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Abstract

Multi-agent systems are widely used for constructing a desired formation shape, exploring

an area, surveillance, coverage, and other cooperative tasks. This dissertation introduces

novel algorithms in the three main areas of shape formation, distributed estimation, and

attitude control of large-scale multi-agent systems.

In the first part of this dissertation, we address the problem of shape formation for thou-

sands to millions of agents. Here, we present two novel algorithms for guiding a large-scale

swarm of robotic systems into a desired formation shape in a distributed and scalable man-

ner. These probabilistic swarm guidance algorithms adopt an Eulerian framework, where

the physical space is partitioned into bins and the swarm’s density distribution over each

bin is controlled using tunable Markov chains. In the first algorithm - Probabilistic Swarm

Guidance using Inhomogeneous Markov Chains (PSG–IMC) - each agent determines its bin

transition probabilities using a time-inhomogeneous Markov chain that is constructed in

real-time using feedback from the current swarm distribution. This PSG–IMC algorithm

minimizes the expected cost of the transitions required to achieve and maintain the desired

formation shape, even when agents are added to or removed from the swarm. The algo-

rithm scales well with a large number of agents and complex formation shapes, and can

also be adapted for area exploration applications. In the second algorithm - Probabilis-

tic Swarm Guidance using Optimal Transport (PSG–OT) - each agent determines its bin

transition probabilities by solving an optimal transport problem, which is recast as a linear

program. In the presence of perfect feedback of the current swarm distribution, this algo-

rithm minimizes the given cost function, guarantees faster convergence, reduces the number
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of transitions for achieving the desired formation, and is robust to disturbances or damages

to the formation. We demonstrate the effectiveness of these two proposed swarm guidance

algorithms using results from numerical simulations and closed-loop hardware experiments

on multiple quadrotors.

In the second part of this dissertation, we present two novel discrete-time algorithms

for distributed estimation, which track a single target using a network of heterogeneous

sensing agents. The Distributed Bayesian Filtering (DBF) algorithm, the sensing agents

combine their normalized likelihood functions using the logarithmic opinion pool and the

discrete-time dynamic average consensus algorithm. Each agent’s estimated likelihood func-

tion converges to an error ball centered on the joint likelihood function of the centralized

multi-sensor Bayesian filtering algorithm. Using a new proof technique, the convergence,

stability, and robustness properties of the DBF algorithm are rigorously characterized. The

explicit bounds on the time step of the robust DBF algorithm are shown to depend on the

time-scale of the target dynamics. Furthermore, the DBF algorithm for linear-Gaussian

models can be cast into a modified form of the Kalman information filter. In the Bayesian

Consensus Filtering (BCF) algorithm, the agents combine their estimated posterior pdfs

multiple times within each time step using the logarithmic opinion pool scheme. Thus, each

agent’s consensual pdf minimizes the sum of Kullback–Leibler divergences with the local

posterior pdfs. The performance and robust properties of these algorithms are validated

using numerical simulations.

In the third part of this dissertation, we present an attitude control strategy and a new

nonlinear tracking controller for a spacecraft carrying a large object, such as an asteroid

or a boulder. If the captured object is larger or comparable in size to the spacecraft and

has significant modeling uncertainties, conventional nonlinear control laws that use exact

feed-forward cancellation are not suitable because they exhibit a large resultant disturbance

torque. The proposed nonlinear tracking control law guarantees global exponential conver-

gence of tracking errors with finite-gain Lp stability in the presence of modeling uncertainties
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and disturbances, and reduces the resultant disturbance torque. Further, this control law

permits the use of any attitude representation and its integral control formulation eliminates

any constant disturbance. Under small uncertainties, the best strategy for stabilizing the

combined system is to track a fuel-optimal reference trajectory using this nonlinear control

law, because it consumes the least amount of fuel. In the presence of large uncertainties,

the most effective strategy is to track the derivative plus proportional-derivative based ref-

erence trajectory, because it reduces the resultant disturbance torque. The effectiveness of

the proposed attitude control law is demonstrated by using results of numerical simulation

based on an Asteroid Redirect Mission concept.

The new algorithms proposed in this dissertation will facilitate the development of ver-

satile autonomous multi-agent systems that are capable of performing a variety of complex

tasks in a robust and scalable manner.
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Chapter 1

Introduction

Multi-agent systems are widely studied because they can collectively exhibit useful emergent

behaviors like pattern (shape) formation [8]–[19], area exploration [20]–[25], and coopera-

tive control [26]–[34]. For example, swarms of hundreds to thousands of femtosatellites

(100-gram-class satellites) are being developed for challenging formation flying missions like

synthetic aperture radar, distributed sensing, etc [35]. A recent survey paper lists state-of-

the-art formation flying and constellation missions using small satellites and their applica-

tions [36, 37, 38]. Such multi-agent systems are popular because they can collaboratively

complete tasks that are very difficult for a single agent, with significantly enhanced flexibility,

adaptability, and robustness [35]. In this dissertation, we present the development of novel

algorithms for shape formation, distributed estimation, and attitude control of multi-agent

systems.

In the future, a large-scale swarm of agents may be deployed for challenging missions like

constructing a desired formation shape or exploring an unknown environment. The path

planning algorithm for such a large-scale swarm (having 103–106 or more agents) should

be versatile (perform multiple tasks like maintaining the formation shape or exploring the

area), robust (adapt to loss or addition of agents and accommodate large estimation errors),

and scalable (easily scale with the number of agents and the size of the area). In the first

part of this dissertation, we lay the theoretical foundations of versatile, robust, and scalable

path planning algorithms for large-scale swarms using probabilistic swarm guidance (PSG).

PSG is centered on the idea of controlling the swarm density distribution in a distributed

manner so that each autonomous agent independently determines its own trajectory while the
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Figure 1.1: Using our PSG–IMC algorithm for shape formation, a million swarm agents
(shown in red) attain the complex 3-D shape of the Taj Mahal (translucent silhouette shown
in gray). The physical space is partitioned into 100× 100× 70 bins.

entire swarm converges to the desired formation shape. PSG algorithms for shape formation

using Inhomogeneous Markov Chains (IMC) and Optimal Transport (OT) are presented in

Chapter 2. As an example, Fig. 1.1 demonstrates the capability of our proposed algorithm

for attaining the complex 3-D shape of the Taj Mahal using one million agents.

Multi-agent systems are often used as a sensor network to track a target. Such a network

of sensing agents uses a distributed estimation algorithm to estimate the states of a single

target in a distributed manner. Potential applications of distributed estimation algorithms

include environment and pollution monitoring, tracking mobile targets such as flying targets

or space debris, and monitoring communication networks. In the second part of this disser-

tation, we present discrete-time distributed estimation algorithms for a heterogeneous sensor

network that guarantee bounded convergence to the optimal probability distribution of the

targets states. In these algorithms, the agents combine their local probability distributions

using the logarithmic opinion pool and the consensus algorithm during each time instant.

These distributed estimation algorithms are presented in Chapter 3.

Multi-agent systems can be used to cooperatively control the state of a large system.
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A special case of this problem arises when a single agent (e.g., a spacecraft) is tasked with

controlling the state of another captured object (e.g., an asteroid). As shown in Fig. 1.2,

National Aeronautics and Space Administration’s (NASA) proposed Asteroid Redirect Mis-

sion (ARM) aims to capture a Near Earth Orbit (NEO) asteroid or to pick up a boulder

from some bigger asteroid and transport the captured object to the Earth–Moon system

[1]. Other space agencies have also announced plans for future small body exploration and

hazard mitigation missions [39, 40]. The third part of this dissertation is motivated by one

of the main control challenges in the proposed ARM concept: despinning and three-axis

attitude control of the combined spacecraft and asteroid system. The captured object could

be significantly larger and heavier (10 to 100 times by mass) than the spacecraft and could

have large uncertainties in its physical model.

(a) (b)

Figure 1.2: (a) Artist’s rendering of the conceptual ARM spacecraft about to capture a NEO
asteroid (image credit: NASA [3]). (b) Artist’s rendering of the conceptual ARM spacecraft
about to pickup a boulder from a large asteroid (image credit: NASA [4]).

This control problem also arises in other space applications. For example, a spacecraft

tasked with removal of orbital debris has to stabilize the spacecraft–debris combination after

capturing the debris [41]. Similarly, small satellites could be launched for the purpose of

reviving obsolete satellites already in space or mining them for usable parts [42]. The main

control problem in all these applications is that the spacecraft has to stabilize the attitude of

the combined system after the spacecraft has captured a target object (e.g., asteroid, debris,

and satellite) with large model uncertainties. Moreover, the captured object could be larger
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or comparable in size to the spacecraft. In Chapter 4, we present novel control algorithms

for stabilizing the attitude of a spacecraft that has captured a significantly larger object.

The large uncertainties associated with the captured object gives rise to significant control

challenges, like large resultant disturbance torques. Therefore, we present new attitude

control algorithms and methods for designing desired attitude trajectories to address these

challenges.

1.1 Literature Review

Analogous to fluid mechanics, path planning for swarms can be performed in two ways:

the individual-agent-based Lagrangian framework and the continuum-based Eulerian frame-

work. Most prior works [8]–[13], [23]–[28] use the Lagrangian framework, where each agent’s

trajectory is generated separately. In contrast, the Eulerian framework controls the collec-

tive properties of the swarm (e.g., its density distribution). In the Lagrangian framework,

the computation cost for each agent’s target assignment and trajectory generation increases

very fast with a large number (103–106 or more) of agents [11, 12, 13]. The Eulerian frame-

work decouples these two tasks by first solving the target assignment problem at appropriate

spatial resolution. Moreover, the Lagrangian framework does not efficiently handle a loss or

addition of agents, nor does it scale well with the size of the area and arbitrary formation

shapes [8, 9, 10]. Therefore, we adopt the Eulerian framework to establish a highly scalable

and robust guidance algorithm for formation reconfiguration and area exploration.

There exist prior results that employ the Eulerian framework for path planning [43]–[47].

For shape formation and reconfiguration applications, the physical space over which the

swarm is distributed is first partitioned into discrete bins [48, 49]. The bin size is determined

by the spatial resolution of the desired formation shape. Assuming that the number of agents

is much larger than the number of non-empty bins, the density distribution of the swarm

over these bins is controlled to achieve the desired spatial configuration.
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Within the Eulerian framework, Homogeneous Markov Chain (HMC) based algorithms

are a popular choice for shape formation [18, 19], area exploration [20, 21, 22], task alloca-

tion [30], and surveillance applications [34, 50]. In such algorithms, the agent’s transition

probability between bins is encoded in a constant Markov matrix that has the desired for-

mation shape as its stationary distribution. Such an approach is probabilistic, as opposed

to deterministic, because each agent determines its next bin location by inverse-transform

sampling of the Markov matrix [51]. These HMC-based algorithms possess the aforemen-

tioned benefits of robustness and scalability, because addition or removal of agents from the

swarm does not affect the convergence of the HMC to the stationary distribution. However,

a major drawback of these HMC-based algorithms is that they are also inherently open-loop

strategies and cannot incorporate feedback. Clearly, the efficiency of these algorithms can be

greatly improved by refining the Markov matrix at each time step or at regular time intervals

using the feedback of the current swarm distribution. Such refinement results in an Inho-

mogeneous Markov Chain (IMC), which is at the core of our algorithm. In Chapter 2, we

derive the Probabilistic Swarm Guidance using Inhomogeneous Markov Chains (PSG–IMC)

algorithm, which incorporates feedback from the current swarm density distribution at each

time step. Hence, the PSG–IMC algorithm is a closed-loop guidance strategy that retains

the original robustness and scalability properties associated with a Markovian approach.

Another disadvantage of HMC-based algorithms is that they suffer undesirable transitions

from bins that are deficient in agents to bins with surplus agents. Such undesirable transi-

tions prevent the swarm from converging to the desired formation. The PSG–IMC algorithm

avoids such undesirable transitions between bins, thereby reducing the control effort needed

for achieving and maintaining the formation. This benefit also results in smaller convergence

error to the desired formation shape than HMC-based algorithms.

If perfect feedback of the current swarm distribution is available, then the motion of

swarm agents can be formulated as an optimal transport problem [52]. Optimal transport,

which has applications in transportation, resource allocation, assignment, etc. [53, 54, 55];
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(a) (b)

Figure 1.3: (a) The initial probability mass function (pmf) ρ(x) (in blue) is transported to
the desired pmf σ(y) (in green) while minimizing the cost function C(x,y) = ‖x − y‖2.
The optimum transference plan γ(x,y) is shown in gray. (b) Another view of the optimum
transference plan γ(x,y) from ρ(x) to σ(y), where the colorbar represents the transported
mass.

is used in Fig. 1.3 to find the optimum transference plan γ(x,y) from an initial density

distribution ρ(x) to the desired swarm distribution σ(y) which minimizes the cost function

C(x,y). The key concept of the Probabilistic Swarm Guidance using Optimal Transport

(PSG–OT) algorithm proposed in Chapter 2 is to use optimal transport to find optimal

trajectories for each agent in a distributed manner so that the given bin-based cost func-

tion is minimized while the swarm density distribution converges to the desired formation.

Therefore, each agent independently solves the discrete optimal transport problem (OTP)

using linear programming (LP) [56, 57] and then probabilistically selects the target bin from

the OTP solution using inverse transform sampling [51]. LP and Mixed-Integer LP were

previously used in a centralized manner for formation flying applications [58, 59] and path

planning of robots [60]–[63]. Compared to existing distributed multi-agent assignment algo-

rithms [64]–[67], each agent in our distributed bin assignment algorithm solves a LP with a

significantly smaller number of variables and the resulting solution is optimal for the higher

level bin-based cost function. However, there are two major disadvantages of such an ap-

proach. First, the performance of an optimal transport-based algorithm drops precipitously
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with small errors in the feedback loop or small measurement errors of the current swarm

distribution. Measurement and estimation errors are routinely encountered in practice and

it is often impossible or impractical to generate perfect feedback of the current swarm dis-

tribution. Second, the computation time of the optimization problem increases very fast

with an increasing number of bins, which is a notable drawback, because a large number

of bins are necessary for capturing fine spatial details in the desired formation shape. The

PSG–IMC algorithm can overcome both challenges, since it works efficiently in the presence

of error-prone feedback and a large number of bins.

A different approach to swarm formation within the Eulerian framework is to model

the continuum dynamics using partial differential equations (PDEs) [68]–[71]. Using this

approach, agents can achieve a rich family of 2-D manifolds in 3-D space corresponding to

the equilibrium states of the PDE [70]. Since the goal is to design guidance strategies for

arbitrary formation shapes that are not limited to these equilibria, we do not consider a

PDE-based approach in the present chapter.

Our approach is also different from the multi-agent Markov decision process approach

used in multi-agent decision-making problems [72, 73], where agents keep track of the states

and actions of other agents. In contrast, each agent transitions independently using the

PSG–IMC algorithm.

Distributed Eulerian approaches for distributed estimation applications (like area explo-

ration) using region-based shape controllers and attraction-repulsion forcing functions are

discussed in [74, 75, 76]. We show that a slight modification of our PSG–IMC algorithm also

results in an efficient area-exploration algorithm.

Each agent determines its higher-level bin-to-bin guidance trajectory using the PSG–

IMC or PSG–OT algorithm so that the swarm achieves its objective. Each agent also

needs a lower-level guidance and control algorithm, which depends on the agent’s dynamics,

to track this higher-level guidance trajectory in a collision-free manner. A recent survey

paper [77] compares a number of existing collision avoidance algorithms based on model
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predictive control, boundary following algorithms, artificial potential fields, etc. A lower-

level algorithm based on model predictive control and sequential convex programming is

presented in [78]. Voronoi partitions are widely used for collision avoidance by combining

them with navigation functions [79] or potential field-based path planning algorithms [80]. In

Chapter 2, we present a distributed collision-free trajectory generation algorithm for multi-

agent path planning by modifying the Voronoi partition-based coverage control algorithm

using the minimum collision avoidance distance [28].

Discrete-time distributed estimation algorithms are used when the target dynamics and

measurement models are represented in discrete-time. Such algorithms can be broadly clas-

sified into three categories based on their representation of the target’s states. Algorithms

in the first category only estimate the mean and the covariance matrix of the target’s states

[81]–[85]. These algorithms usually deal with linearized target dynamics and measurement

models. These algorithms also neglect the information in the higher-order moments of the

estimated probability distribution of the target’s states. The second category of algorithms

aims to reach an agreement across the sensor network over a discrete set of hypotheses

about the states of the target [86]–[88]. Although these algorithms use the entire informa-

tion in the estimated probability distribution of the target’s states, they are only applicable

in cases where the target’s states can be represented by a discrete (finite) set of hypotheses.

Therefore, these algorithms are not suitable for estimation over continuous domains.

The third category of distributed estimation algorithms estimates the posterior proba-

bility distribution of the states of the target [89]–[95]. This category forms the most general

class of distributed estimation algorithms because these algorithms can incorporate non-

linear target dynamics, heterogeneous nonlinear measurement models, and non-Gaussian

uncertainties, and they can be used for estimation over continuous domains. These algo-

rithms also use the entire information (i.e., not just the mean and the covariance matrix)

in the estimated probability distribution of the target’s states. In light of these advantages,

Chapter 3 focuses on the development of a distributed estimation algorithm that belongs to
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this category.

In the discrete-time distributed estimation algorithms that belong to the third category,

the agents exchange their local probability distributions with their neighboring agents and

combine them using fusion rules to estimate the aggregate probability distribution. Com-

bining probability distributions in a distributed manner was first studied in the statistics

literature [96]–[100]. Schemes for combining probability distributions, like the Linear Opin-

ion Pool (LinOP) and the Logarithmic Opinion Pool (LogOP), are discussed in [99, 100].

The LogOP scheme is ideal for distributed estimation algorithms because of its favorable

properties (e.g., externally Bayesian) [99].

The earliest distributed estimation algorithm that combined local probability distribu-

tions using the LogOP scheme was proposed in [89]. In particular, [90] focused on generating

conservative information-theoretically-optimal weights for the LogOP scheme. Similar algo-

rithms for combining probability distributions within the exponential family (i.e., probability

distributions that can be expressed as exponential functions) are discussed in [91, 92]. In the

distributed estimation algorithm in [94], the agents recursively combine their local posterior

probability distributions multiple times within each time step using the LogOP scheme and

the consensus algorithm. Using such an algorithm, which was also independently derived

in our prior work [95], each agent’s estimated probability distribution of the target’s states

converges around the pdf that minimizes the sum of Kullback–Leibler (KL) divergences

from all the posterior probability distributions of the target’s states. Similar algorithms for

combining local likelihood functions multiple times within each time step using the LogOP

scheme and the consensus algorithm are proposed in [92, 93]. Since these algorithms rely

on the convergence properties of the standard consensus algorithm [101]–[104], the required

number of consensus loops within each time step grows very fast (at least linearly [105]) with

the number of agents. If the time-scale of the target dynamics is comparatively fast, then it

is not feasible to execute a large number of consensus loops within each time step. This con-

nection between the time-scale of the target dynamics and the time step of the distributed
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estimation algorithm has not been explored in the literature. In contrast, in Chapter 3, we

provide an explicit upper bound on the time step of the distributed algorithm that depends

on the convergence error bound and the time-scale of the target dynamics. Furthermore,

[94] analyzed their algorithm using linear-Gaussian models while [91] focused on probability

distributions within the exponential family. A convergence analysis for general probability

distributions using the LogOP scheme is currently missing in the literature. In Chapter 3,

we also address this gap using a novel proof technique that was first introduced in our prior

work [95].

An open question is how to design a distributed estimation algorithm for a sensor network

so that each agent’s estimate converges to the posterior probability distribution of the target’s

states that would be generated by a centralized multi-sensor Bayesian filtering algorithm.

In other words, if all the agents are hypothetically connected by a complete graph (i.e.,

each agent could communicate instantaneously with every other agent without any loss of

information in the communication links), then the agents can exchange their local likelihood

functions and each agent can use the multi-sensor Bayesian filtering algorithm to estimate

the posterior probability distribution of the target’s states. Our aim is to design a distributed

estimation algorithm where each agent’s estimated probability distribution of the target’s

states converges to this posterior probability distribution. We assume that the time-varying

communication network topology of the agents is periodically strongly connected and each

agent can only communicate once with its neighboring agents during each time step. In

Chapter 3, we present the Distributed Bayesian Filtering (DBF) algorithm to solve this

open question.

Attitude control of a spacecraft with large uncertainty is a topic of intense research. Non-

linear adaptive attitude control strategies are discussed in [106]–[109]. In [110, 111, 112],

sliding mode control and robust H∞ linear control are used for attitude control of spacecraft

with uncertainties and disturbances. In Chapter 4, we show that common nonlinear attitude

control tracking laws that use exact feed-forward cancellation, similar to feedback lineariza-
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tion, exhibit a large resultant disturbance torque due to unprecedentedly large modeling

uncertainties of the captured object. In contrast, attitude control laws that do not have

a feed-forward term (e.g., see [113]–[116]) experience a much smaller resultant disturbance

torque. For the purpose of achieving superior robustness and tracking performance, nonlin-

ear attitude tracking control should be used in lieu of linear control. Therefore, the proposed

robust nonlinear tracking control law in Chapter 4 is designed to exploit the benefit of no

feed-forward cancellation while achieving superior tracking performance in the presence of

large modeling uncertainties, measurement errors, and actuator saturations.

1.2 Main Contributions

As stated previously, this dissertation focuses on the development of novel algorithms for

shape formation, distributed estimation, and attitude control of multi-agent systems. The

main contributions of this dissertations are as follows:

• In Section 2.2, we present a novel technique for constructing feedback-based Markov

matrices for a given stationary distribution, where the expected cost of transitions is

minimized. Each Markov matrix satisfies the constraints on the agent’s motion that

might arise due to the dynamics or other physical constraints. The Markov matrix

converges to the identity matrix when the current swarm distribution converges to the

desired formation. The identity matrix ensures that the swarm agents settle down

after the desired formation is achieved, thereby reducing unnecessary transitions.

• In Section 2.3, we describe the PSG–IMC algorithm for shape formation, with the

key idea that agents preferentially transition out of bins with surplus agents. We

rigorously derive the convergence proofs for the PSG–IMC algorithm based on the

analysis of IMC, which is more involved than the convergence proof for HMC. We

show that each agent’s IMC is strongly ergodic and that the unique limit is indeed the

11



desired formation shape. Further, we also provide a time-varying probabilistic-bound

on the convergence error between the swarm distribution and the desired formation as

well as a lower bound on the number of agents necessary for ensuring that the final

convergence error is below the given threshold. We present an extension of the PSG–

IMC algorithm that uses multiple spatial resolutions of the desired shape. Furthermore,

for area exploration applications we show the benefits of the PSG–IMC algorithms as

compared to HMC-based algorithms in Section 2.4.

• In Section 2.5, we solve the bin assignment problem in a distributed optimal manner

using a discrete OTP. A centralized node could solve an OTP using the exact location

of each agent and allocate the final positions to each agent. Instead, in PSG–OT, each

agent independently solves an equivalent OTP using its best estimate of the current

swarm distribution and then determines its trajectory in a distributed manner. This

is possible because the agents reach a consensus on the estimate of the current swarm

distribution, which is used as the initial distribution in the equivalent OTP. Note

that the equivalent OTP solved by each agent has n2
bin variables compared to the

centralized OTP with m2 variables; where nbin is the number of bins, m is the number

of agents, and m � nbin. Although it is possible to solve the OTP with m2 variables

in a distributed manner using the simplex algorithm [64, 65] or the auction algorithm

[66, 67], these algorithms are not robust to addition or removal of agents from the

swarm, which is the main benefit of probabilistic swarm guidance.

• In Section 2.6, we present a distributed collision-free trajectory generation algorithm

suitable for the bin-based architecture of this chapter, which is obtained by modifying

the Voronoi partition based Lloyd’s descent algorithm [28]. We modify the Voronoi

sets within each bin, using the minimum collision avoidance distance, to generate

guaranteed collision-free trajectories for each agent. In essence, we present a complete

distributed collision-free guidance algorithm for large-scale swarms by integrating the
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collision-free trajectory generation algorithm with the PSG–IMC or PSG–OT algo-

rithm.

• In Section 2.7, we demonstrate using multiple quadrotors that the PSG–IMC algorithm

can be executed in real-time along with a lower-level collision-free motion planner to

achieve a desired formation shape. Using results of numerical simulations, we show that

the PSG–IMC algorithm yields a smaller convergence error and more robust conver-

gence result than the HMC-based and PSG–OT algorithms since the distance between

the swarm density distribution and the desired formation is considerably less. We also

show that the PSG–IMC algorithm significantly reduces the number of transitions for

achieving and maintaining the desired formation in the presence of large estimation

errors. Thus, the PSG–IMC algorithm is best suited if error-prone feedback of the

current swarm distribution is available, the swarm contains a large number of agents,

or the desired formation contains a large number of bins.

• In Section 3.2, we present a rigorous proof technique for the LogOP scheme that is

applicable for general probability distributions and some convergence results.

• In Section 3.3, we present the development of the DBF algorithm that does not re-

quire separate consensus loops within each time step. During each time instant, the

agents exchange their normalized likelihood functions with their neighboring agents

and combine them using our fusion rule. Our fusion rule for combining arbitrary prob-

ability distributions (not just exponential or Gaussian families) relies on the LogOP

scheme and the discrete-time dynamic average consensus algorithm. We show that

after finite time instants, the estimated likelihood function of each agent converges to

an error ball centered on the joint likelihood function of the centralized multi-sensor

Bayesian filtering algorithm. In order to guarantee the convergence error bound, we

provide an explicit bound on the time step of the DBF algorithm that depends on the

time-scale of the target dynamics. We perform robustness analysis to determine the
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effect of modeling errors on the estimated likelihood functions. If the target dynamics

are linear-Gaussian models, we show that the DBF algorithm can be simplified to the

modified (Kalman) information filter. Finally, we show that the distributed estimation

algorithms in [92, 93] are special cases of the DBF algorithm.

• In Section 3.4, we present the development of the BCF algorithm, where multiple

consensus loops are allowed within each time instant. We also show that the BCF

algorithm [94, 95] and the likelihood consensus algorithm [92, 93] are special cases of

the distributed estimation algorithms presented in Chapter 3.

• In Section 4.1.2, we compare the resultant disturbance torques for different types of

attitude control laws. We show that attitude control laws that use feed-forward can-

cellation experience a large resultant disturbance torque that can lead to actuator

saturation. Therefore, such attitude control laws are not suitable for the present con-

trol problem.

• In Section 4.2, we present the development of a new robust nonlinear tracking control

law that guarantees global exponential convergence of the system’s attitude trajectory

to the desired attitude trajectory and permits the use of any attitude representation.

In the presence of bounded disturbances, this control law is finite-gain Lp stable and

input-to-state stable. We show that this control law is related to the well-known

tracking control law for Euler-Lagrangian systems [115, 117], but the new attitude

tracking control law directly prescribes the control torque input with less dependence

on the kinematic relationship. Another advantage of this new control law is that it can

be easily extended with an integral control term to eliminate constant disturbances

while retaining the original global exponential convergence property. Moreover, this

exponentially-stabilizing attitude control law can be extended to employ SO(3) for

global attitude representation.

14



• In Section 4.3, we discuss techniques for generating fuel-optimal desired attitude tra-

jectories. We also outline a framework for reducing the resultant disturbance torque

for the new attitude tracking control law.

• In Section 4.4, we demonstrate the effectiveness of our control strategy using results

of numerical simulation based on an ARM mission type. We present a comparative

study of the fuel usage and time of convergence of multiple attitude control laws. This

study indicates that the best control strategy under very small modeling uncertainties,

which can be achieved using online system identification from both proximity and

contact operations, is to track the fuel-optimal reference trajectory using the globally-

exponentially-stable robust nonlinear tracking control law. On the other hand, in the

presence of large modeling uncertainties, measurement errors, and actuator saturations,

the best control strategy is to have the robust nonlinear tracking control law track

a derivative plus proportional-derivative based desired attitude trajectory. We also

present a detailed sensitivity analysis of the robust nonlinear tracking control law

to show that the fuel consumed by the conceptual ARM spacecraft using this control

strategy is upper bounded by 300 kg for the nominal range of NEO asteroid parameters.

1.3 Organization

The key algorithms presented in this dissertation are shown in Fig. 1.4. The organization

of this dissertation is as follows. The probabilistic swarm guidance algorithms for shape

formation and area explorations are presented in Chapter 2. The distributed estimation

algorithms are presented in Chapter 3. The nonlinear attitude control of spacecraft with a

large captured object is presented in Chapter 4. This dissertation is concluded in Chapter 5.
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Chapter 2

Probabilistic Swarm Guidance

In this chapter, we present path planning algorithms for shape formation and area explo-

ration. The algorithms presented in this chapter have been published in [118, 119, 120, 78,

121].

This chapter is organized as follows. First, the problem statement for shape formation is

discussed in Section 2.1. In Section 2.2, we present our techniques for constructing feedback-

based Markov matrices for a given stationary distribution. Subsequently, the PSG–IMC

algorithm for shape formation and its convergence analysis are presented in Section 2.3.

The extension of the PSG–IMC algorithm for area exploration applications is presented in

Section 2.4. The PSG–OT algorithm for shape formation and its properties are presented

in Section 2.5. The Voronoi-partition based collision-free trajectory generation algorithm is

presented in Section 2.6. Lastly, in Section 2.7, Monte Carlo simulations and experimental

results are used to compare these algorithms. This chapter is concluded in Section 2.8.

2.1 Preliminaries and Problem Statement

In this section, we first state some key terms and assumptions, then state the problem

statement for shape formation in Section 2.1.1, and finally discuss methods for generating

the feedback of the current swarm distribution in Section 2.1.2.

The nx-dimensional compact convex Euclidean space over which the swarm is distributed

is denoted by B ⊂ Rnx .

Definition 2.1. (Bins B[i]) The space B is partitioned into nbin mutually disjoint non-
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empty convex bins. These bins are represented by B[i] for all i ∈ {1, . . . , nbin}. If i 6= ` then

B[i] ∩ B[`] = ∅; and their union is B, i.e., ∪nbin
i=1 B[i] = B [122]. The convexity of the bins

is used for formulating the OTP and generating collision-free trajectories. The size of the

bins is determined by the spatial resolution of the desired formation shape. For example,

the physical space is partitioned into 25 disjoint bins in Fig. 2.1(a). 2
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Figure 2.1: (a) In this example, nbin = 25. The desired formation Θ is given by [ 1
12
, 1

12
, 1

6
, 1

3
,

1
6
, 1

12
, 1

12
,01×18]. The bins 1 to 7 are recurrent bins. (b) In this example, the bins 1 to 4

are recurrent bins. The allowed transitions (motion constraints) are shown in red. Case (i)
satisfies all four properties of Definition 2.5. Case (ii) does not satisfy property (iv) because
an agent in bin 1 cannot go to bins 2 or 4 without exiting the set of recurrent bins.

Definition 2.2. (Desired Formation Θ and Recurrent Bins) The desired formation shape

Θ is a probability (row) vector in Rnbin (i.e., Θ ≥ 0, Θ1 = 1). Each element Θ[i] represents

the desired swarm density distribution in the corresponding bin B[i]. The bins that have

nonzero elements in Θ are called recurrent bins. Let nrec denote the number of recurrent

bins. The remaining bins, with zero elements in Θ, are called transient bins. Without loss of

generality, we re-label the bins such that the first nrec bins are recurrent bins (i.e., Θ[i] > 0

for all i ∈ {1, . . . , nrec}) and the remaining bins are transient bins (i.e., Θ[i] = 0 for all

i ∈ {nrec + 1, . . . , nbin}). For example, Θ and recurrent bins are shown in Fig. 2.1(a). 2

Definition 2.3. (Cost Matrix Ck) Consider a matrix Ck ∈ Rnbin×nbin , which captures the

cost of transitioning between bins (e.g., control effort or fuel consumed by the agents). Each
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element Ck[i, `] is the cost incurred by an agent while transitioning from bin B[i] to bin B[`]

at the kth time instant. We assume that the agents do not incur any cost if they remain

in their present bin and the agents incur some positive cost if they transition out of their

present bin, i.e., Ck[i, i] = 0 and Ck[i, `] > 0 for all bins i, ` ∈ {1, . . . , nbin} and i 6= `. 2

Assumption 2.1. Let the scalar mk ∈ N denote the number of agents in the swarm at the

kth time instant. The agents do not keep track of the number of agents in the swarm. We

assume that mk � nrec, because we control the swarm density distribution over the bins.

Due to the quantization error 1
mk

, we can only achieve the best quantized representation

of the desired formation shape using mk agents. For example, if Θ = [1
3
, 2

3
] and mk = 10,

then the best-quantized representation of this desired formation is [0.3, 0.7]. 2

Assumption 2.2. We assume that the agents are anonymous and identical, i.e., the agents

do not have any global identifiers and all agents execute the same algorithm [123]. If the

agents are indexed (non-anonymous), then a spanning-tree-based algorithm can be executed

[124], but this is not possible in our case. 2

Assumption 2.3. We assume that each agent can determine its actual location in B, which

is denoted by pjk ∈ Rnx . The indicator (row) vector rjk ∈ Rnbin represents the actual bin

position the jth agent at the kth time instant. If the element rjk[i] = 1, then the jth agent is

present inside the bin B[i] at the kth time instant; otherwise rjk[i] = 0. 2

Definition 2.4. (Current Swarm Distribution µ?k) The current swarm distribution µ?k is a

probability (row) vector in Rnbin . It is given by the ensemble mean of actual bin positions

of the agents:

µ?k :=
1

mk

mk∑
j=1

rjk . (2.1)

Each element µ?k[i] gives the swarm density distribution in the corresponding bin B[i] at the

kth time instant. 2

Definition 2.5. (Matrix Aj
k of Motion Constraints) An agent in a particular bin can only

transition to some bins but cannot transition to other bins, because of the dynamics or
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physical constraints. These (possibly time-varying) motion constraints are specified by the

matrix Aj
k ∈ Rnbin×nbin , where each element is given by:

Aj
k[i, `] =


1 if the transition from bin B[i] to bin B[`] is allowed at the kth time instant,

0 if this transition is not allowed.

(2.2)

We assume that the matrix Aj
k satisfies the following properties: (i) the matrix Aj

k is sym-

metric, (ii) the graph conforming to the matrix Aj
k is strongly connected and balanced, (iii)

an agent can always choose to remain in its present bin, i.e., Aj
k[i, i] = 1 for all bins, and (iv)

an agent can move (using multiple transitions) from any recurrent bin to any other recurrent

bin, without exiting the set of recurrent bins. For example, property (iv) is visualized in

Fig. 2.1(b). 2

2.1.1 Problem Statement for Shape Formation

At the start, each agent has the knowledge of the bins B[i], the desired formation shape Θ,

the time-varying cost matrix Ck and its motion constraints matrix Aj
k. The objectives of

the PSG–IMC algorithm for shape formation are as follows:

(i) Each agent independently determines its bin-to-bin trajectory using a Markov chain,

which obeys motion constraints Aj
k, so that the overall swarm converges to a desired forma-

tion shape Θ.

(ii) The algorithm automatically detects and repairs damages to the formation.

(iii) The algorithm minimizes the expected cost of transitions of all the agents over all time

instants.
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2.1.2 Generating Feedback of the Current Swarm Distribution

The PSG–IMC algorithm uses the feedback of the current swarm distribution µ?k. Several

distributed estimation algorithms exist in the literature for estimating µ?k [82, 84, 95].

For example, the consensus algorithm [101, 102, 103] can be used to estimate the current

swarm distribution µ?k in a distributed manner. Let the probability (row) vector µ̂jk,ν ∈ Rnbin

represent the jth agent’s estimate of the current swarm distribution during the νth consensus

loop at the kth time step. Each agent first locally estimates the swarm distribution, i.e.,

µ̂jk,1 = rjk. Then the agents recursively combine their local estimates with their neighboring

agents using the Linear Opinion Pool (LinOP) of probability measures [96, 99]:

µ̂jk,ν+1 =
∑
`∈J jk

a`jk µ̂
j
k,ν , ∀j, ` ∈ {1, . . . ,m}, ∀ν ∈ N, (2.3)

where J j
k is the set of inclusive neighbors of the jth agent and

∑
`∈J jk

a`jk = 1. The pseudo-

code for estimating the swarm distribution using the consensus algorithm is shown in Algo-

rithm 1.

1: Consensus loop of the jth agent during kth time instant

2: Given pjk, nloop, and aj`k
3: for ν = 1 to nloop

4: if ν = 1 then

5: Set µ̂jk,1 = rjk
6: end if

7: Exchange pmfs µ̂`k,ν ,∀` ∈ J
j
k

8: Compute the new pmf µ̂jk,ν using LinOP (2.3)

9: end for

10: Set µjk = µ̂jk,nloop

Algorithm 1: Estimate Current Swarm Distribution µjk

The matrix Pk, with entries Pk[`, j] = a`jk , conforms with the time-varying communication

network topology of the multi-agent system Gk. Since m � nbin and multiple agents are

within the same bin, it is guaranteed almost surely using Erdös–Rényi random graphs or
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random nearest–neighbor graphs that Gk is strongly connected [125, 126, 127]. Moreover,

distributed algorithms exist for the agents to generate strongly connected balanced graphs

[128, 129, 130].

