)

C.cache.count; D.count

After Spark executes C.count, RDD C is cached in memory. RDD D relies on C as its parent.

Figure 6.3 (b) shows how much execution time could be saved by preserving data locality

when sc.textFile loads a 700MB text file. The letters C and D represent the execution time

of C.count and D.count as the code shows. The job C.count creates two sequential stages.

The first stage loads the text file, and commits all mapper outputs of RDD B into disk.

The second stage starts from the reducers of RDD B, creates RDD C, and computes the

count. When C is cached, D.count starts from the cached data, and the response time stays

below 200ms. The D- represents the execution time of D.count after removing .cache from

the last line of the code. The job D-.count creates a single stage that skips the partitionBy

transformation, which helps to save 8s execution time compared to C.count. But, without

data locality, D- has to start from the reducing phase of B. Consequently, the execution time

increases from 0.2s to 9s.

Data locality reduces the job execution time by allowing stages to start from cached

RDDs. When Spark fails to preserve data locality, instead of fetching from the executors

where the RDD partitions are cached, it recomputes all transformations from the very be-

ginning of the stage—reading data from the map outputs of ShuffledRDDs through network.
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Although this design decision considerably reduces the complexity and overhead of keeping

track of all cached and evicted data across the entire cluster, it on the other hand amplifies

the penalty of scheduling a task onto a remote node. In the example shown in Figure 6.3

(a), forgoing data locality for action D.count forces Spark to start computing the stage from

the reducing phase of RDD B, recompute RDD C, and finally create RDD D.

The example above demonstrates benefits of running Spark tasks with parent RDD par-

titions available in local cache, and penalties otherwise. Working on a collection of dataset

exacerbates both the benefits and the penalties, as instead of a single RDD, each job deals

with a collection that may contain a large number of RDDs. If a collection partition is

scattered in different places, no single executor could preserve data locality for the task.

Therefore, a job may trigger a huge amount of network and computation overhead. Fig-

ure 6.4 shows an example.

Compared to Figure 6.3, Figure 6.4 presents a more detailed view by emphasizing par-

titions of RDDs. Rectangles with round corners represent RDDs, and squares represent

partitions in each RDD. The number in each partition shows the ID of the executor where

the partition is cached. For simplicity, the figure only shows cogrouping two RDDs, whereas

the number of involved RDDs in a real application might be much larger. On the right

side lies the final cogrouped RDD. The red bold lines indicate which transformations on

which partitions need to be re-computed. As can be seen in Figure 6.4, when co-locality is

violated, a single job may trigger many partitions to be recomputed, even if those partitions

have already been computed and cached somewhere else.
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6.2.1.2 Preserving Data Co-locality

LocalityManager helps to allocate RDD partitions in the same collection partition onto the

same executor. Later in Section 6.2.2, we discuss techniques for solving potential side-effects

of a collection partition growing too large to fit into a single executor. The LocalityManager

internally remembers the mapping from collection partitions to executors. Users may create

such mappings by calling the localityPartitionBy API on an RDD or a DStream. During

task scheduling, the DAGScheduler first consults the LocalityManager to get the preferred

executor ID, and then follows the default delay scheduling algorithm. A collection partition

maps to a set of executors instead of a single one. Because whenever a task for a collection

partition runs on a remote executor, the partition data is computed and cached in that

executor, immediately making the partition data locally available for subsequent tasks on

that same executor. This may happen when some collection partition takes too long to

process or becomes too popular, overloading local executors. Therefore, the default delay

scheduling policy tends to create more replications for those hotspot collection partitions.

Preserving co-locality significantly reduces job makespan. Based on the same example

demonstrated in Figure 6.4, Figure 6.5 shows how partitions are allocated onto executors

when LocalityManager is enabled. The three collection partitions consistently map to ex-

ecutors 5, 6, and 7 respectively, preventing jobs from having to read data from shuffled map

outputs, and at the same time saving computational overhead of two transformations.

Enforcing collection partition co-locality also alters the behavior of memory allocation

and task scheduling, both fundamentally affecting the system performance. Stark needs to

make sure that all negative consequences are taken care of. As one obvious side-effect, a

collection partition may grow too large or become too popular that overwhelms memory

and/or computation resources of its corresponding executor set. Section 6.2.2 discusses this

problem in detail and presents solutions. Besides that, another important core function is

failure recovery. Spark recovers by recomputing unavailable RDD partitions from checkpoints

and/or ShuffledRDDs. It speeds up this process by employing multiple executors to recover
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Figure 6.6: Time-varying distribution of NYC taxi pick-up/drop-off events in 2013

RDDs in parallel. At the first glance, collection partition co-locality would slow down the

recovery process, as a collection partition could be destroyed by even a single executor failure.

