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ABSTRACT

In this dissertation, we consider a class of two-team adversarial differential

games in which there are multiple mobile dynamic agents on each team.

We describe such games in terms of semi-infinite minmax Model Predictive

Control (MPC) problems, and present a numerical optimization technique for

efficiently solving them. We also describe the implementation of the solution

method in both indoor and outdoor robotic testbeds.

Our solution method requires one to solve a sequence of Quadratic Pro-

grams (QPs), which together efficiently solve the original semi-infinite min-

max MPC problem. The solution method separates the problem into two

subproblems called the inner and outer subproblems, respectively. The in-

ner subproblem is based on a constrained nonlinear numerical optimization

technique called the Phase I-Phase II method, and we develop a customized

version of this method. The outer subproblem is about judiciously initializing

the inner subproblems to achieve overall convergence; our method guarantees

exponential convergence.

We focus on a specific semi-infinite minmax MPC problem called the har-

bor defense problem. First, we present foundational work on this problem in

a formulation containing a single defender and single intruder. We next ex-

tend the basic formulation to various advanced scenarios that include cases in

which there are multiple defenders and intruders, and also ones that include

varying assumptions about intruder strategies.

Another main contribution is that we implemented our solution method for

the harbor defense problem on both real-time indoor and outdoor testbeds,

and demonstrated its computational effectiveness. The indoor testbed is a

custom-built robotic testbed named HoTDeC (Hovercraft Testbed for Decen-

tralized Control). The outdoor testbed involved full-sized US Naval Academy

patrol ships, and the experiment was conducted in Chesapeake Bay in collab-

oration with the US Naval Academy. The scenario used involved one ship(the
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intruder) being commanded by a human pilot, and the defender ship being

controlled automatically by our semi-infinite minmax MPC algorithm.The

results of several experiments are presented.

Finally, we present an efficient algorithm for solving a class of matrix

games, and show how this approach can be directly used to effectively solve

our original continuous space semi-infinite minmax problem using an adap-

tive approximation.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Model Predictive Control (MPC) is a form of feedback control in which the

current control action is obtained by solving online, at each sample time, an

open-loop optimal control problem over a fixed time window with the cur-

rent system state as the initial condition. The solution of this optimization

problem yields a finite sequence of control actions over the optimization win-

dow; only the first value is applied to the system, and then the window is

advanced one sample time and the optimization process repeated [1]. The

Fig.1.1 conceptually illustrates the framework of MPC.

Past Future

t0 · · ·

u1 u3

uH
Control

time

u2

Horizon

t0 + 1 t0 + 2 t0 +H

Figure 1.1: Model Predictive Control. The current time is t0. Horizon
length is H. The first element of the sequence of control u1 is applied.

One of the most attractive aspects of MPC is that state or control bounds

can be incorporated as either hard or soft constraints in the optimal control

formulation [2]. This allows MPC to be broadly applicable to many domains,

such as chemical process and industrial control [3], [4], supply chain manage-

ment [5], [6], economics and finance [7], [8], dynamic hedging [9] and revenue
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management [10], [11].

However, most of the MPC approaches are limited to solving the Bolza

problem [12] at each discrete time:

min
u

tH∑

t=t0

L(t, x(t), u(t)) +K(tH , xH) (1.1)

Here tH and x(tH) are the final time and state, L is the running cost, and K is

the terminal cost. Very few MPC approaches allow the use of a minmax per-

formance metric, which is the topic of this thesis. There are some exceptions.

In [13], the concept of minimax MPC extended to uncertain linear systems.

The analysis of the robustness is performed in a worst case sense in [14].

Both fixed and variable horizon minimax MPC are discussed in [15]. How-

ever, the system is limited to the linear, and the cost is quadratic [13–15]. In

some special cases, the cost function is relaxed to convex function [16], or the

problem is a finite minmax problem [17–19]. None of those aforementioned

work consider the computing time in terms of real-time applicable.

Among the class of minmax problems, we are particularly focused on the

semi-infinite minmax problem as such problems arise naturally in engineering

design where it is necessary to maintain the response of dynamical systems

within prescribed performance [20]. The semi-infinite minmax problem is the

problem with the following form.

min
x∈Rn

max
j∈q

Ψj(x), (1.2)

where the functions Ψj : Rn → R, j = 0, 1, · · · , q are of the form

Ψj(x) = max
yj∈Yj

φj(x, yj), (1.3)

with the function φj : Rn × Rmj → R and the sets Yj ⊂ Rmj , q :=

{1, 2, · · · , q}. Such problems are called semi-infinite because the design vec-

tor x is finite dimensional, and there are infinitely many functions φj(·, y),

determined by all the y ∈ Yj in their specification.

One of the well-known drawbacks of MPC is the computational cost [1].

This has limited MPC applications to systems with slow dynamics such as

chemical process control [21], [22]. When it comes to the semi-infinite or finite

minmax problems, this limitation becomes even more significant. Hence,
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current minmax MPC applications are limited to simple problems [13–15].

Another drawback of the MPC is its recursive feasibility [23], [24], which

will be explained in detail in the next chapter, is also well addressed in [25].

Let the set of admissible states X and admissible control sequences of length

N be UN(x). Suppose the feasible set is XN := {x ∈ X | UN(x) 6= Ø}.
Then the system is recursively feasible if and only if for all x ∈ A ⊂ XN

and u∗ ∈ UN(x), x+ = f(x, u∗) ∈ A is satisfied. In other words, once the

system is feasible and it is updated via the MPC control law, the solution

in the next time window is also feasible. Almost all work on MPC assumes

a priori that this property holds. The typical approach to remedy this issue

is to append the optimization problem with additional, somewhat artificial

constraints, which will guarantee that loss of feasibility cannot occur [1].

Some level of remedy for all the aforementioned drawbacks of MPC was

expected by adopting Phase I-Phase II method [26], [27], and the method of

outer approximation [28], [29].

The Phase I-Phase II method was introduced in 60’s and 70’s [30–33].

Phase I refers to the situation when the current state is infeasible region and

the Phase II refers that is in feasible region. The main concern is about how

to bring the state in infeasible region to the feasible region efficiently. This

seems to be related to the recursive feasibility issue in MPC. The method

of outer approximation, which will be discussed in the next chapter, is a

process of successive minimizations of the finite max functions. It produces

approximate solutions for semi-infinite problems. This approximation scheme

is applicable to the semi-infinite MPC problem to reduce the computation

without sacrificing the quality of the solution.

1.2 Contribution

We developed method for solving a class of semi-infinite mimnax problems

efficiently enough to be implemented in real-time while satisfying recursive

feasibility. Our method is based on the Phase I- Phase II method and the

method of the outer approximation.

In this study, we consider the adversarial game between two teams (X

and Y teams). The dynamic model of two teams is generally nonlinear with

control u and v, respectively.
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ẋ = f̄x(x, u), ẏ = f̄y(y, v) (1.4)

Many games of this type can be well described as a minmax MPC prob-

lem. To incorporate the notion of MPC, we introduce the finite sequence of

controls. At discrete time sample number t, let the sequence of control for

the X and Y teams be ut and vt, respectively.

ut = {ut+1, ut+2, · · · , ut+H}
vt = {vt+1, vt+2, · · · , vt+H}.

(1.5)

Throughout this study, the basic form of the problem we are interested in is

the following min max problem. For a given x0 and y0, solve

min
ut∈U

max
vt∈V(ut)

k∈{t+1,t+2,··· ,t+H}

c(xk, yk)

s.t. f j(xk, uk) ≤ 0, j ∈ q

xk+1 = fx(xk, uk),

yk+1 = fy(yk, vk),

(1.6)

where c : R× R→ R is a cost function, q = {1, 2, 3, · · · , q} is a finite index

set for the X team inequality constraints, H is a horizon length. The set

V(ut) contains only feasible control sequence of Y team.

V(ut) := {vt | gj(xk, yk, uk, vk) ≤ 0}, (1.7)

where the element wise inequality gj(·, ·, ·, ·) are indexed by j ∈ {1, 2, · · · J},
with k ∈ {1, 2, · · ·H}. In Y team’s point of view, a finite number of inequality

constraints could be a function of X team’s control and state because we

assume that information of the X team is correctly known to the Y team,

and hence Y team’s control is worst case to X team.

The solution of (1.6) is a best-worst case sequence of controls in x player’s

point of view. The only initial fraction of the solution is taken as a control

for the current time of the player x. Such a sequence of control is fed to

the player dynamics and results in the trajectory. Therefore, this problem is

considered as a class of path planning. There seems to be no known method

solving (1.6) directly. The solution for this class of problem can be obtained
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by bi-level set programming or optimality function approach. However, as

this emerges as a subproblem in MPC formulation, computational complexity

becomes a more significant issue.

We set a specific problem called the harbor defense problem as the main

target problem to demonstrate the effectiveness of our solution method. The

harbor defense problem that we describe as a semi-infinite minmax MPC

problem is an adversarial game between two teams: intruder and defender

teams. The goal of the intruder team is to destroy a the high-value unit that

is located in the harbor by outmaneuvering the defender team. The goal of

the defender team is to prevent all the intruders from doing so. An intruder is

destroyed by the defender if the intruder comes within a pre-defined distance

of the defender. As an additional demonstration, we formulate and present a

mobile network jamming problem. This problem demonstrates that our so-

lution method can be easily applied to other semi-infinite minmax problems.

Besides theoretical development, a contribution is also the implementation

and demonstration of the solution method to real-time robotic testbeds. The

main robotic testbed is the HoTDeC (Hovercraft Testbed for Decentralized

Control) which is developed from the scratch at the Networked autonomous

vehicle laboratory. Development of the HoTDeC includes a well-structured

network environment because an effective network is crucial to implementing

our minmax MPC scheme. Another testbed involves Yard Patrol ships at the

U.S. Naval Academy. The experiments with HoTDeC are conducted at the

laboratory scale with a multiple number of the agents per a team, whereas

the experiments with Yard Patrol ships are conducted at the Chesapeake

Bay near the U.S. Naval Academy.

1.3 Outline

Our approach to solving the problem (1.6) is to use numerical optimization

techniques and separate the semi-infinite problem into a sequence of two

smaller problems: finite minmax problem and maximization problem. We

refer to the finite minmax problem as the inner problem and the maximiza-

tion problem as the outer problem. Then the question is how to solve the

subproblems efficiently and whether the sequence of the solutions of the sub-

problems converge to the original semi-infinite minmax problem. In Chapter
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3, the solution method to the subproblems and the convergence of the se-

quence of the problem is analyzed. Illustrative examples are presented.

In Chapters 4 and 5, we consider the harbor defense problem and the

implementation of our method. In Chapter 4, the basic harbor defense prob-

lem, where there are a single intruder and a single defender, is discussed.

Advanced scenarios of the harbor defense problems are discussed in Chapter

5. Advanced scenarios include the case when there are multiple defenders

and intruders are present, and the case when one team outnumbers the other

team, and the case when the assumed strategy for the other team is incorrect.

The development of HoTDeC and the implementation of the solution of

the harbor defense problem is presented in Chapter 6. The development of

HoTDeC includes various sub-topics such as circuit design, network program-

ming, and controller development. Chapter 7 elaborates on the implementa-

tion step and modification of the algorithm so that it can be implemented in

real-time systems. In Chapter 8, results are presented for the sea experiment

that was conducted at the Chesapeake Bay, near the US Naval Academy.

The aim of this experiment is to demonstrate the effectiveness of our solu-

tion method in a real world situation.

Chapter 9 presents the application of our solution method to the mobile

network jamming problem, and this shows that our solution method is ap-

plicable to other semi-infinite minmax MPC problems.

It is well known that finding a global solution to our optimization prob-

lem efficiently is a hard problem. In Chapter 10, we present an application

of outer approximation to the discretized semi-infinite minmax problem for

finding a global solution efficiently. We demonstrate the effectiveness of the

algorithm by presenting three examples.
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CHAPTER 2

BACKGROUND

2.1 Model Predictive Control

There is huge volume of MPC literature. This MPC literature is categorized

into several main topics. Most common and well-understood is the MPC of

deterministic systems. The basic form is as follows.

Suppose the current discrete time is k and let the discrete time system

with state x and control u be described by

xk+1 = f(xk, uk). (2.1)

Here, the dynamics f : X × U → X assigns the state xk ∈ X at the next

time instant to each pair of state x ∈ X and control value u ∈ U .

min
u∈U

N−1∑

i=0

l(xk+i, uk+i) + V (xk+N , uk+N), (2.2)

where the u is a sequence of control, u = {uk+1 · · ·uk+N}.
If the cost function is quadratic, it is normally expressed as follows

l(xk+i, uk+i) =
N−1∑

i=0

xTk+iQxk+i +
N−1∑

i=0

uTk+iQuk+i + xTk+NPxk+N (2.3)

It is common to have “stability constraints” to guarantee the stability or

feasibility.

2.1.1 Recursive feasibility

The formulation of MPC is quite straight forward in many applications.

MPC requires to repeatedly solve optimization problems online in order to
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decide the current input to the system. Although MPC opens up for general

and advanced control scheme, it comes with a serious drawback. In contrast

to the linear quadratic control that stabilizes by construction, the MPC is

not guaranteed to be stable; see [1] for detail. In planning application of

the MPC, MPC solution is interpreted as an optimal trajectory. In these

applications, stability corresponds to the recursive feasibility problem. The

recursive feasibility is well addressed in [25].

Definition 2.1.1. (Recursive feasibility). The MPC is recursively feasible if

and only if for all initially feasible x0 and for all optimal sequences of control

inputs the MPC optimization problem remains feasible for all time.

One of the effort to archive recursive feasibility is to use bilevel program-

ming [34]. The key feature which sets bilevel programming apart from stan-

dard optimization problems is that the inner variables z are constrained to

be optimal with respect to an inner optimization problem which may depend

on the outer variable x. Suppose we have following bilevel formulation.

min f(x, z∗)

s.t (x, z∗) ∈ C
z∗ = arg min

z
h(x, z)

s.t.(x, z) ∈ D

(2.4)

The bi-level problems are notoriously hard to solve, even in the case when

both the inner and outer problems are linear programs, which pretty much

is the simplest bilevel problem possible [35], [36]. In case of quadratic cost

function,

min
y,xk,uk

yT (b− E(Axk +Bu∗))

s.t. y ≥ 0, yTF = 0

U∗k = arg min
Uk

1

2
UT
k HUk + UT

k Gxk

s.tExk + FUk ≤ b.

(2.5)

The inner problem is a convex quadratic program, so we can replace the op-

timality condition with the corresponding KKT condition. Introduce a non-
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negative dual variable λ and append the outer problem with the stationarity,

and feasibility and complementarity constraints of the inner problem.

min
y,xk,uk,λ

yT (b− E(Axk +Bu∗))

s.t. y ≥ 0, yTF = 0

HUk +Gxk + F Tλ = 0

0 ≤ λ ⊥ b− Exk − FUk ≥ 0.

(2.6)

The above problem is hard to solve. Not only does it involve the com-

plementarity constraints λ ⊥ b − Exk − FUk, but it also involve a bilinear

objective function. Numerically, this problem is severely ill-conditioned.

2.2 Semi-infinite optimization

Among semi-infinite optimization problems presented [27], [26], and [20], we

consider the case when the problem is min max. Semi-infinite optimization

minmax problem is of the following form

min
x∈Rn

max
j∈q

Ψj(x), (2.7)

where the functions Ψj : Rn → R, j = 0, 1, · · · q are of the form

Ψj(x) = max
yj∈Yj

φj(x, yj), (2.8)

with the function φj : Rn × Rmj → R and the sets Yj ⊂ Rmj , q :=

{1, 2, · · · , q}. The reason such problems are called semi-infinite is that the

design vector x is finite dimensional, but there are infinitely many functions

φj(·, y), determined by all the y ∈ Yj in the specification of these problem.

2.2.1 Method of outer approximations

The method of outer approximation has been used for the nonlinear optimiza-

tion problems [37], [29], mixed-integer programming [38,39], and nonconvex

mixed-integer nonlinear programming [40]. The aim of these works is to solve

a complex problem by appropriately discretizing it. One of the core methods
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in this dissertation to solve semi-infinite minmax optimization problem is the

method of outer approximations. The role of the outer approximation in this

dissertation is not only relaxing the problem but also solving it fast enough.

We present its concept in this subsection. The origin of the method of outer

approximation can be traced to cutting-plane methods for convex problems.

To obtain an intuitive understanding, consider the simpler case of (2.7).

Ψ(x) = max
y∈Y

φ(x, y), (2.9)

where φ : Rn × Rm → R is continuous and Y ⊂ Rm is compact. For any

compact set Ω ⊂ Y , let

ΨΩ(x) = max
y∈Ω

φ(x, y). (2.10)

Then for any x ∈ Rn, ΨΩ(x) ≤ Ψ(x) = ΨY (x), and hence the sub level sets

of Ψ(·) are contained in the sub level sets of ΨΩ(·). This fact is responsible

for the name “outer approximation”.

The simplest example of a conceptual method of outer approximations for

solving the problem

min
x∈Rn

max
y∈Y

φ(x, y). (2.11)

Let us define maximizer for given x

Ŷ (x) := arg max
y∈Y

φ(x, y). (2.12)

Following conceptual algorithm describes the method of outer approxima-

tions for solving (2.9).

Method of Outer Approximations (Conceptual Form)

Data. x0 ∈ Rn, Ŷ ⊂ Y .

Step 0. Set k = 0, choose a y0 ∈ Ŷ (x0), set Y0 = {y0} ∪ Ŷ .

Step 1. Compute

xk+1 ∈ arg min
x∈X

ΨYk(x) (2.13)
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Step 2. Compute a yk+1 ∈ Ŷ (xk+1) , and set

Yk+1 = Yk ∪ {yk+1}. (2.14)

Step 3. Replace k by k + 1, and go to Step 1.

Example : To illustrate the behavior of the algorithm, suppose

Ψ(x) = x2 (2.13)

Then it is easy to see that the function Ψ(·) can be defined by its tangents,

as follows

Ψ(x) = max
y∈R

y(2x− y) (2.14)

Starting with an arbitrarily given x0, we get y0 = x0 and add another

point y′0 to form the set Ω0. Three iterations of the algorithm applied to the

problem (2.14) are shown in Fig. 2.1. We see that the algorithm converges

rapidly to the solution x = 0.

y0 = x0y′0

y2 = x2

Ψ(x)

(a) First iteration

y0 = x0y′0

Ψ(x)

y2 = x2

(b) Second iteration

y0 = x0y′0

Ψ(x)

y3 = x3

(c) Third iteration

Figure 2.1: Illustration of the iteration of the example.

2.3 Numerical optimization

In this section, we presents some important but non-standard numerical op-

timization concepts that are used throughout this dissertation.
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2.3.1 Outer and inner semicontinuity

Definition 2.3.1. A set-valued function f : Rn × 2R
m

is said to be outer

semicontinuous (o.s.c) at x̂ if f(x̂) is closed and, for every compact set S

such that f(x̂) ∩ S = ∅, there exists a ρ̂ > 0 such that f(x) ∩ S = ∅ for all

x ∈ B(x̂, ρ̂), where ∅ denotes the empty set and B(x, ρ) is a closed ball with

a center at x, radius ρ.

x̂

x

f(x)f(x̂)

S S

S

Figure 2.2: Outer semicontinuity

Definition 2.3.2. A set-valued function f : Rn × 2R
m

is said to be inner

semicontinuous (i.s.c) at x̂ if for every open set G such that f(x̂) ∩ G = ∅,
there exists a ρ̂ > 0 such that f(x) ∩G = ∅ for all x ∈ B(x̂, ρ̂).

x̂

x
f(x)

f(x̂)

G

Figure 2.3: Inner semicontinuity

Fig 2.2 and 2.3 illustrates the concept of the outer and inner semicontinuity.

2.3.2 Directional derivatives and subgradients

It is clear from Fig 2.4 that max functions are not generally differentiable

everywhere due to the cusp.

However, as we will now show, the max functions are locally Lipschitz

continuous (lLc) and hence, by the Rademacher Theorem ( [41]), they are

differentiable almost everywhere. Also it is strongly suggested by Fig. 2.4
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f1(x)
f2(x)

f3(x)

Ψ(x)

x∗

Figure 2.4: Max function with a non-differentiable points

that the directional derivative dΨ(x∗;h), where h is a direction vector, is

equal to the largest of the directional derivatives of the functions that are

“active” at x. The following result is from Danskin [42] and Demyanov [43],

[44].

Theorem 1. Consider the function

Ψ(x) = max
j∈q

f j(x), (2.15)

where the functions f j : Rn → R, j ∈ q are lLc and have directional deriva-

tives df j(x;h) for all x, h ∈ Rn. Then

(a) Ψ(x) is lLc, and

(b) the directional derivative dΨ(x;h) exists for all x, h ∈ Rn and is given by

dΨ(x;h) = max
j∈q̂(x)

df j(x;h). (2.16)

For the proof, see [20].

Lemma 1. Consider the function Ψ(x) = maxj∈q f
j(x), with f j : Rn → R,

j ∈ q, continuously differentiable. Then,

(a) The generalized directional derivative d0Ψ(x;h) and the directional deriva-

tive dΨ(x;h) exist for all x, h ∈ Rn and are given by

d0Ψ(x;h) = dΨ(x;h) = max
j∈q̂(x)

〈
Of j(x), h

〉
(2.17)

(b) The directional derivative dΨ(·; ·) is upper semicontinuous, and for every
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x ∈ Rn, the function dΨ(x, ; ) is positively homogeneous, subadditive, and

Lipschitz continuous. (c) The subgradient ∂Ψ(x) of Ψ(x) at x ∈ Rn is given

by

∂Ψ(x) = coj∈q̂(x){Of j(x)}, (2.18)

where coA is a convex hull of A.

2.3.3 PPP minmax algorithm

In this subsection, we discuss an algorithm that can be viewed as a natural

extension of the Armijo Gradient Algorithm. Different versions of this al-

gorithm were proposed by Pshenichnyi in 70’s [45]. And later by Pironneau

and Polak [46]. These two somewhat similar algorithms are combined and

presented in [20]. This method can solve finite minmax problem which is a

subclass of the semi-infinite problem.

Suppose the finite minmax problem is given as follows.

min
x∈Rn

Ψ(x), (2.19)

with

Ψ(x) = max
j∈Q

f j(x). (2.20)

and the functions f j : Rn → R continuously differentiable. Then the most

fundamental first-order optimality condition for the local minimizer is that

dΨ(x̂ : h) ≥ 0 for ∀h ∈ Rn. If dΨ(x̂ : h) > 0 for ∀h ∈ Rn, x̂ is a strict local

minimizer.

To check the first-order optimality condition, we define the nonpositive-

valued function θ : Rn → R by

θ(x) := min
‖h‖≤1

max
j∈q̂(x)

〈
Of j(x), h

〉
(2.21)

We see that the first-order optimality condition holds if and only if θ(x) =

0. Rewriting (2.21) can be recasted as a linear program and hence, can be

evaluated in a finite number of operations. Using the convex-relaxation and

approximation which will be discussed in the next chapter, we find following

optimality function.

14



θ(x) = min
h∈Rn

max
j∈Q

f j(x)−Ψ(x) +
〈
Of j(x), h

〉
+

1

2
δ‖h‖2, (2.22)

and

h(x) = arg min
h∈Rn

max
j∈Q

f j(x)−Ψ(x) +
〈
Of j(x), h

〉
+

1

2
δ‖h‖2. (2.23)

As appears in [27], (2.22) can be equivalently expressed as

θ(x) = −min
µ∈Σq

Σq
j=1µ

j[Ψ(x)− f j] +
1

2δ
‖Σq

j=1µ
jOf j(x)‖2 (2.24)

and

h(x) = −1

δ
Σq
j=1µ

j
xOf

j(x). (2.25)

Pshenichnyi-Pironneau-Polak (PPP) Algorithm

Paramters. α ∈ (0, 1], β ∈ (0, 1), δ > 0.

Data. x0 ∈ Rn.

Step 0. Set i = 0.

Step 1. Compute the optimality function θi := θ(xi) and search direction

hi = h(xi), i.e.,

θi = −min
µ∈Σq

Σq
j=1µ

j[Ψ(xi)− f j] +
1

2δ
‖Σq

j=1µ
jOf j(xi)‖2

and

hi = −1

δ
Σq
j=1µ

j
xi
Of j(xi),

where µx is any solution of θi.

Step 2. If θi = 0, stop. Else, compute the step size.

λi = λ(xi) := arg max
k∈N
{βk | Ψ(xi + βkhi−Ψ(xi)− βkαθi ≤ 0)}. (2.26)

Step 3. Set

xi+1 = xi + λihi, (2.27)

replace i by i+ 1 and go to Step 1.
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As we will see in the next chapter, we will find the natural extension of

PPP algorithm to the semi-infinite minmax problem and this method will be

applied to the inner problem of the MPC formulation.
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CHAPTER 3

SOLUTION METHODOLOGY

In this chapter, we present the numerical method to solve the problem (1.6)

and its convergence. Since our approach is based on the numerical optimiza-

tion techniques, we need to find searching direction, step size, and terminate

condition. We use slightly simplified problem formulation from 1.6. The rea-

son is that we are interested in the solution in certain discrete time t. Hence,

there is no reason to include the variable t in analyzing a static situation.

The modified formulation is the following. For given x0 and y0,

min
u∈U

max
v∈V(u)

k∈{1,2,··· ,H}

c(xk, yk)

s.t. f j(xk, uk) ≤ 0, j ∈ q

xk+1 = fx(xk, uk),

yk+1 = fy(yk, vk),

(3.1)

where

u = {u1, u2, · · · , uH}
v = {v1, v2, · · · , vH}.

(3.2)

and q = {1, 2, 3, · · · , q} is a finite set. The Y team’s constraint set

V(u) := {v | gj(xk, yk, uk, vk) ≤ 0}, (3.3)

is similarly defined as in chapter 1. Element wise inequality gj(·, ·, ·, ·) are

indexed by j, j ∈ {1, 2, · · · I}, with k ∈ {1, 2, · · ·H}.
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3.1 Problem separation

For concise notation let us define index set H = {1, 2, · · · , H}. We separate

problem (3.1) into two problems: finite minmax problem and maximization

problem. The concept of the method of outer approximation allows us to

separate the semi-infinite problem. Below algorithm explains the concept of

the outer approximation applied to the problem (3.1).

Data: P1 = {ŷ0}, I1 = {1}, x0

Result: x̂

Set i = 1.

if Terminate condition = false then

Step 1. Obtain x̂i such that {xm}∞m=0 → x̂i by solving finite

minmax problem (3.4).

Step 2. Solve Y team maximization problem (3.5).

Step 3. Update Pi+1 = Pi ∪ {ŷi}, Ii+1 = Ii ∪ {i+ 1},
Replace i = i+ 1.

Step 4. Evaluate terminate condition

else

x̂ = x̂i

end
Algorithm 1: Problem separation algorithm

In the Algorithm 1, an index i is used to specify the iteration number of the

algorithm. In each iteration, both team X and Y solves their problem and

find solution ûi and v̂i. The trajectories x̂i and ŷi are obtained by feeding ûi

and v̂i to X and Y team’s dynamics. Team X solves following finite minmax

problem.

ûi = arg min
u∈U

max
j∈Ii

cj(xk)

s.t. f l(uk, xk) ≤ 0, l ∈ {1, 2, · · · , q},
(3.4)

where cj(xk) := c(xk, ŷk), with ŷk ∈ Pi.