If Gk is strongly connected and balanced, then each agents local estimate µ̂jk,ν globally

exponentially converges to the current swarm distribution µ?k pointwise with a rate faster or

equal to the second largest singular value of Pk [131]. For some εcons > 0, if the number of

consensus loops within each consensus stage nloop ≥
⌈

ln(εcons/(2
√
m))

lnσm−1(Pk)

⌉
; then each agent has

a good estimate of the current swarm distribution µ̂jk,nloop
, i.e., ‖θk,nloop

‖2 ≤ εcons, where

θk,nloop
=
[
θ1
k,nloop

, . . . , θmk,nloop

]
and θjk,nloop

=
∑nbin

i=1 |µ̂
j
k,nloop

[i]− µ?k[i]|.

Let the jth agent’s estimate of the current swarm distribution at the kth time instant be

represented by the probability (row) vector µjk ∈ Rnbin , where µjk = µ̂jk,nloop
if the consensus

algorithm is used. Let the positive parameter εest represent the estimation error between µ?k

and µjk, i.e., for all agents:

DL1(µ?k,µ
j
k) =

nbin∑
i=1

∣∣µ?k[i]− µjk[i]∣∣ ≤ εest , ∀k ∈ N . (2.4)

In Section 2.3.1, we show that our proposed PSG–IMC algorithm works remarkably well in

the presence of this estimation error.

Determine agent’s 

present bin

In a 

transient 

bin?

Select next bin using 

transient bin escape 

condition

Compute Markov 

matrix

Modify Markov 

matrix
Yes

No

Select next bin using 

inverse transform 

sampling

Go to next bin while 

avoiding collisions

Estimate current 

swarm distribution

Figure 2.2: Flowchart of the PSG–IMC algorithm for shape formation.
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2.2 Construction of Feedback-based Markov Matrix

The key steps in the proposed PSG–IMC algorithm for shape formation are shown in Fig. 2.2.

The agent first determines its present bin and the current swarm distribution. If the agent’s

present bin is a transient bin, then it transitions to another bin using the condition for

escaping transient bins. Otherwise, the agent computes the Markov matrix and then modifies

it to avoid undesirable transitions. Finally, the agent uses inverse transform sampling to

select the next bin. The pseudo-code for the PSG–IMC algorithm for shape formation is

given in Algorithm 2 in Section 2.3.

In this section, we present techniques for constructing feedback-based Markov matrices

and then discuss a condition to quickly exit transient bins.

2.2.1 Construction of Minimum Cost Markov Matrix

In this section, we construct Markov matrices that minimize the expected cost of transitions.

We first discuss our choice of the feedback gain ξjk, which is directly proportional to the

transition probabilities between bins.

Remark 2.1. (Hellinger Distance based ξjk, ξmin, and ξdes) The feedback gain ξjk is based

on the Hellinger distance (HD) between the current swarm distribution µjk and the desired

formation Θ:

ξjk = DH(Θ,µjk) :=
1√
2

√√√√nbin∑
i=1

(√
Θ[i]−

√
µjk[i]

)2

. (2.5)

The HD is a symmetric measure of the difference between two probability distributions and

it is upper bounded by 1 [132, 133].

We choose HD, over other popular metrics like L1 and L2 distances, because of its

important properties shown in Fig. 2.3. The L1 distances for the cases (µ1, µ2, µ3) from

Θ are equal. But in Case 1, the wrong agent is in a bin where there should be no agent,
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1 2

3 4

Desired Formation                 Case 1                           Case 2                            Case 3

Figure 2.3: In this example, the desired distribution Θ has 4 and 2 agents in bins 1 and 2
respectively. In the three cases, one agent (marked in red) is not in its correct bin. The L1

distances are equal, but the HD are different.

hence HD heavily penalizes this case. If all the agents are only in those bins which have

non-zero weights in the desired distribution, then HD is significantly less. Finally, if an agent

is missing from a bin that has a fewer number of agents in the desired distribution (Case 2)

compared to a bin that has a higher number of agents in the desired distribution (Case 3),

then HD penalizes Case 2 slightly more than Case 3. These important properties, which are

encapsulated in HD, are useful for swarm guidance.

Let ξmin represent the smallest positive feedback gain. If at least one agent is not in its

correct bin, then DL1(µ?k,Θ) =
∑nbin

i=1 |µ?k[i] −Θ[i]| ≥ 1
mk

. The HD between µ?k and Θ is

bounded by [134]:

1

2
√

2
DL1(µ?k,Θ) ≤ DH(µ?k,Θ) ≤ 1√

2
DL1(µ?k,Θ)

1
2 . (2.6)

Therefore, the smallest positive feedback gain is given by:

ξmin =
1

2
√

2 max
k∈N∪{0}

mk

. (2.7)

Note that ξmin is very small because mk � nrec in Assumption 2.1 (e.g., ξmin = 3.5 × 10−7

for mk = 106).

Let ξdes represent the acceptable convergence error between the final swarm distribution
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and the desired formation. 2

Consider the Markov matrix M j
k in Rnbin×nbin that encapsulates the transition probabil-

ities between bins. Each element M j
k[i, `] represents the probability that the jth agent in

bin B[i] at the kth time instant will transition to bin B[`] at the (k + 1)th time instant:

M j
k[i, `] := P

(
rjk+1[`] = 1|rjk[i] = 1

)
. (2.8)

Therefore, the Markov matrix M j
k is row stochastic (i.e., M j

k1 = 1). The stationary

distribution of this Markov matrix is defined as follows.

Definition 2.6. [135, pp. 119] (Stationary Distribution) The stationary distribution ejk of

the Markov matrix M j
k is given by the solution of ejkM

j
k = ejk, where ejk is a probability

(row) vector in Rnbin (i.e., ejk ≥ 0, ejk1 = 1). This stationary distribution is unique if the

Markov matrix is irreducible. 2

The following theorem presents the construction of the Markov matrix M j
k that mini-

mizes the expected cost of transitions (i.e.,
∑nbin

i=1

∑nbin

`=1 Ck[i, `]M
j
k[i, `]). Our construction

technique has no relation with the well-known Metropolis-Hastings (MH) algorithm, which

is commonly used for constructing Markov matrices with a given stationary distribution

[136, 137]. In the MH algorithm, the proposal distribution is used to iteratively generate

the next sample, which is accepted or rejected based on the desired stationary distribution.

There is no direct method for incorporating feedback into the MH algorithm. In contrast, the

feedback of the current swarm distribution is directly incorporated within our construction

process using the feedback gain.

Theorem 2.1. The Markov matrix M j
k is constructed as follows:

(1) If ξjk < ξdes, where ξdes is defined in Remark 2.1, then set M j
k = I.

(2) Otherwise, the row stochastic Markov matrix M j
k is computed as follows to minimize

the expected cost of transitions. The resultant matrix M j
k has Θ as its stationary distribution

(i.e., ΘM j
k = Θ) and only allows transitions into recurrent bins:
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(CS1) If Aj
k[i, `] = 0, then set M j

k[i, `] = 0 for all bins i, ` ∈ {1, . . . , nbin}.

(CS2) If Θ[`] = 0, then set M j
k[i, `] = 0 for all bins i, ` ∈ {1, . . . , nbin} with i 6= `.

The remaining elements in the Markov matrix are determined using the following linear

program (LP):

min

nbin∑
i=1

nbin∑
`=1

Ck[i, `]M
j
k[i, `] , (2.9)

subject to

nbin∑
`=1

M j
k[i, `] = 1, ∀i , (LP1)

nbin∑
i=1

Θ[i]M j
k[i, `] = Θ[`], ∀` , (LP2)

(1− ξjk) ≤M
j
k[i, i] ≤ 1, ∀i , (LP3)

εMξ
j
kΘ[`]

(
1− Ck[i, `]

Ck,max + εC

)
≤M j

k[i, `] ≤
ξjk
εM

, ∀i 6= ` , (LP4)

where εM is a positive scalar constant in (0, 1], Ck,max is the maximum transition cost (i.e.,

Ck,max = maxi,`Ck[i, `]), and εC is a positive scalar constant.

Proof: Assuming that the feedback gain ξjk ≥ ξdes, we first show that the feasible set of

Markov matrices constructed from the constraints (CS1,2) and the LP (2.9) is non-empty

(Step 1). We then show that all the Markov matrices within the feasible set satisfy the given

properties (Step 2).

Step 1: Let εα =
√
εM . Let αjk be a positive bounded column vector in Rnbin , with

εα ≤ αjk[i] ≤ 1 for all bins. We show that the following family of row stochastic Markov
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matrices Qj
k satisfy the constraints (CS1,2) and (LP1–4):

Qj
k[i, `] =


0 if Aj

k[i, `] = 0

ξjk
Θαjk

(
αjk[i]α

j
k[`]Θ[`]

)
otherwise

, ∀i, ` ∈ {1, . . . , nbin} and i 6= ` ,

(2.10)

Qj
k[i, i] =

ξjk
Θαjk

(
αjk[i]α

j
k[i]Θ[`]

)
+
(
1− ξjkα

j
k[i]
)

+
∑

`∈{Ajk[i,`]=0}

ξjk
Θαjk

(
αjk[i]α

j
k[`]Θ[`]

)
.

(2.11)

Clearly, the matrix Qj
k satisfies (CS1) due to (2.10). The off-diagonal element Qj

k[i, `] = 0 if

the element Θ[`] = 0, hence the matrix Qj
k satisfies (CS2). If the element Θ[`] > 0, then the

elementQj
k[i, `] is upper bounded by

ξjk
εM

because αjk[i] ≤ 1, Θ[`] ≤ 1, and
(

ξjk
Θαjk

)
≤ ξjk

εα
≤ ξjk

εM
.

The element Qj
k[i, `] is lower bounded by εMξ

j
kΘ[`]

(
1− Ck[i,`]

Ck,max+εC

)
because αjk[i] ≥ εα,(

ξjk
Θαjk

)
≥ ξjk as Θ1 = 1, and

(
1− Ck[i,`]

Ck,max+εC

)
< 1. This implies that the matrix Qj

k also

satisfies (LP4). The diagonal element Qj
k[i, i] is lower bounded by

(
1− ξjkα

j
k[i]
)
≥ (1− ξjk),

which implies that the matrix Qj
k satisfies (LP3).

We now show that matrix Qj
k satisfies (LP1):

nbin∑
`=1

Qj
k[i, `] =

ξjkα
j
k[i]

Θαjk

nbin∑
`=1

αjk[`]Θ[`] + 1− ξjkα
j
k[i] = 1 ,

because
∑nbin

`=1

(
αjk[`]Θ[`]

)
= Θαjk. We now show that matrix Qj

k satisfies (LP2):

nbin∑
i=1

Θ[i]Qj
k[i, `] =

ξjkα
j
k[`]Θ[`]

Θαjk

nbin∑
i=1

(
αjk[i]Θ[i]

)
+
(
Θ[`]− ξjkΘ[`]αjk[`]

)
= Θ[`] .

Thus, the family of Markov matrices Qj
k are a subset of the feasible set, hence the feasible

set is non-empty.

Step 2: The optimization problem in (2.9) is an LP because the constraints are all
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linear inequalities or equalities and the objective function is linear. The resulting Markov

matrix M j
k is row stochastic (i.e., M j

k1 = 1) and has Θ as its stationary distribution (i.e.,

ΘM j
k = Θ) because of (LP1) and (LP2) respectively. Moreover, (CS1,2) and (LP4) ensure

that this Markov matrix only allows transitions into recurrent bins. �

Remark 2.2. (Properties of the Markov matrix M j
k constructed using Theorem 2.1) If

ξjk < ξdes in Remark 2.1, then the Markov matrix M j
k is given by the identity matrix

because the current swarm distribution is sufficiently close to the desired formation and the

no further convergence is necessary.

Otherwise, as the swarm converges to the desired formation shape, the feedback gain

ξjk converges to 0 (i.e., ξjk → 0), and the Markov matrix M j
k also converges to an identity

matrix (i.e., M j
k → I) due to the constraints (LP3) and (LP4). The identity matrix ensures

that agents settle down after the desired formation is achieved, thereby reducing unnecessary

transitions. 2

(a) 𝝂25 (252 bins)         (b) 𝝂75 (752 bins)       (c) 𝝂150 (1502 bins)   (d) 𝝂300 (3002 bins)

Figure 2.4: Multiresolution images of the Eiffel Tower are shown, where (d) has the finest
spatial resolution while (a) is coarsest. All the bins are shown in (a) and (b), whereas only
a few bins are shown in the left-top corner in (c) and (d).

Remark 2.3. (Computation Time) If the Markov matrix is computed using the LP (2.9),

then each agent has to solve the entire Markov matrix M j
k, even though it only needs the

row of the Markov matrix corresponding to its present bin. The computation time for an

LP increases with an increasing number of bins because the number of variables in M j
k is

approximately equal to n2
bin. For example, Fig. 2.4 shows multiple images of the Eiffel Tower
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with different spatial resolutions. If the desired formation shape is given by ν25 or ν75,

then the computation time is a few minutes on a standard desktop computer. If the desired

formation shape is given by ν150 (with 5 × 108 variables) or ν300 (with 8 × 109 variables),

then the LP is impractical for real-time computation. Within the Eulerian framework, this

escalating computation time with an increasing number of bins is also an issue for optimal

transport based algorithms. 2

Therefore, we need a faster method for generating the chain of inhomogeneous Markov

matrices. The following corollary gives the analytical formula of the optimal Markov matrix

when the cost matrix is symmetric.

Corollary 2.2. If the cost matrix Ck is symmetric (i.e., Ck = CT
k ), then the Markov matrix

M j
k is constructed as follows:

(1) If ξjk < ξdes, then set M j
k = I.

(2) Otherwise, the optimal solution of the LP (2.9) that satisfies the constraints (CS1, 2)

from Theorem 2.1 is given by:

M j
k[i, `] =


0 if Aj

k[i, `] = 0

εMξ
j
kΘ[`]

(
1− Ck[i,`]

Ck,max+εC

)
otherwise

, ∀i, ` ∈ {1, . . . , nbin} and i 6= ` ,

(2.12)

M j
k[i, i] = 1−

∑
`∈{1,...,nbin}\{i}

M j
k[i, `] . (2.13)

The transition probability M j
k[i, `] from bin B[i] to target bin B[`] is directly proportional to

both the HD (ξjk) and Θ[`]. Moreover, target bins with lower cost of transitions have higher

transition probabilities. In addition, M j
k satisfies the properties of the Markov matrix in

Theorem 2.1 and Remark 2.2.

Proof: According to Definition 2.3, Ck[i, i] = 0 and Ck[i, `] > 0 for all i 6= `. We first

transform the LP (2.9) from Theorem 2.1 into a simpler form using the following substi-
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tutions for all positive elements Qj
k[i, i] = M j

k[i, i] − (1 − ξjk) and Qj
k[i, `] = M j

k[i, `] −

εMξ
j
kΘ[`]

(
1− Ck[i,`]

Ck,max+εC

)
and neglecting the constraints (LP1,2):

min

nbin∑
i=1

nbin∑
`=1

Ck[i, `]Q
j
k[i, `] +

nbin∑
i=1

nbin∑
`∈{Ajk[i,`]=1,i 6=`}

Ck[i, `]εMξ
j
kΘ[`]

(
1− Ck[i, `]

Ck,max + εC

)
,

subject to 0 ≤ Qj
k[i, i] ≤ ξjk, ∀i , (L̃P3)

0 ≤ Qj
k[i, `] ≤

ξjk
εM
− εMξjkΘ[`]

(
1− Ck[i, `]

Ck,max + εC

)
. (L̃P4)

The minimum cost of this transformed LP is obtained when
∑nbin

i=1

∑nbin

`=1 Ck[i, `]Q
j
k[i, `] = 0.

Therefore, the minimum possible cost of the LP (2.9) is obtained when all positive off-

diagonal elementsM j
k[i, `] are equal to their respective lower bounds εMξ

j
kΘ[`]

(
1− Ck[i,`]

Ck,max+εC

)
.

We now show that the Markov matrix M j
k (2.12)-(2.13) satisfies all the constraints from

Theorem 2.1. It follows from the construction of M j
k that it satisfies (CS1,2) and (LP1,3,4).

The diagonal elements of M j
k are given by:

M j
k[i, i] = 1−

∑
`∈{Ajk[i,`]=1,i 6=`}

εMξ
j
kΘ[`]

(
1− Ck[i, `]

Ck,max + εC

)
. (2.14)

Note that M j
k (2.12)-(2.13) is a reversible Markov matrix because of the symmetric cost

matrix ck = cTk , i.e., Θ[`]M j
k[`, i] = Θ[i]M j

k[i, `] = εMξ
j
kΘ[i]Θ[`]

(
1− Ck[i,`]

Ck,max+εC

)
for all

i 6= `. This reversible property results in (LP2).

nbin∑
i=1

Θ[i]M j
k[i, `] = Θ[`]M j

k[`, `] +
∑

i∈{Ajk[i,`]=1,` 6=i}
Θ[i]M j

k[i, `] ,

= Θ[`]M j
k[`, `] +

∑
i∈{Ajk[i,`]=1,` 6=i}

Θ[`]M j
k[`, i] = Θ[`] .

Therefore, M j
k (2.12)-(2.13) is the optimal solution of the LP (2.9). �

If the cost matrix Ck is symmetric, then (2.12)-(2.13) give significant savings in compu-
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tation time because each agent can directly compute the row of the Markov matrix that it

needs. Moreover, the computation times for all four cases in Fig. 2.4 are less than 2 minutes

on a standard desktop computer. In fact, if the desired formation is given by ν300, then

no LP-based approach is practical. On the other hand, we show later that the PSG–IMC

algorithm using (2.12)-(2.13) achieves the desired formation ν300.

Remark 2.4. (Alternative functions for constraints) Note that our construction technique

holds even if the term
(

1− Ck[i,`]
Ck,max+εC

)
in the constraint (LP4) in Theorem 2.1 is replaced

by any monotonic function in (0, 1] that decreases with an increasing Ck[i, `]. Similarly, the

term ξjk in the constraints (LP3,4) can be replaced by any monotonic function in (0, 1] that

decreases with a decreasing ξjk (see Fig. 2.15 in Section 2.7.2). 2

2.2.2 Construction of Fastest Mixing Inhomogeneous Markov

Chain

In this section, we present an extension of our construction technique for constructing the

fastest mixing IMC, where the IMC’s convergence rate to the rank one matrix 1Θ is opti-

mized. The convergence rate of HMC, with time-invariant Markov matrix M , is determined

by the second largest eigenvalue modulus (i.e., maxr∈{2,...,nbin} |λr(M)|) [138, 139]. On the

other hand, the convergence rate of IMC is determined by the coefficient of ergodicity [135,

pp. 137]. Since the first nrec bins are recurrent bins, the Markov matrix M j
k can be decom-

posed as follows:

M j
k =

 M j
k,sub 0nrec×(nbin−nrec)

M j
k[nrec + 1 : nbin, 1 : nrec] M j

k[nrec + 1 : nbin, nrec + 1 : nbin]

 , (2.15)

where the sub-matrix M j
k,sub := M j

k[1 : nrec, 1 : nrec] encapsulates the bin transition proba-

bilities between the recurrent bins.

Definition 2.7. [135, pp. 137–139] (Coefficient of Ergodicity) For the stochastic matrix
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M j
k,sub, the coefficient of ergodicity τ1(M j

k,sub) is defined as:

τ1(M j
k,sub) = sup

v1,v2,v1 6=v2

DL1(v1M
j
k,sub,v2M

j
k,sub)

DL1(v1,v2)
,

= 1−min
i,`

nrec∑
s=1

min
(
M j

k,sub[i, s],M j
k,sub[`, s]

)
, (2.16)

where v1, v2 are probability row vectors in Rnrec and i, `, s ∈ {1, . . . , nrec}. 2

Let the sub-matrix Aj
k,sub := Aj

k[1 : nrec, 1 : nrec] encapsulate the motion constraints

between the recurrent bins. We define njk,dia as the graph diameter in the graph conforming

to the matrix Aj
k,sub, i.e., it is the greatest number of edges in a shortest path between any

pair of recurrent bins [140]. If njk,dia > 2, then there exists recurrent bins B[i] and B[`] such

that either M j
k,sub[i, s] = 0 or M j

k,sub[`, s] = 0 for all s ∈ {1, . . . , nrec}, which implies that

τ1(M j
k,sub) = 1. In order to avoid this trivial case, we minimize the coefficient of ergodicity

of the positive matrix (M j
k,sub)n

j
k,dia [141, Theorem 8.5.2, pp. 516].

The following corollary presents the construction of the Markov matrix that minimizes

the coefficient of ergodicity of the IMC while retaining the original structure.

Corollary 2.3. In order to construct the Markov matrix M j
k that generates the fastest

mixing IMC, the following convex optimization problem is used instead of the LP (2.9) in

Theorem 2.1:

min τ1

(
(M j

k,sub)n
j
k,dia

)
, (2.17)

subject to (LP1− 4) in (2.9).

Proof: It follows from (2.16) that the cost function τ1

(
(M j

k,sub)n
j
k,dia

)
is a convex function

of the stochastic matrix M j
k,sub because it can be expressed as [135, Lemma 4.3, pp. 139]:

τ1

(
(M j

k,sub)n
j
k,dia

)
= sup
‖δ‖2=1, δ1=0

∥∥∥δ · (M j
k,sub)n

j
k,dia

∥∥∥
1
,
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where δ = const(v1−v2) is a row vector in Rnrec . Hence the nonlinear optimization problem

(2.17) is a convex optimization problem. The family of Markov matrices Qj
k (2.10)-(2.11)

introduced in the proof of Theorem 2.1 is also within the feasible set for this problem. �

Note that Corollary 2.3 also suffers the computation time issue discussed in Remark 2.3.

2.2.3 Condition for Escaping Transient Bins

In this section, we discuss some additional complexities that arise due to motion constraints

and then state the condition for escaping transient bins.

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

(a)                                              (b)Trapping Bins

Figure 2.5: In this example, the bins 1 and 2 are recurrent bins. The allowed transitions
(motion constraints) are shown in red. The trapping bins for the two cases are enclosed in
blue.

Definition 2.8. (Trapping Bins) If an agent is inside a transient bin (Θ[i] = 0) and its

motion constraints matrixAj
k only allows transitions to other transient bins, then the agent’s

present bin is called a trapping bin. This agent is trapped in the trapping bin because the

Markov matrix does not allow transitions out of this bin. For example, the trapping bins

are shown in Fig. 2.5. Let T j
k represent the set of trapping bins for the jth agent at the kth

time instant. 2

In order to exit the set of trapping bins, for each bin B[i] ∈ T j
k, we choose another

transient bin Ψj
k[i] such that the transition is allowed by motion constraints. The bin Ψj

k[i]

is either outside or close to other bins that are outside the set of trapping bins in the next

33



time instant. The jth agent transitions from bin B[i] to bin Ψj
k[i] during the kth time instant.

This bin Ψj
k[i] has to be chosen on a case-by-case basis depending on the motion constraints

matrix Aj
k. For example, in Fig. 2.5, for the trapping bin 5, the best option is bin 3 in

case (a) and bin 7 in case (b). Using this condition, the agent exits the set of trapping bins

because the graph conforming to the motion constraints matrix is strongly connected.

If an agent is in a transient bin, but not in a trapping bin, then it will eventually

transition to a recurrent bin. We can also speed up this process. The matrix Sjk ∈ Rnbin×nbin

encapsulates the condition for escaping transient bins. If Θ[i] = 0 (i.e., B[i] is a transient

bin), then each element in the corresponding row Sjk[i, 1 : nbin] is given by:

Sjk[i, `] =


1 if B[i] ∈ T j

k and B[`] = Ψj
k[i]

1

njk,i
if B[i] 6∈ T j

k and Aj
k[i, `] = 1 and Θ[`] > 0

0 otherwise

, (2.18)

where njk,i is the number of recurrent bins that the jth agent can transition to, from bin B[i]

at the kth time instant. This condition is used only when the agent is in a transient bin. In

Section 2.3.1, we show that the agent exits the transient bins within finite time instants due

to this condition.

2.3 Probabilistic Swarm Guidance using

Inhomogeneous Markov Chains Algorithm for

Shape Formation

In this section, we first state the PSG–IMC algorithm for shape formation and then present

its convergence analysis and its property of robustness.

The pseudo-code for the PSG–IMC algorithm for shape formation is given in Method 1,
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1: One iteration of jth agent during kth time instant,
where the jth agent is in bin B[i]

2: Given Θ, Ck, A
j
k, and µjk

3: if Θ[i] = 0, then

4: Compute Sjk[i, 1 : nbin] using (2.18)
5: Generate a random number z ∈ unif[0; 1]

6: Go to bin B[q] such that
∑q−1

`=1 S
j
k[i, `] ≤ z <

∑q
`=1 S

j
k[i, `]

7: else

8: Compute the feedback gain ξjk using (2.5)

9: Compute M j
k[i, 1 : nbin] using Corollary 2.2 or

compute M j
k using Theorem 2.1

10: Compute the term ηjk,i using (2.21)

11: Compute P j
k[i, 1 : nbin] using (2.19) and (2.20)

12: Generate a random number z ∈ unif[0; 1]

13: Go to bin B[q] such that
∑q−1

`=1 P
j
k[i, `] ≤ z <

∑q
`=1P

j
k[i, `]

14: end if

Algorithm 2: PSG–IMC Algorithm for Shape Formation

whose key steps are shown in Fig. 2.2. At the start, the jth agent knows the desired formation

shape Θ, the time-varying cost matrix Ck, and its time-varying motion constraints matrix

Aj
k. During each iteration, the agent determines the bin it belongs to (we assume that the

jth agent is in bin B[i]) and the current swarm distribution µjk (lines 1–2).

If the agent is in a transient bin (line 3), then it uses inverse transform sampling [51] to

select the next bin from the corresponding row of the matrix Sjk[i, 1 : nbin] (lines 4–6).

Otherwise, the agent first computes the HD-based feedback gain ξjk (line 8). If the cost

matrix Ck is symmetric, then the agent can directly compute the row M j
k[i, 1 : nbin] using

Corollary 2.2 (line 9). Otherwise, the agent can compute the entire Markov matrixM j
k using

Theorem 2.1 (line 9). In order to avoid undesirable transitions from bins that are deficient

in agents (i.e., where Θ[i] > µjk[i]), the agent modifies its Markov matrix row M j
k[i, 1 : nbin]
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as follows:

P j
k[i, `] =

(
1− ηjk,i

)
M j

k[i, `] , ∀i 6= ` (2.19)

P j
k[i, i] =

(
1− ηjk,i

)
M j

k[i, i] + ηjk,i , (2.20)

where ηjk,i = exp(−τ jk)
exp

(
βj(Θ[i]− µjk[i])

)
exp

(
βj|Θ[i]− µjk[i]|

) , (2.21)

and τ j and βj are time-invariant positive constants (lines 10–11). The term ηjk,i (2.21) is

designed to reduce the transition probabilities from a bin that is deficient in agents and it

decreases with increasing time instants. Finally, the agent uses inverse transform sampling

[51] to select the next bin from the bin transition probabilities P j
k[i, 1 : nbin] (lines 12–13).

2.3.1 Main Result: Convergence Analysis

In this section, we discuss the convergence analysis of the PSG–IMC algorithm for shape

formation given in Algorithm 2. The objective is to show that the swam distribution µ?k

converges to the desired formation shape Θ with acceptable convergence errors. Unlike the

convergence proof for HMC, which is a direct application of the Perron–Frobenius theorem,

the convergence proof for IMC is rather involved (e.g., see [135, 142]).

Assuming ξdes = ξmin from (2.7), if ξjk < ξmin, then the current swarm distribution is very

close to the desired formation and no further convergence is necessary. In the remainder of

this section, we assume that the swarm has not converged and ξjk ≥ ξmin.

We first show that agents in recurrent bins transition using to the modified Markov

matrix P j
k derived from (2.19)-(2.20).

Theorem 2.4. According to Algorithm 2, if an agent is in a recurrent bin, then it transitions

using the following modified Markov matrix P j
k:

P j
k =

(
I−Dj

k

)
M j

k +Dj
k , (2.22)
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where Dj
k = diag

(
ηjk,1, . . . , η

j
k,nbin

)
. The Markov matrix P j

k is row stochastic (i.e., P j
k1 = 1),

asymptotically homogeneous with respect to Θ (i.e., limk→∞ΘP j
k = Θ), and only allows

transitions into recurrent bins.

Proof: The modified Markov matrix P j
k (2.22) is derived from (2.19)–(2.21). It follows

from lines 3 and 6 in Method 1 that the agent uses the Markov matrix P j
k to transition if

and only if it is in a recurrent bin (i.e., Θ[i] > 0).

The matrix P j
k is row stochastic because M j

k1 = 1. The matrix M j
k has Θ as its

stationary distribution for all k ∈ N. It follows from the definition of the term ηjk,i (2.21)

that limk→∞D
j
k = 0nbin×nbin . Therefore limk→∞P

j
k = limk→∞M

j
k. Hence, the sequence of

matrices P j
k is asymptotically homogeneous with respect to Θ because limk→∞ΘP j

k = Θ

(see Definition A.1 in Appendix A). Note that the Markov matrix P j
k need not have Θ as

its stationary distribution for all time instants.

Finally, each element P j
k[i, `] > 0 if and only if the corresponding element M j

k[i, `] > 0

for all i, ` ∈ {1, . . . , nbin} and k ∈ N. Therefore the matrix P j
k only allows transitions into

recurrent bins because the matrix M j
k only allows transitions into recurrent bins. �

We now show that all the agents leave the transient bins and enter the recurrent bins in

finite time instants.

Theorem 2.5. According to Algorithm 2, there exists a finite time instant T ≤ (nbin−nrec +

1) such that each agent is in a recurrent bin by the T th time instant. If an agent is inside a

recurrent bin, then it always remains within the set of recurrent bins.

Proof: If an agent is in a recurrent bin, then it follows from Theorem 2.4 that it cannot

transition to any transient bin.

If an agent is in a transient bin, but not a trapping bin, then the matrix Sjk (2.18) ensures

that the agent transitions to a recurrent bin in the next time instant.

If the agent is in a trapping bin, then the matrix Sjk (2.18) ensures that the agent exits

the set of trapping bins as soon as possible. Therefore, the maximum number of steps inside
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the set of trapping bins is upper bounded by (nbin−nrec). Hence each agent enters a recurrent

bin in at most (nbin − nrec + 1) time instants. �

Consider a probability (row) vector xjk ∈ Rnbin , which denotes the probability mass

function (pmf) of the predicted position of the jth agent at the kth time instant. Each

element xjk[i] gives the probability of the event that the jth agent is in bin B[i] at the kth

time instant:

xjk[i] = P(rjk[i] = 1), ∀i ∈ {1, . . . , nbin} . (2.23)

We now discuss convergence of each agent’s pmf vector xjk to the desired formation Θ.

Theorem 2.6. (Convergence of IMC) If each agent executes the PSG–IMC algorithm given

in Algorithm 2, then each agent’s time evolution of the pmf vector xjk converges pointwise to

the desired stationary distribution Θ irrespective of the initial condition, i.e., limk→∞ x
j
k = Θ

pointwise for all agents.

Proof: It follows from Theorem 2.5 that all agents are always in the set of recurrent bins

from the T th time instant onwards. Since the first nrec bins are recurrent bins, we decom-

pose the pmf vector xjk = [x̄jk, 0, . . . , 0] for all k ≥ T , where the probability row vector

x̄jk := [xjk[1], . . . ,xjk[nrec]] ∈ Rnrec denotes the agent’s pmf vector over the set of recur-

rent bins. Similarly, we decompose the desired formation as Θ = [Θ̄, 0, . . . , 0], where

Θ̄ := [Θ[1], . . . ,Θ[nrec]]. Note that convergence of x̄jk to Θ̄, implies the convergences of

xjk to Θ. The flowchart for this proof is given in Fig. 2.6.

According to Method 1 and Theorem 2.4, the time evolution of the pmf vector x̄jk is

given by:

x̄jk+1 = x̄jkP
j
k,sub , ∀k ≥ T , (2.24)

where the sub-matrix P j
k,sub := P j

k[1 : nrec, 1 : nrec] encapsulates the bin transition probabil-

ities between the recurrent bins (similar to M j
k,sub in (2.15)). It follows from Theorem 2.4
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lim
𝑟→∞
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Figure 2.6: Flowchart for the proof of Theorem 2.6.
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that the Markov matrix P j
k,sub is row stochastic.

Each matrix M j
k,sub is irreducible because the graph conforming to the corresponding

motion constraints sub-matrix Aj
k,sub is strongly connected (due to property (iv) in Defini-

tion 2.5). Therefore, each matrix P j
k,sub is irreducible because the term ηjk,i ≤ exp(−τ jT )

for all k ≥ T .

It follows from (2.5) that DH(Θ,µjk) = 1 if and only if µjk[i] = 0 and Θ[i] > 0 for all

i ∈ {1, . . . , nrec}. Therefore, the feedback gain ξjk < 1 for all time instant k ≥ T because all

agents are in recurrent bins. Hence the diagonal element M j
k,sub[i, i] for all i ∈ {1, . . . , nrec}

and k ≥ T is bounded by 0 <M j
k,sub[i, i] ≤ 1 (due to the constraint (LP3) in Theorem 2.1).

Therefore, the diagonal element P j
k,sub[i, i] > 0 for all i ∈ {1, . . . , nrec} and k ≥ T .

The overall time evolution of the agent’s pmf vector is given by the IMC for all r > T :

x̄jr = x̄jTP
j
T,subP

j
T+1,sub . . .P

j
r−1,sub = x̄jTU

j
T,r. (2.25)

We now show that this forward matrix product U j
T,r is strongly ergodic (see Definition A.2

in Appendix A) and Θ̄ is its unique limit vector (i.e., limr→∞UT,r = 1Θ̄).

The matrix U j
T,r is a product of nonnegative matrices, hence it is also a nonnegative

matrix. If P j
k,sub[i, `] > 0 for some k ∈ {T, . . . , r − 1} and i, ` ∈ {1, . . . , nrec}, then the

corresponding element U j
T,r[i, `] > 0 because:

U j
T,r[i, `] ≥P

j
T,sub[i, `]

( r−1∏
q=T+1

P j
q,sub[`, `]

)
+

r−2∑
s=T+1

((s−1∏
q=T

P j
q,sub[i, i]

)
P j
s,sub[i, `]

( r−1∏
q=s+1

P j
q,sub[`, `]

))

+
(r−2∏
q=T

P j
q,sub[i, i]

)
P j
r−1,sub[i, `] , if i 6= ` , (2.26)

U j
T,r[i, i] ≥

(r−1∏
q=T

P j
q,sub[i, i]

)
, if i = ` . (2.27)

Since the matrix P j
k,sub is irreducible and it follows from (2.26) that U j

T,r[i, `] > 0 if

P j
k,sub[i, `] > 0, therefore the matrix U j

T,r is also irreducible. Since the irreducible ma-
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trix U j
T,r has positive diagonal elements (2.27), it is a primitive matrix [141, Lemma 8.5.4,

pp. 516].

A number of off-diagonal elements inM j
k,sub and P j

k,sub are zero because those transitions

are not allowed (due to the constraints (CS1,2) in Theorem 2.1). The lower bound γj

(independent of k) for the remaining positive elements in P j
k,sub is given by the constraint

(LP4) in Theorem 2.1 and the upper bound of the term ηjk,i (2.21):

γj =
(
1− exp(−τ jT )

)
ξminεM(min +Θ)

(
1− Cmax

Cmax+εC

)
≤ min

i, `

+P j
k,sub[i, `] , k ≥ T ,

(2.28)

where min + refers to the minimum of the positive elements and Cmax = maxk∈NCk,max. It

follows from Theorem 2.4 that the sequence of matrices P j
k,sub, k ≥ T is asymptotically

homogeneous with respect to Θ̄. Since (i) the forward matrix product UT,r is primitive and

(ii) there exists γj (independent of k), it follows from Theorem A.1 in Appendix A that

the forward matrix product U j
T,r is strongly ergodic. Since (i) the matrices P j

k,sub, k ≥ T

are irreducible and (ii) there exists γj (independent of k), it follows from Theorem A.2 in

Appendix A that the limit vector e = Θ̄. Since (iii) U j
T,r is strongly ergodic, it follows from

Corollary A.3 in Appendix A that the unique limit vector is given by Θ̄ (i.e., limr→∞U
j
T,r =

1Θ̄). Hence, each agent’s pmf vector converges to:

lim
r→∞

x̄jr = lim
r→∞

x̄jTU
j
T,r = x̄jT1Θ̄ = Θ̄ ,

which implies that limk→∞ x
j
k = Θ pointwise for all agents. �

Theorem 2.7. For all εlim > 0, there exists a kjε,lim ∈ N such that the convergence error

between the agent’s pmf vector xjr and the desired formation Θ is bounded for all r ≥ kjε,lim
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by:

DL1(xjr,Θ) ≤ εlim +DL1(xjT ,Θ)

b r−T
nrec−1c−1∏
s=0

1− nrec

T+(s+1)(nrec−1)∏
q=T+s(nrec−1)

δjq

 ,

where b·c is the floor function and δjq = mini, `
+P j

q,sub[i, `].

Proof: Since limr→∞U
j
T,r = 1Θ̄, there exists a kjε,lim ∈ N such that DL1(Θ̄U j

T,r, Θ̄) ≤ εlim

for all r ≥ kjε,lim. It follows from the definition of τ1(U j
T,r) in (2.16) that:

DL1(x̄jTU
j
T,r, Θ̄U

j
T,r) ≤ τ1(U j

T,r)DL1(x̄jT , Θ̄) .