Although this observation is true, we claim that the failure recovery with collection partition

co-locality is at least as efficient as default Spark from the perspective of job makespan.

Because the default Spark scheduler creates one task per result cogrouped RDD partition,

which has to construct the entire collection partition in a single executor. Hence, even if a

collection partition could be recovered using multiple executors, it has to aggregate into the

same server before performing any further operations. Therefore, co-locality introduces no

penalty for failure recovery.

6.2.2 Group Manager

In this section, we first consider trade-offs between different partitioning schemes in Sec-

tion 6.2.2.1. Then, Section 6.2.2.2 presents the idea of extendable partition group that helps

to achieve elasticity. Finally, Section 6.2.2.3 describes how Stark schedules partition groups

when it fails to preserve data locality.

6.2.2.1 Partitioning Trade-Offs

A dataset collection may subject to time-varying volume and distribution as datasets are

dynamically inserted and evicted from the collection. For example, Figure 6.6 illustrates taxi

91



10
0

10
1

10
2

10
3

10
4

10
5

0

10

20

Number of Partitions

D
el

ay
 (

s)
Figure 6.7: Partition Number Trade-Off

pick-up/drop-off events [75, 76] heatmap of three different 4-hour time slots in the Manhat-

tan area. Suppose an application creates a dataset every ten minutes, and uses the dataset

collection of the past hour to calculate taxi trajectories and optimize the advertisements

displayed in each taxi’s monitor. The three figures correspond to July 1st morning, July

1st evening, and July 4th evening of 2013 respectively. The white grid helps to emphasize

the locations of event hotpots. They clearly show that data distribution drastically changes

over time, and there are much larger hotspot areas in (c) compared to (a) and (b). There-

fore, no static partitioning algorithm could always preserve collection partition size under a

reasonable threshold over time.

A straightforward solution to this problem would be to further divide data into finer

granularity, which reduces the absolute size of partitions. However, this solution creates

too many partitions that would overload the scheduler, and amplify system scheduling and

monitoring overheads. Figure 6.7 depicts how the number of partitions affects the execution

time of a Spark job. The experiment runs the same code as shown in Figure 6.3, and

records the execution time of C.count. We manipulate the number of partitions by tuning

the argument of HashPartitioner. The result shows that using more partitions initially

does help reduce job execution time. However, as the number of partitions increases, the

overheads gradually dwarf, and eventually completely overshadow the benefit of using higher

parallelism.

To solve this dilemma, Stark handles the time-varying data and computation distributions

by employing two mechanisms:

• Extendable Partition Group mitigates time-varying data distribution in a collection

by splitting excessively large partitions to make use of memory and computation resources
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Figure 6.8: Extendable Partition Groups for NYC Taxi Data

on multiple machines, and merging tiny partitions to reduce the scheduling and control

overhead.

• Contention Aware Replication scheme materializes multiple copies of collection par-

titions based on their demand, minimizing potential cache eviction penalties caused by

excessive replications.

6.2.2.2 Achieving Partition Elasticity

In Spark, partitioners share the same getPartition API to map a data key onto a parti-

tion ID. Achieving elasticity using the getPartition API would alter the key-to-partition

mapping, resulting in exorbitant data shuffling cost when resizing partitions. To avoid this

shuffling overhead, Stark attains elasticity from a higher level, which respects the mapping by

keeping the getPartition API intact. Extendable partitioning enhances existing partitioners

by introducing the concept of partition group. A partition group is a set of consecutive

partitions. The extendable partitioner can be initially configured to contain g groups. The

partitioner will actually create e ·g partitions, e partitions per group. The ith group contains

partitions e · i to e · (i + 1) − 1. To simplify the presentation, we require the configurable

parameters g and e both to be powers of 2. This requirement can be easily relaxed by using
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the smallest complete binary tree that contains exactly g leaves.

Stark initially constructs a full binary tree where each leaf node in the tree corresponds

to a partition group. We call this binary tree the Group Tree. Figure 6.8 elucidates example

group trees constructed based on the data distribution as shown in Figure 6.6, assuming co-

ordinates map to ordered-partitioned one-dimensional keys using Z encoding algorithm [123].

