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Abstract

Cognitive diagnostic Modeling (CDM) and Computerized Adaptive Testing (CAT) are two useful tools to

measure subjects’ latent abilities from two different aspects. CDM plays a very important role in the fine-

grained assessment, where the primary purpose is to accurately classify subjects according to the skills or

attributes they possess, while CAT is a useful tool for coarse-grained assessment, which provides a single

number to indicate the student’s overall ability. This thesis discusses and solves several theoretical and

applied issues related to these two areas.

The first problem we investigate related to a nonparametric classifier in Cognitive Diagnosis. Latent

class models for cognitive diagnosis have been developed to classify examinees into one of the 2K attribute

profiles arising from a K-dimensional vector of binary skill indicators. These models recognize that response

patterns tend to deviate from the ideal responses that would arise if skills and items generated item responses

through a purely deterministic conjunctive process. An alternative to employing these latent class models

is to minimize the distance between observed item response patterns and ideal response patterns, in a

nonparametric fashion that utilizes no stochastic terms for these deviations. Theorems are presented that

show the consistency of this approach, when the true model is one of several common latent class models for

cognitive diagnosis. Consistency of classification is independent of sample size, because no model parameters

need to be estimated. Simultaneous consistency for a large group of subjects can also be shown given some

conditions on how sample size and test length grow with one another.

The second issue we consider is still within CDM framework, however our focus is about the model

misspecification. The maximum likelihood classification rule is a standard method to classify examinee

attribute profiles in cognitive diagnosis models. Its asymptotic behavior is well understood when the model

is assumed to be correct, but has not been explored in the case of misspecified latent class models. We

investigate the consequences of using a simple model when the true model is different. In general, when a

CDM is misspecified as a conjunctive model, the MLE for attribute profiles is not necessarily consistent. A

sufficient condition for the MLE to be a consistent estimator under a misspecified DINA model is found.

The true model can be any conjunctive models or even a compensatory model. Two examples are provided
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to show the consistency and inconsistency of the MLE under a misspecified DINA model. A Robust DINA

MLE technique is proposed to overcome the inconsistency issue, and theorems are presented to show that it

is a consistent estimator for attribute profile as long as the true model is a conjunctive model. Simulation

results indicate that when the true model is a conjunctive model, the Robust DINA MLE and the DINA

MLE based on the simulated item parameters can result in relatively good classification results even when

the test length is short. These findings demonstrate that simple models can be fitted without severely

affecting classification accuracy in some cases.

The last one discusses and solves a controversial issue related to CAT. In Computerized Adaptive Testing

(CAT), items are selected in real time and are adjusted to the test-taker’s ability. A long debated question

related to CAT is that they do not allow test-takers to review and revise their responses. The last chapter

of this thesis presents a CAT design that preserves the efficiency of a conventional CAT, but allows test-

takers to revise their previous answers at any time during the test, and the only imposed restriction is on

the number of revisions to the same item. The proposed method relies on a polytomous Item Response

Theory model that is used to describe the first response to each item, as well as any subsequent revisions

to it. The test-taker’s ability is updated on-line with the maximizer of a partial likelihood function. I have

established the strong consistency and asymptotic normality of the final ability estimator under minimal

conditions on the test-taker’s revision behavior. Simulation results also indicated this proposed design can

reduce measurement error and is robust against several well-known test-taking strategies.

iii



To my parents, Liping Jiang and Xuehong Wang

iv



Acknowledgments

I would never have been able to finish my dissertation without the support of many people. First of all, I want

to show my greatest gratitude to my two advisors, Professor Jeff Douglas and Professor Hua-Hua Chang.

I am thankful for Professor Jeff Douglas’s generous guidance and support, starting from the first semester

of my Ph.D study. My very first research, first presentation, and first job hunting, all were motivated and

encouraged by him. His generosity in sharing research ideas, warm personality and kind encouragements

have great influence to my attitude towards research and mentoring students. Also, thanks to Professor

Hua-Hua Chang, who has helped me prepare my future career by teaching me from writing research papers

and dealing with hard review comments, helping me improve both oral and written communication skills,

and always creating many opportunities for me to present my research work everywhere. His enthusiasm ,

positive attitude and determination encouraged me whenever I a hard time in my graduate study.

In addition, I wish to thank the members of my thesis committee. Thanks to Professor Georgios Fel-

louris, who has provided countless hours of assistance and guidance throughout my dissertation work, which

contributed to the Chapter 3 of my thesis. I would like to express my sincere appreciation to Professor

Steven Culpepper and Professor Jinming Zhang for their insightful suggestions and constant support. I

also thank the faculty of the Statistics Department at the University of Illinois. Each of them has had an

influence on my education, particularly many thanks to Professors Xiaofeng Shao and Professor Annie Qu,

who have generously offered their helpful discussions on my work and guidance to my future career.

Thanks also goes to the fellow students in the Statistics Department, who have helped me a lot during

my five-year study. Special thanks to Chung Eun Lee, Peibei Shi, Yeonjoo Park, Xianyang Zhang, Jin Wang,

Jianjun Hu, Srijan Sengupta, Xuan Bi, Xiwei Tang, Xueying Zheng, Christopher Kinson and many others.

Thank you very much for taking courses with me, sharing memories and experiences with me. I also owe

special thanks to Haiyan Lin, who is my friend and also my internship mentor at ACT, and Xin Li, my friend

at ACT, for their helpful discussions of research work and suggestions for my career development. Many

thanks also goes to my friends, Yan Yang and Yiling Hu, for their generosity of sharing and supporting to

my research work.

v



Lastly, I would like to show my tremendous gratitude to my beloved parents and husband. Special

thanks to my father, Xuehong Wang, who has gave me greatest treasure of personalities like grit, zest and

self-motivation, and without whom, I could not have the chance to go to college. I also want to thank my

dearest mother, Liping Jiang, who raises me to become a person with optimism, gratitude and curiosity.

Those characteristics walk me through various difficulties in my life. I can never come so close to my dream

without you. I also want to express my sincere thanks to my husband, Houping Xiao, for his unconditional

love and support in this long journey.

vi



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter 1 Consistency of Nonparametric Classification in Cognitive Diagnosis . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Cognitive Diagnostic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Nonparametric Classification for Cognitive Diagnosis . . . . . . . . . . . . . . . . . . . 3

1.2 Consistent Classification Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Assumptions and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Asymptotic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Numerical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.1 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 2 Model Misspecification in Cognitive Diagnosis . . . . . . . . . . . . . . . . . . 20
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Behavior of MLE in Misspecified Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 The asymptotic behavior of MLE under misspecified conjunctive CDMs . . . . . . . . 23
2.2.3 Examples of the MLE under a misspecified DINA model . . . . . . . . . . . . . . . . . 32

2.3 Robust Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.1 Robust DINA MLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.2 Asymptotic behavior of the Robust DINA MLE . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.1 Simulation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.2 Simulation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Real data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Chapter 3 Computerized Adaptive Testing that Allows for Response Revision . . . . . . 51
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Nominal Response Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Standard CAT with Nominal Response Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.2 Asymptotic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.3 Discussion of the design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4 CAT with response revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.1 A novel CAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.2 The proposed design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4.3 Discussion of the proposed design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

vii



3.4.4 Asymptotic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5.1 An idealized item pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.5.2 A discrete item pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.6 Two test-taking strategies in CAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.7 Simulation Studies Regarding Three test-taking behaviors . . . . . . . . . . . . . . . . . . . . 84

3.7.1 Correcting careless errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.7.2 The Wainer Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.7.3 The GK Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.8 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

viii



List of Tables

1.1 Q-matrices for test of 20 items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2 Classification rates for the nonparametric method with DINA data . . . . . . . . . . . . . . 16
1.3 Classification rates for the nonparametric method with NIDA data . . . . . . . . . . . . . . . 17
1.4 Classification results for the nonparametric methods with DINA data and a uniform distri-

bution on α when Q is misspecified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 Classification results for the nonparametric method with NIDA data and a uniform distribu-

tion on α when Q is misspecified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Attributes and Item Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Asymptotic form of the upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3 Q matrix, K = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4 Q matrix, K = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5 Classification rates for three methods with DINA data . . . . . . . . . . . . . . . . . . . . . 45
2.6 Classification rates for three methods with Reduced RUM data . . . . . . . . . . . . . . . . . 46
2.7 Classification rates for three methods with NIDA data . . . . . . . . . . . . . . . . . . . . . . 47
2.8 Q matrix for square root operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.9 The Equivalence Classification Agreement Among Five Methods . . . . . . . . . . . . . . . . 49

3.1 RMSE in CAT and RCAT in an idealized item pool . . . . . . . . . . . . . . . . . . . . . . . 80
3.2 RMSE of CAT and RCAT in a realistic item pool . . . . . . . . . . . . . . . . . . . . . . . . 83
3.3 The conditional bias from the three designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.4 Four types of CAT designs that allow for response revision . . . . . . . . . . . . . . . . . . . . 88
3.5 The bias from five designs under the GK strategy . . . . . . . . . . . . . . . . . . . . . . . . . 89

ix



List of Figures

2.1 Inconsistency of MLE under model misspecification . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2 Consistency of MLE under model misspecification . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Consistency of Robust DINA MLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4 True Model: DINA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5 True Model: Reduced RUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6 True Model: NIDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 Decomposition of the Fisher information. The solid line represents the evolution of the nor-
malized accumulated Fisher information, {It(θ̂t)/ft, 1 ≤ t ≤ τn}, in a CAT with response
revision. The dashed line with squares (diamonds) represents the corresponding information
from first responses (revisions). The horizontal line represents the maximal Fisher informa-
tion, J∗(θ). The true ability value is θ = −2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.2 95% Confidence Intervals. The left-hand side presents 95% confidence intervals, θ̂i ± 1.96 ·
(Ii(θ̂i))

−1/2, 1 ≤ i ≤ n, in a standard CAT. The right-hand side presents the corresponding

intervals θ̂τi ± 1.96 · (Iτi(θ̂τi))−1/2, 1 ≤ i ≤ n in the proposed RCAT design that allows for
response revision. In both cases, the true value of θ is −3. . . . . . . . . . . . . . . . . . . . . 81

3.3 Calibrated item parameters of the nominal response model in a pool with 134 items, each
having m = 4 categories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4 The conditional RMSEs at different scenarios for number of errors . . . . . . . . . . . . . . . 86
3.5 . The conditional biases and RMSEs under the Wainer strategy . . . . . . . . . . . . . . . . . 87
3.6 The conditional RMSEs from six designs under the GK strategy . . . . . . . . . . . . . . . . 89

x



Chapter 1

Consistency of Nonparametric
Classification in Cognitive Diagnosis

1.1 Introduction

Interest in cognitive diagnostic models (CDMs) which allow for the profiling of subjects according to a

variety of latent characteristics has been observed since the 1990s. Especially, motivated by the No Child

Left Behind Act of 2001 (Law, 2002), most developments and applications of CDMs have taken place in

educational contexts, where CDMs aim to provide students with information concerning whether or not they

have mastered each of a group of specific skills, which are often generically referred to as attributes. At the

same time, CDMs have also been widely applied outside of the field of education. For example, CDMs were

used as a tool for providing diagnosis of psychological disorders (Jaeger et al., 2006; Templin and Henson,

2006; De La Torre et al., 2015). Some researchers have also referred to CDMs as diagnostic classification

models (DCMs; Rupp and Templin (2008b); Rupp et al. (2010)) for greater generality of the applications of

CDMs.

The first chapter provides a theoretical foundation for a nonparametric method of cognitive diagnosis

studied in Chiu and Douglas (2013). We begin with a review of latent class models for cognitive diagnosis,

focusing on three particular models that play a role in assumptions of consistency theorems.

1.1.1 Cognitive Diagnostic Models

Latent class models for cognitive diagnosis are generally restricted to reflect some assumptions about the

underlying process by which examinees respond to items. We focus on a few such models that assume a

conjunctive response process, and a more thorough review of cognitive diagnostic models can be found in

Rupp and Templin (2007).

An important feature in the models we consider is a Q matrix (Tatsuoka,1985). This matrix records which

attributes or skills are required to correctly respond to each item. Suppose that there are N subjects, J

items and K attributes to classify. Entry qjk in the J×K matrix Q indicates whether item j requires the kth

attribute. Let Y1,Y2, ...,YN be random item response vectors of N subjects, where Yi = (Yi1, Yi2, ..., YiJ)′.
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Let αi denote the attribute pattern for subject i, where αi = (αi1, αi2, ..., αiK)′ and each αik takes values

of either 0 or 1 for k = 1, 2, ...,K. Specifically αik is an indicator of whether the ith subject possesses the

kth attribute.

Conjunctive latent class models for cognitive diagnosis express the notion that all attributes specified

in Q for an item should be required to answer the item correctly, but allow for slips and guesses in ways

that distinguish the models from one another. The DINA model, an extension of the two-class model of

Macready and Dayton (1977), and named in Junker and Sijtsma (2001), is one such example. Consider ideal

response patterns, patterns that would arise if attribute possession entirely determined responses. Denote

this ideal response pattern by ηi = (ηi1, ηi2, ..., ηiJ)′, where ηij =
∏K
k=1 α

qjk
ik . It denotes whether subject

i has mastered all the attributes required by item j. The DINA allows for deviations from this pattern

according to slipping parameters for each item, sj = P (Yij = 0|ηij = 1), and guessing parameters for each

item, gj = P (Yij = 1|ηij = 0). The item response function of the DINA model is then

P (Yij = 1|αi, s,g) = (1− sj)ηijg
(1−ηij)
j ,

and a likelihood function may be constructed from these item response functions together with an assumption

of independence of Yi given the attribute vector αi. Though it is a simple and practical model, the DINA

has some strong restrictions (Roussos et al., 2007). In particular, it assumes that the probability of a correct

item response, given non-mastery on at least one skill, does not depend on the number and type of required

skills that are not mastered. The next model we consider differs in this regard, but has some restrictions of

its own.

The NIDA model, introduced in Maris (1999), treats the slips and guesses at the subtask level. The

ideal response patterns remain the same, but a subtask response ηijk = 0 indicates whether subject i

correctly applied attribute k to answer item j. In this model, sk = P (ηijk = 0|αik = 1, qjk = 1), gk =

P (ηijk = 1|αik = 0, qjk = 1), and Yij = 1 only if all subtasks are correctly completed. By convention, let

P (ηijk = 1|αik = a, qjk = 0) = 1, no matter the value of αik. Then the item response function of the NIDA

model is

P (Yij = 1|αi, s,g) =
∏K
k=1 P (ηijk = 1|αik, sk, gk) =

∏K
k=1[(1− sk)αikg1−αikk ]qjk .

A restriction of the NIDA model is that it implies items requiring the same set of attributes must have

precisely the same item response functions. This can be viewed as a desired property in certain situations

when the theory of the cognitive attributes is indeed correct, and the Q matrix describes the cognitive

processes to solve items of a certain type sufficiently well. It is also parsimonious, which is helpful for small

data sets that may not afford estimation of a more general parametric model (Roussos, Templin & Henson,
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2007). However, in many situations it can readily be seen to conflict with data, because it implies such strict

conditions on observed proportion correct values of the items. For instance, the model implies that any two

items with the same entry in Q must have the same expected proportion correct. A generalization of this that

allows slipping and guessing probabilities to vary across items is a reduced version of the Reparameterized

Unified Model (Hartz and Roussos, 2008). In this model, the item response function is

P (Yij = 1|αi, π∗, r) = π∗j
∏K
k=1 r

∗qjk(1−αk)
jk .

Here π∗j is the probability a subject who possesses all of the required attributes answers item j correctly,

and r∗jk can be viewed as a penalty parameter for not possessing the kth attribute, and is between 0 and 1.

These three specific models will be considered in the classification consistency theory of the next section.

However, more general cognitive diagnostic models have been developed including conjunctive, disjunctive,

and compensatory models. For example, see the G-DINA framework (De La Torre, 2011), the log-linear

cognitive diagnostic model (Henson et al., 2009), and the general diagnostic model (Davier, 2008).

1.1.2 Nonparametric Classification for Cognitive Diagnosis

The restricted latent class models described above have become popular in cognitive diagnostic research.

However, there are alternatives that do not assume any particular probability model. The rule space method-

ology (Tatsuoka, 1983, 1985) is a widely-known and early approach to diagnostic testing, that combines

parametric modeling with the notion of an ideal response pattern. The idea behind rule space is to use

Boolean descriptive functions to establish the relationship between the examinee’s attribute pattern and the

observed response pattern through the Q-matrix, after adjusting for a fitted item response model. Building

on this method, but in a more nonparametric fashion, Barnes (2010) developed hill-climbing algorithms to

build the Q-matrix and examinee classifications in a purely exploratory approach. Some recent research has

attempted to classify attribute patterns by utilizing cluster analysis. Willse et al. (2007), for example, apply

K-means clustering to cognitive diagnosis data generated by the reduced Reparameterized Unified Model

(RUM). Ayers et al. (2008), test the performance of various common clustering methods in classifying exam-

inees. Chiu et al. (2009), conducted a theoretical and empirical evaluation of hierarchical agglomerative and

K-means clustering for grouping examinees into clusters having similar attribute patterns. They established

conditions for clusters to match perfectly with corresponding latent classes with probability approaching 1

as test length increases. Park and Lee (2011), also examined a method of clustering attributes required to

solve mathematics problems on the TIMSS by mapping item responses to an attribute matrix, and then

conducting K-means and hierarchical agglomerative cluster analysis.
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A direct approach to nonparametric classification is to match observed item response patterns to the

nearest ideal response pattern. Chiu and Douglas (2013), studied this method, and found that accurate

classification can be achieved when the true model is DINA and NIDA with slip and guess parameters

considerably greater than 0. A step of the rule space method (Tastuoka, 1983), is quite similar. However,

rule space first requires calibration of the ability parameter based on an item response model, and cannot be

viewed as a wholly nonparametric method. Rule space attempts to reduce the dimensionality of observed

response patterns and the ideal response scores by mapping to a pair of new variables (θ, η) in a Cartesian

product space,then calculates a Mahalanobis distance between the two patterns to identify the attribute

pattern for each subject. By contrast, the Chiu and Douglas (2013) method requires fewer steps. The

estimator of α in this method would be perfect if all slip and guess parameters were 0, but still performs

with good relative efficiency even when this is not the case. To formally define the estimator, first recall that

Y1,Y2, ...,YN are random item response vectors of N subjects to J items, where Yi = (Yi1, Yi2, ..., YiJ)′.

Define ηij =
∏K
k=1 α

qjk
ik to be the jth component of the ideal response pattern from the ith subject, and let

η denote this pattern. Then all possible ideal response patterns, η1,η2, ...,η2K , can be constructed from all

2K possible values for αi. Because the ηi is determined by αi, we define the distance between the observed

item response vector for the ith subject yi and the ideal response pattern under attribute profile αm to be

D(yi,αm), for m = 1, 2, ..., 2K .

The nonparametric classification estimator α̂ arises by minimizing some measure of distance over all

possible ideal response vectors, and determining the α associated with the nearest ideal response vector. It

is natural to use Hamming distance for clustering with binary data, which simply counts the components of

yi and ηm that disagree,

D(yi,αm) =

J∑
j=1

|yij − ηmj | =
J∑
j=1

dij(αm). (1.1)

Minimizing this distance over all possible values of the latent attribute vector produces the estimator,

α̂i = arg min
m∈{1,2,...,2K}

D(yi,αm). (1.2)

This estimator can result in ties, especially in short exams. The probability of a tie converges to 0 as exam

length increases, so ties play no role in the theory of the estimator. However, in practice one must decide how

to break ties. This can be done by randomly choosing among the tied values, or by implementing a weighted

version Hamming distance to reduce their frequency. The next section considers the asymptotic theory for

α̂, and consistency theorems are given when the true model is the DINA, NIDA, or Reparameterized Unified
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model.

1.2 Consistent Classification Theory

Though the nonparametric classifier based on minimizing Hamming distance to ideal response patterns

is clearly consistent when slipping and guessing parameters are 0 and data are ideal response patterns,

we show it also yields consistent classification under a variety of models when the stochastic terms differ

considerably from 0. Chiu and Douglas (2013) gave a heuristic justification for the theoretical underpinnings

of the classifier, and a formal analysis is given below. First we provide the assumptions and conditions for

consistency under different latent class models, along with their justifications.

1.2.1 Assumptions and Conditions

First we make the standard assumptions of independent subjects and conditional independence.

Assumption 1: The item response vectors Y1,Y2, ...,YN for subjects 1, 2, ..., N are statistically indepen-

dent.

Assumption 2: For subject i, the item response Yi1, Yi2, ..., YiJ are statistically independent conditional

on attribute vector αi.

Let qjk be the j, k element of the Q matrix, and define Bj = {k|qjk = 1}.

For some number δ ∈ (0, .5) we have the following conditions on parameters of the possible true model:

Condition (a.1): When data arise from the DINA model, parameters gj and sj satisfy that gj < 0.5− δ

and sj < 0.5− δ.

Condition (a.2): When data arise from the NIDA model, gk < 0.5− δ, for k = 1, 2, ...,K, and
∏
k∈Bj (1−

sk) > 0.5 + δ, for j = 1, 2, ..., J .

Condition (a.3): When data arise from the Reduced RUM model, π∗j > 0.5 + δ for every j, and for some

k ∈ Bj , r∗jk < 0.5− δ.

Condition (b): Define Am,m′ = {j|ηmj 6= ηm′ j}, where m and m
′

index different attribute patterns

among the 2K possible patterns. Card(Am,m′ )→∞ as J →∞.

Condition (c): The number of subjects and the test length satisfy the relationship that ∀ε > 0, Ne−2Jε
2 →

0 as J →∞.

Conditions (a.1) and (a.2) bound slipping and guessing parameters in the DINA and NIDA models away

from 0.5. These are reasonable assumptions for a valid model, because the probability of a subject answering

an item correctly should be at least primarily determined by possession or nonpossession of the required
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attributes. If such assumptions are not met, diagnostic modeling will not be as useful, either with the

nonparametric classifier or with the parametric model. The condition essentially says that the most likely

response for someone who has mastered the attributes is 1, and the most likely response for someone who

has not mastered the required attributes is 0. Certainly masters of the attributes should have a higher

probability of success, though requiring it is at least 0.5 does make the conditional somewhat restrictive.

Condition (a.3) expresses the same notion for the Reduced RUM model, which can be rewritten as a NIDA

model in which slipping and guessing parameters can vary with the item. Condition (b) guarantees that for

each pair of attribute patterns, there is an infinite amount of information to separate them as the number

of items grows to infinity. Finally Condition (c) is established in order to get the simultaneous consistent

classification of a whole sample of subjects, and is unnecessary when considering the consistent classification

of a single subject.

1.2.2 Asymptotic Results

In this section, three propositions will be introduced first in order to prove the consistency results for a single

subject and a sample of subjects.

Proposition 1 Under Assumptions 1, 2, Conditions (a.1), (a.2), (a.3) and (b), for every i ∈ {1, 2, ..., N},

the true attribute pattern will minimize E[D(Yi,αm)] (m = 1, 2, ..., 2K), that is

α0 = argmin
αm

E [D(Yi,αm)] .

Proof. Suppose the real attribute pattern for a fixed item response vector Yi is α1. Let α2 be another

attribute pattern. Because E[D(Yi,αm)] =
∑J
j=1E|Yij − ηmj |, we just need to compare E(|Yij − η1j |)

and E(|Yij − η2j |) for every j. Note that if α1 6= α2, there must be some j such that η1j 6= η2j . Let

A1,2 = {j|η1j 6= η2j}. Then for every j ∈ A1,2, we have

η1j = 1, η2j = 0, E(|Yij − η1j |)− E(|Yij − η2j |) = 1− 2P (Yij = 1);

η1j = 0, η2j = 1, E(|Yij − η1j |)− E(|Yij − η2j | = 2P (Yij = 1)− 1.