Since x̄jr = x̄jTU
j
T,r (2.25), we get from the triangle inequality:

DL1(x̄jr, Θ̄) ≤ DL1(x̄jTU
j
T,r, Θ̄U

j
T,r) +DL1(Θ̄U j

T,r, Θ̄) ≤ τ1(U j
T,r)DL1(x̄jT , Θ̄) + εlim .

The sub-multiplicative property of τ1(U j
T,r) gives:

τ1(U j
T,r) ≤

b r−T
nrec−1c−1∏
s=0

τ1

(
U j
T+s(nrec−1),T+(s+1)(nrec−1)

)
.

Here, if r > T+
⌊

r−T
nrec−1

⌋
(nrec−1), then we neglect the contribution of τ1

(
U j

T+b r−T
nrec−1c(nrec−1),r

)
.

The matrix U j
k,k+nrec−1, for any k ≥ T , is a positive matrix because there exists a path

of length ≤ (nrec− 1) between every two recurrent bins (see Lemma A.4 in Appendix A). A

conservative lower-bound on the elements in the positive matrix U j
T+s(nrec−1),T+(s+1)(nrec−1) is(∏T+(s+1)(nrec−1)

q=T+s(nrec−1) δjq

)
. Therefore, it follows from (2.16) that τ1

(
U j
T+s(nrec−1),T+(s+1)(nrec−1)

)
≤

1− nrec

(∏T+(s+1)(nrec−1)
q=T+s(nrec−1) δjq

)
< 1. �

We now focus on the convergence of the swarm distribution to the desired formation. In

practical scenarios, the number of agents is finite, hence the following theorem gives a lower
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bound on the number of agents.

Theorem 2.8. Let εlim > 0, εbin > 0, and εconv > 0 represent convergence error thresholds.

Let κ represent the latest time instant when an agent is added to or removed from the swarm.

The convergence error between the swarm distribution µ?k and the desired formation Θ is

probabilistically bounded for all k ≥ kε,lim by:

P (DL1(µ?k,Θ) ≥ εbin + σk) ≤
nrec

4mκε2
bin

, (2.29)

P
(
DH(µ?k,Θ) ≥ 1√

2

√
εbin + σk

)
≤ nrec

4mκε2
bin

, (2.30)

where mk = mκ for all k ≥ κ, δq = minj∈{1,...,mκ} δ
j
q, and

σk = εlim + 2
∏b k−κ−Tnrec−1 c−1

s=0

(
1− nrec

(∏T+(s+1)(nrec−1)
q=T+s(nrec−1) δq

))
.

If the number of agents satisfies the inequality:

mκ ≥
nrec

16ξ4
desεconv

, (2.31)

then the HD between the final swarm distribution and the desired formation is probabilistically

bounded by εconv, i.e.,

P
(
DH

(
lim
k→∞

µ?k,Θ
)
≥ ξdes

)
≤ εconv , (2.32)

where ξdes is defined in Remark 2.1.

Proof: Let Xj
k,i denote the Bernoulli random variable, where Xj

k,i = 1 represents the event

that the jth agent is actually located in bin B[i] at the kth time instant (i.e., rjk[i] = 1) and

Xj
k,i = 0 otherwise (i.e., rjk[i] = 0). We get from (2.23) that P(Xj

k,i = 1) = xjk[i]. Therefore

E[Xj
k,i] = xjk[i] and Var(Xj

k,i) = E[Xj
k,i](1−E[Xj

k,i]), where E[·] and Var(·) respectively denote

the expected value and the variance of the random variable.

Since limk→∞U
j
κ+T,k = 1Θ̄ for all agents, there exists kε,lim ∈ N such thatDL1(Θ̄U j

κ+T,k, Θ̄) ≤
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εlim for all k ≥ kε,lim and j ∈ {1, . . . ,mκ}. It follows from Theorem 2.7 that for all k ≥ κ+T :

DL1(xjk,Θ) ≤
(
1− nrec(γ

j)nrec
)b k−κ−Tnrec

c
DL1(xjκ+T ,Θ) ≤ σk .

Therefore, |xjk[i]−Θ[i]| ≤ σk and |E[Xj
k,i]−Θ[i]| ≤ σk for all i ∈ {1, . . . , nrec} and k ≥ kε,lim.

The swarm distribution in binB[i] at the kth time instant is given by µ?k[i] = 1
mκ

∑mκ
j=1 X

j
k,i.

Since these random variables are uncorrelated, we get E[µ?k[i]] = 1
mκ

∑mκ
j=1 E[Xj

k,i], |E[µ?k[i]]−

Θ[i]| ≤ σk, and Var(µ?k[i]) = 1
mκ

E[Xj
k,i](1− E[Xj

k,i]) ≤ 1
4mκ

. It follows from Chebychev’s in-

equality (cf. [143, Theorem 1.6.4, pp. 25]) that for any εbin, the pointwise error probability

for each bin is bounded by:

P (|µ?k[i]− E[µ?k[i]]| ≥ εbin) ≤ 1

4mκε2
bin

.

If follows from triangle inequality that:

|µ?k[i]− E[µ?k[i]]|+ |E[µ?k[i]]−Θ[i]| ≥ |µ?k[i]−Θ[i]| ,

|µ?k[i]− E[µ?k[i]]| ≥ |µ?k[i]−Θ[i]| − |E[µ?k[i]]−Θ[i]| ≥ |µ?k[i]−Θ[i]| − σk .

Therefore:

P (|µ?k[i]−Θ[i]| − σk ≥ εbin) ≤ P (|µ?k[i]− E[µ?k[i]]| ≥ εbin)

P (|µ?k[i]−Θ[i]| ≥ εbin + σk) ≤
1

4mκε2
bin

.

The bound on L1 distance is obtained using Boole’s inequality:

P (DL1(µ?k,Θ) ≥ εbin + σk) ≤
nrec∑
i=1

P (|µ?k[i]−Θ[i]| ≥ εbin + σk) ≤
nrec

4mκε2
bin

.
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The bound on HD follows from (2.6), i.e., DH(µ?k,Θ) ≤ 1√
2
DL1(µ?k,Θ)

1
2 . Therefore:

P
(
DH(µ?k,Θ) ≥ 1√

2

√
εbin + σk

)
≤ P

(
1√
2
DL1(µ?k,Θ)

1
2 ≥ 1√

2

√
εbin + σk

)
≤ nrec

4mκε2
bin

.

Since limk→∞ x
j
k = Θ, we get limk→∞ E[Xj

k,i] = Θ[i] and limk→∞ σk = 0. Setting εbin = 2ξ2
des,

we get:

P
(
DH

(
lim
k→∞

µ?k,Θ
)
≥ ξdes

)
≤ nrec

16mκξ4
des

.

The lower bound on the number of agents is given by nrec

16mκξ4
des
≤ εconv. �

Remark 2.5. It follows from Theorem 2.8 and the weak law of large numbers [144, pp. 86]

that the final swarm distribution limk→∞µ
?
k converges in probability to the desired formation

Θ as the number of agents mκ tends to infinity. 2

Thus, we have proved the convergence of the PSG–IMC algorithm for shape formation.

We now discuss its property of robustness.

Remark 2.6. (Robustness of the PSG–IMC Algorithm) The PSG–IMC algorithm satisfies

the Markov property because the action of each agent depends only on its present bin location

and the current swarm distribution. This memoryless property ensures that all the agents

re-start their guidance trajectory from their present bin location during every time instant.

Thus, the swarm continues to achieve its objective even if agents are added or removed

from the swarm or the swarm is damaged by external disturbances or some agents have not

reached their target bin during the previous time instant.

Secondly, although the PSG–IMC algorithm uses the feedback of the current swarm

distribution µ?k, it can tolerate large estimation errors. If the jth agents estimate of the

current swarm distribution µjk has an estimation error εest (2.4), then the distance between
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the feedback gains ξjk = DH(Θ,µjk) and ξ?k = DH(Θ,µ?k) is bounded by [134]:

∣∣ξjk − ξ?k∣∣ ≤ DH(µ?k,µ
j
k) ≤

1√
2
ε

1
2
est . (2.33)

Even though ξjk might differ from ξ?k substantially, the resulting Markov matrix M j
k con-

structed using ξjk still has Θ as it stationary distribution. Therefore the agent’s pmf vector

xjk still converges to Θ, and consequently the swam distribution also converges to Θ. Hence

the PSG–IMC algorithm can tolerate large errors in the feedback of the current swarm

distribution. 2

We now present some extensions of the PSG–IMC algorithm.

2.3.2 Multiresolution PSG–IMC Algorithm for Shape Formation

Here the agents take advantage of the multiresolution representation of the desired formation.

Such a multiresolution hierarchical approach to guidance or path planning has been used in

the Lagrangian framework [145, 146]. Here we present a multiresolution guidance strategy

for the Eulerian framework.

𝝂300 𝝂150 𝝂75 𝝂25

𝜉𝑡ℎ,150 𝜉𝑡ℎ,75 𝜉𝑡ℎ,25

0.0 Hellinger Distance 𝜉𝑘
𝑗

1.0

Figure 2.7: This image shows the different thresholds and the corresponding resolution of
the desired formation that should be used when ξjk is within those thresholds.

If multiresolution images of the desired formation are available, then the agents can

choose the appropriate resolution depending on the current swarm distribution. For example,

coarser resolution images (ν150, ν75 and ν25) of the desired formation of the Eiffel Tower ν300

are shown in Fig. 2.4. We select thresholds ξth,150, ξth,75, and ξth,25 so that the agent can use

the appropriate resolution of the desired formation when the feedback gain ξjk is within these

thresholds as shown in Fig. 2.7. The thresholds are selected such that they are achievable
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even in the presence of estimation errors. The main advantages of this multiresolution

approach include computational efficiency and simplicity of implementation.

2.3.3 Time-Varying Physical Space of the Swarm

The compact physical space over which the swarm is distributed need not be time-invariant

in the global reference frame. The local reference frame of the swarm can follow a pre-defined

trajectory in the global reference frame (e.g., an orbit in space or a trajectory in the sea) and

the time-varying position of each bin can be easily computed from this known trajectory.

Consequently, all the PSG–IMC algorithms discussed in this chapter are also applicable in

this scenario.

2.4 Probabilistic Swarm Guidance using

Inhomogeneous Markov Chains Algorithm for

Area Exploration

In this section, we present an extension of the PSG–IMC algorithm for area exploration in

which a swarm of distributed agents are driven to match the unknown target distribution of

some physical or artificial phenomena (e.g., oil spill). This problem is commonly called goal

searching [20].

Definition 2.9. (Unknown Target Distribution Ω) The unknown target distribution Ω is a

probability (row) vector in Rnbin , where each element Ω[i] represents the target distribution

in the corresponding bin B[i]. Each agent can measure the target distribution in its present

bin. 2

Each agent independently determines its bin-to-bin trajectory using the PSG–IMC al-

gorithm for area exploration so that the overall swarm converges to this unknown target

distribution Ω. The key idea of this algorithm is that the waiting time in a bin is directly
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proportional to the target distribution in that bin. Moreover, the algorithm automatically

adapts to changes in the target distribution.

1: Lines 1–2 in Algorithm 2
2: Measure target distribution in present bin Ω[i]
3: if k − k0 < τcΩ[i], then
4: Wait in bin B[i]

5: else Set Θ = 1
nbin

1T and ξjk = ξj

6: Compute the term ηjk,i using (2.34)

7: Lines 9, 11–13 in Algorithm 2, Set k0 = k
8: end if

Algorithm 3: PSG–IMC Algorithm for Area Exploration

The pseudo-code for this PSG–IMC algorithm for area exploration is given in Algo-

rithm 3. The jth agent first measures the target distribution in its present bin Ω[i] (line

2). The waiting time in bin B[i] is directly proportional to Ω[i], where τc is the constant of

proportionality. The agent checks if it has spent enough time instants in bin B[i] (line 3),

where k0 is is set in line 7. When the algorithm starts (i.e. k = 1), we set k0 = 1. If the

agent has not spent enough time instants in bin B[i], then it continues to wait in bin B[i]

(line 4).

If the agent has spent enough time instants in bin B[i], then it sets the desired formation

Θ to 1
nbin

1T because it wants to explore all the bins uniformly (line 5). The agent sets the

feedback gain ξjk to some positive constant ξj ∈ (0, 1) because the it does not know the entire

target distribution Ω (line 5). In order to avoid undesirable transitions, the agent computes

the term ηjk,i as follows (line 6):

ηjk,i = exp(−τ jk)
exp

(
βj(Ω[i]− µjk[i])

)
exp

(
βj|Ω[i]− µjk[i]|

) . (2.34)

Then the agent computes the transition probabilities P j
k[i, 1 : nbin] using lines 9 and 11 from

Algorithm 2 and selects the next bin using lines 12–13 from Algorithm 2 (line 7). Finally, the

agent sets k0 equal to the current time instant k (line 7). We now discuss the convergence
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analysis of this algorithm.

Theorem 2.9. (Convergence of IMC) If each agent executes the PSG–IMC algorithm given

in Algorithm 3, then each agent’s time evolution of the pmf vector xjk converges pointwise to

the unknown target distribution Ω irrespective of the initial condition, i.e., limk→∞ x
j
k = Ω

pointwise for all agents.

Proof: Here, all bins are recurrent bins. Since Θ = 1
nbin

1T , it follows from Theorem 2.6

that as k →∞, an agent is equally likely to transition to any bin B[i]. But the waiting time

in bin B[i] is directly proportional to the target distribution in that bin Ω[i], due to lines

3–4 in Algorithm 3. Therefore, limk→∞ E[Xj
k,i] ∝

Ω[i]
nbin

. Hence, limk→∞ x
j
k = Ω pointwise for

all agents. �

The remaining convergence analysis straightforwardly follows that of the previous algo-

rithm given in Section 2.3.1.

2.5 Probabilistic Swarm Guidance using Optimal

Transport Algorithm for Shape Formation

The key step sin the proposed PSG–OT algorithm for shape formation are shown in Fig. 2.8

and its pseudo code is given in Algorithm 4. In Step 1, each agent determines its present

location and bin. During Step 2, each agent estimates the current swarm distribution. Step 3

involves solving the OTP using LP to obtain the bin transition probabilities for the current

time step. The target bin is selected by inverse transform sampling the OTP solution,

as shown in Step 4. Step 5 involves checking if the proposed target bin satisfies motion

constraints. Finally, in Step 6, the agent travels to the target bin while avoiding collisions.

We first state the OTP for transporting the swarm from its estimated current distribution

µjk to the desired formation Θ while minimizing the cost function Ck and satisfying motion
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2. Estimate swarm 

distribution

1. Determine actual 

agent location

4. Select target bin 

from OTP solution

3. Solve OTP   

using LP

5. Check bin for 

motion constraints

6. Go to bin while 

avoiding collisions

Figure 2.8: Flowchart of PSG–OT describing the key steps for a single agent in a single time
step.

constraints. The nx-dimensional compact convex Euclidean space over which the swarm is

distributed is denoted by B ⊂ Rnx . Let κ[i] ∈ Rnx represent the centroid of the convex bin

B[i]. The Dirac measure on x ∈ Rnx is defined as δx(κ[i]) = 1 if x = κ[i] and 0 otherwise.

Then the measure induced by the jth agent’s estimated current swarm distribution µjk on B

is given by:

ρjk(x) =

nbin∑
i=1

µjk[i]δx(κ[i]) . (2.35)

Similarly, for y ∈ Rnx , the measure induced by the desired formation Θ on B is given by:

σk(y) =

nbin∑
i=1

Θ[i]δy(κ[i]) . (2.36)
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The OTP is represented as the Monge–Kantorovich minimization problem [54]:

γjk(x,y) = arg inf
$(x,y)

∫
B×B

Ck(x,y)d$(x,y) , (2.37)

where the infimum runs over all joint probability measures $(x,y) on B × B, which have

ρjk(x) and σk(y) as their marginal measures for x ∈ B and y ∈ B respectively. The joint

measures or couplings that achieve the optimal cost are called optimum transference plans

γjk(x,y). The following theorem gives conditions for the existence of optimum transference

plans.

Theorem 2.10. [54, Theorem 4.1, p. 43] (Existence of an optimal coupling) Let a(x) ∈

L1(ρjk), b(y) ∈ L1(σk) be two upper semi-continuous functions and Ck(x,y) be a lower

semi-continuous cost function, such that Ck(x,y) ≥ a(x) + b(y),∀x,y. Then there exists

an optimal coupling γjk(x,y) which minimizes the total cost
∫
B×BCk(x,y)d$(x,y) among

all possible couplings $(x,y) on B × B with marginals ρjk(x) and σk(y).

Two distinct optimal transference trajectories in the optimum transference plan γjk do

not intersect, except at endpoints [54]. Thus the OTP solution also helps in generating

collision-free trajectories for the agents.

2.5.1 Incorporation of Motion Constraints

In this section, we capture the effect of the motion constraints Aj
k (defined in Definition 2.5)

by modifying the cost function Ck (defined in Definition 2.3). Let us choose a positive

constant Cmax such that Cmax � Ck[i, `] for all bins i, ` ∈ {1, . . . , nbin} and for all time

instants k ∈ N. The modified cost function C̃
j

k that captures the effect of the motion
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constraints is given by:

C̃
j

k[i, `] =


Ck[i, `] if Aj

k[i, `] = 1

Cmax if Aj
k[i, `] = 0

, ∀i, ` ∈ {1, . . . , nbin}, ∀k ∈ N . (2.38)

This modified cost function C̃
j

k is used in the OTP (2.37).

2.5.2 Linear Programming Formulation

Let us now state the discrete OTP that is solved by each agent in the swarm. The discrete

OTP can be recast as a LP, where γjk ∈ Rnbin×nbin is the optimum transference plan:

min

nbin∑
i=1

nbin∑
`=1

γjk[i, `]C̃
j

k[i, `] , (2.39)

subject to

nbin∑
`=1

γjk[i, `] = µjk[i], ∀i ∈ {1, . . . , nbin} ,

nbin∑
i=1

γjk[i, `] = Θ[`], ∀` ∈ {1, . . . , nbin} ,

γjk[i, `] ≥ 0, ∀i, ` ∈ {1, . . . , nbin} .

Each agent independently solves this LP to find the optimum transference plan γjk from the

initial distribution µjk to the final desired distribution Θ.

The optimal transference plan γjk, can also be interpreted in the Markovian sense. For a

non-empty bin B[i], the probability of the jth agent transitioning from bin B[i] to bin B[`]

during the kth time step is given by:

P
(
rjk+1[`] = 1|rjk[i] = 1

)
=

γjk[i, `]∑nbin

q=1 γ
j
k[i, q]

. (2.40)

Inverse transform sampling is used to select the target bin from these bin transition proba-

bilities [51].
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Note that the Markov matrix, representing the bin transition probabilities of the jth

agent at the kth time step given by (2.40), does not have Θ as its stationary distribution.

Hence this approach is dissimilar from the Markov chain based approaches. But it is due

to this Markovian interpretation that PSG–OT is also robust to disturbances or damages to

the formation.

2.5.3 Check Target Bins for Motion Constraints

In some cases, it is possible that the target bin, selected from the OTP solution γjk, does

not satisfy motion constraints Aj
k. Here, we address this particular situation.

If the agent is in a trapping bin and the selected target bin does not satisfy motion

constraints, then the agent transitions according to the transient bin escape condition Sjk

discussed in Section 2.2.3.

If the agent is in a trapping bin and the selected target bin does not satisfy motion con-

straints, then the agent continues to remain in its present bin. This can also be encapsulated

into the matrix Sjk as:

Sjk[1 : nrec, 1 : nrec] = I , (2.41)

because the first nrec bins are recurrent bins.

The pseudo code of PSG–OT algorithm for shape formation is shown in Algorithm 4.

Each agent determines its current location and current swarm distribution. It determines its

next location by solving the OTP and inverse transform sampling. Finally, the agent checks

if its target bin satisfies motion constraints and uses the transient bin escape condition.
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1: One iteration of jth agent during kth time instant,
where the jth agent is in bin B[i]

2: Given Θ, Ck, A
j
k, and µjk

3: Compute modified cost function C̃
j

k using (2.38)

4: Compute optimum transference plan γjk using OTP (2.39)

5: Generate a random number z ∈ unif
[
0;
∑nbin

`=1 γ
j
k[i, `]

]
6: Choose bin B[q] such that

∑q−1
`=1 γ

j
k[i, `] ≤ z <

∑q
`=1 γ

j
k[i, `]

7: if Aj
k[i, q] = 1 then

8: Go to bin B[q]
9: else

10: Compute Sjk[i, 1 : nbin] using (2.18) and (2.41)
11: Generate a random number z ∈ unif[0; 1]

12: Go to bin B[q] such that
∑q−1

`=1 S
j
k[i, `] ≤ z <

∑q
`=1 S

j
k[i, `]

13: end if

Algorithm 4: PSG–OT Algorithm for Shape Formation

2.6 Collision-free Trajectory Generation using

Voronoi Partitions

A collision avoidance algorithms are necessary for determining the collision-free guidance

trajectory of each agent from its current location to the target bin. It is desired that all

agents should always maintain a minimum collision avoidance distance between each other,

which is denoted by rcol. In this section, we present a new distributed collision-free trajectory

generation algorithm specifically suited for probabilistic swarm guidance and its bin-based

architecture by modifying the coverage control algorithm.

The coverage control algorithm, which uses the Voronoi partition based Lloyd’s descent

algorithm [28], is designed for optimally distributing multiple agents over a given region.

This distribution is optimal with respect to a `2-norm based cost function. An interesting

property of these Voronoi partitions is that, if the given region is a convex polytope in an

nx-dimensional Euclidean space, then each Voronoi partition of the given region is itself a

nx-dimensional convex polytope [147].
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In the PSG–IMC and PSG–OT algorithms, at every time step, the agents in a particular

bin either remain in the same bin or transition to their respective target bins. Let us call

the agents that remain in the same bin as stationary agents and those that transition to

their target bins as transient agents. Let each agent construct a Voronoi partition of its

contiguous bins based on the position of its neighboring agents. The key idea for collision-

free trajectory generation, as shown in Fig. 2.9, is to direct each stationary agent to the

centroid of its Voronoi partition. Each transient agent is directed to the position in its

Voronoi partition that has the minimum distance from the centroid of its target bin.

Let pjk,τ denote the actual location of the jth agent at the beginning of the τ th collision-

free trajectory generation loop at the kth time step. Let p̂jk,τ+1 represent the desired location

of the jth agent that is generated using the τ th collision-free trajectory generation loop at

the kth time step. Let τmax denote the number of collision-free trajectory generation loops

in each time step.

Let us define W(B[i]) as the set of bins that are contiguous to the bin B[i], i.e., the

closure of the bins in W(B[i]) share at least an edge or vertex with the closure of the bin

B[i] and B[i] ∈ W(B[i]). Let Nk,τ (W(B[i])) denote the set of all agents in all the bins in

W(B[i]) during the τ th collision-free trajectory generation loop at the kth time step. It is

assumed that the jth agent in bin B[i] is able to communicate with all the agents in all

the bins in W(B[i]). The distributed algorithm for the jth agent in bin B[i] during the τ th

collision-free trajectory generation loop at the kth time step is given as follows:

1. The jth agent in bin B[i] transmits its actual location to other agents in W(B[i])

and gathers the actual location of all the agents in W(B[i]). Let Pk,τ (W(B[i])) ={
p`k,τ : ` ∈ Nk,τ (W(B[i]))

}
represent the actual location of all the agents in W(B[i]).

2. Let Ξ(W(B[i])) denote the largest convex polytope inside W(B[i]). As the bin B[i]

is convex, B[i] ⊆ Ξ(W(B[i])). Construct the Voronoi partition V (Pk,τ (W(B[i]))) ={
V `
k,τ : ` ∈ Nk,τ (W(B[i]))

}
of the region Ξ(W(B[i])) based on points Pk,τ (W(B[i])).
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τ = 1 τ = 2

τ = 3 τ = 4

τ = 5 τ = 6

Figure 2.9: Time evolution of six agents in two bins (left and right bin), following the
collision-free trajectory generation algorithm. The transient agent (in red) goes from the left
bin to the right bin and the remaining stationary agents (in blue) give way to the transient
agent. The Voronoi sets (V j

k,τ , Ṽ
j
k,τ , V̆

j
k,τ ) of all the agents along with their trajectories

(denoted using arrows) during each collision-free trajectory generation loop are also shown.

The Voronoi set V j
k,τ of the jth agent is given by:

V j
k,τ =

{
x ∈ Ξ(W(B[i])) : ‖x− pjk,τ‖2 ≤ ‖x− p`k,τ‖2, ∀` ∈ Nk,τ (W(B[i])) and j 6= `

}
.

(2.42)

3. Depending on the type of the agent, set the new location of the jth agent as follows:
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(a) If the jth agent is a transient agent, then let ∂V j
k,τ denote the boundary of the

Voronoi set V j
k,τ obtained using (2.42). Construct a modified Voronoi set Ṽ j

k,τ such

that:

Ṽ j
k,τ =

{
x ∈ V j

k,τ : ‖x− ∂V j
k,τ‖2 ≥ rcol

}
. (2.43)

If Ṽ j
k,τ = ∅, then set p̂jk,τ+1 = pjk,τ . Otherwise, set the desired location of the jth

agent as:

p̂jk,τ+1 = arg min
x∈Ṽ jk,τ

‖x− κjk‖ , (2.44)

where κjk ∈ R represents the centroid of its target bin.

(b) If the jth agent is a stationary agent, then let ∂(V j
k,τ ∩B[i]) denote the boundary

of the set (V j
k,τ ∩B[i]). Construct a modified Voronoi set V̆ j

k,τ such that:

V̆ j
k,τ =

{
x ∈ (V j

k,τ ∩B[i]) : ‖x− ∂(V j
k,τ ∩B[i])‖2 ≥ rcol

}
. (2.45)

If V̆ j
k,τ = ∅, then set p̂jk,τ+1 = pjk,τ . Otherwise, compute the centroid C(V̆ j

k,τ ) of

the modified Voronoi set V̆ j
k,τ , which is defined as:

C(V̆ j
k,τ ) =

∫
V̆ jk,τ

xdx∫
V̆ jk,τ

dx
, (2.46)

where x ∈ V̆ j
k,τ . Set the desired location of the jth agent as the centroid of its

modified Voronoi set V̆ j
k,τ , i.e., p̂jk,τ+1 = C(V̆ j

k,τ ).

These steps are illustrated in Fig. 2.9 and in the pseudo-code in Algorithm 5. The computa-

tion time for generating Voronoi partitions using Fortune’s algorithm is given byO(na log na),

where na is the total number of agents in the region [148]. Moreover, the communication load

of this distributed collision-free trajectory generation algorithm is the same as the consensus

algorithm.

If the transient agent is close to the boundary of the bin B[i], then these steps help
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1: Collision-free trajectory generation loop of jth agent during kth time instant
2: Given present bin B[i] and target bin B[q]
3: for τ = 1 to τmax

4: Exchange locations p`k,τ , ∀` ∈ J
j
k

5: Compute V j
k,τ using (2.42)

6: if B[q] = B[i], then

7: Compute V̆ j
k,τ using (2.45)

8: if V̆ j
k,τ = ∅, then

9: Set p̂jk,τ+1 = pjk,τ
10: else

11: Set p̂jk,τ+1 = C(V̆ j
k,τ ) using (2.46)

12: end if
13: else

14: Compute Ṽ j
k,τ using (2.43)

15: if Ṽ j
k,τ = ∅, then

16: Set p̂jk,τ+1 = pjk,τ
17: else

18: Set p̂jk,τ+1 using (2.44)

19: end if
20: end if
21: end for

Algorithm 5: Generate collision-free trajectory using Voronoi partitions

it to cross the bin boundary and transition from bin B[i] to a contiguous bin which is

closer to its target bin. When the transient agent finally reaches its target bin, it becomes a

stationary agent in that target bin. The advantage of this distributed collision-free trajectory

generation algorithm using Voronoi partitions, where the Voronoi set is modified with the

minimum collision avoidance distance, is that it guarantees collision avoidance. Since the

region Ξ is convex, the Voronoi set (V j
k,τ ) and the modified sets (Ṽ j

k,τ , V̆
j
k,τ ) are also convex

[149]. As each agent only moves within its modified Voronoi set, the agents are guaranteed to

avoid collisions due to the buffer region of rcol along the boundary of each Voronoi set. Hence

we have a simple, efficient, and distributed algorithm for collision-free trajectory generation

using Voronoi partitions.
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2.7 Numerical Simulations and Experiments

In this section, we present extensive numerical simulations and experiments to illustrate the

properties of the PSG–IMC algorithms for shape formation and area exploration. We first

show that the algorithm is capable of handling complex formation shapes, then show that

the algorithm is robust to estimation errors, and finally show that the algorithm can be

executed in real-time using quadrotors.

(a) 𝑘 = 0 (b) 𝑘 = 3 (c) 𝑘 = 100

(d) 𝑘 = 251 (e) 𝑘 = 300                                               (f) 𝑘 = 350

Figure 2.10: This plot shows the swarm distribution at different time instants, in a sample run
of the Monte Carlo simulation. Starting from a uniform distribution, the swarm converges to
the desired formation of the Eiffel Tower. After 250 time instants, the agents in the top half
of the formation are removed and the remaining agents reconfigure to the desired formation.
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2.7.1 Numerical Simulations for Shape Formation with Fine

Spatial Resolution

In this numerical example, a swarm of 105 agents use the PSG–IMC algorithm for shape

formation to achieve the desired formation Θ of the Eiffel Tower (see ν300 in Fig. 2.4),

where the physical space is partitioned into 300 × 300 bins. The cumulative results of 10

Monte Carlo simulations are shown in Fig. 2.11. During each time instant, each agent gets

the error-free feedback of the current swarm distribution µ?k and is allowed to transition to

only those bins that are at most 50 steps away. The cost of transition is equal to the `1

distance between bins, therefore it is symmetric. Here we use the constants τ j = 10−3 and

βj = 1.8× 105 in (2.21).

As shown in Fig. 2.10(a), each simulation starts with the agents uniformly distributed

across the physical space. The agents attain the desired formation in 100 time instants.

After 250 time instants, approximately 3× 104 agents are removed from the top half of the

formation (as shown in Fig. 2.10(d)) and the remaining agents reconfigure to the desired

formation. Thus, the repeatability and robustness properties of the PSG–IMC algorithm for

shape formation are evident in these simulation results.

The cumulative results for the HMC-based shape formation algorithm are also shown

in Fig. 2.11. Compared to the HMC-based algorithm, the PSG–IMC algorithm provides

approximately 2 times improvement in HD, 16 times reduction in the cumulative number

of transitions in 500 time instants, and 16 times reduction in the total cost incurred by all

the agents in 500 time instants. The key reasons behind the superior performance of the

PSG–IMC algorithm are as follows:

(i) In Fig. 2.11, the HD of the HMC algorithm reaches an equilibrium at 0.115 after approxi-

mately 40 time instants. The HMC algorithm allows undesirable transitions (i.e., transitions

from bins with fewer agents to bins with surplus agents) which increases the HD. Therefore,

the HD for the HMC algorithm reaches an equilibrium because these undesirable transitions
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Figure 2.11: The cumulative results of 10 Monte Carlo simulations are shown. The discon-
tinuity after the 250th time instant is because of the removal of agents from the top half of
the formation.

reach an equilibrium with the other favorable transitions. Such undesirable transitions are

largely avoided in the PSG–IMC algorithm (due to lines 10–11 in Method 1), hence the

resulting HD after 250 time instants is 0.055 (i.e., ≈ 2 times improvement compared to

HMC). The final HD can be further reduced by tuning τ j and βj. But such undesirable

transitions prevent both these Markovian approaches from truly achieving zero convergence

error.

(ii) In the HMC algorithm, there are 1.9× 106 transitions in the first 40 time instants. This

is significantly more than that of the PSG–IMC algorithm (i.e., 5.6× 105 transitions in 250

time instant). In the PSG–IMC algorithm, the number of transitions at each time instant is

proportional to the HD. This helps in achieving faster convergence (when HD is large) while

avoiding unnecessary transitions (when HD is small). This also ensures that the agents settle

down after the desired formation is achieved. Note that the total number of transitions in

the HMC algorithm in 250 time instant is extremely large (i.e., 1.2× 107 transitions).

Thus, the PSG–IMC algorithm achieves a smaller convergence error than the HMC-based

algorithm and significantly reduces the number of transitions for achieving and maintain-
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ing the desired formation. Moreover, these two key reasons depend on the feedback and,

therefore, cannot be incorporated into HMC-based algorithms.

(a) 𝑘 = 4 (b) 𝑘 = 5 (c) 𝑘 = 10

HD = 0.026 HD = 0.256 HD = 0.020

Figure 2.12: The swarm attains the 3-D shape of the Eiffel Tower. When agents are removed
from the top half of the formation, the remaining agents reconfigure to the desired formation.

In the next example, we show that the PSG–IMC algorithm for shape formation can be

used to make the 3-D shape of the Eiffel Tower (see Fig. 2.12). Here, the physical space

is partitioned into 150 × 150 × 150 bins and there are approximately 5.36 × 104 recurrent

bins. Starting from a uniform distribution and no motion constraints, a swarm of 105 agents

attain the desired formation in a few time instants. When 1.25 × 104 agents are removed

from the top half of the formation, the remaining agents reconfigure to the desired formation

in a few more time instants.

As another example, we show that the PSG–IMC algorithm can be used to make a

desired formation shape with multiple disconnected parts (see Fig. 2.13). The physical

space is partitioned into 325× 325 bins. A swarm of 106 agents start from the left-most bin

(located at (1, 163)) and attain the desired formation (Fig. 2.13(d)) in 300 time instants.
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(a) 𝑘 = 2
HD = 0.943

(b) 𝑘 = 20
HD = 0.606

(c) 𝑘 = 50
HD = 0.407

(d) 𝑘 = 300, HD = 0.124

Figure 2.13: This plot shows the swarm distribution at different time instants, where the
swarm attains the desired formation shape with multiple disconnected parts.

2.7.2 Numerical Simulations for Shape Formation with Coarse

Spatial Resolution and Estimation Errors

The objective of this section is to study the effect of estimation errors on the three Eulerian

swarm guidance algorithms, namely PSG–IMC, HMC, and the PSG–OT algorithm. In this

numerical example, a swarm of 5000 agents achieve the desired formation Θ of the Eiffel

Tower (see ν25 in Fig. 2.4), where the physical space is partitioned into 25 × 25 bins. The

simulation setup is similar to that in Section 2.7.1. Each agent is allowed to transition to

only those bins which are at most 9 steps away.

During each time instant, each agent gets the feedback of the current swarm distribution

µjk with an estimation error εest. The cumulative results of Monte Carlo simulations are

shown in Fig. 2.14. The PSG–OT algorithm performs slightly better than the PSG–IMC

algorithm in the absence of an estimation error (εest = 0.0), but such a situation does
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Figure 2.14: The estimation error is varied from 0.0 to 0.5. The performance of the three
algorithms, along with 1σ error-bars, are shown for the true HD DH(Θ,µ?250) between the
actual swarm distribution after 250 time instants and the desired formation, the cumulative
number of transitions in 250 time instants, and the total cost incurred by all the agents in
250 time instants.

not arise in practical scenarios. The PSG–OT algorithm’s true HD between the swarm

distribution µ?250 and the desired formation Θ between drops precipitously in the presence

of an estimation error and it performs worse than the open-loop HMC-based algorithm

when εest ≥ 0.25. On the other hand, the PSG–IMC algorithm works reliably well for all

estimation errors and performs much better than the other two algorithms. Thus, the PSG–

IMC algorithm can tolerate large estimation errors in the feedback of the current swarm

distribution.

The cumulative results for the three algorithms are shown in Fig. 2.15, where the es-

timation error εest is equal to 0.25. Compared to the HMC and PSG–OT algorithms, the

PSG–IMC algorithm achieves a smaller convergence error with fewer transitions. The re-

sults of a few alternative functions for ξjk are also shown in Fig. 2.15 (see Remark 2.4). The

two functions f1(ξjk) = tanh(πξjk) and f2(ξjk) = sin
(
cos−1(1− ξjk)

)
are always larger than

ξjk. The sigmoid function f3(ξjk) =
(
ξjk + 0.1 sin(2πξjk)

)
is larger than ξjk when ξjk < 0.5.
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Figure 2.15: The cumulative results of the three algorithms and alternative functions for ξjk
are shown, where estimation error εest = 0.25.

Fig. 2.15 shows that the rate of convergence increases with these functions, but there is also

a corresponding increase in the number of transitions.

In Fig. 2.16, we show the swarm distribution at different time instants in a sample run

of the Monte Carlo simulation, where the agents execute the PSG–IMC algorithm and the

estimation error εest is equal to 0.25. Here the agents track their higher-level bin-to-bin

guidance trajectory using the Voronoi partitions based collision-free trajectory generation

algorithm presented in Section 2.6.

2.7.3 Experimental Results for Shape Formation to Demonstrate

Real-Time Execution

In this section, we show that the PSG–IMC algorithm can be executed in real-time using

quadrotors. The formation flying testbed is described in [150, 151]. Three to five quadrotors

first generate their higher-level bin-to-bin guidance trajectory using the PSG–IMC algorithm.