The four active groups in the initial status correspond to the four geographic regions as high-

lighted by the white grid. In Figure 6.6 (a), workloads overload the left two regions, which

correspond to group 3 and 5 according to Z encoding algorithm. Hence, the Group Tree

splits group 3 and 5 as shown in Figure 6.8 (a). Examples (b) and (c) work in the same

fashion. A Group Tree supports two basic operations, split and merge. Split can be applied

to any leaf node with more than one partition, dividing those partitions into two smaller

groups. The merge operation can only be applied to two leaf node groups under the same

parent node, concatenating partitions from the two groups into a larger group.

The split and merge operations are triggered by the total size of partitions in each group.

Multiple RDDs may share the same Group Tree by using extendable partitioner under the

same namespace, collectively affecting group sizes. The user may configure how many of the

most recent RDDs are accounted when calculating the group size, as well as the upper and

lower bounds of group sizes that trigger the split and merge operations.

A partition group is the minimum task scheduling unit in Stark. We introduce GroupRe-

sultTask and GroupShuffleMapTask as enhancements for ResultTask and ShuffleMapTask

to allow multiple partitions in the same group to be packed into the same task. As we have

discussed in Section 6.2.2.1, this feature helps to reduce scheduling and monitoring overhead

by using a smaller number of tasks. Moreover, splitting (merging) a partition group also

splits (merges) the corresponding local executors. This helps to minimize data movement

during group dynamics by skipping cached partitions.
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Figure 6.9: Task Scheduling Algorithms

6.2.2.3 Contention Aware Replication

Extendable Partition Group solves the load balancing problem caused by data volume and

distribution dynamics. As discussed in Section 6.2.2.1, there is another dimension of load

balancing problem induced by time-varying and non-uniformly distributed computational

demand on different partitions. To illustrate the problem, let us consider the same taxi

advertising example mentioned in Section 6.2.2.1. Besides the spatial-temporal dynamics of

taxi trajectories, the intensity of advertisement campaigns in certain areas may also change

overtime. For example, theaters and shopping centers near the Time Square may want to

deliver much more commercial messages to potential customers nearby in weekend evening

compared to weekday morning. To address their demand, the system needs to first filter qual-

ified trajectories using the location information, and then conduct subsequent optimization

algorithms to match sponsor messages to taxi monitors. In this case, partitions that cover

the Time Square receive higher computational workloads than others in weekend evening.

Therefore, the amount of workload hitting the same partition changes over time, while such

workload dynamics of different partitions may not follow the same pattern. To attack this

load balancing problem, Stark delivers computational resource elasticity to the partition level

by independently replicating each partition on demand while preserving data co-locality in
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the best effort manner.

To achieve the computational resource elasticity, Stark needs to capture the right signal

to trigger replicate and de-replicate operations. Failing to preserve data locality for a certain

task on partition α conveys a relevant signal. This signal indicates either partition α has

become a hotspot receiving higher computational demand, or the corresponding worker nodes

where partition α resides has been assigned to too many different partitions. The latter

situation forces every partition to replicate on an unnecessarily larger number of worker

nodes, competing for limited computational resources. Although this could help to improve

the CPU utilization, sharing worker nodes among many partitions catalyzes cache eviction,

and makes data locality more difficult to achieve.

The delay scheduling policy improves data locality by allowing tasks to delay for a

bounded amount of time to wait for local executors. When they fail to achieve data lo-

cality, all remote workers are treated equally. This design is reasonable and helpful when

it was initially proposed for Hadoop MapReduce workloads. However, when imported into

the realm of in-memory computation, scheduling a task on a remote node materializes all its

narrowly-depended parents on that node, converting the node from REMOTE to NODE_LOCAL for

subsequent tasks requiring the same input data. At the same time, this node’s locality level

may also revert back from NODE_LOCAL to REMOTE for some other partitions due to cache evic-

tions. Therefore, schedulers for in-memory computation need to make more careful decisions

when assigning tasks into remote worker nodes.

Figure 6.9 (a) and (b) illustrate two extremes: each worker node is dedicated to a single

collection partition, or partitions can be assigned to any worker nodes in the cluster. In case

(a), every partition exclusively consumes all RAM resources on its worker nodes, allowing

it to fit more RDDs of the collection into the cache. Consequently, less online queries have

to load data from disk. However, as we can clearly see in the example, many CPU cores

stay idle under this scheme, as a price paid to guarantee the exclusiveness. In case (b), the

scheduler blindly assigns tasks to remote resources, where any task may end up executing on

any remote worker node. This scheduling policy optimally utilizes computational resources
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Figure 6.10: Checkpoint Example

in the cluster at the cost of restricting every collection to use a small share of RAM on worker

nodes, which may even cause cascading cache eviction that results in higher cache miss rate.