Team X assumes that team Y solves the following maximization problem.

v̂i = arg max
v∈V(ûi)
k∈H

c(x̂ik, yk)

s.t. gj(uk, vk, xk, yk) ≤ 0, j ∈ {1, 2, · · · , I},
(3.5)
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with a finite set Pi = {ŷk}ik=0, where each ŷk is a maximizer of team y.

The set Pi is created such that Pi−1 ⊂ Pi. Ii is an index set of Pi. As

algorithm iterates, set Pi monotonically increased. The goal of this chapter

is to show that the sequence of the solution of (3.4), {xi}∞i=0 converges to the

solution of (3.1). We also show that for any i, feasibility of the problem (3.1)

is guaranteed.

Note that subscript is used to indicate inner sequence and superscript is

used to indicate outer sequence.

Assumptions

Throughout this research, we assume that following two conditions are always

satisfied.

1. For all j ∈ q, f j is twice differentiable and for some m and M such that

0 < m ≤ M , m‖h‖2 ≤ 〈h,O2f j(x)h〉 ≤ M‖h‖2, for all h and |f j(xm+1) −
f j(xm)| ≤ L‖xm+1 − xm‖ with L > 0.

2. For all k ∈ I, ck is twice differentiable and for some m and M such

that 0 < m ≤ M , m‖h‖2 ≤ 〈h,O2φ(x)h〉 ≤ M‖h‖2, for all h and satisfies

|ck(xm+1)− ck(xm)| ≤ L‖xm+1 − xm‖ with L > 0.

These assumptions are about the existence of the hessians for the constraint

functions and the cost functions, respectively. As we will see in the next sub

chapter, the existence of the hessian allows us to find upper and lower bounds

on optimality function.

3.2 Inner problem

In this section, we focus on Step 1 in Algorithm 1. Specifically, we consider

the problem (3.4), in any fixed index i. Therefore, we omit i. We use index k

to describe the iteration of the Phase I-Phase II method. Note that subscript

is numerical optimization sequence in this chapter. For concise notation we

represent (3.4) as follows in this section.
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min
u∈U

max
j∈I

cj(x)

s.t. f l(u, x) ≤ 0, ∀l ∈ {1, 2, · · · , q}
(3.6)

The goal of this sections is to show that the sequence {xm}∞m=0 created by the

Algorithm 1 to solve (3.4) converges to the solution of (3.1), x̂i, regardless of

the feasibility of the initial point. First, we find searching direction.

3.2.1 Searching direction

In this section, we find searching direction of the optimization problem in

(3.6).

Lemma 2. The direction

ĥ(x) = − 1

1 + γµ0
2

(
k∑

i=1

µi1Oc
i(x) + γµ0

2

q∑

j=1

µj2Of
j(x)

)
(3.7)

is the descent direction of the cost in (3.6) while satisfying feasibility, where

γ > 0, µ1 ∈ Σk, and µ2 ∈ Σq+1.

The evaluation of the optimality function provides a constructive way of

determining whether the necessary condition for the optimization problem

is satisfied or not. If the starting point does not satisfy the feasibility, opti-

mality function provides the direction toward the feasibility is satisfied while

decreasing the cost. Let ε > 0 small, for a given xm, consider the following

conceptual form of the optimality function.

θ̃(x) := min
h∈B(0,ε)

φ(x′)− φ(x)

s.t. Ψ(x′) ≤ 0
(3.8)

where φ(x) = maxk∈I c
k(x), Ψ(x′) = maxl∈q f

l(x′), x′ = x+ h.

The solution (3.4) guarantees the feasibility while hm that yields θ̃(xm) < 0

is a descent direction. θ̃(xm) is well defined because B(0, ε) is compact.
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Consider the following first order strictly convex approximation in hm.

φ(x′) ≈ φ(x, x′) :=φ(x) + 〈Oφ(x), h〉+
1

2
‖h‖2

= max
k∈I

ck(x) + max
k∈I

〈
Ock(x), h

〉
+

1

2
‖h‖2

= max
k∈I

[
ck(x) +

〈
Ock(x), h

〉]
+

1

2
‖h‖2

(3.9)

φ(x, x′) = φ(x)

φ(x′) = φ(x)x

x−▽φ(x)

‖ ▽ φ(x)‖

Equal cost contour of φ(x, ·) = {x′ | φ(x, x′) = α}
→ (x′ − [x−▽φ(x)])2 = 2(α− φ(x)) + ‖ ▽ φ(x)‖2
α=φ(x)−−−−−→ (x′ − [x−▽φ(x)])2 = ‖ ▽ φ(x)‖2

φ(x)

{x′ | φ(x′) = φ(x)} and {x′ | φ(x, x′) = α}

x

Figure 3.1: Convex approximation of φ(x′).

Fig. 3.1 presents the geometric interpretation of the convex approximation

(3.9). Consider a current point x and an equal cost contour of the function

φ(x) = α. We see that the set of x′ such that φ(x) = φ(x′) is obviously the

boarder of φ(x) = α. Since x′ − x = h, we can rewrite (3.9) as follows.

φ(x) + Oφ(x)(x′ − x) +
1

2
(x′ − x)2 = α (3.10)
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This can be rearranged as follows

φ(x) + Oφ(x)x′ − Oφ(x)x+
1

2
(x′2 − 2xx′ + x2) = α

x′2 − 2x′(x− Oφ(x)) + (x− Oφ(x))2 = 2α− 2φ(x) + 2Oφ(x)x− x2+

(x− Oφ(x))2

(x′ − [x− Oφ(x)])2 = 2(α− φ(x)) + ‖Oφ(x)‖2

(x′ − [x− Oφ(x)])2 = ‖Oφ(x)‖2 (when φ(x) = α).

(3.11)

This shows that the convex approximation result in circular equal cost con-

tour for the arbitrary shape of the equal cost contour. As the shape of the

cross section of the φ(x) is close to the circle, this approximation works bet-

ter.

We apply the above approximation to the optimality function (3.8). Fol-

lowing optimality function is a first order convex approximation of (3.8) which

does not requires the ball.

θ(x) = min
h∈Rn×N

φ(x, x′)− φ(x)

= min
h∈Rn×N

(
max
k∈I

[
ck(x) +

〈
Ock(x), h

〉]
+

1

2
‖h‖2 − φ(x)

)

s.t. Ψ(x′) ≤ 0

(3.12)

Using exact l1 penalty function γψ(xm+1)+, following optimality function is

obtained.

θ(x) = min
h∈Rn×N

max
k∈I

[
ck(x) +

〈
Ock(x), h

〉
+

1

2
‖h‖2 − φ(x)

]
+

γmax

[
max
j∈q

(
f j(x) +

〈
Of j(x), h

〉)
+

1

2
‖h‖2, 0

] (3.13)

We can also conceptually represent optimality function as follows.

θ(x) = min
h∈Rn×N

F (x, x′), (3.14)

where

F (x, x′) = φ(x, x′)− φ(x) + γΨ(x′)+. (3.15)
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The idea about optimality function is to add penalty term that prescribes a

high cost to infeasible points. Note that this is only conceptual form because

F (xm, xm+1) does not explicitly depends on hm. We apply following convex

combinations.

max
k∈I

[
ck(x) +

〈
Ock(x), h

〉]
= max

µ1∈Σk

k∑

i=1

µi1
[
ci(x) +

〈
Oci(x), h

〉]
(3.16)

and

max
j∈q

f j(x) +
〈
Of j(x), h

〉
= max

µ2∈Σq

q∑

j=1

µj2
(
f j(x) +

〈
Of j(x), h

〉)
(3.17)

Note that for scalar a, max[a, 0] = maxµ0∈[0,1] µ
0a. Using the similar approx-

imation to the (3.9),

θ(x) = min
h∈Rn×N

max
µ1∈Σk

k∑

i=1

µi1

[
ci(x) +

〈
Oci(x), h

〉
+

1

2
‖h‖2 − φ(x)

]

+ γ max
µ02∈[0,1]

[
max
µ2∈Σq

µ0
2

q∑

j=1

µj2
(
f j(x) +

〈
Of j(x), h

〉)
+
µ0

2

2
‖h‖2

] (3.18)

Let

w(h) :=
k∑

i=1

µi1

[
ci(x) +

〈
Oci(x), h

〉
+

1

2
‖h‖2 − φ(x)

]

+ γµ0
2

[
q∑

j=1

µj2
(
f j(x) +

〈
Of j(x), h

〉)
+

1

2
‖h‖2

] (3.19)

Since w(h) is convex in h and concave in µ1 and µ2,

θ(x) = max
µ1∈Σk
µ2∈Σq+1

min
h∈Rn×N

w(h)
(3.20)

Taking ∂w(h)
∂h

= 0 yields
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ĥ(x) = − 1

1 + γµ0
2

(
k∑

i=1

µi1Oc
i(x) + γµ0

2

q∑

j=1

µj2Of
j(x)

)
(3.21)

θ(x) = − min
µ1∈Σk
µ2∈Σq+1

k∑

i=1

µi1(φ(x)− ci(x))− γµ0
2

q∑

j=1

µj2f
j(x)+

1

1 + γµ0
2

‖
k∑

i=1

µi1Oc
i(x) + γµ0

2

q∑

j=1

µj2Of
j(x)‖2.

(3.22)

Lemma 3. Following holds.

1. θ(x) ≤ 0 if starting point is feasible, θ(x) ≤ γΨ(x) for non-feasible starting

point.

2. There exists λm > 0 and α > 0 such that F (x, x+ λmĥ(x)) ≤ λmαθ(x).

Proof. 1. Consider equation (3.18). We observe that w(0) = γΨ(x)+.

Since θ(x) is smaller than any h, θ(x) ≤ γΨ(x)+.

2. Let us consider the minimizer ĥ(x) in (3.21) and the situation when ĥ(x)

is applied in (3.13).

θ(x) ≥ max
k∈Î(x)

〈
Ock(x), ĥ(x)

〉
+

1

2
‖ĥ(x)‖2 + γ

[
max
j∈q̂(x′)

f j(x′)

]

+

(3.23)

and

θ(x̂) ≥ max
k∈Î(x̂)

〈
Ock(x̂), ĥ(x̂)

〉
+

1

2
‖ĥ(x̂)‖2

(3.24)

Taking directional derivative of (3.15) to direction vector ĥ(x),

d2F (x, x′; ĥ(x)) = max
k∈Î(x′)

〈
Ock(x′), ĥ(x)

〉
+ γ

[
dφ(x′; ĥ(x))

]
+

(3.25)

When x = x̂,

d2F (x̂, x̂; ĥ(x̂)) ≤ θ(x̂)− 1

2
‖ĥ(x̂)‖2 ≤ 0 (3.26)
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For a given 0 < β < 1 and for any ε > 0 such that 0 < α − ε < 1, ∃ke ∈ N

such that

F (x̂, x̂+ βkεĥ(x̂))− F (x̂, x̂) ≤ βkε(α− ε)d2F (x̂, x̂; ĥ(x̂))

≤ βkε(α− ε)
[
θ(x̂)− 1

2
‖ĥ(x̂)‖2

] (3.27)

Since F (x̂, x̂) = 0,

F (x̂, x̂+ βkεĥ(x))− βkεαθ(x̂) ≤ −βkε
[
εθ(x̂) +

1

2
(α− ε)‖ĥ(x)‖2

]
(3.28)

εθ(x̂) + 1
2
(α− ε)‖ĥ(x)‖2 ≥ 0 for all ε > 0 such that

2ε

α− ε ≤ −
‖ĥ(x)‖2

θ(x̂)
:= w∗ (3.29)

Then we see the following.

F (xm, xm + βkε̂ĥ(xm))− βkε̂αθ(xm) ≤ 0 (3.30)

−βkǫ

[
ǫθ(x̂) +

1

2
(α− ǫ)‖ĥ(x)‖2

] x

x̂

F (x, x+ βkǫ̂ ĥ(x))− βkǫ̂αθ(x)

Figure 3.2: Existence of B(x̂, ρ)

Fig.3.2 shows the inequality of (3.28) and (3.30).
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3.2.2 Step size rule

Armijo type step size rule:

λ̂m = max
λm∈R+

{λm | F (xm, xm + λmĥ(xm)) ≤ λmαθ(xm)} (3.31)

λm

l(λm)

λ̂m

F (xm, xm + λmĥm)

Figure 3.3: Armijo Step size rule

3.2.3 Convergence rate

Lemma 4. Let {xm}∞m=1 be a sequence constructed using (3.21) and (3.31). Let

x̂ be any accumulation point. Then θ(x̂) = 0.

Proof. From (3.15) and (3.30) φ(x, x′) − φ(x) ≤ F (x, x + λmĥ(x)) ≤ λmαθ(xm).

We can observe that θ(xm) ≤ θ(x̂) as follows.

λmαθ(x̂)

λmαθ(xm)

m

Figure 3.4: Upper bound of F and its convergence.

Because θ(xm) ≤ θ(x̂). Together with (3.30), φ(x, x′)− φ(x) ≤ λmαθ(x̂). From

Lemma 2.1, θ(x̂) ≤ 0. Suppose θ(x̂) < 0, then since φ(x) is a convex with a
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unique, finite minimizer and x→ x̂, we conclude φ(x)→ −∞ as m→∞. Since φ

is continuous, it contradicts the fact that φ(x)→ φ(x̂). Therefore θ(x̂) = 0.

Data: x0, γ > 0, 0 < α < 1

while θ(xm) 6= 0 do
Compute h(xm)

Compute θ(xm)

Compute λ(xm)

Update xm+1 = xm + λmhm

Replace m← m+ 1

end

Algorithm 2: Inner algorithm

Theorem 2. Suppose x̂ is a unique solution of (3.6), then from the Algorithm 1,

{xm}∞m=0 converges to x̂.

Proof. Algorithm guarantees the existence of k such that {xm}∞m=k ⊂ S0(ψ). From

assumption.3, S0(ψ) is compact. Therefore, {xm} is bounded. Also, x̂ is the unique

zero of θ(.) and {hm}∞m=0 is the direction that results in θ(xm) → 0. Therefore,

{xm}∞m=0 → x̂.

Following lemma presents the exponential convergence of the inner problem The

approximation technique and assumptions that is used here is found in [47]. In

this book, the condition that is called “Self-concordance” is the following.

mI � O2f(x) �MI, ‖O2f(x)− O2f(y)‖2 ≤ L‖x− y‖2

The reason for introducing this assumption is to compensate the classical con-

vergence analysis of Netwon’s method. The main reason is that the unknown

parameters, m,M,L are generally impossible to obtain. Another drawback is that

Newton’s analysis method is heavily depends on the coordinate system used. If the

coordinate is changed, m,M,L should all be changed accordingly. To overcome

this, self-concordance condition is introduced and it is important in three reasons.

First, self-concordance functions include many of logarithmic barrier functions

that is important approximation to the exact penalty functions. Second, self-

concordance functions do not depend on the unknown parameters when the New-

ton’s analysis method is applied. Three, they are affine-invariant. Therefore, is is

still self-concordance after the linear transform.

Lemma 5. Suppose ψ(x0) ≤ 0 and {xm}∞m=0 → x̂ is constructed using Algorithm

1. Then φ(xm+n)− φ(x̂) ≤ Cn[φ(xm)− φ(x̂)], where C = λ2M2

2 ≤ 1.
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Proof. From Taylor’s theorem,

φ(xm+1)− φ(xm) =

〈Oφ(xm), xm+1 − xm〉+
1

2

〈
xm+1 − xm,O2φ(xm + s(xm+1 − xm))(xm+1 − xm)

〉

(3.32)

for some s ∈ [0, 1]. From assumption 2,

φ(xm+1)− φ(xm) ≤ 〈Oφ(xm), xm+1 − xm〉+
1

2
M‖xm+1 − xm‖2

=
1

M

[
〈Oφ(xm),M(xm+1 − xm)〉+

1

2
‖M(xm+1 − xm)‖2

]
.

(3.33)

Taking minimum on both side yields

φ(x̂)− φ(xm) ≤ 1

M
θ(xm). (3.34)

Since ψ(x0) ≤ 0, switching parameter µ0
2 = 0. Therefore, from (3.21) and (3.22),

θ(xm) = −minµ1∈Σk

∑k
i=1 µ

i
1(φ(xm) − ci(xm)) + ‖hm‖2. Let minimizer µ̂1 be

applied, then θ(xm) =
∑k

i=1 µ̂
i
1(ci(xm)−φ(xm))−‖hm‖2. Since ci(xm)−φ(xm) ≤ 0

for all i, θ(xm) ≤ −‖hm‖2. Therefore, from (3.34)

φ(xm)− φ(x̂) ≥ 1

M
‖hm‖2. (3.35)

Next, from (3.30), F (xm, xm+λmĥm) ≤ λmαθ(xm). Then from (3.15), φ(xm+1)−
φ(xm)− λmαθ(xm) ≤ 0. Then again from the Taylor’s theorem,

φ(xm+1)− φ(xm)− λmαθ(xm)

= 〈Oφ(xm), λmhm〉+
1

2

〈
λmhm,O

2φ(xm + s(xm+1 − xm))λmhm
〉
− λmαθ(xm)

≤ 〈Oφ(xm), λmhm〉+
M

2
‖λmhm‖2 − λmαθ(xm)

(3.36)

When xm = x̂, θ(x̂) = 0 and Oφ(x̂) = 0. Therefore,

φ(xm+1)− φ(x̂) ≤ M

2
λ2
m‖hm‖2 (3.37)

From (3.35) and (3.37),

φ(xm+1)− φ(x̂) ≤ C[φ(xm)− φ(x̂)] (3.38)
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, where C = λ2M2

2 . Note that C < 1 when λM <
√

2. By induction,

φ(xm+n)− φ(x̂) ≤ Cn[φ(xm)− φ(x̂)] (3.39)

This shows exponential convergence.

3.3 Outer problem

The aim of this section is to show that the sequence of solution of the outer prob-

lem, (3.5) converges to the global solution. Recall the following Y team problem.

Recall that X player assumes that Y player solves below maximization problem.

v̂i = arg max
v∈Y (ûi)
k∈N

c(x̂ik, yk)

s.t. f l(uk, vk, xk, yk) ≤ 0, l ∈ {1, 2, · · · , q},
(3.40)

Since the maximum in a finite set of scalar values are equal to the maximum in

the convex combinations of these scalar values, following is true.

max
k∈N

c(x̂ik, yk) = max
µ∈ΣN

µkc(x̂ik, yk). (3.41)

If we augment control and multipliers for the convex combinations v′ := (v, µ),

c′(x̂ik, yk) := µkc(x̂ik, yk), we can rewrite (3.40) in the following equivalent form.

v̂i = arg max
v′∈Y (ûi)

c′(x̂ik, yk)

s.t. f l(uk, vk, xk, yk) ≤ 0, l ∈ {1, 2, · · · , q}
(3.42)

with a finite set Pi = {yk}ik=0, where each yk is a maximizer of team y. The

set Pi is created such that Pi−1 ⊂ Pi. Ii is an index set of Pi.

Let us define following max function.

φ(x) := max
v′∈Y (u)

c′(x, y) (3.43)

and

φPi(x) := max
v′∈Pi

c′(x, y) (3.44)
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Data: P0, I0, x0, γ > 0, 0 < α < 1

Result: x̂

Set i = 0.

if ti ≥ εt then

Step 1. Obtain x̂i such that {xm}∞m=0 → x̂i by solving inner problem:

min
x∈Rn×N

max
k∈Ii

ck(x)

s.t. f j(x) ≤ 0, j ∈ q

Step 2. Solve team y maximization problem:

ŷi = arg max
yi∈Y (x̂i)

c(x̂i, yi)

Step 3. Update Pi+1 = Pi ∪ {ŷi}, Ii+1 = Ii ∪ {i+ 1}, Replace i = i+ 1.

Step 4. Evaluate terminal condition: ti = ‖x̂i − x̂i−1‖
Step 5. goto Step 1.

else

x̂ = x̂i

end

Algorithm 3: Outer algorithm

Lemma 6. Suppose that the Algorithm 1 has constructed an infinite sequence{
x̂i
}∞
i=1

, in solving (3.5). If
{
x̂i
}∞
i=1
→ x̂, then φPi(x̂

i)→ φ(x̂)

Proof.

φ(x̂i) ≥ φPi(x̂
i) ≥ c′(x̂i, ŷi−1) (3.45)

Note that ŷi−1 is a maximizer in i− 1th iteration in Algorithm 1. Since φ(·) is a

continuous function,

φ(x̂i)→ φ(x̂) (3.46)

Since c′(·) is a continuous function,

|c′(x̂i, ŷi−1)− c′(x̂i−1, ŷi−1)| → 0 as i→∞. (3.47)

Because c′(x̂i−1, ŷi−1) = φ(x̂i−1),

c′(x̂i, ŷi−1)→ φ(x̂i−1)→ φ(x̂) as i→∞. (3.48)
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Therefore,

φPi(x̂
i)→ φ(x̂) (3.49)

Theorem 3. Suppose Algorithm 1 constructed
{
x̂i
}∞
i=1

. If x̂ is an accumulation

point, then x̂ is a minimizer of (3.5).

Proof. From Lemma.5,

φPi(x̂
i)→ φ(x̂) (3.50)

as
{
x̂i
}∞
i=1
→ x̂. Let v̂ = minx∈Rn×N φ(x). Now, suppose x̂ is not a minimizer of

φ(x). Then we see that there exists i′ ∈ [1,∞] such that φPi′ (x) > φ(x) for some

x. This contradict φPi′ (x) ≤ φ(x). Therefore, x̂ is a minimizer of φ(x). Proof is

illustrated in Fig.3.5.

φ(x)

φPi
(x)

x
x̂i

φPi
(x̂i)

v̂

x̂x̂

v̂

Figure 3.5: Illustration of proof: x̂ is an unique minimizer.

3.4 Examples

Consider X player and Y player with the following dynamics.

ẋ(t) = u(t),

ẏ(t) = v(t),
(3.51)

where x and y are position of the player X and Y, u and v are their controls,

respectively. Discretized dynamics are xk+1 = xk + ∆uk and yk+1 = yk + ∆vk.
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Let horizon length be N and consider the following X player problem at certain

sampling time of MPC.

min
U∈RN

max
V ∈Y (xk)
k∈N

yk {2xk − yk}

s.t. xk ≤ 1,

(3.52)

where N = {1, 2, · · · , N}. Let the set of the sequence of the feasible control of

Y player be Y (xk) := {V = {v1, v2, · · · , vN} | xk ≤ yk+1,∀k ∈ N}. Sequence of

controls for X players is U = {u1, u2 · · · , uN}.
We observe that the best sequence of control for Y player is the one that matches

the position of X player, i.e. yk → xk. Noticing this, X player’s best controls are

the one that yields xk → 0.

Fig. 3.6 shows the trajectories for the X and Y players.

0 2 4 6 8 10 12 14 16 18 20
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X player

Y player

Figure 3.6: Trajectories of X and Y player.

3.5 Comparison to Polak-He method

In this subchapter, we compare our Phase I-Phase II algorithm to the state-of-the-

art methodology called PH(Polak-He) algorithm [20]. PH algorithm is developed

for the robustness by sacrificing the accuracy and the computational speed. This

is the primary reason for developing our own Phase I-Phase II method as described

in this chapter.

PH algorithm starts by constructing the following max functions, F (z, x, that
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the algorithm wishes to minimize.

F (z, x) := max
{
f0(x)− f0(z)− γΨ(z)+,Ψ(x)−Ψ(z)+

}
, (3.53)

where z is a current state and x is a next state. When current state is in a feasible

region, F (z, x) becomes

F (z, x) = max
{
f0(x)− f0(z),Ψ(x)

}
. (3.54)

The following situation is possible. Suppose that the initial steepest descent di-

rection of F (z, x) is more toward the Ψ(x) than f0(x). Then initial searching

direction is not desirable in a sense of fast descent of f0(x).

Ψ(x) < 0

x̂z

Figure 3.7: Contours for the f 0(x) and violation function Ψ(x) when
Ψ(z) ≤ 0 : Solid curves and dotted curves are equal cost contours for the
constraint violation function Ψ(x) and the cost function f 0(x), respectively.

Fig.3.7 illustrates the situation. Shaded area is the feasible region. Solid curves

and dotted curves are equal cost contours for the constraint violation function

Ψ(x) and the cost function f0(x), respectively. Red line decreases the cost more

than the blue line. Below example describes the sequence of finding the solution

of PH algorithm.

The Fig.3.8 shows the first two steps of minimizing F (z, x) when z = x0. It

minimizes F (x0, x) = max
{
f0(x)− f0(x0),Ψ(x)

}
. Fig.3.8 (a) is the plot of the
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x∗ x0

(a) Cost and constraint functions, initial state

x∗ x0

(b) Shifted cost function

Figure 3.8: First two steps of min max {f 0(x)− f 0(x0),Ψ(x)}

cost function, f0(x) and the max constraint function Ψ(x). We observe that the

solution x∗ is on the boundary of the Ψ(x). Fig.3.8 (b) shows the plots of f0(x) −
f0(x0) and Ψ(x).

The Fig.3.9 (a) shows the final step of the PH method for finding next solution

point x1. Since it minimizes the max function F (x0, x), it finds the next point
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x∗ x0x1

(a) max function and its minimizer

x∗ x0

(b) Alternative approach

Figure 3.9: Final step of min max {f 0(x)− f 0(x0),Ψ(x)} and alternative
method

x1 that is not directly towards x∗. However, it is possible to steer the next step

directly toward x∗ as shown in The Fig.3.9 (b) using the our method that directly

minimizes f0(x), s.t. Ψ(x1) ≤ 0.

Now we present three examples of comparison between the proposed method
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noted as FPH(Fast PH) method and PH method. All parameters in PH method

are as in [27].

Example 1:

The cost function and the constraint function are both convex functions as given

below.

f0(x) = 2x2 − 1

f1(x) = 0.5(x− 5)2 − 3
(3.55)

V
a
lu
e

Position

Figure 3.10: Example 1: Cost function and constraints

We observe that Ψ(x) = 0.5(x − 5)2 − 3 and the feasible region is [2.55, 7.45]].

The Solution is on the boundary of the feasible region. We present the three cases

with different initial values in a feasible region x0 = 7, 5, and 3.
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(a) x0 = 7

2 4 6 8 10 12 14 16 18 20
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Iteration

C
o

s
t

 

 

PH

FPH

(b) x0 = 5
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(c) x0 = 3

Figure 3.11: Example 1: Feasible starting points x0 = 7, 5, and 3.

As we see from Fig. 3.11 (a) to (c), the proposed method result in faster con-

vergence to the solution. Throughout the experiment, we observe that alternative

method notated as FPH (Fast PH) outperforms PH method.

In next experiment, initial values are not in feasible region x0 = 8, 9, and 10.

We observe from Fig. 3.12 that FPH outperforms PH in case of (a) and (b).

However, as the initial value gets farther away from the feasible region, x0 = 10,

FPH method cannot handle the feasibility. PH method still able to bring the state

to the feasible region as in (c).
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(b) x0 = 9
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(c) x0 = 10

Figure 3.12: Example 1: Infeasible starting points x0 = 8, 9, and 10.

Example 2:

Second example to show the efficiency of the proposed method over the PH al-

gorithm is following convex cost function with upper and lower bounded hessian

f0(x) and non differentiable max constraint function as follows.

f0(x) = 10(x− 0.5)2 − 20

f1(x) = −15e−x + 2

f2(x) = −15ex + 2

(3.56)

Max constraint function Ψ(x) = max[−15e−x + 2, 15ex + 2] and the feasible

region is [−2.0149, 2.0149]. The shape of the cost and the max constraint function

is presented in Fig. 3.13.
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Figure 3.13: Example 2: Shape of the cost function f 0(x) and the max
constraint function Ψ(x)

Fig. 3.14 shows examples with different feasible initial values x0 = 2, 1.5 and 1.