The problem then turns out to be deriving the specific P (Yij = 1) under different models.

(1) When data arise from DINA model, P (Yij = 1) = (1− sj)ηj ∗ g
1−ηj
j .

When η1j = 1 and η2j = 0,

E (|Yij − η1j |)− E(|Yij − η2j |) = 2sj − 1.
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When η1j = 0 and η2j = 1,

E(|Yij − η1j |)− E(|Yij − η2j | = 2gj − 1.

From Condition (a.1) we know that gj < 0.5− δ, sj < 0.5− δ for some positive number δ. So we can get

E(|Yij − η1j |) < E(|Yij − η2j |) under the DINA model.

(2) When data arise from the NIDA model, P (Yij = 1) =
∏K
k=1

[
(1− sk)αkg1−αkk

]qjk
When η1j = 1 and η2j = 0,

E(|Yij − η1j |)− E(|Yij − η2j |) = 1− 2
∏
k∈Bj

(1− sk).

When η1j = 0 and η2j = 1,

E(|Yij − η1j |)− E(|Yij − η2j | = 2 ∗
∏
k∈Bj

g1−αkk (1− sk)αk − 1.

According to Condition (a.2), for some positive number δ,
∏
k∈Bj (1−sk) > 0.5+δ, so 1−2

∏
k∈Bj (1−sk) <

0. Furthermore, when η1j = 0, there must be some k
′ ∈ Bj such that αk′ = 0 . Then gk′ < 0.5 − δ < 0.5,

we can get 2 ∗
∏
k∈Bj g

1−αk
k (1 − sk)αk − 1 < 0. So E(|yij − η1j |) < E(|yij − η2j |) is also correct under the

NIDA model.

(3) When data arise from the Reduced RUM model, P (Yij = 1) = π∗j
∏K
k=1 r

∗qjk(1−αk)
jk .

When η1j = 1 and η2j = 0,

E(|Yij − η1j |)− E(|Yij − η2j |) = 1− 2π∗j .

When η1j = 0 and η2j = 1,

E(|Yij − η1j |)− E(|Yij − η2j |) = 2 ∗ π∗j
∏
k∈Bj

r
∗(1−αk)
jk − 1.

Similar to the argument for the NIDA model, there must be some k
′ ∈ Bj such that αk′ = 0. With

Condition (a.3) that π∗j > 0.5 + δ for each j, we can get 1 − 2π∗j < 0. And rjk′ < 0.5 − δ, then

π∗j
∏
k∈Bj r

∗(1−αk)
jk = rjk′π

∗
j

∏
k∈Bj ,k 6=k′ r

∗
jk < 0.5

From the above argument,we can see that no matter which of the models is true, E(|Yij − η1j |) <

E(|Yij − η2j |), when j ∈ A1,2. Otherwise, for every j ∈ AC1,2, E(|Yij − η1j |) = E(|Yij − η2j |). Then we can
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see that:

E

 J∑
j=1

|Yij − η1j |

 < E

 J∑
j=1

|Yij − η2j |

 .
♦

The next proposition states that the true attribute pattern will be well separated from one another as

test length goes to infinity.

Proposition 2 Under the assumptions and conditions of Proposition 1, in addition to Condition(b), and

suppose α1 is the true attribute profile, α2 is another different attribute profile,

lim
J→∞

E [D(Yi,α2)]− E [D(Yi,α1)] =∞.

Proof. Note that the difference between E[D(Yi,α1)] and E[D(Yi,α2)] is only determined by the values

when j ∈ A1,2. We first prove this proposition under the DINA model.

lim
J→∞

E[D(Yi,α2)]− E[D(Yi,α1)] = lim
J→∞

∑
j∈J1

1− 2gj + lim
J→∞

∑
j∈J2

1− 2sj

> lim
J→∞

∑
j∈J1

δ + lim
J→∞

∑
j∈J2

δ =∞

Here J1 = {j ∈ A1,2|η1j = 0, η2j = 1}, J2 = {j ∈ A1,2|η1j = 1, η2j=0}, and the infinite sum results from the

cardinality of J1 and J2 going to infinity, as guaranteed by Condition (b).

The same argument can be applied to the NIDA model and the Reduced RUM.

♦

The third proposition investigates the relationship between the average of dij(αm) and its expectation

E[dij(αm)], for fixed i and every m ∈ {1, 2, ..., 2K} , when the test length goes to infinity.

Proposition 3 Under Assumptions 1 and 2, ∀ε > 0 and a fixed i ∈ {1, 2, ..., N}, define

Bε(J) =

 max
m∈{1,2,...,2K}

| 1
J

J∑
j=1

(dij(αm)− E[dij(αm)])| ≥ ε

 .

Then

lim
J→∞

P (Bε(J)) = 0.

In order to prove Proposition 3, we need to apply the Hoeffding’s Inequality as it is stated below:
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Hoeffding’s Inequality Let Z1, Z2, ..., Zn be independent random variables such that ∀i, 0 ≤ Zi ≤ 1, Then

P
(
{| 1n (

∑n
i=1 Zi − E[Zi])| ≥ ε}

)
≤ 2 exp(−2nε2).

Proof of Proposition 3:

First we must show that for every ε > 0, P ({| 1J
∑J
j=1(dij(αm)−E[dij(αm)])| ≥ ε}) ≤ 2 exp(−2Jε2) , and

this is obtained by Hoeffding’s Inequality.

Note that ∀j ∈ 1, 2, ..., J, dij(αm) = |Yij − ηmj |. For subject i, Yij , j ∈ {1, 2, ..., J} are independent

random variables, conditional on the true attribute pattern. This implies that dij(αm), j ∈ {1, 2, ..., J}

are independent random variables, and 0 ≤ dij(αm) ≤ 1 is obvious. So di1(αm), di2(αm), ..., diJ(αm)) are

independent random variables which satisfy the conditions of Hoeffding’s Inequality, which states that for

every ε > 0,

P ({| 1
J

J∑
j=1

(dij(αm)− E[dij(αm)])| ≥ ε}) ≤ 2 exp(−2Jε2).

Using this result we see that

P

 2K⋃
m=1

| 1J
J∑
j=1

(dij(αm)− E[dij(αm)])| ≥ ε


 ≤

2K∑
m=1

P

| 1J
J∑
j=1

(dij(αm)− E[dij(αm)])| ≥ ε




≤ 2K+1 exp(−2Jε2)

which implies that

P

 max
m∈{1,2,...,2K}

| 1
J

J∑
j=1

(dij(αm)− E[dij(αm)])| ≥ ε




= 1− P

 max
m∈{1,2,...,2K}

| 1
J

J∑
j=1

(dij(αm)− E[dij(αm)])| < ε




= 1− P

 2K⋂
m=1

| 1J
J∑
j=1

(dij(αm)− E[dij(αm)])| < ε




= P

 2K⋃
m=1

| 1J
J∑
j=1

(dij(αm)− E[dij(αm)])| ≥ ε




≤ 2K+1 exp(−2Jε2)

Note that 2K+1 and ε are constant, so this probability converges to 0 when J goes to infinity. ♦
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The preceding propositions are now used to prove Theorem 1 , along with a corollary to show that for

a single subject, the estimate of α̂ by the nonparametric method will converge to the true attribute vector

almost surely when test length goes to infinity.

Theorem 1. For a particular subject i with true attribute pattern αi, under Assumptions 1 and 2 and

Conditions (a.1), (a.2), (a.3) and (b), the estimator α̂i derived from the nonparametric method of equation

2 is a consistent estimator of αi, provided one of the DINA model, NIDA model or Reduced RUM holds.

Specifically,

lim
J→∞

P (α̂i = αi) = 1.

Proof. For fixed subject i, ∀ε > 0, let event Aε(J) = {|α̂i − αi| > ε}, and Bε(J) as defined in Proposition

3. Then we show that Aε(J) ⊂ Bε(J). In order to prove this, we can prove Bε(J)C ⊂ Aε(J)C .

Suppose Bε(J)C is true, that is ∀m ∈ {1, 2, ..., 2K},∀ε > 0

∣∣∣∣∣∣ 1J
J∑
j=1

(
dij(αm)− E[dij(αm)]

)∣∣∣∣∣∣ < ε

Then we can get that

1

J

J∑
j=1

E[dij(αm)]− ε < 1

J

J∑
j=1

dij(αm) <
1

J

J∑
j=1

E[dij(αm)] + ε.

If α̂i 6= αi, then
∑J
j=1 d

i
j(α̂i) <

∑J
j=1 d

i
j(αi) and 1

J

∑J
j=1 d

i
j(α̂i) <

1
J

∑J
j=1 d

i
j(αi). These inequalities imply

that

1

J

J∑
j=1

E[dij(α̂i)]− ε <
1

J

J∑
j=1

dij(α̂i) <
1

J

J∑
j=1

dij(αi) <
1

J
E[dij(αi)] + ε, ∀ε > 0.

Thus for small enough ε we have

J∑
j=1

E[dij(α̂i)] <

J∑
j=1

E[dij(αi)].

This is contradictory to Proposition 1 that shows the true attribute pattern will minimize E[D(Yi,αm)],

and Proposition 2 that when J →∞ ,the difference of the expectation of the distance defined by (1) under

the wrong attribute pattern with that of under the true attribute pattern will go to infinity. So we may

conclude that Bε(J)C ⊂ Aε(J)C , and equivalently Aε(J) ⊂ Bε(J).
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By the above claim and Proposition 3, we have ∀ε > 0

P (|α̂i −αi| > ε) ≤ P (Bε(J)) ≤ 2K+1 exp(−2Jε2)→ 0, as J →∞

Thus we have proved that if Assumptions 1 and 2 and Conditions (a.1), (a.2), (a.3) and (b) are satisfied,

limJ→∞ P (α̂i = αi) = 1 ♦

Corollary 1. Under Assumptions 1 and 2 and Conditions (a.1), (a.2), (a.3) and (b),

lim
J→∞

P (|α̂i −αi| > ε, i.o) = 0.

Proof. We only need to prove that: ∑∞
J=1 P (Bε(J)) <∞

and the result will follow from the Borel-Cantelli Theorem. Note that

∞∑
J=1

P (Bε(J)) <

∞∑
J=1

2K+1 exp(−2Jε2)

= 2K+1
∞∑
J=1

exp(−2Jε2).

Define f(J) = exp(−2Jε2).

According to the convergence rule of series,

lim
J→∞

f(J + 1)

f(J)
= lim

J→∞

exp(−2(J + 1)ε2)

exp(−2Jε2)

= exp(−2ε2) < 1

Then we have ∑∞
J=1 P (Aε(J)) <

∑∞
J=1 P (Bε(J)) <∞

which completes the proof of the corollary.

♦
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Finally we investigate the joint consistency of a sample of N subjects. Essentially the same results hold,

but there must be some control on the relative sizes of N and J as both go to infinity.

Theorem 2. Under Assumptions 1 and 2 and Condition (a.1), (a.2), (a.3),(b)and (c)in section 2.1.1,

provided one of the DINA model, NIDA model or Reduced RUM holds,

lim
J→∞

P

(
N⋂
i=1

{α̂i = αi}

)
= 1.

Proof. Note that the only difference between Theorem 1 and Theorem 2 is that Theorem 2 has

sample size N but Theorem 1 has only one subject. So Proposition 1 and Proposition 2 still

hold for every subject in Theorem 2. For Proposition 3, ∀ε > 0, we can define Bε(N, J) =

{maxi∈{1,2,...,N}{maxm∈{1,2,...,2K} | 1J
∑J
j=1(dij(αm) − Edij(αm))| ≥ ε}}. Then under Condition (c) we can

show that

lim
J→∞

P (Bε(N, J)) = 0.

For every i ∈ {1, 2, ..., N}, P
({∣∣∣ 1J ∑J

j=1(dij(αm)− E[dij(αm)])
∣∣∣ ≥ ε}) ≤ 2 exp(−2Jε2) holds, so we see

that,

P

 N⋃
i=1

2K⋃
m=1

| 1J
J∑
j=1

(dJj (αm)− E[dij(αm)])| ≥ ε




≤
N∑
i=1

2K∑
m=1

P


∣∣∣∣∣∣ 1J

J∑
j=1

(dij(αm)− E[dij(αm)])

∣∣∣∣∣∣ ≥ ε



≤ 2K+1N exp(−2Jε2).
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=⇒

P

 max
i∈{1,2,...,N}

 max
m∈{1,2,...,2K}

∣∣∣∣∣∣ 1J
J∑
j=1

(dij(αm)− E[dij(αm)])

∣∣∣∣∣∣ ≥ ε




= 1− P

 max
i∈{1,2,...,N}

 max
m∈{1,2,...,2K}

∣∣∣∣∣∣ 1J
J∑
j=1

(dij(αm)− E[dij(αm)])

∣∣∣∣∣∣ < ε





= 1− P

 N⋂
i=1

2K⋂
m=1

| 1J
J∑
j=1

(dij(αm)− E[dij(αm)])| < ε




= P

 N⋃
i=1

2K⋃
m=1

| 1J
J∑
j=1

(dij(αm)− E[dij(αm)])| ≥ ε




≤ 2K+1N exp(−2Jε2).

Note that 2K+1 is constant, so this probability converges to 0 provided the sample size and test length

have the relationship Ne−2Jε
2 → 0 as J →∞ (Condition (c)).

Now define Aε(N, J) =
{

maxi∈{1,2,...,N} |α̂i −αi| > ε
}

, with the same argument as that in the proof of

Theorem 1, we can prove that Aε(N, J) ⊂ Bε(N, J). Then we can get that:

P

(
N⋃
i=1

{|α̂i −αi| > ε}

)
≤ P

 max
i∈{1,2,...,N}

 max
m∈{1,2,...,2K}

∣∣∣∣∣∣ 1J
J∑
j=1

(dij(αm)− E[dij(αm)])

∣∣∣∣∣∣ ≥ ε



≤ 2K+1N exp(−2Jε2) −→ 0,

provided that N exp(−2Jε2)→ 0 as J →∞. This completes the proof of Theorem 2. ♦

Corollary 2. Under Assumptions 1 and 2 and Conditions (a.1), (a.2), (a.3), (b), and (c), if the test length

J and sample size N satisfy the relationship that:

Jn1 ≤ N < Jn2 , 1 < n1 < n2 <∞.

Then

lim
J→∞

P

(
N⋃
i=1

{α̂i 6= αi} , i.o

)
= 0.

Proof. We only need to prove that: ∑Jn2

N=1

∑∞
J=1 P (Bε(N, J)) <∞,
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and the result will follow from the Borel-Cantelli Theorem like in Corollary 1. Note that

Jn2∑
N=1

∞∑
J=1

P (Bε(N, J)) <

Jn2∑
N=1

∞∑
J=1

2KN exp(−2Jε2)

= 2K
∞∑
J=1

(

Jn2∑
N=1

N) exp(−2Jε2)

= 2K
∞∑
J=1

1 + Jn2

2
exp(−2Jε2)

Define f(J) = 1+Jn2

2 exp(−2Jε2). According to the convergence rule of series,

lim
J→∞

f(J + 1)

f(J)
= lim

J→∞

1+(1+J)n2

2 exp(−2(J + 1))ε2

1+Jn2

2 exp(−2Jε2)

= lim
J→∞

1 + (J + 1)n2

1 + Jn2
exp(−2ε2)

= exp(−2ε2) < 1.

⇒
∑∞
J=1

1+Jn2

2 exp(−2Jε2) <∞.

Then we have

∑Jn2

N=1

∑∞
J=1 P (Aε(N, J)) <

∑Jn2

N=1

∑∞
J=1 P (Bε(N, J)) <∞

and the proof is complete. ♦

These theorems for consistency of the nonparametric method, assume that one of several possible true

models hold, and we have focused on some of the common latent class models for cognitive diagnosis. The

purpose was to show that the simple nonparametric method may be used without calibrating a model, no

matter which of those models hold. However, essentially the same general condition was used in the proof of

each particular model, and here we focus on the most general condition that any cognitive diagnosis model

must satisfy for the nonparametric technique to yield consistent classification. The key steps for the proofs

of consistency require that Proposition 1, Proposition 2 and Proposition 3 hold, under proper regularity

conditions. If we replace the conditions for the model parameters (Conditions (a.1), (a.2) and (a.3)) with

the more general condition that involves no model parameters,

Condition (a
′
): P (Yj = 1|ηj = 1) > 0.5 + δ , P (Yj = 1|ηj = 0) < 0.5− δ, for some positive number δ > 0,

the three propositions still hold. This means that the consistency results (Theorem 1, Corollary 1, Theorem

2 and Corollary 2) still hold for any models which satisfy the Condition (a
′
). The theory of the previous
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results essentially utilized this condition, but phrased it in terms of what it required of model parameters.

More generally, these conditions on model parameters can be replaced by Condition (a
′
).

1.3 Numerical Studies

1.3.1 Study Design

In this section, we report simulated examples to illustrate finite test length behavior. The simulation

conditions are similar to those in Chiu & Douglas (2013) and were formed by crossing test length, the

data generation model, and the expected departure from ideal response patterns. For each condition, 1000

subjects were simulated using either DINA or NIDA model. For each data set, K = 3 attributes were

required and response profiles consisting of J = 20 or 40 items were generated. For a much more thorough

simulation study that covers more conditions and compares with competing parametric approaches, see Chiu

& Douglas (2013).

Two methods were used to generate the attribute profiles. The first sampled attribute patterns, α,

from a uniform distribution on the 2K possible values. The second approach utilized a multivariate normal

threshold method. Discrete α were linked to an underlying multivariate normal distribution, MVN(0K ,Σ),

with covariance matrix, Σ, structured as

Σ =


1 · · · ρ

...
. . .

...

ρ · · · 1

 ,

with ρ = 0.5. Let θi = (θi1, θi2, ..., θiK)
′

denote the K-dimensional vector of latent continuous scores for

subject i. The attribute pattern αi = (αi1, αi2, ..., αiK)
′

was determined by

αik =

 1, if θik ≥ Φ−1( k
K+1 );

0, otherwise.

The item parameters for the DINA and NIDA models were generated from uniform distributions with

left endpoints of 0 and right endpoints, denoted as max(s, g), either 0.1, 0.3 or 0.5.

The Q-matrices for tests of 20 items with K = 3 were designed as in Table 1, and those for tests

of 40 items were obtained by doubling the length of the Q matrix in Table 1. For the simulation with

misspecified Q-matrices, 10% or 20% of misspecified Q entries were randomly arranged in the Q-matrix for
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each replication.

Table 1.1: Q-matrices for test of 20 items

Attribute
Item

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1
2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1
3 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 1 1

1.3.2 Results

Results are summarized by an index called pattern-wise agreement rate (PAR), denoting the proportion of

attribute patterns accurately estimated according to PAR =
∑N
i=1

I|α̂i=αi|
N . The nonparametric estimator

based on minimizing Hamming distance can result in some ties, and these ties were randomly broken, though

there might be room for developing a more sophisticated technique.

In the first example, we investigate the impact of the model parameters and test length on the PAR of

the nonparametric method based on Hamming distance, when actual data were generated from the DINA

model and the NIDA model.

Table 1.2: Classification rates for the nonparametric method with DINA data

max(s, g) J = 20 J = 40

Uniform Attribute Patterns K = 3

0.1 0.9925 1.000

0.3 0.9200 0.9825

0.5 0.8100 0.8850

Multivariate Normal Attribute Patterns K = 3

0.1 0.9900 0.9975

0.3 0.9500 0.9950

0.5 0.7050 0.8675

Table 1.2 documents the effectiveness of the nonparametric method when applied to responses gener-

ated from the DINA model. In support of the theoretical results, this approach produces nearly perfect

classifications when the slipping and guessing parameter are less than 0.1. As the item parameters become

close to 0.5, the classification become worse, but much better than random assignment, which would have

an expected classification rate of 0.125 when K = 3. Consistent with the asymptotic theory, classification
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rates clearly improve as test length increases. Table 1.3 below presents the results when the responses were

generated from the NIDA model. Note that the conditions for consistency are somewhat different for the

NIDA (Condition (a.2)), and could be violated for several items, in the case where s and g parameters are

allowed to be as large as 0.5.

Table 1.3: Classification rates for the nonparametric method with NIDA data

max(s, g) J = 20 J = 40

Uniform Attribute Patterns K = 3

0.1 0.9950 1.000

0.3 0.8225 0.8725

0.5 0.6775 0.8023

Multivariate Normal Attribute Patterns K = 3

0.1 0.9925 0.9990

0.3 0.8900 0.9125

0.5 0.4650 0.4800

Next we consider the robustness of the nonparametric method when several entries of Q-matrix are

misspecified. In each replication, 10% or 20% of the entries in a given Q-matrix were randomly changed.

The misspecified Q-matrix was used for classifying examinees with the nonparametric method. Table 1.4

reports the results for the DINA data with attribute patterns generated from a uniform distribution.(The

results when the attribute patterns generated from multivariate normal distribution have similar patterns

thus omit here.) Table 1.4 shows that classification agreement decreases with the rate of misspecification.

However, as the test length increases, the correct classification rate still increases. In all cases, classification

rates are well above random assignment. Table 1.5 show the similar results for NIDA data. Though it

requires theoretical proof, we speculate that for a certain range of the misspecified percent of entries in

Q-matrix, the consistency theories may still hold.
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Table 1.4: Classification results for the nonparametric methods with DINA data and a uniform distribution
on α when Q is misspecified

max(s, g) J = 20 J = 40

10% misspecified q entries K = 3

0.1 0.9125 0.9650

0.3 0.7825 0.8775

0.5 0.4625 0.8021

20% misspecified q entries K = 3

0.1 0.7231 0.8024

0.3 0.6621 0.7642

0.5 0.4321 0.5861

Table 1.5: Classification results for the nonparametric method with NIDA data and a uniform distribution
on α when Q is misspecified

max(s, g) J = 20 J = 40

10% misspecified q entries K = 3

0.1 0.9125 0.9550

0.3 0.7123 0.8275

0.5 0.4232 0.4532

20% misspecified q entries K = 3

0.1 0.7135 0.7824

0.3 0.6213 0.6120

0.5 0.3346 0.4032

1.3.3 Discussion

The consistency results of the previous section demonstrate that nonparametric classification can be effective

under a variety of underlying conjunctive models. This can greatly expand potential applications, by allowing

for conducting cognitive diagnosis when calibration of a parametric model is not feasible. Nonparametric

classification based on minimizing Hamming distance to ideal response patterns is simple and fast and can

be used with a large number of attributes. One advantage over parametric modeling is that no model

calibration is needed, and it can be performed with a sample size as small as 1. Requiring no large samples
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or calibration allows for small scale implementation, such as in the classroom setting, where diagnosis can

be most important.

The appealing property of the nonparametric method, is that it is consistent under a variety of possible

true parametric models, and can be viewed as robust in that sense. Here we studied the properties of the

classifier under the DINA, NIDA, and RED-RUM models, but consistency is not be restricted to them, as

a conjunctive response process and knowledge of the Q matrix are the critical assumptions. As discussed

following the theoretical results, the only general condition required of the underlying item response func-

tions, is that the probability of a correct response for masters of the attributes is bounded above 0.5 for

each item, and the probability for non-masters is bounded below 0.5. If the true model satisfies these simple

conditions, nonparametric classification will be consistent as the test length increases.

Though consistency results were demonstrated, Chiu and Douglas (2013) show that maximum likelihood

estimation with the correct parametric model is more efficient, which can be expected. Other advantages

of using parametric statistical models is that one can use general statistical techniques for goodness-of-fit,

model selection, and gain a sense of variability and the chance of errors. For instance, classification using

parametric latent class models for cognitive diagnosis allows one to compute posterior probabilities for any

attribute pattern, which cannot be done with the nonparametric classifier.

