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Abstract

This dissertation is centered on a theoretical, simulation, and experimental study of

control strategies which are inspired by biological systems. Biological systems, along

with sufficiently complicated engineered systems, often have many interacting degrees

of freedom and need to excite large-displacement oscillations in order to locomote.

Combining these factors can make high-level control design difficult. This thesis

revolves around three different levels of abstraction, providing tools for analysis and

design.

First, we consider central pattern generators (CPGs) to control flapping-flight

dynamics. The key idea here is dimensional reduction - we want to convert compli-

cated interactions of many degrees of freedom into a handful of parameters which

have intuitive connections to the overall system behavior, leaving the control de-

signer unconcerned with the details of particular motions. A rigorous mathematical

and control theoretic framework to design complex three-dimensional wing motions

is presented based on phase synchronization of nonlinear oscillators. In particular, we

show that flapping-flying dynamics without a tail or traditional aerodynamic control

surfaces can be effectively controlled by a reduced set of central pattern generator

parameters that generate phase-synchronized or symmetry-breaking oscillatory mo-

tions of two main wings. Furthermore, by using a Hopf bifurcation, we show that

tailless aircraft (inspired by bats) alternating between flapping and gliding can be

effectively stabilized by smooth wing motions driven by the central pattern genera-

tor network. Results of numerical simulation with a full six-degree-of-freedom flight

dynamic model validate the effectiveness of the proposed neurobiologically inspired

control approach.
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Further, we present experimental micro aerial vehicle (MAV) research with low-

frequency flapping and articulated wing gliding. The importance of phase difference

control via an abstract mathematical model of central pattern generators is confirmed

with a robotic bat on a 3-DOF pendulum platform. An aerodynamic model for the

robotic bat based on the complex wing kinematics is presented. Closed loop exper-

iments show that control dimension reduction is achievable - unstable longitudinal

modes are stabilized and controlled using only two control parameters. A transition

of flight modes, from flapping to gliding and vice-versa, is demonstrated within the

CPG control scheme.

The second major thrust is inspired by this idea that mode switching is useful.

Many bats and birds adopt a mixed strategy of flapping and gliding to provide agility

when necessary and to increase overall efficiency. This work explores dwell time

constraints on switched systems with multiple, possibly disparate invariant limit sets.

We show that, under suitable conditions, trajectories globally converge to a superset of

the limit sets and then remain in a second, larger superset. We show the effectiveness

of the dwell-time conditions by using examples of nonlinear switching limit cycles

from our work on flapping flight.

This level of abstraction has been found to be useful in many ways, but it also

produces its own challenges. For example, we discuss death of oscillation which can

occur for many limit-cycle controllers and the difficulty in incorporating fast, high-

displacement reflex feedback. This leads us to our third major thrust - considering

biologically realistic neuron circuits instead of a limit cycle abstraction. Biological

neuron circuits are incredibly diverse in practice, giving us a convincing rationale that

they can aid us in our quest for flexibility. Nevertheless, that flexibility provides its

own challenges. It is not currently known how most biological neuron circuits work,

and little work exists that connects the principles of a neuron circuit to the principles
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of control theory.

We begin the process of trying to bridge this gap by considering the simplest of

classical controllers, PD control. We propose a simple two-neuron, two-synapse circuit

based on the concept that synapses provide attenuation and a delay. We present a

simulation-based method of analysis, including a smoothing algorithm, a steady-state

response curve, and a system identification procedure for capturing differentiation.

There will never be One True Control Method that will solve all problems. Na-

ture’s solution to a diversity of systems and situations is equally diverse. This will

inspire many strategies and require a multitude of analysis tools. This thesis is my

contribution of a few.
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Chapter 1

Introduction

Engineered flapping flight holds promise for creating biomimetic micro aerial vehicles

(MAVs) flying in low Reynolds number regimes (Re< 105) where rigid fixed wings

drop substantially in aerodynamic performance. MAVs are typically classified as

having maximum dimensions of 15 cm and flying at a nominal speed of 1–20 m/s

in tight urban environments [1, 2]. Although natural flyers such as bats, birds, and

insects have captured the imaginations of scientists and engineers for centuries, the

maneuvering characteristics of unmanned aerial vehicles (UAVs) are nowhere near

the agility and efficiency of animal flight [3–5]. Such highly maneuverable MAVs will

make paradigm-shifting advances in monitoring of critical infrastructure such as power

grids, bridges, and borders, as well as in intelligence, surveillance, and reconnaissance

applications.

The central theme of this dissertation is to investigate the control and synchroniza-

tion of coupled nonlinear oscillators, inspired by central pattern generators (CPGs)

found in animal spinal cords, along with the complimentary peripheral nervous sys-

tem, to control biomimetic flapping flight (see Figure 1.1). An engineered CPG

network, which ensures the stability and robust adaptation of motion, can signifi-
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Figure 1.1: An overview of the three key components in this dissertation.

cantly reduce the complexity associated with flapping flight. Unique to this research

approach is the potential to reverse-engineer the key mechanisms of highly adaptive

and robust rhythmic pattern modulations of flapping flight by integrating the neu-

robiological principles with the rigorous mathematical tools borrowed from nonlinear

synchronization theory and flight dynamics and controls.

Previous robotic flapping flyers and their control design consider one or two de-

grees of freedom in the wings [6–18]. However, even insects like the dragonfly (Anax

parthenope) are reported to have complex three-dimensional movements by actively

controlling flapping and twisting of four independent wings [3].
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Furthermore, prior studies in flapping flight [1–3,5,17–27] assumed a very simple

sinusoidal function for each joint to generate flapping oscillations, without deliber-

ating on how multiple limbs (or their nervous systems) are connected and actuated

to follow such a time-varying reference trajectory. However, as shall be seen later

in this work, the use of sinusoidal functions to generate the oscillatory motions of

the wings does not permit stable and agile flapping flying maneuvers especially with

time-varying oscillation frequency (ω(t)) and amplitude. Experimental results us-

ing high speed cameras have shown that the flapping motions in bats and birds are

more complicated than perfect sinusoidal [3, 28] with a fixed amplitude. In order

to bridge this gap, this work aims to establish a novel adaptive CPG-based control

theory for flapping flight through neuromechanical modeling, nonlinear control and

synchronization, numerical simulation, and experimentation.

In addition to pure flapping, birds switch between gliding and flapping - gliding

when energy is plentiful and required maneuvering is minimal; flapping to gain en-

ergy or perform aggressive corrections in course. Our selection of Hopf oscillators to

represent neuronal oscillators in Section 2.2 has a single bifurcation parameter which

we use for rapid inhibition of oscillation (i.e., changing from a flapping mode to a

gliding mode). This is a switching parameter.

Analyzing such switched systems has been a topic of high interest for a few

decades [29]. One extremely common assumption among most of the work in the

field is that each subsystem has a unique, stable equilibrium and that this equilib-

rium is common among all subsystems. This assumption was first challenged in a

work by Alpcan and Başar, considering the possibility of having subsystems with

equilibria not in common [30]. We further this thrust by incorporating the possibility

of limit cycles or multiple equilibria in each individual subsystem.

The main tool that we preserve from the bulk of the switched systems literature
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is the dwell time. This is a constraint on how quickly the system can switch between

modes. We provide a computation of dwell time for systems potentially containing a

complicated set of equilibrium and non-equilibrium steady-states. In particular, we

show that trajectories globally converge to a superset of the limit sets and then remain

in a second, larger superset. We show the effectiveness of the dwell-time conditions

by using examples of switching limit cycles from our work on flapping flight.

Next, we apply this theory in simulation and experimentation. We provide a

full dynamic model, give 6-DOF simulation results, and detail a 8-DOF RoboBat

supported by a compound pendulum which tests open loop and closed loop perfor-

mance of phase difference control using coupled abstracted neuronal oscillators. This

confirms the idea that dimensional reduction can be performed, allowing the control

designer to use a small number of parameters which are intuitively connected to the

vehicle dynamics while ignoring the complicated details of the wing motion. We sta-

bilize the bat in conditions that are passively unstable, and we exert control in order

to change the general location of the non-equilibrium steady-state.

Finally, in response to challenges we will find with the abstracted neuronal oscilla-

tors, we turn our attention to developing a simple control scheme for a spike/bursting

neural network which can be implemented in analog hardware. Small vehicles (in

particular, MAVs) have minimal size, weight, and power budgets. Analog hardware

has promise to deliver efficient control systems for these vehicles [31,32], but encoding

complex behavior patterns without traditional digital computing paradigms remains

a challenge. Biological neuronal systems may solve this problem using a hybrid dig-

ital/analog strategy, but a full conceptual framework is yet unknown. Our goal is

to develop the basics of a control theoretic framework which retains sufficiently rich

behavior to someday reproduce the complexity and efficiency of biological control

systems. Rather than being a purely scientific endeavor, we have made choices which
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also make hardware implementation feasible in the near or medium term.

We use a neuron model from Izhikevich [33] and a synapse model from Rabi-

novich [34]. Using the intuition that synapses cause attenuation and delay, we design

a simple circuit intended to behave like a PD-controller. It consists of only two

neurons, which are mutually excitatory. They are conceived of as being antagonis-

tic motoneurons, common in biological systems involving antagonistic muscles, but

are not immediately recognizable for engineered systems. Making assumptions on

input/output signals allows us to make this connection.

Then, we provide a method of analysis for such neuron controllers. We hypothesize

that differentiation is being performed instantaneousness in analog, and so present

a delay-free smoothing algorithm that makes system identification more accurate.

We compute steady-state behavior and use numerical system identification tools to

analyze the derivative component. Finally, we test these tools by comparing the

output of a simple pendulum system when driven by the neuron circuit and the

identified model PD controller.

Additional literature review will be presented in the chapter introductions.

1.1 Organization

The organization and flow of this dissertation is shown in Figure 1.2. In Chapter 2, we

prove phase synchronization characteristics for networks of coupled Hopf oscillators.

In addition to the benefits of this scheme, we describe some challenges which drive

the remainder of the dissertation. In Chapter 3, we present the general framework of

switched systems. Further, we prove stability characteristics in terms of dwell time,

entry sets, and no-escape sets for a class of switched systems with suitable Lyapunov

functions. In Chapter 4, we validate the switching CPG scheme in both simulation
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CH2 (2.1-2.6): Phase Synchronization
of Coupled Limit Cycles for
Central Pattern Generators

CH2 (2.7): Fast Inhibition of
Oscillation by Hopf Bifurcation

CH3: Switched Systems with
Multiple Invariant Sets

CH2 (2.8): Perspectives on
Sensory Feedback

CH 5: Neuromorphic Control
with Spiking/Bursting Neurons

CH4: Experimental
Validation

Figure 1.2: This diagram shows the organization and flow of the dissertation.

and experimentation. In Chapter 5, we explore a simple PD-like network built from

realistic spiking neurons and their associated synapses.
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Chapter 2

Networks of Coupled Oscillators

2.1 Fundamentals of Limit Cycle Control Inspired

by Neuroscience

Hooper [35] defines the central pattern generators of animals as neural networks that

can endogenously (i.e., without rhythmic sensory or central brain input) produce

coordinated patterns of rhythmic outputs. The self-sustained nature of CPGs is be-

lieved to reduce the computation burden of the brain. As illustrated in Fig. 2.1, the

central controller, similar to the brain of an animal, is expected to stabilize the vehicle

dynamics by commanding a reduced number of variables such as the frequency and

phase difference of the oscillators instead of directly controlling multiple joints. The

existence of CPGs has been confirmed by biologists [35–43]. Experiments with limbed

vertebrates have shown that individual limbs can produce rhythmic movements en-

dogenously [35,44]. Such empirical data have been interpreted as evidence that each

limb has its own CPGs that can behave in a self-sustained way. However, sensory

feedback is also known to play a crucial role in altering motor patterns [35,45] to cope
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Figure 2.1: Hierarchical control structures with the main controller and the CPG

network. The outer-loop flight control modulates the rhythmic patterns (frequency,

amplitude, phase lag, coupling gains) of the CPG network, without the need for

directly controlling a multitude of joints.

with environmental perturbations. Incorporation of simple sensory feedback into the

CPG model has been presented in [46] for a turtle robot.

The most popular animal model for CPGs has been the lamprey, a primitive eel-

like fish [47]. While the robotics community eagerly embraced the concept of CPG

models for swimming or walking robots [46, 48–50], this work reports the first CPG-

based control for flapping flight. The use of nonlinear oscillators for insect flapping

flight has also been suggested by some biologists [24, 27].

While unsteady aerodynamics of flapping flight in low Reynolds number regimes
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has been extensively studied through numerical [2, 11, 20, 25, 26, 51, 52] and experi-

mental studies [1, 9, 12, 19, 21, 28], one of the most interesting and least understood

aspects of bio-inspired flapping flight is how to precisely control and synchronize a

large number of interacting limbs and joints that generate complex three-dimensional

oscillatory movements of the wings governed by unsteady aerodynamic forces. In

this work, we focus on three stereotyped motion primitives to define the three di-

mensional movements of wings: main flapping (stroke) motion (Fig. 2.2a), lead-lag

motion (Fig. 2.2b), and wing pitch twisting (Fig. 2.2c). Studying how to produce

such synchronized wing motions is expected to shed light on the key characteristics

of animal flapping flyers.

2.2 Robust and Adaptive Flapping Pattern Gen-

eration by CPGs

Our neurobiologically inspired approach begins by deriving an effective mathematical

model of CPGs based on coupled nonlinear limit cycle dynamics. Once neurons form

reciprocally inhibiting relations, they oscillate and spike periodically. An abstract

mathematical model of complicated neuron models can be obtained by coupled non-

linear limit cycles that essentially exhibit the rhythmic behaviors of coupled neuronal

networks. In the field of nonlinear dynamics, a limit cycle is defined as an isolated

closed trajectory that exhibits self-sustained oscillation [53,54]. If stable, small pertur-

bations (initial conditions) will be forgotten and the trajectories will converge to the

limit cycle. This superior robustness makes a limit cycle an ideal simplified dynamic

model of CPGs.