Similar to the example 1, we observe that the FPH outperforms PH.
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(b) x0 = 1.5
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(c) x0 = 1

Figure 3.14: Example 2: Feasible starting points x0 = 2, 1.5, and 1.

Next, Fig. 3.15 shows the case when the initial values are not in feasible region
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x0 = 3, 5, 6, and 7.

1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Iteration

C
o
s
t

 

 

PH

FPH

(a) x0 = 3
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(d) x0 = 7

Figure 3.15: Example 2: Infeasible starting points x0 = 3, 5, 6, and 7.

We observe the similar result as in Example 1. FPH result in faster convergence

but less robustness with respect to the feasibility.

Example 3:

In this example we present convergence rate of the harbor defense problem that

will be mainly discussed in the next chapter. In Fig. 3.16, both the inner problem

convergence and the outer problem convergence are presented. Overall solution is

obtained in the most iterated outer problem.

Fig.3.17 presents the number of iterations required to obtain the solution of the

harbor defense problem. Experiments are performed for 50 consecutive sample

times. The terminate condition for the iteration is that the difference of the new

cost function and the current cost function is < 0.1%. Three of such experiments

are performed and the average data is presented. The average number of required

iterations for PH=6.54 and FPH=2.88.
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Figure 3.16: Example 3: Convergence of the outer iterations of the harbor
defense problem.
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Figure 3.17: Example 3: Comparison of the number of iterations of the
outer problem.
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CHAPTER 4

THE HARBOR DEFENSE PROBLEM

4.1 Introduction

In recent years, small unmanned vehicles have become inexpensive and deadly

weapons. It is easy to imagine a scenario where a small unmanned explosives-

packed submarine is launched by terrorists from a freighter, at a safe distance

from the entrance to a harbor, with the mission of destroying a large cruise ship

carrying many thousands of passengers. The effect could be as devastating as the

9/11, 2001 attack on the World Trade Center in New York.

The thwarting of such an attack can be viewed as a pursuit-evasion game, but

not one with a set of pre-specified mathematical rules, since it is not a gentlemen’s

game. For the purpose of this work, we assume that the floor of the harbor is

seeded with sensors that enable the defending team to determine continuously

the position of the intruder, that the intruder can be destroyed with very high

probability if it comes within a distance δ of a defending vehicle, which can also be

an unmanned submarine, or unmanned hovercraft, or drone. Within this scenario,

the intruder aims to achieve its goal by outmaneuvering the defender. Just to be

safe, we assume that the intruder can determine the location of the defender.

Clearly, if we rename the defender “pursuer” and the intruder “evader”, we see

that this is a modern day version of the pursuit-evasion games that have been stud-

ied extensively since the pioneering work of Isaacs [48]. See [49] for a presentation

of the theory of those games. In a classical pursuit-evasion game, a defender tries

to capture an intruder while the intruder tries to reach a target while avoiding

being captured. For example, consider a game, in a two dimensional plane, in

which the intruder wins if he manages to reach a target set T while maintaining a

distance larger than δ from the defender; otherwise, the defender wins.

There are two important features in which our study of the harbor defense

problem differs from that of a classical pursuit-evasion game. The first is that

we assume that the trajectories of the defender and intruder are constrained to

remain in a rectangular region, and that there are hard bounds on the strategies
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(accelerations) that they can employ. Neither are a part of a classical pursuit-

evasion game. The second is in the type of result that one is trying to obtain.

The questions that we are asking now are only approachable because of the enor-

mous progress made in digital computers, in optimization algorithms, and dynamic

system control methods since the middle 1960’s.

The classical study of a pursuit-evasion game consists of examining the set E of

initial states from which the intruder can win and of calculating the boundary of

that set, called the barrier. The barrier is characterized by differential equations

that express the fact that the intruder cannot move from outside of E into E if the

defender acts adequately. For some games, this method enables one to determine

E . One can then refine the analysis by considering an additive cost functional on

the intruder trajectory, such as the time to reach the target set, and by assigning

an amount to the intruder that depends on the point where he hits the target set

T . This refinement regularizes the game by making the cost functional smooth.

Starting inside E , the intruder tries to minimize the cost and the defender tries to

maximize it. Under suitable assumptions on the dynamics, the resulting upper and

lower value of the cost satisfy PDEs know as Isaacs equations. For some games,

these equations can be solved, at least numerically (see [50]).

The aim of this chapter is to construct a model predictive feedback control law

(see [1]) for the defender that is designed to prevent the intruder reaching the high

value targets in the harbor. A model predictive control law is a type of nonlinear

sample-data feedback control law in which the control to be applied at each iter-

ation is determined by the solution of a finite or infinite horizon optimal control

problem. Since, ideally, the required solution of the optimal control problem needs

to be computed in less than 1/10 of the sample time, it is obvious that computing

time is a very serious issue in the design of practical model predictive control laws.

Since we are dealing with a pursuit-evasion game, the optimal control problem

that the defender needs to solve at each sample time turns out to be a generalized

max-min problem that does not have an intruder min-max counter part. This type

of generalized max-min problem can only be solved using the outer approximation

algorithm [20] in conjunction with exact penalties [51]. Since each iteration of the

outer approximations algorithm involves the solution of an optimal control prob-

lem, and one might need at least 10 iterations to get a reasonable approximation

to a solution of the max-min problem, it is clear that computing time is critical in

determining the real world implementability of a receding horizon control law.

In our 2011 paper [52] we presented our first results dealing with harbor defense.

There we concentrated on getting theoretical bounds on the defensibility of a

harbor using a single defender modeled by simplified unicycle dynamics, as well as
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making an attempt at constructing a model predictive control law for the defender,

based on a max-min optimal control model. In the course of the research for this

paper, we discovered that the commonly used nonlinear form of unicycle dynamics

leads to severe ill-conditioning of the resulting max-min problem, which affected

adversely even such reputably ill-conditioning resistant algorithms as SNOPT [53],

resulting in unacceptably long computing times as well as occasional failures to

compute a result at all. The ill-conditioning may have been aggravated by the use

of a nested square root formula [54] for smoothing a min function that is part of

the max-min problem formulation.

In the next section, we show that by augmenting the state and control spaces,

the unicycle dynamics can be converted to linear dynamics, albeit at the expense

of the addition of a large number of convex inequalities. We have also abandoned

the GAMS formula [54] for smoothing the min function in the max-min problem

and replaced it with a convex hull representation, which also added more design

variables, inequalities, and an equality constraint. Nevertheless, the experimental

results presented in this paper show that this transformation leads to well condi-

tioned max-min optimal control problems, with a reduction of computing times

by a factor of 30. In fact, our computing times are now sufficiently short for using

the algorithm presented in this work for controlling water craft moving at speeds

in excess of 20MPH in a harbor channel.

One is rather limited by the physical goals of the pursuit-evasion game to using

either a deterministic cost function or a probabilistic one. In this work, we use

a deterministic one. In either case, the mechanics of the outer approximations

algorithm rule out the use of free time optimal control problems.

4.2 Dynamic Models and Model Predictive Control

We consider a harbor that can be reached via a rectangular channel of width W .

An intruder tries to reach the harbor and a defender tries to prevent him from

doing so, as illustrated in Fig. 4.1.
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Figure 4.1: The Harbor, Access Channel, Intruder and Defender

4.2.1 Model for the Vehicle Dynamics

For vehicles moving in a plane, as in our case, it is common to assume that their

dynamics have are of the three state “unicycle” form (see [55,56]):



ẋ1(t)

ẋ2(t)

θ̇(t)


 =



σ cos θ(t)

σ sin θ(t)

u(t)


, (4.1)

where x1(t), x2(t) are the physical coordinates of the vehicle, σ is the constant

speed at which it is moving, and u(t) is a control which governs the rate at which

the vehicle can change its travel direction. Obviously, at some point, one must

consider bounds on the control.

The nice thing about the form of the dynamics in (4.1) is that they use the

smallest number of state variables possible and capture simply the fact that the

vehicle moves at constant velocity. Unfortunately, they are also nonlinear, and in

our earlier numerical experiments have caused severe ill-conditioning in the optimal

control problems that one needs to solve within a moving horizon control scheme,

resulting in unacceptably long computing times. We therefore propose to replace

them with the following four state, two input equivalent linear dynamic model:

ż(t) = Āz(t) + B̄u(t), (4.2)

where z(t) = (x1(t), x2(t), v1(t), v2(t))T , with x1(t), x2(t) the vehicle coordinates

in the plane, v1(t), v2(t) the components of the vehicle velocity in the coordinate
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directions, and u(t) = (u1(t), u2(t))T the control. The matrices Ā, B̄ have the form

Ā =




0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0




B̄ =




0 0

0 0

1 0

0 1




(4.3)

Note that the dynamics in (4.2) do not ensure that the vehicle moves at a constant

speed σ. Hence we must augment (4.2) with the inequality

‖v(t)‖ ≤ σ, ∀t, (4.4a)

where v(t) = (v1(t), v2(t))T . The reason for using the inequality (4.4) rather than

the equality ‖v(t)‖ = σ, ∀t is technical. The equality is incompatible with the

Polak-He Phase I - Phase II algorithm (see [20]) that we use for solving the discrete-

time optimal control problems in the model predictive control scheme. However,

it so happens that the algorithm keeps the inequality tight at a solution, so the

constant speed requirement is satisfied.

Finally, if in the original formulation of the dynamics, there was a constraint

|u(t)| ≤ α, then in the new dynamics this constraint becomes

‖u(t)‖2 ≤ α2, ∀t. (4.4b)

Next, let ∆ > 0 be the sampling time associated with the model predictive

control scheme. Then, because the dynamics are linear and time invariant, we

obtain the following discrete-time dynamics that are to be used in the model

predictive control scheme, under the assumption that for t ∈ (k∆, (k+1)∆, u(t)] =

u(k∆), k = 1, 2, 3, . . .:

z((k + 1)∆) = Az(k∆) +Bu(k∆), k = 1, 2, 3, . . . , (4.5)

where

A = exp(∆Ā), B =

∫ ∆

0
exp((∆− t)Ā)dt, (4.6)

The inequality (4.4a) now leads to the constraint

‖v(k∆)‖2 ≤ σ2, ∀k (4.7)

Note that (4.7) is a system of convex inequality constraints and that this discretiza-

tion is exact. Had we used the original form (4.1) of the dynamics and used Euler
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discretization to obtain the discrete-time system needed for model predictive con-

trol, the resulting difference equation would be time varying and not necessarily a

good approximation to the actual behavior of the dynamical system.

We must admit that the development of the substitute linear model, which pays

the price of a large number of convex inequalities for linearity and time invariance,

was based on a hunch rather than analysis. The fact that this hunch was sound

is born out by the fact that computing times for the solution of the associated

optimal control problems have dropped from hours to seconds.

4.2.2 Model Predictive Control Law Formulation

The aim of the intruder is to destroy a high value target (e.g., a cruise ship with

5000 people on board) moored in a harbor at the end of a rectangular channel. If

we assume that, almost certainly, the defender can destroy the intruder when the

intruder comes within a range of less than δ units of the defender, it is clear that

whatever strategy the intruder adopts for achieving its goal, to be successful, it

must maintain a distance of at least δ from the defender during its attack.

We assume that both the defender and intruder motions are governed by the

unicycle dynamics (4.5), with appropriate different constraints determining their

speeds and accelerations.

Given the uncertainty of the intruder’s strategy and possible inaccuracies of

determination of its dynamics and state, the defense strategy has to be based

on a feedback law. As we have already stated, a sample-data model predictive

feedback law seems to be about the only choice available at this time. Hence,

the only remaining issue is what kind of optimization problem should be solved to

determine the defender control inputs. In view of the discussion above, we propose

to adopt a worst case approach and use the following max-min problem for this

purpose.

We begin by defining the horizon to be N∆, where N > 0 is an integer and

∆ is the sampling time for the discrete-time dynamics (4.5). Next, we assume

that the initial states of the defender and intruder zd(0), zi(0) are obtained by

measurement. Note that because we are dealing with time invariant systems, the

initial time can always be taken to be 0, rather than actual time, for the purposes

of setting up the model predictive optimization problem.
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For the defender, we define the control constraint set by

Ud = {ud =(ud(0), . . . , ud(N∆)) ∈ R2 × RN

s.t. ‖ud(k∆)‖2 ≤ α2
d,

‖vd(k∆,ud)‖2 ≤ σ2
d,

0 ≤ x1
d(k∆,ud),

0 ≤ x2
d(k∆,ud) ≤W, k = 0, . . . , N − 1}

(4.8)

where σd > 0 is the speed limit for the defender and W is the width of the channel.

For the intruder, the control constraint depends on the choice of a defender input

ud via the resulting defender trajectory xd = (xd(0,ud), xd(∆,ud), . . . , xd(N∆,ud),

determined by (4.5). Hence,

Ui(ud) = {ui =(ui(0), . . . , ui(N∆)) ∈ R2 × RN

s.t. ‖ui(k∆)‖2 ≤ α2
i ,

‖vi(k∆,ui)‖2 ≤ σ2
i ,

‖xi(k∆,ui)− xd(k∆,ud)‖2 ≥ δ2,

0 ≤ x1
i (k∆,ui),

0 ≤ x2
i (k∆,ui) ≤W, k = 0, . . . , N − 1},

(4.9)

where σi is the speed limit for the intruder.

Since the intruder may succeed in destroying its target in fewer than N sample

intervals, we have to take into account that it may then choose to try to escape.

Hence we propose the following max-min optimization problem for the model pre-

dictive control law:

max
ud∈Ud

min
ui∈Ui(ud),k∈N

{x1
i (k∆,ui)}, (4.10)

where N = {1, 2, . . . , N}.
Note that (4.10) is a generalized max-min problem, because the constraint set

of the intruder depends on the strategy ud of the defender. Because of this, one

cannot formulate a corresponding min-max problem and any consideration of a

duality gap is meaningless.

To avoid abusing notation, we will denote the actual states of the defender and

intruder by z̄d(k∆) and z̄i(k∆), k = 0, 1, . . . to distinguish them from the states

zd(k∆), zi(k∆), k = 0, 1, . . . , N , which are used in solving problem (4.10). We are

finally ready to state the receding horizon control law as an algorithm:
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Defender model predictive Control Algorithm

Data: Sampling Time = ∆, horizon = N∆, initial defender and intruder states

z̄d(0), z̄i(0), parameters αd, αi, σd, σi, and matrices A,B.

Step 1: Set k = 0.

Step 2: Set z(0) = z̄d(k∆) and zi(0) = z̄i(k∆).

Step 3: Solve (4.10) for an optimal defender control u∗d.

Step 4: Apply the control u∗d(0) to the defender for ∆ units of time.

Step 5: Measure the states z̄d((k + 1)∆) and z̄i((k + 1)∆).

Step 6: Replace k by k + 1 and go to Step 2.

4.3 Method of Outer Approximations

It remains to discuss the details of solution of the generalized, semi-infinite max-

min problem (4.10). We begin by observing that there appears to be only one

practical method, the Method of Outer Approximations see [20], for solving semi-

infinite max-min problems of the form

max
ξ∈Ξ

min
η∈H

φ(ξ, η), (4.11)

where Ξ ⊂ Rn and H ⊂ Rm are dense sets and the function φ(ξ, η) is continu-

ously differentiable. For a detailed discussion of the Method of Outer Approxima-

tions and proof of its convergence, see [20]. There seem to be no known methods

for solving generalized max-min problems directly. Hence we resort to a technique

first proposed in [51], which consists of replacing the constraint set Ui(ud) by a

constraint Ui that does not depend on a defender input, and dealing with the

contribution of the defender input using exact penalty functions. This transforms

problem (4.10) into the problem

max
ud∈Ud

min
ui∈Ui,k∈N

{x1
i (k∆,ui) + πmax

k∈N
(δ2 − ‖xi(k∆,ui)− xd(k∆,ud)‖2)+} (4.12)
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where π > 0 is an exact penalty parameter, a+ := max{0, a}, and

Ui = {ui =(ui(0), . . . , ui(N∆)) ∈ RN × RN

s.t. ‖ui(k∆)‖2 ≤ α2
i ,

‖vi(k∆,ui)‖2 ≤ σ2
i ,

0 ≤ x1
i (k∆,ui),

0 ≤ x2
i (k∆,ui) ≤W, k = 0, . . . , N − 1}.

(4.13)

We observe that (4.12) is a standard max-min problem, except for the fact that

the term mink∈N x1
i (k∆,ui) is not smooth. To deal with this issue we make use

of the fact that

min
k∈N

x1
i (k∆,ui) = min

µ∈Σ

∑

µ∈Σ

µkx1
i (k∆,ui), (4.14)

where Σ is the unit simplex in RN , i.e.,

Σ := {µ ∈ RN |
N∑

k=1

µk = 1, µk ≥ 0, ∀k ∈ N}. (4.15)

Thus, by introducing an additional design variable µ and a set of linear in-

equalities and one linear equation, we are finally able to transform (4.10) into the

tractable form

max
ud∈Ud

min
ui∈Ui, µ∈Σ

{
N∑

k=1

µkx1
i (k∆,ui)

+πmax
k∈N

(δ2 − ‖xi(k∆,ui)− xd(k∆,ud)‖2)+}
(4.16)

At this point, we can define a (dual) min-max problem corresponding to (4.16).

However, because the cost function is not convex-concave, there is most likely a

duality gap. The significance of this fact is hard to interpret.

In terms of the abstract semi-infinite max-min problem form (4.11), the Method

of Outer Approximations consists of the successive minimization of the finite max

functions ψHi : Rn → R, defined by

ψHi(ξ) = min
η∈Hi

φ(ξ, η), (4.17)

with the sets Hi ⊂ H of finite cardinality, which result in progressively better and

better local approximations to the function ψH(·) near an optimizer of ψHi(·). The
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cardinality of the sets Hi ⊂ H grows monotonically, with Hi ⊂ Hi+1. Finite cardi-

nality max-min problems can be solved directly by means of algorithms described

in [20], or, by the addition of a slack variable, transcribed into standard nonlinear

programming problems that can be solved by an array of algorithms.

To shorten expressions, we define

Ĥ(ξ) := arg min
η∈H

φ(ξ, η). (4.18)

Method of Outer Approximations (Conceptual Form)

Data. ξ0 ∈ Rn, H∗ = {η01, . . . , η0k} ⊂ H.

Step 0. Set k = 0, compute a η0 ∈ Ĥ(ξ0), set H0 = {η0} ∪H∗.

Step 1. Compute

ξk+1 ∈ arg max
ξ∈Ξ

ψHk(ξ) (4.19)

Step 2. Compute a ηk+1 ∈ Ĥ(ξk+1) , and set

Hk+1 = Hk ∪ {ηk+1}. (4.20)

Step 3. Replace i by k + 1, and go to Step 1.

Note that the algorithm above requires that the minimizer ηi+1, in Step 2, be

computed exactly, which is usually impossible in practice. Because of that we refer

to this algorithm as a conceptual algorithm. In practice, we use sequentially better

and better approximations to such minimizers (see [20]).

Hence, in terms of our pursuit-evasion problem, the sequence of computations

at k − th iteration of the Method of Outer Approximations are as follows: the

defender solves the finite, discrete-time max-min optimal control problem

max
ud∈Ud

min
ui∈Ui,k,µ∈Σ

{
N∑

k=1

µkx1
i (k∆,ui)

+ πmax
k∈N

δ2 − ‖xi(k∆,ui)− xd(k∆,ud)‖2},
(4.21)

where Ui,k is the set of intruder controls accumulated up to this point. We denote

the approximate solution to this problem by ud,k+1. Note the omission of (. . .)+

in (4.21). When there is a ud,k+1 such that the intruder inequality constraints

are violated, the operation )+ is redundant. When the term (. . .)+ = 0 for all

admissible ud, then any ud,k+1 can be used, since it does not change the value of

the value of the cost, i.e., it is a stationary control.
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Then the intruder solves the discrete-time optimal control problem

min
ui∈Ui,µ∈Σ

{
N∑

k=1

µkx1
i (k∆,ui)

+ πmax
k∈N

(δ2 − ‖xi(k∆,ui)− xd(k∆,ud,k+1)‖2)+},
(4.22)

to obtain a solution ui,k+1. Then this solution is added to the set Ui,k to form the

new set Ui,k+1.

The property of exact penalty functions ensures that provided π ≥ π∗, a specific

minimum value, the defender solution does not depend on π. However, if for the

given initial positions of the defender and intruder, there is no admissible defender

control that makes the penalty term positive, then the cost does not depend on the

defender control, i.e., we are at a stationary point. To avoid the need for inventing

a good “tunneling” heuristic that would get us out of this situation, we use instead

an interior penalty function when solving the defender problem. Our experimental

results show that this is a better approach than the “tunneling” heuristics of

minimizing the maximum distance to the accumulated intruder trajectories.

Next, as far as the intruder is concerned, the use of exact penalty functions

is just one way of dealing with some of its constraints. The intruder problem is

actually more easily solved by leaving the constraints in their original form. So,

again, we do not need a specific value for the penalty π. It is also clear on an

intuitive level that the exact penalty function can be replaced with an interior

penalty function with little deterioration in the quality of solution.

For all of our computations we have used the Polak-He Minimax Algorithm

2.6.1 in [20] p. 260. This is a very robust first-order algorithm which quickly

obtains a reasonable approximation to a solution. Our choice of algorithm is defi-

nitely counter intuitive, since there are many potentially superlinearly convergent

algorithms that one could have used. However, in our experience, we had frequent

failures on our problems with the excellent algorithms in the TOMLAB library [53]

as well as will some other open source algorithms.

4.4 Experimental Results

We will now present several of the experiments that we have conducted. The

static figures below do not easily convey the evolution in time of the defender and

intruder trajectories. We have therefore deposited animations of these trajectories

in http://publish.illinois.edu/lee822/. In the labels of these files, w = channel
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width, s = σr = σd/σi (defender/intruder speed ratio), and x = initial “horizontal”

separation distance.

4.4.1 Head-to-Head Starting Position Experiment

The goal of this experiment is to obtain the maximum channel width that a single

defender can defend. We assume that initially the defender is located on the

center line of the channel, as illustrated in Fig. 4.2, where X is the initial distance

between intruder and defender. Again, we denote the speed ratio between defender

and intruder as σr = σd
σi

.

Figure 4.2: Experiment setup: Head-to-Head Initial Positions

The outcome of each experiment is either the defender wards off the intruder

(defender wins), or the the intruder reaches to the harbor (intruder wins). In Table

I and the subsequent tables, ’D’ indicates defender wins, ’I’ indicates intruder wins.

An entry of the form wαsβxγ means that the channel width W = α, σr = β, and

X = γ. For example, ’w9s1x10’ indicates the experiment with channel width 9,

relative speed limit 1 (equal speeds), and initial separation distance 10. In all of

our experiments, the initial distance from from the defender to the harbor is six

units.

To obtain the results in Table I, by varying the initial “vertical” (x2
i ) position of

the intruder. The worst case for the defender was when the intruder was located

at the channel boundary. The results in Table I show that a large X favors the

defender. Not surprisingly, for a fixed X, the defender can cover a larger area as its

speed ratio is increased. Also, even when speed of the defender is larger than that

of the intruder, the defender may fail. However, when the speed of the defender

is about 40% larger than that of the intruder, and the initial distance from the
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Table 4.1: Head-to-Head Initial Positions Experiment Results

X=10
σr W Winner Maximum W Reference

1 ≤9 D w9s1x10

1 10 I 9 w10s1x10

1.2 ≤16 D w16s12x10

1.2 17 I 16 w17s12x10

1.4 D w27s14x10

X=13
σr W Winner Maximum W Reference

1 ≤14 D w14s1x13

1 15 I 14 w15s1x13

1.2 ≤23 D w23s12x13

1.2 24 I 23 w24s12x13

1.4 D w26s14x13

X=16
σr W Winner Maximum W Reference

1 ≤25 D w25s1x16

1 26 I 25 w26s1x16

1.2 ≤27 D w27s12x16

1.2 28 I 27 w28s12x16

1.4 D w29s14x16

defender to the harbor is 6 units, the defender succeeds regardless of the channel

width, for any for any X > 0.

Figure 4.3: Defender Succeeds (w9s1x10).

Fig. 4.3 shows a typical result when the defender wins in a head-to-head position

experiment. The solid arrow curve indicates the direction of the defender’s path

and the dotted arrow curve indicates the direction of the intruder’s path. The

defender starts heading towards the intruder (away from the harbor) and the

intruder starts heading directly towards to the harbor. After an initial attempt

at direct penetration, the intruder turns towards the channel wall to improve its
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chances, but is nevertheless thwarted by the defender and it flees.

Figure 4.4: Intruder Succeeds (w10s1x10).

When the channel is a little wider (W=10), the intruder manages to penetrate,

as we see in Fig. 4.4.

(a) w27s14x10

(b) w29s14x16

Figure 4.5: Defender Succeeds.

Fig. 4.5 shows a case when the speed of the defender is 40% larger than in-

truder’s, with the defender starting 6 units from the harbor.

4.4.2 Cross Position Experiment

In this experiment, the intruder approaches the harbor by following the channel

wall. The defender is in the middle of channel as illustrated in Fig. 4.6.

Comparing Table 7.1 with Table 4.2, we see that it is advantageous for the

defender to have a narrow channel and that the most advantageous position for

55



Figure 4.6: Experiment Setup: Cross Position

Table 4.2: Cross Position Experiment Results

X=13
σr W Winner Maximum W Reference

0.4 ≤7 D w7s04x13

0.4 8 I 7 w8s04x13

0.6 ≤9 D w9s06x13

0.6 10 I 9 w10s06x13

0.8 ≤10 D w10s08x13

0.8 11 I 10 w11s08x13

X=16
σr W Winner Maximum W Reference

0.8 ≤14 D w15s08x16

0.8 15 I 14 w15s08x16

1 ≤15 D w15s1x16

1 16 I 15 w15s1x16

1.4 ≤ 18 D w18s14x16

1.4 19 I 18 w19s14x13

the intruder to enter the channel is along a wall. Our experiments can be used

in deciding whether a single defender is sufficient to deter a single intruder in a

particular channel.

Fig. 4.7 illustrates the case when the channel is narrow (W=7). The defender

successfully wards off the intruder who is approaching the harbor by following the

channel wall, forcing the intruder to retreat to avoid being destroyed.

However, as we see in Fig. 4.8, when the channel is little wider (W=10), the

defender fails to stop the intruder, which moves straight to the harbor.
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Figure 4.7: Defender Succeeds (w7s04x13).

Figure 4.8: Intruder Succeeds (w8s04x13).

4.4.3 Additional Results

In this subsection, some additional scenarios are presented.

(a) w16s12x10 (b) w17s12x10 (c) w25s1x16

(d) w26s1x16

Figure 4.9: Various Scenarios of Head-to-head Experiment.

Throughout the experiment, one can determine the upper bound of channel with

known defender and intruder’s initial position and maximum speed limit.

4.4.4 Two Uncoordinated Defenders

In principle, it would be best to use two defenders whose actions are coordinated.

This would require the use of offshore command center. Here we explore the

effectiveness of two uncoordinated defenders, each governed by the same model

predictive control law, in stopping an intruder when the channel is too wide for a

single defender to defend successfully.
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(a) w10s08x13 (b) w11s08x13 (c) w18s14x16

(d) w19s14x16

Figure 4.10: Various Scenarios of Cross Position Experiment.

Figure 4.11: Two Uncoordinated Defenders Succeed (w30s1x13).

In Fig. 7.5, as the intruder approaches, the closer defender(D2) tries to block

the intruder. However, since the channel is wide (W=30), D2 cannot defend

successfully, as seen from from Fig. 4.4. However, with the help of defender

(D1), the two defenders successfully deter the intruder.