Nevertheless, the impressive relative efficiency (Chiu and Douglas, 2013) of the nonparametric classifier

and its consistency properties suggest that the approach may be a useful alternative when calibration of

a parametric model is not feasible. This approach can be implemented as soon as an item bank with

a corresponding Q matrix has been developed, and the computational simplicity allows one to construct

reliable computer programs for classification that amount to exhaustively searching through all possible

patterns, which is guaranteed to identify an optimal solution. Some promising directions for future research

in nonparametric classification include development of fit indices and algorithms for computerized adaptive

testing. Another ongoing issue for future research is identifying or validating the correct specification of the

Q matrix. In the numerical study we see the effect of misspecification rate on performance. Incorrect Q

matrix entries affect both parametric and nonparametric techniques, and suggest that robust methods could

be a fruitful area of research.
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Chapter 2

Model Misspecification in Cognitive
Diagnosis

2.1 Introduction

In cognitive diagnosis, many models have been developed to provide a profile defining mastery or non-

mastery of a set of predefined skills or attributes. Based on the assumptions about how attributes influence

test performance, CDMs can be categorized as noncompensatory models or compensatory models. Chapter

1.1.1 reviews several common conjunctive models, which express the notion that all attributes specified in the

attribute-by-item Q matrix for an item should be required to answer the item correctly, but allow for slips

and guesses in ways that distinguish the models from one another. Disjunctive models define the probability

of a correct response such that mastering a subset of the attributes is sufficient to have high probability of

a correct response. An example is the Deterministic Input, Noisy “Or” gate model (DINO; Templin and

Henson (2006)). Unlike noncompensatory models, compensatory models allow an individual to compensate

for what is lacked in some measured skills by having mastered other skills. Some representatives are the

General Diagnostic Model (GDM; Davier (2005)) and a special case of the GDM called the compensatory

RUM (Hartz (2002)). Encompassing the traditional categories of the reduced CDMs, several general models

based on different link functions (e.g., G-DINA; De La Torre (2011) and log-linear CDM; Henson et al.

(2009)) have been developed to include many of the common compensatory and noncompensatory models.

Starting the analysis with a general model obviates the need to identify the specific form of the CDM,

and a general model also has better model fit compared with other reduced models. However, specific and

simple models may be preferred under some circumstances for several reasons. First, simple models have

more straightforward interpretations (De La Torre et al., 2015). Second, they require smaller sample sizes

to be estimated accurately (Rupp and Templin, 2008b). Finally, appropriate reduced models can sometimes

provide better classification rates than general models, particularly when the sample size is small (Rojas et al.

(2012)). This phenomenon is essentially the bias-variance tradeoff, and is familiar in regression when we can

sometimes used a small but biased model for more efficient prediction, for example. When selecting a model,

which is surely never the true model, a natural question to consider is how accurately the misspecified model
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can classify examinees, which is the ultimate objective. In particular, we are concerned with the behavior

of the maximum likelihood estimator, when the likelihood is computed assuming an incorrect model.

The objective of this chapter is to investigate the consequences of using a simple but incorrect model.

We are interested in the impact of model misspecification to the classification accuracy, which can be

investigated by analyzing the asymptotic behavior of the MLE for attribute profiles under misspecified

CDMs. The asymptotic behavior of the MLE under misspecified models associated with parameters in a

continuous space has been studied for nearly 50 years (Huber, 1967; Berk et al., 1966; White, 1982; Wainer

and Wright, 1980). However, CDMs are in a discrete classification space, and the theory for estimation of

discrete attribute profiles is different from that of the estimation of a parameter in a continuous parameter

space. In the CDM framework, several empirical studies have been conducted to investigate the effect of

model misspecification or Q matrix misspecification on parameter estimation and classification accuracy

(Rupp and Templin, 2008a; Chen et al., 2013). However, no theory of the asymptotic behavior of the MLE

for attribute profile under misspecified CDMs has been developed.

Specifically, our research questions include: 1) What is the behavior of MLE for attribute profile when

the true model and misspecified model both are conjunctive models? 2) Under what conditions is the MLE

for attribute profiles a consistent estimator, when the true model satisfying certain conditions, including

both conjunctive models and compensatory models, is misspecified as a DINA model? 3) If the MLE is

not consistent, can a robust estimation procedure be developed to solve the inconsistency issue under a

misspecified DINA model? Investigating these questions can provide practitioners some guidelines about in

what situations they can choose a simple model without severely affecting the classification accuracy.

2.2 Behavior of MLE in Misspecified Models

In this section, we investigate whether the MLE of attribute profiles can provide consistent classification

when the model is misspecified as a conjunctive model. Two examples about the behavior of MLE under a

misspecified DINA model are given.

2.2.1 Problem Formulation

Throughout this section, we focus on the case of a single examinee with true attribute profile denoted as α∗.

Suppose this examinee finishes a test with J items which measure K attributes. Let Y = (Y1, Y2, ..., YJ)T

be the examinee’s item response vector. The true attribute pattern in this case can be written as α∗ =

(α∗1, α
∗
2, ..., α

∗
K)T , and each α∗k takes a value of either 0 or 1 for k = 1, 2, ...,K. Specifically, α∗k is an indicator
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of whether this examinee possesses the kth attribute.

We assume that the Q matrix is the same for the true model and the misspecified model, which is a J×K

matrix with entry qjk to indicate whether item j requires the kth attribute. Define ηj(α
∗) =

∏K
k=1(α∗k)qjk to

be the jth component of the ideal response pattern for this examinee, and let η(α∗) = (η1(α∗), ..., ηJ(α∗))T

denote this pattern. For an attribute pattern α, we denote the true item response function as π∗j (α),

j = 1, 2, ..., J . Based on the true model, the correct response probability for item j given any attribute

profile α can be written as:

π∗j (α) = P ∗(Yj = 1|α) =

 π∗j1(α), if ηj(α) = 1;

π∗j2(α), if ηj(α) = 0.

In reality, the true model is not known, and after we collect data and we believe the responses come

from a conjunctive process, then an appropriate conjunctive model needs to be selected. Denote πj(α) as

the item response function for the model we choose, and different conjunctive models are defined through

different forms of πj(α). Three types of conjunctive models are introduced here.

Example 1 (The DINA model). The DINA model is the simplest conjunctive model, and the item response

function is totally determined by ηj(α). Thus there are only two types of correct response probabilities for

each item under the DINA model. ∀α,

πj(α) = P (Yj = 1|α) =

 πj1(α) = πj1 = 1− sj , if ηj(α) = 1;

πj2(α) = πj2 = gj , if ηj(α) = 0.

Example 2 (The NIDA model). Different from the DINA model, the slipping and guessing parameters for

the NIDA model are defined through the attribute levels. Define Hj = {k|qjk = 1}, for the NIDA model,

πj(α) = P (Yj = 1|α) =

 πj1(α) = πj1 =
∏
k∈Hj (1− sk) , if ηj(α) = 1;

πj2(α) =
∏
k∈Hj (1− sk)αkg1−αkk , if ηj(α) = 0.

Example 3 (The Reduced RUM model). The Reduced RUM model can be generalized from the NIDA model

with the item response function defined as:

πj(α) = P (Yj = 1|α) =

 πj1(α) = πj1 = πj , if ηj(α) = 1;

πj2(α) = πj
∏
k∈Hj (r

∗
jk)1−αk , if ηj(α) = 0.

Note that for the NIDA model and the Reduced RUM model, πj1 is the same for different α such that
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ηj(α) = 1, however πj2(α) can be different for different α. Unlike the DINA model, for each item there can

be more than two types of correct response probabilities if K ≥ 1.

With the assumption of conditional independence, the likelihood function of α constructed from the

chosen model based on J questions is:

L(J)(α) =

J∏
j=1

(πj(α))Yj (1− πj(α))(1−Yj).

Note that the superscript (J) indicates the corresponding function depends on J , and we will use such

notation from now on. The corresponding log-likelihood function can be written as:

l(J)(α) = log(LJ(α)) =

J∑
j=1

[Yj log(πj(α)) + (1− Yj) log(1− πj(α))] .

When our selected model is different from the true model, we wish to investigate whether the MLE for α∗

arising from the wrong model is consistent. Let A = {αh 6= α∗, h = 1, 2, ..., 2K − 1} denote the set of the

2K − 1 alternative attribute patterns. Our problem is to consider if

lim
J→∞

P
(

max
αh∈A

l(J)(αh) < l(J)(α∗)
)

= 1. (2.1)

To investigate whether (2.1) can hold in the model misspecification case, we use a condition on the

identifiability of attribute patterns afforded by the Q-matrix, to eliminate a trivial cause for inconsistency.

Condition (I): Define Am,m′ =
{
j|ηj(αm) 6= ηj(α

m
′

)
}

, where m and m
′

index different attribute

patterns among the 2K possible patterns. Then lim infJ→∞
Card(A

m,m
′ )

J > 0.

This condition guarantees that as the test length grows, more and more information becomes available

to distinguish attribute patterns from one another. Though the actual rate need not be as the same order

of J , a condition of this nature would be needed for consistency, even when using the true model.

To simplify the argument in the next section, we use the notation an � bn to denote that sequences {an}

and {bn} have the same order. This means that there exists constants 0 < m < M < ∞ and an integer n0

such that for all n > n0, m < |anbn | < M .

2.2.2 The asymptotic behavior of MLE under misspecified conjunctive CDMs

In this section, we first discuss the behavior of MLE when the true model and misspecified model both

belong to conjunctive categories by using a simple case when the number of attributes K = 1. Then we

extend the analysis to the general case where K ≥ 1 and when the true model can be any CDM satisfying
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some necessary conditions and is misspecified as a DINA model.

A simple case when K = 1

Now let’s assume the true model and the misspecified model both are conjunctive models, and there is

only one attribute (K = 1) associated with J items. The corresponding Q matrix is simply a vector with

all elements equal to 1. Suppose the true attribute is α∗ for this examinee, and the set A only has one

element α1. Because only 1 attribute is required for each item, there are only two types of correct response

probabilities for each item no matter what the true conjunctive model is. The possible values for α and the

corresponding correct response probabilities for each item under the true model and the misspecified model

are summarized in Table 2.1 below:

Table 2.1: Attributes and Item Parameters

Correct Response Probability

Attribute Profile True Model Misspecified Model

α π∗j (α) πj(α)

0 π∗2j π2j

1 π∗1j π1j

The MLE for the attribute pattern under the misspecified model is

α̂MLE = arg max
α∈{0,1}

l(J)(α).

Furthermore, let E∗ denote the expectation under the true model, and define

∆(J) = E∗[l(J)(α∗)− l(J)(α1)].

∆(J) quantifies the expected distance between the log-likelihood value of the true attribute profile and

that of the alternative attribute profile under the probability measure from the true model.

For conjunctive models, it is natural to assume that the correct response probability for each item when

the examinee masters all the required attributes will be greater than when the examinee does not. So we

assume that there exists two positive numbers δ∗ > 0 and δ1 > 0, and for any attribute profile αh and αh
′

such that η(αh) = 1 and η(αh
′

) = 0, the true conjunctive model satisfies,

Condition (T) : π∗j1(αh)− π∗j2(αh
′

) > δ∗,
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and the misspecified conjunctive model satisfies,

Condition (M) : πj1(αh)− πj2(αh
′

) > δ1.

Besides these two conditions, we assume that for the misspecified model, the two types of correct response

probabilities are bounded away from 0 and 1. The following theorem describes the behavior α̂MLE in this

simplest case.

Theorem 3. When K = 1, for one examinee with true attribute profile α∗ , suppose both the true model

and misspecified model are conjunctive models and satisfy Condition (T) and Condition (M) respectively,

and the correctly specified Q-matrix satisfies Condition (I) as the exam length increases. If 0 < ∆(J) � J ,

limJ→∞ P (l(J)(α∗) > l(J)(α1)) = 1. If 0 > ∆(J) � J , limJ→∞ P (l(J)(α1) > l(J)(α∗)) = 1.

Proof. First rewrite the probability in another format,

P
(
l(J)(α1)− l(J)(α∗) > 0

)
= P

(
l(J)(α1)− l(J)(α∗)− E∗[l(J)(α1)− l(J)(α∗)] > −E∗[l(J)(α1)− l(J)(α∗)]

)
= P

(
l(J)(α1)− l(J)(α∗)− (−∆(J)) > ∆(J)

)
.

Note that when K = 1, there are only two possible situations for the values of α∗ and α1: α∗ = 0,α1 = 1

and α∗ = 1,α1 = 0. We prove the theorem under the two cases respectively.

When α∗ = 0, α1 = 1, and recall that ∆(J) = E∗[l(J)(α∗)− l(J)(α1)], then it’s easy to verify that

l(J)(α1)− l(J)(α∗)− (−∆(J)) =

J∑
j=1

(Yj − π∗j2)

(
log

(
πj1
πj2

1− πj2
1− πj1

))
.

Now define Zj = (Yj − π∗j2), then 0 < |Zj | < 1. Based on the conditional independence assumption,

we have Z1, Z2, ..., Zj are independent and E∗[Zj ] = 0, j = 1, 2, ..., J . Let Cj := log(
πj1
πj2

1−πj2
1−πj1 ). Based on

Condition (M), ∀j, Cj is positive and bounded away from 0. Suppose the upper bound is a positive number

C.

Then we have

P
(
l(J)(α1)− l(J)(α∗) > 0

)
= P

( J∑
j=1

ZjCj > ∆(J)
)
.

To investigate the value of the above equation when J →∞, we need to discuss the behavior of ∆(J) in the

following two situations.

(a) If 0 < ∆J � J , then for large enough J , there exists a constant m0 > 0 such that ∆(J) = m0J . Then
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by Hoeffding’s inequality we have

P
(
l(J)(α1) > l(J)(α0)

)
< exp(−2(∆(J))2

JC2
) ∼ exp(−2Jε),

where ε =
m2

0

C2 > 0. Then (2.1) holds in this situation, and the MLE using the misspecified model is

consistent.

(b) If ∆(J) � J but ∆(J) < 0, then

P
(
l(J)(α1) > l(α0)

)
= P

( J∑
j=1

(−ZjCj) < −∆(J)
)

= 1− P (

J∑
j=1

(−ZjCj) > −∆(J)).

By using Hoeffiding’s inequality again,

P (

J∑
j=1

(−ZjCj) > −∆(J)) ≤ exp(−Jε)→ 0, as J →∞

Then

lim
J→∞

P (l(J)(α1) > l(J)(α0)) = 1.

Similarly, when α∗ = 1 and α1 = 0, repeat the above analysis, and we can get the exact same conclusion.

Thus when ∆(J) < 0 and has the same order of J , α̂MLE = α1 with probability approaching 1, and is not

a consistent estimator of α∗. ♦

Theorem 3 indicates that whether the consistency of α̂MLE holds under model misspefication depends

heavily on the quantity ∆(J) = E∗[l(J)(α∗)− l(J)(α1)]. If 0 < ∆(J) � J , then the consistency of MLE under

model misspecification can hold. If ∆(J) < 0 and has the same order of J , α̂MLE = α1 with probability

approaching 1, and is not a consistent estimator of α∗. To see more directly how ∆(J) is related to the

parameters of the true and the misspecified model, and in what situations ∆(J) can guarantee the consistent

estimator under a misspecified model, consider the case when α∗ = 0 and α1 = 1. Now with this specific

example, it’s easy to verify that

∆(J) =

J∑
j=1

(1− π∗j2) log

(
1− πj2
1− πj1

)
+ π∗j2 log

(
πj2
πj1

)
=

J∑
j=1

∆j .

Let’s consider two cases,

A. When πj2 ≥ π∗j2, because of Condition (M) for the misspecified model we have log(
πj2
πj1

) < 0 and

26



log(
1−πj2
1−πj1 ) > 0, and they imply that

∆(J) ≥
J∑
j=1

[
(1− πj2) log

(
1− πj2
1− πj1

)
+ πj2 log

(
πj2
πj1

)]
=

J∑
j=1

KL (πj2||πj1) > 0,

where KL(πj2||πj1) is the K-L divergence between πj2 and πj1, and will be strictly positive as long as

πj2 6= πj1. In this case, 0 < ∆(J) � J and consistency holds.

B. When πj2 < π∗j2, then each component of ∆(J) can be either negative or positive. For example, when

π∗j1 = 0.6, π∗j2 = 0.4, πj1 = 0.7, if πj2 = 0.1, then ∆j = −0.119 < 0, if πj2 = 0.3, then ∆j = 0.169 > 0.

So, in this case ∆(J) > 0 and whther it has the same order of J can not always be guaranteed. This

means that the MLE under the misspecified model may not be a consistent estimator for α∗.

Similarly, if α∗ = 1 and α1 = 0, we can conclude that if π∗1 ≥ π1, then the consistency for MLE holds,

otherwise, the MLE may not be consistent. By using this simple example we can see that when the true

model and the misspecified model are both conjunctive models, the MLE of attribute profile under such

model misspecification is not necessarily a consistent estimator.

General Situation

In the general situation where there are K ≥ 1 attributes associated with test, the analysis of the MLE under

misspecified conjunctive models is more complicated. However, if the true model is a model which satisfies

condition (T) and is misspecified as a DINA model which satisfies condition (M), a sufficient condition for

the consistency of the MLE can be found in this situation.

Theorem 4. When K ≥ 1, for an examinee with true attribute profile α∗, suppose the true model satisfies

Condition (T), and we misspecify it as a DINA model which satisfies condition (M). Let the Q-matrix be

correctly specified and satisfy Condition (I) as the exam length increases. Furthermore, if the correct response

probability under the true model and the misspecified model satisfy: Condition (S): ∀j, 0 < π∗j2(α∗) ≤ πj2 <

πj1 ≤ π∗j1(α∗), then the MLE for α∗ is a consistent estimator.

Proof. Suppose the response vector for a particular examinee is Y = (Y1, Y2, ..., YJ). Let the true attribute

pattern for this examinee be α∗, and denote the ideal response pattern under α∗ as η(α∗). Let A = {αh, h =

1, 2, ..., 2K − 1} denote the set of the 2K − 1 alternative attribute patterns.

Define Bm(α) = {j|ηj(α) = m},m ∈ {0, 1}. The DINA log-likelihood can be written as:

l(J)(α) =
∑

j∈B1(α)

lj(α|ηj(α) = 1) +
∑

j∈B0(αh)

lj(α|ηj(α) = 0),
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we need to prove

lim
J→∞

P

(
max
αh∈A

l(J)(αh) < l(J)(α∗)

)
= 1. (2.2)

Note that

P

 max
αh∈A

l(J)(αh) < l(J)(α∗)
)
≥ 1−

∑
αh∈A

P
(
{l(J)(αh) > l(J)(α∗)}

 .

In order to prove equation (2.2), it is equivalent to prove:

lim
J→∞

∑
αh∈A

P
(
{l(J)(αh) > l(J)(α∗)}

)
= 0.

Because |A| <∞, it can be further simplified to prove that for any αh ∈ A,

lim
J→∞

P
(
{l(J)(αh) > l(J)(α∗)}

)
= 0.

Define set Bmd(α
h) = {j|ηj(α∗) = m, ηj(α

h) = d},m ∈ {0, 1}, d ∈ {0, 1}. The relationship of Bm(αh)

and Bmd(α
h) is:

Bm(α∗) =
⋃

d∈{0,1}

Bmd(α
h),m ∈ {0, 1}; , Bd(α

h) =
⋃

m∈{0,1}

Bmd(α
h), d ∈ {0, 1}.

Then

l(J)(αh)− l(J)(α∗) =
∑

j∈B01(αh)

[
Yj log

(
πj1(1− πj2)

(1− πj1)πj2

)
− log

(
1− πj2

1− πj1

)]

+
∑

j∈B10(αh)

[
Yj log

(
πj2(1− πj2)

(1− πj2)πj1

)
− log

(
1− πj1

1− πj2

)]
= I

(J)
1 + I

(J)
2

We need to prove that

lim
J→∞

P
(
I
(J)
1 + I

(J)
2 > 0

)
= 0. (2.3)

Define J1(αh) = |B01(αh)| and J2(αh) = |B10(αh)|. The next step is to prove the above equation in three

different situations.
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Based on Condition (I) that lim inf J1(α
h)+J2(αh)
J > 0, there are three possible cases J1(αh) and J2(αh).

(1.1) limJ→∞ J1(αh) =∞ and limJ→∞ J2(αh) =∞.

(1.2) limJ→∞ J1(αh) =∞ and limJ→∞ J2(αh) <∞.

(1.3)limJ→∞ J1(αh) <∞ and limJ→∞ J2(αh) =∞.

Proof of (1.1)

P
(
I
(J)
1 + I

(J)
2 > 0

)
≤ P

(
I
(J)
1 > 0) + P (I

(J)
2 > 0

)

Then we only need to prove

lim
J→∞

P
(
I
(J)
1 > 0

)
= 0, and lim

J→∞
P
(
I
(J)
2 > 0

)
= 0.

Using similar techniques as in the proof of Theorem 3, we have

P
(
I
(J)
1 > 0

)
= P

(
I
(J)
1 − E∗[I(J)1 ] > −E∗[I(J)1 ]

)
.

Note that, for j ∈ B01(αh), E∗(Yj) = P ∗(Yj = 1|ηj(α∗) = 0) = π∗j2(α∗). Then we can get that

P
(
I
(J)
1 > 0

)
= P

( ∑
j∈B01

(Yj − π∗j2(α∗))
(
log

(
πj1

πj2

1− πj2

1− πj1

))
> −E∗[I(J)

1 ]

)
,

where −E∗[I(J)1 ] =
∑
j∈B01(αh)(1− π∗j2(α∗)) log(

1−πj2
1−πj1 ) + π∗j2(α∗) log(

πj2
πj1

).

Using a similar argument as in the prove of Theorem3, let Cj = log(
πj1
πj2

1−πj2
1−πj1 )) and because πj1, πj2

are bounded away from 0 and 1, then Cj is a finite number and assume the upper bound is C. In order to

use Hoeffding’s inequality, we only need to guarantee that −E∗[I(J)1 ] is positive and has the same order as

J1(αh). Note that because π∗j2(α∗) ≤ πj2 and πj2 < πj1,

−E∗[I(J)
1 ] =

∑
j∈B01(αh)

(1− π∗j2(α)) log

(
1− πj2

1− πj1

)
+ π∗j2(α) log

(
πj2

πj1

)

≥
∑

j∈B01(αh)

(1− πj2) log

(
1− πj2

1− πj1

)
+ πj2 log

(
πj2

πj1

)
=

∑
j∈B01(αh)

KL (πj2||πj1) .
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Based on the condition that limJ→∞ J1(αh) =∞, and by Hoeffiding’s inequality we have that

P
(
I
(J)
1 > 0

)
≤ P

 ∑
j∈B01

(Yj − π∗j2(α))C >
∑

j∈B01(αh)

KL(πj2||πj1)


≤ exp

−2
(∑

j∈B01(αh)KL(πj2||πj1)
)2

J1(αh)C2

 ∼ exp
(
−2J1(αh)ε

)
,

where ε > 0. Thus limJ→∞ P
(
I
(J)
1 > 0

)
= 0. Similarly, we can get that

P
(
I
(J)
2 > 0

)
≤ exp

−2
(∑

j∈B10(αh)KL(πj1||πj2)
)2

J2(αh)C2

 ∼ exp
(
−2J2(αh)ε

)
,

and this completes the proof of (1.1)

Proofs of (1.2) and (1.3)

Here we only discuss (1.2) in detail and the conclusion for (1.3) is found by precisely the same argument.