In the present work, we use the following limit-cycle model called the Hopf oscil-
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(a) flapping (φw) (b) lead-lag (ψw)

(c) pitch (θw) and cambering

Figure 2.2: Basic wing movements of bats (pictures from [21]). Except for cambering,

birds exhibit similar wing movements. Twisting (pitching) changes the effective angle

of attack while cambering changes the aerodynamic efficiency. The fingers and hind

legs control the tension of the flexible membrane wings, which distinguish bats from

birds [5].

lator, named after the supercritical Hopf bifurcation model with σ = 1:

d

dt

u− a
v

 =

−λ
(

(u−a)2+v2

ρ2
− σ

)
−ω(t)

ω(t) −λ
(

(u−a)2+v2

ρ2
− σ

)

u− a

v

+ u(t)

Equivalently, ẋ = f(x; ρ;σ) + u(t), with x = (u− a, v)T

(2.1)

where the λ > 0 denotes the convergence rate to the symmetric limit circle of the

radius ρ > 0 and u(t) is an external or coupling input. For a single Hopf oscillator

with u(t) = 0, a Lyapunov function V =
(

(u−a)2+v2

ρ2
− 1
)2

can be used to prove global
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asymptotic stability to the circular limit cycle. Also, the bifurcation parameter σ can

change 1 to −1 such that
(

(u−a)2+v2

ρ2
+ 1
)

. This would change the stable limit cycle

dynamics to the dynamics with a globally stable equilibrium point at the bias ”a” (see

[53]). Such a change can be used to turn the flapping oscillatory motion to the gliding

mode, as shall be seen in Section 4.2. We assume σ = 1 unless noted otherwise. For

coupled Hopf oscillators, the stability proof is much more involved and discussed in

Section 2.3.

Also, the possibly time-varying parameter ω(t) > 0 determines the oscillation

frequency of the limit cycle. A time-varying a(t) sets the bias to the limit cycle such

that it converges to u(t) = ρ cos (ωt+ δ) + a and v(t) = ρ sin (ωt+ δ) on a circle.

This bias “a” does not change the results of the stability proof. The output variable

to generate the desired oscillatory motion of each joint is the first state u from the

Hopf oscillator model in Eq. (2.1).

The Hopf oscillator has been a popular dynamic model of the engineered CPG

arrays (e.g., see the salamander robot [49,55] and the turtle robot [46]). The stability

of coupled Hopf oscillators has been extensively investigated in [46, 56]. One nice

property of the Hopf oscillator in Eq. (2.1) is that its limit cycle is a symmetric circle

as opposed to Van der Pol [36] or Rayleigh oscillators [53]:

f(R(∆)x; ρ;σ) = R(∆)f(x; ρ;σ) R(∆) =

cos ∆ − sin ∆

sin ∆ cos ∆

 (2.2)

where R(∆) ∈ SO(2) is a 2D rotational transformation such that R(−∆) = R−1(∆) =

RT (∆). Also, its scaling factor can be expressed as

f(gx; ρ;σ) = gf(x; ρ/g;σ). (2.3)
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As shall been seen later, this property is exploited in the stability proof of phase

synchronization.

2.2.1 Key Advantage of CPG-based Control: Reduced Di-

mensionality and Bandwidth Requirement

The CPGs in animal spinal cords are known to relieve the computation burden of

locomotion in the brain [35, 47]. Similarly, one significant advantage of CPG-based

control over conventional control approaches is that CPG-based control reduces the

dimensionality and bandwidth of signals required from the main controller to its

actuators. As shown in Figure 2.1, the main outer-loop flight controller needs to

command only the reduced number of CPG parameters (e.g., frequency, phase lag,

and coupling gains) and much less frequently, instead of directly commanding time-

specific reference signals for all the degrees of freedom in the wings and the body.

Combining feedback control with model-based reinforcement learning [57] is par-

ticularly attractive for control of agile aerospace vehicles, due to the superior robust-

ness and adaptability. Unfortunately, online learning control is subject to the curse

of dimensionality, exacerbated by a multitude of joints in the wings. In contrast,

the learning-based controller using CPGs needs to adapt only the reduced dimen-

sional CPG parameters. Such a model reduction approach for flight control has not

been exploited in the literature. The reduced dimensionality of the CPG-based ap-

proach (i.e., controlling the reduced CPG parameters instead of all relevant degrees

of freedom) makes learning-based adaptive flight control more practical.
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2.2.2 Key Advantage of Hopf-based Control: Adaptive Pat-

tern Modulation

Birds and bats modulate the CPG parameters (frequency, phase difference, and am-

plitude) for the flapping, twisting, lead-lag, cambering, and flexing of the wings during

their flight, as a function of flight speed [3,58,59] and flight modes (e.g., turning, cruis-

ing, hovering, preying, and perching). High-speed film analyses [3,58] reveal that the

flapping angle and frequency are largest at zero forward speed or in hovering flight,

and decrease with increasing flight speed V (e.g., ∝ V −0.277 for some bats [58]). Such

time-varying CPG parameters, shown in Figure 2.1, will change the shape, size, and

flexing of the wings, which constitute the morphological flight parameters [5]. Prior

studies in flapping flight, although true in steady flight, assume that there is a constant

or very narrow range of optimal frequency or amplitude [1,2,6,9,16,18,20,25,26,52].

Agile vehicles with multiple flight modes may require a large envelope or discontinuous

parameter changes. Typical sinusoidal signals can be modulated well for continuous

and discontinuous changes in frequency, but discontinuous changes in amplitude or

bias would require a low-pass filter, for which tuning may be burdensome. The Hopf

oscillator guarantees continuous transitions for any time-varying input of these pa-

rameters, without any tuning. This same behavior extends to the ability to handle

any initial conditions and the ability to reject disturbances.

2.2.3 Key Advantage of Hopf-based Control: Symmetric and

Symmetry-Breaking Oscillation

Bats exhibit complex wing flapping motions generated by their multijointed and com-

pliant wings, resulting in a closed orbit quite different from a symmetric circle or

ellipse of a sinusoidal function. One aim of the neurobiological approach to engi-
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neered flapping flight is to produce the analytical model of a wing beat oscillator that

matches empirical data [21,28,58,60]. While the benefits of nonlinear limit cycles for

CPG models are articulated above, deriving an effective CPG model for engineered

flapping flight has been largely an open problem (e.g., limit cycle dynamics, network

topology, and how to integrate input and feedback signals). The key research issues

include how to ensure the amplitude or phase synchronization of multiple coupled

CPG oscillators and how to opportunistically break the symmetry of the oscillators

for performing maneuvering of agile flapping flight. Unique to this Hopf formula-

tion, as opposed to modulated sine, is the ability to set and control phase differences.

Observations of birds have found these phase differences to be key in performing ma-

neuvers [61], and we will later see that they can be useful for vehicle stability. First,

we present how to construct stable coupled oscillators in the next section.

2.3 Almost Global Exponential Synchronization of

CPG Oscillators

Synchronization means an exact match of the scaled amplitude or the frequency in

this work. Hence, phase synchronization permits different actuators to oscillate at

the same frequency but with a prescribed phase lag. However, a sinusoidal function

is not adequate to create the complex coupling and synchronization between various

joints and limbs. Hence, the use of coupled nonlinear oscillators in this work provides

a feasible solution to construct complex synchronized motions of multiple wing joints.

In essence, each CPG dynamic model in Eq. (2.1) is responsible for generating the

limiting oscillatory behavior of a corresponding joint, and the diffusive coupling among

CPGs reinforces phase synchronization. For example, the flapping angle has roughly
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a 90-degree phase difference with the pitching joint to maintain the positive angle of

attack (see the actual data from birds in [3]). The oscillators are connected through

diffusive couplings, and the i-th Hopf oscillator can be rewritten with a diffusive

coupling with the phase-rotated neighbor.

ẋi = f(xi; ρi)− k
mi∑
j∈Ni

(
xi −

ρi
ρj

R(∆ij)xj

)
(2.4)

where the Hopf oscillator dynamics f(xi; ρi) with σ = 1 is defined in Eq. (2.1), Ni
denotes the set that contains only the local neighbors of the i-th Hopf oscillator,

and mi is the number of the neighbors. The 2×2 matrix R(∆ij) is a 2-D rotational

transformation of the phase difference ∆ij between the i-th and j-th oscillators. The

positive (or negative) ∆ij indicates how much phase the i-th member leads (or lags)

from the j-th member and ∆ij = −∆ji. The positive scalar k denotes the coupling

gain.

We construct as many degrees of freedom as needed to more accurately model

the joints of the wings, but let us focus on the key three flapping motions defined in

Fig. 2.2, namely flapping angle φw, wing pitch (twisting) angle θw, and wing lead-lag

angle ψw. Additionally, we assume that there is a second flapping joint φw2 in the

wing that can reduce the drag in the upstroke by folding the wings toward the body.
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(c) Symmetric Configuration B

Figure 2.3: Graph configurations of the coupled Hopf oscillators on balanced graphs.

Many other configurations are permitted in this paper and the unidirectional cou-

plings can be replaced by the bi-directional couplings. The numbers next to the

arrows indicate the phase shift ∆ij from the i-th member to the j-th member while

Figure b shows the nominal values of the phase shift from the symmetric wing config-

uration such that ∆21 = ∆65=90 deg. and ∆31 = ∆75 = −90 deg. Such phase shifts

define flight modes (wing movement gaits). Figure c shows an alternative configura-

tion with additional coupling between the left and right wings.
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Then, we can construct the whole state vector of the coupled oscillator such as

{x} =



x1

x2

x3

x4

x5

x6

x7

x8



=



(u1 − a1, v1)T

(u2 − a2, v2)T

(u3 − a3, v3)T

(u4 − a4, v4)T

(u5 − a5, v5)T

(u6 − a6, v6)T

(u7 − a7, v7)T

(u8 − a8, v8)T



=



(φwR − a1, v1)T

(θwR − a2, v2)T

(ψwR − a3, v3)T

(φw2R − a4, v4)T

(φwL − a5, v5)T

(θwL − a6, v6)T

(ψwL − a7, v7)T

(φw2L − a8, v8)T



(2.5)

Note that xi here represents the shifted Hopf oscillator vector such that xi =

(ui−ai, vi)T as seen in Eq. (2.1), where ai(t) is the center of oscillation. For example,

if we need a 10-degree offset for the main flapping stroke angle φw, then we can set

a1 = a5 = 10 deg. so that the flapping stroke angle oscillate around 10 degrees.

For stability analysis, we need to construct fully coupled dynamics of the aug-

mented state vector {x}.

{ẋ} = [f({x}; ρ)]− kG{x} (2.6)

where [f({x}; ρ)] = [f(x1; ρ1); f(x2; ρ2); · · · ; f(xn; ρn)]. The 2n × 2n matrix G is a

Laplacian matrix with phase shifts R(∆ij) constructed from Eq. (2.4).

The coupling topology and phase shift between each oscillators are reflected in

the G matrix. Such phase shifts along with the bifurcation parameter σ can be used

to define different flight modes, similar to walking gaits. Numerous configurations

are possible as long as they are on balanced graphs [62] and we can choose either a

bidirectional or a uni-directional coupling between the oscillators. Some configura-
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tions considered in this paper are shown in Fig. 2.3. The numbers next to the arrows

indicate the phase shift ∆ij, hence ∆ij > 0 indicates how much phase the i-th member

leads. Since the graphs in Figure 2.3 are on balanced graphs, the number of input

ports equal the number of output ports. Further, all the phase shifts (∆ij) along one

cycle should add up to a modulo of 2π. Figure 2.3b shows the nominal values of the

phase shift from the symmetric wing configuration such that ∆21 = ∆65 = 90 deg. and

∆31 = ∆75 = −90 deg. The empirical data suggest that the pitching angle (θw) has

approximately a 90-degree phase lag with the flapping angle (φw), which agrees with

the aerodynamically optimal value [3,12]. For hovering flight, Dickison [12], using his

Robofly testbed and numerical simulations, found that increasing the phase difference

value ∆21 to 90 deg +δ further contributed to enhancing the lift generation, which is

explained by the wake capture and rotational circulation lift mechanism. Hence, the

ability to control ∆21 allows us to investigate the optimal value of the phase differ-

ence. In addition, the nominal value of ∆31 = −90 deg, the phase difference between

the flapping stroke angle and lead-lag angle will results an elliptical orbit of the wing.

On the other hand, by having two difference phase differences for the left and right

wings, we can investigate how symmetric-breaking wing rotations contribute the ag-

ile turning of flapping flight. Furthermore, by having an independent control of the

phase difference ∆31 and ∆75, we can investigate another symmetry-breaking impact

of the differential delay in the lead-lag motion. Such differential phases can be used

to stabilize the flapping flying dynamics.

The G matrix in Eq. (2.6) for Fig. 2.3a can be found as
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where often the radii (the amplitude of the oscillation from the bias ai) are symmetric

such that ρ1 = ρ2, ρ2 = ρ6, ρ4 = ρ7, and ρ5 = ρ8, although the difference of the

maximum amplitude of each oscillation can be used to generate side forces or turning

(rolling or yawing) moments.