The quadrotors then track their higher-level bin-to-bin guidance trajectory using the Voronoi

partitions based collision-free trajectory generation algorithm presented in Section 2.6. Nine
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(a) 𝑘 = 250 (b) 𝑘 = 300 (c) 𝑘 = 350

(d) 𝑘 = 400 (e) 𝑘 = 450 (f) 𝑘 = 500

Figure 2.16: These plots show the swarm distribution at different time instants, after agents
are removed from the top half of the formation.

separate experiments are shown in Fig. 2.17. The physical space is partitioned into 3 × 3

bins and the desired formations are shown in Fig. 2.17(b).

2.7.4 Numerical Simulations for Area Exploration

In this numerical example, a swarm of 105 agents use the PSG–IMC algorithm for area

exploration to attain the unknown target distribution. The physical space [0, 1] × [0, 1] is

partitioned into 100 × 100 bins. The unknown target distribution Ω1 for the first 1000

time instants is given by the pmf representation of the multivariate normal distribution

N ([ 0.5 0.5 ] , [ 0.1 0.3
0.3 1.0 ]), as shown in the background contour plots in Fig. 2.18(a-c). Sim-

ilarly, the unknown target distribution Ω2 for the next 1000 time instants is given by

N
(
[ 0.5 0.5 ] ,

[
0.1 −0.3
−0.3 1.0

])
. Here we use the constants τ j = 2.5× 10−3 and βj = 200 in (2.34).

The cumulative results of 10 Monte Carlo simulations for different values of ξj are shown
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(a) Initial position

(b) Final position and desired formation (in blue)

Figure 2.17: Quadrotors execute the PSG–IMC algorithm is real-time to achieve the desired
formation. The inset figure shows the Crazyflie 1.0 quadrotor used in these experiments.
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(a) 𝑘 = 0 (b) 𝑘 = 100 (c) 𝑘 = 999

(d) 𝑘 = 1000 (e) 𝑘 = 1100 (f) 𝑘 = 1200

Figure 2.18: These plots show the swarm distribution of 105 agents (in red) and the unknown
target distribution (background contour plot), in a sample run of the Monte Carlo simula-
tion. Starting from a uniform distribution, the swarm converges to the unknown target
distribution. After 1000 time instants, the unknown target distribution is suddenly changed
and the agents reconfigure to this new target distribution.

in Fig. 2.19. A results for the HMC-based area exploration algorithm are also shown in

Fig. 2.19. Compared to the HMC-based algorithm, the PSG–IMC algorithm provides ap-

proximately 1.5 times improvement in HD, 6 times reduction in the cumulative number of

transitions in 2000 time instants, and 6 times reduction in the total cost incurred by the

agents in 2000 time instants.

2.7.5 Application to Spacecraft Swarms

In this simulation example, the PSG–OT algorithm is used by a swarm of 5000 agents to

attain the desired formation of the letters UIUC. The state space is partitioned into 30× 30

bins and each agent is allowed to transition to only those bins which are at most 8 steps
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Figure 2.19: The cumulative results of 10 Monte Carlo simulations are shown. The disconti-
nuity or change after the 1000th time instant is because of the sudden change in the unknown
target distribution.

away. The cost of transitions is given by the `1 distance between the bins, and the modified

cost function is given by (2.38).

The histogram plots of the swarm distribution at different time steps are shown in

Fig. 2.20. Starting from an uniform distribution, the swarm distribution rapidly converges to

the desired formation within a couple of time steps using the PSG–OT algorithm. After the

250th time step, the swarm is externally damaged by eliminating approximately 1250 ± 10

agents that form the letter I in the formation. The swarm quickly recovers from this damage

and the remaining attain the desired stationary distribution within another couple of time

steps.

During each time step, each agent executes the distributed collision-free trajectory gen-

eration algorithm to reach its target bin. The trajectories of 5000 agents, executing 20

collision-free trajectory generation loops during the first PSG–OT time step, are shown in

Fig. 2.21. After the 250th time step, the swarm is externally damaged and the agents that

form the letter I are removed. The trajectories of the remaining 3750 agents for the next

two PSG–OT time steps are shown in Fig. 2.22.
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Figure 2.20: Histogram plots of the swarm distribution at different time steps for 5000 agents
executing PSG–OT. The colorbar represents the pmf of the swarm distribution. Starting
form an uniform distribution, the swarm converges to the desired formation within a couple
of time steps. The middle section of the swarm is externally damaged and 1248 agents are
removed after the 250th time step, but the swarm autonomously recovers within another
couple of time steps.

We now show that the PSG–OT algorithm can be applied to spacecraft swarms in Earth

orbit, where each spacecraft in the swarm determines its collision-free desired trajectory so

that the overall swarm converges to the desired formation.

We assume that there exists a real/virtual chief spacecraft in the Earth Centered Inertial

(ECI) coordinate system, as shown in Fig. 2.23(a). The origin of ECI frame is located at

the center of Earth, the X̂ axis points towards the vernal equinox and the Ẑ axis points

towards the north pole. The Local Vertical Local Horizontal (LVLH) coordinate system,

also shown in Fig. 2.23(a), is centered at the chief spacecraft and is designed to model the

relative motion of all other deputy spacecraft with respect to this chief spacecraft. The x̂
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Figure 2.21: Time evolution of the actual location of 5000 agents, during multiple collision-
free trajectory generation loops within one PSG–OT time step, is shown. The transient
agents are in red and the remaining stationary agents are in blue.

direction is always aligned with the position vector from the center of Earth to the chief

spacecraft and points away from the Earth, the ẑ direction is aligned with the angular

momentum vector, and the ŷ direction completes the right–handed coordinate system. The

relative states of the jth spacecraft with respect to the chief spacecraft in the LVLH frame

is expressed by
[
xjt , y

j
t , z

j
t , ẋ

j
t , ẏ

j
t , ż

j
t

]
, where t represents continuous time. The linear Hill–

Clohessy–Wiltshire (HCW) equations, that describe the evolution of the relative states of

the jth deputy spacecraft with respect to the chief spacecraft, are given by [5]:

ẍjt − 2nẏjt − 3n2xjt = 0, ÿjt + 2nẋjt = 0, z̈jt + n2zjt = 0, (2.47)

where the orbital rate n depends on the chief’s orbit. The general solution of the HCW
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Figure 2.22: After the 250th time step, the swarm is externally damaged by eliminating the
agents that form the letter I. Time evolution of the actual location of the remaining 3750
agents, during multiple collision-free trajectory generation loops within two PSG–OT time
steps, is shown. The transient agents are in red and the remaining stationary agents are in
blue.

equations is given by [5]:

xjt =
c1

2
sin(nt+ α0), yjt = c1 cos(nt+ α0) + c3, zjt = c2 sin(nt+ β0), (2.48)

where the constants c1, c2, c3, α0, and β0 depend on the initial conditions of the deputy

spacecraft’s position and velocity. Note that the semi-major axis along ŷ is twice that of

the semi-minor axis along x̂. In this chapter we assume that the spacecraft swarm is in the

x̂− ŷ plane, i.e., zjt = 0 for all agents.

Passive relative orbits (PROs) for deputy spacecraft are closed elliptical trajectories in

LVLH frame that are generated using some initial conditions and no further control input.
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Figure 2.23: (a) Earth Centered Inertial (X̂, Ŷ , Ẑ) and LVLH (x̂, ŷ, ẑ) frames (Reproduced
with permission from Ref. [5]) (b) Time-varying bins (Rk[i], ∀i ∈ {1, . . . , nbin}) designed
using linearized concentric Pros. The stretching of the formation at certain time steps is a
consequence of the HCW solution.

The initial conditions for generating linearized concentric PROs in the LVLH frame are [5]:

ẋj0 =
1

2
nyj0, ẏj0 = −2nxj0, żj0 = 0 . (2.49)

These initial conditions ensure that the resulting PROs, generated using the HCW equations,

are period-matched and concentric elliptical trajectories the x̂− ŷ plane of the LVLH frame.

The resulting PRO has the following constant terms in the general HCW solution (2.48):

c1 =
√

(2xj0)2 + (yj0)2, c2 = c3 = 0, and α0 = tan−1
(

2xj0
yj0

)
. Time-varying bins (Bk[i], ∀i ∈

{1, . . . , nbin}) are designed so that the spacecraft continues to coast along the PRO in the

LVLH frame while transitioning from Bk[i] to Bk+1[i], as shown in Fig. 2.23(b). Similar

time-varying bins can be designed for the collision-free trajectory generation loops within

each time step.

Motion constraints could arise from the spacecraft dynamics, as it might be prohibitively

fuel-expensive for the spacecraft in a certain bin to transition to another bin within a single
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Figure 2.24: Evolution of the shape of the spacecraft swarm in Earth orbit. Starting from
an initial distribution, the swarm converges to the desired formation within a few PSG–OT
time steps.

time step due to the large distance between these bins. Some constraints could also arise

from a limit on the amount of fuel that can be consumed in a single time step or limited

control authority. A time-varying motion constraints matrix is designed to handle such

motion constraints due to spacecraft dynamics.

If each agent in the spacecraft swam in Earth orbit executes the PSG–OT algorithm, then

the swarm converges to the desired formation as the grid-based solution can be mapped to

the time-varying bins as shown in Fig. 2.24. This proves the effectiveness of the proposed

algorithm for application to spacecraft swarms. Moreover, if some of the spacecraft can-

not maintain their desired position due to thruster faults or external disturbances and are

lost from the swarm, then the remaining working spacecraft will successfully maintain the

formation.
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2.8 Chapter Summary

In this chapter, we presented the development of probabilistic swarm guidance algorithms

for shape formation and area exploration using the Eulerian framework. Using hardware

experiments and numerical simulations, we demonstrated the effectiveness of the proposed

algorithms for shape formation, area exploration, and collision-free trajectory generation. To

our knowledge, the PSG–IMC algorithm is the first path planning strategy that leverages

the idea of constructing IMC in real-time based on state feedback.
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Chapter 3

Distributed Estimation

In this chapter, we present discrete-time distributed estimation algorithms for a heteroge-

neous sensor network that guarantee bounded convergence to the optimal probability distri-

bution of the targets states. The algorithms presented in this chapter have been published

in [95, 152].

This chapter is organized as follows. Section 3.1 presents some preliminaries and the

problem statement. The LogOP scheme and some convergence results are presented in

Section 3.2. The DBF algorithm and its special cases are presented in Section 3.3. The

BCF algorithm is presented in Section 3.4. Results of numerical simulations are presented

in Section 3.5 and the chapter is concluded in Section 3.6.

3.1 Preliminaries and Problem Statement

In this section, we first introduce the target dynamics and measurement models, and then

state the recursive Bayesian filtering algorithm. We then present the communication network

topology and finally state the problem statement of this chapter.

The state space of the target’s states X is a compact set in Rnx , where nx is the dimension

of the states of the target. Let X be the Borel σ–algebra for X . A probability space is defined

by the three-tuple {X ,X ,P}, where P is a complete, σ-additive probability measure on all

X . Let p(x) = dP(x)
dµ(x)

denote the Radon–Nikodým density of the probability distribution

P(x) with respect to a measure µ(x). When x ∈ X is continuous and µ(x) is a Lebesgue

measure, p(x) is the probability density function (pdf) [153]. Therefore, the probability of
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an event A ∈ X can be written as the Lebesgue–Stieltjes integral P(A ) =
∫

A
p(x) dµ(x).

In this paper, we only deal with the continuous case where the function p(·) represents the

pdf and µ(·) is the Lebesgue measure. Let Φ(X ) represent the set of all pdfs over the state

space X . The L1 distance and the KL divergence between the pdfs P1,P2 ∈ Φ(X ) are

denoted by:

DL1 (P1,P2) =

∫
X
|P1 − P2| dµ(x) ,

DKL (P1||P2) =

∫
X
P1(x) log

(
P1(x)

P2(x)

)
dµ(x) .

In this paper, all the algorithms are presented in discrete time. Let ∆ be the time step

between any two consecutive time instants.

3.1.1 Target Dynamics and Measurement Models

Let xk represent the true states of the target at the kth time instant, where xk ∈ X for all

k ∈ N. The dynamics of the target in discrete time is given by:

xk+1 = fk(xk,vk) , ∀k ∈ N , (3.1)

where fk : Rnx × Rnv → Rnx is a possibly nonlinear time-varying function of the state xk

and an independent and identically distributed (i.i.d.) process noise vk, where nv is the

dimension of the process noise vector.

Consider a network of N heterogeneous sensing agents simultaneously tracking this tar-

get. Let yik represent the measurement taken by the ith agent at the kth time instant. The

measurement model of the agents is given by:

yik = hik(xk,w
i
k), ∀i ∈ V = {1, . . . , N} , ∀k ∈ N , (3.2)
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where hik : Rnx × Rnwi → Rnyi is a possibly nonlinear time-varying function of the state xk

and an i.i.d. measurement noise wi
k, where nyi and nwi are dimensions of the measurement

and measurement noise vectors respectively. Therefore, the measurements are conditionally

independent given the target’s states. Note that this measurement model is quite general

since it accommodates heterogeneous sensors with various sensing and noise characteristics

and partial state observation.

3.1.2 Recursive Bayesian Filtering Algorithm

Each agent uses the recursive Bayesian filtering algorithm to estimate the pdf of the states

of the target. This algorithm consists of two steps: (i) the prior pdf of the target’s states

is obtained during the prediction step, and (ii) the posterior pdf of the target’s states is

updated using the new measurement during the update step [154]–[157]. Let xk|k−1 and xk|k

represent the predicted and updated states of the target at the kth time instant. Let the pdfs

S ik = p(xk|k−1) ∈ Φ(X ) and W i
k = p(xk|k) ∈ Φ(X ) denote the ith agent’s prior and posterior

pdfs of the target’s states at the kth time instant.

During the prediction step, the prior pdf S ik = p(xk|k−1) is obtained from the previous pos-

terior pdfW i
k−1 = p(xk−1|k−1) of the (k− 1)th time instant using the Chapman–Kolmogorov

equation [153]:

S ik =

∫
X
p(xk|k−1|xk−1|k−1)p(xk−1|k−1)dµ(xk−1|k−1). (3.3)

The probabilistic model of the state evolution p(xk|k−1|xk−1|k−1) is defined by the target

dynamics model (3.1) and the known statistics of the i.i.d. process noise vk. We assume

that the prior pdf is available at the start of the estimation process.

Assumption 3.1. For each agent, the initial prior of the target’s states S i1 = p(x1|0) at the

start of the estimation process (i.e., 1st time instant) is available. If no prior knowledge is

available, then p(x1|0) is assumed to be a uniformly distribution. 2
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The new measurement yik is used to compute the posterior pdf W i
k = p(xk|k) during the

update step using the Bayes’ rule [153]:

W i
k =

p(yik|xk|k−1) p(xk|k−1)∫
X p(y

i
k|xk|k−1) p(xk|k−1) dµ(xk|k−1)

. (3.4)

The likelihood function p(yik|xk|k−1) is defined by the ith agent’s measurement model (3.2),

and the corresponding known statistics of the i.i.d. measurement noise wi
k. It is a function of

the variable xk|k−1, given the outcome of the new measurement yik. Let the pdf Lik ∈ Φ(X )

represent the normalized likelihood function of the ith agent at the kth time instant, i.e.,

Lik =
p(yik|xk|k−1)∫

X p(y
i
k|xk|k−1) dµ(xk|k−1)

. (3.5)

Therefore, the pdf W i
k =

LikS
i
k∫

X L
i
kS

i
k dµ(xk|k−1)

.

If all the sensing agents are hypothetically connected by a complete graph, then the agents

can exchange their likelihood functions and each agent can use the multi-sensor Bayesian

filtering algorithm to compute the posterior pdf of the target’s states. For this centralized

Bayesian filter, the posterior pdf WC,i
k = p(xk|k) ∈ Φ(X ) is obtained using the Bayes’ rule

[158]:

WC,i
k =

(∏N
j=1 p(y

j
k|xk|k−1)

)
p(xk|k−1)∫

X

(∏N
j=1 p(y

j
k|xk|k−1)

)
p(xk|k−1) dµ(xk|k−1)

. (3.6)

Bayesian filtering is optimal because this posterior pdf WC,i
k integrates and uses all the

available information expressed by probabilities (assuming they are quantitatively correct)

[153]. Moreover, an optimal state estimate with respect to any criterion can be computed

from this posterior pdf WC,i
k . The minimum mean-square error (MMSE) estimate and the
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maximum a posteriori (MAP) estimate are given by [159]:

x̂MMSE
k|k =

∫
X
xWC,i

k dµ(x) ,

x̂MAP
k|k = arg max

x∈X
WC,i

k .

Other potential criteria for optimality, such as maximum likelihood, minimum conditional

KL divergence, and minimum free energy, are discussed in [153, 159]. Let the pdf LCk ∈ Φ(X )

represent the normalized joint likelihood function of all the sensing agents at the kth time

instant, i.e.,

LCk =

(∏N
j=1 p(y

j
k|xk|k−1)

)
∫
X

(∏N
j=1 p(y

j
k|xk|k−1)

)
dµ(xk|k−1)

. (3.7)

Therefore, the pdf WC,i
k =

LCk S
i
k∫

X L
C
k S

i
k dµ(xk|k−1)

.

The main advantage of Bayesian filters is that no approximation is needed during the

filtering process; i.e., the complete information about the dynamics and uncertainties of

the model can be incorporated in the filtering algorithm. However, Bayesian filtering is

computationally expensive. Practical implementation of these algorithms, in their most

general form, is achieved using particle filtering [157, 160] and Bayesian programming [161,

162].

3.1.3 Problem Statement

Let the pdf T ik ∈ Φ(X ) denote the estimated likelihood function of the ith agent at the

kth time instant. The aim of this paper is to design a discrete-time distributed estimation

algorithm, over the communication network topology given in Section 3.1.4, so that each

agent’s estimated likelihood function T ik converges to an error ball around the joint likelihood

function LCk (3.7), i.e., after κth time instant:

DL1

(
T ik ,LCk

)
≤ δ , ∀k ≥ κ , ∀i ∈ V , (3.8)
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Figure 3.1: Flowchart of the DBF algorithm (for the ith agent at the kth time instant)

where δ is the desired convergence error.

The DBF algorithm, shown in Fig. 3.1, achieves the objective of (3.8). After the predic-

tion step, the agent’s exchange their estimated pdfs with their neighboring agents to estimate

the joint likelihood function. Then the agents compute the posterior pdf during the update

step. The pseudo-code of the DBF algorithm is presented in Algorithm 6.

3.1.4 Communication Network Topology

The time-varying communication network topology of the sensor network is given by the

directed graph Gk = (V , Ek) with the edge set Ek ⊂ V × V and (i, j) ∈ Ek if and only if
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the ith agent receives information from the jth agent at the kth time instant. The inclusive

neighbors of the ith agent at kth time instant are denoted by J i
k = {j ∈ V : (i, j) ∈ Ek}∪{i}.

The matrix Ak ∈ RN×N represents the adjacency matrix of Gk, where Ak[i, j] 6= 0 if and

only if j ∈ J i
k . The following assumption on the communication network topology has been

widely used in the literature [103]–[163].

Assumption 3.2. (Periodic Strong Connectivity with Balanced Adjacency Matrix) The

time-varying communication network topology Gk = (V , Ek) and its adjacency matrix Ak

satisfy the following properties:

(i) There is some positive integer b ≥ 1 such that, for all time instants k ∈ N, the directed

graph (V , Ek ∪ Ek+1 ∪ . . . ∪ Ek+b−1) is strongly connected. If Gk is strongly connected for all

time instants, then b = 1.

(ii) There exists a constant γ > 0 such that Ak[i, j] ∈ [γ, 1] for all j ∈ J i
k\{i} and

Ak[i, i] = 1−
∑

j 6=iAk[i, j] ≥ γ for all k ∈ N.

(iii) The matrix Ak is doubly stochastic, i.e., 1TAk = 1T and Ak1 = 1 for all k ∈ N.

Therefore, the digraph Gk is periodically strongly connected and the matrix Ak is non-

degenerate and balanced. 2

3.2 Logarithmic Opinion Pool and Convergence

Results

In this section, we first state the LogOP scheme for combining probability distributions and

then present some convergence results. Let the pdf P ik ∈ Φ(X ) denote the ith agent’s pdf at

the kth time instant. The LinOP and LogOP schemes for combining the pdfs P ik of all the
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agents are given by [97]:

PLinOP
k (x) =

N∑
i=1

αikP ik(x) , (3.9)

PLogOP
k (x) =

ΠN
i=1 (P ik(x))

αik∫
X ΠN

i=1 (P ik(x̄))
αik dµ(x̄)

, (3.10)

where the weights αik are such that
∑N

i=1 α
i
k = 1 and the integral in the denominator of

(3.10) is finite. Thus, the combined pdf obtained using LinOP and LogOP gives the weighted

algebraic and geometric average of the individual pdfs respectively. As shown in Fig. 3.2, the

combined pdf obtained using LogOP typically preserves the exact multimodal or unimodal

nature of the original individual pdfs [99]. The most compelling reason for using the LogOP

scheme is that it is externally Bayesian; i.e., the LogOP combination step commutes with

the process of updating the pdfs by multiplying with a commonly agreed likelihood pdf

Lk ∈ Φ(X ):

Lk PLogOP
k∫

X Lk P
LogOP
k dµ(x̃)

=
ΠN
i=1

(
Lk Pik∫

X Lk P
i
k dµ(x̄)

)αik
∫
X ΠN

i=1

(
Lk Pik∫

X Lk P
i
k dµ(x̄)

)αik
dµ(x̃)

.

Therefore, the LogOP scheme is ideal for combining pdfs in distributed estimation algo-

rithms.

Due to the multiplicative nature of the LogOP scheme, each agent has veto power [99].

That is, if P ik(x) = 0 for some x ∈ X and some agent i ∈ V with αik > 0, then PLogOP
k (x) = 0

in the combined pdf irrespective of the pdfs of the other agents. In order to avoid this veto

condition, we enforce the following assumption which has been used in the literature [88, 99].

Assumption 3.3. (Zero Probability Property) In this paper, all pdfs are strictly positive

everywhere in the compact set X . Moreover, all pdfs are upper bounded by some large value.

Note that the actual lower and upper bounds are not used in the convergence analysis. 2

We actually need the pdfs to be positive only on the support of the probability distri-
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Figure 3.2: In (a), two unimodal pdfs P1 and P2 are shown. In (b), these pdfs are combined
using the LinOP and LogOP using the weight α1 = α2 = 0.5. Note that the LinOP solution
is multimodal while the LogOP solution is unimodal. In (c), the pdfs P3 and P4 have bimodal
nature. In (d), the LogOP solution preserves this bimodal nature.

bution of the target’s states. Since we do not know this support beforehand, therefore we

enforce the pdfs to be positive everywhere in X .

In order to analyze the LogOP scheme with general probability distributions, we use

the following function that is designed to state the LogOP scheme as a linear equation and

remove the effect of the normalizing constants.

Definition 3.1. For any constant ψ ∈ X , it follows from Assumption 3.3 that P ik(ψ) > 0

for all agents and PLogOP
k (ψ) > 0. Using simple algebraic manipulation of (3.10), we get
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[100]:

PLogOP
k (x) := ln

[
PLogOP
k (x)

PLogOP
k (ψ)

]
=

N∑
i=1

αikP
i
k(x) , (3.11)

where P i
k(x) := ln

[
P ik(x)

P ik(ψ)

]
, ∀i ∈ V , (3.12)

PLogOP
k (x)

PLogOP
k (ψ)

=

(
ΠNi=1(Pik(x))

αik∫
X ΠNi=1(Pik(x̄))

αi
k dµ(x̄)

)
(

ΠNi=1(Pik(ψ))
αi
k∫

X ΠNi=1(Pik(x̄))
αi
k dµ(x̄)

) . (3.13)

Under Assumption 3.3, the functions P i
k(x) and PLogOP

k (x) are all well-defined functions.

Thus, we have represented the LogOP scheme (3.10) as a linear equation using these func-

tions. The actual value of the constant ψ is chosen during the convergence analysis.

We now define pointwise convergence and then show that the functions in Definition 3.1

can be used to prove convergence of their corresponding pdfs.

Definition 3.2. (Pointwise Convergence) Let the pdf P? ∈ Φ(X ) denote the limiting pdf.

The pdf P ik converges pointwise to the pdf P?, if and only if limk→∞Pjk(x) = P?(x) for all

x ∈ X .

Lemma 3.1. We define the function P?(x) := ln
[
P?(x)
P?(ψ)

]
for any ψ ∈ X . Under Assump-

tion 3.3, if the function P i
k from (3.12) converges pointwise to the function P?, then the

corresponding pdf P ik also converges pointwise to the pdf P?. Moreover, there exists ψ ∈ X

such that limk→∞P ik(ψ) = P?(ψ).

Proof: If limk→∞P i
k(x) = P?(x) pointwise, then:

lim
k→∞

(
lnP ik(x)− lnP ik(ψ)

)
= lnP?(x)− lnP?(ψ). (3.14)

We first show that there exists ψ ∈ X such that limk→∞P ik(ψ) = P?(ψ). If this claim

is untrue, then either 0 < limk→∞P ik(x) < P?(x) or 0 < P?(x) < limk→∞P ik(x) for all
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x ∈ X because all pdfs satisfy Assumption 3.3. Hence either
∫
X limk→∞P ik(x)dµ(x) = 1 <∫

X P
?(x)dµ(x) or

∫
X P

?(x)dµ(x) <
∫
X limk→∞P ik(x)dµ(x) = 1, which results in contradic-

tion since
∫
X P

?(x)dµ(x) = 1. Hence, such a ψ ∈ X must exist.

Substituting limk→∞P ik(ψ) = P?(ψ) into (3.14) gives limk→∞ lnP ik(x) = lnP?(x) for

all x ∈ X . This implies that limk→∞Pjk(x) = P?(x) for all x ∈ X since logarithm is a

monotonic function. �

We now define convergence in total variation (TV) and present a connection with point-

wise convergence.

Definition 3.3. (Convergence in TV) The measure µPik is defined as the measure induced

by the pdf P ik on X , where µPik(A ) =
∫

A
P ik dµ(x) for any event A ∈ X . Similarly, let

µP? denote the measure induced by the pdf P? on X .

The TV distance is defined as ‖µPik − µP?‖TV := supA ∈X |µPik(A ) − µP?(A )|. The

measure µPik converges to the measure µP? in TV, if and only if ‖ limk→∞ µPik −µP?‖TV = 0.

Lemma 3.2. (Pointwise Convergence implies Convergence in TV) If the pdf P ik converges to

the pdf P? pointwise, then the measure µPik converges in TV to the measure µP?. Moreover,

‖µPik − µP?‖TV = 1
2
DL1 (P ik,P?).

Proof: Similar to the proof of Scheffé’s theorem [143, pp. 84], under Assumption 3.3,

using the dominated convergence theorem (cf. [143, Theorem 1.5.6, pp. 23]) for any event

A ∈X gives:

lim
k→∞

∫
A

P ikdµ(x) =

∫
A

lim
k→∞
P ikdµ(x) =

∫
A

P?dµ(x) .

This relation between measures implies that ‖ limk→∞ µPik − µP?‖TV = 0. The relationship

between TV error and L1 distance follows from [164, pp. 48]. �

Another reason for using the LogOP scheme is that it gives the KL-divergence-minimizing

pdf as shown in the following lemma.
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Lemma 3.3. [94, 95] The pdf PKL
k ∈ Φ(X ) that globally minimizes the sum of KL diver-

gences with the pdfs P ik for all agents is given by:

PKL
k = arg min

ρ∈Φ(X )

N∑
i=1

DKL

(
ρ||P ik

)
=

∏N
i=1 (P ik)

1
N∫

X
∏N

i=1 (P ik)
1
N dµ(x̄)

. (3.15)

Note that the pdf PKL
k is equivalent to the pdf PLogOP

k (3.10) obtained using the LogOP scheme

with weights αik = 1
N

for all agents.

Proof: The sum of the KL divergences of a pdf ρ ∈ Φ(X ) with the locally estimated

posterior pdfs is given by:

N∑
j=1

DKL

(
ρ||Pjk

)
=

N∑
j=1

∫
X

(
ρ ln(ρ)− ρ ln(Pjk)

)
dµ(x). (3.16)

Under Assumption 3.3, DKL

(
ρ||Pjk

)
is well defined for all agents. Differentiating (3.16) with

respect to ρ using Leibniz integral rule [143, Theorem A.5.1, pp. 372], and equating it to

zero gives:

N∑
j=1

∫
X

(
ln(ρ) + 1− ln(Pjk)

)
dµ(x) = 0 , (3.17)

where ρKL = 1
e

∏N
j=1(Pjk)1/N is the solution of (3.17). The projection of ρKL on the set Φ(X ),

which is obtained by normalizing ρKL, is the pdf PKL
k ∈ Φ(X ) given by (3.15).

The KL divergence is a convex function of pdf pairs [165, Theorem 2.7.2, pp. 30], hence

the sum of KL divergences (3.16) is a convex function of ρ. If ρ1, ρ2, . . . , ρn ∈ Φ(X ) and

η1, η2, . . . , ηn ∈ [0, 1] such that
∑n

i=1 ηi = 1, then ρ† =
∑n

i=1 ηiρi ∈ Φ(X ); because

(i) since ρi > 0,∀x ∈ X ,∀i ∈ {1, . . . , n} therefore ρ† > 0,∀x ∈ X ; and

(ii) since
∫
X ρidµ(x) = 1,∀i ∈ {1, . . . , n} therefore

∫
X ρ
†dµ(x) = 1.

Moreover, since X is a compact set, therefore Φ(X ) is a closed set. Hence Φ(X ) is a closed

convex set. Hence, (3.15) is a convex optimization problem.
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The gradient of
∑N

j=1DKL

(
ρ||Pjk

)
evaluated at PKL

k is a constant, i.e.,

d

dρ

N∑
j=1

DKL

(
ρ||Pjk

)∣∣∣∣∣
ρ=PKL

k

= N ln
e∫

X
∏N

j=1

(
Pjk
) 1
N dµ(x)

. (3.18)

This indicates that for further minimizing the convex cost function, we have to change the

normalizing constant of PKL
k , which will result in exiting the set Φ(X ). Hence PKL

k is the

global minimum of the convex cost function (3.15) in the convex set Φ(X ).

Another proof approach involves taking the logarithm, in the KL divergence formula, to

the base c :=
(∫
X
∏N

j=1

(
Pjk
) 1
N dµ(x)

)
. Then differentiating

∑N
j=1DKL

(
ρ||Pjk

)
with respect

to ρ gives:
N∑
j=1

∫
X

(
logc(ρ) + 1− logc(P

j
k)
)
dµ(x) = 0 , (3.19)

which is minimized by PKL
k . Hence PKL

k is indeed the global minimum of the convex opti-

mization problem in (3.15). �

Since the KL divergence is the measure of the information lost during the process of

combining the pdfs P ik of all agents, the pdf PKL
k minimizes the information lost in this

combination process. We can now focus on analyzing distributed estimation algorithms that

use the LogOP scheme.

3.3 Distributed Bayesian Filtering Algorithm

In this section, we present the main DBF algorithm and its application to special cases.
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3.3.1 Main Algorithm

The normalized joint likelihood function LCk (3.7) in the multi-sensor Bayesian filtering

algorithm in Section 3.1.2 is also given by:

LCk =

∏N
j=1 L

j
k∫

X

∏N
j=1 L

j
k dµ(x̄)

=

(
LKL
k

)N∫
X

(LKL
k )

N
dµ(x̄)

, (3.20)

where LKL
k =

∏N
j=1

(
Ljk
) 1
N∫

X
∏N

j=1

(
Ljk
) 1
N dµ(x̄)

. (3.21)

We now state the assumption on the time-varying nature of the pdfs Lik (3.5) for all agents.

Assumption 3.4. (Relatively Bounded Normalized Likelihood Functions) For any time step

∆ > 0, there exists a time-invariant constant θL > 0 such that for all agents:

e−∆θL ≤ Lik(x)

Lik−1(x)
≤ e∆θL , ∀x ∈ X , ∀k ∈ N . (3.22)

The necessary conditions for satisfying (3.22) are given by:

DKL

(
Lik||Lik−1

)
≤ ∆θL, DKL

(
Lik−1||Lik

)
≤ ∆θL .

A conservative θL always exists because Assumption 3.3 ensures that all pdfs are bounded.

2

Note that Assumption 3.4 directly couples the target dynamics and measurement models

with the time step of the distributed estimation algorithm. We now state the main result

of this section. Let the pdfs U ik ∈ Φ(X ) and T ik ∈ Φ(X ) respectively denote the estimated

KL-divergence-minimizing pdf and the estimated likelihood function of the ith agent at the

kth time instant. We show that the pdf U ik converges to the pdf LKL
k (3.21) and the pdf T ik

converges to the pdf LCk (3.20).
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Theorem 3.4. Under Assumptions 3.1–3.4, the convergence error between the pdf T ik and

the pdf LCk (3.7) is bounded by δ ∈ (0, 2) after κth time instant:

max
i∈V

DL1

(
T ik ,LCk

)
≤ δ , ∀k ≥ κ , (3.23)

where D1 = 2 ln

(
max
`,j∈V

max
x∈X

L`1(x)

Lj1(x)

)
, (3.24)

κ =


2b(N − 1) log

(
ηδ

D12(1+η)N
√
N−δ

)
log (1−Nγ2b(N−1))

+ 1 , (3.25)

b and γ are defined in Assumption 3.2 and η ∈ (0, 1) is a design parameter, if each agent

updates its pdfs U ik and T ik using the following fusion rule:

U ik =


Li1 if k = 1

ΛLik
(
Lik−1

)−1∫
X ΛLik

(
Lik−1

)−1
dµ(x̄)

if k ≥ 2
, (3.26)

where Λ =
∏
j∈J ik

(U jk−1)Ak[i,j] ,

T ik =
(U ik)N∫

X (U ik)Ndµ(x̄)
, (3.27)

and the time step ∆ has an upper bound of ∆max:

∆max :=
δ
(

1−
(
1−Nγ2b(N−1)

) 1
2

)
4(1 + η)bN(N − 1)

√
NθL

, (3.28)

where θL is defined in Assumption 3.4. The TV error between the measures induced by the

pdfs T ik and LCk is also bounded by δ
2

after κth time instant, i.e., ‖µT ik − µLCk ‖TV ≤ δ
2

for all

k ≥ κ.

Moreover, the steady-state convergence error between the pdfs T ik and LCk is bounded by δ
1+η

,

i.e., limk→∞maxi∈V DL1

(
T ik ,LCk

)
≤ δ

1+η
.
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Proof: The following functions are defined using Definition 3.1:

L KL
k (x) = ln

[
LKL
k (x)

LKL
k (ψ)

]
, L C

k (x) = ln

[
LCk (x)

LCk (ψ)

]
,

L i
k(x) = ln

[
Lik(x)

Lik(ψ)

]
, U i

k (x) = ln

[
U ik(x)

U ik(ψ)

]
,

T i
k (x) = ln

[
T ik (x)

T ik (ψ)

]
, ∀i ∈ V .

Step 1. We first show that the pdf U ik (3.26) converges to the pdf LKL
k (3.21). Equation

(3.26) can be re-written using these functions as:

U i
k =


L i

1 if k = 1∑N
j=1Ak[i, j]U

j
k−1 + L i

k −L i
k−1 if k ≥ 2

, (3.29)

because Ak[i, j] = 0 if j 6∈ J i
k . Since Ak is doubly stochastic, (3.29) satisfies the conservation

property:

N∑
i=1

U i
k =

N∑
i=1

N∑
j=1

Ak[i, j]U j
k−1 +

N∑
i=1

(
L i
k −L i

k−1

)
,

=
N∑
i=1

(
N∑
j=1

Ak[j, i]

)
U i
k−1 +

N∑
i=1

(
L i
k −L i

k−1

)
,

=
N∑
i=1

(
U i

1 −L i
1

)
+

N∑
i=1

L i
k = NL KL

k . (3.30)

This shows that if the functions U i
k converge towards each other, then they will converge to
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the function L KL
k . For any x ∈ X , (3.29) can be written in matrix form as follows:

Uk(x) = AkUk−1(x) + Lk(x)− Lk−1(x) , (3.31)

where Uk(x) =

[
U 1
k (x) . . . U i

k (x) . . . U N
k (x)

]T
,

Lk(x) =

[
L 1
k (x) . . . L i

k(x) . . . L N
k (x)

]T
.

We define LKL
k (x) = L KL

k (x)1. Therefore, we get:

Uk(x)− LKL
k (x) = Ak

(
Uk−1(x)− LKL

k−1(x)
)

+ Ωk,k(x) ,

where Ωk,k(x) =

(
I− 11T

N

)
(Lk(x)− Lk−1(x)) ,

and AkLKL
k−1(x) = LKL

k−1(x) and LKL
k (x) = 11T

N
Lk(x). The overall evolution of the error

vector ek(x) = (Uk(x)− LKL
k (x)) after b time instants is given by:

ek+b−1(x) = Ak,k+b−1ek−1(x) + Ωk,k+b−1(x) , (3.32)

where Ak,k+b−1 =

(
k+b−1∏
τ=k

Aτ

)
,

Ωk,k+b−1(x) =


∑k+b−2

τ=k (Aτ+1,k+b−1Ωτ,τ (x)) + Ωk+b−1,k+b−1(x) if b ≥ 2

Ωk,k(x) if b = 1

.