In situation (1.2), J2(αh) <∞, so

lim
J→∞

I
(J)
2 = lim

J→∞

∑
j∈B10(αh)

[
Yj log

(
πj2(1− πj2)

(1− πj2)πj1

)
− log

(
1− πj1
1− πj2

)]

≤ lim
J→∞

∑
j∈B10(αh)

[
log

(
πj2(1− πj2)

(1− πj2)πj1

)
− log

(
1− πj1
1− πj2

)]
<∞.

So in order to prove (2.3), we only need to prove limJ→∞ P
(
I
(J)
1 > 0

)
= 0. The proof is this case is the

same as that in (1.1).

Similarly in situation (1.3), when J → ∞, I
(J)
1 will be a finite number and in order to prove (2.3), we

only need to prove limJ→∞ P
(
I
(J)
2 > 0

)
= 0. To summarize, for some positive constant ε1, an upper bound

for P
(
l(J)(αh) > l(J)(α∗)

)
can be simplified according to Table 3.8 below:

Table 2.2: Asymptotic form of the upper bound

Asymptotic Behavior Form of upper bound

limJ→∞ J1(αh) =∞, limJ→∞ J2(αh)(αh) =∞ exp(−2J1(αh)ε) + exp(−2J2(αh)ε)

limJ→∞ J1(αh) =∞, limJ→∞ J2(αh) <∞ exp(−2J1(αh)ε)

limJ→∞ J1(αh) <∞, limJ→∞ J2(αh) =∞ exp(−2J2(αh)ε)

1The constant in the different exponential bound are different, for simplicity, we just use ε to stand for that positive constant
in each bound.
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Note that at least one of J1(αh) and J2(αh) will have the same order as J . Thus, we can summarize the

upper bound as exp
(
−2J∗(αh)ε

)
, where J∗(αh) � J and ε > 0. ♦

Condition (T) is a natural assumption for conjunctive models, and Condition (S) is less intuitive, and

expresses that consistency will hold if the assumed discrimination of the item is no greater than the true

discrimination.

Though Theorem 4 is expressed for conjuctive models, the results can apply more generally. Note that

it’s also reasonable to assume Condition (T) applies to some compensatory models. For example, when the

Compensatory RUM model is the true model, the item response function is:

P ∗ (Yj = 1|α) =
exp

(∑K
k=1 rjkαjkqjk − pj

)
1 + exp

(∑K
k=1 rjkαjkqjk − pj

) ,
where rjk > 0.

Define fj(α) =
∑K
k=1 rjkαkqjk − pj . For α1 and α2 such that ηj(α

1) = 1, ηj(α
2) = 0, the positive

coefficients rjk result in the relationship that : fj(α
1) > fj(α

2). Because G(x) = exp(x)
1+exp(x) is an increasing

function, we have π∗j1(α1) > π∗j2(α2).

However, if the true model is a disjunctive model, and is misspecified as a DINA model, we can not get

consistent classification. For example, if the DINO model is used, the item response function is determined

by

ωj = 1−
K∏
k=1

(1− αk)qjk ,

where ωj = 1 denotes that the examinee has mastered at least one of the required attributes for the jth item,

while ωj = 0 denotes that one has not mastered any of the required attributes. Given ωj , the probability of

a correct response is defined as

P ∗ (Yj = 1|ωj) = (1− sj)ωj g
1−ωj
j .

Suppose K = 3, for item j, qj = c(0, 1, 1), α1 = c(0, 1, 1), α2 = c(0, 0, 1). Then ηj(α
1) = 1, ηj(α

2) = 0.

However, ωj(α
1) = ωj(α

2) = 1, which means π∗j1(α1) = π∗j2(α2). Because of such equality, when data arise

from a disjunctive model, Conditions (T) cannot be satisfied. Thus, the consistency theorem cannot hold.

31



2.2.3 Examples of the MLE under a misspecified DINA model

In this section, we provide two examples for the MLE of attribute profile under a misspecified DINA model.

Example 1 shows the inconsistency of the MLE when the true model is a DINA model and is misspecified as

a DINA model with different item parameters. Example 2 shows the consistency of the MLE when the true

model is a compensatory RUM model and is misspecified as a DINA model. In both examples, the consistency

is measured by the pattern-wise agreement rate (PAR), which is defined as PAR =
∑N
i=1

I|α̂i=αi|
N to denote

the proportion of accurately estimated attribute patterns.

Example 1. Inconsistency of MLE under a misspecified DINA model. In this example, the number of

attributes K = 3 . The true model is a DINA model with fixed slipping and guessing parameters for each

item: st = 0.4, gt = 0.4. In particular, for ∀j, π∗j1 = 1 − 0.4 = 0.6, π∗j2 = 0.4. For the misspecified

DINA model, the guessing and slipping parameters are fixed at sm = 0.3, gm = 0.1 for each item, violating

Condition (S). That is, ∀j, πj1 = 1 − 0.3 = 0.7, πj2 = 0.1. To inspect the consistency, a sample of 1000

examinees with true attribute profiles simulated from a uniform distribution for each of 9 levels of test length:

J = 20, 40, 100, 200, 300, 400, 500, 600, 700. When test length equaled 20 items, a Q matrix which contains

12 items each measuring a single attribute, 6 items each measuring 2 attributes and 2 items each measuring

3 attributes was used. The Q matrices for longer tests were obtained by replicating this Q matrix. For each

condition, the examinees’ responses were simulated based on the true model, and their attribute profiles

were estimated based on the true DINA model and the misspecified DINA model. Results are summarized

by the Figure 2.1 below:
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0

Misspecified model
True Model

Figure 2.1: Inconsistency of MLE under model misspecification

From Figure 2.1 we can see that, under the misspecified DINA model, the pattern-wise agreement rate

decreases as the test length increases, which indicates the MLE is not a consistent estimator in this case.
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Example 2: Consistency of the MLE under a misspecified DINA model. In this example, K = 3 and the

item parameters for the true model, a compensatory RUM model, were generated from uniform distributions

on appropriate intervals. In order to make the item parameters satisfy condition (T), the lower bound for

pj is controlled by 0.3 and the upper bound for rjk is controlled by 0.8. A sample of 1000 examinees was

generated with true attribute profiles simulated from a uniform distribution for each of the 5 levels of test

length: J = 20, 40, 100, 200, 300. For each condition, the Q matrix is constructed in the same way as that

in Example 1, and the examinees’ responses were simulated based on the true model. A DINA model is

calibrated by the “CDM” package (Robitzsch et al. (2014) ) in R based on the examinees responses in each

condition. The results in terms of PAR were summarized in Figure 2.2 below. We can see that, with the

increase of the test length, the PAR grows slowly to 100%, which indicates the MLE is a consistent estimator.
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Figure 2.2: Consistency of MLE under model misspecification

2.3 Robust Estimation

In the previous section, we discuss the inconsistency of the MLE for the attribute vector under misspecified

conjunctive models. Although a sufficient condition for consistency under a misspecified DINA model has

been found, it is difficult to verify whether the calibrated item parameters from a DINA model satisfy

Condition (S) or not. This is because one cannot know π∗j (α∗), thus suggesting a need to develop a robust

estimator that guarantees consistency of attribute vector classification under model misidentification.

The discussion in Section 2 indicates that the problematic part under model misspecification is that

we can not guarantee that E∗[l(J)(α∗) − l(J)(αh)], ∀αh ∈ A is positive and of order J . If some concave

function can be incorporated into the log-likelihood function to compensate for this problematic part, then

the modified log-likelihood function may guarantee the unique maximum is α∗. One solution is to utilize
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the loss function of the nonparametric estimation method of Chiu and Douglas (2013), that was shown by

Wang and Douglas (2015) to be consistent for the attribute profile under very general conditions. Following

some regularity conditions, the loss function for nonparametric estimation method is strictly convex with an

expected value that has a unique minimum at α∗. Thus, by incorporating a multiple of this loss function

with the negative log-likelihood, a robust classifier is defined that has desirable consistency properties, and

is more efficient than simply using the nonparametric technique. The nonparametric estimation method can

be found in section 1.

2.3.1 Robust DINA MLE

One can regard the MLE as the minimizer of a loss function, which is the negative log-likelihood function.

The idea of the Robust DINA MLE is to shrink this loss function towards the distance function of the

consistent nonparametric estimation method to ensure consistency while obtaining greater efficiency than

using the nonparametric method alone. Suppose now the model is misspecified as a DINA model with the

item parameters:

πj1 = 1− sj , πj2 = gj .

For any attribute pattern α, the robust likelihood under α is

L(J)
r (α) =

J∏
j=1

(πj(α))Yj (1− πj(α))1−Yj exp (−λj(α)|Yj − ηj(α)|) ,

where

λj(α) =

 log(
πj1
πj2

) if , ηj(α) = 1;

log(
1−πj2
1−πj1 ) if , ηj(α) = 0.

Then the Robust DINA MLE estimator is :

α̂RMLE = argmax
αh∈A∪{α∗}

L(J)
r (α) (2.4)

Note that any conjunctive model could be used for the parametric term, and the DINA is merely chosen

for its simplicity. The item response function is totally determined by the ideal response pattern and the

slipping and guessing parameters for each item. The item response functions are more complicated for other

conjunctive models, with item parameters that are generally more difficult to calibrate. As demonstrated
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below, the Robust DINA MLE has good statistical properties, and applying the simple DINA model, can

always yield relatively efficient classifications of attribute patterns under a wide class of underlying true

models. There are some choices for calibrating the slipping and guessing parameters in DINA portion of

the model. Based on the consistency theorem discussed in the next section, those parameters can either be

randomly simulated from a reasonable interval or calibrated from the original DINA log-likelihood function

by using existing software. This greatly simplifies the item parameter calibration procedure. Next, we

provide theory to show the consistency of the Robust DINA MLE estimator under model misspecification.

2.3.2 Asymptotic behavior of the Robust DINA MLE

In this section, we first provide the regularity conditions required for consistency, then state and prove the

main consistency result for a single examinee, using the Robust DINA MLE. Then we extend the consistency

result to a finite sample of subjects.

The true model must satisfy the following conditions: for some known positive small number δ0,

Condition (T.1) 0.5 + δ0 < π∗j1(α) ≤ 1,

Condition (T.2) 0 ≤ π∗j2(α) < 0.5− δ0.

The corresponding two conditions are required for the misspecified DINA model: there exists positive

small numbers δ1, δ
′

1 such that

Condition (M.1) πj1 − πj2 > δ1 > 0

Condition (M.2) δ
′

1 < πj1, πj2 < 1− δ′1.

We also make the usual assumption that independence of the item response vector given the attribute

vector holds for the true model, and item response vectors of different examinees are independent.

Theorem 5. For an examinee with true attribute vector α∗, suppose the true CDM satisfies Conditions

(T.1) and (T.2). If a misspecified DINA model is used which satisfies Conditions (M.1) and (M.2), and we

correctly specify a Q-matrix that satisfies Condition (I) as the exam length increases, then the Robust DINA

MLE estimator is a consistent estimator of α∗. Specifically,

lim
J→∞

P

(
max
αh∈A

L(J)
r (αh) < L(J)

r (α∗)

)
= 1. (2.5)

Proof. The proof of Theorem 2.3.2 using exactly same techniques as those in the proof of Theorem 4, but

the structure of the robust log-likelihood is different. Note that the Robust DINA log-likelihood can be
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written as:

l(J)r (α) = log(L(J)
r (α)) =

J∑
j=1

lrj (α)

=
∑

j∈B1(α)

lrj (α|ηj(α) = 1) +
∑

j∈B0(αh)

lrj (α|ηj(α) = 0) ,

where

lrj (α|ηj(α) = 1) = Yj log(πj1) + (1− Yj) log(1− πj1)− log

(
πj1
πj2

)
(1− Yj);

lrj (α|ηj(α) = 0) = Yj log(πj2) + (1− Yj) log(1− πj2)− log

(
1− πj2
1− πj1

)
Yj .

♦

Following the same argument as those in the proof of Theorem 4, we can have that

l(J)r (αh)− l(J)r (α∗) =
∑
j∈B01

lrj (α
h|η(αh) = 1)−

∑
j∈B01

lrj (α
∗|η(α∗) = 0)

+
∑
j∈B10

lrj (α
h|η(αh) = 0)−

∑
j∈B10

lrj (α
∗|η(α∗) = 1)

= I
(J)
1 + I

(J)
2 .

In order to prove Theorem , we only need to prove that

lim
J→∞

P
(
I
(J)
1 + I

(J)
2 > 0

)
= 0. (2.6)

Again, using the same notations as the cardinalities defined in Theorem 4, we need to discuss (2.6) in three

situations.

Proof of (1.1)

P (I
(J)
1 + I

(J)
2 > 0) ≤ P (I

(J)
1 > 0) + P (I

(J)
2 > 0).

Then we only need to prove

lim
J→∞

P (I
(J)
1 > 0) = 0, and, lim

J→∞
P (I

(J)
2 > 0) = 0.
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Using similar techniques as in the proof of Theorem 3, we have

P
(
I
(J)
1 > 0

)
= P

(
I
(J)
1 − E∗[IJ1 ] > −E∗[IJ1 ]

)
.

Note that for j ∈ B01(αh), E∗(Yj) = P ∗(Yj = 1|ηj(α∗) = 0) = π∗j2(α∗). Then we can get that

P
(
I
(J)
1 > 0

)
= P

( ∑
j∈B01

(Yj − π∗j2(α∗))2 log

(
πj1
πj2

1− πj2
1− πj1

)
> −E∗[I(J)1 ]

)
,

where −E∗[I(J)1 ] =
∑
j∈B01(αh)

[
(1− 2π∗j2(α∗)) log

(
πj1
πj2

1−πj2
1−πj1

)]
.

If we treat Zj = 2(Yj − π∗j2(α∗)) log(
πj1
πj2

1−πj2
1−πj1 ) as the new random variable, then

0 ≤ |Zj | ≤ 2 log

(
πj1
πj2

1− πj2
1− πj1

)
≤ log

(
(

1

δ
′
1

)2
)
≤ ∞.

Furthermore,

(1− 2π∗j2(α∗)) log

(
πj1
πj2

1− πj2
1− πj1

)
> 2δ0 log

(
(1 + δ1

1+δ
′
1

)2
)

= ε1 > 0.

Define ε2 = log(( 1
δ
′
1

)2), then we can apply Hoeffding’s inequality to obtain an upper bound for P (I
(J)
1 > 0).

P (I
(J)
1 > 0) < P

 ∑
j∈B01(αh)

(Yj − π∗j2(α∗))ε2 > J1(αh)ε1

 ≤ exp

(
−2(J1(αh)ε1)2

J1(α)ε22

)
= exp(−2J1(αh)ε),

where ε =
ε21
ε22
> 0. Thus P

(
I
(J)
1 > 0

)
→ 0, as J →∞.

Similarly,

P
(
I
(J)
2 > 0

)
= P

(
I
(J)
2 − E∗[I(J)2 ] > −E∗[I(J)2 ]

)
= P

 ∑
j∈B10(αh)

(Yj − π∗j1(α∗))2 log

(
πj2
πj1

1− πj1
1− πj2

)
> −E∗[I(J)2 ]

 ,

where E∗[I
(J)
2 ] =

∑
j∈B10(αh)(2π

∗
j1(α∗)− 1) log

(
πj1
πj2

1−πj2
1−πj1

)
. Note that ∀j ∈ B10(αh),

(
2π∗j1(α∗)− 1

)
log

(
πj1
πj2

1− πj2
1− πj1

)
> 2δ0 log

(
(1 +

δ1
1 + δ

′
1

)2
)

= ε1 > 0,∣∣∣∣log

(
πj2
πj1

1− πj1
1− πj2

)∣∣∣∣ < ε2.
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Applying Hoeffdoing’s inequality again we see that

P
(
I
(J)
2 > 0

)
< P

 ∑
j∈B10(αh)

(Yj − π∗j1(α∗)) log

(
πj2
πj1

1− πj1
1− πj2

)
> J2(αh)ε1


≤ exp

(
−2(J2(αh)ε1)2

J2(α)ε22

)
= exp

(
−2J2(αh)ε

)
.

Thus P
(
I
(J)
2 > 0

)
→ 0, as J →∞.

Proofs of (1.2) and (1.3)

Here we only discuss (1.2) in detail and the conclusion for (1.3) is found by precisely the same argument.

In situation (1.2), J2(αh) <∞, log
(
πj2(1−πj1)
(1−πj2)πj1

)
< 0, log

(
1−πj2
1−πj1

πj1
πj2

)
> 0,

I
(J)
2 =

∑
j∈B10(αh)

[
Yj ∗ 2 log

(
πj2(1− πj1)

(1− πj2)πj1

)
+ log

(
1− πj2
1− πj1

)]

≤
∑

j∈B10(αh)

log

(
1− πj2
1− πj1

πj1
πj2

)
<

∑
j∈B10(αh)

2 log

(
1

δ
′
1

)

≤ lim
J→∞

J2(αh)2 log

(
1

δ
′
1

)
= C1 <∞

Then we only need to discuss P
(
I
(J)
1 > 0

)
when J → ∞. Using the same technique as in the proof of

Theorem 4 we have,

P (I
(J)
1 > 0) ∼ exp(−2J1(αh)ε),

where ε > 0 is the same form as that in (1.1). So we conclude that P
(
I
(J)
1 + I

(J)
2 > 0

)
will converge to 0

as J →∞.

In situation (1.3), define C2 = limJ→∞ 2J1(αh)2 log
(

1
δ
′
1

)
<∞, we have

P
(
I
(J)
1 + I

(J)
2 > 0

)
∼ exp

(
−2J2(αh)ε

)
.

To summarize, we can get the exact same upper bounds for P
(
l
(J)
r (αh) > l

(J)
r (α∗)

)
as those in Table

3.8.

Theorem 6. For a sample of N subjects, suppose the true CDM satisfies Conditions (T.1) and (T.2). If

we use a possibly misspecified model which satisfies Conditions (M.1) and (M.2), and a correctly specified
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Q-matrix that satisfies Condition (I) as the exam length increases, then

lim
J→∞

P

(
N⋂
i=1

{
max
αh∈A

L(J)
r (αh) < L(J)

r (α∗i )

})
= 1

Proof. With the same techniques as those used for Theorem 2.3.2, it is equivalent to prove that

lim
J→∞

P

 N⋃
i=1

⋃
αh∈A

{
l(J)r (αh) > l(J)r (α∗i )

} ≤ lim
J→∞

N∑
i=1

∑
αh∈A

P
({
l(J)r (αh) > l(J)r (α∗i )

})
= 0

Because N is a finite sample size, not increasing with J , the above equation is always true based on a

direct application of Theorem 2.3.2. ♦

Remark 1. Note that the upper bound for P
(
L
(J)
r (αh) > L

(J)
r (α∗)

)
converges to 0 exponentially fast, thus

a strong consistency result can easily be achieved by applying the Borel-Cantelli Lemma.

The proof of Theorem 2.3.2 indicates that conditions (T.1) and (T.2) are the key factors to guarantee

the consistency of the Robust DINA MLE. For conjunctive models, the probability of a correct response

when subjects have mastered all the required attributes will always be larger than that when they have not.

If the true model satisfies conditions (T.1) and (T.2), and the misspecified DINA model satisfies conditions

(M.1) and (M.2), the standard independence assumption and the condition for the identifiability of Q matrix

guarantee that we can always get a consistent classification result by using the Robust DINA MLE. With

similar arguments as those in Section 2.2.2, the consistency may sill hold if the true model is a compensatory

model, but the 0.5 boundary may be too restrictive for most compensatory models. If the true model is a

disjunctive model, this theorem will not hold.

2.4 Simulation

2.4.1 Simulation 1

To illustrate how the proposed Robust DINA MLE can solve the inconsistency problem for the MLE under a

misspecified DINA model, a simulation based on the Example 1 in Section 2.2.3 was conducted. The Robust

DINA log-likelihood was constructed based on the same wrong parameters for the misspecified model as

were given in the inconsistency example. We summarize the PAR of those two methods under each test

length.
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Figure 2.3: Consistency of Robust DINA MLE

From Figure 2.3 we can see that the PAR from the Robust DINA MLE converges to 100% as the test

length increases. This indicates the Robust DINA MLE is a consistent estimator in this case.

2.4.2 Simulation 2

Because the nonparametric classifier is also a consistent estimator for the attribute profile, we can compare

the robust DINA MLE with it in terms of the estimation efficiency. Furthermore, although there is an

example which shows the MLE estimator under a misspecified DINA model is not necessarily consistent, it

is still worthwhile to investigate the behavior of the MLE in some model misspecification cases.

Simulation Design

The simulation conditions were formed by crossing test length, the data generation model, and the deviation

of πj1(α∗) and πj2(α∗) from 0.5 (denoted as δ0). The DINA, the NIDA, and the Reduced-RUM models were

chosen as the true models to generate examinees’ responses. Responses were simulated using the DINA, the

NIDA, and the Reduced-RUM. For each dataset, K = 3 or K = 5 attributes were required and response

profiles consisting of J = 20, 40, 100 or 200 items were sampled for N = 1000 subjects. The first two test

lengths were chosen to study the behavior under common conditions, and the larger two test lengths were

included to provide an empirical examination of whether consistency appears to hold. The attribute pattern

α∗i for i = 1, 2, ..., 1000 were determined based on a multivariate normal threshold model (Chiu and Douglas,

2013) to mimic a realistic situation where attributes are correlated and of unequal prevalence. Specifically,

the discrete α were linked to an underlying multivariate normal distribution, MVN(0K ,Σ), with covariance
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matrix,

Σ =


1 · · · ρ

...
. . .

...

ρ · · · 1


, and ρ = 0.5. Let θi = (θi1, θi2, ..., θiK)

′
denote the K- dimensional vector of latent continuous scores for

examinee i. The attribute pattern αi = (αi1, αi2, ..., αiK) was determined by

αik =


1, if θik ≥ Φ−1( k

K+1 );

0, otherwise.

The item parameters for the three models were generated from uniform distributions on appropriate

intervals. The 0.5 boundary for πj1(α∗) and πj2(α∗) is the key condition to get the consistency results for

robust DINA MLE estimation and the non-parametric estimation method under model misspecification. As

two types of correct response probabilities grow in distance from 0.5, quantified by δ0, we expect greater

efficiency in classification. Here we regard relative efficiency as how correct classification rates compare

across two methods or two conditions. To investigate the performance with different δ0 values, we simulated

the item parameters from 3 different true models and control δ0 as “small”, “medium” and “large”. For the

DINA model, the three types of values for δ0 can be achieved by setting the upper bound of sj and gj as

0.5, 0.3, and 0.1. For the Reduced RUM model, we control the upper bound of r∗jk as 0.3, and let the lower

bound of πj vary from 0.5, 0.7 and 0.9. For the NIDA model, the lower bound for gk is controlled by 0.5. To

guarantee π∗j1(α) > 0.5, for any α, (1 − sk)K should be at least greater than 0.5. Because of this product

effect, the lower bound of sk varies from 0.2, 0.15, and 0.1 when K = 3, and 0.12, 0.07 and 0.09 when K = 5

to represent δ0 as “small”,“medium” and “large”.

No matter what the true model is, for parametric estimation methods, the DINA model is always used

to estimate the attribute pattern. Two methods were used to obtain the DINA item parameters. One was

to use “CDM” package in R to calibrate DINA item parameters, the other was to randomly simulate the

guessing and slipping parameters for each item from a uniform distribution with lower bound as 0.01 and

upper bound as 0.3.