The proof of phase synchronization boils down to finding the condition on k by

which the flow-invariant synchronized state [56], constructed from G{x} = 0, is

globally stable. In fact, by using contraction theory [56, 63], we can prove global

exponential synchronization of the coupled Hopf oscillators. We first introduce the

main theorem of contraction theory

Theorem 1. For the system ẋ = f(x, t), if there exists a uniformly positive definite

metric, M(x, t) = Θ(x, t)TΘ(x, t), where Θ is some smooth coordinate transfor-

mation of the virtual displacement, δz = Θδx, such that the associated generalized

Jacobian, F is uniformly negative definite, i.e., ∃` > 0 such that

F =

(
Θ̇(x, t) + Θ(x, t)

∂f

∂x

)
Θ(x, t)−1 ≤ −`I, (2.8)

then all system trajectories converge globally to a single trajectory exponentially fast

regardless of the initial conditions, with a global exponential convergence rate of the

largest eigenvalues of the symmetric part of F.

Such a system is said to be contracting.

Proof. The proof is given in [63] by computing d
dt
δzT δz = 2δzTFδz.

The synchronized flow-invariant subspace for the configuration in Fig 2.3a is de-
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fined by G{x} = 0 such that

M({x})⇐⇒x1 =
ρ1

ρ2

R(∆12)x2 =
ρ1

ρ3

R(∆13)x3 =
ρ1

ρ4

R(∆13)x4

=
ρ1

ρ5

x5 =
ρ1

ρ6

R(∆56)x6 =
ρ1

ρ7

R(∆57)x7 =
ρ1

ρ8

R(∆57)x8 (2.9)

where we used ∆ij = −∆ji.

The flow invariant subspaceM in Eq. (2.9) can be re-written with respect to the

first state vector x1 = z1 such that

M({x})⇐⇒ z1 = z2 = · · · = zn, {z} = T(∆ij, ρi){x} (2.10)

where {z} = (z1, z2, · · · , zn)T and z1 = x1, z2 = ρ1
ρ2

R(∆12)x2, z3 = ρ1
ρ3

R(∆13)x3 and

so on. For example, the T matrix for the configuration in Fig. 2.3a is given as

T(∆ij, ρi) = (2.11)

diag

(
I2,

ρ1

ρ2

R(∆12),
ρ1

ρ3

R(∆13),
ρ1

ρ4

R(∆13),
ρ1

ρ5

I2,
ρ1

ρ6

R(∆56),
ρ1

ρ7

R(∆57),
ρ1

ρ8

R(∆57)

)

Then, we present the main theorem of this section.

Theorem 2. If the following condition is met, any initial condition {x} of the coupled

Hopf oscillators in Eq. (2.4) and Eq. (2.6) on a balanced graph converges to the flow-

invariant synchronized state M exponentially fast.

kλmin
(
VT (L + LT )V/2

)
> λ (2.12)

where λ is the convergence rate of the Hopf oscillator in Eq. (2.1), λmin
(
VT (L + LT )V/2

)
denotes the minimum eigenvalue, and L is the Laplacian matrix constructed from the
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balanced graph such that G = T−1LT with T defined from Eq. (2.10). In addition,

the real orthonormal 2n × 2(n − 1) matrix V is constructed from the orthonormal

eigenvectors of (L + LT )/2 other than the ones vector 1 = (I2; I2; · · · ; I2) such that

VVT + 11T/n = I2n.

Proof. The proof can be obtained based on [56]. The proof here is simpler than [46] in

the sense that we derive the Laplacian matrix and orthonormal flow-invariant matrix

that are independent of the rotational angles. Consider the orthonormal space V,

constructed from the orthornomal eigenvectors of the symmetric part of L (see [62]).

Then, the global exponential convergence to the flow-invariant synchronized stateM

is equivalent to

VT{z} → 0, globally and exponentially (2.13)

By pre-multiplying Eq. (2.6) by T−1 and using T{x} = {z} and G = T−1LT, we

can obtain

{ż} = T [f({x}; ρ)]− kL{z} (2.14)

where the CPG network in the example in Fig. 2.3a is on a balanced graph such that

L =



2I2 0 0 −I2 −I2 0 0 0

−I2 I2 0 0 0 0 0 0

0 −I2 I2 0 0 0 0 0

0 0 −I2 I2 0 0 0 0

−I2 0 0 0 2I2 0 0 −I2

0 0 0 0 −I2 I2 0 0

0 0 0 0 0 −I2 I2 0

0 0 0 0 0 0 −I2 I2



(2.15)
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In other words, we transformed the G matrix to the conventional graph Laplacian

matrix L.

Since T [f({x}; ρ)] = T [f(T−1{z}; ρ)], we can find

T [f({x}; ρ)] =

[
ρ1

ρi
R(−∆1j)f(xi; ρi)

]
=

[
ρ1

ρi
R(−∆1j)f(

ρi
ρ1

R(∆1j)zi; ρi)

]
(2.16)

= [f(zi; ρ1)] = [f(z1; ρ1); f(z2; ρ1); · · · ; f(zn; ρ1)]

where we used f(R(∆)x) = R(∆)f(x) and f(gx; ρ) = gf(x; ρ/g) from Eq. (2.2) and

Eq. (2.3). The radius of the final augmented Hopf oscillators in Eq. (2.16) is identical

to ρ1.

By premultiplying VT and substituting {z} = VVT{z}+ 11T{z} result in

VT{ż} = VT
[
f(VVT{z}+ 11T/n{z}; ρ1)

]
− kVTLVVT{z} (2.17)

where we used L11T = 0.

We can construct the following virtual dynamics of y from the preceding equation

ẏ = VT
[
f(Vy + 11T/n{z}; ρ1)

]
− kVTLVy (2.18)

which has y = VT{z} and y = 0 has two particular solutions.

The virtual system Eq. (2.18) is contracting (globally and exponentially stable)

for VT [f ] V − kVT (L + LT )V/2 < 0 by Theorem 1. This condition is equivalent to

kλmin
(
VT (L + LT )V/2

)
> λ, since the maximum eigenvalue of λmax(V

T [f ] V) ≤ λ.

For the example in Fig. 2.3a, this condition corresponds to k > λ/0.198.

The same proof works for an arbitrary CPG network on balanced graph that has

VT (L + LT )V/2 > 0. For undirected graphs (all the connections are bi-directional),
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L automatically becomes a balanced symmetric matrix.

In conclusion, Theorem 2 can be used to find the proper coupling strength k

to exponentially and almost globally stabilize the coupled Hopf oscillators given in

Eq. (2.4). Sometimes, the condition for k in Theorem 2 might be too conservative

especially if the desired λ is large.

2.4 Boundedness of Hopf-Kuromoto Oscillator for

any k

In this section, we demonstrate that the oscillators always approach or enter a closed

n-disk, for any k. Since ρi are selectable, this disk is not the standard n-disk. Set

Di = {(xi, yi) ∈ R2|x2
i + y2

i ≤ ρi}. (2.19)

Then, the closed n-disk in question is

D =
n∏
i=1

Di. (2.20)

Consider arbitrary initial conditions. If any oscillators are outside their disk, they

have ri
ρi
> 1. Consider the oscillator with maximum ri

ρi
. Its r dynamics are

ṙi = −λri(r2
i /ρi

2 − 1)− kρi
∑
j∈Ni

(
ri
ρi
− rj
ρj

cos(θi − θj − φij)
)
. (2.21)

The first term (the self-gain) is negative if ri
ρi
> 1. The second term is negative or

zero if the oscillator has maximum ri
ρi

. Therefore, the oscillator with maximum ri
ρi

has ṙ < 0 at least until ri
ρi

= 1, i.e., the maximum oscillator approaches or enters its
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disk. Therefore, the oscillator network approaches or enters the n-disk. Since initial

conditions are arbitrary, this ( ri
ρi

)max will never increase.

2.5 Death of Oscillation

The Hopf oscillator is a 2D generalization of the Kuromoto oscillator. Synchronization

attempts in Kuromoto oscillators are thwarted by ”Splay states” [64]. While the 2D

generalization allows smooth amplitude modulation, it still succumbs to Splay states.

We will highlight a generalized version of Splay states, hereafter referred to only as

death of oscillation.

In Section 2.3, we proved that trajectories of the coupled system converge to

the flow-invariant manifold defined by G{x} = 0. The key insight is to recognize

that when this condition has been satisfied, the oscillators are uncoupled. Thus, the

final invariant set is an intersection of the set defined by G{x} = 0 and the ω-limit

set of the uncoupled systems. There are two components to this intersection: the

synchronized limit cycle and the origin. Unfortunately, while the origin is completely

unstable in the uncoupled system, it is not necessarily completely unstable in the

coupled system. In fact, in a restricted case, we can prove that if the contraction

condition is met, the origin has a stable manifold.

Proposition 3. Consider two identical n-dimensional oscillators, each with at least

one completely unstable equilibria. Couple them in the form


ẋ1 = f(x1, t) + u(x2)− u(x1)

ẋ2 = f(x2, t) + u(x1)− u(x2).

(2.22)

Following [65], assume h = f − 2u is contracting. Then, even though x1 and x2
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exponentially tend to one another, each equilibria has a stable manifold of some di-

mension.

Proof. Consider WLOG a single equilibria located at the origin. Denote ∂f
∂x

∣∣
0

= A

and ∂u
∂x

∣∣
0

= B. Consider the augmented system ẋ = F(x). Denote the symmetric

part of

∂F

∂x

∣∣∣∣
0

=

 A−B B

B A−B

 (2.23)

by

J =

 As − 2Bs 0

0 As − 2Bs

+

 Bs Bs

Bs Bs

 = H + P. (2.24)

Notice that P has rank at most n, and thus has at least n zero eigenvalues. Addi-

tionally, all the eigenvalues of H are negative by the assumption of h contracting.

According the Weyl’s theorem, at least n eigenvalues of J must be less than zero.

Therefore, the linearized augmented system at the origin cannot be positive defi-

nite.

While this is easily generalized to systems with all-to-all coupling, we are unsure

whether this impossibility theorem can be fully-generalized to other coupling schemes

such as the diffusive coupling used in the majority of this work. Nevertheless, death

of oscillation remains an important challenge to providing a complete solution to limit

cycle driven plants. Figure 2.4 shows an example of the Hopf-Kuromoto oscillator.

We see the desired CPG behavior as well as the possibility of death of oscillation.

Figure 2.5 shows an example using the Van der Pol oscillator exhibiting the same

type of possibilities.

Taken together, we have shown that any k will result in bounded solutions and

that suitably-large k will always track the desired, oscillatory trajectory or collapse
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(a) Hopf Synchronization
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(b) Hopf Death of Oscillation

Figure 2.4: Figure (a) shows the desired behavior of a network of two Hopf-Kuromoto

oscillators and Figure (b) shows the death of oscillation behavior for some initial

conditions.

27



−2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

X coordinate

Y
 c

oo
rd

in
at

e

(a) Van der Pol Synchronization
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(b) Van der Pol Death of Oscillation

Figure 2.5: Figure (a) shows the desired behavior of a network of two Van der Pol

oscillators and Figure (b) shows the death of oscillation behavior for some initial

conditions.
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to the origin. In physical systems, noise or disturbances can play a role in moving

the trajectory off the (relatively) low-dimensional stable manifold going to the origin

and onto the manifold converging to desired oscillatory trajectory.

2.6 Nonlinear Synchronization Manifold

While we can’t rule out death of oscillation, we can generalize our theory to oscillators

with a nonlinear synchronization manifold. Unlike the Hopf oscillator we’ve been

focusing on, many important oscillators do not have a linear synchronization manifold.

Examples include the Van der Pol oscillator, EL Repressilator [66], or Hopf-Kuromoto

oscillators with time- or space-varying phase differences. Computing the nonlinear

synchronization manifold for particular oscillators could be a project on its own. If

we do an analytical description of the nonlinear synchronization manifold, we can

proceed directly.

Theorem 4. Consider, in Rn, the deterministic system

ẋ = f (x, t) . (2.25)

Assume that there exists a flow-invariant manifold M (i.e. an embedded submanifold

M ⊂ Rn such that ∀t : f (M, t) ⊂ TM), which implies that any trajectory starting

in M remains in M. If this flow-invariant manifold can be described as a level set

of a map of manifolds (i.e. x ∈M⇔ g (x) = 0) and if the auxiliary system

ẏ =

(
∂g

∂x

)
f (h (y,x)) (2.26)
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is contracting with

h (g (x) ,x) = idx (2.27)

and (
∂g

∂x

)
f (h (0,x)) = 0, (2.28)

then all trajectories of system 2.25 will exponentially converge to M.

Proof. Both y = g (x) and y = 0 are particular solutions to system 2.26. If sys-

tem 2.26 is contracting with respect to y, then all its solutions converge exponentially

to a single trajectory, which implies in particular that g (x) converges exponentially

to 0.

2.7 Fast Inhibition of Oscillation by Hopf Bifurca-

tion

As stated earlier, we can rapidly inhibit the oscillatory motion of the coupled Hopf

oscillators in Eq. (2.4) by exploiting the bifurcation property of the Hopf oscillator

model. In other words, changing the σ = 1 in Eq. (2.1) to σ = −1 would rapidly

convert the limit cycle dynamics to exponentially stable dynamics converging to the

origin such that u→ a and v → 0. This single bifurcation parameter (σ) can be used

to switch the flapping flight mode to the gliding or soaring mode without dramatically

changing the CPG oscillator network. We analyze such switched systems from a high-

level perspective in Section 3. Simulation results that alternate between two different

flight modes are presented in Section4.2 and experimental results are presented in

Sections 4.4.2 and 4.4.3.

Theorem 5. For any positive gain k > 0, any initial condition {x} of the coupled
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Hopf model with σ = −1 given in Eq. (2.4) converges to the origin ({x} → 0) such

that ui → ai and vi → 0 for all i = 1, · · · , n. The oscillation frequency ω need not

change to zero.