It follows from Assumption 3.2 that the matrix Ak,k+b−1 is irreducible. Therefore, the

matrix Ak,k+b−1 is primitive [141, Lemma 8.5.4, pp. 516] and λN−1 (Ak,k+b−1) < 1, where

λN−1 denotes the second largest eigenvalue of the matrix.

Note that 1Tek(x) = 0 because of (4.24) and 1TΩk,k+b−1(x) = 0 because 1T
(
I− 11T

N

)
=

0. Therefore, we investigate the convergence of ek(x) along all directions that are orthogonal

to 1T . Let Vtr =
[

1√
N

1, Vs

]
be the orthonormal matrix of eigenvectors of the symmetric

92



primitive matrix AT1,bA1,b. By spectral decomposition [12], we get:

V T
trAT1,bA1,bVtr =

 1 01×(N−1)

0(N−1)×1 V T
s AT1,bA1,bVs

 ,

where 1
N

1TAT1,bA1,b1 = 1, 1√
N

1TAT1,bA1,bVs = 01×(N−1), and V T
s AT1,bA1,b1

1√
N

= 0(N−1)×1 are

used. Since the eigenvectors are orthonormal, we have VsV
T

s + 1
N

11T = I. Left-multiplying

(3.32) with V T
s gives:

V T
s ek+b−1(x) = V T

s Ak,k+b−1

(
VsV

T
s +

1

N
11T

)
ek−1(x) + V T

s Ωk,k+b−1(x) ,

= V T
s Ak,k+b−1VsV

T
s ek−1(x) + V T

s Ωk,k+b−1(x) . (3.33)

We first investigate the stability of this system without the disturbance term V T
s Ωk,k+b−1(x).

Let ‖V T
s ek+b−1(x)‖2 be a candidate Lyapunov function for this system. Therefore, we get:

‖V T
s ek+b−1(x)‖2 = ‖V T

s Ak,k+b−1VsV
T

s ek−1(x)‖2

≤ ‖V T
s Ak,k+b−1Vs‖2‖V T

s ek−1(x)‖2

≤ σmax(Ak,k+b−1Vs)‖V T
s ek−1(x)‖2 ,

where σmax denotes the largest singular value of the matrix. Since the symmetric matrix(
ATk,k+b−1Ak,k+b−1

)
is primitive, we get using spectral decomposition:

[
1√
N

1, Vs,k,k+b−1

]T
ATk,k+b−1Ak,k+b−1

[
1√
N

1, Vs,k,k+b−1

]
=

 1 01×(N−1)

0(N−1)×1 Dk,k+b−1

 ,

where Dk,k+b−1 = V T
s,k,k+b−1

(
ATk,k+b−1Ak,k+b−1

)
Vs,k,k+b−1 ,

where V T
s,k,k+b−1 is orthonormal and also orthogonal to 1T and the diagonal matrix Dk,k+b−1

contains all the other eigenvalues other than 1. Since both V T
s,k,k+b−1 and V T

s are orthogonal
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to 1T , there exists a constant transformation matrix I such that Vs = Vs,k,k+b−1I. The exis-

tence of I is guaranteed since both V T
s,k,k+b−1 and V T

s are orthonormal vectors spanning the

subspace that is orthogonal to 1T , hence a linear transformation matrix between them must

exist. We know
(
ITI

)
= I because I = V T

s Vs = ITV T
s,k,k+b−1Vs,k,k+b−1I = ITI. Therefore,

we get from [141, Corollary 1.3.4, pp. 45] that:

λmax

(
V T

s ATk,k+b−1Ak,k+b−1Vs

)
= λmax

(
V T

s,k,k+b−1

(
ATk,k+b−1Ak,k+b−1

)
Vs,k,k+b−1

)
= λN−1

(
ATk,k+b−1Ak,k+b−1

)
< 1.

Hence, σmax(Ak,k+b−1Vs) = σN−1(Ak,k+b−1) < 1, where σN−1 denotes the second largest

singular value of the matrix. Therefore, the error vector V T
s ek(x) is globally exponentially

stable in absence of the disturbance term.

The second largest eigenvalue of a matrix is upper bounded by the coefficient of er-

godicity of that matrix [135, pp. 137]. Since the matrix Ak,k+b−1 is irreducible, the ma-

trix Ak,k+b(N−1)−1 is a positive matrix because the maximum path length between any

two agents is less than or equal to b(N − 1). Since the positive elements in the matrix

ATk,k+b(N−1)−1Ak,k+b(N−1)−1 is lower bounded by γ2b(N−1), we have σN−1(Ak,k+b(N−1)−1) ≤(
1−Nγ2b(N−1)

) 1
2 [121]. Moreover, it follows from Assumption 3.4 that ‖Lk(x)−Lk−1(x)‖2 ≤

94



2
√
N∆θL. Therefore, we have:

‖V T
s Ωk,k+b(N−1)−1(x)‖2

=

∥∥∥∥∥∥V T
s

k+b(N−1)−2∑
τ=k

(
Aτ+1,k+b(N−1)−1Ωτ,τ (x)

)
+ Ωk+b(N−1)−1,k+b(N−1)−1(x)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
k+b(N−1)−2∑

τ=k

(
V T

s Aτ+1,k+b(N−1)−1 (Lτ (x)− Lτ−1(x))
)

+ V T
s

(
Lk+b(N−1)−1(x)− Lk+b(N−1)−2(x)

)∥∥∥∥∥∥
2

≤

k+b(N−1)−2∑
τ=k

‖V T
s ‖2‖Aτ+1,k+b(N−1)−1‖2‖Lτ (x)− Lτ−1(x)‖2


+ ‖V T

s ‖2‖Lk+b(N−1)−1(x)− Lk+b(N−1)−2(x)‖2

≤ 2b(N − 1)
√
N∆θL

Hence, in the presence of the disturbance term, we get:

‖V T
s ek+b(N−1)−1(x)‖2 =

∥∥V T
s Ak,k+b(N−1)−1VsV

T
s ek−1(x) + V T

s Ωk,k+b(N−1)−1(x)
∥∥

2

≤
∥∥V T

s Ak,k+b(N−1)−1VsV
T

s ek−1(x)
∥∥

2
+
∥∥V T

s Ωk,k+b(N−1)−1(x)
∥∥

2

≤ σN−1(Ak,k+b(N−1)−1)‖V T
s ek−1(x)‖2 + ‖V T

s Ωk,k+b(N−1)−1(x)‖2

≤
(
1−Nγ2b(N−1)

) 1
2 ‖V T

s ek−1(x)‖2 + 2b(N − 1)
√
N∆θL .

Using the discrete Gronwall lemma [166, pp. 9] we obtain:

‖V T
s ek(x)‖2 ≤

(
1−Nγ2b(N−1)

) 1
2b k−1

b(N−1)c ‖V T
s e1(x)‖2

+
1−

(
1−Nγ2b(N−1)

) 1
2b k−1

b(N−1)c

1− (1−Nγ2b(N−1))
1
2

2b(N − 1)
√
N∆θL .
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For a given η, we define Ξ as:

Ξ =
(1 + η)2b(N − 1)

√
N∆θL

1− (1−Nγ2b(N−1))
1
2

. (3.34)

Then, we calculate κ as follows:

(
1−Nγ2b(N−1)

) 1
2b κ−1

b(N−1)c √ND1 +
1−

(
1−Nγ2b(N−1)

) 1
2b κ−1

b(N−1)c

1− (1−Nγ2b(N−1))
1
2

2b(N − 1)
√
N∆θL = Ξ .

It follows that for all x ∈ X :

max
i∈V
|U i

k (x)−L KL
k (x)| ≤ Ξ , ∀k ≥ κ , (3.35)

lim
k→∞

max
i∈V
|U i

k (x)−L KL
k (x)| ≤ Ξ

1 + η
, (3.36)

where κ =

⌈
2b(N − 1) log (D2)

log (1−Nγ2b(N−1))

⌉
+ 1 , (3.37)

D2 =
η

D1

(
1−(1−Nγ2b(N−1))

1
2

)
2b(N−1)∆θL

− 1

.

and D1 is defined in (3.24). Thus, the function U i
k converges to the function L KL

k with

convergence error Ξ. Note that our proof technique is substantially different from that in

[163].

Step 2. We now show that the pdf T ik (3.27) converges to the pdf LCk (3.20). Equations

(3.20) and (3.27) can be re-written as:

L C
k (x) = NL KL

k (x) , T i
k (x) = NU i

k (x) , ∀i ∈ V .

Therefore, it follows from (3.35) that:

max
i∈V
|T i

k (x)−L C
k (x)| ≤ NΞ , ∀k ≥ κ . (3.38)
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Thus, the function T i
k converges to the function L C

k with convergence error NΞ. We now

focus on the convergence error between the pdfs T ik and LCk . We have:

max
i∈V

∣∣∣∣ln [ T ik (x)

T ik (ψ)

]
− ln

[
LCk (x)

LCk (ψ)

]∣∣∣∣ ≤ NΞ , ∀k ≥ κ .

We select ψ ∈ X such that T ik (ψ) = LCk (ψ). Using steps similar to that in the proof of

Lemma 3.1, we can show that such a ψ always exists. Therefore,

max
i∈V

∣∣∣∣ln [ T ik (x)

LCk (x)

]∣∣∣∣ ≤ NΞ , ∀k ≥ κ ,

e−NΞ ≤ max
i∈V

(
T ik (x)

LCk (x)

)
≤ eNΞ , ∀k ≥ κ .

Since 2NΞ < δ < 2, we know 1− e−NΞ ≤ eNΞ − 1 ≤ 2NΞ. Hence we get:

max
i∈V

∣∣T ik (x)− LCk (x)
∣∣ ≤ 2NΞLCk (x) , ∀k ≥ κ .

Since x ∈ X can be any point, therefore:

max
i∈V

DL1

(
T ik ,LCk

)
= max

i∈V

∫
X

∣∣T ik − LCk ∣∣ dµ(x)

≤ 2NΞ

∫
X
LCk dµ(x) = 2NΞ , ∀k ≥ κ . (3.39)

Hence the convergence error between the pdfs is bounded by 2NΞ. Since we want 2NΞ ≤ δ,

we get from (3.34) that we should ensure ∆ ≤ ∆max (3.28). We also get κ (3.25) by

substituting ∆max in (3.37). Finally, the constraint on TV error follows from Lemma 3.2.�

Theorem 3.4 explicitly bounds the time step ∆ of the distributed estimation algorithm

with the time-scale of the target dynamics using Assumption 3.4. Moreover, after κ time

instants, each agent’s estimated likelihood function T ik converges to an error ball centered

on the normalized joint likelihood function LCk used in the multi-sensor Bayesian filtering
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algorithm (3.6). Therefore, the ith agent uses its estimated likelihood function T ik to compute

the posterior pdf W i
k during the update step of the Bayesian filtering algorithm:

W i
k = p(xk|k) =

T ik S ik∫
X T

i
k S ik dµ(x̄)

. (3.40)

The pseudo-code of the DBF algorithm is given in Algorithm 6, whose steps are shown in

Fig. 3.1.

1. (ith agent’s steps at kth time instant)
2. Compute prior pdf S ik = p(xk|k−1) using (3.3)
3. Obtain local measurement yik
4. Compute normalized likelihood function Lik (3.5)

5. Receive pdfs U jk−1 from agents j ∈ J i
k

6. Compute pdfs U ik and T ik using (3.26)–(3.27)
7. Compute posterior pdf W i

k = p(xk|k) using (3.40)

Algorithm 6: Distributed Bayesian Filtering Algorithm

Remark 3.1. A key advantage of the DBF algorithm is that it does not require all the

sensors to observe the target. If an agent does not observe the target, then it sets its

normalized likelihood function as the uniform distribution, i.e., Lik(x) = 1∫
X dµ(x)

. Then

this agent’s likelihood function does not influence the joint likelihood function and the final

converged pdf because of the geometric nature of the fusion rule.

It should be noted that the effectiveness of the DBF algorithm is predicated on Assump-

tion 3.4. Moreover, the upper bound on the time step ∆max (3.28) decreases with increasing

number of agents. 2

In the following corollary, we provide sharper bounds for κ (3.25) and ∆max (3.28) for a

special case of the communication network topology.

Corollary 3.5. In Theorem 3.4, if the communication network topology is strongly connected
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and time-invariant, then κ (3.25) and ∆max (3.28) are given by:

κ =


log
(

ηδ

2D1(1+η)N
√
N−δ

)
log (σN−1(A))

+ 1 , (3.41)

∆max =
δ (1− σN−1(A))

4(1 + η)N
√
NθL

, (3.42)

where A is the time-invariant adjacency matrix.

Proof: In this case, in the presence of the disturbance term, we get:

‖V T
s ek(x)‖2 ≤ σN−1(A)‖V T

s ek−1(x)‖2 + 2
√
N∆θL .

Using the discrete Gronwall lemma [166, pp. 9] we obtain:

‖V T
s ek(x)‖2 ≤ (σN−1(A))k−1 ‖V T

s e1(x)‖2 +
1− (σN−1(A))k−1

1− σN−1(A)
2
√
N∆θL . (3.43)

Hence, we get maxi∈V |U i
k (x)−L KL

k (x)| ≤ Ξ for all k ≥ κ, where

Ξ =
(1 + η)2

√
N∆θL

1− σN−1(A)
,

κ =


log
(

η2∆θL
D1(1−σN−1(A))−2∆θL

)
log (σN−1(A))

+ 1 .

We get (3.42) using 2NΞ ≤ δ and (3.41) by substituting ∆max into κ. �

3.3.2 Robustness Analysis

In this section, we study the robustness of the DBF algorithm. In order to implement the

DBF algorithm, the agents need to communicate their estimated pdfs with their neighboring

agents (see line 5 in Algorithm 6). The information theoretic approach for communicating

pdfs is discussed in [167]. If particle filters are used to implement the Bayesian filter and
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combine the pdfs [160, 168], then the resampled particles represent the agent’s estimated pdf.

Hence communicating pdfs is equivalent to transmitting these resampled particles. Another

approach involves approximating the pdf by a weighted sum of Gaussian pdfs [169, pp. 213]

and then transmitting this approximate distribution. Several techniques for estimating the

Gaussian parameters are discussed in the Gaussian mixture model literature [168]–[171].

Each agent can misrepresent its normalized likelihood function Lik due to modeling errors.

Let the pdf L̂ik ∈ Φ(X ) represent the normalized likelihood function that is corrupted with

modeling errors. Let the pdfs Ū ik ∈ Φ(X ) and T̄ ik ∈ Φ(X ) respectively denote the corrupted

versions of the pdfs U ik and T ik . We first state the assumptions on these modeling errors and

then state the main result of this section.

Assumption 3.5. (Relatively Bounded Modeling Errors) There exists a time-invariant con-

stant εL ≥ 0 such that for all agents i ∈ V :

e−εL ≤ L̂
i
k(x)

Lik(x)
≤ eεL , ∀x ∈ X , ∀k ∈ N . (3.44)

2

Theorem 3.6. Under Assumptions 3.1–3.5, the convergence error between the pdf T̄ ik and

the pdf LCk (3.7) is bounded by δ ∈ (0, 2) after κth time instant:

max
i∈V

DL1

(
T̄ ik ,LCk

)
≤ δ , ∀k ≥ κ , (3.45)

where κ =

⌈
2b(N − 1) log (D3)

log (1−Nγ2b(N−1))

⌉
+ 1 , (3.46)

D3 =
η

(D1+2εL)2N(1+η)
√
N

(δ−4N
√
NεL)

− 1
, (3.47)

and εL is defined in Assumption 3.5, if each agent updates its pdfs Ū ik and T̄ ik using the
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following fusion rule:

Ū ik(x) =


L̂i1 if k = 1

Λ̄ L̂ik
(
L̂ik−1

)−1

∫
X Λ̄L̂ik

(
L̂ik−1

)−1

dµ(x̄)
if k ≥ 2

, (3.48)

where Λ̄ =
∏
j∈J ik

(Ū jk−1)Ak[i,j] ,

T̄ ik (x) =
(Ū ik)N∫

X (Ū ik)Ndµ(x̄)
, (3.49)

and the time step ∆ has an upper bound of ∆max:

∆max :=

(
δ − 4N

√
NεL

)(
1−

(
1−Nγ2b(N−1)

) 1
2

)
4(1 + η)bN(N − 1)

√
NθL

− 2εL
θL

. (3.50)

The TV error between the measures induced by the pdfs T̄ ik and LCk is also bounded by δ
2

after

κth time instant.

Proof: The following functions are defined using Definition 3.1:

Ū i
k (x) = ln

[
Ū ik(x)

Ū ik(ψ)

]
, L̂ i

k(x) = ln

[
L̂ik(x)

L̂ik(ψ)

]
,

T̄ i
k (x) = ln

[
T̄ ik (x)

T̄ ik (ψ)

]
, ∀i ∈ V .

Equation (3.48) can be re-written using these functions as:

Ū i
k =


L̂ i

1 if k = 1∑N
j=1Ak[i, j]Ū

j
k−1 + L̂ i

k − L̂ i
k−1 if k ≥ 2

, (3.51)

and it satisfies the conservation property
∑N

i=1 Ū i
k =

∑N
i=1 L̂ i

k = NL̂ KL
k . For any x ∈ X ,
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(3.51) can be written in matrix form as follows:

Ūk(x)− L̂KL
k (x) = Ak

(
Ūk−1(x)− L̂KL

k−1(x)
)

+ Ω̂k,k(x) ,

where Ω̂k,k(x) =

(
I− 11T

N

)(
L̂k(x)− L̂k−1(x)

)
,

Ūk =
[
Ū 1
k . . . Ū

N
k

]T
, L̂k =

[
L̂ 1
k . . . L̂

N
k

]T
.

It follows from Assumptions 3.4 and 3.5 that ‖L̂k(x) − L̂k−1(x)‖2 ≤ 2
√
N∆θL + 4

√
NεL.

We define the error vector ēk(x) = (Ūk(x) − L̂KL
k (x)). Using steps similar to those in the

proof of Theorem 3.4, we get:

‖V T
s ēk(x)‖2 ≤

(
1−Nγ2b(N−1)

) 1
2b k−1

b(N−1)c ‖V T
s ē1(x)‖2

+
1−

(
1−Nγ2b(N−1)

) 1
2b k−1

b(N−1)c

1− (1−Nγ2b(N−1))
1
2

2b(N − 1)
√
N(∆θL + 2εL) .

Since ‖ek(x)‖2 ≤ ‖ēk(x)‖2 + ‖LKL
k (x) − L̂KL

k (x)‖2, we get maxi∈V |Ū i
k (x) −L KL

k (x)| ≤ Ξ

for all k ≥ κ, where

Ξ =
(1 + η)2b(N − 1)

√
N(∆θL + 2εL)

1− (1−Nγ2b(N−1))
1
2

+ 2
√
NεL ,

κ =

⌈
2b(N − 1) log (D4)

log (1−Nγ2b(N−1))

⌉
+ 1 ,

D4 =
η

(D1+2εL)

(
1−(1−Nγ2b(N−1))

1
2

)
2b(N−1)(∆θL+2εL)

− 1

.

We get (3.50) using 2NΞ ≤ δ and (3.46) by substituting ∆max into κ. �

It follows from Theorem 3.6 that in order to generate satisfactory estimates using the

DBF algorithm, the bound εL should be substantially smaller than δ.
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3.3.3 Special Case: DBF-Kalman Information Filter

In this section, we apply the DBF algorithm to the special case where the target dynamics

and measurement models are given by linear systems with additive Gaussian noise. The

linear dynamics of the target in discrete time is given by:

xk+1 = F kxk + vk , (3.52)

where the process noise vk is a zero mean multivariate normal distribution with covariance

Qk. The linear measurement model of the ith agent is given by:

yik = H i
kxk +wi

k , ∀i ∈ V , (3.53)

where the measurement noise wi
k is a zero mean multivariate normal distribution with co-

variance Ri
k. For each agent, the initial prior of the target’s states p(x1|0) is a multivariate

normal distribution with mean x̂j0 and covariance P j
0.

The prior and posterior pdfs are given by:

S ik = p(xk|k−1) = N (x̂ik|k−1,P
i
k|k−1) , (3.54)

W i
k = p(xk|k) = N (x̂ik|k,P

i
k|k) , (3.55)

where x̂ik|k−1 and x̂ik|k denote the means and P i
k|k−1 and P i

k|k denote the covariance matri-

ces of the two multivariate normal distributions. Here we adopt the information filter-based

representation. We define the following information vectors, information matrices, and trans-
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formed measurements [172, 173]:

ẑik|k = (P i
k|k)
−1x̂ik|k , Zi

k|k = (P i
k|k)
−1 ,

ẑik|k−1 = (P i
k|k−1)−1x̂ik|k−1 , Zi

k|k−1 = (P i
k|k−1)−1 ,

iik = (H i
k)
T (Ri

k)
−1yik , (3.56)

I ik = (H i
k)
T (Ri

k)
−1H i

k . (3.57)

The prediction step (3.3) is given by:

M i
k = (F−1

k )TZi
k−1|k−1F

−1
k ,

Ci
k = M i

k

(
M i

k +Q−1
k

)−1
, Lik = I−Ci

k ,

Zi
k|k−1 = LikM

i
k(L

i
k)
T +Ci

kQ
−1
k (Ci

k)
T , (3.58)

ẑik|k−1 = Lik(F
−1
k )T ẑik−1|k−1 . (3.59)

The effect on the update step of the information filter due to the weights on the likelihood

function is shown in Appendix B. The fusion rule (3.26)–(3.27) is given by:

uik = iik − iik−1 +
∑
j∈J ik

Ak[i, j]ujk−1 , (3.60)

U i
k = I ik − I ik−1 +

∑
j∈J ik

Ak[i, j]U j
k−1 , (3.61)

tik = Nuik , T i
k = NU i

k , (3.62)

with initial condition ui1 = ii1 and U i
1 = I i1 for the 1st time instant. Finally, the update step

(3.40) is given by:

ẑik|k = ẑik|k−1 + tjk , Zi
k|k = Zi

k|k−1 + T j
k . (3.63)
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The mean and covariance matrix can be found using reverse transformations (e.g., P i
k|k =

(Zi
k|k)
−1 and x̂ik|k = P i

k|kẑ
i
k|k). The pseudo-code of the DBF-Kalman information filtering

algorithm for linear-Gaussian models is given in Algorithm 7.

1. (ith agent’s steps at kth time instant)
2. Compute prior Zi

k|k−1 and ẑik|k−1 using (3.58)–(3.59)

3. Obtain local measurement yik
4. Compute I ik and iik using (3.56)–(3.57)

5. Receive U j
k−1 and ujk−1 from agents j ∈ J i

k

6. Compute U i
k, u

i
k, T

i
k, and tik using (3.60)–(3.62)

7. Compute posterior Zi
k|k and ẑik|k using (3.63)

Algorithm 7: DBF-Kalman Information Filtering Algorithm

3.3.4 Special Case: Multiple Consensus Loops within Each Time

Instant

In this section, we show that the proposed DBF algorithm can be easily extended to recur-

sively combine local likelihood functions using multiple consensus loops within each time

instant (as opposed to a single consensus step at each time instant) so that each agent’s

estimated likelihood function converges to the joint likelihood function LCk (3.20). Then,

the resultant DBF algorithm is equivalent to the Bayesian consensus algorithms [92, 93],

whose requirement of multiple consensus loops within each time step significantly reduces

the practicality of such algorithms. Let the pdfs U ik,ν ∈ Φ(X ) and T ik,ν ∈ Φ(X ) denote to

the local pdfs of the ith agent during the νth consensus loop at the kth time instant. Since

the pdf Lik is not updated during the kth time instant, we define the pdfs Lik,ν = Lik for all
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ν ∈ N. If each agent updates its local pdfs U ik,ν and T ik,ν using our DBF algorithm as follows:

U ik,ν =


Lik,1 if ν = 1

Λ̃Lik,ν
(
Lik,ν−1

)−1∫
X Λ̃Lik,ν

(
Lik,ν−1

)−1
dµ(x̄)

if ν ≥ 2
, (3.64)

where Λ̃ =
∏
j∈J ik

(U jk,ν−1)Ak[i,j] ,

T ik =
(U ik,ν)N∫

X (U ik,ν)Ndµ(x̄)
, (3.65)

then each pdf T ik,ν globally exponentially converges pointwise to the normalized joint like-

lihood function LCk (3.20) at a rate faster or equal to the second-largest singular value of

the doubly stochastic matrix Ak, where the communication network topology is strongly

connected. The proof of global exponentially convergence follows from [95]. Thus, the

distributed estimation algorithm in [92, 93] is a special case of our DBF algorithm.

3.4 Bayesian Consensus Filtering Algorithm

In this section, we present the BCF algorithm and also presents some extensions. In this

section, we assume that multiple consensus loops are executed within each time instant. Let

the pdf F jk,ν represent the estimated pdf of the jth agent during the νth consensus loop at

the kth time instant. We now state the main result of this section.

Theorem 3.7. Under Assumptions 3.1–3.3 and b = 1, if each agent updates its estimated

pdf F ik,ν using the following fusion rule:

F ik,ν =



∏
j∈J ik

(F jk,ν−1)Ak[j,i]

∫
X
∏
j∈J ik

(F jk,ν−1)Ak[j,i] dµ(x)
if ν ≥ 2

W i
k if ν = 1

, (3.66)
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then each F jk,ν globally exponentially converges pointwise to the pdf WKL
k (3.15) defined in

Lemma 3.3 at a rate faster or equal to
√
λN−1(ATkAk) = σN−1(Ak). Furthermore, their

induced measures globally exponentially converge in TV, i.e., limν→∞ µF ik,ν
T.V.−−→ µWKL

k
for

all agents.

Proof: The matrix Ak is a nonnegative, doubly stochastic, and irreducible matrix. Since all

the diagonal entries of Ak are positive, it is a primitive matrix [141, Lemma 8.5.4, pp. 516].

It follows from the Perron–Frobenius theorem (cf. [135, pp. 3]) that limν→∞Aνk = 1
N

11T .

The functions F i
k,ν(x) = ln

[
F ik,ν(x)

F ik,ν(ψ)

]
for all agents and are defined using Definition 3.1.

Then (3.66) can be re-written as:

F i
k,ν =

N∑
j=1

Ak[j, i]F j
k−1,ν ,∀ν ≥ 2 , (3.67)

because Ak[j, i] = 0 if j 6∈ J i
k . Obviously, (3.67) generalizes to:

Hk,ν = AkHk,ν−1 , (3.68)

Hk,ν = A(ν−1)
k Hk,1 , (3.69)

where Hk,ν =
[
F 1
k,ν , . . . ,F

N
k,ν

]T
,

H ?
k =


W KL
k

...

W KL
k

 =
1

N
11T


F 1
k,ν

...

FN
k,ν

 .

It follows from (3.69) that lim ν →∞Hk,ν = H ?
k . We now focus on the rate of convergence.

Let Vtr =
[

1√
N

1, Vs

]
be the orthonormal matrix of eigenvectors of the symmetric primitive

matrix ATkAk. By spectral decomposition [12], we get:

V T
trATkAkVtr =

 1 01×(N−1)

0(N−1)×1 V T
s ATkAkVs

 ,
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where 1
N

1TATkAk1 = 1, 1√
N

1TATkAkVs = 01×(N−1), and V T
s ATkAk1 1√

N
= 0(N−1)×1 are used.

Since the eigenvectors are orthonormal, VsV
T
s + 1

N
11T = I. The rate at which Hk,ν synchro-

nizes to 1√
N

1 (or H ?
k ) is equal to the rate at which V T

s Hk,ν → 0(N−1)×1. Pre-multiplying

(3.68) by V T
s and substituting V T

s 1 = 0 results in:

V T
s Hk,ν = V T

s Ak
(
VsV

T
s +

1

N
11T

)
Hk,ν−1

= V T
s AkVsV T

s Hk,ν−1 .

Let zk,ν = V T
s Hk,ν . The corresponding virtual dynamics is represented by zk,ν = (V T

s AkVs)zk,ν−1,

which has both V T
s Uk,ν and 0 as particular solutions. Let Φk,ν = zTk,νzk,ν be a candidate

Lyapunov function for this dynamics. Expanding this gives:

Φk,ν = zTk,ν−1V
T

s ATkAkVszk,ν−1 ≤
(
λmax(V T

s ATkAkVs)
)

Φk,ν−1.

Note that V T
s ATkAkVs contains all the eigenvalues of ATkAk other than 1. Hence

λmax(V T
s ATkAkVs) = λN−1(ATkAk) < 1 and Φk,ν globally exponentially vanishes with a rate

faster or equal to λN−1(ATkAk). Hence each F i
k,ν globally exponentially converges pointwise

to W KL
k with a rate faster or equal to

√
λN−1(ATkAk) = σN−1(Ak).

Next, we need to find the rate of convergence of F ik,ν to WKL
k . From the exponential

convergence of F i
k,ν to W KL

k , we get:

∣∣∣∣∣ln
[
F ik,ν(x)

F ik,ν(ψ)

WKL
k (ψ)

WKL
k (x)

]∣∣∣∣∣ ≤ σN−1(Ak)

∣∣∣∣∣ln
[
F ik,ν−1(x)

F ik,ν−1(ψ)

WKL
k (ψ)

WKL
k (x)

]∣∣∣∣∣ . (3.70)

Let us define the function αik,ν(x) such that αik,ν(x) =
[
Fik,ν(x)

Fik,ν(ψ)

WKL
k (ψ)

WKL
k (x)

]
if F ik,ν(x)WKL

k (ψ) ≥

F ik,ν(ψ)WKL
k (x) and αik,ν(x) =

[
F ik,ν(ψ)

Fik,ν(x)

WKL
k (x)

WKL
k (ψ)

]
otherwise. Note that αik,ν(x) is a continuous

function since it is a product of continuous functions. Since αik,ν(x) ≥ 1 and ln
(
αik,ν(x)

)
≥
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0, ∀x ∈ X , (3.70) simplifies to:

ln
(
αik,ν(x)

)
≤ σN−1(Ak) ln

(
αik,ν−1(x)

)
.

αik,ν(x) ≤
(
αik,1(x)

)(σN−1(Ak))(ν−1)

. (3.71)

Since F ik,ν(x) tends to WKL
k (x), i.e., limν→∞ α

i
k,ν(x) = 1, we can write (3.71) as:

αik,ν(x)− 1 ≤
(
αik,1(x)

)(σN−1(Ak))(ν−1)

− 1(σN−1(Ak))(ν−1)

. (3.72)

Using the mean value theorem (cf. [174]), the right hand side of (3.72) can be simplified to

(3.73), for some c ∈ [1, αik,1(x)] as follows:

(
αik,1(x)

)(σN−1(Ak))(ν−1)

− 1(σN−1(Ak))(ν−1)

= (σN−1(Ak))(ν−1)
(
c(σN−1(Ak))(ν−1)−1

) (
αik,1(x)− 1

)
.

(3.73)

As σN−1(Ak) < 1, the maximum value of
(
c(σN−1(Ak))(ν−1)−1

)
is 1. Substituting this into

(3.72) gives:

αik,ν(x)− 1 ≤ (σN−1(Ak))(ν−1) (αik,1(x)− 1
)
. (3.74)

Hence αik,ν(x) exponentially converges to 1 with a rate faster or equal to σN−1(Ak). Irrespec-

tive of the orientation of αik,ν(x) and αik,1(x), (3.74) can be written as (3.75) by multiplying

with 1
αik,ν(x)

or 1
αik,1(x)

, and then with WKL
k (x).

∣∣∣∣∣WKL
k (ψ)

F ik,ν(ψ)
F ik,ν(x)−WKL

k (x)

∣∣∣∣∣ ≤ (σN−1(Ak))(ν−1)

∣∣∣∣∣WKL
k (ψ)

F ik,1(ψ)
F ik,1(x)−WKL

k (x)

∣∣∣∣∣ . (3.75)

We can choose ψ̄ ∈ X such that F ik,1(ψ̄) = WKL
k (ψ̄). Now we discuss two cases to reduce
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the left hand side of (3.75) to
∣∣F ik,ν(x)−WKL

k (x)
∣∣.

∣∣∣∣∣WKL
k (ψ̄)

F ik,ν(ψ̄)
F ik,ν(x)−WKL

k (x)

∣∣∣∣∣
=


∣∣∣F ik,ν(x)−WKL

k (x) +
(
WKL
k (ψ̄)

Fik,ν(ψ̄)
− 1
)
F ik,ν(x)

∣∣∣ if
WKL
k (ψ̄)

F ik,ν(ψ̄)
≥ 1∣∣∣WKL

k (x)−F ik,ν(x) +
(

1− W
KL
k (ψ̄)

Fik,ν(ψ̄)

)
F ik,ν(x)

∣∣∣ if
WKL
k (ψ̄)

F ik,ν(ψ̄)
< 1

≥
∣∣WKL

k (x)−F ik,ν(x)
∣∣ .

Hence, for both the cases, we are able to simplify (3.75) to:

∣∣F ik,ν(x)−WKL
k (x)

∣∣ ≤ (σN−1(Ak))(ν−1)
∣∣F ik,1(x)−WKL

k (x)
∣∣ .

Thus each F ik,ν(x) globally exponentially converges to WKL
k (x) with a rate faster or equal

to σN−1(Ak). �

1. (ith agent’s steps at kth time instant)
2. Compute prior pdf U ik = p(xk|k−1) using (3.3)
3. Compute posterior pdf W i

k = p(xk|k) using (3.4)
4. for ν = 1 to nloop

5. if ν = 1, then
6. Set estimated pdf F ik,ν =W i

k

7. else

8. Exchange estimated pdf F ik,ν−1 with neighboring agents J j
k

9. Compute estimated pdf F ik,ν using (3.66)
10. end if
11. end for
12. Set posterior pdf W i

k = F ik,nloop

Algorithm 8: Bayesian Consensus Filtering Algorithm

The pseudocode of the BCF algorithm is given in Algorithm 8. According to [175],

this strategy of first updating the local estimate and then combining these local estimates

to achieve a consensus is stable and gives the best performance in comparison with other

update–combine strategies.
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We now state that the methods for recursively combining probability distributions to

reach a consensual distribution are limited to LinOP, LogOP, and their affine combinations.

Remark 3.2. The LinOP and LogOP methods for combining probability distributions can

be generalized by the g–Quasi–Linear Opinion Pool (g–QLOP), which is described by the

following equation:

F jk,ν =
g−1(

∑
`∈J jk

αj`k,ν−1g(F `k,ν−1))∫
X g
−1(
∑

`∈J jk
αj`k,ν−1g(F `k,ν−1)) dµ(x)

,∀j ∈ {1, . . . , N}, ∀ν ∈ N, (3.76)

where g is a continuous, strictly monotone function. It is shown in [100] that, other than the

linear combination of LinOP and LogOP, there is no function g for which the final consensus

can be expressed by the following equation:

lim
ν→∞
F jk,ν =

g−1(
∑N

j=1 πjg(F `k,0))∫
X g
−1(
∑N

j=1 πjg(F `k,0)) dµ(x)
,∀j ∈ {1, . . . , N},∀ν ∈ N, (3.77)

where π is the unique stationary solution. Moreover, the function g is said to be k-Markovian

if the scheme for combining probability distribution (3.76) yields the consensus (3.77) for

every regular communication network topology and for all initial positive densities. It is also

shown that g is k-Markovian if and only if the g–QLOP is either LinOP or LogOP [100]. 2

3.4.1 Number of Consensus Loops

In this section, we compute the number of consensus loops (nloop in Algorithm 8) needed to

reach a satisfactory consensus estimate across the network and discuss the convergence of

this algorithm.

Definition 3.4. (Disagreement vector θk,ν) Let us define θk,ν :=
(
θ1
k,ν , . . . , θ

N
k,ν

)T
, where

θjk,ν := ‖F jk,ν −WKL
k ‖L1 . Since the L1 distances between pdfs is bounded by 2, the `2 norm

of the disagreement vector (‖θk,ν‖`2) is upper bounded by 2
√
N . 2

This conservative bound is used to obtain the minimum number of consensus loops
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for achieving ε-consensus across the network, while tracking a moving target. Let us now

quantify the divergence of the local pdfs during the Bayesian filtering stage.

Definition 3.5. (Error propagation dynamics Γ(·)) Let us assume that the dynamics of the

`2 norm of the disagreement vector during the Bayesian filtering stage can be obtained from

the target dynamics (3.1) and measurement models (3.2). The error propagation dynamics

Γ(·) estimates the maximum divergence of the local pdfs during the Bayesian filtering stage,

i.e., ‖θk,1‖`2 ≤ Γ
(
‖θk−1,nloop

‖`2
)
, where ‖θk−1,nloop

‖`2 is the disagreement vector with respect

to WKL
k−1 at the end of the consensus stage during the (k − 1)th time instant; and ‖θk,1‖`2

is the disagreement vector with respect to WKL
k after the update stage during the kth time

instant. 2

Next we obtain the minimum number of consensus loops for achieving ε-consensus across

the network and also derive conditions on the communication network topology for a given

number of consensus loops.

Theorem 3.8. Each agent tracks the target using the BCF algorithm. For some acceptable

consensus error εconsensus > 0 and γk = min
(
Γ
(
‖θk−1,nloop

‖`2
)
, 2
√
N
)

:

(i) if the number of consensus loops is at least nloop ≥ 1 +
⌈

ln(εconsensus/γk)
lnσN−1(Ak)

⌉
for a given Ak; or

(ii) if the communication network topology (Ak) during the kth time instant is such that

σN−1(Ak) ≤
(
εconsensus

γk

) 1
(nloop−1)

for a given nloop;

then the `2 norm of the disagreement vector at the end of the consensus stage is less than

εconsensus, i.e., ‖θk,nloop
‖`2 ≤ εconsensus.