The Q-matrices for tests of 20 items with K = 3 and 5 were designed as in Table 2.3 and Table 2.4, and

for those for tests of 40, 100 or 200 items were obtained by replicating the Q matrix in Table 2.3 and Table

2.4.
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Table 2.3: Q matrix, K = 3

Item

Attribute 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 0 0 1 1 0 1 0 1 1 1 0 1 1 0 1 1 0 1 1

2 0 1 0 1 0 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1

3 0 0 1 0 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1

Table 2.4: Q matrix, K = 5

Item

Attribute 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 0 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 0 1 1

2 0 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 1 1 1

3 0 1 0 0 0 1 1 1 1 1 0 1 1 0 0 1 0 0 0 1

4 0 0 1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0 1

5 1 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0 1 0 1 0

Results

Results are summarized by pattern-wise agreement rate (PAR) and attribute-wise agreement rate (AAR)

to reflect the agreement between estimated attribute profiles and the known true attribute profiles. PAR

is defined as PAR =
∑N
i=1

I|α̂i=αi|
N to denote the proportion of accurately estimated attribute patterns.

AAR refers the proportion of individual attributes that were classified correctly, and is defined as AAR =∑N
i=1

∑K
k=1

I[α̂ik=αik]
NK . The nonparametric estimator based on minimizing Hamming distance can result

in some ties, and these ties were randomly broken, though there might be room for developing a more

sophisticated technique. In order to see a clear trend, we first present the results for PAR when K = 5.

The barplot in Figure 2.4 documents PARs from the MLE, the robust DINA MLE and the non-parametric

estimation method when the data were generated from the DINA model. Conditioning on the same deviation

δ0, the PARs from the three methods both increase with test length. The larger the two correct response

probabilities deviate from 0.5, the higher the classification rates for the three methods under the same test

length. Besides those general trends, several interesting results can be concluded from Figure 2.4: 1) When

test length equaled 20 or 40, the robust DINA MLE method performed very well in most situations, with

classification rates nearly indistinguishable from the calibrated DINA model. 2) For the DINA MLE method,

the results based on the simulated item parameters were quite comparable to those based on the calibrated
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item parameters. For the Robust DINA MLE method, results based on the simulated item parameters were

slighter worse than those based on the calibrated item parameters. 3) When the test length was long enough

(100 or 200), all three methods had similar performance and the PARs were all close to 100%. Especially, for

the two parametric methods, the results based on the calibrated item parameters and simulated parameters

had similar performances.
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Figure 2.4: True Model: DINA

MLEc: DINA MLE using calibrated item parameters; MLEsim: DINA MLE using simulated item parameter; RMLEc: Ro-
bust DINA MLE using calibrated item parameters; RMLEsim:Robust DINA MLE using simulated item parameters; NP: the
nonparametric estimation method

Figure 2.5 and Figure 2.6 document the classification results in terms of PAR of the three methods when

the data were generated from the Reduced-RUM model and the NIDA model. Note that, instead of fitting

the corresponding right model, we used the true model parameters to obtain the MLE for the attribute

profile as a baseline (the results were denoted as “Real” in those figures). Similar conclusions as those

from Figure 2.4 can be seen. However, the Robust DINA MLE displays a significant advantage over the

DINA MLE in many cases. An additional conclusion is that when test length is long enough (100 or 200),

the parametric methods based on a DINA model, no matter whether using calibrated item parameters or

simulated item parameters, had a similar but slightly worse performance as the MLE obtained by using the

true model parameters.
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Figure 2.5: True Model: Reduced RUM

MLEc: DINA MLE using calibrated item parameters; MLEsim: DINA MLE using simulated item parameter; RMLEc: Ro-
bust DINA MLE using calibrated item parameters; RMLEsim:Robust DINA MLE using simulated item parameters; NP: the
nonparametric estimation method; Real: MLE obtained using true reduced RUM model parameters
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Figure 2.6: True Model: NIDA

MLEc: DINA MLE using calibrated item parameters; MLEsim: DINA MLE using simulated item parameter; RMLEc: Ro-
bust DINA MLE using calibrated item parameters; RMLEsim:Robust DINA MLE using simulated item parameters; NP: the
nonparametric estimation method; Real: MLE obtained using true NIDA model parameters

Finally, the classification results when K = 3 are summarized in Table 2.5 to Table 2.7. The general
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trends were the same as those when K = 5. The only difference is that now the Robust DINA MLE had a

similar performance as the DINA MLE when the test length equaled 20 or 40.

Table 2.5: Classification rates for three methods with DINA data

K = 3

PAR AAR

Test Length Test Length

δ0 Estimation Item Calibration 20 40 100 200 20 40 100 200

MLE Calibration 72.7 78.2 98.5 98 87.4 90.3 99.5 99.3

Simulation 73.2 65.6 90.2 91.5 88.7 82.9 95.9 97.0

small RMLE Calibration 73.4 78.9 97.3 97.7 87.9 90.9 99.1 98.8

Simulation 73.1 70.1 92.1 92.5 88.8 86.3 97.1 97.4

NP - 71.1 73.8 96.7 96.5 87.4 88.2 98.8 98.5

MLE Calibration 79.0 90.5 98.6 99.9 90.8 96.4 99.5 100

Simulation 73.7 82.2 98.0 99.6 88.5 92.9 99.3 99.9

medium RMLE Calibration 73.8 90.7 98.2 99.8 87.6 96.5 99.3 100

Simulation 76.4 83.4 97.8 99.6 90.1 93.6 99.2 99.9

NP - 74.5 85.2 98.3 99.7 96.7 97.7 99.9 100

MLE Calibration 91.3 94.6 99.9 100 96.0 98.1 100 100

Simulation 93.1 94.4 99.9 100 97.2 97.9 100 100

large RMLE Calibration 90.8 93.6 99.9 100 95.7 97.7 100 100

Simulation 93.1 94.1 99.9 100 97.2 97.8 99.9 100

NP - 92.4 93.5 99.9 100 96.7 97.6 99.9 100
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Table 2.6: Classification rates for three methods with Reduced RUM data

K = 3

PAR AAR

Test Length Test Length

δ0 Estimation Item Calibration 20 40 100 200 20 40 100 200

MLE Calibration 88.8 93.9 97.2 99.2 95.7 97.6 99.1 99.7

Simulation 83.9 89.8 95.2 95.1 93.2 96.2 98.3 98.3

small RMLE Calibration 88.9 93.0 98.6 99.1 95.7 97.5 99.5 99.7

Simulation 83.0 88.8 96.7 97.9 92.5 95.8 98.9 99.0

NP - 86.7 90.8 98.4 97.9 94.5 96.5 99.4 99.3

R-RUM - 88.0 96.8 99.4 100 95.2 98.6 99.8 100

MLE Calibration 87.9 90.9 98.2 100 95.4 96.5 99.3 100

Simulation 85.1 90.0 98.0 99.6 93.8 96.3 99.2 99.9

medium RMLE Calibration 87.8 89.9 97.9 99.9 95.4 96.2 99.2 100

Simulation 85.1 90.4 98.1 99.8 93.8 96.5 99.3 99.9

NP - 86.2 88.9 98.1 99.8 94.4 94.7 99.6 100

R-RUM - 87.9 96.2 99.3 100 95.1 98.6 99.8 100

MLE Calibration 82.0 90.0 99.1 100 92.1 96.0 99.7 100

Simulation 83.5 85.7 99.1 100 93.2 94.5 99.7 100

large RMLE Calibration 82.7 86.0 99.1 100 92.6 94.2 99.7 100

Simulation 85.3 87.5 99.2 100 94.3 95.0 99.7 100

NP - 84.2 86.3 99.0 100 93.6 94.7 99.6 100

R-RUM - 87.1 94.4 99.7 100 94.8 97.8 99.9 100

46



Table 2.7: Classification rates for three methods with NIDA data

K = 3

PAR AAR

Test Length Test Length

δ0 Estimation Item Calibration 20 40 100 200 20 40 100 200

MLE Calibration 78.8 95.3 96.6 99.6 90.3 98.3 98.9 99.9

Simulation 74.6 92.2 92.1 98.7 89.1 96.7 97.1 99.6

small RMLE Calibration 79.7 89.4 96.1 99.5 90.9 96.2 98.6 99.8

Simulation 78.7 88.3 94.0 98.9 92.0 95.3 97.8 99.6

NP - 80.1 90.3 96.1 99.4 91.2 96.5 98.6 99.8

NIDA - 86.2 95.8 98.6 100 94.7 98.5 99.5 100

MLE Calibration 82.1 96.0 99.7 99.6 91.4 98.5 99.9 99.8

Simulation 84.9 90.6 98.6 99.2 93.5 96.3 99.5 99.7

medium RMLE Calibration 82.3 92.5 98.5 99.2 91.5 97.3 99.5 99.7

Simulation 82.6 90.2 98.0 99.0 91.8 96.1 99.3 99.7

NP - 84.6 91.8 98.5 99.3 93.2 96.9 99.5 99.7

NIDA - 85.2 96.9 99.9 100 93.7 98.8 100 100

MLE Calibration 88.6 97.5 99.8 100 95.5 98.8 99.9 100

Simulation 80.2 92.0 98.3 99.2 90.9 97.1 99.4 99.7

large RMLE Calibration 86.1 91.2 98.3 99.5 94.9 96.8 99.4 100

Simulation 83.2 91.2 98.2 99.6 92.7 96.7 99.4 100

NP - 82.6 92.3 98.3 99.4 92.5 97.2 99.4 100

NIDA - 89.3 98.5 99.9 100 95.6 99.4 100 100

To summarize, the consistency pattern for the DINA MLE, the Robust DINA MLE and the nonparamet-

ric classifier can be observed no matter whether the data were generated from the DINA model, the Reduced

RUM model or the NIDA model. Although we have generated an example to show the inconsistency of the

MLE under a misspecified conjunctive model, the simulation results indicate that the MLE estimator can

still be consistent. This can be explained mathematically. Although there might be negative and positive

terms in ∆(J), this sum is still positive and of order J when the true item parameters are uniformly dis-

tributed. A very interesting finding is that if the true conjunctive model satisfies δ0 > δ, when using the

parametric methods to estimate attribute profiles, there is no need to calibrate the DINA item parameters.

Simulating the DINA item parameters from a reasonable bounded uniform distribution may guarantee good

classification results, especially when test length is long.
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2.5 Real data analysis

In this section, we compare the classification results from the MLE, the Robust DINA MLE and the Non-

parametric classifier based on a real data set. This data set contains responses to 34 items involving the

square root operation from 5348 second year students in a primary school in Beijing. The Q matrix for this

data set is in Table 6 below, assuming 6 attributes are required to do the square root operation. They are:

(1) know the concept of square root, (2) square the number, (3) simplify the equation, (4) multiplication

and division skills, (5) addition and subtraction skills, and (6) arithmetic ability.

Table 2.8: Q matrix for square root operation

Item

Attribute 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0

4 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Item

Attribute 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1

3 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0

4 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1

5 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

In this analysis, a DINA model was used for the parametric estimation methods and the item parameters

were either calibrated by the “CDM” package or simulated from a uniform distribution on (0.01, 0.3). All

the calibrated parameters satisfy 1− sj − gj > 0. The total possible attribute profiles is 2K = 64. However,

they were classified into 36 equivalence classes because the Q matrix is not complete. The α which has the

same ideal response pattern belongs to one equivalence class. The five estimation methods: DINA MLE

based on calibrated item parameters, DINA MLE based on simulated item parameters, Robust DINA MLE
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based on calibrated item parameters, Robust DINA MLE based on simulated item parameters and the

nonparametric estimation method were used, and pairwise equivalent class agreement rates between the 5

estimation methods are summarized by Table 2.9 below:

Table 2.9: The Equivalence Classification Agreement Among Five Methods

1 2 3 4 5

1 100% 49.4% 47.1% 47.0% 46.4%

2 - 100% 77.7% 91.0% 79.6%

3 - - 100% 78.9% 80.8%

4 - - - 100% 80.4%

5 - - - - 100%

1: DINA MLE based on calibrated item parameters

2: DINA MLE based on simulated item parameters

3: Robust DINA MLE based on calibrated item parameters

4: Robust DINA MLE based on simulated item parameters

5: Nonparametric estimation method

From the results we can see that the DINA MLE with calibrated item parameters had relatively low

agreement with other methods, and the other four methods had relatively high pairwise agreement, especially

for the DINA MLE with simulated item parameters and the Robust DINA MLE with simulated item

parameters.

2.6 Discussion

We have examined the consequences of model misspecification in the cognitive diagnosis framework when

using maximum likelihood classification of attribute profiles. Several interesting and even surprsing findings

were observed. First, in general, when a CDM is misspecified as a conjunctive model, the MLE for attribute

profiles is not necessarily consistent. An example was used to show that the MLE is not consistent when the

true model is a DINA model and is misspecified as a DINA model with different item parameters. Second, we

found a sufficient condition for the MLE to be a consistent estimator under a misspecified DINA model. The

true model can be any conjunctive models or even a compensatory model that satisfies these conditions. We

have provided another example to show that the MLE of attribute profile under a misspecified DINA model

can be a consistent estimator even when the true model is a compensatory RUM model. Third, a Robust
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DINA MLE technique was proposed to overcome the inconsistency issue, and theorems were presented to

show that it is a consistent estimator for attribute profiles as long as the true model is a conjunctive model.

Finally, simulation results indicated that when the true model is a conjunctive model, the robust DINA

MLE and the DINA MLE based on the simulated item parameters can result in relatively good classification

result even when the test length is short.

Those findings give some insights when using cognitive diagnosis models to estimate attribute profiles:

simple and interpretable models can be fitted without severely affecting the classification accuracy. This is

especially valuable when practitioners believe the response data come from a conjunctive process. In such

cases, a simple DINA model can be used to get a relative good classification result. Surprisingly, according

to the simulation results, one can use simulated item parameters instead of calibrated item parameters to

get a good classification result.

Using a simple model can save much effort and expense on model calibration and offers a simple inter-

pretation. However, the worry is that this may result in inflated missclassification. For the DINA model,

the item response function is totally determined by the ideal response pattern, and if the Q matrix is not

complete and the test length is short, many attribute patterns may result in the exactly the same ideal re-

sponse pattern. This results in attribute patterns forming equivalence classes within which patterns may not

be distinguished from one another. If at this time we have further information about the attribute patterns,

not assuming they are independent, like the partially ordered set model (POSET) proposed by Tatsuoka

(2002), all the attribute patterns can be identified. Particularly, by using Bayesian analysis techniques in

Tatsuoka and Ferguson (2003), such POSET models can recognize confounding and equivalence classes in

classifications. However, to use such methods one needs to have prior information on the distributions of

the attribute profiles.

There is always a tradeoff between using a simple model and a complicated model. A complicated model

may result in more accurate classification results, but one needs to devote more effort on model calibrations

and result interpretations. A simple model can be easily implemented to analyze the data, but sometimes

may cause some unnecessary loss of accuracy. This paper discusses the consequences of using a simple model,

and gives some guidance for practitioners in what situations they can choose a simple model.

50



Chapter 3

Computerized Adaptive Testing that
Allows for Response Revision

3.1 Introduction

A main goal in educational assessment is the accurate estimation of the test-taker’s ability. In a conventional

paper-pencil test, this estimation is based on the examinee’s responses to a preassembled set of items. On the

other hand, in Computerized Adaptive Testing (CAT), as it was originally conceived by Lord (1971), items

are selected in real time and can be tailored to the examinee’s ability, which is learned as the test progresses.

This feature is especially important for examinees at the two extreme ends of the ability distribution, who

may otherwise receive items that are either too difficult or too easy.

The design of CAT is based on Item Response Theory (IRT) models for the probability of a correct answer

given the examinee’s ability and the item itself. The simplest IRT model is the Rasch model (Rasch (1993)),

in which the probability of a correct answer is equal to H(θ−b), where H is the cdf of the logistic distribution,

θ is a scalar parameter that represents the ability of the examinee and b is the difficulty parameter of the

item. A generalization of the Rasch model is the three parameter logistic model (3PL) model, in which

the probability of a correct answer is equal to c + (1 − c)H(a(θ − b)), where c ∈ (0, 1) is a parameter that

captures the probability of guessing the right answer and a is the discrimination parameter of the item. An

intermediate model, the two parameter logistic model (2PL), arises when we set c = 0.

A standard approach for item selection in CAT, proposed by Lord (Lord, 1980), is to select the item

with the maximum Fisher information at each step. In the case of the Rasch model, this means that item

i should be selected so that its difficulty parameter bi is equal to θ. Since θ is unknown, this suggests

setting bi equal to an estimate of θ based on the first i − 1 observations. For the adaptive estimation of

θ, Lord (1971) proposed the Stochastic Approximation algorithm of Robbins and Monro (1951). However,

this non-parametric approach can be very inefficient with binary data, as it was shown by Lai and Robbins

(1979). For this reason, Wu (1985, 1986) suggested using the Maximum Likelihood Estimator (MLE) of θ

based on the first i − 1 observations. Following this approach, coupled with the information maximizing

item selection strategy, Ying and Wu (1997) established the strong consistency and asymptotic normality of
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the resulting estimator under the Rasch model, whereas Chang and Ying (2009) extended these results to

the case of the 2PL and 3PL model.

Thanks to the above statistical advances, as well as the rapid development of modern technology, CAT

has become popular for many kinds of measurement tasks, such as educational testing, patient reported

outcomes, and quality of life measurement. Examples of large-scale CATs include the Graduate Management

Admission Test (GMAT), the National Council Licensure Examination (NCLEX) for nurses, and the Armed

Services Vocational Aptitude Battery (ASVAB) (Chang and Ying, 2007). Moreover, beyond the problem

of ability estimation, CAT has been applied to mastery testing (Sie et al., 2015; Bartroff et al., 2008) and

cognitive diagnosis (Liu et al. (2015)). However, in none of the currently operational CAT programs are the

examinees allowed to revise their responses to previously administered items during the test (Vispoel et al.

(1999)) and this is one of the reasons that some testing programs have decided to switch to other modes of

testing (Luecht and Nungester, 1998).

The main argument against response revision among practitioners and researchers who oppose this feature

is that it violates the adaptive nature of CAT. Specifically, it has been argued that allowing for response

revision decreases estimation efficiency and increases bias (Stocking, 1997; Vispoel et al., 1999), as well as

that it gives the opportunity to disingenuous examinees to artificially inflate their test scores by adopting

deceptive test-taking strategies (Wainer, 1993; Kingsbury, 1996; Wise et al., 1999). On the other hand, it has

been argued that response revision in CAT may lead to more accurate inference, by minimizing measurement

error, and to a friendlier testing environment, by lowering the anxiety of the examinees (Wise, 1996; Vispoel

et al., 2000). Indeed, it has been reported that examinees would favor the response revision feature in CAT

(Vispoel and Coffman, 1992), whereas the desire for review opportunities has also been verified in other

studies of computerized tests, e.g., (Schmidt et al., 1978).

Overall, the absence of the opportunity to revise in CAT has been a main concern for both examinees

and testing companies and a number of modified CAT designs have been proposed in order to incorporate

this feature (Stocking, 1997; Vispoel et al., 2000; Han, 2013). In order to prevent the potential dangers of

revision, these designs have postulated quite limited revision rules. For example, they may impose an upper

bound on the number of items that can be revised, or they may allow the test-taker to revise only at specific

times during the test. Under such rules and restrictions, it has been reported that response revision does

not impact the estimation accuracy and efficiency of CAT. However, these conclusions were based only on

simulation experiments and were not supported theoretically.

In this chapter, we propose and analyze a novel CAT design whose goal is to preserve the advantages

of conventional CAT with respect to estimation efficiency, but at the same time to allow examinees to
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revise their answers at any time during the test. The only restriction is on the number of revisions to the

same item. Thus, we impose significantly more relaxed revision constraints on the examinees in comparison

to alternative CAT designs that have been proposed to allow for response revision. In order to achieve

this, we use a different modeling framework than that of a typical CAT design. Indeed, although most

operational CAT programs employ multiple-choice items, they model them in a dichotomous way, specifying

the probability of each response being either right or wrong. On the contrary, we use a polytomous IRT

model, the nominal response model proposed by Bock (1972), and specify the probability that the examinee

selects each category of a given item. Based on this model, we postulate a joint probability model for the

first answer to each item and any subsequent revisions to it and we update the ability parameter after each

response with the maximizer of the likelihood of all responses, first answers and revisions. However, we do

not make any modeling assumptions for the decision of the examinee to revise or not at each step. Finally,

whenever the examinee asks for a new item, we select the one with the maximum Fisher information at the

current estimate of the ability level.

We provide an asymptotic analysis of the proposed method, which to our knowledge is the first rigorous

theoretical analysis of a CAT design that allows for response revision. First, we show that the resulting

estimator is strongly consistent as the number of administered items goes to infinity (Theorem 3.4.1). Then,

we show that it is asymptotically normal under a stability assumption on the cumulative Fisher information

that is satisfied when the number of revisions is small relative to the number of items (Theorem 3.4.2).

Moreover, we consider separately the case of a conventional CAT (that does not allow for response

revision) that is based on the nominal response model. To our knowledge, there has not been any theoretical

analysis of a standard CAT that is based on a polytomous model, therefore the corresponding consistency

(Theorem 3.3.1) and asymptotic normality (Theorem 3.3.2) results are new and of independent interest.

Most importantly, they help us illustrate the conceptual and technical differences between the traditional

CAT setup, where the number of observed responses coincides with the number administered items at any

time during the test, and the proposed setup in which the number of responses and items are in general

different.

The theoretical analysis of our design does not rely on any assumptions about the examinee’s revision

strategies, i.e., nothing was assumed regarding when and which items the examinee chooses to revise. How-

ever, before this design is implemented in practice, it is important to understand how it behaves under

various test-taking strategies that may even violate some of its underlying modeling assumptions. Thus we

also investigate the proposed design under different revision strategies. First, in order to illustrate that this

design can reduce measurement error, we consider examinees that only correct careless mistakes caused by
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misreading the items or temporary lapses in memory. It is reasonable to expect that correcting such mistakes

can yield scores that represent more accurately the examinee’s skill level Vispoel (1998). Second, in order to

address the issue of cheating, which is a main concern for researchers and practitioners regarding response

revision in CAT Wise (1996), we consider examinees that adopt test-taking strategies which take advantage

of the response revision feature, such as the Wainer strategy and the generalized Kingsbury strategy (Wainer,

1993; Green et al., 1984; Wise et al., 1999).

Throughout the paper, we focus on a single examinee whose ability is quantified by an unknown, scalar

parameter θ ∈ R and we denote by Pθ/Eθ/Varθ the corresponding probability measure/expectation/variance.

3.2 Nominal Response Model

Let X be the response to a generic multiple-choice item with m ≥ 2 categories. We write X = k when the

examinee chooses category k and we assume that

Pθ(X = k) =
exp(akθ + ck)∑m
h=1 exp(ahθ + ch)

, 1 ≤ k ≤ m, (3.1)

where {ak, ck}1≤k≤m are known, item-specific real numbers that satisfy

m∑
k=1

|ak| 6= 0 and

m∑
k=1

|ck| 6= 0 (3.2)

and the identifiability conditions that
∑m
k=1 ak =

∑m
k=1 ck = 0.

Thus, the distribution of X is specified by the ability of the examinee, θ, and the item-specific vector

b = (a2, . . . , am, c2, . . . , cm) and we write

pk(θ; b) := Pθ(X = k), 1 ≤ k ≤ m, (3.3)

whereas we use the following notation for the corresponding log-likelihood, score function and Fisher infor-

mation

`(θ; b, X) := logPθ(X) =

m∑
k=1

log
(
pk(θ; b)

)
1{X=k},

s(θ; b, X) :=
d

dθ
`(θ; b, X), J(θ; b) := Varθ[s(θ; b, X)].

(3.4)
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Remark: In the special case of binary data (m = 2), a1 = −a2, c1 = −c2,

p2(θ; b) = 1− p1(θ; b) =
exp(2a2θ + 2c2)

1 + exp(2a2θ + 2c2)
, (3.5)

thus, we recover the 2PL model with discrimination parameter 2|a1| and difficulty parameter −c2/a2.