Proof. It is straightforward to show that σ = −1 will make the uncoupled Hopf

oscillator in Eq. (2.1) exponentially stable dynamics for any (u, v) except the shifted

origin (a, 0) since the symmetric part of the Jacobian F in Eq. (2.8) is now strictly

negative definite regardless of any ω. Thus, any positive k will lead to exponentially

synchronizing dynamics that tend exponentially to the origin and this can be shown

similar to the proof of Theorem 2.

We can also turn the limit cycle dynamics to the dynamics with a stable equilib-

rium by changing the coupling gains, as described as fast inhibition in [62]. However,

the method using bifurcation is superior in the sense that we can keep the original

coupling gains and Laplacian matrices for alternating flight modes. It should be noted

that changing ω to zero would also result in no reciprocal flapping motion, however

the converged steady-state value depends on the initial conditions, whereas σ = −1

would lead to convergence to the same value (a, 0).

2.8 Perspectives on Sensory Feedback

An important area of research is incorporating sensory feedback to modulate oscilla-

tors [46,59,67]. Currently, most approaches only consider smooth, small disturbances

from the environment in the form of phase lag and amplitude reduction. Biological

sensory feedback pathways are far more complicated. Rossignol et al. [68] expressed

the complication by saying, ”The more we dig into the details of these sensorimotor

interactions, the more it seems improbable that they should work so smoothly, but

31



they do.” This type of flexibility is difficult to account for with abstracted neuronal

oscillators. For a simple example, the mammalian trip reflex during walking is large,

rapid, and highly state-dependent. One approach is to ignore the fast, yet continuous

nature of neuronal feedback pathways and instead create a set of new states in a

state machine that are activated by a discrete trip sensor [69]. Rather than focus-

ing on piecemeal solutions for particular applications, we will turn our attention to

more biologically-accurate neuron models in Chapter 5, which will come with built-in

flexibility.

2.9 Chapter Summary

We investigated the hypothesis that the phase control and synchronization of coupled

nonlinear oscillators, inspired by central pattern generators (CPGs) found in animal

spinal cords, can effectively produce and control stable flapping flight patterns and

can be used to stabilize the flapping flying vehicle dynamics. An engineered CPG

network, which ensures the stability and robust adaptation of motion, can significantly

reduce the complexity associated with engineered flapping flight.

We made general remarks for methods which analyze phase synchronization of

coupled oscillators. Not only did we provide a synchronization proof for Hopf os-

cillator networks, but we showed that through the generation of a stable manifold,

incremental stability implied by contraction theory is compatible with the possibility

of death of oscillation. In addition, we provided a non-contraction method to en-

sure boundedness in all cases as well as a contraction method for oscillating systems

without a linear synchronization manifold.

Central to the agile flight of natural flyers is the ability to execute complex syn-

chronized three-dimensional motions of the wings. In this chapter, we introduced a
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mathematical and control-theoretic framework of CPG control theory that enables

such synchronized wing maneuvers. Because of the oscillatory nature of flapping

flight, it is important to have a control law which allows for smooth changes in flapping

frequency and other oscillation parameters. We showed that the central controller,

similar to the brain of an animal, can stabilize the vehicle dynamics by commanding a

reduced number of control variables such as the frequency and phase difference of the

oscillators instead of directly controlling multiple joints. Such a CPG-based method

allows for stable and rapid changes in flapping parameters such as wing pitch and the

lead-lag angle. We will validate these results using simulation and experimentation

in Chapter 4.
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Chapter 3

Switched Systems with Multiple

Invariant Sets

Bifurcations have been of interest to dynamical systems theory for decades. However,

most control strategies view such behavior as damaging and try to mitigate it [70].

Relatively less work actively inserts bifurcations as part of a control strategy as we

proposed in Chapter 2. Another possible application is walking robots. Fig. 3.1 shows

a hypothetical switching pattern for a walking robot application utilizing central pat-

tern generation. A guidance/navigation engineer may design limit cycle subsystems

for walking and jumping modes (shown as a Hopf oscillator and a Van der Pol os-

cillator), while utilizing steady-state control strategies for static balancing or tasks

requiring fine motor control.

Mode-switching also implicates a large body of literature on switched systems [29].

Many works on stability of switched systems assumes that all subsystems have a

common equilibrium point. [71–73] consider weak Lyapunov functions in the style of

LaSalle for a common equilibrium. [74] considers equilibrium location changes, but

holds the vector field constant. They connect the result to averaging theory. [75] con-
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Subsystem 1: Steady 
Walking Mode

Subsystem 2: Fast/Slow 
Jumping/Hopping Mode

Subsystem 3: Fine Motor 
Control Mode

Figure 3.1: Schematic of mode switching with non-equilibrium limit sets.
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siders practical stability of affine systems with multiple distinct equilibria. Alpcan

and Başar investigated dwell time criteria for nonlinear globally exponentially stable

subsystems which could have differing equilibria [30]. Such systems have no single

globally attractive equilibrium point. The authors of [30] reported an explicit con-

struction of the dwell time and a conservative invariant set. This chapter is inspired

by that work and is a generalization of it. We generalize their result to switched

systems where each subsystem may have multiple invariant sets. We pursue a sim-

ilar dwell time strategy in order to provide spatial bounds for the switched system.

The resulting construction is slightly more complicated, as we consider V̇ in order to

isolate the invariant sets rather than using the Lyapunov function alone.

Systems with bifurcation often contain multiple ω-limit sets which cannot be glob-

ally exponentially stable. Instead, results such as LaSalle’s invariant set theorem [76]

allow us to analyze asymptotic stability of this larger class of systems. LaSalle’s

theorem and much of the switched systems literature are both Lyapunov-based, and

we will make use of Lyapunov functions to define all the relevant sets. The ben-

efit to relying on Lyapunov functions is that this requires no special structure on

the subsystems’ entire vector fields. The tradeoff is that we fail to exploit any spe-

cial structure the subsystems may possess and the result relies on being able to find

suitable Lyapunov functions.

Section 3.1 provides background assumptions and definitions. Section 3.2 begins

by reconsidering existing results. Sections 3.2.3 through 3.2.5 present two methods to

accomplish the goal. Choice of a particular method will depend on specific situations

and design constraints. Section 3.3 shows a numerical example.
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3.1 Preliminaries and Definitions

Consider a set of continuous-time dynamical systems defined by

ẋ = fp (x) , (3.1)

where x ∈ Rn and p ∈ P , with some index set P = {p1, p2, ..., pmax}. A piecewise

constant switching signal σ : [0,∞)→ P specifies the active subsystem at each time.

Assume, for ease of analysis, that fp are each continuous with continuous first partials.

Together, (3.1), the index set, and the switching signal define a switched system.

Only some systems admit stability results for arbitrary switching signals, so we

will consider a constraint on how quickly the switching signal can make consecutive

switches.

Definition Consider a switched system with switching times {t1, t2, ...}. It is said to

have dwell time τ if ti+1 − ti ≥ τ ∀i ∈ N.

Next, we review and introduce some important subsets of Rn. We have not yet

provided strict assumptions on Lyapunov-like functions. At present, it is enough

to assume that each subsystem has a (possibly different) C1 Lyapunov-like function,

which is bounded above and below on every bounded subset of Rn. Furthermore,

assume that each is radially unbounded (Vp(x) → ∞ as ‖x‖ → ∞). This ensures

that every sublevel set describes a compact region. We assume for the remainder of

this paper that the minimum value of each Vp is zero. Define

Gp = {x ∈ Rn|Vp(x) = 0} (3.2)

as the set which attains the minimum value of Vp. Let κ be a positive constant and

define
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Np (κ) = {x ∈ Rn|Vp (x) ≤ κ} , (3.3)

a closed κ-neighborhood of Gp. For the purposes of Theorem 6, Np (κ) is connected,

but it is not necessarily connected in the remainder of the paper (See Figure 3.4).

Let the union over P be

N (κ) =
⋃
p∈P

Np(κ). (3.4)

Additionally, we define a superset, M(κ), in a series of steps with

αp (κ) = max
x∈N (κ)

Vp (x) , (3.5)

and

Mp (κ) = {x ∈ Rn : Vp (x) ≤ αp (κ)} . (3.6)

Finally, we create a closed union of closed sublevel sets,

M (κ) =
⋃
p∈P

Mp. (3.7)

Notice that the dependence on κ carries through once we use it in N (κ). For the

purposes of Theorem 6, M is a connected superset of N . Theorem 8 will introduce

a different notion which is not necessarily connected. Figure 3.2 provides a one-

dimensional example to help visualize these sets.
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V1

N1
N2
N
M1
M2
M

V2 α2

α1

Figure 3.2: Qualitative example of how N and M are built for a switched system

consisting of two subsystems, each with a single equilibrium, but at different locations.

3.2 Stability Results

We first restructure the result in [30] slightly to add clarity and to better facilitate

the generalization presented here.

3.2.1 Unique Equilibrium Case

Theorem 6 ( [30]). Consider a family of systems defined by (3.1), each with a single,

globally exponentially stable equilibrium, denoted x∗p. Suppose that the exponential

decay rate of each Lyapunov function, as described in

V̇p(x) ≤ −εVp(x), ∀x ∈ Rn,∀p ∈ P , (3.8)

is at least ε > 0.
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Furthermore, given a positive constant κ, define the sets as in Section 3.1 and

assume µ(κ) ∈ (1,∞) such that

Vr (x)

Vq (x)
≤ µ(κ),∀q, r ∈ P ∀x ∈ Rn \ N (κ) . (3.9)

Then, for every switching signal with dwell time

τ >
log µ(κ)

ε
, (3.10)

(i) There exists a time T such that x(T−) ∈ Nσ(T−) (κ), and

(ii) For any time t̄ such that x(t̄) ∈ Nσ(t̄) (κ), x(t) ∈M (κ) for all t ≥ t̄.

Remark 1. Not all choices of Vp will give a finite value of µ(κ). Typical polynomial

constructions for Lyapunov functions must have the same polynomial order. Scaling

or stretching Lyapunov functions may be useful, but there will be implications for both

the spatial parameter µ and the temporal parameter ε. We will will revisit the idea of

scaling briefly in Sections 3.2.3-3.2.4.

Proof. We will only provide a sketch of the relevant features. The proof proceeds in

two parts:

(i) Consider a finite time interval [t0, T ] with corresponding switching times t1 <

t2 < · · · < tnσ , where nσ is the number of switches inside the interval. Between

switches, σ(t) is constant. If the trajectory enters Nσ(t) (not just N ), the result

is trivial. Otherwise, the behavior of Vσ(t)(x(t)) between switches satisfies (3.8).

Denote the limit from the right/left as superscript +/−, respectively. Then,

Vσ(t−i+1)(x(t−i+1)) ≤ e−ε(ti+1−ti)Vσ(t+i )(x(t+i )). (3.11)
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At switches,

Vσ(t+i )(x(t+i )) ≤ µ(κ)Vσ(t−i )(x(t−i )) (3.12)

holds. We can iterate on i to obtain

Vσ(T−)(x(T−) ≤ e((log µ(κ)/τ)−ε)(T−t0)Vσ(t0)(x(t0)). (3.13)

Importantly, under the dwell time condition, (3.10), this implies that by taking

T suitably large, we can make Vσ(T−)(x(T−)) arbitrarily small. Thus, x(T−) ∈

Nσ(T−) (κ). This proof is existential, not constructive. We cannot calculate a

particular time T for any particular problem.

(ii) The second part of the proof shows that after a switch at time ti, the dwell time

is sufficiently large to force the trajectory back into Nσ(t) (κ) before a subsequent

switch at time ti+1. Furthermore, the trajectory cannot escape M (κ) in that

interval.

Details are available in [30]. The proof presented above is different from [30] in one

important way - we specify that the trajectory enters Nσ(t) (κ) rather than N (κ). In

fact, it is an error to do the latter. The trajectory may pass through N (κ) \Nσ(t) (κ)

and then switch after it has emerged, which may cause it to exit M (κ). There

is nothing special about N (κ) \ Nσ(t) (κ) while σ(t) remains constant. It may be

aesthetically displeasing to have the entry set change in time along with σ(t), but we

must do this, because the time-independent formulation is false. We will demonstrate

with an example.
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Example This example is a slight variation of Example 2 from [30]. Choose

ẋp = Axp + bp, (3.14)

but with

A =

 −1 −10

10 −1

 (3.15)

b1 =

 10

1

 , b2 =

 −1

10

 , b3 =

 1

−10

 .
We are able to use the same Lyapunov functions, V1(x) := x2

1 +(x2−1)2, V2(x) :=

(x1 + 1)2 + x2
2, and V3(x) := (x1− 1)2 + x2

2. One can check that τ can be the same as

in [30], but that is not important here. Consider the trajectory shown in Figure 3.3.

The red circles show N (κ); the black circles show M (κ). Subsystem 1 is active

at the start, and the trajectory is shown in blue. N1 (κ) is the red circle centered

around

[
0 1

]T
. The trajectory passes through N3 (κ), which is the red circle

centered around

[
1 0

]T
. This is entering N (κ), but not Nσ(t) (κ). Now, notice

that we could have selected initial conditions to make the entry into N3 (κ) occur at

arbitrarily large time. This allows us to place a switch anywhere along the trajectory,

regardless of τ (this is a “free switch” that we will see again in Section 3.2.5). In

this case, we switched to subsystem 2 at the location where the trajectory changes to

green. It exits M (κ) shortly thereafter.
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Figure 3.3: Example trajectory demonstrating the need for time-dependent Nσ(t) (κ).
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3.2.2 Problem Statement: Switching Systems having Multi-

ple Invariant Sets

Alpcan and Başar considered subsystems, each having a globally exponentially stable

equilibrium point [30]. We will relax this condition to allow for systems with multiple

invariant sets. Consider a switched system with C1 functions Vp : Rn → R bounded

on every bounded subset of Rn such that

V̇p(x) ≤ 0, ∀x ∈ Rn, (3.16)

and Vp(x)→∞ as ‖x‖ → ∞. Denote

Ep =
{

x ∈ Rn|V̇ (x) = 0
}
. (3.17)

Our problem is as follows. Is there a dwell time condition that suffices for ultimate

boundedness?