(a) w28s1x13 (b) w29s1x13 (c) w30s1x16

(d) w31s1x16

Figure 4.12: Various Scenarios of Two Uncoordinated Defenders
Experiment.

Fig. 4.12 shows various scenarios of two uncoordinated defenders experiment
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result. Coverage of the two defenders is twice larger than the single defender’s.

Results are organized in Table 4.3.

Table 4.3: Two uncoordinated Defender Experiment Results

X=13
σr W Winner Maximum W Reference

1 ≤28 D w28s1x13

1 29 I 28 w29s1x13

X=16
σr W Winner Maximum W Reference

1 ≤30 D w30s1x16

1 31 I 30 w31s1x16

4.4.5 Computing time

The impact on the computing time resulting from the reformulation of the model

dynamics and smoothing techniques for dealing with the min function in (4.10),

is shown in Table 4.4. It compares computing times, for ∆ = 0.1, for solving the

max-min optimal control problem (4.10) using “classical” unicycle dynamics and

smoothing of the min function using the GAMS method [54], as in [52], with the

approach taken in this work. In this table, ‘OAA Iters’ denotes the number of outer

approximation iterations used to compute the control by the outer approximations

algorithm.

Table 4.4: Computing Time Comparison

2011 2013

Dynamics model Bicycle: Nonlinear Bicycle: Linear

model predictive 16∆ 16∆
OAA Iters 10 10

Solver SNOPT PH

Comp. Time/OAA Iter 33.8 sec 1.0 sec
Comp. Time/sample 338 sec 10 sec

In this table, PH is the Polak-He min-max Algorithm 2.6.1 in [20]. In [52],

SNOPT is a fast algorithm in the TOMLAB [53] optimization library. The various

trajectories in the figures in this paper, are 120 samples long, and took 20 minutes
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to generate. The trajectories in [52] are only 32 samples long and took about 3

hours to obtain.

When implemented in C++ and refined through the use of adaptive approxi-

mations, as in [57], we can expect computing times to drop by a factor of at least

10, which means we can use a sample time ∆ of 1 second. This is compatible with

the control of a water craft moving at 20 mph in a channel.

4.5 Conclusions

We have presented model predictive control law that can be used by one or multiple

uncoordinated defenders to ward off an intruder that is trying to attack a target

in a harbor.
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CHAPTER 5

VARIATIONS OF THE HARBOR DEFENSE
PROBLEM

5.1 Introduction

In this chapter, we consider variations of the original harbor defense problem that

is presented in the previous chapter. Variations include not only the multiple

number of defenders and intruders, but also various intruder’s strategies. Partic-

ularly, improved discretized dynamic model (5.5) of the intruder and the defender

are used. New model is an exact integration of the continuous model. Detailed

discussion is presented in Appendix A.

Similar to the previous chapter, we assume that the defending vehicles are

manned or unmanned submarines, manned or unmanned hovercraft, or drones.

The purpose of this paper is to construct a feedback model predictive control

(MPC) law (see [1]) for the defenders, based on max-min optimal control prob-

lems which, we believe, capture the essence of the intruders’ goal of at least one

of them getting within striking distance of their target, as well as the intruders’

perception of how they can be destroyed by the defenders.

The idea behind MPC is quite old, going back to the 1950’s, and is based on the

following observation. Suppose that we have a dynamical system that is modeled

by a differential equation of the form

ẋ(t) = f(x(t), u(t)), x(0) = x0, t ≥ 0 (5.1)

where x(t) is the state of the system and u(t) is the control. Now suppose that

one wants to optimize its behavior by solving an optimal control problem of the

form

min
u(t)∈U,x(t)∈X

∫ ∞

0
f0(x(t), u(t))dt, (5.2)

subject to the differential equation constraint (5.1). Let û(t) be solution of this

optimal control problem and x̂(t) = x(t, û(t)), t ≥ 0 the resulting trajectory. Now

suppose that the model (5.1) is not perfect, so the actual trajectory resulting

from the control û(t), x∗(t, û(t)), is quite different from x̂(t). To remedy this
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situation, it was proposed that every ∆ time units, the actual state be measured

and the problem (5.1) re-solved, to obtain a corrected control, effectively creating

a feedback mechanism. Experiments have shown that this is an excellent idea.

For an excellent survey of MPC, see [1]. For previous attempts of using MPC in

pursuit-evasion situations, see [52,55,58].

Our situation is more complicated than the one above. We have multiple de-

fender dynamic systems and multiple intruder dynamic systems and the optimal

control problem (5.2) must be replaced by a problem that reflect this fact as well

as the fact that the defenders do not know the intruders strategies. Hence we pro-

pose a worst case approach and, since continuous time optimal control problems

require a great deal of time for their solution, we will assume that the controls are

constant during the sample times, which results in the replacement of dynamics

described by differential equations by derived dynamics described by difference

equations.

5.2 Model Predictive Control Formulation

5.2.1 Assumptions

First, it does not seem to be possible to solve the type of problem we propose

over an infinite horizon, as in (5.2). Hence we introduce a finite horizon N∆ > 0,

with N a positive integer. The sample time ∆ > 0 has to be chosen taking into

account the speed with which the craft are moving and the time it takes to solve

the MPC determining min-max optimal control problem. For example, if, as in

our case, with a 10 sample time horizon, it takes 0.2 seconds to solve the problem,

the sample time could be 0.5-1.0 seconds, which is equivalent to adjusting the

control every 0.01-0.02 miles for a torpedo travelling at 80 MPH. Since the longer

the horizon the longer the computing time, the length of the horizon is largely

determined by the computing power available for the defenders.

Second, we assume that the intruders cannot risk engaging the defenders in bat-

tle and we consider three possible scenarios. In the first, which is deterministic, the

intruders assume that they are safe as long as they avoid coming within striking

distance of the defenders [58]. In the next two scenarios, which are probabilistic as

well as more realistic, the intruders assume that the probability of their destruction

is a function of their distances from the defenders. In the first probabilistic for-

mulation, the intruders attempt to survive over the entire horizon. In the second

one, first the intruders attempt to destroy their target within the horizon time,
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and only if successful do they attempt to survive to the end of the horizon.

Third, we assume that the defenders are able to determine the dynamics of the

intruders and that the floor of the harbor is seeded with sensors that enable the

defending team to determine continuously the position, velocity, and direction of

travel of the intruder. Just to be safe, we also assume that the intruders have

access to similar information about the defenders.

Fourth, we assume that the actions of the defenders are coordinated and that

the actions of the intruders are also coordinated. Coordination of the defenders

(intruders) can be achieved either by using an offshore or mother ship computer

to solve the MPC optimal control problem and then transmitting the required

controls to each individual craft, or by each craft solving the same MPC optimal

control problem and using the appropriate resulting control.

5.2.2 Dynamics

Assuming that both the defenders and intruders are unmanned underwater vehicles

(UUVs) and that they are confined to a rectangular channel of width W at the

end of which is the harbor with the high value target, their dynamics have the

form

ẋ1(t) = v(t) cos θ(t)

ẋ2(t) = v(t) sin θ(t)

θ̇(t) = σ(t)

v̇(t) = α(t),

(5.3)

where x1 is the positional coordinate of the UUV along the channel, x2 is the po-

sitional coordinate of the UUV perpendicular to the channel, and θ is the heading,

i.e., the angle between the direction of motion of the UUV and the x1 axis in our

positional coordinate system. We assume that the channel is sufficiently shallow

that a depth coordinate is not needed. We assume that there is a steering input

σ(t) and a propulsion input α(t), which are subject to constraints of the form:

0 ≤ v(t) ≤ v̄
|α(t)| ≤ ᾱ
|σ(t)| ≤ σ̄
σ(t)v(t) ≤ kf .

(5.4)
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The constraint σ(t)v(t) ≤ kf captures the relationship between centripetal force

and velocity.

We assume that the model predictive control law uses a sample time ∆, so

that for any integer k ≥ 0 and t ∈ [k∆, (k + 1)∆) the controls are constant,

i.e., for t ∈ [k∆, (k + 1)∆), v(t) = v(k∆) and σ(t) = σ(k∆). We can integrate the

differential equation (5.2) for t ∈ [k∆, (k+1)∆), to obtain the difference equations:

x1
k+1 = x1

k + ∆vk cos θk + ∆2αk cos θk

x2
k+1 = x2

k + ∆vk sin θk∆
2αk sin θk

θk+1 = θk + ∆σk

vk+1 = vk + ∆αk,

(5.5)

where x1
k = x1(k∆), x2

k = x2(k∆), θk = θ(k∆), vk = v(k∆), σk = σ(k∆), and

αk = α(k∆). The derivation of (5.5) is presented in Appendix A.

5.2.3 Defender model predictive control law

Let z̄d,1(k∆) = (z̄d,1(k∆), . . . , z̄d,Nd(k∆)) and z̄i,1(k∆) = (z̄i,1(k∆), . . . , z̄d,iNi (k∆)),

where z̄i,1(k∆) = (x1
i,1(k∆), x2

i,1(k∆), θi,1(k∆), vi,1(k∆)), and so forth.

Defender Model Predictive Control law Algorithm

Data: Sampling Time = ∆, computing time δ < ∆, horizon = N∆, initial de-

fender and intruder states z̄d(0), z̄i(0),

Step 1: Set k = 0.

Step 2: Set z(0) = z̄d(k∆) and zi(0) = z̄i(k∆).

Step 3: Solve one of the defender min-max problems, below, for an optimal co-

ordinated defender control u∗d.

Step 4: Apply the control u∗d(0) to the defender for ∆ units of time.

Step 5: At time δ + k∆, measure the states z̄d(δ + k∆) and z̄i(δ + k∆).

Step 6: Estimate the states z̄d((1 + k)∆) and z̄i((1 + k)∆) using the differential

equation (5.3).

Step 7: Replace k by k + 1 and go to Step 2.

Note that the min-max problem in Step 4, above, can be changed at each sam-

pling time, and so can the sample time ∆. It makes sense to use a large ∆ when

the adversaries are far apart and decrease it as they get nearer to each other.
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5.3 Min-max problem formulations

The next element that we must introduce is the min-max optimal control problem,

reflecting a worst case scenario, that must be solved at each sample time within

the MPC law. We will consider three possible scenarios: (a) where the intruders

are risk averse, (b) where the intruders are willing to take risks, and (c) where the

intruders are willing to sacrifice themselves to achieve their goal.

To distinguish between the intruder and defender, we will add a subscript i, j

to indicate the j-th intruder states, controls, and constraints, a subscript d, k to

indicate k-the defender states, controls, and and constraints.

Suppose that there are Nd defenders and Ni intruders and that the horizon

length is N∆. For k = 0, . . . , N − 1, let ud,j(k∆) = (σd,j(k∆), σd,j(k∆))T and

ui,l(k∆) = (σi,l(k∆), σi,l(k∆))T , with j = 1, . . . , Nd and l = 1, . . . , Ni.

5.3.1 Risk averse intruders

Assuming that the intruders are risk averse and hence will not venture within

torpedo striking distance τ > 0 of the defenders, we propose the following max-

min optimal control problem for the receding horizon control law:

max
ud∈Ud

min
ui∈Ui(ud),k∈N

min
j∈Ni

{x1
i,j(k∆,ui)}, (5.6)

where N = {1, 2, . . . , N} is the length of the receding horizon control horizon

and Ni = {1, 2, . . . , Ni}. The constraint set Ud = Ud,1 × . . . × Ud,Nd , for the

coordinated defenders, is defined by

Ud,j = {ud,j =(ud,j(0), . . . , ud,j((N − 1)∆))

s.t. 0 ≤ vd,j(k∆) ≤ v̄d,j ,
|σd,j(k∆)| ≤ σ̄d,j ,
|αd,j(k∆)| ≤ ᾱd,j ,
σd,j(k∆)vd,j(k∆) ≤ κd,j ,
0 ≤ x1

d,j(k∆,ud,j),

0 ≤ x2
d,j(k∆,ud,j) ≤W},

(5.7)

where k = {0, . . . , N − 1}, v̄d,j > 0, j = 1, . . . , Nd, are the speed limits for the de-

fenders, σ̄d,j , j = 1, . . . , Nd, are the limits on the steering inputs for the defenders,

and W is the width of the channel.

For the intruder, the control constraint depends on the choice of a defender input

65



ud via the resulting defender trajectory xd = (xd(0,ud), xd(∆,ud), . . . , xd(N∆,ud)),

determined by (5.5). Hence,

Ui(ud) = {ui = (ui(0), . . . , ui((N − 1)∆))

s.t. 0 ≤ vi,j(k∆) ≤ v̄i,j ,
|σi,j(k∆)| ≤ σ̄i,j ,
‖xi,j(k∆,ui)− xd,l(k∆,ud,l)‖2 ≥ τ2,

0 ≤ x1
i,j(k∆,ui,j),

0 ≤ x2
i,j(k∆,ui,j) ≤W,k = 0, . . . , N − 1,

σi,j(k∆)vi,j(k∆) ≤ ki,j},

(5.8)

where j = 1, . . . , Ni, l = 1, . . . , Nd, and τ is a torpedo distance.

Note that the defenders’ actions do not affect the cost function. Defense is

achieved by interference as expressed by the constraints imposed on the intruder.

There are three issues that must be dealt with in solving problem (5.6). The

first two are obvious, the last one is subtle.

First, (5.6) is a type of generalized max-min problem [51], because the constraint

set of the intruders depend on the strategy ud of the defenders and hence cannot

be solved by standard max-min algorithms, such as outer approximations. In fact,

it is a type of bilevel problem that can be converted to a “standard” max-min

problem by adding the defender dependent constraints to the cost function using

exact penalty functions, as was done in [51]. The exact penalty functions need

not be used when evaluating the min part of the max-min problem for a given

set of defender controls, but they must be used in the maximization process. The

introduction of exact penalty functions transforms problem (5.6) into

max
ud∈Ud

min
ui∈U′d,k∈N

min
j∈Ni

{x1
i,j(k∆,ui) + πmax{

0,−‖xi,j(k∆,ui)− xd,l(k∆,ud,l)‖2 + τ2}},
(5.9)
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where π > 0 is the value of the exact penalty function and

U′i ={ui = (ui(0), . . . , ui((N − 1)∆))

s.t. 0 ≤ vi,j(k∆) ≤ v̄i,j ,
|σi,j(k∆)| ≤ σ̄i,j ,
0 ≤ x1

i,j(k∆,ui,j),

0 ≤ x2
i,j(k∆,ui,j) ≤W,k = 0, . . . , N − 1

σi,j(k∆)vi,j(k∆) ≤ ki,j}.

(5.10)

Second, the cost function

min
j∈Ni

{x1
i,j(k∆,ui)} (5.11)

is not differentiable. This can be dealt with by smoothing (see [54]), as was done

in [52], and found to cause serious ill-conditioning, or, as we do now, by making use

of the fact that the minimum over a set is equal to the minimum over its convex

hull. This requires the addition of decision variables µj,k ≥ 0, j = 1, . . . , Ni,

k = 0, . . . , N − 1 such that ∑

j∈Ni,k∈NN

µj,k = 1, (5.12)

i.e., we add Ni × N variables, with positivity constraints and one equality con-

straint, which can be eliminated explicitly. The cost function now becomes

min
j∈Ni

{
∑

i∈N,k−1∈N

µj,k−1x
1
i,j(k∆,ui)}. (5.13)

The third issue stems from the fact that when the separation between defenders

and intruders is sufficiently large, the solution of the min part does not require that

the constraints be active. Hence, at such situations, the value of the min function is

independent of the value of the defender controls, and hence is a stationary point.

At such points, solving the min-max problem (5.9) does not produce a meaningful

result from the defenders’ point of view. Hence, we can replace the problem (5.9)

with the problem

max
ud∈Ud

min
ui∈U′d),k∈N

min
j∈Ni

{x1
i,j(k∆,ui)+

π{−‖xi,j(k∆,ui)− xd,l(k∆,ud,l)‖2 + τ2}},
(5.14)

which results in the defenders always pursuing the intruders.
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5.3.2 Risk taking intruders

In this case, the defenders assume that the intruders are willing to take a chance

of coming within striking distance of a defender, on the belief that the defender

may miss him with a certain probability. For the case of a single defender and

single intruder, this results in the following min-max optimal control problem that

the defender must solve at each sample time.

min
ud∈Ud

max
ui∈U′i(ud),k∈N

φ1(xi(k∆,ui))φ2(ui,ud, N), (5.15)

where the probability of a successful strike by the intruder at time k∆ is

φ1(xi(k∆,ui)) =
exp(g1(xi(k∆,ui)))

1 + exp(g1(xi(k∆,ui)))
(5.16)

and the probability of the intruder surviving for horizon of N∆ sample times is

φ2(ui,ud, N)

= exp

{
−

N∑

k=1

λ exp(g2(ui, ud, k∆))

1 + exp(g2(ui, ud, k∆))
∆

}
(5.17)

with

g1(xi(k∆,ui)) =

− α1

(
‖P (zi(k∆, ui))− τ‖2 − s2

1

) (5.18)

g2(ui,ud, N) =

− α2

(
‖P (zi(k∆, ui)− zd(k∆, ud))‖2 − s2

2

) (5.19)

where λ, α1, α2 are parameters.

5.3.3 Suicidal intruders

This case differs from the preceding one in that no intruder places any value on

surviving after a successful attack, but, should his attack be successful will take

evasive action. Hence, for the case of a single defender and single intruder, we get

the following variant of (5.15)

min
ud∈Ud

max
ui∈U′i(ud),k∈N

φ1(xi(k∆,ui))φ2(ui,ud, k). (5.20)
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where, φ1(xi(k∆,ui)) and φ2(ui,ud, k) are defined as in (5.16) and (5.17), respec-

tively.

When the solution time of (5.20) k∗∆ < N∆ i.e., the intruder may have suc-

ceeded in destroying his target, then the defender assumes that the intruder

switches cost functions at time k∗∆ and concentrates on escape. In that case,

we get the following secondary problem for the defender

min
ud∈Ud

max
ui∈U′i(ud),k∈{k∗,...,N}

φ2(ui,ud, k). (5.21)

Again, the expressions for multiple defenders and intruders are considerably more

complicated and are omitted because of lack of space.

5.4 Simulation results

We only present results for the risk averse intruder, based on (5.9). We used a

horizon of 10 sample times and used we used the Method Of Outer approximations

(MOA) (see [20]) with the Polak-He unified method (PH) (see [20]) as a subroutine.

The approximate solution of (5.9) required 3 iterations of MOA and a total

of of 40 iterations of PH. Programmed in JAVA, the solution of (5.9) required

0.18 seconds, while programmed in in MATLAB with TOMLAB [53], it took 1.8

seconds.

Although the Polak-He unified method is only a first-order method, it computes

a good approximate solution to an inequality constrained optimization problem

very rapidly. Given that we always had very good starting points for the MOA

and the speed of the PH method, even using a laptop, we were able to compute

controls at a rate that is compatible with real time implementation in craft moving

up to 80 knots.

Since static figures do no convey the evolution in time of the defender and

intruder trajectories, we have deposited videos of our experiments in

https://sites.google.com/site/walrandberkeley/research/harbor.

5.4.1 Single defender and intruder

Fig. 5.1 illustrates an experimental setup for the case of a single intruder and

single defender. The intruder and defender are located in the rectangular channel

with a channel width W . The harbor is depicted as a thick line which is located

behind the defender. Small red and blue circles indicate the locations of intruder
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Defender
Attacker

W

Figure 5.1: Experiment setup

and defender, respectively. The small bar attached to the circles indicates their

orientation.

Fig. 5.2 (a) illustrates the case when the defender successfully defends the har-

bor. The dotted line are added as a trajectory guidance. Fig. 5.2 (b) depicts the

case when the intruder successfully outmaneuver the defender, and reaches to the

harbor.

Defender Intruder

(a) Defender wins

Intruder

Defender

(b) Intruder wins

Figure 5.2: Example trajectories: single intruder and defender.

A set of experiments was performed of a type that can be used to determine

the maximum channel width that a single defender can protect, assuming that the

parameters of the intruder are known. Initially, the intruder and the defender are

facing each other: initial intruder and defender orientations are π and 0, respec-

tively. Their controls are bounded by identical limits.

5.4.2 Two defenders and intruders

Fig. 5.3 shows the simulation result with two intruders and two defenders. Initially,

they are facing each other. Fig. 5.3 (a) is the case when the defender team wins
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as the channel is narrow with W = 20. Fig. 5.3 (b) is the case when the intruder

team wins as the channel is wide with W = 25. Since one of the intruder team

member successfully reached the harbor, the intruder team wins the game.

Defender1

Defender2

Intruder1

Intruder2

(a) Defender wins

Intruder2

Intruder1

Defender2

Defender1

(b) Intruder wins

Figure 5.3: Example trajectories : multiple intruders and defenders.

5.4.3 Human-machine interaction

Fig. 5.4 (a) is a screen capture of a real time 3D simulation. We assume the

harbor is located behind of the defender (left side of the screen). The human

controls the intruder. Fig. 5.4 (b) is a photo of a laboratory experiment involving

a human intruder and an autonomous defender. Both in the 3D simulation and

in the experiment, the human intruder uses a joystick to activate the intruder. In

the experiment, HoTDeC (HOvercraft Testbed for DEcentralized Control) vehicles

developed at the University of Illinois at Urbana-Champaign (UIUC) were used as

players.
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(a) 3D simulation

Defender 

Intruder 
Trajectories from 

Vision system 

(b) Static photo of experiment

Figure 5.4: Human-computer interactive real-time simulation and
experiment
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CHAPTER 6

TESTBED DEVELOPMENT

6.1 Introduction

In this section, we present the development of the testbed in hardware and soft-

ware. The hardware side is most about HoTDeC (Hovercraft Testbed for De-

centralized Control), the software side includes network, control, and vision pro-

gramming. The new generation of HoTDeC (Hovercraft Testbed for Decentralized

Control) vehicle is developed at the University of Illinois at Urbana-Champaign

(UIUC) and it is used as a robotic testbed. Detailed information about earlier

versions of HoTDeC can be found in the dissertation [59].

There are two processors in each HoTDeC. The main processor is in the Gumstix

Overo. It supports a fully featured real-time embedded Linux operating system

called Linaro. Gumstix Overo has been widely used for robotic applications. In

[60], small ground vehicles are built as a swarm. In [61] and [62], it is used for the

quad-roter implementation. In this work, a Linear-Quadratic Regulator (LQR)

with a standard Kalman filter is running in Gumstix as a position and orientation

controller. Gumstix also handles the subscription of the message from the vision

server or other agents. The other processor is a Texas (TMS320F28335) Instrument

digital signal processor (DSP) [63]. This processor controls angular velocity of the

five thrusters that run at over 10,000 RPM. Angular speed is sensed using a Hall-

effect sensor. To control the thrusters angular velocity at high RPM, registers in

the processor are directly handled. A simple network layer is established between

Gumstix and DSP using serial communication.
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6.2 Hardware

6.2.1 HoTDeC body

There are two different types of HoTDeC body: 3D printed and precision ma-

chined. The material of the machined body and the 3D printed body are dense

(a) 3D Printed body (b) Precision machined body

Figure 6.1: Two different types of the HoTDeC body.

styrofoam and ABS-M30, respectively. The weights of he machined body and the

3D printed body are 325g and 565g, respectively.

Figure 6.2: Different patterns of top

Fig. 6.2 shows HoTDeC vehicles. Each top is a visual vehicle identifier. HoT-

DeC vehicles have four lateral thrusters and it uses a micro controller to generate

74



commanded forces and moments; an additional thruster is used for lift. There are

two types of HoTDeC vehicles, both produced by the rapid prototyping laboratory

in UIUC (3D-printed, precision machined).

Figure 6.3: Thruster configuration

There are five thrusters in each HoTDeC. One is for the hovering, the other four

is for the positioning and the orientation. Fig. 6.3 shows the configuration of the

four thrusters. They generates thrust forces F1, F2, F3 and F4 in a body fixed

frame (Ux, Uy axis). When F2, F4 are on, HotDeC generates thrust force to the

positive Ux direction. When F3, F4 are on, it generates thrust force to the positive

Uy direction. Similarly, F1, F4 generates moment to the positive Ut direction.

6.2.2 Main Board

The schematic of the main board is presented in the Fig. 6.4. The main board is

in charge of integration of the peripherals such as Gumstix, DSP, and Powerboard.

The current version of the main board has two slots for Gumstix and DSP board

respectively. They can be turned on and off by the toggle switches, and they are

connected through the serial port. The serial port can be selected by switching

the jumper. The Gumstix can receive user commands such as reference thruster

speed and directly passes them to the DSP. The DSP’s interfaces contain an input,

output pairs for each thruster. Five of them are currently used to get the the Hall

effect sensor input and give PWM signal out. Logic converters are used to convert

the DSP output to 5V. We also have jtag in the right and RS232 in the left side

of the board. There are two analog input ports, which are currently unused.
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Figure 6.4: Main Board

6.2.3 Isolator Board

Figure 6.5: Isolator Board

The isolator board is designed to isolate the digital circuit from the noise. The

signal from the thruster and DSP are separated by this board. We have six set of

interfaces and five of them are used for each HoTDeC. From the front view of the

board, left to right, three pins should be connected to : hall effect sensor, PWM

signal and kill signal, respectively. Note that both side of the powers of the isolator

should connect to 5V. As shown in Fig. 6.5, the right part is powered from the

main board and the left side gets the power from the power board (VCC-T, and

the pin closer to the center is GND). The isolator can also be used to measure

the battery voltage and gives the analog output. The BB-SIG connector should

be connected with the battery and the pin closer to the center of the board is kill

signal, which is connected to the power board.
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6.2.4 Control boards

There are two commercial board in the HoTDeC. The Gumstix Overo fire and

Texas Instrument DSP (TMSF28335). The Gumstix is full-featured linux com-

puter that enables the HoTDeC to work as an embedded linux machine. Key

features of the Gumstix are the Wifi module and the ARM 8 Core processor.

Each thruster in the HoTDeC runs more than 10,000 RPM in normal operation.

To satisfy the fast computation requirement, an additional DSP is introduced. The

DSP is in charge of the speed control of five thrusters.

(a) Gumstix Overo fire (b) TMSF28335 DSP

Figure 6.6: Gumstix Overo fire and TMS320F

Figure 6.7: Gumstix and DSP on the main board

Fig. 6.7 shows the Gumstix and DSP integrated to the main board.
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6.3 Software

6.3.1 Network

One of the important feature of the testbed we developed is a network and the

aim of the network is to allow whole system a dynamic message exchange. The

following figure shows this concept.

Data$Cloud$

Overhead(vision(System(

Figure 6.8: Concept of the remote testbed.

The circular layer encapsulates the individuals such as HoTDeC, Drone. This

constructs the abstract layer around the individual agents. Because the agents

are encapsulated by the layer, and network modules can be accessed only through

the layer, the specific type of the individual agent is not required for the message

exchange. This allows dynamic registration and removal of the agents in the local

network. Another feature is the discovery service. Each agent has knowledge

about the available resources around them. This brings efficiency to the network

since each individual do not have to know the entire network.

There are two different concepts for the network programming. One is flexibility,

and the other is efficiency. In this research, the desirable network architecture

depends on the application. For example, when we operate HoTDeC manually,

one directional channel is sufficient. However, when we implement centralized

defense strategy to the multiple HoTDeCs, the publish-subscribe structure is more

suitable. To incorporate various applications, the flexible network architecture that

is based on the ZeroMQ is developed. Another requirement is the efficiency. This is
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particularly important in inter-process communication between Gumstix and DSP

as thruster speed controller runs in fast frequency, 1KHz. In for this requirement,

one of the lightest weighted protocol, serial communication is used.