For a given item with parameter vector b, we denote by a∗(b) and a∗(b) the maximum and minimum

of the ak’s respectively, i.e.,

a∗(b) := max
1≤k≤m

ak and a∗(b) := min
1≤k≤m

ak.

Furthermore, we denote by k∗(b) and k∗(b) the category with the largest and smallest a-value, respectively,

i.e.,

k∗(b) := argmax
1≤k≤m

ak and k∗(b) := argmin
1≤k≤m

ak. (3.6)

For simplicity and without loss of generality, we assume that the categories are ordered, so that k∗(b) = m

and k∗(b) = 1. We assume that b takes values in some compact set B ⊂ R2m−2 that represents the underlying

item bank/pool. Then, we denote by p∗(θ) (resp. p∗(θ)) the maximum probability of selecting the category

with the largest (resp. smallest) a-value, i.e.,

p∗(θ) := sup
b∈B

pk∗(b)(θ; b) and p∗(θ) := sup
b∈B

pk∗(b)(θ; b), (3.7)

and by J∗(θ) (resp. J∗(θ)) the maximal (resp. minimal) Fisher information in the pool, i.e.,

J∗(θ) := inf
b∈B

J(θ; b) and J∗(θ) := sup
b∈B

J(θ; b). (3.8)

The next two lemmas will be used throughout the paper.

Lemma 1. If g : R× B→ R is a jointly continuous function, then

(i) supb∈B g(·,b) and infb∈B g(·,b) are also continuous functions.
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(ii) If xn → x0, then

lim sup
n

sup
b∈B

g(xn; b) ≤ sup
b∈B

g(x0; b)

lim inf
n

inf
b∈B

g(xn; b) ≥ inf
b∈B

g(x0; b)

and supb∈B |g(xn,b)− g(x0,b)| → 0.

Proof. Part (i) follows from the so-called Maximum Theorem (see, e.g., Sundaram, R. K. (1996), p. 239),

so we will only prove (ii). In order to do so, we will first prove that for every x0 ∈ R we have

lim sup
n

sup
b∈B

g(xn; b) ≤ sup
b∈B

g(x0; b). (3.9)

For any given b ∈ B and ρ > 0 define the function:

φ(x,b, ρ) := sup{g(x; b′); b′ ∈ S(b, ρ)}, x ∈ R,

where S(b, ρ) := {b′ ∈ B : ||b′ − b|| < ρ} is an open ball with center b and radius ρ and S(b, ρ) its closure.

From (i) it follows that φ(·,b, ρ) is a continuous function.

For every x, g(x; ·) is continuous, thus, upper semi-continuous, therefore we have

lim sup
ρ→0

φ(x; b, ρ) ≤ g(x; b).

Thus, if we fix some ε > 0, for any b ∈ B we can find some ρb > 0 small enough so that

φ(x; b, ρb) ≤ g(x; b) + ε. (3.10)

Since {S(b, ρb)}b∈B is an open cover of B and B is compact, there is a finite set {b1, . . . ,bJ} ⊂ B so that

{S(bj , ρbj}1≤j≤J is also a cover of B. This means that for some arbitrary b ∈ B there exists a j ∈ {1, . . . , J}

so that b ∈ S(bj , ρbj ) and, consequently,

g(xn; b) ≤ φ(xn; bj , ρbj ) ≤ max
1≤j≤J

φ(xn; bj , ρbj )
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Since the right-hand side is free of b, we have

sup
b∈B

g(xn; b) ≤ max
1≤j≤J

φ(xn; bj , ρbj ). (3.11)

Since xn → x0 and φ(·,b, ρ) is a continuous function, we have φ(xn; bj , ρbj ) → φ(x0,bj , ρbj ) for every

1 ≤ j ≤ J and, consequently,

max
1≤j≤J

φ(xn; bj , ρbj )→ max
1≤j≤J

φ(x0,bj , ρbj ). (3.12)

From (3.11) and (3.12) we conclude that

lim sup
n

sup
b∈B

g(xn; b) ≤ max
1≤j≤J

φ(x0; bj , ρbj ). (3.13)

However, from the definition of the ρb’s in (3.10) we have

max
1≤j≤J

φ(x; bj , ρbj ) ≤ max
1≤j≤J

g(x0; bj) + ε ≤ sup
b∈B

g(x0; b) + ε (3.14)

From (3.13) and (3.14) we conclude that

lim sup
n

sup
b∈B

g(xn; b) ≤ sup
b∈B

g(x0; b) + ε (3.15)

Since ε is arbitrary, this proves (3.9). Now, in order to prove (ii), let us assume that g(x0; b) = 0 for every

b ∈ B. This can be done without any loss of generality, since we may otherwise work with g(xn,b)−g(x0,b).

Then, we simply need to show that

lim sup
n

sup
b∈B
|g(xn; b)| = lim sup

n
max{sup

b∈B
g(xn; b) , sup

b∈B
−g(xn; b)}

= 0.

(3.16)

Applying (3.9) with −g implies that

lim sup
n

sup
b∈B
−g(xn; b) ≤ 0. (3.17)

Combining (3.9) and (3.17) proves (3.16).

♦
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Lemma 2. (i) Fix b ∈ B. Then,

s(θ; b, X) :=

m∑
k=1

[
ak − ā(θ; b)

]
1{X=k}, (3.18)

J(θ; b) :=

m∑
k=1

(
ak − ā(θ; b)

)2
pk(θ; b); (3.19)

where ā(θ; b) is the following weighted average of the ak’s:

ā(θ; b) :=

m∑
h=1

ah ph(θ; b), (3.20)

Moreover, the derivative of s(θ; b, X) with respect to θ does not depend on X. Specifically,

s′(θ̃; b) :=
d

dθ
s(θ; b, X)

∣∣∣
θ=θ̃

= −J(θ; b). (3.21)

(ii) Fix b ∈ B. Then, ā(θ; b)→ a∗(b), pk∗(b)(θ; b)→ 1 as θ → −∞, ā(θ; b)→ a∗(b) and pk∗(b)(θ; b)→ 1

as θ → +∞. Moreover,

lim
|θ|→∞

J(θ; b) = 0. (3.22)

(iii) The functions θ → J∗(θ) and θ → J∗(θ) are continuous.

(iv) For any ability level θ, p∗(θ) < 1, p∗(θ) < 1, and for any X we have |s(θ; b,X)| ≤ K, 0 < J∗(θ) ≤

J∗(θ) ≤ K, where K is a constant that does not depend on θ or b.

Proof. Parts (i) and (ii) follow from direct computation. Part (iii) follows from Lemma 1, since J(θ; b) is

jointly continuous and B compact. Finally, for part (iv), for any θ and b we have

|s(θ; b,X)| ≤ max
1≤k≤m

|ak − ā(θ; b)| ≤ 2a∗(b) ≤ 2 sup
b∈B

a∗(b).

Moreover,

0 < J(θ; b) ≤
m∑
k=1

a2k pk(θ; b) ≤ m (a∗(b))
2 ≤ m sup

b∈B
(a∗(b))

2
,

where the first inequality holds because the ak’s cannot be identical, due to (2.2) and the identification

condition, and the second follows from (2.10). The upper bound does not depend on b or θ, therefore it is

a bound for J∗(θ). On the other hand, since J∗ is continuous and B compact, we have J∗(θ) > 0.

♦
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3.3 Standard CAT with Nominal Response Model

In this section, we consider the design of a CAT that is based on the nominal response model, but is

conventional in that it does not allow for response revision.

3.3.1 Problem formulation

Let n be the total number of items that will be administered to the examinee and let Xi denote the response

to item i, where 1 ≤ i ≤ n. In order to lighten the notation, we assume that each item has m ≥ 2 categories

and we write Xi = k if the examinee chooses category k in item i, where 1 ≤ k ≤ m and 1 ≤ i ≤ n. The

responses are assumed to be governed by the nominal response model (3.1)-(3.3), so that

Pθ(Xi = k) := pk(θ; bi), 1 ≤ k ≤ m, 1 ≤ i ≤ n, (3.23)

where θ is the scalar parameter of interest that represents the ability of the examinee and bi :=

(ai2, . . . , aim, ci2, . . . , cim) is vector that characterizes item i, satisfies (3.2) and takes values in the com-

pact set B ⊂ R2m−2. Note that in practice each bi can not take any value in B, because there is only a

finite number of items in a given item bank and there are further restrictions on the exposure rate of the

items (Chang and Ying (1999)). Nevertheless, this assumption will allows us to obtain a benchmark for the

large-sample performance that this method can attain in practice.

We assume that the responses are conditionally independent given the selected items, in the sense that

Pθ(X1:i|b1:i) =

i∏
j=1

Pθ(Xj |bj), 1 ≤ i ≤ n, (3.24)

where X1:i ≡ (X1, . . . , Xi) and b1:i ≡ (b1, . . . ,bi). In a paper-pencil test, the selected items are fixed in

advance, thus, the corresponding item parameters, b1:n, are deterministic. However, this is not the case in

CAT, where items are determined in real time based on the already observed responses. Specifically, if we

denote by FXi the information contained in the first i responses, i.e., FXi := σ(X1, ...., Xi), then bi must

be a FXi−1-measurable, B-valued random vector for every 2 ≤ i ≤ n, whereas b1 is arbitrary. As a result,

despite assumption (3.24), the responses are far from independent and, in fact, they may have a complex

dependence structure.

The problem in a standard CAT design is to find an ability estimator, θ̂n, at the end of the test, i.e.,

an FXn -measurable estimator of θ, and an item selection strategy, (bi)2≤i≤n, so that the accuracy of θ̂n can

be optimized. We suggest selecting the items in order to maximize the Fisher information at the current
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estimate of the ability level, i.e., item i+ 1 should be selected so that

b̂i+1 = argmax
b∈B

J(θ̂i; b), 1 ≤ i ≤ n− 1, (3.25)

where J is the Fisher information function of the nominal response model given by (3.19) and θ̂i is an

estimate of θ based on the first i responses, i.e, an Fi-measurable statistic. Thus, we need to estimate θ not

only at the end of the test, but after each response. Therefore, in order to implement the item selection

strategy (3.25), we need to estimate the test-taker’s ability in an on-line fashion.

We will define the proposed adaptive ability estimator for an arbitrary item selection strategy , not

necessarily (3.25). To be more specific, due to (3.23) and (3.24), the conditional log-likelihood and score

function of the first i responses given arbitrary selected items b1:i take the form

Li(θ) := logPθ(X1:i | b1:i) =

i∑
j=1

`(θ; bj , Xj),

Si(θ) :=
d

dθ
Li(θ) =

i∑
j=1

s(θ; bj , Xj),

(3.26)

where `(θ; bj , Xj) and s(θ; bj , Xj) are the log-likelihood and score, respectively, of the jth response, defined

in (3.4). Then, our estimate of θ based on the first i observations is the root of Si(θ), which exists and is

unique as long as at least one of the first i responses does not correspond to the category with the largest

a-value or to the category with the smallest a-value, that is as long as i > n0, where

n0 := max
{
i ∈ {1, . . . , n} : Xj = k∗(bj) ∀j ≤ i or Xj = k∗(bj) ∀j ≤ i

}

(recall the definition of k∗(b) and k∗(b) in (3.6)). For example, if we have items with m = 4 categories

in which the largest (resp. smallest) a-value is associated with category 4 (resp. 1), we have n0 = 3 in a

sequence of responses 1, 1, 1, 3, . . ..

For i ≤ n0, we need an alternative ability estimator, such as the Bayesian estimator in Bock and Aitkin

(1981). Alternatively, for i ≤ n0 we may set θ̂0 = 0 and θ̂i = θ̂i−1 + d (resp. θ̂i = θ̂i−1 − d) if the initial

responses have the largest (resp. smallest) a-value, where d is some predetermined constant. In any case,

the following lemma shows that, for large n, the final ability estimator, θ̂n, is the root of the score function

with probability 1.

Lemma 3. Pθ(Sn(θ̂n) = 0 for all large n) = 1.
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Proof. The final ability estimator, θ̂n, is not a root of Sn(θ) on the event An ∪Bn, where

An = {X1 = k∗(b1), . . . , Xn = k∗(bn)},

Bn = {X1 = k∗(b1), . . . , Xn = k∗(bn)}.

Thus, it suffices to show that Pθ(lim supnAn) = 0 and Pθ(lim supnBn) = 0. We will prove only the first

identity, since the second can be shown in a similar way. Indeed, Pθ(An) = Eθ [Pθ (An |b1:n)] and

Pθ (An |b1:n) =

n∏
i=1

pk∗(bi)(θ; bi) ≤ (p∗(θ))
n
,

where the equality follows the assumption of conditional independence (3.2) and the inequality from the

definition of p∗(θ) in (2.7). Since p∗(θ) < 1 (recall Lemma 2(iv)), we have
∑∞
n=1 Pθ(An) <∞ and from the

Borel-Cantelli lemma we obtain Pθ(lim supnAn) = 0, which completes the proof.

♦

3.3.2 Asymptotic analysis

In this section, we assume that (3.23) and (3.24) hold and we establish the asymptotic properties of the final

ability estimator, θ̂n. Specifically, we establish its strong consistency for an arbitrary item selection strategy

and its asymptotic normality when the information-maximizing item selection strategy (3.25) is adopted.

First of all, in Lemma 4 we show that for an arbitrary item selection strategy, (bi)1≤i≤n, the corresponding

score function Sn(θ) is a martingale with mean 0 and predictable variation equal to the conditional Fisher

information

In(θ) :=

n∑
i=1

J(θ; bi), (3.27)

where J(θ; bi) is the Fisher information of the ith item given by (3.19). Note also that from (3.21) it follows

that

S
′

n(θ̃) :=
d

dθ
Sn(θ)

∣∣∣
θ=θ̃

=

n∑
i=1

−J(θ̃; bi) = −In(θ̃). (3.28)

Lemma 4. For any item selection strategy, the score function {Sn(θ)}n∈N is a {Fn}-martingale under Pθ,
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with bounded increments, mean 0 and predictable variation

〈S(θ)〉n :=

n∑
i=1

Eθ
[(
Si(θ)− Si−1(θ)

)2 | Fi−1] = In(θ).

Proof. Fix n ∈ N. Then,

Sn(θ)− Sn−1(θ) = s(θ; bn, Xn)

and from Lemma 2 (iv) it follows that |Sn(θ)−Sn−1(θ)| ≤ K. Moreover, since bn is Fn−1-measurable, from

representation (2.9) it follows that

Eθ[Sn(θ)− Sn−1(θ)|Fn−1] = Eθ[s(θ; bn, Xn)|Fn−1] = 0,

which proves the martingale property of Sn(θ). Next, from (2.10) it follows that

Eθ[(Sn(θ)− Sn−1(θ))2|Fn−1] = Eθ[s
2(θ; bn, Xn)|Fn−1] = J(θ; bn),

which proves that 〈S(θ)〉n =
∑n
i=1 J(θ; bi).

♦

The following theorem establishes the strong consistency of θ̂n.

Theorem 3.3.1. For any item selection strategy, as n→∞ we have Pθ(θ̂n → θ) = 1 and

In(θ̂n)

In(θ)
→ 1 Pθ − a.s. (3.29)

Proof. Let (bn)n∈N be an arbitrary item selection strategy. From Lemma 4 it follows that Sn(θ) is a Pθ-

martingale with mean 0 and predictable variation In(θ) ≥ nJ∗(θ) → ∞, since J∗(θ) > 0. Then, from the

Martingale Strong Law of Large Numbers (see, e.g., Williams, D. (1991), p. 124), it follows that as n→∞

Sn(θ)

In(θ)
→ 0 Pθ − a.s. (3.30)

From a Taylor expansion of Sn(θ) around θ̂n it follows that there exists some θ̃n that lies between θ̂n and θ

so that

0 = Sn(θ̂n) = Sn(θ) + S
′

n(θ̃n)(θ̂n − θ)

= Sn(θ)− In(θ̃n)(θ̂n − θ) Pθ − a.s.

(3.31)
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where the second equality follows from (3.6). From (3.30) and (3.40) we then obtain

In(θ̃n)

In(θ)
(θ̂n − θ)→ 0 Pθ − a.s.

The strong consistency of θ̂n will then follow as long as we can guarantee that the fraction in the last

relationship remains bounded away from 0 as n→∞. However, for every n we have

In(θ̃n)

In(θ)
=

∑n
i=1 J(θ̃n; bi)∑n
i=1 J(θ; bi)

≥ nJ∗(θ̃n)

nJ∗(θ)
=
J∗(θ̃n)

J∗(θ)
.

Since J∗(θ) > 0, it suffices to show that Pθ(lim infn J∗(θ̃n) > 0) = 1. Since J∗(θ) is continuous, positive and

bounded away from 0 when |θ| is bounded away from infinity (recall (2.13)) and θ̃n lies between θ̂n and θ,

it suffices to show that

Pθ(lim sup
n
|θ̂n| =∞) = 0. (3.32)

In order to prove (3.32), we observe first of all that since Sn(θ̂n) = 0 for large n, (3.30) can be rewritten as

follows:

Sn(θ)− Sn(θ̂n)

In(θ)
→ 0 Pθ − a.s. (3.33)

But for every n we have In(θ) ≤ nJ∗(θ) and

Sn(θ)− Sn(θ̂n) =

n∑
i=1

[
s(θ; bi, Xi)− s(θ̂n; bi, Xi)

]
=

n∑
i=1

[
ā(θ̂n; bi)− ā(θ; bi)

]
≥ n inf

b∈B

[
ā(θ̂n; b)− ā(θ; b)

]
,

therefore we obtain

Sn(θ)− Sn(θ̂n)

In(θ)
≥

infb∈B

[
ā(θ̂n; b)− ā(θ; b)

]
J∗(θ)

. (3.34)

On the event {lim supn θ̂n = ∞} there exists a subsequence (θ̂nj ) of (θ̂n) such that θ̂nj → ∞. Conse-

quently, for any b ∈ B we have

lim
nj→∞

[
ā(θ̂nj ; b)− ā(θ; b)

]
= a∗(b)− ā(θ; b) > 0 (3.35)
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and from Lemma 2 we obtain

lim inf
nj→∞

inf
b∈B

[
ā(θ̂nj ; b)− ā(θ; b)

]
≥ inf

b∈B
[a∗(b)− ā(θ; b)] > 0. (3.36)

From (3.34) and (3.36) it follows that

lim inf
nj→∞

Snj (θ)− Snj (θ̂nj )
Inj (θ)

> 0

and comparing with (3.33) we conclude that Pθ(lim supn θ̂n = ∞) = 0. In an identical way we can show

that Pθ(lim infn θ̂n = −∞) = 0, which establishes (3.32) and completes the proof of the strong consistency

of θ̂n. In order to prove (3.7), we observe that

|In(θ̂n)− In(θ)|
In(θ)

≤ 1

nJ∗(θ)

n∑
i=1

|J(θ̂n; bi)− J(θ; bi)|

≤ 1

J∗(θ)
sup
b∈B
|J(θ̂n; b)− J(θ; b)|.

But since J(θ; b) is jointly continuous and θ̂n strongly consistent, from Lemma 1 it follows that

sup
b∈B
|J(θ̂n; b)− J(θ; b)| → 0 Pθ − a.s. (3.37)

which completes the proof.

♦

It is interesting to note that (3.29) remains valid for any strongly consistent estimator of θ and that the

strong consistency of θ̂n is established for any item selection strategy. This is due to the compactness of

the item parameter space, B. If this is not the case, the resulting estimator may fail to be consistent ( see

Chang and Ying (2009) for a counterexample ). On the other hand, as we show in the following theorem, the

information-maximizing item selection strategy (3.25) guarantees the asymptotic normality and efficiency of

θ̂n.

Theorem 3.3.2. If In(θ)/n converges in probability to some positive constant under Pθ, then as n→∞ we

have

√
In(θ̂n) (θ̂n − θ) −→ N (0, 1). (3.38)

This is in particular the case when the information-maximizing item selection strategy (3.25) is adopted, in
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which case

√
n(θ̂n − θ)→ N

(
0, [J∗(θ)]−1

)
. (3.39)

Proof. From Lemma 4 we know that {Sn(θ)}n∈N is a martingale with bounded increments, mean 0 and

predictable variation In(θ). Then, if In(θ)/n converges in probability to some positive constant under Pθ,

we can apply the Martingale Central Limit Theorem (see, e.g., Billingsley (2008), Ex. 35.19, p. 481) and

obtain

Sn(θ)√
In(θ)

−→ N (0, 1).

From Lemma 3 and a Taylor expansion of Sn(θ) around θ̂n it follows that there exists some θ̃n that lies

between θ̂n and θ so that

0 = Sn(θ̂n) = Sn(θ) + S
′

n(θ̃n)(θ̂n − θ)

= Sn(θ)− In(θ̃n)(θ̂n − θ) Pθ − a.s..

(3.40)

where the second equality follows from (3.28). Then we have

In(θ̃n)

In(θ)

√
In(θ) (θ̂n − θ)→ N (0, 1),

where θ̃n lies between θ̂n and θ. But, similarly to (3.29) we can show that

In(θ̃n)

In(θ)
→ 1 Pθ − a.s.,

thus, from an application of Slutsky’s theorem we obtain

√
In(θ) (θ̂n − θ) −→ N (0, 1). (3.41)

From (3.41) and (3.29) and another application of Slutsky’s theorem we then obtain (3.38).

In order to prove the second part of this theorem, it suffices to show that

1

n
In(θ) =

1

n

n∑
i=1

J(θ; b̂i)→ J∗(θ) Pθ − a.s, (3.42)

where (b̂i)1≤i≤n are the item parameters selected according to the information-maximizing strategy (3.25).

In order to prove (3.42) it suffices to show that J(θ; b̂n)→ J∗(θ) Pθ-a.s. Since J(θ; b) is jointly continuous
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and θ̂n strongly consistent, from Lemma 1 it follows that

sup
b∈B
|J(θ̂n; b)− J(θ; b)| → 0 Pθ − a.s. (3.43)

and, consequently,

|J(θ̂n; b̂n)− J(θ; b̂n)| ≤ sup
b∈B
|J(θ̂n; b)− J(θ; b)| → 0 Pθ − a.s.,

which means that it suffices to show that

J(θ̂n; b̂n)→ J∗(θ) Pθ − a.s.

But from the definition of (b̂n) in (3.25) we have J(θ̂n−1; b̂n) = J∗(θ̂n−1), therefore from the triangle

inequality we obtain:

|J(θ̂n; b̂n)− J∗(θ)| ≤ |J(θ̂n; b̂n)− J(θ̂n−1; b̂n)|+ |J∗(θ̂n−1)− J∗(θ)|

≤ sup
b∈B
|J(θ̂n; b)− J(θ̂n−1; b)|+ |J∗(θ̂n−1)− J∗(θ)|.

From (3.43) it follows that the first term in the upper bound goes to 0 Pθ − a.s.. Moreover, from the

continuity of J∗ (recall Lemma 2) and the strong consistency of θ̂n it follows that the second term in the

upper bound goes to 0, which completes the proof.

♦

Remark: The resulting estimator is asymptotically efficient in the sense that if we could employ an oracle

item selection method and select each item i so that J(θ; bi) = J∗(θ), where J∗(θ) is the maximum Fisher

information an item can achieve at the true ability level θ, the asymptotic distribution of the MLE of θ

would be the same as (3.39).

3.3.3 Discussion of the design

The proposed design for a CAT based on the nominal response model is similar but not identical to that

of Chang and Ying (2009) for CAT based on dichotomous logistic models. It is interesting to point out

these differences in the special case of binary items (m = 2) in which the nominal response model reduces to

the dichotomous 2PL model (recall (3.5)) and each item is characterized by two parameters, the difficulty

parameter and the discrimination parameter.
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Thus, for a CAT based on the 2PL model, Chang and Ying (2009) select only the difficulty parameter in

order to maximize the Fisher information. Moreover, while they assume that the discrimination parameter

is bounded, they allow the difficulty parameter to take any value in the real line. This is a convenient but

not very realistic assumption, as items are drawn from a given bank and it is not possible to have items

of arbitrary difficulty. Finally, their asymptotic analysis relies on a closed-form expression for the difficulty

parameter.