Two challenges are immediately apparent. First, if V̇ vanishes outside of Np (κ),

there is not a strictly positive Lyapunov decay rate outside of Np (κ), so it is unclear

how long to wait between switches. Second, even in the absence of switching, the

active system may never enter Np (κ) (Ep may not be contained in Np (κ); see Fig-

ure 3.4). The following three subsections describe two methods for overcoming these

challenges.

3.2.3 Intermediate Solution: Expand Entry Neighborhood

The simplest idea is to realize that Np (κ) grows in size as we increase κ. Assuming

that Ep is bounded, we can pick κ large enough so that Ep ⊂ Np (κ). Even so, not

all Lyapunov functions satisfying (3.16) will decay exponentially on Rn \ Np (κ). For
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example, consider a single one-dimensional subsystem ẋ = − arctan(x) with V = x2.

Nevertheless, the following lemma is useful:

Lemma 1. Consider a switched system with Lyapunov functions Vp satisfying V̇p ≤ 0

with Vp(x) → ∞ as ‖x‖ → ∞ and Ep bounded. Then, for sublevel Lyapunov sets

Np(κ) such that Ep ⊂ Int(Np(κ)) (where Int denotes the interior) and any ε ∈ R,

there exists a different set of continuous, radially unbounded Lyapunov functions Vp

such that,

1. Vp(x) = 0 for x ∈ Np, and Vp(x) > 0 for x ∈ Rn \ Np.

2. Vp(x(t+ t0)) ≤ e−εtVp(x(t0)) for all x ∈ Rn \ Np and t, t0 ∈ R.

Proof. Bhatia [77] constructed a unique continuous function s(x) on Rn \ Np such

that s(x(t + t0)) = s(x(t0)) − t and s(x) → 0 as x → Np. Then, we can select any

constant ε and set

Vp(x) =


0 for x ∈ Np

eεs(x) for x ∈ Rn \ Np.
(3.18)

Hence, on Rn \ Np,

Vp(x(t+ t0)) = eεs(x(t+t0)) = eε(s(x(t0))−t) = e−εtVp(x(t0)). (3.19)

This means that for suitably large κ, there exist Vp that decay exponentially

outside Np (κ). A simple constant shift can patch the original Lyapunov function on

Np (κ) with the construction of Lemma 1 outside Np (κ) at ∂Np (the boundary of

Np), and the mere continuity of Vp outside of Np does not harm any essential parts

of the proof. (Note that performing a constant shift outside Np (κ) will scale ε by αp,
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but we could just perform the construction again with a larger ε to correct for this).

However, relying on the construction of Lemma 1 may not allow for (3.9) to hold, and

we must assume that we can find a set of Lyapunov functions which satisfy both the

exponential decay property and the µ property, (3.9). It is left as an open problem

to determine if it is generally possible to construct a set of Lyapunov functions that

satisfy both conditions for any switched system.

Now, the conditions required for Theorem 6 hold (noting that is is not essential

to have exponential Lyapunov decay within Np).

Remark 2. It is useful to notice that our set definitions do not require a single value

of κ for all subsystems. If our subsystems have qualitatively different invariant sets, it

may be very damaging to require a single κ. Instead, we can choose a set, κ = {κp},

of values and restate all our set definitions as functions of κ.

Making κp very large is problematic in two ways. First, the purpose of defining

a large neighborhood is to neglect the troubling areas (by this, we mean that we do

not know much about the trajectory inside N (κ)). However, with large κp, we may

be cutting out substantial portions of our state space. Secondly, it may lead to larger

dwell time or larger M(κ). In the next two subsections, we describe a method to

more tightly tailor our strategy.

3.2.4 First Main Result: Tightly Tailored Entry Set

Since the troubling regions are just those where V̇p ≤ 0 is closest to zero, we will now

define a smaller set containing these regions. Choose a set δ = {δp1 , δp2 , ..., δpmax}

with δpi > 0, and define the set

Hp (δp) =
{

x ∈ Rn : V̇p (x) > −δp
}
, (3.20)

46



p

κp

Gp

Ep
Hp

Np

Figure 3.4: Qualitative example of tighter tailoring. The subsystem has two stable

equilibria and a single unstable equilibrium. Notice that Np ⊂ Hp.

so that Ep ⊂ Hp. As usual, we can also define H (δ) =
⋃
p∈P
Hp. Figure 3.4 provides a

one-dimensional example to help visualize how these sets are constructed. Similar to

before, not all Vp satisfying (3.16) decay exponentially outside Hp (δp). Define

γp (δp) = max
x∈Hp

Vp(x). (3.21)

Furthermore, set

Lp (δp) = {x ∈ Rn : Vp (x) ≤ γp (δp)} . (3.22)

Since Lp is a sublevel Lyapunov set, it is compact. From compactness, V̇p attains a

minimum on Lp, while Vp attains a finite maximum. Thus, on Lp \ Hp, an exponen-

tial decay rate can be computed, while we can use Lemma 1 outside Lp. Again, if
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necessary, a simple constant shift can patch the two functions together at ∂Lp.

While the construction in Lemma 1 only gives s(x) continuous in the multi-

dimensional sense, it is clearly directionally differentiable along the subsystem trajec-

tories. Thus, writing V̇ is sound notation. Putting it all together, we can compute ε

such that

V̇p (x) ≤ −εVp (x) ,∀x ∈ Rn \ Hp (δp) ,∀p ∈ P . (3.23)

Unfortunately, Hp may be disconnected, and it is not necessarily invariant even in

the absence of switching. We will engage these problems directly in Sec. 3.2.5, but

for now, we can proceed directly to a simple theorem demonstrating the usefulness

of embedding N inside H.

Theorem 7. Consider a family of systems defined by (3.1), each with a radially

unbounded Lyapunov-like function that satisfies (3.16). Assume Hp, Ep bounded and

Gp ⊂ Hp(δ). Compute ε(δ) so that (3.23) is satisfied and assume

Vr (x)

Vq (x)
≤ µ(δ),∀q, r ∈ P , ∀x ∈ Rn \ H (δ) (3.24)

holds for finite µ(δ). Furthermore, compute κp > 0 such that Gp ⊂ Np(κ) ⊆ Hp(δ).

Then, for every switching signal with dwell time τ > logµ(δ)
ε

, there exists a time T

such that x(T−) ∈ Hσ(T−) (δ).

Proof. Notice that all of the necessary assumptions are valid on Rn \ Hσ(t)(δ). By

taking suitably large T , we can make Vσ(T−)(x(T−)) arbitrarily small. Therefore,

either x(T−) ∈ Nσ(T−)(κ) ⊆ Hσ(T−) (δ) or the trajectory enters Hσ(t) (δ) somewhere

else before that time.

Remark 3. In [30], κ was a single tuning parameter. In Section 3.2.3, κ = {κp}
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was introduced as a possible set of tuning parameters. Now, per Theorem 7, the set of

tuning parameters is δ = {δp}, and κ is computed as a consequence of our selection

of δ. Since nearly every parameter/set which follows is dependent on δ, we will often

omit explicit dependence in favor of readability.

3.2.5 Second Main Result: No-Escape Set

This section assumes the trajectory has entered Hσ(t)(δ) at some time and proceeds

to build the relevant no-escape set, which will be denoted Mp.

The primary problem is that Hp is not necessarily an invariant set even for periods

of time when σ(t) constant is constant (i.e., no switching). For example, a subsystem

may contain a locally unstable equilibrium. With δp small, H is certainly not an

invariant set. One way this can be problematic is that we can get a free extra switch.

Example Consider two one-dimensional subsystems, ẋ1 = −x1 and ẋ2 = x2 − x3
2,

with V2 = (x − 1)2(x + 1)2 and small δ2. Assume a nonzero initial condition with

the first subsystem being active. The trajectory can become arbitrarily close to zero

before switching to the second subsystem. While the second subsystem is active

(σ(t) is constant), the trajectory can clearly leave H2. Furthermore, since the second

subsystem started arbitrarily close to the origin, it can take an arbitrarily long time

to exit H2. Thus, no finite dwell time can prevent at least one switch from being

possible outside of H.

There are two ways to compute a dwell time and an associated spatial bound,

but we need a few more definitions first. Set the usual γ(δ) = max
p∈P

γp(δp) and

L (δ) =
⋃
p∈P
Lp. Compute

ξp (δ) = max
x∈L(δ)

Vp (x) , (3.25)
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and set ξ(δ) = max
p∈P

ξp(δ).

Theorem 8. Consider a family of systems defined by (3.1), each with a radially

unbounded Lyapunov-like function that satisfies (3.16). Assume Hp, Ep bounded and

Gp ⊂ Hp(δ). Compute ε(δ) so that (3.23) holds and assume

Vr (x)

Vq (x)
≤ µ(δ),∀q, r ∈ P ∀x ∈ Rn \ H (δ) (3.26)

holds for finite µ(δ). Furthermore, compute κp > 0 such that Gp ⊂ Np(κ) ⊆ Hp(δ).

Set κ = min
p∈P

κp. Then, for every switching signal with dwell time

τ >
log ξ(δ)

κ

ε
, (3.27)

for every t̄ such that x ∈ Hσ(t̄), x(t) ∈M (δ) =
⋃
p∈P
Mp for all t ≥ t̄, where

Mp (δ) = {x ∈ Rn : Vp (x) ≤ ξp} . (3.28)

Proof. Consider the following sequence of times. Assume a switch occurs or the

system is started at t0. Assume further that there is a time t0 ≤ tenter at which the

trajectory enters Hσ(t+0 )(δ). There may or may not be a time at which the trajectory

exits Hσ(t+0 )(δ), which we will denote tenter ≤ texit. If there is, texit − tenter could

possibly be arbitrarily large. Therefore, the second switching time t1 may be shortly

after texit while the trajectory is outside of Hσ(t+0 )(δ) regardless of the dwell time.

The proof will proceed in two parts. First, we will show that the trajectory does

not leave M before a third switching time, called t2. Then, we will compute a dwell

time so that the trajectory must re-enter Hσ(t) before t2. By induction, the trajectory

will never leave M.

(i) We will show that the trajectory never leaves M on [tenter, t1], then on [t1, t2].
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Since x(tenter) ∈ Hσ(t0) ⊂ Mσ(t0) and Mσ(t0) is a sublevel Lyapunov set, the

trajectory cannot leave Mσ(t0) on [tenter, t1] since no switching occurs on this

interval. Next, notice

x(t1) ∈ Lσ(t−1 ) ⊂ L ⊂Mσ(t+1 ). (3.29)

Thus, the trajectory cannot leave Mσ(t+1 ) on [t1, t2].

(ii) We will show that the trajectory must re-enter Hσ(t) before t2. Define ∆ =

t2 − t1 ≥ τ , giving

Vσ(t−2 )(x(t−2 )) ≤ e−ε∆Vσ(t+1 )(x(t+1 )) ≤ e−ε∆ξσ(t+1 ) ≤ e−ε∆ξ. (3.30)

The dwell time given by (3.27) gives that Vσ(t−2 )(x)(t−2 ) ≤ κ. Thus, the trajectory

enters Nσ(t+1 ) or reenters Hσ(t) elsewhere before time t2.

Corollary 1. Taken together, Theorems 7 and 8 provide a dwell time which guaran-

tees finite time entry into Hσ(t) and the invariance ofM thereafter. Given a particular

problem, if we want to apply both theorems, we should set τ >
log max(µ, ξκ)

ε
.

Section 3.3 will show examples that have ξ
κ
> µ, but it is trivial to construct cases

with very large µ. Next, we construct some lower bounds for µ which are helpful for

determining that the bounds in these theorems are tighter than some other possible

bounds. Define

ηp (δ) = max
x∈H

Vp(x), (3.31)

and the following proposition will be useful.
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Proposition 9. Given the preceding set definitions, µγ ≥ ξp ≥ ηp ∀p.

Proof. Since Hp ⊂ Lp, H ⊂ L, and ξp ≥ ηp.

Without loss of generality, consider x ∈ L such that V1(x) = ξ1. There are three

cases:

Case 1. Suppose x ∈ H1. Then, ξ1 = γ1. Since γ ≥ γ1 and µ ≥ 1, µγ ≥ ξ1.

Case 2. Suppose x ∈ H \ H1. Then, ξ1 = η1. Since ξ1 is a maximum of V1 over

L ⊃ H and H is open, V1(x) must be a local maximum. But, if it is a local maximum,

∇V1(x) = 0 and V̇1(x) = 0. Thus, x ∈ H1, and the problem is reduced to Case 1.

Case 3. Suppose x ∈ L \ H. Then, (3.26) holds, and

µ ≥ V1(x)

Vp(x)
∀p. (3.32)

Then, for some p, µγ ≥ µγp ≥ µVp(x) ≥ V1(x) = η1 = ξ1.

Notice that in the ideal case, with each subsystem consisting only of a single

exponentially stable equilibrium, γ = κ, Lp = Hp = Np, and ξ = α can be attained.

In the case they are attained, τ =
log max(µ, ξκ)

ε
=

log max(µ, ξγ )
ε

= logµ
ε

, (3.28) collapses to

(3.6), and we can consider this a true generalization of the result in [30]. In fact, one

can notice that both examples in [30] satisfy the equality µκ = ξ.

Remark 4. Using similar techniques as those in Theorem 8, one can find a bound

for τ and M that looks like min(max(µγ, ηp), ξp). This expression reduces to ξp given

Proposition 9.