Six over-head 
web cameras

Vision server

Visualizer

Other Clients

HoTDeCs

User

Directory 
service

Figure 6.9: Network environment: solid line is for the direct communication
and dotted line is through the discovery service.

Fig. 6.9 schematically depicts the network environment. There are six overhead

cameras connected to the vision server. The vision server broadcasts position and

orientation of each agent through the Directory service in the local network. We

have developed an abstract network layer for each agent (HoTDeC, Drones, PC,

or phones). This environment allows a reliable network under dynamic message

exchanging. Each agent can either directly exchange the message(solid line) or

through the Directory service. As agents dynamically exchange the messages in

our local network, with a unique message format, an abstract network layer for

each agent is developed. Fig. 6.10 shows network layer that encapsulates the

agent. It consists of three parts: transport, serialization, and service discovery.

The complete discussion of our network is in the thesis [64].

Transport layer represents the software layer responsible for defining rules that

govern the transfer of data from one location to another. We use ZeroMQ in this

layer. Our transport layer supports flexible structure in this layer in a sense that

both Request-Reply, and Publish-Subscribe structure can be switched easily.

Fig.6.11 shows two different basic message patterns in the transport layer.

Request-reply pattern is the simplest model that allows the confirmation of the re-

ceiving the message. In other words, that the socket pair is in lockstep. The other

pattern, publish-subscribe is to push the updates to a set of subscribers. In this

pattern, the sender is not responsible for receiver to receive the message correctly,

and hence the network packet might be lost. This character is sometimes called,

“Fire and Forget”.

Fig.6.13 shows the concept of the serialization. Once the network program
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Transport

Service 
Discovery

Serialization

Service 
DiscoveryData$Cloud$

Overhead(vision(System(

Figure 6.10: Encapsulation of the agents: each agent is encapsulated with
an abstract network layer and the layer consists of three parts.

Request

Client Server

Reply

(a) Request-Reply

Publisher

Pub

Sub

Subscriber

Sub

Subscriber

Sub

Subscriber

(b) Publish-Subscribe

Figure 6.11: Two basic message patterns

Program 
object

Binary 
Message

Serialization 
Layer

Binary 
Message

Binary 
Message

Transport Layer

Program 
object

Binary 
Message

Serialization 
Layer

Figure 6.12: Serialization: packet is created, transmitted through the
transport channel, received and parsed in order.

creates the objective that needs to be sent, the message packet is created according

to the predefined rule. Then the message is transmitted through the transport

layer. Receiver receives the message and parse the data according to the parsing

rule. These action takes place in serial. Serialization defines how an object is

converted into a format that can be stored or transmuted over the network through

the transport layer. In this layer, we use JavaScript Object Notation (JASON)
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and Protocol Buffers. As JASON is simple to use as it is text-based. It is used

in inter-agent message exchange. Protocol Buffers are an efficient way of encoding

data into messages. It specifies an binary format for encoding data as message,

whereas JASON messages are free-form. Therefore, it is used in inter-process

message exchange (between Gumstix and DSP).

Discovery 
Service

Client

Client

Client
Client

Client

Service
Discovery

Client

Service
Discovery

Client

Service
Discovery

Flexible

Figure 6.13: Service discovery: our discovery service provides both
centralized and peer-to-peer ad hoc structure.

Service discovery defines functionality by which an application can find other

applications on the network which provide the services that it needs access to. As

our lab has unique type of message and they are dynamically interfacing each other,

custom built software called “Directoryd” is developed in this layer. It is a software

package that provides service directory support for the HoTDeC is developed. It

is deposited in GitHub [65]. There should be one instance of Directoryd running

on each agent.

6.3.2 Control

There are two control layer in the HoTDeC. The higher level of the control is

about the position and orientation control and the lower level of the control is

to control the thruster speed. In high level control, Linear-Quadratic Regulator

(LQR) with a standard Kalman filter is implemented in the Gumstix. In the lower

level thruster speed control, PD controller is implemented in the DSP.

The dynamic model of the HoTDeC is linear model with two inputs.

Ẋ = AX +BU +GW

Y = CX +DV,
(6.1)

where the states are positions and velocities in cartesian coordinate, X =
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[x, ẋ, y, ẏ, θ, θ̇]. with following state, input, output matrices

A =




0 1 0 0 0 0

0 −βx
m 0 0 0 0

0 0 0 1 0 0

0 0 0 −βy
m 0 0

0 0 0 0 0 1

0 0 0 0 0 −βθ
J




(6.2)

B = G =




0 0 0
1
m 0 0

0 0 0

0 1
m 0

0 0 0

0 0 1
J




(6.3)

C =




1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0


 , V =




1 0 0

0 1 0

0 0 1


 . (6.4)

The states for the control inputs are U = [ux, uy, τ ], actuator disturbance input

W = [wx, wy, wθ], measurement noise V = [vx, vy, vθ]. Detailed information about

the disturbance and noise are presented in [59]. The mechanical parameters of the

HoTDeC is presented in the following table.

Table 6.1: Mechanical parameters of the HoTDeC

Mass (m, [kg]) Moment of inertia (J, [kg ·m2])
Form Body 1.827 0.021
RP Body 2.26 0.028

The schematic presented in Fig 6.14 (a) illustrates the required softwares to run

HoTDeC autonomous mode.

The vision system contains one vision server and three clients. Each client

processes the images taken from the web camera and send it to the vision server.

The server merges and blends the images and creates result image.

The role of the simulation and the path generator program called “World” is to

generate real-time reference trajectory according to the user input. It geometrically

computes the reference trajectory so that HoTDeC can reach to the target position.

One of the main features of the real-time reference generator is a smooth transition

between a linear path and circular path. By combining line and circle, it allows
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User Input
(ReqRep)

Vision

HoTDeC Serial

(a) Autonomous mode

Joystick Controller

Vision

HoTDeC Serial

(b) Joystick input manual mode

Figure 6.14: Autonomous and manual mode operation

dynamic trajectory generation. This operation can be done using “Request-Reply”

structure.

MPC
solver

User
Interface

Other 
planning

Real-time
Reference generator

LQR
(Gumstix)

Thruster controller
(DSP)

Kalman Filter
(Gumstix)

Network module
(Gumstix)

Data$Cloud$

Overhead(vision(System(

Request-Reply

Publish-Subscribe

Manual
input

Solution
trajectory Waypoint

+
-

Visualizer

Service 
Discovery

Overhead vision system

Abstracted HotDeC

Figure 6.15: Control and network signal flow diagram.

Fig. 6.15 presents the control and network flow diagram of HoTDeC. The so-

lution for the MPC problem, user manual waypoint input, or the solution from

the other approach is given as a input. The real-time reference generator gen-
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erates the optimal position and velocity profile of the HoTDeC from the current

position to the target point. It also generates smooth transition between current

waypoint trajectory to the new waypoint trajectory provided that the user gives

new command input before the HoTDeC is not finished the current task. The

LQR controller and Kalman filter that are embedded in the Gumstix generates

control input. Control input is translated to the thruster inputs and transmitted

to the thruster controller that is implemented in the DSP. While the HoTDeC is

operating, the Network module which is in Gumstix is responsible for subscribing

the position and orientation for the required HoTDeCs. The loop is closed in this

fashion.

(a) Waypoint 1. (b) Waypoint 1 to 2.

(c) Waypoint to circles. (d) Circle to waypoint.

Figure 6.16: Real-time reference generation and following: reference
consists of lines and circles

Fig. 6.16 shows screen captures of a HoTDeC trajectory following experiment.

Green path is a trajectory from the experiment and light-red trajectory is a ref-

erence, which is generated in real-time at user command. HoTDeC starts from

the left bottom corner at user’s first waypoint command (Fig. 6.16(a)). When the

HoTDeC reaches to it, the second way point (Fig. 6.16(b)) is given by the user.

In the middle of transition, user commended a circle reference input with a large

radius. To comply with a new user commend, HoTDeC smoothly switches refer-

ence from line to the circle reference (Fig. 6.16(c)). Followed by another transition

from large circle to the smaller circle, another waypoint is commended. HoTDeC
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smoothly switches his reference from circle to waypoint (Fig. 6.16(d)).

Figure 6.17: Real-time reference generation and following: in a single figure
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Figure 6.18: Reference following result: position error is less than 5%

Fig. 6.17 shows overall trajectory in a single figure. Dotted line indicates that

planned trajectory but canceled due to user’s new input.
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Fig. 6.18 shows the reference following experiment result. The position error

are less than 5%. Average speed of HoTDeC is approximately 0.7m/s.

Figure 6.19: Visualizer

The Fig 6.19 is a screen capture of the Visualizer written in Python. The

visualizer provides the information about the position and orientation real-time as

well as reference trajectory as an option.

The manual input mode via joystick is similar to the autonomous mode. The

difference is the the joystick server. Joystick server generates the references for the

position and velocity. To generates the references, it requires vision information as

presented in Fig. 6.14 (b). There are two versions of joystick server, the difference

is only a language. One is in Java, the other one is in C++.

6.3.3 DSP Code

Once the LQR controller generates control inputs ux, uy, uθ, desired RPM of each

thrusters are found by the look up table [67]. Fig. 6.20 are the photos of the

thruster assembly. Yellow propeller is connected to the DC motor. Black colored

housing is 3D printed so that it fits to the HoTDeC. The Fig. 6.20 (b) is the

back side of the assembly. Small circuit that is attached to the motor is a hall

effect sensor circuit. The PI controllers are running in the DSP to control the

thruster speed. The reference signal that the DSP requires is the force from the

thruster. The detailed explanation regarding the dynamic model and the controller

is presented [67]. It is assumed that the relationship between the force F and the
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thruster angular velocity ω is linear: ω2 = 2560000× F . Following is the thruster

dynamic model:

ẋ = −8.6x+ u

ω2 = 20868760x,
(6.5)

with F = 8.1518x − 0.02, if x > 0.00246. F = 0, otherwise. The speed controller

is the following

u = KP (r − ω) +KI

t∑

i=0

(r − ω), KP = 5.12,KI = 60. (6.6)

(a) Thruster assembly

(b) Back side of the thruster assembly

Figure 6.20: Thruster assembly
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CHAPTER 7

HARDWARE IMPLEMENTATION

7.1 Introduction

In this chapter, we mainly discuss about implementation strategy of minmax MPC

scheme. There has been an increasing interest in the development of fast MPC

implementations. One promising method, called explicit MPC, uses a look-up

table to access the explicit precomputed solution [68], citetondel2003algorithm.

The potential drawback of this method is that the number of entries in the ta-

ble can grow exponentially with the horizon length, state, and input dimensions.

Therefore, explicit MPC can only be applied reliably to situations with “small”

problems [69].

Until recently, the real-time application of MPC in robotics has been limited to

simple tasks. In [70], an explicit MPC solution is developed and implemented for

mobile robot trajectory tracking. In [71], an MPC based obstacle avoidance control

law is developed and implemented in a mobile robot which is operated in a master-

slave teleoperation configuration, not fully autonomously. In [72], an autonomous

bicycle robot with an MPC law for balancing is described. The reported simulation

results are promising, however, hardware experiments have not yet been successful.

In [73], a vibration attenuation problem in linked, linearized robot dynamics is

addressed with an MPC law. In [74], MPC is used in trajectory following for an

under-actuated radio controlled model hovercraft, which has two thrusters each

able to generate three discrete control values: positive force, negative force, and

zero force.

In our previous work [58], a MPC law was constructed for a defender based on

a max-min optimal control problem which we believed captured the essence of the

intruder goals. In this paper, we describe the implementation of the results of [58]

in a real-time hardware situation, in which the defender and intruder are custom-

built hovercraft, with the defender controlled by a computer and the intruder by

a human.

To obtain a numerical method for solving the required max-min problems, that is
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compatible with real-time implementation, we combined the outer approximations

algorithm with a customized optimization code implementing the Polak-He [20]

first-order minimax algorithm. For obtaining medium precision solutions, this

approach is much more efficient than using most optimization algorithms available

in commercial or free libraries. Furthermore, it resulted in a transparent code,

which provided us with an open debugging environment, and thus allowed us to

remove unnecessary error-checking routines once code was verified offline. Finally,

we developed an abstract network layer which encapsulates each agent in a local

network. This layer allows reliable and effective dynamic inter-agent and inter-

process message exchange.

7.2 Dynamic Models and model predictive Control

7.2.1 Problem statement

We model the intruder by a nonlinear dynamic model of the form

żi(t) = f(zi(t), ui(t)). (7.1)

The vectors zi(t) and ui(t) are state and input vectors, respectively. The state

vector zi(t) includes horizontal and vertical positions xi(t) and yi(t). In order to

use a model predictive control scheme, we discretize (7.1) using a sampling time

∆, with results in discrete-time dynamics of the form

zi((k + 1)∆) = f̄(zi(k∆), ui(k∆)), k = 1, 2, · · · , N (7.2)

We define the horizon length to be N∆, with strictly positive integer N . We

assume that the defender dynamics is in similar form.

Considering the intruder’s objective, it is natural to formulate the intruder min-

imization problem as in below. This is the problem that the defender assumes

that the intruder solves. Thus, in our formulation, the defender explicitly assumes

that the intruder also uses an MPC control law, based on minimizing its distance

from the HVUs, as follows:

min
ui∈Ui(ud),k∈N

{xi(k∆)} (7.3)
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with

Ui(ud) = {ui =(ui(∆), . . . , ui(N∆)) ∈ RN × RN

s.t. ‖ui(k∆)‖2 ≤ α2
i ,

‖P (zi(k∆)− zd(k∆))‖2 ≥ δ2,

0 ≤ xi(k∆),

0 ≤ yi(k∆) ≤W, k = 1, . . . , N,

zi(k∆), zd(k∆) satisfying (7.2)},

(7.4)

where W is the harbor width (channel), αi is the limits for the control of the

intruder and a function P extracts the position vector from the state vector.

[x(t), y(t)]T = P (z(t)) (7.5)

Similarly, the feasible control set of the defender is

Ud = {ud =(ud(∆), . . . , ud(N∆)) ∈ RN × RN

s.t. ‖ud(k∆)‖2 ≤ α2
d,

0 ≤ xd(k∆),

0 ≤ yd(k∆) ≤W, k = 1, . . . , N}

(7.6)

where δ is a torpedo distance. The set of intruder controls Ui depends on ud because

of the existence of the hard constraint in (7.3): ‖P (zi(k∆)− zd(k∆)‖2 ≥ δ2. The

Defender problem is based on a worst case scenario defined by the solution of

(7.3). Thus, at each sample time k∆, the defender solves the following max-min

optimization problem

max
ud∈Ud

min
ui∈Ui(ud),k∈N

{xi(k∆)}

s.t.(7.4)

(7.7)

and uses the first element of the optimal solution ûd as its control for the time

interval [k∆, (k + 1)∆). As there is no known method to solve (7.7) directly, the

solution for (7.7) is elaborated on [58] and Chapter 5.
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7.2.2 Implementation algorithm

We present a new algorithm based on [58]. The new algorithm consists of explicit

terminal condition, penalty function which yields numerically better condition. We

also describe the algorithm in terms of custom-written code, open source libraries

and commercial software in Algorithm 4 below.

In [58], an exact penalty function was used for the distance between the pursuer

and evader. Since it is not differentiable, we replaced by barrier function ((7.8),

(7.9)), which is computationally less demanding while capturing the essence of the

penalty. A potential degradation of the precision of the solution is insignificant in

our application.

p(zi(k∆), zd(k∆)) := π
N∑

k=1

D(zi(k∆), zd(k∆)), (7.8)

where

D(zi(k∆), zd(k∆)) := log(‖P (zi(k∆)− zd(k∆))‖2 − δ2). (7.9)

The algorithm below includes a termination condition based on a comparison of of

controls ûid and ûi−1
d obtained in two consecutive iterations. It returns a boolean

value: true if they are similar enough, false otherwise. Hence, the execution time

of the algorithm varies at each sample time and this feature results in a dynamic

algorithm.

In Step 1, defender solves finite minmax problem using Polak-He algorithm [20]

as an inner algorithm. All gradient information is pre-computed. Solution for the

inner algorithm consists of solving quadratic programming. This is done by using

JOptimizer library [66]. The approach for solving the minimization problem in

Step 2 is similar to the Step 1. Necessary sets are updated in Step 3, so that

solution for Step 1 is updated in the next outer iteration. As terminal condition

of the outer loop is satisfied, optimal control is obtained.

Once the ûd is obtained, reference trajectory is computed using (7.2). In the

reference trajectory, initial fraction is fed to the defender. Defender generates

reference and follow it using embedded position controller. The performance of

the reference following is presented in the next section.
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Result: Defender control ûd
while Running the experiment do

Subscribe position data from local network.
Set i = 0.
while terminal condition: T (ûid, û

i−1
d ) = false do

Step 1. Obtain x̂i such that {ud,m}∞m=0 → ûid by solving inner
problem:

max
ud∈Ud

min
ui∈Ui,k

µ∈Σ

{
N∑

k=1

µkx1
i (k∆,ui)

− p(zi(k∆), zd(k∆))}





Inner loop

Step 2. Solve intruder problem:

min
ui∈Ui
µ∈Σ

{
N∑

k=1

µkx1
i (k∆,ui)}

Step 3. Update Ui+1 = Ui ∪ {ui}, Ii+1 = Ii ∪ {i+ 1}, Replace
i = i+ 1.
Step 4. Evaluate terminal condition: T (ûid, û

i−1
d ) of the outer

loop
end
ûd = ûid
Generate reference.
Take initial part of it as a current reference.

end
Algorithm 4: Implementation algorithm
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7.3 Simulation

Two human-computer interactive real-time simulators were developed. One with

the linear dynamics:

ż(t) = Āz(t) + B̄u(t), (7.10)

with

Ā =




0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0




B̄ =




0 0

0 0

1 0

0 1



. (7.11)

,where z(t) = [x(t), y(t).ẋ(t), ẏ(t)] and u(t) = [ux(t), uy(t)]. HoTDeC is modeled

using this linear model. Input is x and y thrust force. The other one with nonlinear

ship dynamics:

ẋ(t) = v(t) cos θ(t), ẏ(t) = v(t) sin θ(t)

θ̇(t) = uω(t), v̇(t) = ua(t)
(7.12)

. We state the non-linear ship dynamics with the angular velocity input uω(t)

and force input ua(t). These can be seen as modified Dubins-car dynamics. The

human plays the role of the intruder via joystick input.

Fig. 7.1 is a screen capture of the simulation. Fig. 7.1 (a) is a simulation with

the linear dynamics (7.8). Fig. 7.1 (b) is a simulation with the non-linear dynamics

(7.10). We assume the harbor is located behind of the defender (left side of the

screen). The human plays the part of the intruder in both simulations. Simulation

is written in Matlab with VRML (Virtual Reality Modelling Language). Horizon

length N = 10. In both cases human intruder tries to outmaneuver the defender by

moving up and down. However, the defender successfully intercepts the intruder.

7.4 Implementation

7.4.1 Algorithm

Fig. 7.2 shows the evolution of the defender’s trajectory as it iterates the Algorithm

4, given that the intruder is in upper-right position from the defender. Fig. 7.2

(a) to (d) shows the defender trajectories obtained from Step 1 in algorithm 4.

Initially, defender roughly towards the intruder. As it iterates algorithm 4, tra-

jectory converges (iteration 3 and 4). To facilitate the comparison of each figures,
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(a) Simulation with HoTDeC dynamics

(b) Simulation with ship dynamics.

Figure 7.1: Two kinds of human-computer interactive real-time simulator:
in both cases, the human player fails to reach to the harbor.

identical arrows indicating heading directions are inserted. Fig. 7.2(e) visualizes

the evolution of the trajectories( (a) to (d) ) simultaneously with separated x and

y coordinates.

7.4.2 Experiment

We now present experiments involving an autonomous defender and a human in-

truder. The human intruder uses a joystick to activate the white-colored HoTDeC.

We have deposited the videos and relevant material in the following repository:

http://publish.illinois.edu/lee822.

Fig. 7.3 is a static photo of the experiment between human intruder and au-
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(a) Iteration 1. (b) Iteration 2.

(c) Iteration 3. (d) Iteration 4.
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Figure 7.2: Evolution of the defender trajectory in Outer approximation: as
iterates the outer loop, the defender trajectory converges to the optimal
trajectory. (a)-(d) is in x− y plane, (e) is in position-N(horizon) plane.

tonomous defender. Trajectories are obtained from the vision server, shown in top

left corner. Computing for the experiment and simulation is compared in Table.1.

A laptop was used for the simulation. An ARM8(600MHz) processor is used in

Gumstix. ‘PH Iters’ indicate the number of iterations in the outer approximation

method and the PH algorithm. Computing time required per one sample time is

1.8 seconds in simulation and only 0.18 second in the experiment. As the longer

horizon is beneficial to the optimality of the problem but it requires more com-
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Defender 

Intruder 
Trajectories from 

Vision system 

Figure 7.3: Static photo of experiment: the intruder is operated by human
player and the defender is computer player

puting time, the horizon length 10∆ is chosen as it is the longest implementable

horizon to our system.

Table 7.1: Computing Comparison

Simulation Experiment

Horizon 10∆ 10∆
PH Iters 40 40
Solver PH+Tomlab PH+JOptimizer

Intel Core2 Duo ARM8+DSP(TMSF28335)
Processor 2.4GHz 600MHz

4GB RAM 512MB RAM,flash,CMOS
Program Language Matlab,VRML Java,C

Comp. Time/OA Iter 0.6 sec 0.06 sec
Comp. Time/sample 1.8 sec 0.18 sec

Fig. 7.4 shows the trajectories of the intruder and the defender from the exper-

iment. Elapsed times are labeled next to corresponding positions. The visualizer,

written in Python, captures the trajectories of the HoTDeCs, their position and

orientation along with their identification number in real-time. Blue and red paths

are the trajectories generated in the experiment for the defender and intruder, re-

spectively. We observe that the human intruder tried to trick the defender by

moving down and up, but the defender successfully prevented the intruder from

reaching the harbor located in the left side of the screen. We also observe that
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Figure 7.4: Trajectories from single-defender experiment: the running time
of the experiment is about 50 seconds. Computer defender successfully
prevents the human intruder from reaching to the left side of the lab.

defender traveled longer distance from t = 0 to t = 10 range than other ranges.

Primary reason is that the defender requires less outer iterations in t = 0 to

t = 10 range because its optimal path is not very different from its initialized tra-

jectory (horizontal straight line). However, defender needs more outer iterations

as the intruder changes direction after t = 10. When more computation time is

required, defender maintain current position until iteration is finished (Step 4 in

Algorithm.1) and obtain next reference. As human player is cautious, he does not

operate the intruder with full speed. This result in shorter travel distance than

defender’s throughout the experiment.

t=0 t=4

t=8
t=12

t=16

t=20

t=4

t=8
t=12 t=16

t=20

t=0t=4

t=8

t=12

t=16

t=20

Figure 7.5: Trajectories from multi-defender experiment: the running time
of the experiment is about 20 seconds. Team of the computer defenders
successfully prevents the human intruder from reaching to the left side of
the lab.
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Fig. 7.4 shows the trajectories of the team of the defenders and human operated

intruder. Human intruder tries to outmaneuver the white-colored defender by

moving upward. However, realizing the black-colored defender approaches, he had

to turn around and move backward. Throughout the experiments, defender team

successfully cooperated to prevent the intruder from reaching to the left side of

the lab.

7.5 Conclusion

A MPC scheme controller was successfully implemented in a real-time harbor

defense scheme. Our approach was based on the newly developed implementa-

tion algorithm. Special optimization code was also developed to realize the al-

gorithm. Our own abstract network layer enabled the effective communication

between server and clients. We note that due to the physical constraint of the lab

space, there were constraints on our ability to fully explore the effectiveness of the

algorithm in all situations. Our previous results indicate that a narrow channel is

advantageous for the defender [58].
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CHAPTER 8

SEA EXPERIMENT: IMPLEMENTATION
ON NAVAL SHIPS

8.1 Introduction

In order to demonstrate that our methodology results in solutions that are useful

in real-world situations, we conducted three tests on the Chesapeake Bay in the

vicinity of the United States Naval Academy. During these tests, Naval Academy

Yard Patrol craft (YPs) served as the intruder and defender. The YPs were from

the 676 class, and their hull numbers were 692 and 695. Fig. 8.1 provides a

photograph of YP692 on the day of the test.

Figure 8.1: YP692 getting underway from the sea wall at the Naval
Academy on the day of the test

The YPs are vessels normally used to train midshipmen in basic seamanship

and navigation. The YPs are 108 feet long, have a beam of 23 feet 4 inches,

a draft of 10 feet, and a fully loaded displacement of 172 tons. They have a
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maximum speed of 13.2 knots and a turning radius of approximately 150 feet. For

all three tests, the intruder’s heading was selected by the human craft master. The

defender’s heading was determined by the harbor defense algorithm in real-time

and was relayed verbally to the human craft master as a course to steer. The

harbor defense algorithm was implemented in Matlab R2015a with TOMLAB 7.9

running on a MacBook Pro with OS X Yosemite and a 2.3 GHz Intel Core i7 and

16GB of 1600 MHz DDR3 memory. The intruder program was implemented in

Matlab R2015a running on a MacBook Air with OS X Yosemite and a 1.7 GHz

Intel Core i5 and 4 GB of 1333 MHz DDR3 memory. To obtain the heading and

position information needed by the algorithm, iPhone 6s were connected to the

two laptops via universal serial bus (USB) cables. The phones provided heading

and position information from their Global Positioning System (GPS) sensors to

the laptops using the Matlab app (Version 5.2). The phones also shared their

cellular internet connections with the laptops over the USB cables. In order for

the data to be exchanged between the phones and the laptops, all of the devices

had to appear as if they were on the same local area network. To establish this

type of connection on the water, we connected all of the devices to the University

of Illinois at Urbana-Champaign (UIUC) local network via the Cisco AnyConnect

Virtual Private Network (VPN) client (version 4.0.03004 on the phones and version

3.1.10010 on the laptops). Fig. 8.2 provides a graphical depiction of the network

configuration.

▪ MPC solver program
▪ Sensor data receiver

Sensor data
(Position, Orientation)

Defender ship
Intruder ship

UIUC VPN

UDP packet
(USB)

4G/LTE modem
Sensor

MATLAB Mobile

MATLAB

4G/LTE modem
Sensor

MATLAB Mobile

MATLAB

▪ Sensor data sender 

UDP packet
(USB)

700 miles700 miles

Physical
interaction

Figure 8.2: Schematic for the network setup

Once this network configuration was established, the Matlab program running
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on the intruder laptop would periodically send the sensor data (GPS heading and

position) to the laptop on the defending vessel via user datagram protocol (UDP)

packets. This data was then used by the MPC implementation of the harbor de-

fense problem running on the defender laptop to provide an output command pair

which included ship speed and heading angle. The command pair was relayed

verbally to the craft master of the defending vessel for implementation every 10

to 15 seconds, depending on how significant the change was to the command pair.

We conducted three experiments to simulate different possible intruder behavior.

All of the experiments were run in the vicinity of the naval anchorage located near

38Ph.D.57’ N 076Ph.D.26’ W (see Fig. 8.3 below or NOAA Chart 12282 avail-

able from http://www.charts.noaa.gov/OnLineViewer/12282.shtml). The simu-

lated harbor entrance for the experiments was an imaginary line from day marker

“A” at the top left corner of the naval anchorage to red nun buoy “2” at the

bottom right. The starting position for the intruder was near green can buoy “1”

located just north of the naval anchorage.