On the other hand, in our approach we assume that all components of the item parameter vector are

bounded and we establish the consistency of the resulting estimator for an arbitrary item selection strategy.

Moreover, in the proposed information-maximizing item selection strategy (3.25), we select all components

of the item parameter vector to maximize the Fisher information function. Finally, in our analysis we do

not use a closed-form expression for the item parameters defined by (3.25).

3.4 CAT with response revision

3.4.1 A novel CAT

In this section we propose and analyze a novel CAT design in which examinees are allowed to revise their

previous answers. As in the case of the conventional CAT presented in the previous section, we consider

multiple-choice items with m categories and we assume that the total number of items that will be admin-

istered, n, is fixed. However, after each response the examinee now decides whether to revise the answer to

a previous item or to proceed to a new item. The only restriction that we impose is that each item can be

revised at most m − 2 times during the test. As a result, we now need to restrict ourselves to items with

m ≥ 3 categories, unlike the previous section where the case of binary items (m = 2) was also included.

(Note that by “revision” we strictly mean a change of a previous answer).

In order to formalize this setup, let us consider the time during the test at which the examinee has

completed t responses and let ft be the number of distinct items that have been administered until then.

Then, the number of revisions until this time is t − ft. For each item i ∈ {1, . . . , ft}, we denote git as the

number of responses that have been given so far and correspond to this particular item. Since each item

can be revised up to m− 2 times, we have 1 ≤ git ≤ m− 1. Then, if we let Ct be the set of items that can

still be revised at this time, we have Ct = {i ∈ {1, . . . , ft} : git < m− 1} and the decision of the examinee is
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described by the following random variable:

dt :=


0, the t+ 1th response corresponds to a new item

i, the t+ 1th response is a revision of item i ∈ Ct
.

For each item i ∈ {1, . . . , ft}, we denote by Xi
j the category that was chosen at the jth attempt on this item

and by Xi
1:j := (Xi

1, . . . , X
i
j) the set of all distinct answers that have been chosen in the first j attempts on

this item, where 1 ≤ j ≤ git. Thus, we write Xi
j = k if category k /∈ Xi

1:j−1 was chosen on the jth attempt

on item i, where 1 ≤ j ≤ git.

It is important to stress that, in this kind of CAT, information is coming not only from the content of

the responses, but also from the decisions of the examinee to revise or not, as well as from the identity of the

items that are chosen for revision. Specifically, Gt := σ (ds, 1 ≤ s ≤ t) . is the σ-algebra that contains the first

t decisions of the examinee regarding revision, whereas FXt := σ
(
Xi

1:git
, 1 ≤ i ≤ ft

)
is the σ-algebra that

contains the first t responses, first answers and revisions. Then, Ft := Gt∨FXt is the σ-algebra that contains

all available information after t responses. Note that the number of items that have been administered until

this time, ft, is Gt−1-measurable, since it can be fully recovered by d1, . . . , dt−1.

For each i ∈ {1, . . . , n− 1}, item i+ 1 needs to be selected at the time that the examinee has answered

i distinct items and does not want or is not allowed to revise any more items, that is at the {Gt}-stopping

time

τi := min{t ≥ 1 : ft = i and dt = 0}.

Since the total number of items that will be administered is n, the test stops at the random time τn, which

is determined by the test-taker’s revision strategy, (dt)1≤t≤τn . Our goal is to propose a design that will

guarantee the reliable estimation of the test-taker’s ability for any revision strategy, that is no matter when

and what the test-taker chooses to revise. Thus, we will not in general make any modeling assumptions

about the revision strategy, (dt)1≤t≤τn . Instead, we will postulate a statistical model for the responses of

the test-taker, i.e., the first answer to each item and any subsequent revisions.

3.4.2 The proposed design

As in the previous section, we assume that the first response to each item is governed by the nominal response

model, so that for every item i ∈ {1, . . . , n} we have

Pθ(X
i
1 = k |bi) = pk(θ; bi), 1 ≤ k ≤ m, (3.44)
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where pk is the pmf of the nominal response model defined by (3.1) - (3.3), θ an unknown scalar parameter

that represents the ability of the test-taker and bi := (aik, cik)2≤k≤m a B-valued vector that characterizes

item i. The item parameter bi+1 needs to be selected at time τi based on all the available information until

this time. Thus, we will say that (bi)2≤i≤n is an item selection strategy if bi+1 is a B-valued, Fτi -measurable

random vector for every 1 ≤ i ≤ n− 1. The ultimate goal is to obtain a good ability estimator at the end of

the test, i.e., an Fτn -measurable statistic θ̂n that will be close to the true ability θ under minimal assumptions

on the behavior of the examinee.

With respect to item selection in this novel CAT, we propose the same, information-maximizing approach

as in the conventional CAT of the previous section. That is, we suggest that item i + 1 should be selected

so that

b̂i+1 = argmax
b∈B

J(θ̂τi ; b), (3.45)

where J is the Fisher information function of the nominal response model given by (3.19) and θ̂τi is an

estimate of θ that is based on all the available information up to the time of selection, i.e., an Fτi -measurable

statistic. Therefore, the item selection method (3.45) requires an estimate of θ at all the times that items

are selected, (τi)1≤i≤n.

For the adaptive estimation of θ we will use the maximizer of the partial likelihood of all observed

responses conditionally on the selected items and the revision decisions of the examinee. We will describe

the proposed estimator for an arbitrary item selection strategy, not necessarily (3.45), and at every time t,

not only at (τi)1≤i≤n. Thus, for any revision strategy (dt)1≤t≤τn and any item selection strategy (bi)1≤i≤n,

we suggest updating the ability of the examinee after t responses with the maximizer of

Lt(θ) := logPθ
(
Xi

1:git
, 1 ≤ i ≤ ft

∣∣∣ Gt,b1:ft

)
. (3.46)

As in the case of a traditional CAT, we assume that responses coming from different items are condi-

tionally independent so that

Pθ
(
Xi

1:git
, 1 ≤ i ≤ ft

∣∣∣ Gt,b1:ft

)
=

ft∏
i=1

Pθ
(
Xi

1:git
| Gt,bi

)
. (3.47)

Moreover, we assume that the responses on a given item are independent of the revision strategy of the
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examinee, in the sense that for every item i ∈ {1, . . . , ft} we have

Pθ
(
Xi

1:git
| Gt,bi

)
= Pθ

(
Xi

1:git
|bi
)

(3.48)

= Pθ(X
i
1 |bi) ·

git∏
j=2

Pθ
(
Xi
j |Xi

1:j−1,bi
)
.

The second equality follows from the definition of conditional probability and it is understood that the second

factor in the right-hand side is equal to 1 whenever git = 1. Each probability Pθ(X
i
1 |bi) is determined by

(3.44), according to which the first answer to each item is governed by the nominal response model. Thus,

it remains to specify the contribution of the revised answers. We assume that the nominal response model

also determines revisions, in the sense that

Pθ
(
Xi
j = k |Xi

1:j−1,bi
)

=
pk(θ; bi)∑

h/∈Xi1:j−1
ph(θ; bi)

, k /∈ Xi
1:j−1. (3.49)

Assumptions (3.44), (3.47), (3.48) and (3.49) imply that the conditional log-likelihood function, Lt(θ), takes

the form

Lt(θ) =

ft∑
i=1

[
`
(
θ; bi, X

i
1

)
+ 1{git≥2}

git∑
j=2

`(θ; bi, X
i
j |Xi

1:j−1)
]
, (3.50)

where `(θ; bi, X
i
1) is defined according to (3.4) and for every 2 ≤ j ≤ git we set

`(θ; bi, X
i
j |Xi

1:j−1) := logPθ
(
Xi
j |Xi

1:j−1,bi
)
.

The corresponding score function takes the form

St(θ) :=
d

dθ
Lt(θ) =

ft∑
i=1

[
s
(
θ; bi, X

i
1

)
+ 1{git≥2}

git∑
j=2

s
(
θ; bi, X

i
j |Xi

1:j−1
)]
, (3.51)

where s(θ; bi, X
i
1) is defined according to (3.18) and for every 2 ≤ j ≤ git we have

s(θ; bi, X
i
j |Xi

1:j−1) :=
d

dθ
`
(
θ; bi, X

i
j | Xi

1:j−1
)
. (3.52)

Our estimate for θ after t responses, θ̂t, will be the root of the score function St(θ). Similarly to the case

of the convention CAT, the root exists and is unique for every t that is larger than some random time and

a preliminary estimation procedure is needed until this time. However, similarly to Lemma 3, we can show
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that θ̂τn is the root of Sτn(θ) for all large n with probability 1.

3.4.3 Discussion of the proposed design

Assumptions (3.44) - (3.47) are analogous to (3.23) - (3.24) in the context of a conventional CAT. The

additional modeling assumptions that we impose in the novel CAT are (3.48) and (3.49). Assumption (3.48)

states that the responses on any given item do not depend on the decisions of the examinee regarding revision.

As a result, the statistical model for the revised answer does not depend on when the test-taker chooses to

revise. Assumption (3.49) is the statistical model for the revised answers. It implies that an examinee of

high ability is more likely to revise in the right direction than an examinee of low ability. However, its main

advantage is that it does not introduce any additional item parameters to the ones that would be used in

the conventional CAT of the previous section.

Contrary to previous CAT designs that allow for response revision, the proposed method takes into

account all responses of the examinee on a given item during the test, not only the last one. Therefore, while

examinees will benefit by revising wrong answers, they have to be cautious with revisions, as they cannot

switch back to a previous answer during the test.

While we model and incorporate the content of revised answers in our estimation method, the decisions

of the examinee regarding revision are not incorporated in the estimator. That is, we do not make any

assumption regarding when and what items the test-taker chooses to revise. Incorporating such information

could lead to alternative estimators and item selection methods. However, it would make the design much

more vulnerable to model mispecification, as it is not at all clear how to specify universal models for

the behavior of the examinee. Moreover, it could introduce additional parameters that would have to be

calibrated in a pretesting period, complicating the implementation of this modified CAT design in practice.

Overall, the proposed design preserves the complexity of a conventional CAT that is based on the nominal

response model, as it does not require any additional calibration effort, which is a very desirable property

for practical implementation. Our next goal is to show that it also preserves the statistical efficiency of a

conventional CAT under minimal assumptions on the revision strategy.

3.4.4 Asymptotic properties

In this section, we assume that assumptions (3.44), (3.47), (3.48) and (3.49) hold and we study the asymptotic

behavior of the final ability estimator. Specifically, we establish its strong consistency for any item selection

strategy and revision behavior and its asymptotic normality when the items are selected according to (3.45)

and the total number of revisions is small relative to the total number of distinct items.
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First, in Lemma 5 we show that the conditional score function, St(θ), is a martingale with predictable

variation equal to the conditional Fisher information

It(θ) :=

ft∑
i=1

J(θ; bi) + 1{git≥2}

git∑
j=2

J
(
θ; bi |Xi

1:j−1
) =

d

dθ
St(θ), (3.53)

where J(θ; bi) is defined as in (3.27) and, for every 2 ≤ j ≤ git, we set

J
(
θ; bi |Xi

1:j−1
)

:= Varθ
[
s(θ; bi, X

i
j |Xi

1:j−1)
]
, (3.54)

where s(θ; bi, X
i
j |Xi

1:j−1) is defined in (3.52).

Lemma 5. For any item selection strategy and any revision strategy,

(i) {St(θ)}t∈N is a {Ft}t∈N-martingale under Pθ with bounded increments, mean zero and predictable

variation

〈S(θ)〉t :=

t∑
s=1

Eθ
[
(Ss(θ)− Ss−1(θ))

2 |Fs−1
]

= It(θ).

(ii) {Sτn(θ)}n∈N is a {Fτn}n∈N-martingale with mean 0 and predictable variation {Iτn(θ)}n∈N.

Proof. (i) After t − 1 responses, the examinee either proceeds to a new item or revises a previous item.

Therefore, the difference St(θ)− St−1(θ) admits the following decomposition:

s
(
θ; bft , X

ft
1

)
1{dt−1=0} +

∑
i∈Ct−1

s
(
θ; bi, X

i
git
|Xi

1:git−1

)
1{dt−1=i}, (3.55)

where the sum in the second term is understood to be 0 when Ct−1 is the empty set. Since dt−1, Ct−1 are

Ft−1-measurable, taking conditional expectations with respect to Ft−1 we obtain

Eθ[St(θ)− St−1(θ)|Ft−1] = Eθ
[
s
(
θ; bft , X

ft
1

) ∣∣∣Ft−1] 1{dt−1=0}

+
∑

i∈Ct−1

Eθ
[
s
(
θ; bi, X

i
git
|Xi

1:git−1

) ∣∣∣Ft−1] 1{dt−1=i}.

Since ft and git are Ft−1-measurable, it follows that

Eθ
[
s
(
θ; bft , X

ft
1

) ∣∣∣Ft−1] = 0 = Eθ
[
s
(
θ; bi, X

i
git
|Xi

1:git−1

) ∣∣∣Ft−1] ,
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which proves that St(θ) is a zero-mean Ft-martingale under Pθ. From (3.55) we also have

Eθ[(St(θ)− St−1(θ))
2 |Ft−1]

= J(θ; bft)1{dt−1=0} +
∑

i∈Ct−1

J
(
θ; bi|Xi

1:git−1

)
1{dt−1=i}

and, consequently, the predictable variation of St(θ) will be

〈S(θ)〉t :=

t∑
s=1

Eθ
[
(Ss(θ)− Ss−1(θ))

2 |Fs−1
]

=

t∑
s=1

J(θ; bfs)1{ds−1=0} +
∑

j∈Cs−1

J

(
θ; bj |Xj

1:gjs−1

)
1{ds−1=j}

 .
= It.

(ii) This follows from the Optional Sampling Theorem and the fact that (τn)n∈N is a strictly increasing

sequence of {Ft}t∈N-stopping times that are bounded, since τn ≤ (m− 1)n for every n ∈ N.

♦

In the next lemma, we collect the main properties of the conditional score function and the conditional

Fisher information that will be needed in our analysis.

Lemma 6. Fix bi ∈ B, j ∈ {2, . . . ,m− 1}, and Xi
1:j−1 and let

ā(θ; bi|Xi
1:j−1) :=

∑
k/∈Xi1:j−1

aki Pθ
(
Xi
j = k |Xi

1:j−1,bi
)
.

(i) The conditional score in (3.52) and the conditional Fisher information (3.54) admit the following

representations

s(θ; bi, X
i
j = k |Xi

1:j−1) = aki − ā(θ; bi|Xi
1:j−1), k /∈ Xi

1:j−1

J
(
θ; bi |Xi

1:j−1
)

=
∑

k/∈Xi1:j−1

(
ak − ā(θ; bi |Xi

1:j−1)
)2

Pθ
(
Xi
j = k |Xi

1:j−1,bi
)
.

Moreover, they are both bounded by a constant that does not depend on θ or bi.

(ii) ā(θ; bi|Xi
1:j−1)→ a∗(bi) as θ → −∞ and ā(θ; bi|Xi

1:j−1)→ a∗(bi) as θ → +∞.

The proof of Lemma 6 follows by direct computation. We can now establish the strong consistency of

θ̂τn as n→∞ without any conditions on the item selection or the revision strategy.
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Theorem 3.4.1. For any item selection method and any revision strategy, as n→∞ we have

θ̂τn → θ and
Iτn(θ̂τn)

Iτn(θ)
→ 1 Pθ-a.s. (3.56)

Proof. From Lemma 5 we have that Sτn(θ) is a {Fτn}-martingale with predictable variation Iτn(θ). Moreover,

from (4.10) we have Iτn(θ) ≥ nJ∗(θ)→∞ and from the Martingale Strong Law of Large Numbers (Williams,

D. (1991), p. 124 ) it follows that

Sτn(θ)

Iτn(θ)
→ 0 Pθ − a.s. (3.57)

Since Sτn(θ̂τn) = 0 for large enough n with probability 1, with a Taylor expansion around θ we have

0 = Sτn(θ̂τn) = Sτn(θ) + S
′

τn(θ̃τn)(θ̂τn − θ)

= Sτn(θ)− Iτn(θ̃τn)(θ̂τn − θ) Pθ − a.s.

(3.58)

where θ̃τn lies between θ̂τn and θ, and (3.57) takes the form

Iτn(θ̃τn)

Iτn(θ)
(θ̂τn − θ)→ 0 Pθ − a.s.

However, since τn ≤ (m− 1)n and J∗(θ)ft ≤ It(θ) ≤ Kt for every t, we have

Iτn(θ̃τn)

Iτn(θ)
≥ nJ∗(θ̃τn)

τnK
≥ 1

(m− 1)K
J∗(θ̃τn)

and it suffices to show that

lim sup
n
|θ̂τn | <∞ Pθ − a.s. (3.59)

For large n we have Sτn(θ̂τn) = 0 and (3.57) can be rewritten as follows

Sτn(θ)− Sτn(θ̂τn)

Iτn(θ)
→ 0 Pθ − a.s. (3.60)
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But from the definition of the score function in (4.8) it follows that

Sτn(θ)− Sτn(θ̂τn)

=

n∑
i=1

(s(θ; bi)− s(θ̂τn ; bi)
)

+

giτn∑
j=2

(
s(θ; bi, X

i
j |Xi

1:j−1)− s(θ̂τn ; bi, X
i
j |Xi

1:j−1)
)

=

n∑
i=1

(ᾱ(θ̂τn ; bi)− ᾱ(θ; bi)
)

+

giτn∑
j=2

(
ᾱ(θ̂τn ; bi|Xi

1:j−1)− ᾱ(θ; bi|Xi
1:j−1)

)
≥ n inf

b∈B

[
ᾱ(θ̂τn ; b)− ᾱ(θ; b)

]
+ (τn − n) min

2≤j≤m−1
min
X1:j−1

inf
b∈B

[
ᾱ(θ̂τn ; b |X1:j−1)− ᾱ(θ; b|X1:j−1)

]
,

where X1:j−1 := (X1, . . . , Xj−1) is a vector of j− 1 distinct responses on an item with parameter b. On the

other hand, Iτn(θ) ≤ τnK, which implies that

Sτn(θ)− Sτn(θ̂τn)

Iτn(θ)
≥ 1

K
inf
b∈B

[ᾱ(θ̂τn ; b)− ᾱ(θ; b)]

+
1

K
min

2≤j≤m−1
min
X1:j−1

inf
b∈B

[
ᾱ(θ̂τn ; b |X1:j−1)− ᾱ(θ; b|X1:j−1)

]
.

On the event {lim supn θ̂τn → ∞} there is a subsequence (θ̂τnj ) of (θ̂τn) so that θ̂τnj → ∞ and from (3.36)

we have

lim inf
nj→∞

inf
b∈B

[
ᾱ(θ̂τnj ; b)− ᾱ(θ; b)

]
> 0.

Similarly, due to Lemma 6 (ii), for any 2 ≤ j ≤ m− 1 and X1:j−1 we have

lim inf
nj→∞

inf
b∈B

[
ᾱ(θ̂τnj ; b |X1:j−1)− ᾱ(θ; b |X1:j−1)

]
≥ 0.

Therefore,

lim inf
nj

Sτnj (θ)− Sτnj (θ̂τnj )

Iτnj (θ)
> 0

and comparing with (3.60) we conclude that P(lim supn θ̂τn = ∞) = 0. Similarly we can show that

P(lim supn θ̂τn = −∞) = 0, which proves (3.59) and, consequently, the strong consistency of θ̂τn . In or-
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der to prove the second claim of the theorem, we need to show that

|Iτn(θ̂τn)− Iτn(θ)|
Iτn(θ)

→ 0 Pθ − a.s. (3.61)

But Iτn(θ) ≥ nJ∗(θ), whereas |Iτn(θ̂τn)− Iτn(θ)| is bounded above by

n∑
i=1

|J(θ̂τn ; bi)− J(θ; bi)|+
n∑
i=1

giτn∑
j=2

∣∣∣J(θ̂τn ; bi|Xi
1:j−1)− J(θ; bi|Xi

1:j−1)
∣∣∣

≤ n sup
b∈B
|J(θ̂τn ; b)− J(θ; b)|

+ (τn − n) max
2≤j≤m−1

max
X1:j−1

sup
b∈B

∣∣∣J(θ̂τn ; b|X1:j−1)− J(θ; b|X1:j−1)
∣∣∣,

where again X1:j−1 := (X1, . . . , Xj−1) is a vector of j − 1 distinct responses on an item with parameter b.

Therefore, the ratio in (3.61) is bounded above by

1

J∗(θ)
sup
b∈B
|J(θ̂τn ; b)− J(θ; b)|

+
m− 2

J∗(θ)
max

2≤j≤m−1
max
X1:j−1

sup
b∈B

∣∣∣J(θ̂τn ; b|X1:j−1)− J(θ; b|X1:j−1)
∣∣∣.

But similarly to (3.37) we can show that

sup
b∈B
|J(θ̂τn ; b)− J(θ; b)| → 0 Pθ − a.s.

as well as that for every 2 ≤ j ≤ m− 1 and X1:j−1 we have

sup
b∈B
|J(θ̂τn ; b |X1:j−1)− J(θ; b |X1:j−1)| → 0 Pθ − a.s.

which completes the proof. ♦

In the following theorem we establish the asymptotic normality of the proposed estimator under a stability

condition on the Fisher information that is satisfied when we select each item according to (3.45) and the

total number of revisions is small relative to the number of distinct items.

Theorem 3.4.2. If Iτn(θ)/n converges in probability to a positive number, then

√
Iτn(θ̂τn) (θ̂τn − θ)→ N (0, 1). (3.62)
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This is true in particular when items are selected according to the information-maximizing item selection

strategy (3.45) and the number of revisions is much smaller than the number of items, in the sense that

τn − n = op(n), in which case we also have

√
n(θ̂τn − θ)→ N

(
0, [J∗(θ)]−1

)
. (3.63)

Proof. Let us assume for the moment that as n→∞

Sτn(θ)√
Iτn(θ)

→ N (0, 1). (3.64)

Since Sτn(θ̂τn) = 0 for large enough n with probability 1, with a Taylor expansion around θ we have

0 = Sτn(θ̂τn) = Sτn(θ) + S
′

τn(θ̃τn)(θ̂τn − θ)

= Sτn(θ)− Iτn(θ̃τn)(θ̂τn − θ) Pθ − a.s.

(3.65)

where θ̃τn lies between θ̂τn and θ. From (3.64) and (3.65) we obtain

Iτn(θ̃τn)

Iτn(θ)

√
Iτn(θ) (θ̂τn − θ)→ N (0, 1).

Thus, from (3.56) it follows that the ratio in the left-hand side goes to 1 almost surely and from Slutsky’s

theorem we obtain (3.62). Therefore, in order to prove the first part of the theorem, it suffices to show that

if Iτn(θ)/n converges in probability to some positive number, then (3.64) holds. In order to do so, we define

the martingale-difference array

Ynt :=
St(θ)− St−1(θ)√

n
1{t≤τn}, t ∈ N, n ∈ N.

Indeed, since {St(θ)} is an {Ft}-martingale and τn an {Ft}-stopping time, then {t ≤ τn} = {τn ≤ t− 1}c ∈

Ft−1 and, consequently, we have

Eθ[Ynt|Ft−1] =
1{t≤Tn}√

n
Eθ[St(θ)− St−1(θ) | Ft−1] = 0.