Algorithm 6.1 Minimum Contention First Scheduling
Input: task set of a stage T, offers R
Output: tasks to launch L
1: if max locality level is not REMOTE then
2: use default delay scheduling
3: else
4: L← ∅
5:
6: sort R according to the ascending order of unique collection partitions cached.
7:
8: for i← 1 ∼ |R| do
9: t← pick one task from T
10:
11: T← T \ {t}; L← L ∩ (t, R[i])
12:
13: end for
14: return L
15: end if

We propose the Minimum Contention First (MCF) Delay Scheduling algorithm. MCF

algorithm works exactly the same as the default delay scheduler before the locality level rises

to REMOTE. When MCF algorithm is enabled, each executor keeps track of unique collection

partitions cached in RAM. The scheduler gives higher priority to executors with a smaller

number of unique collection partitions. Algorithm 6.1 shows the pseudo code.

6.2.3 Checkpoint Optimizer

Data co-locality and partition elasticity both help to avoid expensive data shuffling operations

by preserving the same partitioning strategies across RDDs. Shuffling commits mapper

outputs into persistent storage, which naturally breaks dependency chains to accelerate

failure recovery. Hence, avoiding Shuffle transformations may lengthen failure recovery delay.
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Therefore, the system needs to proactively and judiciously checkpoint RDDs to bound the

failure recovery delay. In a simple case where RDDs are all independent from each other, the

system has no choice but checkpointing all RDDs. However, many real-world applications

form iterative structures, such as the runningReduce concept (i.e., the updateStateByKey

API) introduced in Spark Streaming [16]. In this case, the system has to select RDDs

to checkpoint in the ever-growing application data. Otherwise, the failure recovery has to

reconstruct RDDs from the very beginning. The existing solution [110] checkpoints the

entire level of recently generated RDDs in the DAG, which is called the Edge algorithm. It

guarantees bounded recovery delay, but may lead to excessive checkpointing overhead. This

section optimizes the checkpointing algorithm to minimize the amount of data written into

persistent storage, and at the same time bounds failure recovery delay.

6.2.3.1 Measuring Parameters

From the perspective of failure recovery, each RDD associates with two important properties,

the data size and the computation time. The system can estimate the data size by looking at

the amount of RAM consumed by each cached RDD. Default Spark logs computation time

at stage level, where a stage may contain multiple consecutive narrowly-dependent trans-

formations, and thus span multiple RDDs. Hence, Stark needs to acquire the computation

time from the transformation level. The delay of the same transformation can be different

across tasks due to imperfectly balanced data distribution. Stark logs the delay of every

transformation in every task, and takes the maximum across tasks as the estimation of the

transformation delay. Data size represents the cost (c) of checkpointing an RDD, while com-

putation time denotes the delay (d) of recovering the RDD. With these two notations, we

design the optimal checkpointing algorithm for failure recovery.

6.2.3.2 Optimized Checkpointing Algorithm

In the RDD DAG, each node associates with a cost c and a delay d. Let an uncheckpointed

path denote the path that contains no checkpointed RDD or ShuffledRDD. The path length
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is the sum of all RDDs’ delay d along the path. Stark keeps track of all uncheckpointed

RDDs, and triggers the checkpoint algorithm whenever the length of any path grows beyond

the user defined failure recovery delay upper bound r. We call those paths violating paths.

The algorithm breaks all violating paths by checkpointing a set of RDDs with minimum

total cost. Figure 6.10 illustrates an example with r = 10. The two numbers near each RDD

represent the delay d and the cost c from left to right. Node i triggers the checkpointing

algorithm due to three violating paths of length 16, 16, and 15 respectively. As the goal is

to find a minimum cut to isolate node i from RDDs a and b, we apply a variant of maximum

network flow algorithm to solve this problem. The algorithm splits each RDD node into an

in node and an out node. It then connects the out node of i to a virtual sink node t, and

connects a virtual source node s to the in nodes of a and b. The dependency relationships are

preserved by linking predecessor’s out node to successor’s in node. The algorithm assigns

the cost c to edge between the in node and the out node of the same RDD as its edge

capacity. The costs of all other edges are set to infinity. Finally, stark uses a standard

maximum network flow algorithm to find the minimum cut, representing the set of RDDs

with minimum total cost to checkpoint.

Stark determines the set of RDDs to checkpoint by tracing back from virtual sink t to

the first set of saturated cutting edges. However, searching for an exact cut may force the

system to checkpoint RDDs that are too far away from latest RDDs, leaving a relatively long

uncheckpointed path, which would inevitably trigger another checkpoint action soon. Hence,

we relax this condition to allow Stark to stop at edges whose residual capacity is within f

times of the amount of network flow over it. This is the same as relaxing the checkpointing

cost by f times compared to the optimal solution.