Proof: Theorem 3.7 states that the local estimated pdfs F jk,ν globally exponentially con-

verges pointwise to the pdfWKL
k (3.15) with a rate of σN−1(Ak). If θk,1 is the initial disagree-

ment vector at the start of the consensus stage, then ‖θk,nloop
‖`2 ≤ (σN−1(Ak))(nloop−1) ‖θk,1‖`2 ≤

(σN−1(Ak))(nloop−1) γk. Thus, we get the conditions on nloop or σN−1(Ak) from the inequality

(σN−1(Ak))(nloop−1) γk ≤ εconsensus. �

112



3.4.2 Hierarchical Bayesian Consensus Filtering

In this section, we assume that only N1 agents can observe the target at the kth time instant.

The remaining agents are not able to observe the target at this time instant. Without loss

of generality, we assume that the first N1 agents are the tracking agents. The objective

of hierarchical consensus algorithm is to guarantee that posterior pdfs of only the agents

tracking the target contribute to the consensual pdf. We first make the following assumption

on the communication network topology.

Assumption 3.6. Let Dk represent the communication network topology of only the track-

ing agents.

(i) The communication network topologies Gk and Dk are both SC.

(ii) The matrix Ak can be decomposed into four parts Ak =
[Ak1 Ak2
Ak3 Ak4

]
, where Ak1 ∈ RN1×N1 ,

Ak2 = RN1×(N−N1), Ak3 ∈ R(N−N1)×N1 , and Ak4 ∈ R(N−N1)×(N−N1). We assume that Ak1 is

balanced and Ak2 = 0N1×(N−N1). The matrix Ak is row stochastic.

(iii) If i ∈ {1, . . . , N1}, then Ak[j, i] > 0 if and only if either (j, i) ∈ Ek and j ∈ {1, . . . , N1}

or i = j. If i ∈ {N1 + 1, . . . , N}, then Ak[j, i] > 0 if and only if either (j, i) ∈ Ek or i = j. 2

We now state the main result of this section.

Theorem 3.9. Under Assumptions 3.1, 3.3, and 3.6, if each agent updates its estimated

pdf F ik,ν using the fusion rule (3.66), then each pdf F ik,ν globally exponentially converges

pointwise to the pdf FKLk given by:

FKLk =

∏N1

i=1 (W i
k)

1
N1∫

X
∏N1

i=1 (W i
k)

1
N1 dµ(x)

(3.78)

at a rate faster or equal to
√
λN1−1(ATk1Ak1) = σN1−1(Ak1). Only the initial estimates of the

tracking agents contribute to the consensual pdf FKLk . Furthermore, their induced measures

converge in total variation, i.e., limν→∞ µFjk,ν
T.V.−−→ µFKLk for all agents.

Proof: The matrix Ak1 conforms to the balanced digraph Dk. Let 1N1 = [1, 1, . . . , 1]T , with
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N1 elements. Similar to the proof of Theorem 3.7, we get Ak1 is a primitive matrix and

limν→∞Aνk1 = 1
N1

1N11
T
N1

.

Next, we decompose Hk,ν (3.68) into two parts Hk,ν = [Yk,ν ; Zk,ν ], where Yk,ν =(
F1
k,ν , . . . ,F

N1
k,ν

)T
and Zk,ν =

(
FN1+1
k,ν , . . . ,FNk,ν

)T
. Since Ak2 is a zero matrix, (3.69) gen-

eralizes and hierarchically decomposes to:

Yk,ν+1 = Aνk1Yk,0 , ∀ν ∈ N , (3.79)

Zk,ν+1 = Ak3Yk,ν +Ak4Zk,ν , ∀ν ∈ N . (3.80)

Combining equation (3.79) with the previous result gives limν→∞Yk,ν = 1
N1

1N11
T
N1

Yk,1. Thus

limν→∞F j
k,ν = FKL

k = 1
N1

1TN1
Yk,1 = 1

N1

∑N1

i=1 F i
k,1 for all agents j ∈ {1, . . . , N1}. From the

proof of Theorem 3.7, we get the pdfs F jk,ν ,∀j ∈ {1, . . . ,m1} globally exponentially converges

pointwise to FKLk (3.78) with a rate faster or equal to σN1−1(Ak1).

Since G(k) is strongly connected, information from the tracking agents reach the non-

tracking agents. Taking the limit of equation (3.80) and substituting the above result gives:

lim
ν→∞

Zk,ν+1 =
1

N1

Ak31N11
T
N1

Yk,1 +Ak4 lim
ν→∞

Zk,ν (3.81)

Let 1N2 = [1, 1, . . . , 1]T , with N2(= N − N1) elements. Since Ak is row stochastic, we get

Ak31N1 = [I − Ak4]1N2 . Hence, from equation (3.81), we get limν→∞Zk,ν = 1
N1

1N21
T
N1

Yk,1.

Moreover, the inessential states die out geometrically fast [135, pp. 120]. Hence, limν→∞F jk,ν =

FKLk = 1
N1

1TN1
Yk,1 for all agents j ∈ {N1 + 1, . . . , N}. Hence, the estimates of the non-

tracking agents F jk,ν ,∀j ∈ {N1 + 1, . . . , N} also converge pointwise geometrically fast to the

same consensual pdf FKLk (3.78). �

Note that Theorem 3.8 can be directly applied from Section 3.4.1 to compute the mini-

mum number of consensus loops nloop for achieving ε-convergence in a given communication

network topology or for designing the Ak1 matrix for a given number of consensus loops.
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A simulation example of Hierarchical BCF algorithm for tracking orbital debris in space is

discussed in the next section.

3.5 Numerical Simulations

In this section, we compare the performance of the DBF algorithms with centralized multi-

sensor estimation algorithms using the benchmark example studied in [85, 94, 176]. The

target’s motion is shown in Fig. 3.3. The target dynamics is modeled by a linear (nearly

constant velocity) model:

xk+1 =



1 ∆ 0 0

0 1 0 0

0 0 1 ∆

0 0 0 1


xk + vk , where Q =



∆3

3
∆2

2
0 0

∆2

2
∆ 0 0

0 0 ∆3

3
∆2

2

0 0 ∆2

2
∆


is the covariance matrix of the process noise vk, ∆ is the time step, and the state vector

xk denotes the position and velocity components along the coordinate axes, i.e., xk =

[xk, ẋk, yk, ẏk]
T . As shown in Fig. 3.3, 50 sensing agents are distributed over the given region

and are able to communicate with their neighboring agents. The undirected communication

network topology is assumed to be time-invariant. Local-degree weights are used to compute

the doubly stochastic adjacency matrix Ak as:

Ak[i, j] =
1

max(di, dj)
, ∀j ∈ J i

k and i 6= j ,

Ak[i, i] = 1−
∑

j∈V\{i}

Ak[i, j] ,

where di denotes the degree of the ith agent.
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Figure 3.3: The motion of the target, the position of sensing agents (5 TOA sensors, 5 DOA
sensors, and 40 agents with no sensors), and their communication network topology are
shown.
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Figure 3.4: Variation of steady-state MSE in position with respect to time step ∆ is shown
for (a) the centralized Bayesian filtering algorithm and the DBF algorithm in Scenario 1 and
(b) the centralized Kalman filtering algorithm and the DBF algorithm for linear-Gaussian
models in Scenario 2.
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3.5.1 Scenario 1: Nonlinear Measurement Models

In the first scenario, five of these agents are equipped with nonlinear position sensors that

can measure their distance to the target using Time of Arrival (TOA) sensors. Another five

agents are equipped with Direction of Arrival (DOA) sensors that can measure the bearing

angle between the target and themselves. The remaining agents do not have any sensors.

The measurement models for these sensors are given by:

hik(xk,w
i
k) =


atan2(xk − xi, yk − yi) +wi

k if i has DOA sensor√
(xk − xi)2 + (yk − yi)2 +wi

k if i has TOA sensor

wi
k if i has no sensor

,

where (xi, yi) denotes the position of the ith agent and atan2 is the 4-quadrant inverse tangent

function. The measurement noise wi
k is a zero mean Gaussian distribution with variance

σr = 10 m for the TOA sensor and σθ = 2◦ for the DOA sensor.

Figure 3.5: The trajectories of the MSE in position for the centralized Bayesian filtering
algorithm and the DBF algorithm are shown for two time steps.
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Particle filters [177] are used to execute the centralized Bayesian filtering algorithm and

the DBF algorithm. Fig. 3.4(a) shows the cumulative results from multiple simulations with

varying time steps (∆) decreasing from 0.2 sec to 0.0125 sec. The same target motion,

shown in Fig. 3.3, is used for all simulations. We see that the DBF algorithm’s steady-state

mean-square-error (MSE) in position converges to that of the centralized Bayesian filtering

algorithm as the time step ∆ decreases (i.e., the steady-state MSE is smaller than 5 m when

the time step ∆ ≤ 0.05 sec). Note that the MSE of the centralized Bayesian filter does not

change much with change in time step because it is constrained by the measurement noise

intensities.

Fig. 3.5 shows the trajectories of the MSE in position for two simulation cases. When the

time step ∆ = 0.025 sec, the steady-state MSE in position for the DBF algorithm converges

to that of the centralized Bayesian filter. This is also evident from the results shown in

Fig. 3.6. This shows that the performance of the DBF algorithm approaches the performance

of the centralized Bayesian filter as the time step is reduced. Finally, Fig. 3.7 shows that the

L1 distances between the estimated likelihood functions and the joint likelihood function are

bounded by δ from Theorem 3.4.

3.5.2 Scenario 2: Linear Measurement Models

In the second scenario, the same ten agents (having DOA or TOA sensors) have linear

position sensors hik(xk,w
i
k) = [ 1 0 0 0

0 0 1 0 ]xk +wi
k, where the measurement noise wi

k is a zero

mean Gaussian distribution with covariance matrix Ri
k = 15I.

Fig. 3.4(b) shows the cumulative results for the centralized Kalman filtering algorithm

and the DBF-Kalman information filtering algorithm for linear-Gaussian models. Note that

the difference between the steady-state MSEs of the two algorithms is less than 3 m when

the time step ∆ decreases below 0.05 sec. This is also evident from the results shown

in Fig. 3.8. Hence, the performance of the DBF-Kalman information filtering algorithm

for linear-Gaussian models approaches the performance of the centralized Kalman filtering
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Figure 3.6: All the particles in the estimated pdf of the DBF algorithm are shown, where  
is the actual position of the target and � is the mean of the estimated pdf.

algorithm as the time step is reduced. The differences in the simulation results in Section

3.5.1 and Section 3.5.2 arise from the nonlinear and linear measurement models used in these

sections respectively.

3.5.3 Tracking Orbital Debris

Currently, there are over ten thousand objects in Earth orbit, of size 0.5 cm or greater,

and almost 95% of them are nonfunctional space debris. These debris pose a significant
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Figure 3.7: The trajectories of the L1 distances between the estimated likelihood functions
and the joint likelihood function for the ten sensing agents are shown.

threat to functional spacecraft and satellites in orbit. The US has established the Space

Surveillance Network (SSN) for ground based observations of the orbital debris using radars

and optical telescopes [178, 179]. In February 2009, the Iridium–33 satellite collided with the

Kosmos–2251 satellite and a large number of debris fragments were created. In this section,

we use the Hierarchical BCF Algorithm to track one of the Iridium–33 debris created in this

collision. The orbit of this debris around Earth and the location of SSN sensors are shown

in Fig. 3.9.

The actual two-line element set (TLE) of the Iridium–33 debris was accessed from North

American Aerospace Defense Command (NORAD) on 4th Dec 2013. The nonlinear Sim-

plified General Perturbations (SGP4) model, which uses an extensive gravitational model

and accounts for the drag effect on mean motion [180, 181], is used as the target dynam-

ics model. The communication network topology of the SSN is assumed to be a static SC

balanced graph, as shown in Fig. 3.9. If the debris is visible above the sensor’s horizon,

then it is assumed to create a single measurement during each time step of one minute. The
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Figure 3.8: The estimated means of all the agents executing the DBF algorithm for linear-
Gaussian models are shown, where  is the actual position of the target and � is the mean
of the estimated pdf.

heterogeneous measurement model of the jth sensor is given by:

yjk = xk +wj
k, where wj

k = N (0, (1000 + 50j)× I) ,

where xk ∈ R3 is the actual location of the debris and the additive Gaussian measurement

noise depends on the sensor number. We compare the performance of our Hierarchical BCF

algorithm against the Hierarchical BCF–LinOP algorithm, where the LinOP is used during

the consensus stage.

121



22

10

3

⋆1min

⋆30min
⋆60min

⋆90min ⋆97min

⋆40min

⋆70min

⋆50min

Figure 3.9: The SSN locations are shown along with their static SC balanced communication
network topology. The orbit of the Iridium–33 debris is shown in red, where ? marks its
actual position during particular time instants.

In this simulation example, we simplify the debris tracking problem by assuming only

the mean motion (n) of the debris is unknown. The objective of this simulation example is

to estimate n of the Iridium–33 debris within 100 minutes. Hence, each sensor knows the

other TLE parameters of the debris and an uniform prior distribution is assumed. Note

that at any time instant, only a few of the SSN sensors can observe the debris, as shown

in Fig 3.10(a). The results of three stand-alone Bayesian filters, implemented using particle

filters with resampling [160], are shown in Fig 3.10(b-d). Note that the estimates of the

22nd and 10th sensors initially do not converge due to large measurement error, in spite of

observing the debris for some time. The estimates of the 3rd sensor does converge when it

is able to observe the debris after 70 minutes. Hence we propose to use the Hierarchical
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Figure 3.10: (a) Number of SSN sensors observing debris. Trajectories of particles for stand-
alone Bayesian filters for (b) 3rd, (c) 10th, and (d) 22nd SSN sensor.

BCF algorithm where the consensual distribution is updated as and when sensors observe

the debris.

Particle filters with resampling are used to evaluate the Bayesian filters and communicate

pdfs in the Hierarchical BCF algorithms. 100 particles are used by each sensor and 10

consensus loops are executed during each time step of one minute. The trajectories of all

the particles of the sensors in the Hierarchical BCF algorithm using LinOP and LogOP and

their respective consensual probability distributions at different time instants are shown in

Fig. 3.10(a-d). As expected, all the sensors converge on the correct value of n of 14.6 revs

per day. The Hierarchical BCF–LinOP estimates are multimodal for the first 90 minutes.
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Figure 3.11: Trajectories of particles of all sensors for (a) Hierarchical BCF–LinOP and
(b) Hierarchical BCF–LogOP. The color-bar on the right denotes the 33 SSN sensors. Evo-
lution of the consensual probability distribution for (c) Hierarchical BCF–LinOP and (d)
Hierarchical BCF–LogOP.

On the other hand, the Hierarchical BCF estimates converges to the correct value within the

first 10 minutes because the LogOP algorithm efficiently communicates the best consensual

estimate to other sensors during each time step and achieves consensus across the network.

3.6 Chapter Summary

In this chapter, we presented distributed estimation algorithms and rigorously analyzed their

convergence and robustness. We illustrated the properties of the proposed algorithms using

numerical simulations. The novel proof techniques presented in this chapter can also be used
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in other distributed estimation algorithms which rely on the LogOP scheme.
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Chapter 4

Attitude Control of Spacecraft with a
Captured Object

In this chapter, we present novel control algorithms for stabilizing the attitude of a spacecraft

that has captured a significantly larger object. The algorithms presented in this chapter have

been published in [182, 183, 184].

This chapter is organized as follows. Section 4.1 discusses the ARM mission, the problem

statement, and some preliminaries. The new robust nonlinear tracking control law and

its extensions are presented in Section 4.2. The design of desired attitude trajectories is

discussed in Section 4.3. Numerical simulations are presented in Section 4.4 and this chapter

is concluded in Section 4.5.

4.1 Preliminaries and Problem Statement

In this section, we first present a brief introduction of the conceptual ARM spacecraft and

potential NEO asteroid targets in Section 4.1.1. We then present the attitude kinematics

and dynamics of the combined system in Section 4.1.2 and state the main control problem

in Section 4.1.3.

4.1.1 Conceptual ARM Spacecraft Design and NEO Asteroid

Parameters

According to some preliminary feasibility studies [1, 185, 186], the most desirable asteroids

are the carbonaceous C–type asteroids because samples from these asteroids can return to

Earth without any restriction. The densities of asteroids can range from 1 g cm−3 for a
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high-porosity carbonaceous chondrite to 8 g cm−3 for solid nickel-iron meteorites, but the

majority of NEO asteroids have densities between 1.9-3.8 g cm−3. It is estimated that C–

type NEO asteroids with 7-10 m diameter would be in the 2.5-13×105 kg mass range. Table

4.1 lists the nominal range of NEO asteroid parameters that the ARM spacecraft should be

capable of handling.

Table 4.1: Nominal range of NEO asteroid parameters considered for the ARM mission [1]

Parameter Range

Mass (mast) 2.5-13× 105 kg

Density (ρast)
1-8 g cm−3

(majority within 1.9-3.8 g cm−3)
Diameter 2-10 m
Initial Angular Velocity (ωinitial) ≤ 0.5 rotations per minute (rpm)
Initial Attitude (βinitial) any attitude (βinitial ∈ S3)

The constraint on the initial angular velocity (spin rate) of the tumbling asteroid results

from the technological capability of the sensors and angular momentum capacity of the

actuators to be used on board the ARM spacecraft. In order to generate realistic models

of asteroids for numerical simulations, we use the shape models of the asteroids 433 Eros

[6] and 25143 Itokawa [7] shown in Fig. 4.1(a,b). The diameters of these realistic asteroid

models are shown in Fig. 4.1(c,d). Fig. 4.1(c,d) also show the nominal range of NEO asteroid

parameters considered for this ARM mission concept, i.e., the asteroid’s mass is within 2.5-

13×105 kg, the asteroid’s density is within 1.9-3.8 g cm−3, and the asteroid’s diameter varies

in the range of 2-10 m. Asteroids with large mass and small density have large diameters

and consequently have large moments of inertia. These realistic models of asteroids are used

for Monte Carlo simulations in Section 4.4 for comparing the various control laws discussed

in this chapter.

A conceptual design of the ARM spacecraft is shown in Fig. 4.2(a), which is used as the

nominal ARM spacecraft design in this chapter. This conceptual ARM spacecraft, with dry

mass of 5, 500 kg and wet mass of 15, 500 kg, could carry 13 × 103 kg of Xenon propellant

for the 40 kW SEP system and an additional 900 kg of liquid propellant for the roll control
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Figure 4.1: Shape models of asteroids (a) 433 Eros [6] and (b) 25143 Itokawa [7] are used for
generating realistic models of asteroids. In (c,d), the diameters of realistic asteroid models
are shown, which are obtained by sizing the shape models of Eros and Itokawa respectively
for the given masses and densities. The inset black trapezium shows the nominal range of
NEO asteroid parameters.

thrusters [187]. The various propulsion systems on board the conceptual ARM spacecraft

are shown in Fig. 4.2(a). The SEP system includes five Hall thrusters and power processor

units. The SEP system will be used by the conceptual ARM spacecraft for the journey to the

chosen NEO asteroid and also for bringing the captured asteroid to the Earth–Moon system

[188, 189]. Attitude control during the SEP thrusting stage will be achieved by gimballing

the Hall thrusters.

The Reaction Control Subsystem (RCS) will be used for attitude control of the tumbling

asteroid and spacecraft combination. The RCS uses hypergolic bipropellant, comprising of
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(a) (b)

Figure 4.2: (a) Bottom view of the conceptual ARM spacecraft with the five Hall thrusters
and the four RCS thruster pods (image credit: NASA [1]). (b) The conceptual ARM space-
craft [1] is shown with a captured asteroid. The inertial frame FI , the body fixed frame FB,
and the spacecraft frame FS are shown. BCM is the center of mass of the combined system.

monomethylhydrazine and nitrogen tetroxide with a gaseous pressured nitrogen. The RCS

includes four pods of four thrusters as shown in Fig. 4.2(a). Each thruster has a maximum

thrust output of 200 N and the fuel’s specific impulse is 287 sec. The position, direction,

and control influence matrix of the thrusters in the spacecraft frame FS (see Fig. 4.2(b))

are shown in Table 4.2, where an opposing pair of thrusters in a pod are represented by a

single thruster capable of producing thrust between +200 N to −200 N. Note that during

the capture and detumbling stage, the ARM-spacecraft’s solar arrays will be folded back to

facilitate the despinning process.

Table 4.2: RCS Thruster Position and Direction (generated from Fig. 4.2(a) and [1])

Thruster Pod
Position of

Thruster (m)
Direction of

Thrust
Control Influence

Matrix (B)

u1 P1 rP1/SO = 1.4ŝx + 5.9ŝz ±ŝy B(:, 1) = (rSO/BCM + rP1/SO)× (ŝy)

u2 P1 rP1/SO = 1.4ŝx + 5.9ŝz ±ŝz B(:, 2) = (rSO/BCM + rP1/SO)× (ŝz)

u3 P2 rP2/SO = 1.4ŝy + 5.9ŝz ±ŝx B(:, 3) = (rSO/BCM + rP2/SO)× (ŝx)

u4 P2 rP2/SO = 1.4ŝy + 5.9ŝz ±ŝz B(:, 4) = (rSO/BCM + rP2/SO)× (ŝz)

u5 P3 rP3/SO = −1.4ŝx + 5.9ŝz ±ŝy B(:, 5) = (rSO/BCM + rP3/SO)× (ŝy)

u6 P3 rP3/SO = −1.4ŝx + 5.9ŝz ±ŝz B(:, 6) = (rSO/BCM + rP3/SO)× (ŝz)

u7 P4 rP4/SO = −1.4ŝy + 5.9ŝz ±ŝx B(:, 7) = (rSO/BCM + rP4/SO)× (ŝx)

u8 P4 rP4/SO = −1.4ŝy + 5.9ŝz ±ŝz B(:, 8) = (rSO/BCM + rP4/SO)× (ŝz)
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4.1.2 Attitude Dynamics and Kinematics of the Combined

System

In this section, we present the attitude dynamics and kinematics equations that are used

in this chapter. We assume that the combined spacecraft and captured object form a rigid

body.

As shown in Fig. 4.2(b), the center of mass of the combined system (BCM) is the origin

of the body fixed frame FB. Let SO, which is the point of contact between the spacecraft

and the object, denote the origin of the spacecraft frame FS. We assume that attitude

orientation of FB with respect to FI is the same as that of FS with respect to FI ; i.e., the

rotation matrix from FS to FB is an identity matrix.

Attitude Dynamics with Uncertainty

Let JBCMobj be the unknown, constant, positive-definite inertia tensor of the captured object

at BCM and expressed in FB. Let JSCMsc be the known, constant, positive-definite inertia

tensor of the spacecraft at the center of mass of the spacecraft (SCM) and expressed in FS.

Let rSO/BCM denote the unknown vector from BCM to SO. The combined inertia tensor of

the system at BCM , expressed in FB, is determined using the parallel axis theorem:

JBCMtot = JBCMobj + JSCMsc +msc

[(
rSCM/BCM

)T (
rSCM/BCM

)
I−

(
rSCM/BCM

) (
rSCM/BCM

)T]
,

(4.1)

where rSCM/BCM = rSCM/SO + rSO/BCM , rSCM/SO is the known vector from SO to SCM , msc is

the mass of the spacecraft, and the rotation matrix from the spacecraft frame to the body

frame is an identity matrix.

Let ω ∈ R3 be the angular velocity of the system in the body fixed frame FB with

respect to the inertial frame FI and expressed in the frame FB. Let u ∈ Rnt be the outputs
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of nt actuators and B ∈ R3×nt be the corresponding control influence matrix. The attitude

dynamics of the rigid combination is given by:

JBCMtot ω̇ =
(
JBCMtot ω

)
× ω +Bu+ dext , (4.2)

where dext represents the external torque acting on the system.

We now study the effect of modeling uncertainties in JBCMobj and rSO/BCM , measurement

errors in ω, and actuator errors in u on the attitude dynamics of the system (4.2). Let

JBCMobj = ĴBCMobj + ∆JBCMobj , where (̂·) and ∆(·) refer to the known and unknown parts respec-

tively. Similarly, let rSO/BCM = r̂SO/BCM + ∆rSO/BCM , ω = ω̂ + ∆ω, and u = û+ ∆u. Due

to these uncertainties, the combined inertia tensor is given by:

JBCMtot = ĴBCMtot + ∆JBCMtot , (4.3)

where ĴBCMtot = ĴBCMobj + JSCMsc +msc[(r
SCM/SO + r̂SO/BCM )T (rSCM/SO + r̂SO/BCM )I

− (rSCM/SO + r̂SO/BCM )× (rSCM/SO + r̂SO/BCM )T ] ,

∆JBCMtot = ∆JBCMobj +msc[2(∆rSO/BCM )T (rSCM/SO + r̂SO/BCM )I

− (∆rSO/BCM )(rSCM/SO + r̂SO/BCM )T − (rSCM/SO + r̂SO/BCM )(∆rSO/BCM )T ] .

Here we have neglected the second order error terms. Note that the terms ∆rSO/BCM and

∆JBCMobj appear independently in ∆JBCMtot .

Similarly, the control influence matrix can be decomposed into B = B̂ + ∆B because it
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depends on rSO/BCM . Simplifying the dynamics of the system (4.2) gives:

(ĴBCMtot + ∆JBCMtot ) ˙̂ω − (ĴBCMtot + ∆JBCMtot )ω̂ × ω̂ = uc + dres , (4.4)

where uc = B̂û ,

dres =
(
ĴBCMtot + ∆JBCMtot

)
∆ω × ω̂ +

(
ĴBCMtot + ∆JBCMtot

)
ω̂ ×∆ω

+ ∆Bû+ B̂∆u− ĴBCMtot ∆ω̇ + dext .

Note that ∆JBCMtot is the only unknown parameter in the left hand side of Eq. (4.4). The

remaining unknown terms are grouped into the resultant disturbance term dres in Eq. (4.4).

We use Eq. (4.4) to analyze the stability of control laws presented in this chapter.

Impact of Feed-Forward Cancellation on Resultant Disturbance Torque

In this section, we compare the resultant disturbance torques of different attitude tracking

control laws. If a linear control law (e.g., proportional-derivative control) is used, then the

resultant disturbance torque is given by dres in Eq. (4.4). However, a linear control law

does not achieve global exponential stability for attitude tracking. If the following feedback

linearization based control law is used:

uc = ĴBCMtot ω̇r − ĴBCMtot ω̂ × ω̂ −Kf (ω̂ − ωr) , (4.5)

where Kf ∈ R3×3 is a positive definite constant matrix and ωr is is the desired reference

trajectory, then this control law globally exponentially stabilizes the left-hand side of the

following closed-loop system:

ĴBCMtot ( ˙̂ω − ω̇r) +Kf (ω̂ − ωr) =
[
dres −∆JBCMtot

˙̂ω −∆JBCMtot ω̂ × ω̂
]

︸ ︷︷ ︸
dres,1

, (4.6)

and the term dres,1 appears as a resultant disturbance torque.
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Suppose there exists a control law that globally exponentially stabilizes the following

closed-loop system despite the disturbance in the left-hand side of the equation:

JBCMtot ( ˙̂ω−ω̇r)−(JBCMtot ω̂)×(ω̂−ωr)+Kf (ω̂−ωr) =
[
dres + ∆JBCMtot ω̇r − (∆JBCMtot ω̂)× ωr

]︸ ︷︷ ︸
dres,2

.

(4.7)

Then the term dres,2 appears as a resultant disturbance torque. We show later that Eq. (4.7)

is the closed loop system of our proposed nonlinear tracking control law.

Example 4.1. In Table 4.3, we now numerically compare the magnitude of some of the

terms in the resultant disturbance torques dres in Eq. (4.4), dres,1 in Eq. (4.6), and dres,2 in

Eq. (4.7) using the following values:

JBCMtot = 106 ×
[

1.2652 0.4397 0.0015
0.4397 3.8688 0.0002
0.0015 0.0002 3.5440

]
kg m2 , ĴBCMtot = 106 ×

[
1 0 0
0 3 0
0 0 3

]
kg m2 , ‖∆JBCMtot ‖2 ≈ 106kg m2 ,

ω = [ 0.01 0.02 0.03 ] rad sec−1 , ω̂ = [ 0.010 0.020 0.0299 ] rad sec−1 ,∆ω = 10−4 × [ −0.44 0.09 0.91 ] rad sec−1 ,

and we have neglected ˙̂ω and ω̇r because they are much smaller than ω̂.

Table 4.3: Magnitude of some of the disturbance terms in the resultant disturbance torques

Disturbance Magnitude Disturbance term present in
term (`2-norm) dres in Eq. (4.4) dres,1 in Eq. (4.6) dres,2 in Eq. (4.7)

∆JBCMtot ω̂ × ω̂ 372.8 Nm 7 3 7

∆JBCMtot ω̂ × ωr depends on ωr 7 7 3

ĴBCMtot ∆ω × ω̂ 7.8 Nm 3 3 3

∆JBCMtot ∆ω × ω̂ 6.3 Nm 3 3 3

ĴBCMtot ω̂ ×∆ω 10.1 Nm 3 3 3

∆JBCMtot ω̂ ×∆ω 7.3 Nm 3 3 3

The magnitude of the disturbance term (∆JBCMtot ω̂×ω̂) in Table 4.3 is significantly larger

than the magnitude of other disturbance terms because of unprecedentedly large modeling

uncertainties in the captured object. Moreover, this resultant disturbance torque is so large

that it is comparable to the maximum control torque that the spacecraft can generate. Hence,
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Table 4.4: Properties of Attitude Representations (adapted from [2])

Attitude Representation Range, Transformation Global? Unique?

Euler Angles φ, θ, ψ ∈ [−π, π]
No(

Singularity at
θ = ±π/2

)
No

Euler Axis of Rotation
and Angle

e ∈ S2, Φ ∈ [−π, π] Yes
No(

eS = −e,
ΦS = 2π − Φ

)
Quaternions β ∈ S3 ,

βi = ei sin Φ
2 , i ∈ {1, 2, 3},

β4 = cos Φ
2

Yes
No

(βS = −β)

Classical Rodrigues
Parameters σ ∈ R3 σ = e tan Φ

2

No(
Singularity at

Φ = ±π

) Yes(
When

Φ 6= ±π

)
Modified Rodrigues
Parameters q ∈ R3 q = e tan Φ

4

No(
Singularity at

Φ = ±2π

) No(
qS = −e tan 2π−Φ

4

)
Rotation Matrix

R ∈ SO(3) ,det(R) = 1

RRT = I , RTR = I ,
R = I cos Φ + S(e) sin Φ

+(1− cos Φ)eeT
Yes Yes

control laws that have the disturbance term (∆JBCMtot ω̂ × ω̂) in their resultant disturbance

torque (like the feed-forward cancellation based control law Eq. (4.6)) are not suitable for

this control problem.

Clearly, dres is the smallest resultant disturbance torque because it does not contain the

terms (∆JBCMtot ω̂ × ω̂) and (∆JBCMtot ω̂ × ωr). The magnitude of the resultant disturbance

torque dres,2 depends on ωr, which can be made smaller than ω̂, since it depends on the

desired attitude trajectory. 2

We show later that our proposed nonlinear tracking control law makes use of smaller

resultant disturbance torque dres,2 while retaining the superior tracking performance.

Attitude Representation and Kinematics

The attitude orientation of the body frame FB with respect to the inertial frame FI can be

represented by various attitude representations as shown in Table 4.4. An attitude repre-

sentation is global if it can represent any possible orientation. The attitude representation

is unique if there is only one attitude state for every possible orientation. In Table 4.4, (·)S

denotes the shadow point representation of the same attitude. Note that classical Rodrigues

134



parameters are unique [190] (when Φ 6= ±π) because σS = −e tan 2π−Φ
2

= e tan Φ
2

= σ.

The attitude kinematics of the rigid combination using quaternions (βv = [β1, β2, β3]),

modified Rodrigues parameters (MRP), and rotation matrix on SO(3) are given respectively

by [115, 191, 192]:

β̇v =
1

2
(β4ω + βv × ω) , β̇4 = −1

2
βTvω , (4.8)

q̇ = Z(q)ω , where Z(q) =
1

2

[
I

(
1− qTq

2

)
+ qqT + S(q)

]
, S(q) =

[ 0 −q3 q2
q3 0 −q1
−q2 q1 0

]
,

(4.9)

Ṙ = RS(ω) . (4.10)

The attitude kinematics equations using Euler angles (φ, θ, ψ), classical Rodrigues parame-

ters (σ), and the first three elements of a quaternion vector (βv) can also be written in the

form of q̇ = Z(q)ω (like Eq. (4.9)) with a different definition of Z(q) [193]. We show later

that our proposed nonlinear control law permits the use of any attitude representation.

4.1.3 Problem Statement: Attitude Control of the Combined

System

The salient features of the attitude control problem discussed in this chapter are as fol-

lows: (i) The rigid combined system, comprising the spacecraft and the captured object, is

tumbling. The tumbling rate can be nonuniform due to the cross-terms in the moment of

inertia tensor. (ii) The object’s inertia tensor, mass, center of mass, and center of gravity

have large uncertainties (approximately 10% of the nominal value). (iii) The object is non-

collaborative; i.e., no actuators are placed on the object. All actuators are on board the

spacecraft.

Let qfinal denote the desired attitude orientation of the stabilized system. The attitude

control objective is to stabilize the system, in the presence of uncertain physical parameters,
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bounded disturbances, measurement errors, and actuator saturations, such that for some

appropriate εtrans > 0, εss > 0, and T � 0:

‖ω(t)‖2 ≤ εtrans, ∀t > 0 , (4.11)

‖q(t)− qfinal‖2 ≤ εss, ∀t > T . (4.12)

The transient error bound εtrans is imposed on the angular velocity ω(t) in Eq. (4.11) in

order to ensure that the system is always within the technological capability of the sensors

and actuators on board the spacecraft. It is desired that after time T , the system should

achieve the desired attitude orientation qfinal as shown in the steady-state condition (4.12).

Note that if the system has to hold its attitude within the given steady-state error bound

εss, then the desired angular velocity ωfinal of the stabilized system should be sufficiently

close to 0 rad sec−1.

In this chapter, a control law that guarantees global exponential convergence or a con-

tracting closed-loop dynamics in the sense of Lemma C.1 is derived to achieve the objectives

in Eqs. (4.11-4.12) by using Lemma C.2 (see Appendix C). Hence, in the presence of dis-

turbances, such a globally exponentially stabilizing control law yields finite-gain Lp stability

and input-to-state stability [194]. If a control law that only yields global asymptotic con-

vergence (without any disturbance), then the error in the system’s trajectory may not be

bounded for a certain class of disturbance and proving robustness is more involved [194].

4.2 Control Laws for Nonlinear Attitude Control

In this section, we present the new nonlinear attitude tracking control laws that are deemed

suitable for satisfying the control problem statement. We first present a novel robust non-

linear tracking control law that guarantees globally exponential convergence of the system’s

attitude trajectory to the desired attitude trajectory. In order to highlight the advantages of
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this new control law, we also present several extensions of this attitude tracking control law,

like augmenting it with an integral control term and deriving an exponentially-stabilizing

tracking control law on SO(3).

4.2.1 Robust Nonlinear Tracking Control Law with Global

Exponential Stability

The following theorem states the proposed robust nonlinear tracking control law. Note that

this control law does not cancel the term S
(
ĴBCMtot ω̂

)
ω̂ exactly, in contrast with most

conventional nonlinear tracking control laws using feed-forward cancellation. Although this

control law is written for MRP, it can also be used with other attitude representations like

Euler angles, classical Rodrigues parameters, and the quaternion vector, by changing the

definition of Z(q).

Theorem 4.1. For the given desired attitude trajectory qd(t), and positive definite constant

matrices Kr ∈ R3×3 and Λr ∈ R3×3, we define the following control law:

uc = ĴBCMtot ω̇r − S
(
ĴBCMtot ω̂

)
ωr −Kr(ω̂ − ωr) , (4.13)

where ωr = Z−1(q̂)q̇d(t) +Z−1(q̂)Λr(qd(t)− q̂) .

This control law stabilizes the combined system (4.4) with the following properties:

(i) In the absence of resultant disturbance torque dres,2, this control law guarantees global

exponential convergence of the system’s trajectory to the desired trajectory qd(t).

(ii) In the presence of bounded resultant disturbance torque dres,2, this control law guarantees

that the tracking error (qe = q̂ − qd) globally exponentially converges to the following ball

lim
t→∞

∫ qe

0

‖δqe‖2 ≤
λmax(JBCMtot )

λmin(Λr)λmin(Kr)λmin(JBCMtot )

(
sup
t
σmax(Z(q̂))

)(
sup
t
‖dres,2‖2

)
.

Hence, this control law is finite-gain Lp stable and input-to-state stable (ISS), which are
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sufficient conditions for satisfying the control problem statement Eqs. (4.11-4.12).