Moreover, the increments of {St(θ)}t∈N are uniformly bounded, which implies that for every ε > 0 we have
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as n→∞

∞∑
t=1

Eθ[Y
2
nt 1{|Ynt|>ε}]→ 0. (3.66)

Therefore, from the Martingale Central Limit Theorem (see, e.g. Theorem 35.12 in Billingsley (2008)) and

Slutsky’s theorem it follows that if
∑∞
t=1 Eθ[Y

2
nt | Ft−1] converges in probability to a positive number, then

√
n

Iτn(θ)

∞∑
t=1

Ynt −→ N (0, 1).

But

∞∑
t=1

Eθ[Y
2
nt | Ft−1] =

1

n

τn∑
t=1

Eθ
[
(St(θ)− St−1(θ))2 | Ft−1

]
=
Iτn(θ)

n

and

√
n

Iτn(θ)

∞∑
t=1

Ynt =
1√
Iτn(θ)

τn∑
t=1

[St(θ)− St−1(θ)] =
Sτn(θ)√
Iτn(θ)

,

which completes the proof of the first part of the theorem. In order to prove the second part, it suffices to

show that

Iτn(θ)

n
→ J∗(θ)

in probability as n→∞. Recall from (3.53) that the Fisher information function can be decomposed in the

following way:

Iτn(θ) =

n∑
i=1

J(θ; bi) + IRτn(θ),

where IRτn(θ) is the part of the information coming from revisions, i.e.,

IRτn(θ) :=

n∑
i=1

1{giτn≥2}

giτn∑
j=2

J
(
θ; bi |Xi

1:j−1
)
. (3.67)

Let (b̂i)2≤i≤n the information maximizing item selection strategy defined in (3.45). Then, from (3.42) we
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have

1

n

n∑
i=1

J(θ, b̂i)→ J∗(θ) Pθ − a.s.

whereas from (3.67) we can see that for any revision strategy we have

1

n
IRτn(θ) ≤ Kτn − n

n
,

where K is some constant that does not depend on θ. The upper bound goes to 0 in probability when

τn − n = op(n), which completes the proof.

♦

3.5 Numerical Examples

In this section, we present the results of two simulation studies in which we compare the proposed CAT

design that allows for response revision, to which we refer as RCAT, with that of a conventional CAT that

does not allow for response revision, when both designs are based on the nominal response model (3.1).

Specifically, in the first study we illustrate our asymptotic results, whereas in the second study we compare

the two designs in a realistic setup.

For both studies, when revision is allowed we assume that at most n1 items can be revised during the

test and that the examinee decides to revise a previous answer after the tth response with probability pt that

satisfies the following recursion

pt+1 = pt − 0.5/n1, p1 = 0.5.

For n1, we consider the following cases: n1/n = 0.1, 0.5, 1. Moreover, whenever the examinee decides to

revise, we assume that each of the previous items which can still be revised at time t are equally likely to be

selected for revision. The revised responses were simulated according to the conditional probability model

(3.49), which implies that examinees may revise either from a wrong answer to the correct one, or from the

correct answer to a wrong one, depending on their true ability. We replicated the two studies for ability

values in {−3,−2,−1, 0, 1, 2, 3}. For each scenario, we computed the root mean square error (RMSE) of the

final ability estimator, that is

√
Eθ
[
(θ̂n − θ))2

]
and

√
Eθ
[
(θ̂τn − θ))2

]
for CAT and RCAT respectively, on

the basis of 1, 000 simulation runs (examinees).
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3.5.1 An idealized item pool

In the first study we considered an idealized item pool of items that was simulated based on Passos et al.

(2007). Each item has m = 3 categories, which means that each item can be revised at most once whenever

revision is allowed. The parameters of the nominal response model are restricted in the following intervals

a2 ∈ [−0.18, 4.15], a3 ∈ [0.17, 3.93], c2 ∈ [−8.27, 6.38] and c3 ∈ [−7.00, 8.24], whereas a1 = c1 = 0. The test

length was n = 50 items and items were selected according to the information-maximizing item selection

strategies (3.25) and (3.45) for CAT and RCAT, respectively.

The results are summarized in Table 3.1. We observe that the RMSE in RCAT is, typically, slightly

smaller than that in CAT and slightly larger than the quantity that is suggested by our asymptotic analysis,

(
√
nJ∗(θ))−1. The RMSE in RCAT seems to slightly outperform this benchmark in the case θ = −2 when

the number of revisions is large. For an examinee from this case, we plot in Figure 3.1 the evolution of

the normalized total information It(θ)/ft, as well as the corresponding information from first responses,∑ft
i=1 J(θ; bi)/ft and revisions, IRt (θ)/ft, where 1 ≤ t ≤ τn.

In Figure 3.2 we compare the approximate 95% confidence intervals, θ̂i ± 1.96 · (Ii(θ̂i))−1/2 and θ̂τi ±

1.96 · (Iτi(θ̂τi))−1/2 that are obtained after i distinct items have been answered with a CAT and RCAT,

respectively, where 1 ≤ i ≤ n, when the ability parameter is θ = −3. Our asymptotic results guarantee the

validity of the final confidence interval (i = n) when n is large. The graph indicates that revision improves

the estimation of θ.

Table 3.1: RMSE in CAT and RCAT in an idealized item pool

θ (
√
nJ∗(θ))−1

CAT RCAT
Expected Number of Revision

4 18 26

-3 .097 .104 .105 .107 .100
-2 .071 .075 .073 .070 .070
-1 .068 .072 .072 .072 .071
0 .068 .074 .072 .072 .072
1 .068 .077 .072 .069 .070
2 .068 .075 .072 .070 .070
3 .071 .079 .076 .073 .072
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Figure 3.1: Decomposition of the Fisher information. The solid line represents the evolution of the normalized
accumulated Fisher information, {It(θ̂t)/ft, 1 ≤ t ≤ τn}, in a CAT with response revision. The dashed line
with squares (diamonds) represents the corresponding information from first responses (revisions). The
horizontal line represents the maximal Fisher information, J∗(θ). The true ability value is θ = −2.
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Figure 3.2: 95% Confidence Intervals. The left-hand side presents 95% confidence intervals, θ̂i ± 1.96 ·
(Ii(θ̂i))

−1/2, 1 ≤ i ≤ n, in a standard CAT. The right-hand side presents the corresponding intervals

θ̂τi ± 1.96 · (Iτi(θ̂τi))−1/2, 1 ≤ i ≤ n in the proposed RCAT design that allows for response revision. In both
cases, the true value of θ is −3.

3.5.2 A discrete item pool

In the second study, we consider an item pool with 135 items that was constructed from a large scale

standardized test in China. The item parameters were calibrated based on 10,000 examinees’ responses. The

MULTILOG (Thissen (1991)) was used to calibrate the item parameters of the nominal response model,

which are described by Figure 3.3 of the supplementary material. Each item has m = 4 categories, which

means that each item can be revised at most twice when revision is allowed. As before, for both designs we
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select the item that has the maximum Fisher information, but now items are selected without replacement

for each examinee, i.e. no item will be administered to the same examinee twice. We considered 3 levels for

the test length, n, and 3 levels for the maximum number of items that can be revised, to which were referred

as “small”,“medium” and “large”. Specifically, the following cases were considered n = 20 (n1 = 5, 10, 20),

30 (n1 = 5, 15, 30) and 40 (n1 = 5, 20, 40). The results are documented in Table 3.2 and show that the

positive effect of revisions in the ability estimation is much more intense than in the case of an idealized

item pool, especially when the number of revisions is large. However, as expected due to the discreteness of

item pool, the RMSEs from both designs were much larger than (
√
nJ∗(θ))−1.
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Figure 3.3: Calibrated item parameters of the nominal response model in a pool with 134 items, each having
m = 4 categories.
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Table 3.2: RMSE of CAT and RCAT in a realistic item pool

θ -3 -2 -1 0 1 2 3

n=20 Design Condition

(
√
nJ∗(θ))−1 .084 .059 .059 .080 .081 .107 .165

CAT .283 .230 .301 .346 .338 .300 .333

small .264 .211 .258 .342 .324 .276 .315

RCAT medium 267 .194 .278 .342 .328 .276 .292

large .248 .181 .259 .333 .320 .250 .289

n=30 Design Condition

(
√
nJ∗(θ))−1 .068 .048 .048 .065 .066 .087 .135

CAT .256 .200 .236 .303 .291 .265 .314

small .246 .178 .227 .296 .287 .253 .300

RCAT medium .232 .181 .221 .276 .278 .224 .274

large .222 .159 .205 .283 .275 .217 .267

n=40 Design Condition

(
√
nJ∗(θ))−1 .059 .042 .042 .057 .058 .075 .117

CAT .243 .178 .213 .279 .289 .260 .309

small .247 .173 .208 .269 .277 .257 .300

RCAT medium 209 .149 .190 .260 .253 .215 .271

large .206 .145 .186 .257 .251 .202 .247

3.6 Two test-taking strategies in CAT

We now discuss two famous test-taking strategies that can take advantage of the feature of response revision

in CAT. For both of them, examinees are assumed to know the adaptive design mechanism, which is the

general principle that a correct response leads to a more difficult item, whereas a wrong response leads to

an easier item.

The Wainer strategy was originally proposed by Wainer (1993), and later reformulated by Stocking

(1997).Its main idea is that examinees can intentionally design an easier test by first answering all items

incorrectly on purpose and then trying to correct their answers at the end of the test. Although Stocking

(1997) described this strategy as an ”unrealistic worst-case model”, lots of simulation studies and real

experiments have been conducted to evaluate modified CAT designs that allow for response revision when

the examinees are simulated or trained to adopt the Wainer strategy (Bowles and Pommerich, 2001; Gershon

and Bergstrom, 1995; Stocking, 1997; Vispoel et al., 1999; Wang and Wingersky, 1992).

The Kingsbury strategy (K) was proposed by Green et al. (1984) and was later extended by Wise et al.
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(1999) to the so-called generalized Kingsbury Strategy (GK). The main idea of both strategies is that an

examinee may choose to revise his/her answer to the previous item if he/she feels that the currently received

item is much easier than the previous one. Like Wainer’s strategy, these two strategies have also been

evaluated extensively through a series of simulation studies and real testing experiments (Kingsbury, 1996;

Vispoel et al., 2002). For a more detailed discussion we refer to Han (2013).

3.7 Simulation Studies Regarding Three test-taking behaviors

Three simulation studies were conducted to investigate the performance of the proposed CAT design, which

from now on will be called RCAT. Recall that in RCAT, all responses to a certain item during the test

contribute to the ability estimation, i.e., the first answer to this item as well as any subsequent revisions.

A modification of the RCAT design in which only the most recent answer to each item is used for ability

estimation is also studied. We refer to this design as RCAT-Naive. In the first study, we simulate a scenario

in which the examinee revises only a number of careless errors. In the second and third study, we simulate

a scenario in which the examinee adopts the Wainer strategy and the GK strategy, respectively. All studies

were based on a realistic item pool presented in 3.5.2. For simplicity, none of the three studies incorporated

item exposure control or non-statistical constraints in the item selection algorithm. Definitely, these factors

will be included in a future study. The test length was fixed at 40 items. For each simulation condition,

a sample of 5000 examinees was simulated at 13 θ nodes from -3 to 3 with step size 0.5. The evaluation

criteria were bias and the root mean square error (RMSE).

3.7.1 Correcting careless errors.

The goal of this simulation study is to evaluate whether the RCAT design reduces the measurement error

that is caused by careless mistakes, such as typing errors, by allowing the examinees to correct these errors.

In order to do so, we selected a small number of items to which the response of the examinee was simulated

to be incorrect. The incorrect answer was equally likely to be one of the three distracters of this item. Each

of these items was not selected at random, but was chosen so that the probability of a correct answer to

this item is high, according to the Nominal Response Model item response function. We refer to the errors

to these particular items as “typing errors”. The responses to all other items were simulated according to

the Nominal Response Model item response function. Two types of CAT designs were simulated. The first

is a standard CAT where response revisions are not allowed. The second is the RCAT design and in which

examinees were simulated to revise only the above typing errors, but not the responses to any other items.
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Table 3.3: The conditional bias from the three designs

Ability

Number of Typos
1 3 5

CAT RCAT CAT RCAT CAT RCAT
I II I II I II

-3 -.10 -.03 -.04 -.25 -.08 -.07 -.35 -.10 -.10
-2.5 -.08 -.05 -.05 -.23 -.08 -.09 -.36 -.12 -.13
-2 -.08 -.05 -.05 -.18 -.10 -.10 -.27 -.14 -.14

-1.5 -.12 -.09 -.09 -.25 -.19 -.20 -.36 -.26 -.26
-1 -.12 -.10 -.09 -.31 -.25 -.26 -.46 -.36 -.38

-0.5 -.12 -.09 -.09 -.37 -.30 -.32 -.58 -.45 -.51
0 -.13 -.10 -.11 -.44 -.37 -.39 -.74 -.55 -.67

0.5 -.14 -.11 -.10 -.49 -.41 -.44 -.90 -.65 -.82
1 -.12 -.08 -.08 -.43 -.33 -.35 -.90 -.58 -.79

1.5 -.08 -.04 -.04 -.28 -.17 -.20 -.66 -.35 -.52
2 -.07 -.02 -.03 -.22 -.10 -.11 -.44 -.22 -.27

2.5 -.10 -.04 -.04 -.24 -.12 -.13 -.43 -.20 -.25
3 -.14 -.10 -.10 -.36 -.23 -.24 -.53 -.32 -.36

Moreover, two cases were considered for the time of this revision. In the first one, examinees were simulated

to correct each typing error as soon as possible during the test. This is denoted as RCAT- I. In the second

one, examinees were simulated to correct all typing errors at the end of the test. This is denoted as RCAT-II.

The number of errors each examinee made was set to 1, 3 and 5 respectively.

The bias for the three designs at each of the 13 θ nodes is documented in Table 3.3. The bias of the

RCAT-I and RCAT-II designs is smaller than that of the regular CAT design at all nodes, even when there is

only 1 typing error in the 40 items. As expected, the reduction in the bias becomes more substantial as the

number of typing errors increases. This suggests that when the examinees correct their careless mistakes,

the RCAT design reduces measurement error and increases test validity, even though the original typing

errors are not completely erased. The RCAT-I design had slightly smaller bias than the RCAT-II design

at most of the nodes. This indicates that examinees can benefit more by correcting their errors as soon

as possible after they realize them than correcting them at the end of the test. Moreover, it provides an

argument against the hypothesis that revision should only take place at the end and not during the test.

The corresponding RMSEs are documented in Figure 3.4. The RCAT-I design has the smallest RMSEs at

each of the nodes, and is followed by the RCAT-II design. The regular CAT design where response revisions

are not allowed always has the largest RMSE. This again supports the hypothesis that allowing for response

revision according to the RCAT design can reduce measurement error.
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Figure 3.4: The conditional RMSEs at different scenarios for number of errors
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Figure 3.5: . The conditional biases and RMSEs under the Wainer strategy

3.7.2 The Wainer Strategy

The goal of this simulation study is to compare the performance of the proposed RCAT design and the RCAT-

Naive design when the examinee adopts the Wainer strategy. To be comparable with earlier researches, this

study mimics the ”unrealistic worst case” scenario used in Stocking (1997). Therefore, the examinee was

simulated to randomly select one of the three distracters in each of the 40 items and then to go back and re-

do each question based on the conditional probability in equation (3.49). The RCAT-Naive design estimates

each examinee’s ability using only the 40 revised responses, whereas the RCAT design includes in the ability

estimation the first 40 wrong answers, in addition to the 40 revisions. Note here that the examinee receives

exactly the same items in both designs. Finally, for comparison purposes, a standard CAT design that does

not allow for response revision, and in which the examinee cannot follow the Wainer strategy, is simulated

as the baseline.

The conditional bias and the conditional root mean square error (RMSE) of the three designs are sum-

marized in Figure 3.5. We can see that in the RCAT-Naive design where the first attempt to each item is

ignored, examinees with ability levels from -3 to 1 can achieve a positive bias. On the other hand, in the

proposed RCAT design where all incorrect responses of the first round are taken into account, all examinees

receive much lower scores compared to their true abilities. Moreover, this negative bias increases with the

ability level. In fact, even if the examinee was able to correct all the wrong answers in the second round,

his/her final score at the end of the test would still be much lower than the true ability level. Thus, the

proposed RCAT design penalizes the Wainer strategy, unlike the RCAT-Naive design that is quite vulnerable

to it.
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3.7.3 The GK Strategy

The purpose of this study is to investigate the performance of the proposed RCAT design, as well as to

compare it with the RCAT-Naive design and a regular CAT design, when the examinee adopts the GK

strategy. The idea of the GK strategy is that if the examinee realizes that the current item is less difficult

than the previous one, then he/she might go back to change his/her answer to the previous item. In order

to simulate the GK strategy, we assume that there is a parameter that describes the difficulty of each item.

Then, following Wise Wise et al. (1999) we simulate the GK strategy as follows: if the examinee receives

a new item whose difficulty parameter is lower than that of the previous administered item by a certain

amount, say x , then he/she goes back to change his/her answer to the previous item with some probability

y . Following Wise et al. (1999), we set x = 0.5 and y = 0.73 . For the revised responses, we consider

two models. In the first one, revisions are simulated according to the conditional probability (3.49). In the

second one, the revised answer is selected randomly among the remaining three options. Thus, two versions

for RCAT and RCAT-Naive Design are considered in this study and are summarized in Table 3.4 below:

Table 3.4: Four types of CAT designs that allow for response revision

Design Model for revised answer Name

RCAT
Conditional Probability (7) RCAT-C

Random Guess RCAT-R

RCAT-Naive
Conditional Probability (7) RCAT-NC

Random Guess RCAT-NR

Unlike the logistic dichotomous models, the polytomous Nominal Response Model, on which all the above

designs are based, does not have a natural difficulty parameter. For this reason, the difficulty index for each

item was developed according to the nonparametric transformation based on the correct proportion and the

point-biseral correlation (Richardson, 1936; Tucker, 1946). Note that this difficulty index is used only in

order to simulate the examinee’s revision strategy, and it is not used in the ability estimation algorithm.

The bias of the five designs is documented in Table 3.5. For the two RCAT-Naive designs, some low

ability examinees were underestimated, while some medium to high ability examinees were overestimated.

This means that if the first attempts are not included in the ability estimation, an examinee with a relatively

high ability may benefit by adopting the GK strategy. On the other hand, the bias of the RCAT designs

is almost 0 at all nodes, similarly to the standard CAT design. This indicates that the proposed RCAT

design, unlike the RCAT-Naive modification, is robust against the GK strategy. The RMSEs from all designs
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Figure 3.6: The conditional RMSEs from six designs under the GK strategy

are presented in Figure 3.6. Again, the two RCAT-Naive designs have larger RMSEs for examinees whose

abilities fall into the range of -1.5 to 1.5. The RMSEs of the two RCAT designs are quite similar to those of

the standard CAT design.

Table 3.5: The bias from five designs under the GK strategy

Design
θ

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

RCAT-NC .06 -.02 -.08 -.16 -.11 -.04 .16 .33 .31 .21 .10 .03 -.03

RCAT-NR .09 -.02 -.09 -.17 -.14 .00 .23 .39 .37 .27 .14 .01 -.11

RCAT-C -.02 -.01 .00 .01 .01 .02 .02 .00 -.01 -.01 -.01 .02 .02

RCAT-R .03 -.03 -.01 -.02 -.01 .00 .03 .04 .05 .04 .03 .01 -.05

CAT -.02 -.01 .00 .01 .01 .02 .02 .00 -.01 -.01 .01 .02 .02

3.8 Conclusion and Discussion

In Computerized Adaptive Testing (CAT), the administered items are taylored to the examinee’s ability,

which is learned on-line as the test progresses. However, unlike in a traditional paper-pencil test, examinees

are not allowed to revise their answers. Response revision is widely believed to harm statistical efficiency

and, for this reason, modified CAT designs that have been proposed in order to incorporate this feature

postulate quite restrictive revision rules.

In this work, we have proposed a novel CAT design whose goal is to mitigate the clash between adaptivity
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and flexibility, preserving the statistical efficiency of the traditional CAT, while allowing the examinees to

revise their previous answers at any time during the test. In order to do so, the proposed design relies on a

polytomous IRT model, unlike the majority of CAT designs that are based on dichotomous models. Thus,

we are able to postulate a joint probability model for all responses on an item, the first answer and any

subsequent revisions, which are all used for the update of the ability parameter. On the other hand, we

do not model the decision of the examinee to revise or not and we propose exactly the same item selection

method as in the corresponding conventional CAT: selecting the item with the maximum Fisher information

at the current estimate of the ability parameter.

We performed a rigorous asymptotic analysis of the proposed method, which to our knowledge is the first

in the literature of CAT designs that allow for response revision. We showed that the resulting estimator is

strongly consistent and, under a stability assumption on the cumulative Fisher information, asymptotically

normal. This assumption is satisfied when the number of revisions is much smaller than the number of

distinct items, in which case the asymptotic variance of the resulting estimator is the same as the one that

is obtained by the corresponding conventional CAT. However, as our simulation study corroborated, a large

number of revisions can lead to more efficient estimation.

The only restriction that we impose on the examinee is that any given item with m > 2 categories can

be revised at most m − 2 times during the test. However, the examinee does not recover the freedom of

a paper-pencil test, as all responses on an item, and not only the last one, contribute to the estimation of

the ability parameter. This is a feature that helps protect the resulting ability estimator against cheating

strategies, which is an issue that we explore in our current research.

The most desirable feature of our approach from a practical point of view is that it does not require any

additional calibration effort to the one that is needed by the corresponding conventional CAT that is based

on the nominal response model. Thus, a traditional CAT system that is based on the nominal response

model can be very easily modified to allow response revision.

The results of three simulation studies regarding three test-taking strategies provide important insight to

our proposed design. First of all, it was observed that examinees who only correct careless errors during the

test have the chance to improve their scores. Moreover, in this scenario, the estimation bias is smaller and

the estimation accuracy higher than that in a standard CAT design where the examinees do not have the

opportunity to correct such mistakes. Moreover, it was observed that it is more beneficial for the examinee,

as well as for the accuracy of the test, to correct these errors immediately than at the end of the test. This

reveals an additional benefit of allowing the examinees can revise at any time during the test, and not only

at the end.
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Second, it was observed that examinees who adopt the Wainer strategy have a very high risk of getting

a much lower score than the one that corresponds to their true ability levels. This is the case because in

the proposed design all responses during the test contribute to the ability estimation. On the other hand, if

the design is modified so that only the last answer to each item contributes to the ability estimation, then

it was show that examinees of low and medium ability can artificially inflate their scores by adopting the

Wainer strategy.

Third, it was shown from simulation studies that examinees do not seem to gain anything by adopting

the generalized Kingsbury strategy, as their ability estimates are very similar to those that they would obtain

in a standard CAT where they could not change their answers. On the other hand, if the design is modified

so that only the last answer to each item contributes to the ability estimation, then examinees of high ability

can improve their scores by adopting the generalized Kingsbury strategy.

Our work opens a number of research directions. First of all, since items in reality are drawn without

replacement, this may call for modifications of the item selection strategy in the spirit of Chang and Ying

(1999). Moreover, more empirical and theoretical work is required in order to understand the effect of

different revision behaviors to the final ability estimation, which is another issue under investigation. In

fact, it would be beneficial to model and incorporate in the ability estimation and the item selection the

decisions of the examinee to revise or not at each step. However, obtaining reliable, universal models for

the behavior of the examinee is a challenge that can be better addressed as soon as the proposed design is

implemented in practice and relevant data can be obtained. Another interesting direction is to take the point

of the test-taker and understand if there is an optimal revision strategy that could be employed. Finally, it

remains an open problem to incorporate response revision in a CAT that is based on binary items, where a

dichotomous IRT model must be used and our approach is not applicable.
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