6.3 Implementation

Stark is implemented based on Spark-1.3.1 by adding 2.9K lines of scala code. This section

describes the components added or revised by Stark.

99



6.3.1 Locality Manager

We implement co-locality by introducing the LocalityManager, the localityPartitionBy

transformation, and the LocalityShuffledRDD. They can be enabled by setting the spark.sche-

duler.localityEnabled property to true in the configuration file. Users may call the API on

PairedRDDFunctions (i.e., RDDs that store key-value pairs) to construct a LocalityShuffledRDD

as below:

localityPartitionBy(p: Partitioner, ns: String)

LocalityManager creates a namespace if it has not seen ns before, or checks whether

the partitioner p agrees with the existing partitioner registered with namespace ns. All

RDDs under the same namespace must use the same partitioner. A namespace starts from a

LocalityShuffledRDD and automatically carries on to all following narrowly-dependent RDDs.

During scheduling, the DAGScheduler consults the LocalityManager for the preferred loca-

tions if there is a namespace associated with the RDD. In this way, the system preserves the

co-locality in the best effort manner.

6.3.2 Group Manager

The GroupManager manages a bidirectional mapping between partitions and groups. Users

may get access to the GroupManager from SparkEnv, and report an RDD by calling the

reportRDD(rdd:RDD) API. This API will trigger GroupManager to calculate the collection

partition size across all currently cached RDDs. Users can define lower and upper bounds

on the collection partition size (i.e., spark.locality.max(min)GroupMemSize). When a collec-

tion partition grows beyond those thresholds, the GroupManager splits or merges groups

accordingly.

To reduce the scheduling overhead, we also introduce GroupResultTask and GroupShuffle-

MapTask that may operate on multiple partitions as a single task. Stark automatically creates

group tasks if the target RDD associates with a namespace.
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6.3.3 Checkpoint Optimizer

In Spark, users have to specify whether an RDD needs to be checkpointed before materializ-

ing it. However, this design prevents CheckpointOptimizer from applying the optimization

algorithm. To break this constraint, we implement the RDD.forceCheckpoint API that creates

an RDDCheckpointData object and calls the doCheckpoint method. This revision allows Stark

to checkpoint an RDD after it has been materialized. The CheckpointOptimizer implements

a variant of Edmonds-Karp [124] algorithm to find the optimal RDDs to checkpoint.

6.4 Evaluation

This section first describes datasets and clusters used in the experiments. Then, we evaluate

improvements individually contributed by co-locality, extendability, and failure recovery in

Sections 6.4.2, 6.4.3, and 6.4.4 respectively. Finally, Section 6.4.5 measures the overall system

throughput and response time.

6.4.1 Experiments Setup

Our experiments run on a 50-server cluster [94] that consists of 40 Dell PowerEdge R620

servers and 10 Dell PowerEdge R610 servers. The Spark/Stark cluster runs on 40 R620

servers, each equipped with 16GB RAM. The remaining 10 R610 servers generate workloads

and log delay. Evaluations employ a Wikipedia trace [125], an NYC taxi trace [75, 76],

and a Twitter dataset crawled using Twitter REST APIs [126]. Due to the space limit, this

chapter skips the statistics on these datasets. Dataset use-cases will be explained close to

the corresponding experiments. Please refer to [127], [123], and [115] for detailed analyses

on these three dataset respectively.

In the experiments below, we compare six different configurations in total. The prefix

indicates whether the configuration uses Spark or Stark.

• Spark-R: creates a new RangePartitioner per RDD.
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• Spark-H : all RDDs share the same HashPartitioner.

• Stark-H : applies the same HashPartitioner across RDDs with only co-locality enabled.

• Stark-S : applies the same StaticRangePartitioner across RDDs with only co-locality en-

abled.

• Stark-E : Spark-S plus Extendability enabled.