Proof: The closed-loop dynamics, which is obtained by substituting uc from Eq. (4.13) into

Eq. (4.4), becomes

JBCMtot ω̇e − S
(
JBCMtot ω̂

)
ωe +Krωe =

[
dres + ∆JBCMtot ω̇r − S

(
∆JBCMtot ω̂

)
ωr
]︸ ︷︷ ︸

dres,2

, (4.14)

where ωe = (ω̂ −ωr). We first show that the control law indeed globally exponentially sta-

bilizes the closed-loop system without the resultant disturbance dres,2. The virtual dynamics

of y, derived from Eq. (4.14) without dres,2, is given as

JBCMtot ẏ − S
(
JBCMtot ω̂

)
y +Kry = 0 , (4.15)

where y has y = ωe and y = 0 as its two particular solutions. After we obtain the dynamics

of the infinitesimal displacement at fixed time, δy from (4.15), we perform the squared-length

analysis (see Appendix C):

d

dt

(
δyTJBCMtot δy

)
= −2δyTKrδy ≤

−2λmin(Kr)

λmax(JBCMtot )

(
δyTJBCMtot δy

)
, (4.16)

where we exploited the skew-symmetric property of the matrix S
(
JBCMtot ω̂

)
. Hence, it follows

from the contraction analysis (Lemma C.1 in Appendix C) that all system trajectories of

(4.15) converge exponentially fast to a single trajectory (i.e., δy → 0 and ωe → 0 ) at a rate

of λmin(Kr)

λmax(J
BCM
tot )

.

In the presence of bounded resultant disturbance dres,2, it follows from Lemma C.2 in

Appendix C that:

lim
t→∞

∫ ωe

0

‖δy‖2 ≤
λmax(JBCMtot )

λmin(Kr)λmin(JBCMtot )
sup
t
‖dres,2‖2 (4.17)

Hence the dynamics of the closed-loop system is bounded in the presence of bounded resul-
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tant disturbance dres,2. We now prove that convergence of ωe → 0 implies convergence of

the system’s trajectory to the desired trajectory (q̂ → qd). It follows from the definition of

ωr that:

ωe = Z−1(q̂)( ˙̂q − q̇d) +Z−1(q̂)Λr(q̂ − qd) = Z−1(q̂)(q̇e + Λrqe) , (4.18)

where qe = (q̂ − qd). In the absence of ωe, all system trajectories of δqe will converge

exponentially fast to a single trajectory (δqe → 0) with a rate of λmin(Λr), where the virtual

displacement δqe is an infinitesimal displacement at fixed time. In the presence of ωe, it

follows from Lemma C.2 in Appendix C that:

lim
t→∞

∫ qe

0

‖δqe‖2 ≤
1

λmin(Λr)
sup
t
‖Z(q̂)ωe‖2

≤ λmax(JBCMtot )

λmin(Λr)λmin(Kr)λmin(JBCMtot )

(
sup
t
σmax(Z(q̂))

)(
sup
t
‖dres,2‖2

)
.

(4.19)

Hence we have shown, by constructing a hierarchically-combined closed-loop system of ωe

and qe, that the attitude trajectory q will globally exponentially converge to a bounded

error ball around the desired trajectory qd(t). Moreover, it follows from Lemma C.2 in

Appendix C that this control law is finite-gain Lp stable and input-to-state stable. Hence

the control gains Kr and Λr can be designed such that the error bounds εtrans and εss in

Eqs. (4.11-4.12) are satisfied. �

The desired attitude trajectory qd(t) can be any reference trajectory that we would like

the system to track. We discuss methods for designing these desired attitude trajectories in

Section 4.3.
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4.2.2 Relation to Nonlinear Tracking Control using

Euler-Lagrangian Systems

In this section, we compare the robust nonlinear tracking control law Eq. (4.13) with the

well-known robust nonlinear tracking control for Euler-Lagrangian (EL) systems [117]. We

first state the EL system with uncertainty, which is a combined representation of the attitude

kinematics and dynamics of the system:

M̂ (q̂)¨̂q + Ĉ(q̂, ˙̂q) ˙̂q = τ̂ c + τ res , (4.20)

where τ̂ c = Z−T (q̂)uc , M̂ (q̂) = Z−T (q̂)ĴBCMtot Z−1(q̂) ,

Ĉ(q̂, ˙̂q) = −Z−T (q̂)ĴBCMtot Z−1(q̂)Ż(q̂)Z−1(q̂)−Z−T (q̂)S
(
ĴBCMtot Z−1(q̂) ˙̂q

)
Z−1(q̂) ,

and τ res is the resultant disturbance torque acting on the EL system. Note that
˙̂
M(q̂) −

2Ĉ(q̂, ˙̂q) in Eq. (4.20) is a skew-symmetric matrix, and this property is essential to the

stability proof. We use a slight modification of the original robust nonlinear tracking control

law Eq. (4.13), which is given by:

uc = ĴBCMtot ω̇r − S
(
ĴBCMtot ω̂

)
ωr −ZT (q̂)K`Z(q̂)(ω̂ − ωr) (4.21)

where K` ∈ R3×3 and Λ` ∈ R3×3 are positive definite constant matrices. Substituting ωr

into (4.21), using the identity Ż
−1

(q̂) = −Z−1(q̂)Ż(q̂)Z−1(q̂), and multiplying both sides

with Z−T (q̂) gives us:

τ̂ c = M̂(q̂)q̈r + Ĉ(q̂, ˙̂q)q̇r −K`( ˙̂q − q̇r) , (4.22)

where q̇r = q̇d(t) + Λ`(qd(t)− q̂).

Remark 4.1. (Advantages of (4.13) over the control law for EL systems (4.22)): First, the

control law for EL system (4.22) extensively uses the measured attitude q̂ and its rate ˙̂q but
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does not explicitly use the measured angular velocity ω̂. Moreover, the matrices Z(q̂) and

Z−1(q̂), which might be susceptible to large fluctuations due to measurement errors in q̂,

are used multiple times in Eq. (4.22). For example, the actual control input uc depends on

the computed control signal τ̂ c in Eq. (4.22) through the relation uc = ZT (q̂)τ̂ c as shown

in Eq. (4.20). On the other hand, the original control law (4.13) directly computes uc.

Second, as shall be seen in Sec. 4.2.3, the stability proof is constructed using a constant

matrix JBCMtot , not the nonlinear matrix M̂ (q̂), thereby allowing for an integral control

formulation. Third, in Eqs. (4.21) and (4.22), the terms ZT (q̂)K`Z(q̂), M̂ (q̂), and Ĉ(q̂, ˙̂q)

strongly couple the three axes motions using the highly non-diagonal, non-symmetric matrix

Z(q̂). This strong coupling of the three-axis rotational motions might be undesirable. For

example, initially, there might be an error in only one axis, but this coupling will subsequently

introduce errors in all three axes. Depending on the inertia matrix, this strong coupling of

three-axis motions can be avoided in the proposed control law Eq. (4.13). 2

4.2.3 Robust Nonlinear Tracking Control Law with Integral

Control

Another benefit of the original robust nonlinear tracking control law Eq. (4.13) is that it

can be augmented with an integral control term in a straight-forward manner to eliminate

any constant external disturbance while ensuring exponential convergence of the system’s

attitude trajectory to the desired attitude trajectory.

Theorem 4.2. For the given desired attitude trajectory qd(t), positive definite constant

matrices Km ∈ R3×3 and Λm ∈ R3×3, and (possibly time-varying) uniformly positive definite

diagonal matrix KI(t) ∈ R3×3, we define the following control law:

uc = ĴBCMtot ω̇r − S
(
ĴBCMtot ω̂

)
ωr −Km(ω̂ − ωr)−

∫ t

0

KI(ω̂ − ωr)dt , (4.23)

where ωr = Z−1(q̂)q̇d(t) +Z−1(q̂)Λm(qd(t)− q̂) .
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This control law has the following properties:

(i) This control law guarantees global exponential convergence of the system’s trajectory to

qd(t) for any constant external disturbance (constant bias) acting on the system.

(ii) In the presence of time-varying disturbance dres,2 with a bounded rate ḋres,2, this control

law guarantees that q(t) will globally exponentially converge to an error ball around qd(t),

whose size is determined by ḋres,2 (i.e., finite-gain Lp stable and ISS with respect to distur-

bance inputs with bounded rates).

Proof: The closed-loop dynamics is given by:

JBCMtot ω̇e − S
(
JBCMtot ω̂

)
ωe +Kmωe +

∫ t

0

KIωedt = dres,2 , (4.24)

where ωe = (ω̂ − ωr) and dres,2 is defined in Eq. (4.14). We first show that this control

law can eliminate a constant external disturbance, hence replacing dres,2 in Eq. (4.24) with

a constant disturbance term dconst gives us:

JBCMtot ω̇e − S
(
JBCMtot ω̂

)
ωe +Kmωe +

∫ t

0

KIωedt = dconst . (4.25)

Differentiating Eq. (4.25) with respect to time and setting ḋconst = 0, we get:

JBCMtot ω̈e +
(
Km − S

(
JBCMtot ω̂

))
ω̇e +

(
KI − S

(
JBCMtot

˙̂ω
))
ωe = 0 . (4.26)

If we show that Eq. (4.26) is contracting, then we prove our claim (i) that the given control

law can successfully eliminate any constant external disturbance acting on the system. In

order to prove Eq. (4.26) is globally exponentially stable, we consider two cases which depend

on the time-varying nature of the matrix KI .

We first consider the case where KI is a constant positive definite diagonal matrix.

The matrix KI can be decomposed into KI = K
1
2
IK

1
2
I , where the matrix K

1
2
I is also a

constant positive definite diagonal matrix. We introduce the term y1, where ẏ1 is defined
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as ẏ1 = K
1
2
I ωe. Then we can write ω̇e as:

ω̇e = −(JBCMtot )−1
(
Km − S

(
JBCMtot ω̂

))
ωe − (JBCMtot )−1K

1
2
I y1 . (4.27)

Note that differentiating Eq. (4.27) with respect to time and substituting ẏ1 gives us

Eq. (4.26). Therefore, these equations can be written in matrix form as:

ω̇e
ẏ1

 =

[
−(J

BCM
tot )−1

(
Km−S

(
J
BCM
tot ω̂

))
−(J

BCM
tot )−1K

1
2
I

K
1
2
I 0

]ωe
y1

 = F

ωe
y1

 . (4.28)

We define the positive definite matrix Ξ =
[
J
BCM
tot bI
bI I

]
, where b is a constant between 0 <

b < λ
1
2
max(JBCMtot ). The symmetric matrix (ΞF )sym = 1

2

(
(ΞF ) + (ΞF )T

)
is given by:

(ΞF )sym = −

[
Km+KT

m
2

−bK
1
2
I

b
2

[
(J
BCM
tot )−1

(
Km−S

(
J
BCM
tot ω̂

))]T
b
2

(J
BCM
tot )−1

(
Km−S

(
J
BCM
tot ω̂

))
b
2

(
(J
BCM
tot )−1K

1
2
I +K

1
2
I (J

BCM
tot )−1

)
]
.

The sufficient conditions for the matrix (ΞF )sym to be negative definite are [195]:

− Km +KT
m

2
+ bK

1
2
I < 0 , − b

2

(
(JBCMtot )−1K

1
2
I +K

1
2
I (JBCMtot )−1

)
< 0 , (4.29)

λmax

(
−Km+KT

m
2

+bK
1
2
I

)
λmax

(
− b

2

(
(J
BCM
tot )−1K

1
2
I +K

1
2
I (J

BCM
tot )−1

))
σ2

max

(
− b

2

[
(J
BCM
tot )−1

(
Km−S

(
J
BCM
tot ω̂

))]T) > 1 . (4.30)

Equation (4.29) is satisfied by 0 < b < λmin(Km+KT
m)

2λmax(K
1
2
I )

. Equation (4.30) is satisfied by b < b3,

where b3 is given by:

b3 =
λmax

(
Km+KT

m
2

)
λmin

(
(J
BCM
tot )−1K

1
2
I +K

1
2
I (J

BCM
tot )−1

)
1
2
σ2

max

[
(J
BCM
tot )−1

(
Km−S

(
J
BCM
tot ω̂

))]T
+λmin

(
K

1
2
I

)
λmin

(
(J
BCM
tot )−1K

1
2
I +K

1
2
I (J

BCM
tot )−1

) . (4.31)

Therefore, the matrix (ΞF )sym is negative definite if b is chosen such that 0 < b <

min(λ
1
2
max(JBCMtot ), λmin(Km+KT

m)

2λmax(K
1
2
I )

, b3). We define the generalized virtual displacement δz =
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[δωe, δy1]T , where δωe and δy1 are infinitesimal displacements at fixed time. Therefore,

d

dt

(
δzTΞδz

)
= δzT

(
(ΞF ) + (ΞF )T

)
δz ≤ 2λmax((ΞF )sym)‖δz‖2

2

≤ 2λmax((ΞF )sym)

λmax(Ξ)

(
δzTΞδz

)
. (4.32)

Hence, it follows from the contraction analysis (Lemma C.1 in Appendix C) that all system

trajectories converge exponentially fast to a single trajectory (δz → 0 and δωe → 0) at a rate

of −λmax((ΞF )sym)

λmax(Ξ)
. Moreover, in the presence of bounded time-varying resultant disturbance

dres,2 with bounded ḋres,2, we get from Lemma C.2 in Appendix C:

lim
t→∞

∫ ωe

0

‖δωe‖2 ≤
(b+ 1)λmax(Ξ)

−λmax((ΞF )sym)

(
sup
t
λmax(K

− 1
2

I )

)(
sup
t
‖ḋres,2‖2

)
. (4.33)

where ‖δωe‖2 ≤ ‖δz‖2 and λmin(Ξ) > 1 are used. Also, note that the disturbance term in

the righthand side of Eq. (4.28) is (0;−K−
1
2

I ḋres,2). The fact that convergence of ωe → 0

implies convergence of the system’s trajectory to the desired trajectory (q̂ → qd) is already

presented in the proof of Theorem 4.1. This completes the proof.

If bothKI and K̇I are uniformly positive definite diagonal matrices, there exits a simpler

proof, which is presented here. The matrix K̇I can also be decomposed into K̇I = K̇
1
2

I K̇
1
2

I .

We introduce another term y2, where:

ẏ2 = K
1
2
I ωe −K

− 1
2

I K̇
1
2

I y2 . (4.34)

Once again, ω̇e can be written in a form similar to that of Eq. (4.27). The matrix form of

these equations is given by:

ω̇e
ẏ2

 =

[
−(J

BCM
tot )−1

(
Km−S

(
J
BCM
tot ω̂

))
−(J

BCM
tot )−1K

1
2
I

K
1
2
I −K

− 1
2

I K̇
1
2
I

]ωe
y2

 = F̃

ωe
y2

 . (4.35)
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Clearly, the symmetric part of the matrix ΞF̃ is negative definite. Therefore,

d

dt

(
δzTΞδz

)
= δzT

(
(ΞF̃ ) + (ΞF̃ )T

)
δz ≤ 2λmax((ΞF̃ )sym)‖δz‖2

2

≤ 2λmax((ΞF̃ )sym)

λmax(JBCMtot )

(
δzTΞδz

)
, (4.36)

where (ΞF̃ )sym = (ΞF̃ )+(ΞF̃ )T

2
. Also, λmax((ΞF̃ )sym) < 0 and is bounded as λmax((ΞF̃ )sym) ≤

− min(λmin(Km), inft(λmin(K
− 1

2
I K̇

1
2

I ))). Hence, it follows from the contraction analysis

that all system trajectories converge exponentially fast to a single trajectory at a rate of

−λmax((ΞF̃ )sym)

λmax(J
BCM
tot )

. Moreover, in the presence of bounded dres,2 and ḋres,2, we get from Lemma

C.2 in Appendix C that:

lim
t→∞

∫ ωe

0

‖δωe‖2 ≤
λmax(JBCMtot )

−λmax((ΞF̃ )sym)

(
sup
t
λmax(K

− 1
2

I )

)(
sup
t
‖ḋres,2‖2

)
. (4.37)

where ‖δωe‖2 ≤ ‖δz‖2 and λmin(JBCMtot ) > 1 are used. Also, note that the disturbance term

in the righthand side of Eq. (4.35) is (0;K
− 1

2
I ḋres,2). �

Remark 4.2. Note that the second block diagonal matrix of the Jacobin F in Eq. (4.28)

is 0, which usually yields a semi-contracting system with global asymptotic stability. For

example, F from Eq. (4.28) and Θ =
[
J
BCM
tot 0
0 I

]
results in a semi-contracting system due

to 1
2

(
(ΘF ) + (ΘF )T

)
= [ −Km 0

0 0 ]. Similarly, the following adaptive control law also yields

global asymptotic stability. In contrast, Theorem 4.2 presents a stronger result with global

exponential stability. 2
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4.2.4 Nonlinear Adaptive Control

Let the parameter â capture the six uncertain terms in the inertia tensor JBCMtot . The

resulting adaptive nonlinear tracking control law and the tuning law are given by [117]:

uc = Y â−Kr(ω̂ − ωr) , ˙̂a = −ΓrProj
(
â,Y T (ω̂ − ωr)

)
, (4.38)

where Y â = ĴBCMtot ω̇r − S
(
ĴBCMtot ω̂

)
ωr, ωr is defined in Eq. (4.13), and Γr ∈ R6×6

is a positive-definite diagonal matrix. For some boundary function f(θ) (e.g., f(θ) =

(θT θ−θ2
max)

εθθ2
max

), the projection operator is given by Proj(θ,x) = x − ∇f(x)∇f(θ)T

‖∇f(θ)‖2 xf(θ) if

f(θ) > 0, ∇f(θ)Tx > 0; and x otherwise.

The proof of global asymptotic stability of using Eq. (4.38) for the disturbance-free

system, derived from (4.4), is straightforward. The stability result of adaptive control is only

globally asymptotic because its closed-loop system of the states (ωe, â)T yields a negative

semidefinite Jacobian matrix [ −Kr 0
0 0 ] (also, see Eq. (4.28)). However, the use of a projection

operator in Eq. (4.38) permits ISS, as shown in [12].

4.2.5 Robust Nonlinear Tracking Control Law on SO(3)

It is shown in Table 4.4 that the rotation matrix (R ∈ SO(3)) is a global and unique attitude

representation. In this section, we present a variation of Eq. (4.13) that exponentially

stabilizes the attitude dynamics from almost all initial conditions on SO(3), i.e., all initial

conditions except for those starting from a two-dimensional subset of SO(3).

It is shown in [196] that even global asymptotic convergence is not possible for any

continuous feedback control law in SO(3). An almost-globally asymptotically stabilizing

control law on SO(3) is discussed in [2]. In this chapter, we present a novel control law that

guarantees exponential convergence to the desired trajectory for almost all initial conditions

on SO(3). Another control law that also guarantees almost-global exponential convergence
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is presented in [197], but our control law and proof techniques are substantially different

from the Lyapunov-based approach used in [197].

Let Rd(t) ∈ SO(3) denote the desired attitude trajectory, which is obtained from the

desired attitude trajectory qd(t) using the transformations given in Table 4.4. Let the

inverse of the S(·) map be the ∨(·) map, whose input is a skew-symmetric matrix and is

defined as ∨(S(ω)) = ω. We now define the following notations [197]:

eR̂ =
1

2

√
1 + tr(RT

d R̂)

(
∨
(
RT
d R̂− R̂TRd

))
, eω̂ = ω̂ − R̂TRd

(
∨
(
RT
d Ṙd

))
,

(4.39)

where tr(·) is the trace of the matrix. Here eR̂ represents the attitude error vector between

the current measured attitude R̂ and the desired attitude Rd. For any RT
d R̂, its trace is

bounded by −1 ≤ tr(RT
d R̂) ≤ 3. Hence eR̂ is not defined only on the two-dimensional subset

of SO(3) where tr(RT
d R̂) = −1, i.e., R̂ = Rd exp(±πS(κ)), where κ ∈ S2 [197]. Finally, we

define the matrix E(R̂,Rd) as follows [197]:

deR̂
dt

=

 1

2

√
1 + tr(RT

d R̂)

(
tr(R̂TRd)I− R̂TRd + 2eR̂e

T
R̂

) eω̂ = E(R̂,Rd)eω̂ . (4.40)

Theorem 4.3. For the desired attitude trajectory Rd(t) ∈ SO(3) and positive definite ma-

trices Ke ∈ R3×3 and Λe ∈ R3×3, we define the following control law:

uc = ĴBCMtot ω̇r − S
(
ĴBCMtot ω̂

)
ωr −Ke(ω̂ − ωr) , (4.41)

where ωr = R̂TRd

(
∨
(
RT
d Ṙd

))
−ΛeE

T (R̂,Rd)eR̂ .

In the absence of disturbances or uncertainties, this control law guarantees exponential con-

vergence of the system’s trajectory R(t) ∈ SO(3) to the desired trajectory Rd(t) for almost

all initial conditions, i.e., all initial conditions that are not on the two-dimensional subset
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of SO(3) where R̂(0) = Rd(0) exp(±πS(κ)), where κ ∈ S2. Moreover, in the presence of

bounded disturbances or uncertainties, this control law guarantees that R(t) will exponentially

converge to a bounded error ball around Rd(t).

Proof: The closed-loop dynamics obtained by substituting uc from Eq. (4.41) into Eq. (4.4)

is the same as Eq. (4.14) in the proof of Theorem 4.1. Hence we can directly conclude from

that proof that all system trajectories of ωe converge exponentially fast to a single trajectory

(ωe → 0) at a rate of λmin(Ke)

λmax(J
BCM
tot )

. Moreover, in the presence of bounded resultant disturbance

dres,2, limt→∞
∫ ωe

0
‖δy‖2 is bounded by Eq. (4.17).

Now we show that convergence of ωe implies convergence of the system’s trajectory to

the desired trajectory (eR̂ → 0). It follows from the definition of ωr that:

ωe = ω̂ − R̂TRd

(
∨
(
RT
d Ṙd

))
+ ΛeE

TeR̂ = E−1
(
ėR̂ +EΛeE

TeR̂
)
. (4.42)

In the absence of ωe, all system trajectories of δeR̂ will converge exponentially fast to a

single trajectory (δeR̂ → 0) with a rate of λmin(EΛeE
T ), where EΛeE

T is also a positive

definite matrix. In the presence of ωe, it follows from Lemma C.2 in Appendix C that:

lim
t→∞

∫ eR̂

0

‖δeR̂‖2 ≤
λmax(JBCMtot )

λmin(EΛeE
T )λmin(Ke)λmin(JBCMtot )

(
sup
t
σmax(E)

)(
sup
t
‖dres,2‖2

)
.

(4.43)

Note that ‖eR̂‖2 →∞ if R̂→ Rd exp(±πS(κ)), where κ ∈ S2. On the other hand, for any

valid initial condition, ‖eR̂‖2 is always bounded and exponentially decreasing till it reaches

the error ball. This implies that once the system starts from a valid initial condition, it

can never go towards the two-dimensional subset of SO(3) due to exponential convergence.

Hence we have shown, using a hierarchical closed-loop system, that the attitude error vector

eR̂ exponentially converges to the error bound for almost all initial conditions (except for

those initial conditions in the two-dimensional subset of SO(3)). �

148



4.3 Design of Desired Attitude Trajectory

In this section, we discuss techniques for computing a reference fuel-optimal trajectory and

resultant disturbance torque used for the proposed attitude tracking control law in Sec-

tion 4.2. We also outline a framework for minimizing the resultant disturbance torque for

the tracking control law.

4.3.1 Design of Fuel-Optimal Desired Attitude Trajectory

In this section, we design the desired (reference) attitude trajectory qd(t) so that the system

reaches the desired attitude orientation qfinal in a fuel-optimal fashion. The original nonlinear

optimal control problem is given by:

min
qd(t),ωd(t),ud(t)

∫ tfinal

0

‖ud(t)‖1dt , (4.44)

subject to ĴBCMtot ω̇d(t)−
(
ĴBCMtot ωd(t)

)
× ωd(t)− B̂ud(t) = 0 , (4.45)

q̇d(t) = Z(qd(t))ωd(t), qd(0) = qinit , qd(tfinal) = qfinal , (4.46)

‖ud(t)‖∞ ≤ umax , ‖ωd(t)‖2 ≤ εtrans , ωd(0) = ωinit , ωd(tfinal) = 0

(4.47)

where ωd(t) and ud(t) are the fuel-optimal angular velocity and thruster input trajectories.

Since all the thrusters generate thrust independently (and there is no gimballing of thrusters),

we use the `1 vector norm in the L1 cost function in Eq. (4.61) [198]. In [111, 199, 200, 201,

202], a number of optimization strategies are discussed for solving this problem.

We show later that a relatively negligible amount of fuel is needed for driving the attitude

of the system to the desired value after the angular velocity of the system is satisfactorily

stabilized (see Fig. 4.4(e) in Section 4.4). Therefore, we first find the fuel-optimal angular

velocity trajectory ωd(t) that reduces the system’s attitude rate to a sufficiently small value

and then design a full attitude trajectory qd(t). The desired fuel-optimal angular velocity
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trajectory ωd(t) is obtained by solving the following reduced optimal control problem:

min
ωd(t),ud(t)

∫ tfinal

0

‖ud(t)‖1dt , subject to Eqs. (4.45) and (4.47) (4.48)

Since the reduced optimal control problem of ωd(t) in Eq. (4.48) has fewer optimization

constraints than the full optimal control problem of finding both qd(t) and ωd(t) in Eq. (4.44),

the solution of the reduced problem in Eq. (4.48) consumes less fuel than the full problem

in Eq. (4.44). Once ωd(t) is computed from Eq. (4.48), qd(t) is then obtained using the

following equations:

q̇d(t) = Z(qd(t))ωd(t) , q̈d(t) = Ż(qd(t))ωd(t) + Z(qd(t))ω̇d(t) . (4.49)

Note that the desired attitude trajectory qd(t) obtained using Eq. (4.49) only stabilizes the

angular velocity of the system.

Once the angular velocity of the system is sufficiently close to zero, the desired angular

velocity trajectory ωd(t) is augmented with a position error term so that the system’s attitude

converges to the desired attitude:

ω̃d(t) = ωd(t)− kqdZ(qd(t))
−1(qd(t)− qfinal) , (4.50)

where kqd > 0. The desired attitude trajectory qd(t) is then obtained from the augmented

angular velocity ω̃d(t) using the following equations:

q̇d(t) = Z(qd(t))ω̃d(t) = Z(qd(t))ωd(t)− kqd(qd(t)− qfinal) , (4.51)

q̈d(t) =
d

dt
[Z(qd(t))ω̃d(t)] = Ż(qd(t))ωd(t) + Z(qd(t))ω̇d(t)− kqdq̇d(t) . (4.52)

These equations are initialized and periodically reset using the current attitude and angular

velocity measurements.
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4.3.2 Desired Attitude Trajectory using Derivative plus

Proportional-Derivative Control

In this section, we first state the derivative plus proportional-derivative (D+PD) control

strategy and then design another desired attitude trajectory qd(t) based on the D+PD

control strategy.

In the D+PD control strategy, we first use the derivative (rate damping) linear control

law for despinning the tumbling system. Once the angular velocity (spin rate) of the system

is sufficiently close to zero, the D+PD control strategy switches to a linear PD control law

to stabilize the attitude of the system in the desired orientation.

Theorem 4.4. [113, 190, 192] (i) For the positive-definite symmetric matrix Kd ∈ R3×3,

the derivative (rate damping) control law is given by:

uc = −Kdω̂ , (4.53)

In the absence of disturbances or uncertainties, this control law guarantees global exponential

convergence of the system’s angular velocity to 0 rad sec−1. In the presence of resultant

disturbance torque, this control law guarantees the system’s angular velocity trajectory will

globally exponentially converge to a bounded error ball around 0 rad sec−1.

(ii) For the positive-definite symmetric matrix Kd ∈ R3×3 and the constant kp > 0, the

proportional-derivative control law is given by:

uc = −kpβerror,v −Kdω̂ , (4.54)

where the error quaternion (βerror,v,βerror,4) ∈ R3 × R represents the orientation error of

FB with respect to the desired target attitude βfinal. This control law only guarantees global

asymptotic convergence of the system’s trajectory to the desired trajectory qd(t) in the absence
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of disturbances or uncertainties. Hence, the error in the system’s trajectory may not be

bounded for a certain class of disturbances [194].

Proof: Although the proof techniques of this theorem are well-known, we present a short

proof that will be used in the subsequent sections for analysis of robustness in light of

Lemma C.2. The closed-loop dynamics from Eq. (4.53) and Eq. (4.4), are given by:

JBCMtot
˙̂ω − S

(
JBCMtot ω̂

)
ω̂ +Kdω̂ = dres . (4.55)

Let us use the Lyapunov function Vd = ω̂TJBCMtot ω̂. In the presence of disturbance dres

bounded by supt ‖dres‖2 ≤ dres,max, differentiating Vd with respect to time and applying the

comparison lemma [194] gives:

‖ω̂(t)‖2 ≤

√
λmax(JBCMtot )

λmin(JBCMtot )
e
− λmin(Kd)

λmax(J
BCM
tot )

t

‖ω̂(0)‖2+
λmax(JBCMtot )

λmin(JBCMtot )

dres,max

λmin(Kd)

(
1− e

− λmin(Kd)

λmax(J
BCM
tot )

t
)
.

(4.56)

Thus, in the absence of dres, the system’s angular velocity converges exponentially fast

to 0 rad sec−1, regardless of initial conditions, with the convergence rate of λmin(Kd)

λmax(J
BCM
tot )

.

Moreover, the solution of the perturbed system exponentially converges to the error ball

‖ω̂(t)‖2 ≤ λmax(J
BCM
tot )

λmin(J
BCM
tot )

dres,max

λmin(Kd)
(see Lemma C.2).

Let us now prove claim (ii). The closed-loop system (without dres) can be written as:[106]

JBCMtot
˙̂ω − S

(
JBCMtot ω̂

)
ω̂ + kpβerror,v +Kdω̂ = 0 . (4.57)

Let the Lyapunov function be Vpd = ω̂TJBCMtot ω̂ + 2kpβ
T
error,vβerror,v + 2kp(1− βerror,4)2. Dif-

ferentiating Vpd with respect to time gives V̇pd = −ω̂T (KT
d + Kd)ω̂. Since V̇pd is neg-

ative semi-definite, application of LaSalle’s invariant set theorem [117, 194] proves that

limt→∞ ω̂ = 0 rad sec−1 and that limt→∞ βerror,v = 0 with limt→∞ βerror,4 = ±1, Note that

the error quaternions βerror,4 = ±1 represent the same attitude orientation. �
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The closed-loop dynamics from Eq. (4.53) and Eq. (4.54), are given by:

JBCMtot
˙̂ω − S

(
JBCMtot ω̂

)
ω̂ +Kdω̂ = dres , (4.58)

JBCMtot
˙̂ω − S

(
JBCMtot ω̂

)
ω̂ + kpβerror,v +Kdω̂ = dres . (4.59)

It is seen in Section 4.1.2 that the D+PD control strategy experiences a smaller resultant

disturbance torque even in the presence of large ∆JBCMtot . But the D+PD control strategy

does not guarantee global exponential stability (in the absence of disturbances), which is a

sufficient condition for satisfying the control problem statement. Hence, we now present the

design of a resultant disturbance minimizing desired attitude trajectory for the nonlinear

attitude tracking control law Eq. (4.13).

The desired trajectory is basically broken into two phases. In the first phase, similar to

the D+PD control strategy, the desired attitude trajectory is such that ωr = 0 in Eq. (4.13)

if the magnitude of the system’s angular velocity is large. This ensures that the robust

nonlinear tracking control law Eq. (4.13) effectively reduces to the linear derivative control

law Eq. (4.53) with the same global exponential tracking stability and resultant disturbance

torque.

In the second phase, once the angular velocity of the system is sufficiently close to zero, we

use the following desired attitude trajectory for the nonlinear tracking control law Eq. (4.13):

qd(t) = qfinal , q̇d(t) = 0 , ∴ ωr = Z−1(q̂)Λr(qfinal − q̂). (4.60)

Note that this ensures that the system’s attitude globally exponentially converges to the

desired final attitude and the system is robust to disturbances. Since the actual angular

velocity of the system is small, the resultant disturbance torque is also small even in the

presence of large modeling error in ∆JBCMtot .

The following proposition provides a framework for choosing the desired attitude trajec-
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tory so that the resultant disturbance torque dres,2 is as small as dres.

Proposition 4.5. Compared to dres, the extra terms in dres,2 (i.e., ∆JBCMtot ω̇r and ∆JBCMtot ω̂×

ωr) depend on ωr, which in turn depends on the desired attitude trajectory. Therefore, the

desired attitude trajectory is chosen as follows: (i) If the modeling error in ∆JBCMtot is small

(i.e., ‖∆JBCMtot ‖2 ≤ 104 kg m2), then select the fuel-optimal desired attitude trajectory from

Section 4.3.1. (ii) Otherwise, select the desired attitude trajectory based on the D+PD con-

trol strategy given in Section 4.3.2.

This will ensure that ‖dres,2‖2 ≈ ‖dres‖2, consequently minimizing the resultant disturbance

torque for the robust nonlinear tracking control law Eq. (4.13).

Proof: Let the worst case angular velocity of the system be bounded by 0.5 rpm (≈ 5×10−2

rad sec−1) as shown in Table 4.5. If the fuel-optimal desired trajectory is used, then ‖ωr‖2 ≈

‖ω̂‖2. If the modeling error is small (i.e., ‖∆JBCMtot ‖2 ≤ 104 kg m2), then ‖∆JBCMtot ω̂×ωr‖2 ≤

25 Nm. Neglecting ω̇r, which is significantly smaller than ωr or ω̂, we see that ‖dres,2‖2 ≈

‖dres‖2.

If the D+PD control strategy based desired attitude trajectory is used, then ωr = 0

when ω̂ is large, therefore ‖∆JBCMtot ω̂ × ωr‖2 = 0 Nm and ‖∆JBCMtot ω̇r‖2 = 0 Nm. If

ω̂ is sufficiently close to 0 (i.e., ‖ω̂‖2 ≤ 5 × 10−4 rad sec−1 as shown in Table 4.7 and

‖ωr‖2 ≈ ‖ω̂‖2), and even if the modeling error is very large (i.e., ‖∆JBCMtot ‖2 ≤ 107 kg m2),

we still get ‖∆JBCMtot ω̂×ωr‖2 ≤ 2.5 Nm. Neglecting ω̇r again, we see that ‖dres,2‖2 ≈ ‖dres‖2.

�

4.4 Simulation Results

In this section, we apply our proposed control law to the ARM attitude control problem of

carrying a large unknown object. We first numerically compare the performance of multiple

attitude control laws in Section 4.4.1. We then present a detailed sensitivity analysis of
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various parameters used in the robust nonlinear tracking control law Eq. (4.13) and the

D+PD based desired attitude trajectory in Section 4.3.2.

4.4.1 Comparison of Control Laws for Nonlinear Attitude

Control

We use the nominal design of the conceptual ARM spacecraft given in [1] and shown

in Fig. 4.2(a). Here an opposing pair of thrusters in a pod are represented by a single

thruster capable of producing thrust between +200 N to −200 N. We use the Moore–

Penrose pseudoinverse of B̂ to allocate thrusts to the eight thrusters in the spacecraft,

i.e., û = B̂
T
(
B̂B̂

T
)−1

uc. Note that we use the right-pseudoinverse since the matrix B̂

has full row rank and the matrix inverse
(
B̂B̂

T
)−1

is well defined. We do not use the

left-pseudoinverse since the matrix
(
B̂
T
B̂
)

is usually near singular and hence its inverse

may not be defined.

The fuel consumed by the spacecraft, from time t0 to tf , is computed using the following

equation:

Fuel consumed =
1

Isp g0

∫ tf

t0

‖u‖1dt , (4.61)

where Isp is the specific impulse of the fuel (i.e., 287 sec for the spacecraft[1]) and g0 is the

nominal acceleration due to the gravity (i.e., 9.8 m sec−2). Since all the thrusters generate

thrust independently (and there is no gimballing of thrusters), we use the `1 cost function

in Eq. (4.61) [198].

The shape models of asteroids 433 Eros [6] and 25143 Itokawa [7], shown in Fig. 4.1(a,b),

are used for generating realistic models of asteroids. We assume that the 16-metric-ton

spacecraft has captured an 1200-metric-ton asteroid. The objective is to stabilize the rigid

asteroid and spacecraft combination from the given initial conditions to reach the desired

final conditions. The simulation parameters, which are the same for all simulation cases, are

given in Table 4.5.
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Table 4.5: Simulation parameters (that are same for all simulation cases)

Type of Parameter Value

Spacecraft Parameters

msc = 1.6× 104 kg,

JSCMsc = 104 ×
[

5.584 0 0
0 5.584 0
0 0 1.568

]
kg m2,

rSCM/SO = [ 0 0 3.0 ] m,

Asteroid Parameters

mobj = 1.2× 106 kg, ρobj = 1.9 g cm−3, Shape model: Eros,

JBCMobj = 107 ×
[

0.8658 0.4432 −0.0005
0.4432 3.4900 0.0002
−0.0005 0.0002 3.5579

]
kg m2,

rSO/BCM = [ −0.0495 −0.0004 3.5456 ] m,

External Disturbance
Actuator Error

‖dext‖2 ≈ 1 Nm, ∆u = 0 N,

Initial Conditions
qinitial = [ 0.05 0.04 0.03 ],
ωinitial = [ 0.01 0.02 0.03 ] rad sec−1,

Desired Final
Conditions Eqs. (4.11,4.12)

‖ω(t)‖2 ≤ 0.5 rpm, ∀t ∈ R, qfinal = [ 0 0 0 ],
‖q(t)− qfinal‖2 ≤ 10−2, ∀t > 105 sec,
‖ω(t)‖2 ≤ 10−4 rad sec−1, ∀t > 105 sec,

Table 4.6: Time-varying simulation parameters for the simulation cases

Case
Modeling Uncertainties Measurement Errors Actuator Sat.