Figure 8.3: NOAA Chart 12282

8.2 Experiment 1

For this experiment, the maximum speed of both the intruder and defender was set

to 5 knots. Fig. 8.4 shows the trajectories of the vessels for this experiment overlaid
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on imagery from Google Earth. Blue and red dots indicate the initial positions

of the defender and intruder, respectively. The blue and red curves depict the

trajectories for the two YP’s, while the black dashed curves with arrows show the

direction of movement of the vessels.

Figure 8.4: Trajectories on the Google Earth 1

Fig. 8.5 provides more detailed trajectories for the YPs. Fig. 8.5(a) shows the

raw geographical data obtained from the GPS, while Fig. 8.5 (b) shows the tra-

jectories in the local Cartesian coordinate system. The local Cartesian coordinate

system was used to facilitate numerical
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Figure 8.5: Detailed trajectories for the experiment 1

computations to solve the defender’s MPC problem. In the defender’s local co-

ordinate system, the origin is defined to be the defender’s initial position and the
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horizontal and vertical positions are approximated as the arc length on the earth’s

surface derived from the changes in latitude and longitude. For the first experi-

ment, the defender’s initial heading is parallel to 38.9538 degrees north latitude,

and therefore the trajectories in Fig. 8.5 (a) and (b) are qualitatively the same.

8.3 Experiment 2

For this experiment, the maximum speed of both the intruder and defender was set

to 6 knots. The intruder attempted to outmaneuver the defender by performing a

360 degree turn. This large turn resulted in the speed of the intruder being slightly

less than its maximum speed. Fig. 8.6 shows the trajectories of the vessels for

this experiment overlaid on imagery from Google Earth. Blue and red dots again

indicate the initial positions of the defender and intruder, respectively. As before,

the blue and red curves depict the trajectories for the two YP’s, while the black

dashed curves with arrows show the direction of movement of the vessels.

Figure 8.6: Trajectories on the Google Earth 2

Detailed trajectories in both raw geographical coordination and the local carte-

sian coordination is presented in Fig. 8.7.

Detailed trajectories are given in Fig. 8.7 for both the raw geographic coordinate

system and the local Cartesian coordinate system. For this experiment, the initial

heading of the defender is not parallel to a line of latitude. Hence the defender’s

local Cartesian coordinate system is rotated about 43 degrees clockwise.
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Figure 8.7: Detailed trajectories for the experiment 2

8.4 Experiment 3

For this experiment, the maximum speed of both the intruder and defender was

set to 7 knots. The intruder attempted to outmaneuver the defender by heading

directly for the simulated harbor entrance. Fig. 8.8 shows the trajectories of the

vessels for this experiment overlaid on imagery from Google Earth. Blue and red

dots again indicate the initial positions of the defender and intruder, respectively.

As before, the blue and red curves depict the trajectories for the two YP’s, while

the black dashed curves with arrows show the direction of movement of the vessels.

Figure 8.8: Trajectories on the Google Earth 3

Detailed trajectories are given in Fig. 8.9 for both the raw geographic coordinate

system and the local Cartesian coordinate system. For this experiment, the initial

heading of the defender is not parallel to a line of latitude. Hence the defender’s
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Figure 8.9: Detailed trajectories for the experiment 3

local Cartesian coordinate system is rotated about 45 degrees clockwise.

8.5 Conclusion

We have demonstrated that our minmax MPC solution is effectively defend the

harbor from the approaching intruder. The computation speed was fast enough

even if the implementation language was not a low level language. Matlab envi-

ronment approximately works up to 1 sec sample time, which corresponds to the

about 10 knots. For a fast moving ship, it is encouraged to use low level implemen-

tation such as Java or C, as we have implemented in the lab scale experiment. We

have also showed that the network setup via UDP packet works reliably through

the 4G/LTE network connected to the University of Illinois VPN (Virtual Private

Network). This allowed the intruder and the defender ship to be considered in the

same local network and hence provide convenient message exchange.
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CHAPTER 9

MOBILE NETWORK JAMMING
PROBLEM

9.1 Introduction

This problem is addressed in [75]. HJI (Hamilton-Jacobi-Isaac) equation based

approach results in very expensive computational load. The goal of this section

is to solve this problem with the more realistic dynamic model, in a significantly

shorter time.

Consider the situation with two UAVs (U1 and U2) and one jammer (UJ). Let

D1,2
k , D1,J

k and D2,J
k be a Euclidean distance between U1 and U2, U1 and UJ ,

and between U2 and UJ at time k. If ηmin[D1,J
k , D2,J

k ] ≤ D1,2
k for some positive

constant η, then the communication channel between U1 and U2 is considered to be

jammed. In other words, communication is jammed if the UJ is closer to the UAV

than the other UAV. Consider a situation in which U1 and U2 are initially jammed

in the presence of a jammer UJ . The objective of the jammer is to maximize the

time for which it can jam the communication between U1 and U2. The objective

of U1 and U2 is to minimize the time for which communication remains jammed.

The game terminates at the first instant at which U1 and U2 are in a position to

communicate. We assume that U1 and U2 has a complete knowledge about the

state of the system.

Original problem formulation is a time optimization problem, which one can

expect bang-bang type of optimal control. The formulation is the form of zero

sum game. Approach to the solution is to seek a saddle point using the HJI

equation, which is computationally very expensive and hence far from the real-

time application. Original problem does not include minimum separation between

U1 and U2. Lastly, the speed of UVAs are fixed in the original problem, and control

is a yaw rate.

Consider a situation in which U1 and U2 are initially jammed in the presence

of a jammer UJ . The objective of the jammer is to maximize the time for which

it can jam the communication between U1 and U2. The objective of U1 and U2

is to minimize the time for which communication remains jammed. Also, U1 and
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U2 need to maintain the minimum separation. The dynamic model of UAVs and

the jammer is nonlinear with two inputs: thrust and yaw rate is used. We assume

that U1 and U2 has a complete knowledge about the state of the system. Also, we

assume U1 and U2 can move only inside of the constrained space that is modeled

as a rectangular shaped space.

9.2 Nomenclature

∆ is a sampling time.

H is a length of the planning horizon.

v̄u and v̄J are maximum speed of UVAs and jammer, respectively.

vu and vJ are minimum speed of UVAs and jammer, respectively.

ω̄u and ω̄J are maximum yaw rate inputs of UVAs and jammer, respectively.

āu and āJ are maximum acceleration inputs of UVAs and jammer, respectively.

zu1,k = [x1,k, y1,k]
T be a position of the UAV1.

zu2,k = [x2,k, y2,k]
T be a position of the UAV2.

zuk = [zuT1,k, zu
T
2,k]

T be a position of the UAV1 and UAV2.

zjk = [xJ,k, yJ,k]
T be a position of the jammer.

σu is a minimum separation between UAVs.

σJ is a minimum separation between UAVs and jammer.

9.3 Problem formulation

The kinematic model for both jammer and UAVs are described as the following

unicycle model.

ẋ(t) = v cos θ(t)

ẏ(t) = v sin θ(t)

θ̇(t) = ω(t)

(9.1)

We can integrate the differential equation (9.1) for t ∈ [k∆, (k+ 1)∆), to obtain

the difference equations:

xk+1 = xk + ∆v cos θk + ∆2ak cos θk

yk+1 = yk + ∆v sin θk + ∆2ak sin θk

θk+1 = θk + ∆ωk

(9.2)
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where xk = x(k∆), yk = y(k∆), θk = θ(k∆), and ωk = ω(k∆). The discretized

model is from exact integration of (9.1). Detail is presented in Appendix A.

Following describes the MPC formulation for the mobile network jamming prob-

lem at a given time t and given current positions of UAVs and jammer.

min
u∈U

max
v∈Y (uk)
k∈H

{
D1,2
k −min[D1,J

k , D2,J
k ]
}

s.t. D1,2
k ≥ σu,

x ≤ xk ≤ x̄, y ≤ yk ≤ y, for all players,

Dynamics (9.2).

(9.3)

where H = {t+ 1, t+ 2, . . . , t+H}.
Sequence of augmented control space for the UAV is

U =

{[
ω1,1, · · · , ω1,H

ω2,1, · · · , ω2,H

]
∈ R2×H | −ω̄u ≤ ωi,k ≤ ω̄u, ∀k ∈ H, i = 1, 2

}
. (9.4)

Control constraint set for the jammer is

v =
{[
ωJ,1, · · · , ωJ,H

]
∈ Y (uk) | −ω̄J ≤ ωJ,k ≤ ω̄J , ∀k ∈ H

}
. (9.5)

, where

Y (uk) :=
{[
ωJ,1, · · · , ωJ,H

]
∈ RH | min[D1,J

k , D2,J
k ] ≥ σJ , k ∈ H

}
. (9.6)

We observe that at some k, if the value of (9.3) is negative, network is established

and hence UAVs tries to decrease the value. However, the jamming occurs when

the value if positive and the jammer tries to increase the value.

9.4 Formulation conditioning

1. D1,2
k −min[D1,J

k , D2,J
k ] is replaced by (D1,2

k )2−(min[D1,J
k , D2,J

k ])2. This facilitates

the gradient conditioning as quadratic function is generally a favorable form in

numerical optimization.

2. Since maxk∈H{(D1,2
k )2−(min[D1,J

k , D2,J
k ])2} is not smooth, and by the fact that
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maximum of set of scalar is equivalent to the maximum of their convex hull,

max
k∈H
{(D1,2

k )2 − (min[D1,J
k , D2,J

k ])2} = max
k∈H
{(D1,2

k )2 − (−max[−D1,J
k ,−D2,J

k ])2}

= max
µ∈Σ

H∑

k=1

µk{(D1,2
k )2 − ( max

ν∈[0,1]
[(ν − 1)D2,J

k − νD1,J
k ])2},

= max
µ+∈Σ+

H∑

k=1

µ+
k {(D

1,2
k )2 − [(ν − 1)D2,J

k − νD1,J
k ])2},

(9.7)

where Σ+ = [ν,Σ]T . Hence, (9.3) becomes the following.

min
u∈U

max
v′∈Y ′(uk)

H∑

k=1

µ+
k {(D

1,2
k )2 − [(ν − 1)D2,J

k − νD1,J
k ])2}

s.t. D1,2
k ≥ σu,

x ≤ xk ≤ x̄, y ≤ yk ≤ y, for all players,

Dynamics (9.2).

(9.8)

where H = {1, 2, . . . ,H}, and U as in (9.4).

Y ′(uk) :=

{[
ωJ,1, · · · , ωJ,H
µ+

1 , · · · , µ+
H

]
∈ RH × Σ+ | min[D1,J

k , D2,J
k ] ≥ σJ , k ∈ H

}
. (9.9)

9.5 Simulation results

Figure 9.1: Experiment set up.
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Fig 9.1 show a set up for the simulation. UAV 1 and 2 are colored blue and

black, respectively. Jammer is colored red. There are two circles with a radius of

D1,2
k , and a center as current position of UAVs. When the network is established,

The two circle indicates the area of network. If the jammer is located inside of

any circles, the network is jammed and the color of circles turn to red.

Various simulation videos are deposited in http://publish.illinois.edu/lee822 for

the various initial positions.

9.6 Necessary and Sufficient condition

In this section, we are interested in finding necessary and sufficient condition for

the jamming to occur.

9.6.1 Sufficient condition

First, we find sufficient condition for the jamming. At a discrete time t, reachable

sets for an UAV (Ru,t) and the jammer (RJ,t) are defined in their own coordinate

(see [48]) as follows.

Ru,t :=

{[
xu

yu

]
| xu = sgn(u)ru(u)(1− cosut), yu = ru(u)| sin(ut)|,−ω̄u ≤ u ≤ ω̄u

}

RJ,t :=

{[
xJ

yJ

]
| xJ = sgn(v)rJ(v)(1− cos vt), yJ = rJ(v)| sin(vt)|,−ω̄J ≤ v ≤ ω̄J

}
,

(9.10)

where ru(u) is the radius of turning (ru(u) = vu
|u|), 0 ≤ t ≤ π

2 min[ 1
w̄u
, 1
w̄J

]. It is

assumed that control is constant for [0, t]. This is particularly reasonable because

of the space constraint for both UAV and the jammer. As they located close to

the limit of x and y, they need nonzero control inputs. By the definition of the

RJ,t, there exists a unique mapping from the origin, O, to any p ∈ RJ,t. Also from

the definition of the reduced space ( [48]), initial headings of UAV and jammer are

both π
2 ,i.e., coincide with positive y axis. Therefore, tuple (O, p, π2 ) exists for any

p ∈ RJ,t. Obviously, tuple (p,O,−π
2 ) also exists for any p ∈ RJ,t.

Let us define transformed reachable set of the jammer, tt,Φ(r) which is con-

structed by rotating the jammer coordinate by Φ and shift the origin to r ∈ Ru,t.

tt,Φ(r) = TΦRJ,t + r, r ∈ Ru,t, (9.11)
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where TΦ is a 2 × 2 rotational matrix. Then by the definition of tt,Φ(r),for any

given r, there exists triplet (r, q, π2 + Φ), ∀q ∈ tt,Φ(r). Then again obviously, there

exists tuple (q, r,−π
2 + Φ), ∀q ∈ tt,Φ(r).

Suppose there exists nonempty set ζt,Φ =
⋂
r∈Ru,t tt,Φ(r). Then any η ∈ ζt,Φ

guarantees the existence of tuple (η, r,−π
2 + Φ), ∀r. This means η is a jamming

point without considering the radius of jamming.

Now, let us consider the jammer with a radius of jamming c = ‖UAV1−UAV2‖.
Transformed reachable set is defined as the jamming radius is introduced. For a

given r ∈ Ru,t,

TRt,Φ(r) := {z | ‖(TΦRJ,t + r)− z‖ ≤ c} (9.12)

Then at time t, the jamming region, JRt is obtained as

JRt,Φ =



η | η ∈

⋂

∀r∈Ru,t

TRt,Φ(r)



 (9.13)

At time t, if the jammer is located inside of JRt with a heading angle Φ − π
2 ,

jamming occurs.

9.6.2 Necessary condition

Minimum requirement for the jamming to be occur is the existence of nonempty

set

TRt,Φ(r1)
⋂
TRt,Φ(r2), (9.14)

where any two different r1, r2 ∈ Ru,t.

9.6.3 Necessary and sufficient condition

Necessary condition is the existence of at least one element of intersection of

TRt,Φ(r) for two different r. Sufficient condition is the existence of element of

intersection of TRt,Φ(r) for all r. Hence, the necessary and sufficient condition is

to find an element such that if η ∈ {TRt,Φ(r1)
⋂
TRt,Φ(r2)} for some r1, r2 ∈ Ru,t

then η ∈ JRt.
First, let us define extreme points for both UAV and jammer. Extreme points
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are obtained by applying upper and lower bound of control. For the UAV,

rl = [ru(u)(cos ω̄ut− 1), ru(u)| sin ω̄ut|]
rr = [ru(u)(1− cos ω̄ut), ru(u)| sin ω̄ut|].

(9.15)

Similarly, for the jammer,

pl = [rv(v)(cos ω̄vt− 1), rv(v)| sin ω̄vt|],
pr = [rv(v)(1− cos ω̄vt), rv(v)| sin ω̄vt|].

(9.16)

Now, let us consider the intersection TRt,Φ(r1)
⋂
TRt,Φ(r2) by fixing r1 = rl, and

varying r2. We can observe that if rl ≈ r2, intersection is trivially nonempty. As

r2 gets further from rl and closer to rr, the intersection becomes smaller. Hence,

the smallest set is obtained from the following intersection.

TΦPr + rl
⋂
TΦPl + rr, (9.17)

where Pr = {z | ‖z−pr‖ ≤ c}, Pl = {z | ‖z−pl‖ ≤ c}. The necessary and sufficient

condition is the existence of η such that

η ∈ {TΦPr + rl
⋂
TΦPl + rr}, (9.18)

where Pr = {z | ‖z − pr‖ ≤ c}, Pl = {z | ‖z − pl‖ ≤ c}.

9.6.4 Geometric interpretation

In this section, we present the example of geometric jamming regions. The Fig. 9.2

shows the example when Φ = 0. The dotted arc in Fig. 9.2(a) and (b) are reachable

sets of an UAV and the jammer, respectively. The circle in 9.2(b) indicates the

jamming radius c. 9.2(c) presents the transformed reachable sets of the jammer,

TRt,Φ(·). The shaded area is the intersection of TRt,Φ(r1) and TRt,Φ(r2). The

Fig. 9.3 presents an example when Φ = π.
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(a) UAV reachable set (dashed arc)
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(c) Transformed reachable set

Figure 9.2: Jamming region(Φ = 0).
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Figure 9.3: Example of the jamming regions with Φ = π.
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9.7 Visualization

In this section, the jamming region is visualized for several different Φ and radius

of jamming c. The visualization is based on the Monte-Carlos method.

The number of 106 points are randomly scattered in a plane and evaluated if

the point satisfies the condition (9.18).

(a) Monte-Carlos method

Φ = π

Φ =
2

π

(b) Convex hull of (a)

Figure 9.4: Example of the jamming regions: Monte Carlo method.

Fig. 9.4 shows an example of the visualization. Fig. 9.4 (a) is the result of

Monte-Carlos method and Fig. 9.4 (b) is a convex hull of each jamming regions.

Fig. 9.5 shows jamming regions for different values of capture radius c =

0.1,0.5,and 1. We can observe that as the capture radius grow, the overall jamming

region grows as well.

Fig. 9.6 and Fig. 9.7 are two different view of the comparison of the jamming

regions with a different radius of capture. We see that the region is monotonically

grows to the radius of capture.
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(a) c = 0.1

Φ =
2

π

Φ = π

(b) c = 0.5

Φ =
2

π

Φ = π

(c) c = 1

Figure 9.5: Example of the jamming regions: convex hulls.

Φ =
π

2

Φ = π

Figure 9.6: Jamming region view 1
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Figure 9.7: Jamming region view 2
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CHAPTER 10

METHOD OF OUTER APPROXIMATIONS
AND ADAPTIVE APPROXIMATIONS FOR

A CLASS OF MATRIX GAMES

10.1 Introduction

Very large matrix games of the form minx∈X maxy∈Y A(x, y), where the elements

Ai,j(x, y) of the matrix A are functions of variables x, y, arise naturally in the

formulation of pursuit-evasion games (see [48]) involving unmanned aerial vehi-

cles (UAVs) commonly referred to as drones, as well as in pursuit evasion games

involving unmanned surface or underwater ships, in which the controls are re-

stricted to discrete values. In these problems the matrix A is often larger than

the 316 × 316, as in our example to be presented later. Another area in which

very large matrix games arise is global solution of min-max problems of the form

minx∈X maxy∈Y φ(x, y), with φ(x, y) continuous and x, y one dimensional, and

a solution of specified accuracy is required. As we will see in our examples, a

straightforward approach to the solution of such min-max problems requires an

inordinate amount of computing time, making it unusable in real time applica-

tions. Since the common factor of all such problems is that they can be viewed

as discretization of continuous min-max problems, we explore in this paper the

possibility of using tools that are an adaptation of tools used for the continuous

min-max case: the construction of consistent approximations and the Method of

Outer Approximations (see Secs. 3.3 and 3.4.5 in [20]). The result is a scheme

which combines sequential precision refinement with an adaptation of the classical

Method of Outer Approximations. The scheme computes fast enough for use in

real time applications, such as navigation in pursuit-evasion situations.

We were unable to find much in the literature that addresses matrix form min-

max problems and could serve as an alternative to the algorithm that we present.

One possibility would be to transform the matrix min-max problem into a decision

tree and use some form of the α−β algorithm [76], such as SCOUT [77], Principal

variation [78], or MTD-f [79]. Unfortunately, when a matrix game is converted to

a decision tree, we find that the depth of the tree is one, and hence pruning offers

no advantages.
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Another possibility would be to apply the PSO (Particle Swarm Optimization)

technique [80], which is intended for solving the finite min-max problems. PSO is a

population based stochastic optimization technique that requires the construction

of large populations and is not proven to always converge to a solution. Hence, it

is not really a competitor to the algorithm proposed in this paper.

A global optimization algorithm for solving semi-infinite optimization problems

is presented in [81]. It shares with us the use of a version of outer approximations

and complements it with a branch and bound technique. Since a min-max problem

can be converted into a optimization problem by the addition of a variable, the

algorithm described in [81], can be used for solving the second set of example

problems in our paper. However, it does not appear to be competitive on the

narrow class of examples that we consider, since, to quote from the conclusions

in [81], “the main drawback of the method, as it stands, is the rapid increase in

the size of the lower and upper-bounding problems as nodes of increasing depth

are visited by the B&B procedure”, a problem from which our algorithm does not

suffer.

Consequently, our experimental results compare the computing times obtained

using our method with those obtained using a basic algorithm that requires the

evaluation of all the elements of the A matrix. As we will see from our examples,

the computational time reductions with respect to any min-max algorithm, which

requires the evaluation of all the elements Ai,j(x, y) of the game matrix, become

spectacular as the size of the problems increases.

10.2 Matrix Method of Outer Approximations

The method of outer approximations (see Sec. 3.4.5 in [20]) is a standard tech-

nique for solving continuous nonlinear programming problems with semi-infinite

constraints and semi-infinite min-max problems. For semi-infinite min-max prob-

lems of the form

min
x∈X

max
y∈Y

φ(x, y) (10.1)

where φ : Rn×Rm → R is continuous and the sets X ⊂ Rn, Y ⊂ Rm are compact,

the conceptual method of outer approximations 1 has the following form (see [20]

page 436):

1As stated, this method is conceptual because it requires global optimization evalua-
tions.
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Conceptual Method of Outer Approximations.

Data: x0 ∈ Rn.

Step 0: Set i = 0, compute

y0 ∈ arg max
y∈Y

φ(x0, y), (10.2)

and set Y0 = {y0}.

Step 1: Compute

xi+1 = arg min
x∈X

max
y∈Yi

φ(x, y). (10.3)

Step 2: Compute a yi+1 ∈ arg maxy∈Y φ(xi+1, y) and set Yi+1 = Yi ∪ {yi+1}.

Step 3: Replace i by i+ 1 and go to Step 1.

The Conceptual Method of Outer Approximations decomposes the original semi-

infinite min-max problem (10.1) into an infinite sequence of finite min-max prob-

lems of the form (10.3), i.e.,

min
x∈X

max
y∈Yi

φ(x, y), (10.4)

where the sets Yi are finite, but growing monotonically in size as the computation

proceeds. The algorithm to be used for solving (10.4) is not specified in the Method

of Outer Approximations and the user is free to choose one.

In [20] page 438, we find the following result:

Theorem 1. Every accumulation point x̂ of a sequence {xi}∞i=0, constructed by

the Conceptual Method of Outer Approximations, is a global minimizer for problem

(10.1).

When the setsX,Y in (10.1) are discrete, i.e., X = {x1, . . . , xp}, Y = {y1, . . . , yq},
the values φ(xi, yj) define a p× q matrix A, with elements Ai,j defined by

Ai,j = φ(xi, yj), i = 1, . . . , p, j = 1, . . . , q (10.5)

and the min-max problem (10.1) can be viewed as a matrix game:

min
i∈P

max
j∈Q

Ai,j , (10.6)

where

P = {1, . . . , p}, Q = {1, . . . , q}. (10.7)

In the applications section, where we will introduce a successive approximations

technique, we will make use of min-max problems defined on submatrices of the
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matrix A, i.e., on submatrices defined by the elements Ai,j of A, with i ∈ I and

j ∈ J, where I ⊂ P and J ⊂ Q. These problems have the form

min
i∈I

max
j∈J

Ai,j (10.8)

The obvious interpretation of the Method of Outer Approximations, for solving

matrix games of the form (10.8), is as follows:

Matrix Method of Outer Approximations 1.

Data: A p× q Matrix A, with elements Ai,j, and a row index i0 ∈ I.

Step 0: Set k = 0, and compute the column index

j0 = arg max
j∈J

Ai0,j (10.9)

and set J0 = {j0}.

Step 1: Solve the problem

min
i∈I

max
j∈Jk

Ai,j (10.10)

to obtain its value mk and corresponding row index ik of A.

Step 2: Find the largest element Aik,jk in the ik row of the matrix A and the

corresponding column index jk of A.

Step 3: If Aik,jk = mk, stop (since the triplet {m∗, i∗, j∗} := {mk, ik, jk} is a

solution of (10.8)). Else, set

Jk+1 = Jk ∪ {jk}, (10.11)

replace k by k + 1 and go to Step 1.

Theorem 2. The Matrix Method of Outer Approximations solves the problem

(10.8).

Proof Let Jk be any subset of J. Then for any i ∈ I,

max
j∈Jk

Ai,j ≤ max
j∈J

Ai,j (10.12)

and hence

min
i∈I

max
j∈Jk

Ai,j ≤ min
i∈I

max
j∈J

Ai,j . (10.13)
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Let ik ∈ I, jk ∈ Jk be such that

Aik,jk = min
i∈I

max
j∈Jk

Ai,j (10.14)

and suppose that

Aik,jk = max
j∈J

Aik,j , (10.15)

then we have that

Aik,jk = max
j∈J

Aik,j ≤ min
i∈I

max
j∈J

Ai,j , (10.16)

i.e., {Aik,jk , ik, jk} is also the triplet solution for the full min-max problem (10.8),

and hence it is clear that the Matrix Method of Outer Approximations solves the

problem (10.8).

As stated, the Matrix Method of Outer Approximations involves a lot of costly

duplicate function evaluations, which can be eliminated as in the following stream-

lined version of the Matrix Method of Outer Approximations. In this version, the

maximum values computed by the Matrix Method of Outer Approximations using

the index set Jk are stored in a vector M . Hence the construction of the index

set Jk+1 requires only the computation of µk := maxj∈J\Jk followed by finding the

larger of µk and Mik . These two operations can be combined notationally, as we

will see.

Matrix Method of Outer Approximations 2

Data: A p× q matrix A, index sets I ⊂ P, J ⊂ Q, j0 ∈ J.

Step 0: Set k = 0, M ∈ Rp, with Mi = −∞ for all i ∈ Q, J0 = {j0}.

Step 1: For all i ∈ I, Set Mi = max{Mi, Ai,jk}.

Step 2: Set

mk = min
i∈I

Mi, (10.17)

ik = arg min
i∈I

Mi. (10.18)

Step 3: Set

m∗k = max
j∈J\Jk

{Mik , Aik,j} (10.19)

jk = arg max
j∈J\Jk

{Mik , Aik,j} (10.20)

Step 4: If m∗k = Mik , set m∗ = mk, i∗ = ik, j∗ = jk to be the solution of (10.8)

and stop. Else, set Jk+1 = Jk ∪ {jk}, k = k + 1, and go to Step 1.
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In our numerical experiments, we will compare the performance of the Method of

Outer Approximations 2 with that of the Basic Algorithm below, which evaluates

all the elements of the matrix A, but stores only three numbers, m∗, i∗, j∗, during

its execution.

Basic Algorithm.

Data: A p × q matrix A, with elements Ai,j, and two sets I ⊂ {1, 2, . . . , p},
J ⊂ {1, 2, . . . , q}.

Step 0: Set m∗ =∞, i∗ = p, j∗ = q.

Step 1 For i ∈ I compute

j(i) = arg max
j∈J

Ai,j (10.21)

If Ai,j(i) < m∗, set m∗ = Ai,j(i), i
∗ = i and j∗ = j(i).

The following result is obvious.

Proposition 3. If m∗, i∗, j∗ are computed by the Basic Algorithm, then m∗ is the

optimal value of the matrix game (10.8), restricted to the submatrix defined by the

sets I and J, and i∗, j∗ define the corresponding solution row and column of A.