6.4.2 Data Co-Locality

In this section, we use Wikipedia trace data [125] and typical log mining jobs to measure the

performance gain achieved by enabling data co-locality. We pick the log files that contain

about 800MB data each, create an RDD for every file, and use the default hash partitioner

with eight partitions (i.e., this experiment only uses eight servers). Then, each job cogroups

a range of trace RDDs, and counts the number of trace items that contain a randomly picked

keyword. Figure 6.11 shows the results of the average delay of 10 queries. The x-axis is the

number of RDDs that each job cogroups, and the y-axis the delay. The delay gap between

Spark-H and Stark-H grows as the number of RDDs increases from 1 to 5, due to the fact

that cogrouping more RDDs in Spark-H requires moving more data into the same executor

through network. When cogrouping 5 RDDs, Stark reduces the delay from 46s to 9s by

enforcing data co-locality.
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The interesting behavior is that, when cogrouping 6 RDDs, the improvement ratio de-

creases to 3X. To understand this, let us take a closer look at the delay at the task level for

specific jobs. Figure 6.12 (a) and (b) illustrate task delays when using Stark-H and Spark-H

respectively. In each bar, the white portion denotes the garbage collection (GC) delay, and

the remaining denotes the sum of all other delays. We can clearly see that performance gain

drops due to the garbage collection overhead which is triggered as the memory consumption

of cogrouping 6 RDDs together pushes towards executors’ RAM limits.

6.4.3 Extendable Partitioning

In this section, we measure how Stark adapts to data distribution dynamics using consecutive

Wikipedia hourly log files. As analyzed in [127], a peak hour log file may contain as much as

twice the amount of data compared to that of nadir hours. In the experiments, we compare

Spark-R, Stark-S, and Stark-E. Figure 6.13 shows how these three strategies partition data

into groups or partitions, which immediately determines the input data size of different tasks.

Each row represents a collection of three RDDs with RDD id marked on the y-axis. Each cell
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corresponds to a collection partition (or groups). Darker colors refer to larger partition sizes.

In the ideal case, all tasks should have an equal amount of input data, such that no overloaded

task would delay the entire job. Stark-S clearly suffers from skewed data distribution as some

collection partitions are much darker than others. Spark-R evenly distributes data across

collection partitions, as different RDDs use different range partitioners specifically tailored

for their own data distributions. In the Stark-E case, partition group boundaries (i.e., sizes

of cells in Figure 6.13) change across RDDs to cater skewed data distribution, resulting in a

relatively balanced partition group size distribution.

Figure 6.14 shows job delays under three configurations. We distinguish the delay of

the first job (1st) after group merges/splits from following jobs (2nd). Although Spark-R

distributes data evenly, jobs take more than 10 seconds to process, regardless of if they are

the first or subsequent jobs. This is because RangePartitioners use different boundaries to

balance data across partitions, such that a cogroup operation inevitably triggers expensive

data shuffling operations. Stark-S finishes jobs within 4s. As the partitioning strategy is

static and data locality stays unchanged across RDDs, the performance of Stark-S ignores

whether they are the first or subsequent jobs. However, it takes considerably longer delay to

process data with skewed distributions (RDDs 4-6 and 7-9) compared to those with uniform

data distributions (RDDs 1-3). Spark-E experiences large delay on the first job on RDD 4-6

and 7-9. As it alters the partition-to-executor mapping to regain load balancing, the first

job has to reconstructs partition data in newly assigned executors, that contributes to the

longer delay. These experiments convey that, if the data is only used once, then there is no

need to enable extendable groups, as co-locality alone already achieves the shortest delay.

However, many interactive and iterative applications [128] require to run a series of jobs on

the same set of data, which would considerably benefit from extendable groups.

Figure 6.15 illustrates task level delay when cogrouping RDDs 4-6. In each bar, the white

portion refers to the shuffling delay. It confirms that the shuffling overhead contributes a

huge part to Spark-R job delay. We can also see that, the skewed data distribution causes

imbalanced task completion times when using Stark-S, leading to a longer job delay.
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6.4.4 Failure Recovery

Failure recovery is evaluated by using an example application as shown in Figure 6.16. The

application tracks popular keys and corresponding contents in the similar way as Twitter

trends. Blue nodes without border represent RDDs generated and consumed by the current

step. Black RDDs are generated by last step and consumed by the current step, while RDDs

with bold red rim are generated by the current step and consumed by the next step. In this

way, steps are chained together into an ever-growing lineage graph. The application receives

a raw RDD that contains key-value data in every step. The raw RDD partitions to the kv

RDD by applying the partitionBy (pttBy) transformation. Then, the application aggregates

the count (cnt) and content (ctt) by calling reduceByKey (rbk) API respectively. The cnt

RDD cogroups (cogrp) with the decayed count RDD (dec) from the last step, and sums by

key to create the ccnt RDD. Then, it only keeps the popular keys (acnt) by applying the

filter API. The ctt RDD cogroups with the result RDD res from last step to generate the cctt

RDD. Finally, cctt joins with popular keys (acnt) to create popular key-value pairs (jall)

across steps, and cleans the data to arrive the final result (res) of the current step. Please

notice that, we are not arguing this is the optimal way to implement the application logic,

as how application is implemented falls out of the scope of this chapter.