Remark 5. We chose to define the dwell time as a constant across all subsystems, but

allowed the spatial calculation to proceed with regard to individual subsystems. This
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is consistent with the idea that applications will utilize a single, subsystem invariant,

dwell time. Since only the final union matters for the no-escape set, it is of no

importance that the individual pieces were built with different constants determining

sublevel sets.

3.3 Examples

We provide two numerical examples to illustrate the main results of this chapter.

In particular, we want to demonstrate that tight tailoring can provide better results

than expanding the entry neighborhood.

3.3.1 One-Dimensional Example

Consider a family of systems defined by

f1(x) = −x(x− 1)2, f2(x) = −(x− 1). (3.33)

Select V1(x) = x2 and V2(x) = (x − 1)2 and δ = [0.05; 0.1]. Then, H1 =

[−0.139, 0.197] ∪ [0.803, 1.139], H2 = [0.776, 1.224], µ = 67.28, and ε = 1.29. We can

set κ = [0.0193; 0.050], giving N1 = [−0.139, 0.139] ⊂ H1 and N2 = [0.776, 1.224] ⊂

H2. Then, we can compute γ = [1.297; 0.050], L1 = [−1.139, 1.139], L2 = [0.776, 1.224],

and ξ = [1.497; 4.575]. Finally, this results in τ = 4.240 and M = [−1.224, 3.139].

The size of M is 4.362.

We compare the large-κ method with two metrics. First, we select κ so that τ is

the same as the tight-tailoring method (we make the methods temporally-equivalent)

and compare the size ofM. Second, we select κ so that the size ofM is the same as

the tight-tailoring method (we make the methods spatially-equivalent) and compare
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the required dwell time. In order to make τ = 4.240, we must set κ = [2.271; 0.257].

This results in µ = 8.837, ε = 0.514, and M = [−1.507, 3.507], which has size 5.014.

For the second case, we can makeM = [−1.181, 3.181] by setting κ = [1.395; 0.0328].

The result is that µ = 42.48, ε = 0.0657, and τ = 57.08. In each case, tight tailoring

shows better performance.

3.3.2 Two-Dimensional Limit Cycle Example

Consider a family of systems defined by

f1

x
y

 =

− (x2 + y2 − 1) −1

1 − (x2 + y2 − 1)


x
y



f2

x
y

 =

− (x2 + y2 + 1) −1

1 − (x2 + y2 + 1)


x
y

 (3.34)

f3

x
y

 =

−1 −1

1 −1


x
y

+

 2

−2

 .

This is a simplified version of (2.1), a central pattern generator used for control of

swimming [78] or flying robots [79]. Subsystem 1 has an unstable equilibrium at the

origin and a stable limit cycle of unit radius centered around the origin. Subsystem

2 has a stable equilibrium at the origin. Subsystem 3 has a stable equilibrium at[
2 0

]T
. Take the corresponding Lyapunov functions to be V1(x) = (x2 + y2− 1)2,

V2(x) = (x2 + y2)2, and V3(x) = ((x − 2)2 + y2)2, respectively. If we choose δ =

[0.2, 0.1, 0.1], then ε = 0.22, µ = 2215, κ = [0.042, 0.022, 0.025], γ = [1.0, 0.22, 0.25],

ξ = [23, 33, 136], and τ = 38.9. Figures 3.5, 3.6, and 3.7 show the resulting sets.

In fact, many of the resulting parameters (chief among them dwell time and size of
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Figure 3.5: The sets E (black) and H (red) for each subsystem.

M) are determined through nontrivial relations. Optimization and tradeoffs between

spatial performance and temporal performance is problem-specific.

3.4 Chapter Summary

The ideas here have an eye toward bringing rigor to complicated flapping fliers, which

often switch modes for energy and agility concerns.

We derived a stability result for switched systems which are constructed from

subsystems which possibly contain multiple invariant sets. This amounted to a gen-

eralization and refinement of the argument presented in [30] and is in the spirit of dwell

time methods for switched systems. This result can be applied to a larger class of

dynamical systems than those in [30], including those which contain bifurcations. We

55



−4 −2 0 2 4 6
−1

0

1

−4 −2 0 2 4 6
−1

0

1

−4 −2 0 2 4 6
−1

0

1

Figure 3.6: The sets G (black) and N (blue) for each subsystem. The example is

suitably well-behaved so that E = G and H = N except for the unstable origin and

its surrounding neighborhood when p = 1.
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Figure 3.7: The sets Ep (black), L (red), and M (blue). The skinny black line is an

example trajectory.
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provide a set of tuning parameters, δ, which cause interrelated and problem-specific

effects on performance.
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Chapter 4

Flapping Flight Simulation and

Experiment

4.1 Wing Kinematics, Aerodynamic Forces, and

Vehicle Dynamics

We derive a three dimensional model of the wing kinematics in this section. The

wing kinematic model supports both flexible and rigid wings. Also, we present the

6-DOF dynamic equations of motion of flapping flight that can be used to validate the

coupled wing control driven by CPG. The aim of this section is to illustrate that the

effective angle of attack varies as a function of the wing span distance as well as the

flapping (stroke) angular rate and it can be effectively controlled by the synchronized

pitching (wing rotation) control.

We present a realistic modeling that encompasses a tilted stroke angle, the lead-

lag motion, and the relative body velocity, in addition to the stroke and pitch angles.

In deriving these equations, the actual control degrees-of-freedom of the robotic bat
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(a) (b)

(c)

Figure 4.1: A 8-DOF robotic bat (with 10 control variables) MAV [80]

MAV testbed shown in Fig. 4.1 are considered.

Figure 4.2a shows a side view of the flapping flying MAV with the body frame

xb = (xb, yb, zb)
T and the stroke-plane frame xs = (xs, ys, zs)

T of the right wing.

Similar to the robotic bat in Fig. 4.1, we assume that each wing has flapping (φw),

pitch (θw), and lead-lag (ψw) control. We develop only the equations of the right wing

since the similar expressions for the left wing can straightforwardly follow. The center

of the stroke-plane frame is located at (dx, dy, dz), and it is tilted by the inclination

angle Θs(t), which can be a function of time and the forward velocity. Without the

lead-lag motion, the axes ys and zs define the stroke plane. Hence, the transformation
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between these coordinate axes can be given by

xb = Tbs(Θs)xs + (dx, dy, dz)
T , where Tbs(Θs) =


cos Θs 0 sin Θs

0 1 0

− sin Θs 0 cos Θs

 (4.1)

where in this chapter Tbs denotes the transformation from xs to xb, whereas Tsb = TT
bs

would correspond to the transformation from xb to xs.

For a hovering insect, the stroke plane is almost horizontal (i.e., Θs = 90 deg in our

coordinate definition in Fig 4.2a), resulting in forward and backward reciprocating

motions. This is the assumption used for some prior work [6, 7, 12, 51]. In contrast,

the stroke angle of birds and bats varies as a function of flight speed; at a low speed,

the angle is almost horizontal (Θs = 90 deg) and it approaches Θs = 0 deg as the

flight speed increases.

If there is no lead-lag motion, the additional transformation for a wing stroke

angle φw would complete all the required transformation between the body frame

and the wing frame. However, a nonzero lead-lag angle further complicates the wing

kinematics. Choosing the rotational axes for flapping, lead-lag, and pitch depends on

the actual hardware setup and actuators, and our choice is influenced by the robotic

bat MAV shown in Fig. 4.1 (see Section 4.4). In contrast with Azuma’s derivation

in [3] where the stroke angle Θs(t) is dependent on the φw(t) and the lead-lag angle

ψw(t), our Θs(t) is an independent control variable. Our decision is based on the

observation that Θs(t) can be an important control variable for efficient engineered

flapping flight. Further, this kind of actuator mechanism is easier to implement and

control. As shown in Fig. 4.2b, the lead-lag angle is defined by the rotation about the

zs axis- the z-axis in the stroke plane frame. In contrast with the fixed angle rotation
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Figure 4.2: Schematic of the 3D wing motions
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in [3], then we rotate about the new x-axis to obtain the wing frame xw. For both

wings, the positive direction of ψw is the forward direction, while the positive stroke

angle φw indicates an upstroke motion. This sign convention does not agree with the

original positive direction of rotation for the right wing, so extra care should be taken

to determine the correct angular transformation matrices.

For the right wing, the transformation between the stroke plane frame (xs) and

the wing frame (xw) can be written as

xs = Tsw(φw, ψw)xw =


cosψw sinψw 0

− sinψw cosψw 0

0 0 1




1 0 0

0 cosφw sinφw

0 − sinφw cosφw

xw (4.2)

In order to compute the local lift and drag of a blade element with width dr

and wingspan coordinate r ∈ [0, R], we need to transform the velocities in body

coordinates to the incident velocities in the rotated wing frame. For example, consider

the free-stream forward speed V∞ with the body angle of attack αx and the side-slip

angle αy. Note that αy is commonly denoted by β in the aerospace community, but

in this chapter β denotes the direction of the relative wind of a blade element. Then,

the free-stream velocity in the body frame can be written as

Vb = (V∞ cosαy cosαx, V∞ sinαy, V∞ cosαy sinαx)
T + vi + vE (4.3)

where vi and vE denote the induced velocity vector and the wind velocity vector

respectively. In other words, in the absence of vi and vE, the vector Vb equals the

velocity of the vehicle in the body frame. Let us assume that αx and αy include the

effects of the induced velocity and vE is small.

Then, the free-velocity vector Vb in the body frame can be transformed to the
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wing frame. In addition, we can also compute the additional velocity on the wing

frame induced from the body angular rate Ωb = (p, q, r)T and the offset distance

d = (dx, dy, dz)
T of the stroke plane frame (see Fig. 4.2a). By adding these two

terms, we can obtain

Vw
b = Tws(φw, ψw)Tsb(Θs)(Vb + Ωb × d) (4.4)

In order to compute the rotational velocity on the wing frame produced by the

flapping φw and lead-lag ψw motions, as well as a relatively slower stroke angle change

Θs(t), it is more convenient to construct the angular rate vector in the stroke plane

frame as follows

Ωtot = Tsb(Θs)Ωb +


− cosψwφ̇w

sinψwφ̇w + Θ̇s

−ψ̇w

 (4.5)

Then, we can compute the induced rotational velocity from the wing motions of

the blade element dr

Vw
rot = (Tws(φw, ψw)Ωtot)×




0

r

0

+


xw(r)

yw(r)

zw(r)


+


ẋw(r)

ẏw(r)

żw(r)

 (4.6)

where xw(r), yw(r) and zw(r) are the deformation of the blade element due to aeroe-

lastic deformation or active cambering control that can be found in bat flight. Hence,

the derivations in this section can be used for flexible wing models, although the

CL(α) and CD(α) functions should be corrected for such cambered wing shapes.

By adding Vw
b in Eq. (4.4) and Vw

rot in Eq. (4.6), we can obtain the total velocity

of the wind at the blade element, located at r on the wing span axis,
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Vw =


Vwx

Vwy

Vwz

 =Tws(φw, ψw)Tsb(Θs)(Vb + Ωb × d) (4.7)

+ (Tws(φw, ψw)Ωtot)×




0

r

0

+


xw(r)

yw(r)

zw(r)


+


ẋw(r)

ẏw(r)

żw(r)


A similar expressions can be obtained for the left wing. Also, the preceding derivations

can straightforwardly be extended to account for the second joint (elbow) if each wing

has one.

Now, we can obtain the local effective angle of attack αw of the blade element to

determine aerodynamic forces and torque. Let us assume that the deformation of a

rigid wing is negligible and there is no active cambering control. Also, the contribution

from the body angular rate Ωb is small. Then, Eq. (4.7) reduces to


Vwx

Vwy

Vwz

 = Tws(φw, ψw)Tsb(Θs)Vb +

Tws(φw, ψw)


− cosψwφ̇w

sinψwφ̇w + Θ̇s

−ψ̇w


×


0

r

0


(4.8)

Then, we can obtain the local incident angle βw (measured clockwise), the angle of

attack αw, and the speed of the wind Vr on the blade element on the right wing as
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follows

βw(r, t) = tan−1 −Vwz
Vwx

, αw(r, t) = θw(t)− βw(r, t) (4.9)

V 2
r (r, t) =

√
V 2
wx + V 2

wz

where we neglected the flow along the wing span Vwy and the wing rotation θw(t)

controller can be properly designed to yield a positive angle of attack for both upstroke

and downstroke motions.

If the MAV were flying with zero flight path angle and Θs = 0, we can obtain

βw(r, t) = tan−1 rφ̇w
V∞

= tan−1 2rkr
c

and kr =
φ̇wc

2V∞
(4.10)

where the reduced frequency kr compares the velocity by the wing flapping motion

with the forward speed, thereby indicating the degree of unsteady aerodynamics (if

kr > 0.05, unsteady effects dominate). We can see that the sign of βw is consistent

with the positive direction of the flapping (stroke) angle φw since the downstroke

φ̇w < 0 leads to the negative flow angle βw < 0.

Once we obtain the local effective angle of attack αw, we can proceed to obtain the

aerodynamic forces of the blade element by evaluating the lift and drag coefficients,

CL(αw) and CD(αw). Flapping flight, typically within a low Reynolds number regime

(Re < 105), is governed by unsteady aerodynamics characterized by large-scale vortex

structures. It is understood that the main lift enhancement mechanism of flapping

flight is governed by (1) the leading edge vortex (LEV) that leads to delayed stall at

a very high angle of attack, (2) the rotational circulation lift, and (3) wake capture

that generate aerodynamic forces during flapping angle reversals [12]. In particular,

Dickinson’s series of papers [12, 51], by cross-validating the numerical computation
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and experimentation using the Robofly, shows that a quasi-steady aerodynamic model

predicts the aerodynamic coefficients reasonably well. While Computational Fluid

Dynamics (CFD) is much too computationally burdensome to justify its use in control

design, this quasi-steady approximation method can be verified and improved by the

experimental set-up such as the robotic bat described in [80].