It should be obvious, that Matrix Method of Outer Approximations 2 is never

less efficient than the Basic Algorithm in solving arbitrary matrix games of the form

(10.8). However, as we will see in the following two sections, that when combined

with sequential precision refinement to obtain good starting points, it produces

spectacular improvements over the Basic Algorithm on a class of important min-

max problems.

10.3 A Harbor Defense Problem

In recent years, small unmanned vehicles have become inexpensive and deadly

weapons. It is easy to imagine a scenario where a small unmanned explosives-

packed submarine is launched by terrorists from a freighter, at a safe distance

from the entrance to a harbor, with the mission of destroying a large cruise ship

carrying many thousands of passengers. The effect could be as devastating as the

9/11, 2001 attack on the World Trade Center in New York. Idealizing a real world

situation, we consider a harbor that can be reached via a rectangular channel of

width W and assume that an intruder tries to reach the target ships anchored at

the end of the harbor. The task of the defender craft is to prevent the intruders
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from reaching its target, as illustrated in Fig. 4.1. The defender can achieve its

goal either by destroying the intruder or causing the intruder to flee.

We assume that the defending vehicle is a unmanned submarine, hovercraft, or

drone, whose behavior is determined by a feedback model predictive control (MPC)

law (see [24]) based on a min-max optimal control problem which, we believe,

captures the essence of the intruder’s goal of getting within striking distance, δ of

its target, as well as the intruder’s perception of how it can be destroyed by the

defender.

The idea behind Model Predictive Control (MPC) is quite old, going back to the

1950’s. It consists of generating a feedback law for a dynamical system by recom-

puting an optimal trajectory for the dynamical system every ∆ time units, where

∆ is called the sampling time. This mechanism makes it possible to compensate for

changing conditions as time proceeds. For an excellent survey of classical uses of

MPC, see [24]. For previous attempts of using MPC in pursuit-evasion situations,

see [55], [82].

The situation we will describe is more complicated than the one in the classical

case in that there is not one but two dynamical systems involved with opposing

objectives. In addition, we assume that the steering settings are not continuously

variable, but can only take a few discrete values, such as stop, full speed ahead,

full speed 60 degrees to the right, and full speed 60 degrees to the left. As a

result, the optimal control problem that the defender needs to solve is a min-max

optimal control problem, with discrete variables. In our scenario, the defender is

able to determine the dynamics of the intruder as well as its position, velocity, and

direction of travel.

10.3.1 Dynamics

Assuming that both the defender and intruder are unmanned underwater vehicles

(UUVs), and that they are confined to a rectangular channel of width W (at the

end of which is the harbor with a high value target), their dynamics have the form

ẋ1(t) = v(t) cos θ(t),

ẋ2(t) = v(t) sin θ(t),

θ̇(t) = σ(t),

v̇(t) = α(t),

(10.22)

where x1 is the positional coordinate of the UUV along the channel, x2 is the po-

sitional coordinate of the UUV perpendicular to the channel, and θ is the heading,
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i.e., the angle between the direction of motion of the UUV and the x1 axis in our

positional coordinate system. We assume that the channel is sufficiently shallow

that a depth coordinate is not needed. We assume that there is a steering input

σ(t) and a propulsion input α(t), which are subject to constraints of the form:

0 ≤ v(t) ≤ v̄,
|α(t)| ≤ ᾱ,
|σ(t)| ≤ σ̄,
σ(t)v(t) ≤ kf .

(10.23)

The constraint σ(t)v(t) ≤ kf captures the relationship between centripetal force

and velocity.

We assume that the model predictive control law uses a sample time ∆, so

that for any integer k ≥ 0 and t ∈ [k∆, (k + 1)∆) the controls are constant,

i.e., for t ∈ [k∆, (k + 1)∆), v(t) = v(k∆) and σ(t) = σ(k∆). We can integrate

the differential equation (10.22) analytically for t ∈ [k∆, (k + 1)∆), to obtain the

difference equations:

x1
k+1 = x1

k + ∆vk cos θk + ∆2αk cos θk,

x2
k+1 = x2

k + ∆vk sin θk∆
2αk sin θk,

θk+1 = θk + ∆σk,

vk+1 = vk + ∆αk,

(9c)

where x1
k = x1(k∆), x2

k = x2(k∆), θk = θ(k∆), vk = v(k∆), σk = σ(k∆), and

αk = α(k∆).

10.3.2 Defender model predictive Control Law

To distinguish between the intruder and defender, we will add a subscript i to

indicate the intruder states, controls, and constraints, and a subscript d to indicate

the defender states, controls, and and constraints. Let

zd(k∆) = (x1
d(k∆), x2

d(k∆), θd(k∆), vd(k∆))T

denote the state of the defender at time t = k∆ and let

zi(k∆) = (x1
i (k∆), x2

i (k∆), θi(k∆), vi(k∆))T
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denote the state of the intruder at time t = k∆. Similarly, let

ud(k∆) = (σd(k∆), αd(k∆))T

denote the control for the defender at time t = k∆ and let

ui(k∆) = (σi(k∆), αi(k∆))T

denote the control for the intruder at time t = k∆.

Defender model predictive Control Algorithm

Data: Sampling Time = ∆, horizon = N∆, initial defender and intruder states

zd(0), zi(0).

Step 1: Set k = 0.

Step 2: Set z(0) = zd(k∆) in (9c) to compute the defender trajectory and zi(0) =

zi(k∆) in (9c) to compute the intruder trajectory.

Step 3: Solve the defender min-max problem (10c), below, for an optimal de-

fender control sequence u∗d = (u∗d(0), u∗d(∆), . . . , u∗d((N − 1)∆)).

Step 4: Apply the control u∗d(0) to the defender for ∆ units of time.

Step 5: At time (k + 1)∆, measure the states zd((k + 1)∆) and zi((k + 1)∆).2

Step 6: Replace k by k + 1 and go to Step 2.

Note that the min-max problem in Step 4, above, can be changed at each sam-

pling time, and so can the sample time ∆. It makes sense to use a large ∆ when

the adversaries are far apart and decrease it as they get nearer to each other.

10.3.3 Min-Max Problem Formulation

Next, we introduce a min-max optimal control problem, reflecting a worst case

scenario, that must be solved at each sample time within the MPC law.

Suppose that the horizon length is N∆, with N = 2s and s ≥ 2 a positive

integer. For k = 0, . . . , N − 1, let ud(k∆) = (σd(k∆), αd(k∆))T and ui(k∆) =

(σi(k∆), αi(k∆))T .

Assuming that the intruder is risk averse and will not venture within torpedo

striking distance τ > 0 of the defenders, we propose the following max-min optimal

2A more realistic statement of the model predictive control algorithm includes provi-
sions for the time it takes to solve the appropriate min-max problem of the form (10.8)
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control problem for the receding horizon control law:

max
ud∈Ud

min
ui∈Ui

{
min
k∈N
{x1

i (k∆,ui)+

πmax
k∈N
{−‖xi(k∆,ui)− xd(k∆,ud)‖2 + τ2}+}

}
,

(10.24)

where {x}+ = max{0, x}, N = {1, 2, . . . , N} and π > 0 is a sufficiently large

penalty to ensure that the intruder keeps his distance from the defender.

Making use of the fact that

max
x∈X

min
y∈Y

φ(x, y) = max
x∈X

(−max
y∈Y
−φ(x, y)) = −min

x∈X
max
y∈Y

(−φ(x, y)), (10.25)

We can rewrite (10.24) as

− min
ud∈Ud

max
ui∈Ui

−
{

min
k∈N
{x1

i (k∆,ui)+

πmax
k∈N
{−‖xi(k∆,ui)− xd(k∆,ud)‖2 + τ2}+}

}
,

(10.26)

The constraint set Ud for the defenderN -sample control string ud = (ud(0), . . . , ud((N−
1)∆)) is defined by

Ud = {ud =(ud(0), . . . , ud((N − 1)∆))

s.t. 0 ≤ vd(k∆) ≤ v̄d,
|σd(k∆)| ≤ σ̄d,
|αd(k∆)| ≤ ᾱd,
σd(k∆)vd(k∆) ≤ κd,
0 ≤ x1

d(k∆,ud),

0 ≤ x2
d(k∆,ud) ≤W},

(10.27)

where k = {0, . . . , N − 1}, v̄d > 0 is the speed limit for the defender, σ̄d, is the

limit on the steering inputs for the defender, and W is the width of the channel.

For the intruder control string ui = (ui(0), . . . , ui((N − 1)∆)) we get a similar
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result:

Ui = {ui = (ui(0), . . . , ui((N − 1)∆))

s.t. 0 ≤ vi(k∆) ≤ v̄i,
|σi(k∆)| ≤ σ̄i,
0 ≤ x1

i (k∆,ui),

0 ≤ x2
i (k∆,ui) ≤W,k = 0, . . . , N − 1,

σi(k∆)vi(k∆) ≤ ki},

(10.28)

where τ is the distance at which intruder torpedoes become effective. At this

point, we assume that the inputs for the defender and intruder can be adjusted

in discrete increments only. In particular, we assume that σd can only take the

values 0, σ̄d,−σ̄d and αd can only take the values 0, ᾱd,−ᾱd, and similarly for

the intruder. Hence we see that the control ud(k∆) can assume no more than 9

possible values, and the same holds for the control ui(k∆), k = 0, 1, . . . , N − 1.

If we associate these control combinations with the integers 0, 1, 2, . . . , 8, e.g.,

(σd = 0, αd = 0) with the number 0, (σd = σ̄d, αd = 0) with the number 1, etc, we

can represent any control sequence ud as a N digit number to base 9, where the

first digit defines the control at time t = 0, the second digit defines the control at

time t = ∆, the third digit defines the control at time t = 2∆, etc. Clearly, there

are 9N possible defender and intruder control sequences.

We adopt the convention that every number to base 9, in the range of 0 to 9N ,

is always written as an N digit number, so the number 1 is written as 000 . . . 01,

the number 9 is written as 000 . . . 010, etc.

We can number the possible defender controls as ud,i, i = 1, 2, . . . , 9N and the

intruder controls as ui,j, j = 1, 2, . . . , 9N , which result in a 9N × 9N cost matrix

A, with elements

Ai,j = −min
k∈N
{x1

i (k∆,ui,j)+πmax
k∈N
{−‖xi(k∆,ui,j)−xd(k∆,ud,i)‖2τ2}+}. (10.29)

Now, the indices i and j in the matrix elements Ai,j are expressed as numbers

to base 10. To determine which defender and intruder control sequences are to be

used in computing Ai,j , we convert i and j to N digit numbers to base 9, and then

deduce the control sequences from these numbers.

If we assume that the speeds of the defender and of the intruder are constant,

then σd(k∆) = σi(k∆) = 0 for k = 0, 1, . . . , N − 1, and the number of possible

control values at each sample time reduces to 3. In this case, the control sequences

can be represented by an N digit number to base 3, and the resulting matrix A
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has dimensions 3N × 3N .

It is simpler to take a general approach and assume that the number of possible

control values at each sample time is some positive integer k, so that the the

resulting A matrix has dimensions kN × kN . Let K = {1, 2, . . . , kN} and let

Fd ⊂ K be the set of all the elements in K such that when expressed as an N

digit number to the base of k they represent a feasible control for the defender

(i.e., one in Ud), and similarly, let Fi ⊂ K be the set of all the elements in K such

that when expresses as a N digit number to the base of k they represent a feasible

control (i.e., one in Ui) for the Intruder.

Then we see that the problem (10.26) can be rewritten as the matrix game

−min
i∈Fd

max
j∈Fi

Ai,j , (10.30)

where A is the matrix whose elements are defined by (10.29).

10.3.4 Successive Precision Refinement

In the case of the continuous min-max problem, the time needed to solve the prob-

lem using the Method of Outer Approximations is very strongly dependent on

the quality of the starting point. Not surprisingly, the same is true for the Ma-

trix Method of Outer Approximations 2 applied to the discretized harbor defense

problem. To obtain an excellent starting point for the kN × kN matrix game, we

proceed as follows. For the sake of simplicity, let us assume that N = 16 and that

k = 3, that would result in a 43046721 × 43046721 A matrix in the discretized

game. So, instead, we proceed as follows. We begin by imposing the restriction

that the defender and intruder controls are kept the same for the first 8 samples

and then, again, for the next 8 samples, i.e., we assume that there are only two

samples which are 8 times as long as the actual samples. This results in a min-max

game (ignoring the - sign in (10.29)) with a 32 × 32, i.e., a 9 × 9 A matrix. The

solution of the resulting game, obtained using the Basic Algorithm, is of the form

of a triplet Ai∗0j∗0 , i
∗
0, j
∗
0 , where i∗0,j∗0 ∈ {1, 2, ..., 9}. Next, we proceed to solve a

game with 4 samples. Writing i∗0 and j∗0 as integers to base 4, i0 = ab, j0 = cd,

with a, b, c, d ∈ {0, 1, 2, 3}. The matrix game corresponding to 4 samples, has a

34 × 34 matrix Ai,j . We initialize its solution process by finding the largest ele-

ment Ai∗0,j∗ in the i∗0 = aabb row (read as a number to base 4) of the new matrix

Ai,j , and store the j∗ column of A. We use this column to initialize the matrix

outer approximations algorithm to obtain the next solution Ai1,j1 , i1, j1. We then

continue to 8-sample and finally to 16-sample controls. We can restate the above
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description as a general procedure for constructing the sets I,J, for the case of

N = 2w sample controls, which can assume k values at each sample time. We

assume that the horizon length N = 2w, with w ≥ 1, a positive integer, is the

same for the defender and intruder as well as the number of control values at each

sample time.

In the algorithm below, which computes the index sets to be used at each

successive optimization stage in the algorithm that follows, N denotes the number

of samples in the horizon, k denotes the number of control values that are possible

at each sample time, and l denotes the number of samples for which the controls

must be kept the same. To simplify exposition, we assume that the parameters N ,

k, and l are the same for the intruder and the defender. These assumptions are

carried over to the algorithm after the one below.

Precision Refining Index Definition Algorithm 1.

Data: Positive integers N = 2w, where w ≥ 1 is an integer, k, and l = 2v, where

v < w.

Step 0: Set I = J = {1, 2, . . . , N}.

Step 1: for i=1 to N,

express i as a base k string (i1, i2, . . . , iN ).

for j = 1 to N/l,

If i(j−1)l+1 = i(j−1)l+2 = . . . = i(j−1)l+l is false, remove i

from I and J.

Successive Precision Refining Algorithm 1.

Data: Positive integer N = 2w, where w ≥ 1 is an integer, integers k, and

l = 2v, where v < w; Initial “two-sample” control for the defender: u∗d with

(u∗d(0) = ui(10.1) = · · · = u∗d(N/2− 1), and u∗i (N/2) = u∗i (N/2 + 1) = · · · =
u∗i (N − 1), and the corresponding row index i∗ for the matrix A defined by

(10.29).

Step 0: Set l = N/2.

Step 1: Use the Precision Refining Index Definition Algorithm 1 to compute the

index sets I and J.

Step 2: Initialize the Matrix Method of Outer Approximations 2 by setting the

new values I = I ∩Fd, J = J ∩Fi, and i0 = i∗, and use it to solve the min-

max problem (10.29), to obtain its solution m∗, i∗, j∗. Convert the index i∗
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into the defender control sequence ud with

u∗d(kN/l) = u∗d(kN/l + 1) = u∗d(kN/l + 2) = · · · = u∗d((k + 1)N/l − 1),

for k = 0, 1, . . . , N/l − 1, and convert the index j∗ into the intruder control

sequence ud with u∗i (kN/l) = u∗i (kN/l + 1) = u∗i (kN/l + 2) = · · · = u∗i ((k +

1)N/l − 1), for k = 0, 1, . . . , N/l − 1.

Step 3: Set l = l/2. If l < 1 Stop, the last computed control sequences are

optimal for the problem (10.29). Else go to Step 1.

In practice, it is simpler and more efficient to proceed as follows. Replace ∆

by ∆ = N/2, which automatically results in a 2 sample optimal control problem

and hence in a k2 × k2 matrix game which can be solved by the Matrix Method

of Outer Approximations. Next, replace ∆ by ∆ = N/4, which results in a 4

sample optimal control problem, and hence in a k4 × k4 matrix game. Interpret

the solution of the previous game as an initial point for the new game and use the

Matrix Method of Outer Approximations to solve it, etc.

10.3.5 Numerical Results: Optimal Control

We considered two scenarios. In the first scenario, the speed was kept constant

for both the intruder and the defender at their maximum value v̄i = v̄d = 1. The

other parameters were set as follows: ᾱi = ᾱd = 1, σ̄i = σ̄d = 0.1, and kf = 1.

The initial state for the intruder was zi(0) = {40, 10, π, 0} and the initial state

for the defender was zd(0) = {10, 10, 0, 0}. The initial control for the defender

was ud(k∆) = (σd(k∆), αd(k∆))T = (0, 1)T for k = 0, · · · , N − 1. The numerical

experiment were carried out in MATLAB on a MacBook Pro with an Intel i7

processor, 2.3 GHz speed, and 16 GB random access memory.

Numerical results obtained using the Successive Precision Refining Algorithm 1,

which incorporates the Matrix Method of Outer Approximations 2, are presented

in Table 10.10.1 . In Table 10.1 and the subsequent tables, MOA and BA stand

for “Method of Outer Approximations” and “Basic Algorithm” respectively. The

unit of computation time is the second, unless specified otherwise. The numerical

solution of the min-max problem (10.24), transcribed into the form (10.1), using

the BA is presented for the comparison purposes. The ’Horizon Samples’ column

shows the number of samples in the horizon. The number of function evaluations

of MOA is 2× Iters× number of rows of A plus the initialization cost. The factor

2 is needed because in each MOA iteration, the BA has to search one row and

one column. The initialization cost is due to the fact that the data needs to be

computed in the first stage of the Successive Precision Refining Algorithm 1, which
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requires N function evaluations. Obviously, The number of function evaluations

of BA is number of rows of A× number of rows of A.

Note that Table 10.1 gives the computing times at each stage of the Precision

Refining Algorithm 1. To obtain the total computing time, the reader needs to

add the results for each stage, which are dominated by the computing time in the

last stage.

Table 10.1: Numerical experiment result: Single input case.

Horizon
Samples A size

MOA BA BA
MOAIters Comp.Time Comp.Time

2 32 × 32 5 0.025 0.02 0.8
4 34 × 34 3 0.075 0.92 12.27
8 38 × 38 6 5.64 2847 504.7
16 316 × 316 10 20 hrs 4982 yrs∗ 1.7× 106

∗ are estimated values

Throughout the numerical experiment, the computing time difference between

the results obtained using the Successive Precision Refining Algorithm 1 and those

obtained using the BA gets exponentially larger and larger as the number of stages

grows. There are two reasons for this. The first reason is that the MOA constructs

a column such that every updates of it contains a maximizer of the previous itera-

tions. Since this columns are “close” to a maximizing column, the MOA can reduce

the number of function evaluations needed to find a minimizer. The second reason

is that the the Successive Precision Refining Algorithm 1 produces good starting

points for the MOA. The reason for this is that when the objective function φ(·, ·)
is continuous, the Successive Precision Refining Algorithm 1 constructs finer and

finer approximations to a continuous min-max problem of the form (10.1), whose

solutions converge to the solution of the continuous min-max. Hence, not surpris-

ingly, the solution of a coarser problem is a good approximation to the solution

of the next, finer problem, with the result that although we use many stages, in

each the number of iterations remains quite small and hence the overall comput-

ing time is spectacularly reduced, compared to a one stage solution of the finest

discretization that one needs to deal with. In the next experiment, we use two

inputs: angular velocity and thrust. Due to limitations imposed by MATLAB, the

number of samples in the horizon was limited to 8. Results are presented in Table

10.2.

We note that, just as in the single input case, the computing time difference be-

tween the two algorithms gets exponentially larger and larger as the discretization
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Table 10.2: Numerical experiment result: Two inputs case.

Horizon
Samples A size

MOA BA BA
MOAIters Comp.Time Comp.Time

2 2 7× 92 0.11 0.97 8.81
4 5 8× 94 6.3 5166 8210.12
8 6 10× 98 13 hrs 6476 yrs∗ 4.3× 106

∗ estimated values

gets finer and finer.

10.4 Global Optimization

In this section, we demonstrate the efficiency of the Matrix Method of Outer Ap-

proximations 2 in finding approximations to global solutions of min-max problems

of the form (10.1), where x, y ∈ R, so that the sets X = [ax, bx] and Y = [ay, by] are

intervals. When we discretize the intervals into equi-spaced grids of N + 1 points,

we get a matrix game defined by an (N + 1) × (N + 1) matrix A with elements

Ai,j = φ(ax+(i−1)(bx−ax)/N, ay+(j−1)(by−ay))/N , with i, j ∈ {1, 2, · · · , N+1}.
Note that the end points of the intervals [ax, bx] and [ay, by] are included in the

grids.

Definition 1. Let ε ≥ 0 define the precision with which the min-max problem

(10.1) must to be solved. Let lx = bx − ax and ly = by − ay. Let s ∈ N be the

number stages in which the min-max problem (10.1) is to be solved, and let r ∈ N
be the smallest integer such that max{lx/rs, ly/rs} ≤ ε. Let N = rs.

Given the decision to solve the discretized min-max problem in s stages, the

following algorithm computes k, the number of grid points in the intervals [ax, bx,

ay, by] to be used in stage q ≤ s, and the indices, accumulated in the sets I,J, of

the k rows and columns of the A matrix that must be used in stage q3.

Precision Refining Index Definition Algorithm 2.

Data: Positive integers s = the total number of stages to be used, r, such that

N = rs is the number of discretization intervals in X and Y to be used for

the construction of the N+1×N+14 matrix A, and the stage number q ≤ s
.

3The cardinality of I and J is obviously k.
4The number of points in X and Y respectively is N + 1
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Step 0: Set k = rq and l = N/k;

Step 1: Set i(10.1) = 1.

Step 2: for j = 1 to k,

Set i(j + 1) = i(j) + l.

Step 3 Set I = J = i

It may be helpful to examine a couple of examples of the use the Precision

Refining Index Definition Algorithm 2.

Example 1. Suppose that we want to break up the search intervals for both x

and y into 33 = 27 sections, so that r = 3. That results in 28 search points and

hence a matrix game with A a 28 × 28 matrix. Now suppose that we propose to

solve this game in s = 3 stages. In stage 1, we set q = 1. Then in Step 0, we

compute k = rq = 3 and hence l = 9. Thus, for stage 1, the Precision Refining

Index Definition Algorithm 2 computes the index sets

I = J = {1, 10, 19, 28},

which define a 4× 4 matrix A.

In stage 2, q = 2, k = 9, and hence l = 3. Hence the Precision Refining Index

Definition Algorithm 2 computes the index sets

I = J = {1, 4, 7, 10, 13, 16, 19, 22, 25, 28},

which define a 10× 10 matrix A. Note that the index sets for stage 2 contain the

index sets for stage 1, hence the matrix game solution computed in stage 1 can be

used to initialize the Matrix Method of Outer Approximations in stage 2.

Finally, we see that in stage 3, the index sets are

I = J = {1, 2, 3, . . . , 26, 27, 28},

Example 2. Now suppose that we want to break up the search intervals for both

x and y into 103 = 1000 sections, so that r = 10. That results in 1001 search

points and hence a matrix game with a 1001× 1001 matrix.

Again, suppose that we propose to solve this game in s = 3 stages. In stage

1, we set q = 1. Then in Step 0, we compute k = rq = 10 and hence l = 100.

Thus, for stage 1, the Precision Refining Index Definition Algorithm 2 computes
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the index sets

I = J = {1, 101, 201, 301, 401, 501, 601, 701, 801, 901, 1001},

which define an 11× 11 matrix A.

In stage 2, q = 2, k = 100, and hence l = 10. Therefore the Precision Refining

Index Definition Algorithm 2 computes the index sets

I = J = {1, 11, 21, . . . , 101, 111, 121, . . . , 201, 211, . . . , 981, 991, 1001},

which define a 101 × 101 matrix A. Again note that the index sets for stage 2

contain the index sets for stage 1, hence the matrix game solution computed in

stage 1 can be used to initialize the Matrix Method of Outer Approximations in

stage 2.

Finally, we see that in stage 3, the index sets are

I = J = {1, 2, 3, . . . , 999, 1000, 1001},

which define the entire matrix A, and it is ovbious that the solution computed in

stage 2 can be used to initialize the Matrix Method of Outer Approximations in

stage 3.

Successive Precision Refining Algorithm 2.

Data: Positive integers s = the number of stages to be used, r, such that N = rs

is the number of discretization intervals in X and Y to be used for the

construction of the (N + 1)× (N + 1) matrix A. Also, a formula φ(x, y) for

computing the elements of the (N + 1)× (N + 1) matrix A in (10.8) and a

column index j∗ ∈ {1, 2, 3, . . . , N + 1}.

Step 0: Set q = 1.

Step 1: Use the Precision Refining Index Definition Algorithm 2 to compute the

index sets I and J.

Step 2: Initialize the Matrix Method of Outer Approximations 2 with the column

A.,j∗ and use it to solve the min-max problem (10.8), to obtain its solution:

new values for the indices i∗, j∗ and the corresponding value Ai∗,j∗, of the

matrix game defined by the current index sets I and J.

Step 3: If q < s, set q = q+ 1 and go to Step 1 , Else stop, Ai∗,j∗, i
∗, j∗ is the

solution of the problem (10.8).
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We will now present three sets of numerical examples. The objective functions in

examples are continuous and have many local extrema in the constraint intervals.

Therefore standard, gradient based semi-infinite optimization algorithms, such as

those presented in Section 3.4 of [20], and the smoothing method based approach

[83] will most likely fail to find a global minimizer unless the starting point is in

the vicinity of a global minimizer.

To solve the example problems to six decimal places, using the Successive Pre-

cision Refining Algorithm 2, we discretize the objective functions, as follows. In

first two examples, we set ax = ay = −8, bx = by = 8 and used two sets of values

of (r, s), (r = 10, s = 6), (r = 2, s = 17), which results in N = 16 × 106 and

N = 160× 217 points, respectively. In the third example, we set ax = ay = −300,

bx = by = 300 and it results in N = 600 × 106 and N = 6000 × 217 points,

respectively.

In Tables 3, 4 and 5 we present computational results obtained using the Suc-

cessive Precision Refining Algorithm 2 and the BA. In the tables, the columns

labeled ’Interval’ contain the values of l used by the Successive Precision Refining

Algorithm 2. The initial value of the interval is set to 0.1 for both cases. The

’Iter’ column shows the number of iterations of the Modified Basic Algorithm.

The ’Eval’ column shows the number of evaluations of the elements Ai,j .

10.4.1 Minimization of The McCormick function

The McCormick function is given by

φ(x, y) = sin(x+ y) + (x− y)2 − 1.5x+ 2.5y + 1 (10.31)

and is plotted in Fig 10.1, where we see that it has multiple extrema.

We solve (10.1) with X = [−8, 8],and Y = [−8, 8]. The solution is approximately

known to be (x∗, y∗) = (1.27, 8). Numerical results associated with solving the min-

max problem, with the McCormick function, is presented in Table 3, at the end of

this section. We observe that the MOA requres a very small number of iterations.

The time required to obtain the prescribed precision of solution was slightly faster

with r = 10 than with r = 2. The initial value for the column is chosen as the first

column of the A matrix from the Matrix Method of Outer Approximations.