We run the application for 10 steps with varying input data sizes. We feed the Wikipedia

trace as the input data, and use a fixed-length prefix of the requested URL as the key. We

first evaluate how accurate we could estimate checkpoint sizes using cached RDD sizes. As

shown in Figure 6.17, where the white bars represent the cached RDD size and the gray

bar the checkpoint size, there is a constant relationship between the cache and checkpoint

sizes. Although this constant may change when we use different serialization algorithms, it

does not affect the checkpoint algorithm, as the algorithm finds the relatively optimal set of

RDDs to persist.

Then, we measure the amount of checkpointed data over steps. Figure 6.18 compares

three schemes: 1) Stark enforces exact optimality (Stark-1 ); 2) Stark relaxes the optimality
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by using f = 3 (Stark-3 ); 3) A variant of Tachyon [110] Edge checkpointing algorithm

that checkpoints all leaf RDDs when invoked. Edge algorithm assumes there is a backend

thread checkpointing data whenever the thread is idle, which differs from our assumptions

that checkpointing algorithm is proactively triggered to enforce recovery delay bound. So,

we revise the Edge algorithm to allow checkpoint operations to be conducted whenever the

length of any uncheckpointed path violates the delay threshold. From Figure 6.18, we can

see that Stark writes much less data compared to Tachyon, which immediately translates to

savings on cluster resource consumption. Because checkpointing all leaves does not guarantee

optimality. For example, after calculating cctt, the system realizes its recovery chain is too

long due to the dependencies among cctt, res, and jall. Hence, Tachyon would checkpoint the

current leaf RDDs dec and cctt. However, after generating jall, its recovery chain violates

the recovery bound again due to the ccnt, acnt, and dec dependencies. Tachyon would then

checkpoint the leaf jall. However, as shown in Figure 6.17, the size of jall is much larger

than the size of acnt. Therefore, Stark would choose to checkpoint acnt instead to reduce

the overhead.

Stark-1 beats Stark-3 in the first 4 steps as it enforces exact optimality. However, when

the lineage grows larger, Stark-3 outperforms Stark-1, as Stark-1 tends to leave longer
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Figure 6.18: Total Checkpoint Size

uncheckpointed paths after each action, forcing checkpointing actions to be invoked more

frequently.

6.4.5 Throughput and Delay

We measure the delay and the throughput using Twitter data. As only a small fraction

of tweets are tagged with location information, we merge the NYC taxi trace and Twitter

dataset together by appending a tweet after every taxi pick-up/drop-off event log, such

that every tweet associates with a geographic coordinate and a new timestamp. We then

replay the result dataset as a TCP stream source. Stark uses the streaming component to

process incoming data, creating one RDD for every 5-minute data. The spatial coordinates

are encoded into an one-dimensional space using the Z encoding algorithm [123]. Each job

is based on the data within a random time range and a random geographic region, which

triggers cogroup operations on multiple RDDs.

As the trace emits data at varying speed over time, the throughput may also change

accordingly. In order to arrive at a steady number, we first measure the system throughput

under a static speed by revising the trace timestamps and forcing the stream source to release

an equal number of tweets per second. To calculate the throughput, we measure the number

of jobs per second the system could handle when keeping the delay below 800ms. Figure 6.19

plots the result. The curve with purple triangles on the upper-left corner represents the

Spark-R baseline. As it requires expensive data shuffling operation, jobs take 630ms to finish

on average and handles only 9 queries per second. When using the same hash partitioner

(Spark-H ) across all RDDs, the response time drops to 405ms, and the throughput improves
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Figure 6.20: Job Delay Over Time

to 56 queries per second. After further enforcing data co-locality, response time immediately

decreases to 109ms, and the system handles up to 220 queries per second. In this set

of experiments, as both data generating speed and distribution stay unchanged, partition

elasticity helps little. As shown by the Spark-E curve, the extra overhead introduced by

grouping tasks slightly hurts the system response time and throughput.

In Figure 6.20, we measure the system response time by replaying the trace at the real

speed according to the NYC taxi trace timestamp. The timestep size is set to 5 minutes.