‖∆JBCM

obj ‖2 (kg m2) ‖∆rSO/BCM ‖2 (m) P(∆ω) (rad2 sec−2) P(∆q) umax (N)

1. 0 0 0 0 200
2. 105 10−2 0 0 200
3. 106 10−1 0 0 200
4. 107 1 0 0 1000
5. 0 0 10−12 10−8 200
6. 0 0 10−10 10−6 200
7. 107 1 10−10 10−6 200
8. 106 1 10−10 10−6 200
9. 107 10−1 10−10 10−6 200
10. 107 1 10−12 10−6 200
11. 107 1 10−10 10−8 200

In Table 4.6, we state the eleven simulation cases considered in this study. These sim-

ulation cases are based on varying levels of: (i) modeling uncertainties in the estimated

inertia tensor of the asteroid (∆JBCMobj ), (ii) modeling uncertainties in the vector from the

spacecraft’s body to the center of mass of the system (∆rSO/BCM ), (iii) measurement errors

in the system’s angular velocity (∆ω), (iv) measurement errors in the system’s attitude rep-

resented using MRP (∆q), and (v) actuator saturations (umax). Each simulation is executed

for 105 sec (≈ 28 hours). The additive measurement errors (∆ω, ∆q) are simulated using

band-limited white noise where P(·) specifies the height of the power spectral density of the
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white noise, which is the same for each axis. Note that in Case 4, the maximum thrust

magnitude of each thruster (umax) is increased to 1000 N to avoid actuator saturation.

Table 4.7: Control law parameters and desired attitude trajectory parameters

Type of Parameter Value

Robust NTCL
Eq. (4.13)

Kr = 104I, Λr = 10−3I,

Adaptive RNTCL
Eq. (4.38)

Kr = 104I, Λr = 10−3I, Γr = 1012I

D+PD Control Strategy
Eqs. (4.53,4.54)

Kd = 104I, kp = 10, Switch from derivative
to proportional-derivative when ‖ω̂(t)‖2 ≤ 5× 10−4 rad sec−1.

Fuel-optimal desired
attitude trajectory
(Section 4.3.1)

Desired angular velocity ωd(t) is obtained by solving Eq. (4.48) using
the GPOPS-II numerical solver[203]
Desired trajectory qd(t) obtained using Eq. (4.49),
When ‖ω̂(t)‖2 ≤ 5× 10−4 rad sec−1, switch to
angular velocity ω̃d(t) in Eq. (4.50) with kqd = 10−4,
Desired trajectory qd(t) obtained using Eqs. (4.51,4.52).

D+PD control strategy
based desired attitude
trajectory (Section 4.3.2)

Start with ωr = 0,
When ‖ω̂(t)‖2 ≤ 5× 10−4 rad sec−1, switch to desired trajectory

qd(t) = qfinal in Eq. (4.60), therefore ωr = Z−1(q̂)Λr(qfinal − q̂).

In this section, we compare the performance of the following attitude control laws: (i)

Robust nonlinear tracking control law (Robust NTCL) Eq. (4.13), (ii) Adaptive version of

the robust nonlinear tracking control law (Adaptive RNTCL) Eq. (4.38), and (iii) Derivative

plus proportional-derivative (D+PD) control Eqs. (4.53,4.54). For the tracking control laws,

both the fuel-optimal desired attitude trajectory (Section 4.3.1) and D+PD control based

desired attitude trajectory (Section 4.3.2) are considered. The control law parameters and

the parameters for these two desired attitude trajectories are given in Table 4.7.

The performance of these control laws for the eleven simulation cases given in Table 4.6

are shown in Table 4.8 and Fig. 4.3. Some of the notations used in Table 4.8 and Fig. 4.3 are

as follows: (i) The angular velocity convergence time tω,conv denotes the least time instant

after which the system’s angular velocity ω(t) is always below the given threshold of 10−4 rad

sec−1, i.e., ‖ω(t)‖2 ≤ 10−4 rad sec−1, ∀t > tω,conv. (ii) The attitude convergence time tq,conv

denotes the least time instant after which the error in the system’s attitude ‖q(t)− qfinal‖2

is always below the given threshold of 10−2, i.e., ‖q(t) − qfinal‖2 ≤ 10−2, ∀t > tq,conv. Note

that after time tq,conv, the attitude control law can be switched off because the asteroid and
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Table 4.8: Performance of control laws for the simulation cases, where the fuel-optimal and
D+PD based desired attitude trajectories are used

Fuel-optimal trajectory D+PD based trajectory

Case
Convergence
Time and

Fuel Consumed

Robust
NTCL

Eq. (4.13)

Adaptive
RNTCL

Eq. (4.38)

Robust
NTCL

Eq. (4.13)

Adaptive
RNTCL

Eq. (4.38)

D+PD
Control

Eqs.(4.53,4.54)

tω,conv (sec) 5.23× 104 5.32× 104 2.34× 104 2.34× 104 3.08× 104

1. Fuel at tω,conv (kg) 82.5 106.4 135.2 135.1 120.2

tq,conv(sec) 8.57× 104 8.56× 104 3.01× 104 2.93× 104 4.31× 104

Fuel at tq,conv (kg) 82.9 106.9 135.5 135.3 121.4

tω,conv (sec) 5.23× 104 5.32× 104 2.35× 104 2.35× 104 3.16× 104

2. Fuel at tω,conv (kg) 82.7 113.0 134.3 134.1 120.6

tq,conv(sec) 8.57× 104 8.57× 104 3.03× 104 2.95× 104 4.31× 104

Fuel at tq,conv (kg) 83.1 113.4 134.5 134.3 121.7

tω,conv (sec) 2.30× 104 2.37× 104 2.38× 104 2.38× 104 3.41× 104

3. Fuel at tω,conv (kg) 138.9 130.2 127.9 127.8 121.0

tq,conv(sec) 5.56× 104 5.59× 104 3.07× 104 2.97× 104 4.84× 104

Fuel at tq,conv (kg) 139.4 130.8 128.2 128.1 121.6

tω,conv (sec) 2.86× 104 3.06× 104 2.07× 104 2.07× 104 2.80× 104

4. Fuel at tω,conv (kg) 1220.1 814.7 115.1 115.2 116.1

tq,conv(sec) 6.04× 104 6.14× 104 2.61× 104 2.52× 104 4.16× 104

Fuel at tq,conv (kg) 1220.3 814.9 115.6 115.6 117.5

tω,conv (sec) 5.32× 104 5.31× 104 2.34× 104 2.34× 104 3.08× 104

5. Fuel at tω,conv (kg) 83.2 86.0 135.3 135.1 120.2

tq,conv(sec) 8.60× 104 8.51× 104 3.01× 104 2.93× 104 4.31× 104

Fuel at tq,conv (kg) 83.6 86.4 135.5 135.3 121.5

tω,conv (sec) 5.32× 104 5.31× 104 2.34× 104 2.34× 104 3.08× 104

6. Fuel at tω,conv (kg) 83.1 87.5 135.2 135.0 120.2

tq,conv(sec) 8.56× 104 8.48× 104 3.01× 104 2.93× 104 4.32× 104

Fuel at tq,conv (kg) 83.7 88.9 135.5 135.3 121.5

tω,conv (sec) NC‡‡ NC‡‡ 2.05× 104 2.05× 104 2.76× 104

7. Fuel at tω,conv (kg) 114.6 114.6 115.9

tq,conv(sec) NC‡‡ NC‡‡ 2.59× 104 2.52× 104 4.11× 104

Fuel at tq,conv (kg) 115.1 115.1 117.3

tω,conv (sec) NC‡‡ NC‡‡ 2.08× 104 2.08× 104 2.80× 104

8. Fuel at tω,conv (kg) 115.5 115.5 116.6

tq,conv(sec) NC‡‡ NC‡‡ 2.81× 104 2.74× 104 4.19× 104

Fuel at tq,conv (kg) 116.1 116.1 118.1

tω,conv (sec) NC‡‡ NC‡‡ 2.36× 104 2.36× 104 3.35× 104

9. Fuel at tω,conv (kg) 129.5 129.4 121.4

tq,conv(sec) NC‡‡ NC‡‡ 2.77× 104 2.67× 104 4.70× 104

Fuel at tq,conv (kg) 129.8 130.0 122.1

tω,conv (sec) NC‡‡ NC‡‡ 2.05× 104 2.05× 104 2.76× 104

10. Fuel at tω,conv (kg) 114.6 114.7 115.9

tq,conv(sec) NC‡‡ NC‡‡ 2.59× 104 2.52× 104 4.11× 104

Fuel at tq,conv (kg) 115.1 115.2 117.3

tω,conv (sec) NC‡‡ NC‡‡ 2.05× 104 2.05× 104 2.76× 104

11. Fuel at tω,conv (kg) 114.6 114.6 115.9

tq,conv(sec) NC‡‡ NC‡‡ 2.59× 104 2.52× 104 4.11× 104

Fuel at tq,conv (kg) 115.1 115.1 117.3

spacecraft combination has been three-axis stabilized in the final desired orientation. The

fuel consumed up to time tω,conv and tq,conv are also shown in Table 4.8. (iii) The symbol

NC or “Not Converged” refers to the case when the control law is not able to stabilize the

system due to actuator saturation.

In the absence of measurement errors and modeling uncertainties (Case 1), Fig. 4.4(a,b,c)

shows a result of the nonlinear tracking control law (Robust NTCL) tracking the fuel-

optimum reference trajectory. Note that Fig. 4.4(c) also shows the fuel consumption level

for the case where the fuel-optimal ωd(t) trajectory is not augmented (i.e., kqd = 0) and
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Figure 4.3: Visualization of the results in Table 4.8 for (a) tω,conv, (b) fuel at tω,conv, (c)
tq,conv, and (d) fuel at tq,conv.

consequently only the angular velocity of the system converges. We can infer from this

plot that a relatively negligible amount of fuel (≈ 3 kg) is used for stabilizing the attitude

of the asteroid and spacecraft combination using the augmented angular velocity ω̃d(t) in

Eq. (4.50).

We conclude from Cases 1 and 2 that in the absence of measurement errors and under

smaller modeling uncertainties, which can be achieved using online system identification

techniques, the method of Robust NTCL tracking the fuel optimal trajectory is the best

strategy because it guarantees exponential convergence to the desired trajectory, thereby

consuming the least fuel. One caveat of using this control law is that the reduced nonlinear

optimal control problem in Eq. (4.48) should be solved in real time for the given initial

angular velocity ωinitial and the estimated inertia tensor of the combined system ĴBCMtot .

Cases 3 and 4 in Fig. 4.3 show that the nonlinear tracking control laws, which track the
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Figure 4.4: Simulation results of the Robust NTCL for Case 1 and Case 7 in Table 4.8 are
shown. The plots show the trajectories of the angular velocity ω(t), the attitude repre-
sented using MRP q(t), and the fuel consumed with respect to time. The angular velocity
convergence time tω,conv, the attitude convergence time tq,conv, and the corresponding fuel
consumption are also shown.
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fuel-optimal desired attitude trajectory, consume more fuel than the same nonlinear tracking

control laws that track the D+PD control strategy based desired attitude trajectory, because

of the large resultant disturbance torque discussed in Section 4.1.2. Note that the angular

velocity convergence times (tω,conv) of the nonlinear control laws for Cases 1–4 are different

because different values of ĴBCMtot are used in the nonlinear optimal control problem (4.48)

to obtain the fuel-optimal desired attitude trajectories (ωd(t), qd(t)) given in Section 4.3.1.

In Cases 5–11, a simple filtering algorithm is used to remove the additive noise from the

measured states. In this filtering algorithm, the states (ω, q) are first predicted using the

nonlinear dynamics and kinematics equations and state values from the previous time instant.

Then the errors between the measured states and the predicted states are filtered using a

low-pass filter (first-order filter with transfer function
ωcutoff

s+ ωcutoff

, where ωcutoff = 0.02π rad

sec−1) to remove the high frequency components arising from the noise. Finally, the filtered

errors are added to the predicted states to retrieve the estimated states (ω̂, q̂).

Cases 5 and 6 show that the Robust NTCL consumes less fuel while tracking the fuel-

optimal trajectory compared to the D+PD control strategy based trajectory in the presence

of small measurement errors. In contrast, Case 7 shows that this Robust NTCL cannot

stabilize the system in the presence of both large modeling errors and measurement errors,

because of actuator saturation caused by the large resultant disturbance torque discussed in

Section 4.1.2.

If we use the resultant disturbance torque minimizing, D+PD control strategy based

desired attitude trajectory, then the Robust NTCL can stabilize the system in the presence

of both large measurement errors and large modeling errors. Moreover, the fuel consumed

and the time of convergence do not change much with uncertainties and errors, as seen

in Cases 1–7 in Fig. 4.3. Moreover, Case 7 shows the worst case measurement errors for

the desired convergence bounds because if the measurement errors (noise levels) increase

above these values, then the instantaneous magnitude of the measurement errors become

comparable to the desired convergence bounds in Table 4.5 and the spacecraft expends fuel
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continuously to counter these errors. Therefore these uncertainty and error limits determine

the required technical capabilities of the sensors and actuators on board the spacecraft.

The simulation results (trajectories) of the Robust NTCL for Case 7 are shown in

Fig. 4.4(d,e,f). Note that the net fuel consumed (≈ 120 kg) after 105 sec is comfortably

within the fuel capacity of the spacecraft (i.e., 900 kg [1]). Figure 4.4(f) also shows the fuel

consumption for the case where only the derivative (rate damping) control law Eq. (4.53) is

used for the entire time and consequently only the angular velocity of the system converges.

We can infer from this plot that a comparatively negligible amount of fuel (≈ 5 kg) is used by

the proportional term in Eq. (4.60) for stabilizing the attitude of the asteroid and spacecraft

combination.

Case 7 also gives the worst case modeling errors because ‖∆JBCMobj ‖2 ≈ ‖JBCMobj ‖2 and

‖∆rSO/BCM‖2 ≈ ‖rSO/BCM‖2. In Cases 8–11, we study the effect of each of these uncertainties

by individually reducing them from their worst case bounds. Note that the control laws

tracking the fuel-optimal desired trajectory are unable to stabilize the system because of

actuator saturation. The Robust NTCL, which tracks the D+PD based reference trajectory,

gives satisfactory performance for these cases too.

4.4.2 Sensitivity Analysis of the Robust Nonlinear Tracking

Control Law

We now present detailed sensitivity analysis of the Robust NTCL and the D+PD control

strategy based desired attitude trajectory, by varying the asteroid parameters, the initial

conditions, and the control law parameters. The parameters that are not explicitly specified

are taken from Tables 4.5 and 4.7 and from Case 7 in Table 4.6. Figure 4.5 shows results of

numerical simulations over a wide range of asteroid parameters. We observe that the Robust

NTCL performs relatively well and the fuel consumed by the spacecraft is upper bounded

by 300 kg for the nominal range of asteroid parameters.
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Figure 4.5: Numerical simulations show the performance of the Robust NTCL over a wide
range of asteroid parameters for the shape models of Eros and Itokawa respectively. The plots
show the variation of the convergence time of the angular velocity (tω,conv), the convergence
time of the attitude (tq,conv), and the fuel consumed up to time tq,conv with respect to the
mass and density of the model asteroid. The inset white trapezium shows the nominal range
of NEO asteroid parameters, i.e., the asteroid’s mass is within 2.5-13×105 kg, the asteroid’s
density is within 1.9-3.8 g cm−3, and the asteroid’s diameter is less than 15 m.
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Figure 4.6: Sensitivity plots show the effect of the damping gainKr = krI on the convergence
time of the angular velocity (tω,conv), the convergence time of the attitude (tq,conv), and the
fuel consumed up to time tq,conv for the two shape models of Eros and Itokawa respectively.

Previously, we inferred from Fig. 4.4(f) that the damping term −Kr(ω̂ − ωr) in the

Robust NTCL Eq. (4.13) dictates the fuel consumption and that the effect of the proportional

term in Eq. (4.60) is negligible. The effect of this damping gain, which is given by Kr = krI,
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on the fuel consumption and the convergence time is shown in Fig. 4.6. Even though kr is

varied from 0.5-2.5× 104, its effect on the fuel consumed to stabilize the system is minimal

as shown in Fig. 4.6(a,d). On the other hand, increasing kr reduces the convergence time of

the angular velocity as shown in Fig. 4.6(b,e) and the convergence time of the attitude as

shown in Fig. 4.6(c,f). If kr is chosen to be less than 0.5 × 104, then the angular velocity

convergence time increases beyond 105 sec, which is not desirable. If kr is chosen to be

greater than 2.5 × 104, then the system converges quickly but the control action becomes

very sensitive to angular velocity measurement errors. Hence the damping gain of kr ≈ 104

is ideal for this mission.

The effect of the tuning parameter, which is given by Λr = λrI, on the fuel consumption

and the convergence time is shown in Fig. 4.7. As expected, its effect is minimal because the

tuning parameter is only used after the angular velocity of the system is sufficiently close to

zero in the D+PD based reference trajectory. Therefore, we recommend using any tuning

parameter within the range of 0.5-2.5× 10−3.

It is shown in Fig. 4.5(a,d) that the asteroid with mass mobj = 1.1× 106 kg and density

ρobj = 1.9 g cm−3 consumes the maximum fuel among all asteroids in the nominal range.

The effect of the initial angular velocity ωinitial on the fuel consumption and convergence

time for this nominal asteroid is shown in Fig. 4.8. We observe that the fuel consumed by

the spacecraft-asteroid combination is upper bounded by 300 kg for all initial conditions, as

shown in Fig. 4.8(a,d). Hence we conclude that the fuel consumed by the spacecraft-asteroid

combination using the Robust NTCL Eq. (4.13), which tracks the D+PD control strategy

based desired attitude trajectory (Section 4.3.2), is upper bounded by 300 kg for the nominal

range of asteroid parameters (i.e., the asteroid’s mass is within 2.5-13×105 kg, the asteroid’s

density is within 1.9-3.8 g cm−3, and the asteroid’s diameter is less than 15 m). Note that

the convergence times of the angular velocities and the attitudes are satisfactory for all initial

conditions. Moreover, the effect of the initial attitude qinitial on the fuel consumption and

convergence time is negligible.
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Figure 4.7: Sensitivity plots show the effect of the tuning parameter Λr = λrI on the con-
vergence time of the angular velocity (tω,conv), the convergence time of the attitude (tq,conv),
and the fuel consumed up to time tq,conv for the two shape models of Eros and Itokawa
respectively.
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Figure 4.8: Sensitivity plots show the effect of the initial angular velocity ωinitial on the con-
vergence time of the angular velocity (tω,conv), the convergence time of the attitude (tq,conv),
and the fuel consumed up to time tq,conv for the two shape models of Eros and Itokawa
respectively, where the asteroid’s mass is mobj = 1.1 × 106 kg and the asteroid’s density is
ρobj = 1.9 g cm−3. All initial angular velocities are on the sphere with radius of 0.5 rpm.
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4.5 Chapter Summary

In this chapter, we presented the development of a new robust nonlinear tracking control law

and its extensions. We numerically compared the performance of multiple control laws for

the ARM mission type and recognized the best control strategies under varying uncertainties.

We envisage that the design guidelines presented in this chapter can be useful for a future

asteroid capture or redirect mission.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this dissertation, we presented novel algorithms for shape formation, distributed estima-

tion, and attitude control of multi-agent systems.

In Chapter 2, we presented path planning algorithms for large-scale swarms by using the

Eulerian framework. Our highly scalable, robust, and versatile PSG–IMC algorithm ensures

that a swarm converges to the desired formation or the unknown target distribution. In

our PSG–IMC algorithm, time-inhomogeneous Markov matrices with a desired stationary

distribution are systematically constructed using the Hellinger-distance-based feedback gain,

which incorporates feedback from the current swarm distribution. These Markov matrices

satisfy suitable motion constraints, minimize the expected cost of transitions, and circum-

vent transitions from bins that are deficient in the number of agents. We also presented a

rigorous convergence analysis of the PSG–IMC algorithm. To our knowledge, this PSG–IMC

algorithm we have developed is the first path planning strategy that leverages the idea of

constructing IMC in real-time based on state feedback.

We have carried out numerical simulations which show that the PSG–IMC algorithm

achieves ≈ 6−16 times reduction in total cost of transitions and ≈ 1.5−2 times reduction in

HD, as compared to existing HMC-based algorithms for shape formation and area exploration

applications. This is because the PSG–IMC algorithm avoids undesirable transitions, and

the number of transitions at each time instant is proportional to the HD. In the presence

of estimation errors, our PSG–IMC algorithm also outperforms the PSG–OT algorithm,
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because the pmf of the predicted position of each agent converges to the desired formation

regardless of estimation errors. We have also demonstrated hardware experiments using

multiple quadrotors, where our Voronoi partition-based collision-free trajectory generation

algorithm is used to track the higher-level trajectory generated by the PSG–IMC algorithm.

The reconfiguration of spacecraft swarms in Earth orbit shows that these algorithms are also

suitable for application to spacecraft swarms.

In Chapter 3, we presented two novel, discrete-time distributed estimation algorithms,

namely the DBF algorithm and the BCF algorithm. The DBF algorithm ensures that each

agent’s estimated likelihood function converges to an error ball around the joint likelihood

function of the centralized multi-sensor Bayesian filtering algorithm. We have rigorously

proven the convergence properties of this algorithm. We have shown an explicit connection

between the time step of the distributed estimation algorithm and the time-scale of the target

dynamics. We also presented the DBF-Kalman information filtering algorithm for the special

case of linear-Gaussian models. The properties of these algorithms are illustrated using

numerical examples. We envisage that the novel proof techniques presented in Chapter 3

can also be used in other distributed estimation algorithms which rely on the LogOP scheme.

In Chapter 4, we presented a new robust nonlinear tracking control law for attitude

control of a spacecraft with large uncertainty, which guarantees both global exponential

convergence to the desired attitude trajectory and bounded tracking errors (in the sense

of finite-gain Lp stability and ISS) in the presence of uncertainties and disturbances. The

benefits of this new attitude tracking control law include superior robustness due to no feed-

forward cancellation and straightforward extensions to integral control and various attitude

representations such as MRPs and SO(3). We presented a comparison of the resultant

disturbance torques produced by various types of attitude control laws and concluded that

the proposed control law could produce a small resultant disturbance torque if the desired

trajectory was designed appropriately. We also discussed techniques for obtaining fuel-

optimal or resultant disturbance torque minimizing desired attitude trajectories for these
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nonlinear tracking control laws.

We then numerically compared the performance of multiple control laws, such as the

proposed robust nonlinear tracking control law, nonlinear adaptive control, and the D+PD

linear control strategy, for a spacecraft-asteroid combination with large modelling uncer-

tainty. We illustrated that in the presence of small measurement errors and small modeling

uncertainties, which could be achieved using online system identification, the robust nonlin-

ear tracking control law that tracked a fuel-optimal reference trajectory was the best strategy

because it consumed the least amount of fuel. We also showed that a comparatively negligi-

ble amount of fuel was needed for driving the attitude of the combined system to the desired

orientation after the angular velocity of the system was stabilized. One caveat of using both

optimal control and nonlinear tracking control is that the spacecraft should have sufficient

computational power for online system identification and real time fuel-optimal trajectory

generation.

On the other hand, in the presence of large modeling uncertainties, measurement errors,

and actuator saturations, or in the absence of sufficient computational power on board the

spacecraft, the simple linear D+PD control strategy resulted in good performance. This

performance was further enhanced with properties of superior robustness and tracking con-

vergence if the robust nonlinear tracking control law was used to globally exponentially

track a desired attitude trajectory that was generated using the D+PD linear control strat-

egy. We envisage that the design guidelines presented in this chapter can be useful for a

future asteroid capture or redirect mission.

5.2 Future Work

The algorithms introduced in this dissertation can also be used for other applications. Po-

tential avenues for future research are as follows:

• The PSG–IMC and PSG–OT algorithms presented in Chapter 2 can be adapted to
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solve other cooperative control tasks, such as surveillance, task allocation, and cov-

erage, since such problems can also be cast as shape formation or area exploration

problems. Future research could also focus on tightly integrating a lower-level guid-

ance and control algorithm with these algorithms. We envisage that the proposed

algorithms will facilitate the development of autonomous swarm robotic systems that

are capable of performing a variety of complex tasks, by providing a versatile, robust,

and scalable path planning strategy.

• In this dissertation, we have independently pursued the development of motion plan-

ning and distributed estimation algorithms. The errors introduced by the distributed

estimation algorithm for estimating the current swarm distribution affects the motion

planning algorithms. Similarly the shape of the formation affects the error in the

estimated current swarm distribution through the communication network topology.

But the effect of these errors and methods for minimizing the cumulative error have

not been investigated. Future research could focus on the development of a holistic

algorithm that incorporates distributed estimation, guidance, navigation, and control

algorithms for multi-agent systems.

• The distributed estimation algorithms in Chapter 3 can only track a single target.

Future research could focus on extending them to multi-target tracking by solving

the data-association problem using the extra information contained in the probability

distributions.

• The nonlinear attitude control law in Chapter 4 assumes that the combined spacecraft

and captured object form a rigid body. In practical scenarios, there is slippage be-

tween the two bodies and multiple bending and torsional modes are introduced due

to structural flexibility. Future research could focus on augmenting this control law so

that it performs under such practical constraints.
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Appendix A

Background Results on Products of
Stochastic Matrices

In this section, we first state some definitions and results used in the proofs of Theorems 2.6

and 2.7.

Definition A.1. [135, pp. 92, 149] (Asymptotic Homogeneity) A sequence of stochastic

matrices P k, k ≥ 1 is said to be asymptotically homogeneous (with respect to d) if there

exists a probability (row) vector d such that limk→∞ dP k = d. 2

Definition A.2. [135, pp. 92, 149] (Strong Ergodicity) The forward matrix product UT,r :=

P TP T+1 · · ·P r−1, formed from a sequence of stochastic matrices P k, k ≥ 1, is said to be

strongly ergodic if for each i, `, T , we get limr→∞UT,r[i, `] = v[`], where v is a probability

vector and the element v[`] is independent of i. Therefore, v is the unique limit vector and

limr→∞UT,r = 1v. 2

Theorem A.1. [135, pp. 150] If (i) the forward matrix product UT,r is primitive and (ii)

there exists γ (independent of k) such that:

0 < γ ≤ min
i, `

+P k[i, `] , (A.1)

where min + refers to the minimum of the positive elements, then asymptotic homogeneity

of P k is necessary and sufficient for strong ergodicity of UT,r.

Theorem A.2. [135, pp. 149] If (i) all P k, k ≥ 1 are irreducible and (ii) there exists γ

(independent of k) such that (A.1) is satisfied, then asymptotic homogeneity of P k (with

respect to d) is equivalent to limk→∞ ek → e, where ek is the unique stationary distribution

vector corresponding to P k, and e is a limit vector. Moreover, d = e.
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Corollary A.3. [135, pp. 150] Under the prior conditions (i) and (ii) of Theorem A.2 and

if (iii) UT,r is strongly ergodic with unique limit vector v, then v = e.

Lemma A.4. The matrix U j
k,k+nrec−1 is a positive matrix.

Proof: Proof by Contradiction. Let us assume that there exists i, ` ∈ {1, . . . , nrec} and i 6= `

such that U j
k,k+nrec−1[i, `] = 0.

Step 1. In order to satisfy the assumption U j
k,k+nrec−1[i, `] = 0, we need P j

q,sub[i, `] = 0

for all q ∈ {k, . . . , k + nrec − 2}. This immediately follows from:

U j
k,k+nrec−1[i, `] ≥P j

k,sub[i, `]
(k+nrec−2∏

s=k+1

P j
s,sub[`, `]

)
+
(k+nrec−3∏

s=k

P j
s,sub[i, i]

)
P j
k+nrec−2,sub[i, `]

+
k+nrec−3∑
q=k+1

((q−1∏
s=k

P j
s,sub[i, i]

)
P j
q,sub[i, `]

(k+nrec−2∏
s=q+1

P j
s,sub[`, `]

))
. (A.2)

since all the diagonal elements of all matrices P j
k,sub, . . . ,P

j
k+nrec−2,sub are positive. Therefore,

P j
q,sub[i, `] = 0 for all q ∈ {k, . . . , k+nrec−2} is a necessary condition for U j

k,k+nrec−1[i, `] = 0.

Moreover, U j
k,t[i, `] = 0 for all t ∈ {k + 1, . . . , k + nrec − 1} is a necessary condition for

U j
k,k+nrec−1[i, `] = 0. Otherwise, if U j

k,t′ [i, `] > 0 for some t′ ∈ {k + 1, . . . , k + nrec − 2}, then

it follows that:

U j
k,k+nrec−1[i, `] ≥ U j

k,t′ [i, `]
(k+nrec−2∏

s=t′

P j
s,sub[`, `]

)
> 0 . (A.3)

Hence, it is not possible to reach from bin B[i] to bin B[`] within any of the nrec − 1 time

instants under the assumption U j
k,k+nrec−1[i, `] = 0.

Step 2. Since the matrix P j
k+nrec−2,sub is irreducible, there is at least one bin B[s1] such

that

P j
k+nrec−2,sub[s1, `] > 0, where s1 ∈ {1, . . . , nrec}\{i, `}.

Under the assumption U j
k,k+nrec−1[i, `] = 0, we need U j

k,k+nrec−2[i, s1] = 0. Otherwise,

if U j
k,k+nrec−2[i, s1] > 0, then U j

k,k+nrec−1[i, `] ≥ U j
k,k+nrec−2[i, s1]P j

k+nrec−2,sub[s1, `] > 0. It

follows from the previous step that U j
k,t[i, s1] = 0 for all t ∈ {k + 1, . . . , k + nrec − 2} is a
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necessary condition for U j
k,k+nrec−2[i, s1] = 0.

Hence, it is not possible to reach from bin B[i] to bin B[`] or bin B[s1] within any of the

nrec − 2 time instants under the assumption U j
k,k+nrec−1[i, `] = 0.

Step 3. Since the matrix P j
k+nrec−3,sub is irreducible, there is at least one bin B[s2] such

that either P j
k+nrec−3,sub[s2, `] > 0 or P j

k+nrec−3,sub[s2, s1] > 0, where s2 ∈ {1, . . . , nrec}\{i, `, s1}.

Under the assumption U j
k,k+nrec−1[i, `] = 0 and condition U j

k,k+nrec−2[i, s1] = 0, we need

U j
k,k+nrec−3[i, s2] = 0. It follows from the previous step that U j

k,t[i, s2] = 0 for all t ∈

{k + 1, . . . , k + nrec − 3} is a necessary condition for U j
k,k+nrec−3[i, s2] = 0.

Hence, it is not possible to reach from bin B[i] to bin B[`] or bin B[s1] or bin B[s2] within

any of the nrec − 3 time instants under the assumption U j
k,k+nrec−1[i, `] = 0.

Step 4. If we continue the above argument till the first time instant, we get that under

assumption U j
k,k+nrec−1[i, `] = 0, it is not possible to reach from bin B[i] to any other bin

during the first time instant. But this is a contradiction since the matrix P j
k,sub is irreducible.

Therefore our assumption U j
k,k+nrec−1[i, `] = 0 is incorrect. �
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Appendix B

Effect of Weight on the Likelihood
Function

The effect on the update step of the information filter due to the weight α on the likelihood

function is shown here. We start with the update step for linear-Gaussian model:

W i
k(x) = p(xk|k) ∝

exp

(
−α

2
(yik −H i

kxk)
T (Ri

k)
−1(yik −H i

kxk)−
1

2
(xk − x̂ik|k−1)T (P i

k|k−1)−1(xk − x̂ik|k−1)

)
(B.1)

The MAP estimate of the state is defined by:

∂ log p(xk|k)

∂xk

∣∣∣∣
xk=x̂MAP

k

= 0 . (B.2)

We get from (B.1) that:

∂ log p(xk|k)

∂xk
= α(yik −H i

kxk)
T (Ri

k)
−1H i

k − (xk − x̂ik|k−1)T (P i
k|k−1)−1 .

Substituting into (B.2), we get:

(xk)
T
(
(H i

k)
Tα(Ri

k)
−1H i

k + (P i
k|k−1)−1

)
= (yik)

Tα(Ri
k)
−1H i

k + (x̂ik|k−1)T (P i
k|k−1)−1 ,

xk =
(
(H i

k)
Tα(Ri

k)
−1H i

k + (P i
k|k−1)−1

)−1 (
(H i

k)
Tα(Ri

k)
−1yik + (P i

k|k−1)−1x̂ik|k−1

)
.
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It follows from the matrix inverse lemma1 that:

xk = x̂ik|k−1 + P i
k|k−1(H i

k)
T
(
α−1Ri

k +H i
kP

i
k|k−1(H i

k)
T
)−1 (

yik −H i
kx̂

i
k|k−1

)
.

Therefore, we get:

Ki
k = P i

k|k−1

(
H i

k

)T (
H i

kP
i
k|k−1

(
H i

k

)T
+ α−1Ri

k

)−1

,

x̂ik|k = x̂ik|k−1 +Ki
k

(
yik −H i

kx̂
i
k|k−1

)
,

P i
k|k =

(
I−Ki

kH
i
k

)
P i
k|k−1 .

We get the following new update rules for Kalman information filter:

ẑik|k = ẑik|k−1 + αiik = (P i
k|k−1)−1x̂ik|k−1 + α(H i

k)
T (Ri

k)
−1yik , (B.3)

Zi
k|k = Zi

k|k−1 + αI ik = (P i
k|k−1)−1 + α(H i

k)
T (Ri

k)
−1Hj

k . (B.4)

1The inverse of the matrix A = B−1 +CD−1CT , is given by the matrix A−1 = B−BC(D+CTBC)−1CTB.
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Appendix C

Contraction Theory

In this chapter, we use contraction theory to prove the stability of control laws. In this

section, we present some results on contraction theory from [204, 12]. Readers are referred

to these references for detailed descriptions and proofs for the following theorems.

Lemma C.1. [204] (Contraction Analysis) We consider a smooth nonlinear non-autonomous

system

ẋ(t) = f(x(t), t), x(t) ∈ Rn . (C.1)

A virtual displacement δx is defined as an infinitesimal displacement at fixed time, and

Θ(x, t) is a smooth coordinate transformation of the virtual displacement such that δz =

Θδx. Then if there exists a positive λ and a uniformly positive definite metric, M (x, t) =

Θ(x, t)TΘ(x, t), such that

d

dt

(
δzT δz

)
=

d

dt

(
δxTM (x, t)δx

)
= δxT

(
Ṁ +

(
∂f

∂x

)T
M +M

∂f

∂x

)
δx ≤ −2λδxTM (x, t)δx ,

(C.2)

then all system trajectories converge exponentially fast to a single trajectory regardless of

the initial conditions (δz, δx → 0) at a rate of λ (i.e., contracting), and λ is the largest

eigenvalue of the symmetric part of (Θ̇ + Θ∂f
∂x

)Θ−1.
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We define the Lp norm in the extended space Lpe, p ∈ [1,∞] as follows [12]:

‖(u)τ‖Lp =

(∫ τ

0

‖u(t)‖p2 dt
)1/p

<∞, p ∈ [1,∞) , ‖(u)τ‖L∞ = sup
t≥0
‖(u(t))τ‖2 <∞ ,

(C.3)

where (u)τ is a truncation of u(t), i.e., (u(t))τ = 0 for t ≥ τ , τ ∈ [0,∞) while (u(t))τ = u(t)

for 0 ≤ t ≤ τ .

Lemma C.2. [12] (Robust Contraction and Link to Lp Stability and ISS) Let P1(t) be a

solution of the contracting system (C.1), globally exponentially tending to a single trajectory

at a contraction rate of λ. Eq. (C.1) is now perturbed as:

ẋ(t) = f(x(t), t) + d(x(t), t) , (C.4)

and P2(t) denotes the trajectory of Eq. (C.4). Then the smallest path integral (i.e., distance)

R(t) =
∫ P2

P1
‖δz(t)‖2 =

∫ P2

P1
‖Θ(x, t)δx(t)‖2,∀t ≥ 0 exponentially converges to the following

error ball[204]

lim
t→∞

R(t) ≤ sup
x,t

‖Θ(x, t)d(x(t), t)‖2

λ
, (C.5)

with Θd ∈ L∞. Furthermore, if d(x(t), t) ∈ Lpe, then Eq. (C.4) is finite-gain Lp stable with

p ∈ [1,∞] for an output function y = h(x,d, t) with
∫ Y2

Y1
‖δy‖2 ≤ η1

∫ P2

P1
‖δx‖2 + η2‖d‖2,

∃η1, η2 ≥ 0, since

∥∥∥∥(∫ Y2

Y1

‖δy‖2

)
τ

∥∥∥∥
Lp

≤ η1ζR(0)√
λmin(M )

+
(η1

λ
+ η2

) ‖(Θd)τ‖Lp√
λmin(M )

, ∀τ ∈ [0,∞) , (C.6)

where Y1(t) and Y2(t) denote the output trajectories of the original contracting system and

its perturbed system respectively and ζ = 1 if p = ∞ or ζ = 1/(λp)1/p if p ∈ [1,∞). The

perturbed system (C.4) is also input-to-state stable (ISS).
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