The reason for this is that in most stages, for both values of r, the MOA sub-

procedure, of the Successive Precision Refining Algorithm 2, required only one

iteration to obtain a solution and hence the smaller number of stages associated

with r = 10 resulted in faster overall solution time. However, r = 2 allows a finer
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Figure 10.1: Shape of the McCormick function

choice of desired precision.

10.4.2 A Second Example

For our second test in finding global solutions of problems of the form (10.1), we

chose the function φ(x, y) below, which, like the McCormack function, has multiple

extrema in the constraint set.

φ(x, y) =
sin
√

0.5x2 + y2

ε+
√
x2 + y2

− sin
√

(x− 1)2 + y2

ε+
√

(x− 1)2 + y2
. (10.32)

The plot of this function is given in Fig. 10.2.

We solve (10.1) with this φ(x, y) and with X = [−8, 8],and Y = [−8, 8].The so-

lution was found approximately to be (x∗, y∗) = (3.41,−5.23). The initial column

137



Figure 10.2: Shape of the testing function

is chosen as the first column of the A matrix from the Matrix Method of Outer

Approximations.

Experimental results are presented in Table 10.4, at the end of this section, for

both r = 10 and r = 2. In this experiment, the total time required to obtain

similar precision results was slightly faster with r = 10 than with r = 2, for the

same reasons as in the experiment with the McCormack function. Computational

times for both cases for each level of discretization are presented in Fig 10.3. Note

that both axes are to log scale.

MBA

MOA

Figure 10.3: Time comparison of MOA and BA of the testing function
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10.4.3 A Third Example: Egg holder function

For our third test in finding global solutions of problems of the form (10.1), we

chose the function φ(x, y) below, called egg holder function [84], [85].

φ(x, y) = −(y + 47) sin

(√∣∣∣y +
x

2
+ 47

∣∣∣− x sin(
√
|x− (y + 47)|

)
. (10.33)

This function has very large number of multiple extrema, as shown in Figure 10.4.

Figure 10.4: Shape of the egg holder function

We solve (10.1) with this φ(x, y) and with X = [−300, 300],and Y = [−300, 300].

The solution was approximately found to be (x∗, y∗) = (−156.04, 164.16). The

initial column is chosen as the first column of the A matrix from the Matrix

Method of Outer Approximations. Experimental results are presented in Table

10.5, for both r = 10 and r = 2. In this experiment, the total time required to

obtain similar precision results was slightly faster with r = 10 than with r = 2, for

the same reasons as in the previous experiments.
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10.4.4 Computational Results

Table 10.3: Numerical experiment result: McCormick function

r = 2

Interval
MOA BA BA

MOAIters Comp.Time Solutions Comp.Time

0.1 2 0.0004 (1.3, -8) 0.002 5

0.1× 0.5 2 0.0007 (1.2, -8) 0.07 100

0.1× 0.52 1 0.001 (1.27, 8) 0.1 100

0.1× 0.53 1 0.001 (1.26, 8) 0.14 140

0.1× 0.54 1 0.002 (1.268, 8) 0.5 250

0.1× 0.55 1 0.004 (1.267, 8) 2.3 575

0.1× 0.56 1 0.008 (1.268, 8) 9.3 1162

0.1× 0.57 1 0.01 (1.268, 8) 37.3 3750

0.1× 0.58 1 0.03 (1.268, 8) 149.4 4980

0.1× 0.59 1 0.05 (1.268, 8) 540∗ 10800

0.1× 0.510 1 0.07 (1.2680, 8) 39 mins∗ 3.3× 104

0.1× 0.511 1 0.15 (1.2680, 8) 2 hrs∗ 4.8× 104

0.1× 0.512 1 0.29 (1.26841, 8) 10 hrs∗ 1.2× 105

0.1× 0.513 1 0.54 (1.26842, 8) 1.87 days∗ 3× 105

0.1× 0.514 1 1.23 (1.26841, 8) 7 days∗ 5× 105

0.1× 0.515 1 2.27 (1.26841, 8) 23.6 days∗ 9× 105

0.1× 0.516 1 5.23 (1.268414, 8) 3.7 months∗ 1.8× 106

0.1× 0.517 1 18.27 (1.2684142, 8) 1.3 yrs∗ 2.2× 106

r = 10

Interval
MOA BA BA

MOAIters Comp.Time Solutions Comp.Time

0.1 2 0.0014 (1.3, -8) 0.002 1.42

0.12 2 0.0045 (1.27, -8) 0.05 11.1

0.13 1 0.0094 (1.268, 8) 42.5 4.5× 103

0.14 1 0.0754 (1.2684, 8) 38 mins 3× 104

0.15 1 0.65 (1.26841, 8) 72 hrs∗ 4× 105

0.16 1 6.47 (1.268414, 8) 8.8 months∗ 3.57× 106

∗ estimated values
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Table 10.4: Numerical experiment result: testing function

r = 2

Interval
MOA BA BA

MOAIters Comp.Time Solutions Comp.Time

0.1 5 0.0009 (3.4, -5.7) 0.002 2.22

0.1× 0.5 4 0.002 (3.4, -5.2) 0.1 18.5

0.1× 0.52 4 0.001 (3.41, -5.23) 0.2 100

0.1× 0.53 4 0.001 (3.41, -5.23) 0.3 192

0.1× 0.54 4 0.001 (3.412, -5.232) 1.36 412

0.1× 0.55 4 0.003 (3.414, -5.233) 8.46 918

0.1× 0.56 4 0.005 (3.414, -5.233) 28.73 1686

0.1× 0.57 4 0.008 (3.4141, -5.2332) 117 3588

0.1× 0.58 4 0.021 (3.4141, -5.2334) 445 7062

0.1× 0.59 4 0.075 (3.4142, -5.2334) 1386 ∗ 1× 104

0.1× 0.510 4 0.11 (3.4142, -5.2334) 12400∗ 2.7× 104

0.1× 0.511 4 0.24 (3.41420, -5.23348) 13 hrs∗ 3× 104

0.1× 0.512 4 1.23 (3.41421, -5.23346) 1.5 days∗ 5.7× 104

0.1× 0.513 4 2.98 (3.41421, -5.23346) 4.8 days∗ 8.6× 104

0.1× 0.514 4 6.34 (3.41421, -5.23347) 21 days∗ 2× 105

0.1× 0.515 4 7.2 (3.414213, -5.233466) 4.4 months∗ 3× 105

0.1× 0.516 4 10.34 (3.414213, -5.233466) 11.7 months∗ 8× 105

0.1× 0.517 4 19.72 (3.4142137, -5.2334662) 4.1 yrs∗ 1.1× 106

r = 10

Interval
MOA BA BA

MOAIters Comp.Time Solutions Comp.Time

0.1 5 0.0008 (3.4, -5.7) 0.002 2.2

0.12 4 0.003 (3.41, -5.24) 0.191 100

0.13 4 0.02 (3.414, -5.233) 87.34 918

0.14 4 0.17 (3.4142, -5.2334) 1.68 hrs∗ 1× 104

0.15 4 2.69 (3.41421, -5.23346) 1.8 days∗ 8.6× 104

0.16 4 18.11 (3.414213, -5.233466) 3.3 yrs∗ 1× 106

∗ estimated values
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Table 10.5: Numerical experiment result: Eggholder function

r = 2

Interval
MOA BA BA

MOAIters Evals Solutions Evals

0.1 8 0.05 (-156, -200.3) 0.17 3.57

0.1× 0.5 8 0.365 (-156.05, 164.1) 0.16 22.5

0.1× 0.52 9 5.4 (-156.05, 164.15) 0.16 160

0.1× 0.53 13 53 (-156.05, 164.175) 0.66 220

0.1× 0.54 17 0.005 (-156.037, 164.175) 2.66 532

0.1× 0.55 18 0.009 (-156.037, 164.175) 10.56 1173

0.1× 0.56 18 0.019 (-156.037, 164.175) 42.69 2246

0.1× 0.57 18 0.038 (-156.037, 164.175) 168 4421

0.1× 0.58 18 0.096 (-156.037, 164.175) 678 7062

0.1× 0.59 18 0.17 (-156.0371, 164.1711) 2580 ∗ 1.5× 104

0.1× 0.510 18 0.29 (-156.0373,164.1652) 10800∗ 3.7× 104

0.1× 0.511 18 1.17 (-156.0375,164.1656) 16 hrs∗ 5× 104

0.1× 0.512 18 2.32 (-156.03984, 164.16386) 2 days∗ 7.4× 104

0.1× 0.513 18 4.54 (-156.03984, 164.16386) 6.3 days∗ 1.2× 105

0.1× 0.514 18 9.19 (-156.03984, 164.16386) 32 days∗ 3× 105

0.1× 0.515 18 18.3 (-156.039843, 164.163867) 5.64 months∗ 8× 105

0.1× 0.516 18 25.19 (-156.039843, 164.163867) 1.4 yrs∗ 1.7× 106

0.1× 0.517 18 38.37 (-156.0398437, 164.1638671) 5.7 yrs∗ 4.6× 106

r = 10

Interval
MOA BA BA

MOAIters Comp.Time Solutions Comp.Time

0.1 5 0.0008 (-156, -200.3) 0.002 2.5

0.12 4 0.003 (-156.04, 164.16) 0.184 61.3

0.13 4 0.03 (-156.04, 164.164) 104.23 3.4× 104

0.14 4 0.28 (-156.0398, 164.1638) 2.89 hrs∗ 8.6× 104

0.15 4 3.69 (-156.03982, 164.16384) 2.58 days∗ 2.8× 105

0.16 4 27.71 (-156.03981, 164.163848) 2.9 yrs∗ 3.7× 106

∗ estimated values

10.5 Conclusion

We have presented a new scheme for solving matrix games that arise in pursuit-

evation, global optimization, and, likely, in other problems as well. As is evident

from the numerical results, when the games are large, the use of our algorithm

results in many orders of magnitude reduction in computational time over any

method that requires the evaluation of all the elements of the A matrix.
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CHAPTER 11

CONCLUSION

We have shown following in previous chapters.

1. The minmax MPC problem can be efficiently solved by separating the prob-

lem into two sequences of subproblems: inner and outer subproblems. The

inner subproblem utilizes the Phase I-Phase II method approach and the

method of the outer approximation is adopted in the other subproblem. We

specially design an optimality function so that our solution method satisfies

recursive feasibility. Also, our method is based on quadratic programming

and is therefore computationally efficient enough to be implemented in real-

time.

2. A minmax MPC problem called harbor defense problem is solved using the

method that we developed. The basic harbor defense problem which includes

a single intruder and defender was presented. Both 2D and 3D human-

interactive simulations are developed.

3. The basic harbor defense problem was extended to various advanced prob-

lems. We presented the harbor defense problem with multiple numbers of

defenders and intruders. Various strategies of the intruder such as suicidal,

risk-averse, and max-min are considered as well. Simulation-based analyses

are presented.

4. We implemented our minmax MPC scheme on a real-time testbeds and

demonstrated the effectiveness of the solution. The first testbed is the

custom-built robotic testbed called HoTDeC (Hovercraft Testbed for De-

centralized Control). The development of the testbed includes not only the

HoTDeC itself, but also network architecture in the laboratory. Each de-

velopment step is elaborated in this dissertation. Next, we test our minmax

MPC scheme on full-sized US Naval Academy patrol ships. An experiment

was conducted in the Chesapeake Bay in collaboration with the US Naval

Academy. One Navy patrol is a human-driven intruder and the other pa-

trol ship is autonomously commanded by our minmax MPC algorithm. The
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results of several experiments were presented.

5. We presented another example of the minmax MPC problem called mobile

network jamming problem. We presented the solution, simulation as well as

the necessary and sufficient conditions for the jamming to occur.

6. We showed that the numerical optimization technique that we adopt to solve

the minmax MPC problem constructs a very efficient method for finding

approximations to the global solutions of minmax problems in the matrix

form as well. We presented examples that show the efficiency of the method.
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APPENDIX A

EXACT INTEGRATION OF THE
DYNAMIC MODEL

Suppose that we are interested in following dynamics:

ẋ1(t) = v(t) cos θ(t)

ẋ2(t) = v(t) sin θ(t)

θ̇(t) = σ(t)

v̇(t) = α(t)

(A.1)

with input σ(t) and input v(t),

0 ≤ v(t) ≤ v̄
|α(t)| ≤ ᾱ
|σ(t)| ≤ ū

(A.2)

x1(t),x2(t) are the position and θ(t) is a heading angle of the water vehicle in

global coordination. (A.1) is viewed as a Dubins car with a varying speed.

Exact discretization of nonlinear model

In this sub section, let us notate k∆ as subscript k for the conciseness. For example,

x(k∆) is denoted as xk. For k∆ ≤ t < (k+ 1)∆, σ(t) = σk and α(t) = αk. Hence,

for k∆ ≤ t < (k + 1)∆, θ(t) = θk + ∆σk and v(t) = vk + ∆αk. Now,

x1
k+1 = x1

k +

∫ (k+1)∆

k∆
v(t) cos θ(t)dt

x2
k+1 = x2

k +

∫ (k+1)∆

k∆
v(t) sin θ(t)dt

(A.3)
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Since θ(t) = θk + tσk and v(t) = vk + tαk for k∆ ≤ t ≤ (k+ 1)∆, dθ(t) = σkdt and

dv = αkdt. Also,

∫ (k+1)∆

k∆
cos θ(t)dt =

∫ (k+1)∆

k∆
cos(θk + tσk)dt =

∫ θk+1

θk

cos θ(t)
1

σk
dθ(t)

=
1

σk
{sin θk+1 − sin θk}

(A.4)

Similarly,

∫ (k+1)∆

k∆
sin θ(t)dt =

∫ (k+1)∆

k∆
sin(θk + tσk)dt =

∫ θk+1

θk

sin θ(t)
1

σk
dθ(t)

= − 1

σk
{cos θk+1 − cos θk}

(A.5)

From the integration by part,

∫ (k+1)∆

k∆
v(t) cos θ(t)dt =

[
v(t)

∫
cos θ(t)dt

](k+1)∆

k∆

− αk
∫ (k+1)∆

k∆

(∫
cos θ(t)dt

)
dt

(A.6)

Since

∫
cos θ(t)dt =

1

σk

∫
cos θ(t)dθ =

1

σk
sin θ(t) + c (A.7)

(A.6) becomes

∫ (k+1)∆

k∆
v(t) cos θ(t)dt =

[
v(t)

1

σk
sin θ(t)

](k+1)∆

k∆

− αk
∫ (k+1)∆

k∆

(
1

σk
sin θ(t)

)
dt

= vk+1

(
1

σk
sin θk+1

)
− vk

(
1

σk
sin θk

)
− αk

∫ (k+1)∆

k∆

1

σk
sin θ(t)dt

=
1

σk
{vk+1 sin θk+1 − vk sin θk}+

αk
σ2
k

{cos θk+1 − cos θk}

(A.8)

Therefore,

x1
k+1 = x1

k +
1

σk
{vk+1 sin θk+1 − vk sin θk}+

αk
σ2
k

{cos θk+1 − cos θk} (A.9)

Similarly,

x2
k+1 = x2

k −
1

σk
{vk+1 cos θk+1 − vk cos θk}+

αk
σ2
k

{sin θk+1 − sin θk} (A.10)
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Hence, we have

θk+1 = θk + ∆σk

vk+1 = vk + ∆αk

x1
k+1 = x1

k +
1

σk
{vk+1 sin θk+1 − vk sin θk}+

αk
σ2
k

{cos θk+1 − cos θk}

x2
k+1 = x2

k −
1

σk
{vk+1 cos θk+1 − vk cos θk}+

αk
σ2
k

{sin θk+1 − sin θk}

(A.11)

(A.11) has singularity when σk = 0. Therefore, it needs to be transformed. First,

1

σk
{vk+1 sin θk+1 − vk sin θk} =

1

σk
{(vk + ∆αk) sin(θk + ∆σk)− vk sin θk}

=
1

σk
{vk [sin(θk + ∆σk)− sin θk] + ∆αk sin(θk + ∆σk)}

=
vk
σk

[sin(θk + ∆σk)− sin θk] +
∆αk
σk

sin(θk + ∆σk)

(A.12)

For small ∆,

vk
σk

[sin(θk + ∆σk)− sin θk] =
vk∆σk
σk

[sin(θk + ∆σk)− sin θk]

∆σk

=
vk∆σk
σk

cos θk

= vk∆ cos θk

(A.13)

Therefore, (A.12) becomes

1

σk
{vk+1 sin θk+1 − vk sin θk} =

vk
σk

[sin(θk + ∆σk)− sin θk] +
∆αk
σk

sin(θk + ∆σk)

= vk∆ cos θk +
∆αk
σk

sin(θk + ∆σk)

(A.14)

Also, in (A.11)

αk
σ2
k

{cos θk+1 − cos θk} =
αk
σ2
k

{cos θk+1 − cos θk}
∆σk

∆σk

= −∆αk
σk

sin θk

(A.15)
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Plug (A.14) and (A.15) in (A.11) yields,

x1
k+1 = x1

k +
1

σk
{vk+1 sin θk+1 − vk sin θk}+

αk
σ2
k

{cos θk+1 − cos θk}

= x1
k + vk∆ cos θk +

∆αk
σk

sin(θk + ∆σk)−
∆αk
σk

sin θk

= x1
k + vk∆ cos θk +

∆αk
σk

[sin(θk + ∆σk)− sin(θk)]

∆σk
∆σk

= x1
k + vk∆ cos θk + ∆2αk cos θk

(A.16)

Similarly,

x2
k+1 = x2

k −
1

σk
{vk+1 cos θk+1 − vk cos θk}+

αk
σ2
k

{sin θk+1 − sin θk}

= x2
k + vk∆ sin θk + ∆2αk sin θk

(A.17)

Therefore, (A.11) is transformed to

θk+1 = θk + ∆σk

vk+1 = vk + ∆αk

x1
k+1 = x1

k + vk∆ cos θk + ∆2αk cos θk

x2
k+1 = x2

k + vk∆ sin θk + ∆2αk sin θk

(A.18)
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APPENDIX B

GRADIENT COMPUTATION

First we need to discretize the dynamics

ż = Az +Bu (B.1)

Apply the input that changes only at discrete sampling intervals. It is known that

the solution of (B.1) is

z(t) = eAtz(0) + eAt
∫ t

0
e−AτBu(τ)dτ (B.2)

Therefore, if we replace t to k∆, we obtain

z(k∆) = eAk∆z(0) + eAk∆

∫ k∆

0
e−AτBu(τ)dτ (B.3)

Similarly, we have

z((k + 1)∆) = eA(k+1)∆z(0) + eA(k+1)∆

∫ (k+1)∆

0
e−AτBu(τ)dτ (B.4)

Since we want to write difference equation, we need to express z((k + 1)∆) in

terms of z(k∆). Hence multiply eA∆ to (B.3) and solve for eA(k+1)∆z(0). Then

substitute eA(k+1)∆z(0) in (B.4), we obtain

z((k + 1)∆) = eA∆z(k∆) + eA(k+1)∆

[∫ (k+1)∆

0
e−AτBu(τ)dτ −

∫ k∆

0
e−AτBu(τ)dτ

]

= eA∆z(k∆) + eA(k+1)∆

∫ k(∆+1)

k∆
e−AτBu(τ)dτ

(B.5)
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Since u(t) = u(k∆) is a constant for t ∈ [k∆, (k + 1)∆),

z((k + 1)∆) = eA∆z(k∆) + eA(k+1)∆

∫ k(∆+1)

k∆
e−AτdτBu(k∆)

= eA∆z(k∆) +

∫ k(∆+1)

k∆
eA[(k+1)∆−τ ]dτBu(k∆)

τ ∈ [k∆, (k + 1)∆)

(B.6)

Let λ = (k + 1)∆− τ then we obtain

z((k + 1)∆) = eA∆z(k∆) +

∫ ∆

0
eAλdλBu(k∆)

λ ∈ [0, k∆)

(B.7)

Now, (B.7) is a difference equation in a form of

z((k + 1)∆) = Ā(∆)(∆)z(k∆) + B̄(∆)u(k∆) (B.8)

We see that Ā and B̄ are function of ∆ but we abuse the notation by simply Ā

and B̄.

Let us consider the gradient. z is a 4 by 1 column matrix. such that

z =




x

y

ẋ

ẏ




(B.9)

If we consider N steps of dynamics, z is 4 by N matrix. Let us define design vector

w with u = [u1, u2]T .
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w =




w1

w2

w3

...

w3N−1




=




u1(B.1)

u2(B.1)

u1(B.2)

u2(B.2)

u1(B.3)

u2(B.3)
...

u1(N)

u2(N)

µ1

µ2

µ3

...

µN−1




(B.10)

This is an attacker case with µ. In defender case, size of w is 2N by 1. Let us

take derivative of (B.8) with respect to w.

∂z((k + 1)∆)

∂w
= Ā

∂z(k∆)

∂w
+ B̄

∂u(k∆)

∂w
(B.11)

Let Jacobian matrix GZ. It is determined by iteration. When k = 1,

∂z(2∆)

∂w
= Ā

∂z(∆)

∂w
+ B̄

∂u(∆)

∂w
(B.12)

Assuming the initial gradient of z is zero,

∂z(2∆)

∂w
= B̄

∂u(∆)

∂w
(B.13)

∂u(∆)

∂w
=

[
∂u1(∆)
∂w1

, ∂u1(∆)
∂w2

, ∂u1(∆)
∂w3

, · · · , ∂u1(∆)
∂w3N−1

∂u2(∆)
∂w1

, ∂u2(∆)
∂w2

, ∂u2(∆)
∂w3

, · · · , ∂u2(∆)
∂w3N−1

]
(B.14)

Since

∂u1(∆)

∂w1
=
∂u1(∆)

∂u1(∆)
= 1

∂u2(∆)

∂w2
=
∂u2(∆)

∂u2(∆)
= 1

(B.15)

(B.14) becomes [I2,2, 02,3N−3]. Process is iterated until k = N .
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APPENDIX C

CIRCUIT SCHEMATICS

Figure C.1: ADC bus for DSP
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Figure C.2: Gumsitx connection to the main board
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Figure C.3: DSP PWM signal to the Thrusters
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Figure C.4: DSP connection to the main board
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Figure C.5: Connection between Gumstix and DSP
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Figure C.6: Main board power
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APPENDIX D

TESTBED MANUAL

In this appendix, the procedure for running the HoTDeC and related systems and

programs are explained.

D.1 Vision system

The vision system must be run properly before operating the HoTDeC. The IP

for vision clients are reserved to 192.168.0.101 to 192.168.0.103. Vision server IP

is 192.168.0.3. To run vision clients, SSH into vision client and run following com-

mand.

/home/rotap2/projects/testbed/vision/vision client reloaded$ ./client

#

The symbol # is the number of vision clients (1,2, or 3). Once all three vision

clients are running, run the vision server by SSH into 192.168.0.3 and run the

following commands

∼/testbed/trunk/vision$python vision.py

∼/testbed/trunk/vision$ruby vision.rb

There are two kinds of vision server programs: one written in python, the other

one written in ruby. The python program is reserved to the port 6968, and the

ruby one is reserved to the port 6969. Ruby server runs in slightly faster frequency.

Either of these program output should display the current HoTDeC position and

orientation on the laboratory floor. One way to check if all vision programs are

properly running is to check the output of the vision server program.

The visualizer that displays the information about HoTDeC can be run as fol-

low.

∼/$python vision-ui.py

Note that the visualizer requires ZMQ, PyZMQ, and QT. Identifiers for the HoT-

DeC are reserved from 1 to 9. The number 10 is reserved for the yellow blob.
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D.2 The operation of the HoTDeC

To run the HoTDeC, first log on to the target HoTDeC. We assume this is the one

with the IP of 192.168.0.7. Open the terminal and SSH into it, go to the serial

directory and run the following serial server program.

user@overo: /gumstix/serial$ ruby serial-serv.rb 192.168.0.7:6968

Now, HoTDeC is ready to send the message to the thrusters through the serial

communication.

In the computer where the application programs are, run the following simulator

program using JAVA.

java -Djava.library.path=/usr/local/lib -classpath zmq.jar:jackson-all-

1.9.5.jar:./ World

This is the program that contains HoTDeC model and the most upper class of the

JAVA programs. Once this runs properly, run the controller which contains LQR

controller and Kalman filter.

java -Djava.library.path=/usr/local/lib -classpath zmq.jar:jackson-all-

1.9.5.jar:./ Controller

Now you are ready to run the applications such as Harbor defense algorithm or

manual way point input command. Manual way point input program can be run

as follows.

java -Djava.library.path=/usr/local/lib -classpath zmq.jar:jackson-all-

1.9.5.jar:./ ReqRep

Defender program can be run as follow.

java -Djava.library.path=/usr/local/lib -classpath zmq.jar:jackson-all-

1.9.5.jar:./ Seungho

Following is the program that allows us to test the thrusters manually

GSTest$ ./ Thuster (IP should changed accordingly)

Following is the visualizer that shows the position and orientation of the HoTDeC

real-time.

testbed/vision$ python vision-ui.py

You can also visualize the references on the top of the actual trajectory by setting

the port to 6688, which is reserved for the real time reference generator.

req-rep visualizer: myIp:6688

The joystick input program can be run as follows. First, log on to the target

HoTDeC by SSH. We assume this HoTDeC has the static IP of 192.168.0.8. Due

to the ruby version compatibility issue, it is safe to run “use” command to change

the ruby version.

user@overo: /gumstix/serial$ rvm use 1.9.2
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Next, run the serial communication using the ruby command which takes joystick

input.

user@overo: /gumstix/serial$ ruby seriald.rb 192.168.0.8:6968

Now, you are ready to run joystick application in the computer where the joystick

is attached. Go to the proper directory and run the joystick server program as

follows.

ztest/testbed/trunk/joystick$ ruby joyserve.rb

Then run the joystick program that sends the joystick signal to the HoTDeC.

/ztest/gumstix/trunk/joystick$ ruby joystick.rb

Also, run the joystick controller that includes LQR and Kalman filter.

/ztest/gumstix/trunk/controller$ python controller.py

D.3 Software structure

The software structure for solving the harbor defense problem using the Matlab is

presented in the following figure. There are many custom-written m files involved

in harbor defense problem.

The nodes of the tree in Fig. D.1 are names of m files. The file “batch moam”

is the root program that calls the subprograms “GLOBAL”,“init”, “moam”, and

“re init”. The file “GLOBAL” contains definitions of global variables. The file

“init” includes the initialization part. The role of “re init” is to update the current

state information in discrete time.

The file “moam” is an implementation of the method of the outer approxima-

tions. This includes intruder and defender sides separately. The core program of

the intruder side is “ph lsh i”. This program is an implementation of the Phase

I-Phase II method in the intruder side. The files “fe” and “grad fe” are the ob-

jective function and its gradient of the intruder. The files “const f” and “const g”

contains the inequality constraints and their gradients. Subfiles “fecxy”,“fecu”,

and “fechn” are the constraints for the minimum separation, control bounds, and

channel constraints, respectively. The files “z” and “grad z” include the model of

the intruder and its gradient.

File names of the defender side are similar to the intruder side. The file

“ph lsh p” is an implementation of the Phase I-Phase II method on the defender

side. The matrix “gXYET” contains the trajectories of the intruder. The trajec-

tory of the intruder is inserted into this matrix in each iteration of “moam”.
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batch_moam

moam

ph_lsh_i

ph_lsh_p

obj_f

obj_g

const_f

const_g

re_init

gXYET

zp

grad_zp

fe

grad_fe

const_f

const_g

z

grad_z

GLOBAL

init fecxy, fecu, fechn

gradfecxy

fpcu, fpchn

gradfpcu

gradfecu

gradfechn

gradfpchn

Figure D.1: Harbor defense program structure
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