Queries analyze a random range of timesteps in the past three hours. Due to the unacceptably

high response time and low throughput as shown in Figure 6.19, the experiment excludes the

Spark-R baseline. To compare the response time, the amount of workload has to stay within

the capability of all baselines. Hence, workload emulators generate 20 jobs per second. As

shown by the red curve with diamonds, the response time of Spark-H surpasses 800ms when

the amount of data generated per second increases. Stark-H keeps the response time below

200ms. Stark-E shows the benefits of extendable partitions. As the amount of data per

timestep increases, each job spans to a larger set of executors with each executor processing

a smaller amount of data. We can conclude from the results that, although Stark-E subjects

to longer delay compared to Spark-H when the workload is static and light, it outperforms

Spark-H by elastically scaling out when the amount of workload grows.
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6.5 Related Work

In-memory computation [16, 18, 111, 113, 115, 129–135] has recently attracted immense

attentions from both academia and industry. Multiple efforts have been expended on inves-

tigating various aspects of the problem and pushing forward this direction. For example,

Spark [18], as a generalized in-memory computation system, has already greatly boosted

data processing solutions for many application needs throughout the industry [122], gain-

ing rapid growth in user population. Spark improves on Hadoop by storing the results of

the intermediate stages in memory instead of disk, and thereby eliminating the bottlenecks

caused by slow disk accesses. Its streaming components [16] sits on top of Spark core, and

enables stream processing using micro-batching strategies. Naiad [113] unifies stream and

batch processing systems, offer comparable functionalities as Spark. These systems offer

limited optimizations for applications working on collections of datasets.

Spark has a rich ecosystem to handle specialized use cases. Spark SQL [111, 129] supports

SQL-like queries on structured data in spark applications. It translates SQL queries into

Spark jobs, and optimizes runtime code generation. MLlib [130], as another example, is a

scalable machine learning library implemented on Spark. SocialTrove [115] applies Spark

and in-memory caching to implement a content-agnostic summarization infrastructure for

social data streams. GraphX [131] is a graph processing framework to provide vertex parallel

abstractions using the concept of RDD. Several of the above applications also work on dataset

collections. For example, the slice transformation in Spark Streaming allows jobs to operate

on multiple timestep RDDs within a given time interval. Graphx relies on distributed joins

to bring together edge and node data. Therefore, optimizations for dataset collection will

benefit these applications as well.
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Chapter 7: Conclusion and Future Work

7.1 Summary

This thesis proposes a dynamic resource provisioning framework for data center workloads.

The framework contains four components: system, sensor, policy and manager. The system

is the target to enable dynamic resource provisioning, and the sensor collects system status.

The policy makes provisioning decisions and the manager configures the system following

the provisioning decision and takes care of potential transition penalties.

Due to the diversity in data center software systems, the policy and the manager compo-

nents need to be customized for different types of workloads. This thesis focuses on workloads

from storage and computing systems. For storage systems, such as the HBase/HDFS stack,

dynamic resource provisioning may destroy the mapping from data items to physical servers,

which in turn brings the penalty of losing data locality. I solve this problem by altering the

data replica placement policy in the HDFS layer, allowing HBase daughter regions to land

on a physical server with the region data already stored locally on the disk. For computing

systems, such as Hadoop MapReduce and Spark, the thesis first proposes a theoretical solu-

tion to determine the minimum amount of resource to guarantee schedulability. Then, the

design of namespace is introduced to enforce co-locality properties.
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7.2 Future Research

Solutions discussed in this thesis are designed for data centers composed of conventional

servers that individually possesses a huge amount of computation, storage, and network

resources. In the future, we plan to explore a fundamentally different approach that hybrids

conventional servers with ultra-low power embed devices.

To evaluate the feasibility, we built a cluster composed of 35 Intel Edison devices, indi-

vidually running at low CPU frequency (dual-core 500MHz) while collectively yielding more

energy-efficiency in various data center workloads. The Edison device is typically used for

Internet-of-Things and sensor networks due to its ultra-low power consumption, but we also

show that a larger cluster of such sensor-class micro servers still possesses significant com-

putational power for data center workloads when managed properly, while achieving more

work-done-per-joule. The intuitive reason that modern high-end processors are less effi-

cient is that in order to reach higher speed, the energy consumption increases super-linearly,

devoting much of the power to branch prediction, speculative execution and out-of-order

execution. In contrast, small processors running at lower frequency are more energy effi-

cient since their use much smaller die area for L2/3 cache compared to high-end processors,

thus dedicating most energy to basic computations. In addition, a scale-out cluster of micro

servers has the ability to shutdown nodes at a finer granularity, potentially increasing the

energy proportionality and reducing the overhead of waking up servers. Finally, the low

price and small physical size of micro servers lead to more cost-efficient and compact cluster

deployment, while their ultra-low power consumption makes it easier to achieve higher server

density without worrying about the cooling and power supply limits.
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