The seminal paper by Dickinson [12] used a hovering pair of wings without a

forward speed as follows

CL(αw) = 0.225 + 1.58 sin(2.13αw − 7.2 deg)

CD(αw) = 1.92− 1.55 cos(2.04αw − 9.82 deg)

(4.11)

It should be noted that Dickinson’s robotfly’s setup used a horizontal stroke plane,

as typically seen in insect flight, whereas we assume a 90-deg stroke plane angle. The

angle αw for a general flapping wing is time-varying, as described in this section. A

recent paper [51] considers a nonzero-forward speed and the coefficients of Eq. (4.11)

can be modified to become functions of the reduced frequency (kr).

From the quasi-steady approximation, we can compute the lift and drag forces acting

on the blade element with width dr as follows.

dL =
1

2
ρCL (αw(r, t)) c(r)V 2

r (r, t)dr, dD =
1

2
ρCD (αw(r, t)) c(r)V 2

r (r, t)dr (4.12)

In addition, Ellington [52] derived the wing circulation Γr = πα̇c2(3/4− x̂0) based on

the Kutta-Joukowski condition. This quasi-steady approximation for the rotational

lift can be written as

dLrot =
1

2
ρ

(
2π(

3

4
− x̂0)

)
c2(r)Vr(r, t)α̇wdr (4.13)
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where x̂0 is the location of the pitch axis along the mean chord length. Also, α̇w can

be computed from Eq. (4.9) and often approximated reasonably well by the angular

rate of the wing pitch motion θ̇w.

The total x and z directional forces of a single wing (either right or left) in the

body frame are obtained as

Fwz =

∫ R

r=0

dD sin βw − (dL+ dLrot) cos βw (4.14)

Fwx =

∫ R

r=0

−(dL+ dLrot) sin βw − dD cos βw,

where the positive direction of zb is downward as shown in Fig. 4.2a.

The Fwx and Fwz forces on the wing frame given in Eq. (4.14) can be transformed

into the forces in the vehicle body frame:

Fright =


Fx

Fy

Fz


right

= Tbs(Θs)Tsw(φw, ψw)


Fwx

0

Fwz


right

(4.15)

where we added the subscript right to indicate the right wing. A similar expression can

be obtained for the left wing (Fleft). Each wing has different wing angular parameters

such as φw, ψw, and θw, although the stroke plane angle Θs is the same for both wings.

In order to compute the rotational moments generated by the aerodynamic forces,

we first calculate the position of the wing blade element with respect to the body frame

p(r) = Tbs(Θs)Tsw(φw, ψw)


0

r

0

+


dx

dy

dz

 (4.16)

68



Then, we can compute the aerodynamic moments with respect to the c.g.


dMx

dMy

dMz

 =p(r)×

Tbs(Θs)Tsw(φw, ψw)


−(dL+ dLrot) sin βw − dD cos βw

0

dD sin βw − (dL+ dLrot) cos βw




+


dMx0

dMy0

dMz0

 (4.17)


dMx0

dMy0

dMz0

 =Tbs(Θs)Tsw(φw, ψw)Tθw(θw)
1

2
ρV 2

r c(r)dr


rcl0

c(r)(cm0 + cmα,wαw)

rcn0

 (4.18)

Mx =

∫ R

r=0

dMx, My =

∫ R

r=0

dMy, Mz =

∫ R

r=0

dMz, (4.19)

where dMx0, dMx0, and dMx0 denote the constant aerodynamic moments that include

the moment at the mean aerodynamic center, computed by the moment coefficients

cl0, cm0, cα,w, and cn0. The transformation matrix Tθw(θw) rotates the wing frame

about the yw axis by the wing pitch rotation angle θw.

By combining all the forces and moments from the right wing and the left wing,

we can derive 6-DOF equations of motion for the flapping flying MAV in the body

frame, whose orientation with respect to the inertial frame is described by the Euler

angles. We assume the mass and the moment of inertia of the wing compared to the

body weight are negligible so that the c.g. remains fixed. Then, we can obtain the

following set of equations. The translational motion of the c.g. of the flapping flying

vehicle driven by the aerodynamic force terms in Eq. (4.15) can be expressed as

mV̇b +mΩb ×Vb = Tbe(φb, θb, ψb)Fg + Fright + Fleft + A (4.20)
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where the Euler angular transformation matrix Tbe(φb, θb, ψb) determines the orien-

tation of the body frame with respect to the inertial frame.Each wing has different

wing angular parameters such as φw, ψw, and θw, although the stroke plane angle Θs

is the same for each wing.

The equations of rotational motion are driven by the aerodynamic moments Mright

and Mleft of each wing that can be obtained from Eq. (4.17)

IbΩb + Ωb × (IbΩb) = Mright + Mleft + B (4.21)

The relationship between the body angular rate Ωb = (p, q, r)T and the Euler angle

vector qb = (φb, θb, ψb)
T can be determined by [80]

q̇b = Z(qb)Ωb (4.22)

where any other orientation representations such as quaternions can be used in lieu of

the Euler angles in the preceding equations. Also, any disturbance force and torque

can be added to the equations.

4.2 CPG-based Flapping Flight Control and Sim-

ulation Results

The aim of this section is to show that CPG-based flight control can stabilize and

control flapping flight dynamics given in Sec. 4.1 by commanding a reduced set of

CPG parameters that generate the phase-synchronized or symmetry-breaking oscil-

latory motions of two main wings. In particular, we show that the dynamics can

be controlled without using aerodynamic control surfaces such as ailerons, elevators,
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Figure 4.3: Block diagram of the simulation for two alternating flight modes: flapping

and gliding.

rudders, and directional control of tail wings. This result can be extended to a more

sophisticated nonlinear flight control law.

4.2.1 CPG-based Flapping Flight Control

The example presented in this section has three different flight modes: gliding, flap-

ping, and turning. We do not consider the aerodynamics of the second joint and

instead assume each wing to be a single rigid body. That is, in Eq. (4.7), we set

(xw(r), yw(r), zw(r))T = 0 and assume the aerodynamic coefficients do not vary along

the chord of the wing blade element.

This dynamic model with three dimensional wing kinematics is constructed in

Matlab/Simulink, allowing us to demonstrate how stability can be obtained for flap-

ping flight driven by a CPG network (see Fig. 4.3).

4.2.2 Gliding Mode Control

We produce gliding flight with no reciprocal flapping motion by setting the bifurcation

parameter σ = −1 in Eq. (2.1). As discussed in Sec. 2.7, Setting ω(t) = 0 without
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σ = −1 will not ensure convergence to the controlled bias values (ui → ai). This

provides us with simple control of our wing by exploiting the bifurcation of Hopf

oscillators, causing them to snap to a single non-oscillatory value corresponding to

the bias. We can then control the lead lag motion (ψw), flapping angle (φw), and

wing pitch angle (θ) by their bias parameters. A negative (positive) flapping angle or

negative (positive) lead-lag angle can provide a pitch-down (pitch-up) moment due to

drag or lift, respectively. We have therefore reduced control dimensionality to three

actively controlled parameters: wing pitch, wing flapping angle, and lead-lag angle.

In fact, depending on the physical characteristics of the specific vehicle, controlling

only one of wing flapping angle or lead-lag angle could be sufficient for longitudinal

gliding stability. For the network in Fig. 2.3a, we can use the following bias for the

lead-lag angle of each wing:

a3(t) = a7(t) = −kpθb − kdq − ki
∫ t

0

θbdt+ ψbias (4.23)

where kp, kd, and ki are positive gains and ψbias is a constant. The simulation uses

nonzero gains for PID control of flapping angle and lead-lag bias. Flapping angle

seems most important, which is in keeping with previous study of the importance of

drag-based stability [81], and the conclusion that birds glide more like tailless vehicles

than conventional tailed aircraft. Only integral control is used for pitch bias, in order

to obtain a constant wing angle of attack. Lateral modes with articulated wings

warrant further attention.

4.2.3 Flapping Flight Control by Flapping Frequency:

Seemingly more difficult than stability of gliding flight is stability of flapping flight.

We propose a novel control law unique to our CPG set-up which reduces control di-
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mensionality to only four parameters. The first parameter is the oscillation frequency

ω(t) of the coupled Hopf oscillators in Eq. (2.6). Flapping frequency, ω(t), correlates

with increased lift and thrust. Those in turn, correlate with velocity of the body. For

example, we can consider the following control law

ω(t) = K

∫ t

0

ω̇dt = K

∫ t

0

(|Vdesired| − |Vactual|) dt (4.24)

and use the following corollary.

Corollary 2. From the dynamic equation of the Hopf oscillator in Eq. (2.1), the

time-varying ω(t) does not affect the synchronization stability proof for Theorem 2

Proof. Since the symmetric part of f cancels the ω term and ω does not change the

maximum eigenvalue of VT [f ] V. The rest of the proof follows Theorem 2.

4.2.4 Flapping Flight Control by Phase Differences and Sym-

metry Breaking:

Phase differences can be strong control parameters, but our oscillator stability proof in

Theorem 2 assumes constant or relatively slowly varying phase differences. The error

terms from the additional time-varying parameters other than ω(t) can be obtained

by contraction analysis [63], which shows the boundedness of the synchronization

error.

Corollary 3. For time-varying phase differences ∆ij(t), the synchronization of the ro-

tated Hopf states {z} globally converges to the bounded error defined by VTTṪ−1{z}.

Proof. Recall the relationship between the original Hopf variables {x} and {z} =

T(∆ij, ρi){x} in Eq. (2.10). Since the function Ṫ(∆ij, ρi) is nonzero, Eq. (2.14)
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becomes

{ż}+ TṪ−1{z} = T [f({x}; ρ)]− kL{z} (4.25)

Consequently, the virtual system in Eq. (2.18) becomes

ẏ = VT
[
f(Vy + 11T/n{z}; ρ1)

]
− kVTLVy + ε(t) (4.26)

where the error term ε(t) comes from the nonzero time-derivative of the T matrix

since some ∆ij is time-varying.

ε(t) = −VTTṪ−1{z} (4.27)

Hence, although the y system in Eq. (4.26) is contracting, the Hopf oscillators do not

perfectly synchronize because y = 0 is no longer the particular solution. By robust

contraction analysis [63], where P1(t) defines represents a desired system trajectory

and P2(t)the actual system trajectory in a disturbed flow field given in Eq. (2.18)

with the error term. Also, consider the distance R(t) between two trajectories P1(t)

and P1(t) such that

Ṙ(t) + `R(t) ≤ ‖ε(t)‖ (4.28)

where ` > 0 is the contraction rate of the virtual system Eq. (4.26) such that

` = kλmin(VT (L + LT )/2V))− λ. Hence, the synchronization error converges to the

ball of the radius ‖ε(t)‖ /`.

If we select graph configuration A in Fig. 2.3, we have four available phase dif-

ferences. We use two degrees of freedom as follows. We do not break symmetry in
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lead-lag phase differences, setting

∆75 −∆65 = ∆31 −∆21. (4.29)

We now control ∆31 −∆21 with PD control and body pitch as the input. We use

a low pass filter on the derivative input. Not only is this effective in stabilizing the

longitudinal motion, the nominal value can be used to select ascent or decent angle.

In order to control pitch symmetry breaking with one parameter, consider ∆ as the

constant nominal value (90◦) of ∆21 and ∆65. Then, set

∆65 = ∆ + δ, ∆21 = ∆− δ. (4.30)

The phase difference between flapping and pitch is vital for lift and thrust generation.

Therefore, this difference between the right and left wings causes roll and proverse

yaw. This method of symmetry breaking was observed by Hedrick and Biewener [61].

The second method of symmetry breaking we use is lead-lag amplitude. We set

this proportional to yaw rate to provide yaw rate damping. Due to the coupled nature

of the motions, this causes yaw rate and roll angle to go to zero.

4.2.5 Two Alternating Flight Modes for Altitude Control

Inspired by altitude stabilization of animal flight, we propose a switching logic be-

tween flapping mode and gliding mode. Requirements for switching use the current

bifurcation parameter σ ∈ (−1, 1) to determine what mode we are in, as well as alti-

tude and velocity information to determine whether to switch mode. Recalling that
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Table 4.1: Simulation parameters

ρ1 = φw,max=50◦ ρ2 = θw,max=30◦ ρ3 = ψw,max=15◦ m=0.3kg

a1 = a5=0 a2 = a6=0◦ a3 = a7=-5◦ Ib= 0.0012*eye(3) kgm2

k=50 or 0 λ= 10 or 50 c= 0.15 m cm0 = −0.5

R=0.32 m Θs=20◦

the z-direction is positive downward, we set the test for gliding mode as

if (σ = 1 & zb < −hmax,flap & Vbx > Vx,max) or

(σ = −1 zb < −hmin,glide Vbx > Vx,min)

then glide (σ = −1) by the control law in Sec.4.2.2 (4.31)

else flap (σ = 1) by the control law in Sec.4.2.3 and 4.2.4.

The switching logic ensures that we have sufficient altitude and forward velocity to

glide, but will interrupt the constant ascending flapping flight with periods of gliding.

4.3 Simulation Results

The body states resulting from the control laws in Sec. 4.2.1 are shown in Fig. 4.5.

The control parameters and the wing angles driven by the CPG network are shown

in Fig. 4.6. The key simulation parameters are listed in Table 1 and are valid unless

actively controlled in Sec. 4.2.1. The vehicle begins in a gliding mode, transitions

to slowly ascending flapping flight, then executes a turn. Transition states are not

well explored. As seen in the next paragraph, most transitions involve discontinuities

which could be avoided in a more sophisticated control law. Most troublesome is the
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Figure 4.4: Velocity and position in the inertial frame of the two alternating flight

modes, flapping and gliding.

transition from gliding to flapping, as the body angle of attack nears −90◦. Remark-

ably, the flapping mode corrects this transitory mode and should be a testament to

the potential of our overall scheme.

To turn, at the 10 second mark, we set δ = 3◦, accompanied by setting ω̇ = 0,

shifting the zero point and scaling the proportional feedback for lead-lag coupling,

scaling the derivative feedback for lead-lag coupling, and turning off yaw damping due

to lead-lag amplitude symmetry breaking. At the 15 second mark, we return δ = 0◦.

What is interesting here is that we have symmetric flapping, and the vehicle settles

into a nice banked turn. The bank angle, rate of turn, and qualitative characteristic

(e.g. amplitude of body pitch oscillation) of the turn are interestingly linked to the

scale and shift of the lead-lag coupling, but an exact correlation is not yet known.

This must be further investigated and understood in order to implement a better

nonlinear control law. Finally, at the 20 second mark, we return the original scaling to

77



0 5 10 15 20 25 30 35 40

−80

−60

−40

−20

0

20

40

60

Time [s]

B
od

y 
ro

ll 
an

d 
pi

tc
h 

an
gl

es
 [d

eg
]

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

B
od

y 
ya

w
 a

ng
le

 [d
eg

]

Time [s]

Figure 4.5: Euler Angles of the two alternating flight modes, flapping and gliding. In

the top figure, the red curve is the pitch angle and the blue curve is the roll angle.
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Figure 4.6: State vectors of the two alternating flight modes, flapping and gliding.
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proportional feedback of lead-lag coupling, but select a new zero point for proportional

feedback and also a new scaling for derivative feedback. At this point, we also turn

on yaw damping by lead-lag amplitude symmetry breaking. The roll angle through

the turn is about 40◦ and the average global yaw rate is between 90 and 100◦/sec.

This is feasible in light of experimentation [61].

Figure 4.6b shows the resulting oscillatory behavior of the flapping (φw), pitch

(θw), and lead-lag motion (ψw) commanded by the CPG network and highlights the

effects of our changing control variables on CPG behavior. From arbitrary initial

conditions, the CPG network synchronizes globally and exponentially, indicated by

the synchronization errors defined as the first element of (xi − R(∆ij)ρi/ρjxj)– see

Fig. 4.6b. When the phase difference ∆ij is time-varying, there is a small residual

error in the synchronization (≤ ±0.2◦), but still effectively small due to Corollary 3.

Otherwise, the synchronization errors tend exponentially to zero as predicted by The-

orem 2.

4.4 Robobat Experiments

RoboBat is a highly controllable platform, modeled after the kinematics of a bat.

Eight degrees of freedom are provided; three in each shoulder joint and two for the

amplitude of flapping. Shoulder joints are also analogous to human shoulder joints,

able to move forward, backwards, up, down, and can twist in both directions. Those

motions correspond to lead-lag, flapping, and pitching respectively. These 8 degrees

of freedom are combined with variable speed motors to allow for maximum flapping

in control schemes. The flapping motion of the wings are independently powered by

two 5 watt Maxon motors. Electronic controllers for the two Maxon motors allow

for precise control of motor velocity and thus flapping frequency. All other degrees

80



(a) Flapping Motion (b) Pitching Motion

(c) Lead-Lag Motion

Figure 4.7: Positive wing motion directions

of freedom are controlled with Futaba servos. Two US Digital absolute encoders are

attached to the sides of the two motors and connected with gears in order to measure

the absolute position of the wings. This position data is used to create a closed loop

controller for the wings and allows them to synchronize to a desired signal from the

CPG’s.
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Figure 4.8: RoboBat Testbed

4.4.1 Kinematics of Pendulum System

We present the dynamic model of the current RobotBat, which is not intended to be a

free flying platform. It is intended as a testbed for CPG control designs, experimental

confirmation of unsteady aerodynamics, and experimental determination of optimal

wing motions. The weight and power requirements have not been optimized for free

flight. In order to test longitudinal control strategies, it has been attached to a

Quanser pendulum platform, which provides encoder feedback signals that we can

use for control. Figure 4.8 shows the three degrees of freedom: travel, elevation, and

pitch (λ,ε,θ). For more information on the testbed, see [82].

Of note is the fact that the pitch rotation point is not near the center of gravity

of the bat. To make experimentation feasible, we have affixed a counterweight on

the pitch arm. By moving this counterweight or changing its mass, we can alter the

natural stability of the pitch motion. One consequence of this scheme is that the

pitch motion has an artificially high moment of inertia. Therefore, we expect that
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our moment-producing control schemes for a tailless vehicle will have even more effec-

tiveness in a free flier. To move toward computations of actual forces and moments

generated, we desire dynamic modeling of the pendulum set-up and the unsteady

aerodynamics. If we define our generalized coordinates to be [q1, q2, q3] = [ε, θ, λ],

then using Lagrange’s equations, d
dt
∂L(q,q̇)
∂q̇
− ∂L(q,q̇)

∂q
= F and algebraic manipulations,

we can transform the EOM to standard robot form [54].

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ. (4.32)

The forces and moments on the right hand side can be found as a function of wing

kinematics and an aerodynamic model, The generalized forces remain intact through

the transformation to robot form, i.e., F = τ , and are computed to be where L,T, and

M are found later in the aerodynamic model. This formulation can then be applied to

a free-flying MAV. Here, we present a refinement on the aerodynamic model of [79].

The pendulum rig consists of

1. A solid bar with mass Mp hinged at its center of gravity such that it can spin

about the vertical axis (angle given by λ, positive counter-clockwise) and rotate

upwards and downwards in the vertical plane (angle denoted by ε, positive

downwards).

2. A compound pendulum mounted on one end of the bar consisting of two point

masses: the robotic bat itself modelled as a point mass mb and a variable mass

m. The compound pendulum is free to swing in the plane normal to the bar,

with the swing angle given by θ.

3. A counter-weight, mw, located at the opposite end of the bar as the bat.

Three frames of reference can be defined for this system, given an inertial frame of
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reference I fixed to the Earth:

1. A frame B fixed to the compound pendulum with its origin at the suspension

point. The frame B parallel to the aircraft body axis frame centered at the

aircraft CG.

2. A frame P with its origin at the bar’s hinge point such that under nominal

conditions, the axes of P and B are parallel to each other.

3. A frame S constructed locally at every wing station for calculation the local

wind velocity and the aerodynamic forces and moments.

The frame I is first rotated about the z-axis by an angle λ, followed by a rotation

about the x-axis by ε to coincide with the P frame. Therefore, the following rotation

matrix is obtained to transform the components of a vector from I to P :

RPI =


1 0 0

0 cos ε − sin ε

0 sin ε cos ε




cosλ − sinλ 0

sinλ cosλ 0

0 0 1



=


cosλ − sinλ 0

cos ε sinλ cos ε cosλ − sin ε

sin ε sinλ sin ε cosλ cos ε

 (4.33)

The frame P is rotated about the y-axis to obtain frame B:

RBP =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 (4.34)

The rotation matrix from B to S was covered in Section 4.1.
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4.4.2 Open Loop Experiments

Experiments are conducted by commanding flapping frequency and phase differences

while observing the bat’s orientation and velocities from the encoder data. Using

dSPACE’s ControlDesk software, a GUI is created for direct interaction with the real

time controller of the bat. Control variables can be changed and plotted in real time,

and data is captured and saved to a MATLAB binary file.

As mentioned in Section 4.4.1, there is an offset between the center of the bat

and the pitch rotational point. This creates a coupling between the dynamics of the

second pendulum with the longitudinal dynamics of the bat. While we use this to

our advantage to obtain stability states desired for testing phase difference control,

it necessarily creates a large rotational moment of inertia that is many times that

of an actual bat. Therefore, we expect the pitching moments from phase difference

control to have less effect in this experimentation than in free flight of a low moment

of inertia bat. Regardless, we hope to see pitch control via only flapping/lead-lag

phase difference even in this set-up.

First, we consider steady-state behavior of pitching motion with respect to phase

differences. Most variables were held constant and are given in Table 4.2. In the

first experiment, the phase difference between flapping and lead-lag, ∆31, was varied

between 140 deg and 240 deg twice. The system was allowed to converge to a non-

equilibrium steady state. Encoder data was captured for 20 seconds. Figure 4.9 shows

the minimum, maximum, and average value over the 20 second period. As expected,

between 180 and 240 deg, the forward velocity and elevation curves look very flat,

but the pitch angle increased between 6 and 8 degrees. This corresponds with the

idea that lift and thrust generation remained similar while only a control moment

was created. It is postulated that a free flight system with a low pitching moment of
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Figure 4.9: Open-loop pitch control via phase differences (2 Hz).

inertia would see much stronger pitching effects from such control. This is supported

by physical intuition and the numerical simulations performed previously [79]. The

lower range of phase differences, 140-180 deg, saw a large dropoff of thrust and lift

generation. In fact, the bat came to a complete stop at one point with the phase

difference at 140 deg. Therefore, we should not plan to use this range in control of

flapping flight.

The second experiment repeated the same process at 2.5 Hz instead of 2 Hz.

Only one sweep through the values was performed. The results are plotted in figure

4.10 and support the same conclusion as the first experiment. Additionally, they
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Flap Freq ∆21 ∆31

Experiment 1 2 Hz 90 deg Varied

Experiment 2 2.5 Hz 90 deg Varied

Table 4.2: Experiment Parameters
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Figure 4.10: Open-loop pitch control via phase differences (2.5 Hz).

preliminarily confirm the postulate that flapping frequency can be used as strong

control of forward velocity and altitude. Finally, note that we are not concerned

about the fact that all the relevant body pitch angles are all around 20-40 degrees.

Adjustment of CG location can set the trim state as desired while control moments

87



0 5 10 15 20 25 30 35 40 45 50
−24

−22

−20

−18

−16

−14

−12

−10

−8

Time (s)

P
itc

h 
A

ng
le

 (
de

g)

Figure 4.11: Experimental Results of Pitch Control at 2.5 Hz

are created from phase differences.

4.4.3 Closed Loop Experiments

We turn our attention to demonstrating that the CPG structure allows very simple

top-level controllers to provide stability and control in closed loop.

Simple symmetric PID controllers were used for all experiments,

∆31 = ∆75 = −5(θ − θd)− 0.5θ̇ − 0.1

∫ t

0

(θ − θd) dt, (4.35)

where θ is the pitch angle and θ̇ is computed using the derivative filter,
ω2
cf s

s2+2ζfωcf s+ω
2
cf

,

with ωcf = 40π and ζf = 0.9. The saturation values were set so ∆31 ∈ [180◦, 270◦].

Even though we are able to use simple PID controllers in the top level, the overall

controller is very nonlinear due to the CPGs in Equation (2.4).

We begin experimentation at an open loop flapping frequency of 2.5 Hz. At

this frequency, the open loop appeared stable. Figure 4.11 shows the response to
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Figure 4.12: Experimental Results of Pitch Stability by Control at 3Hz. The system

starts in open loop, which is unstable. At approximately 22 seconds, the closed-loop

controller was turned on, stabilizing the system.

a change in desired body pitch from −10◦ to −20◦. Two notes should be kept in

mind. First, the actual value of body pitch is affected by the precise position of the

pitch counterweight. Therefore, it is not worrisome that the values are not exactly

around zero or some other intuitively desired value. Second, at 2.5 Hz, the apparent

maximum change of body pitch due to open loop control of ∆31 is around 10− 12◦.

This experiment demands a change of 10◦ and experiences saturation problems as it

nears the final desired state.

Moving the frequency to 3 Hz caused instability in the open loop. Figure 4.12

shows that by activating the PID control of ∆31, we can stabilize the unstable system.

At this frequency, we also have appreciably more control authority. Figure 4.13 shows

a commanded pitch change of 15◦, which is easily obtained. We expect that at speeds

typical of bat flight (2-3 m/s with frequencies of 7-10 Hz [21]) and pitch moment of

inertias not inflated by the pendulum setup we will see even more control effectiveness.
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Figure 4.13: Experimental Results of Pitch Control at 3Hz

The numerical results in Section 4.3 support the idea that this control effectiveness

will be higher.

Finally, we would like to feed back velocity into flapping frequency and demon-

strate flight mode changes. Velocity control is achieved using a similarly simple PID

controller on top of the CPG network. Importantly, RoboBat was able to transition

to a glide after simply flipping the sign of the bifurcation parameter σ in Eq. 2.1. Af-

ter dissipating energy in the glide, the transition back to flapping was again as simple

as flipping the sign. Experimental results are found in Fig. 4.14. During the flapping

phase, both pitch and velocity controllers are active (desired velocity: 0.5m/s, de-

sired pitch: 35 degrees). During the glide phase, notice that rapid inhibition causes

the CPG outputs to go to zero (the plotted CPG output is the normalized value of

the flapping angle). At this time, the frequency and phase difference values are not

meaningful, as the CPGs exhibit exponentially stable fixed point dynamics. During

such a glide, control laws like those proposed in [83] could easily be used to control

the bias signals of the Hopf oscillator network.
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Figure 4.14: Experimental Results of Flight Mode Change with Pitch and Velocity

Control
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4.5 Chapter Summary

In order to show the effectiveness of the proposed CPG-based flapping flight control,

we presented numerical simulation and experimentation by using a realistic vehicle

model with three dimensional wing kinematics. The dynamic model and wing kine-

matic model of flapping flight represent the more complete and complex mechanical

flapping system developed for wind tunnel testing. This dynamic model includes a

tilted stroke plane angle, the lead-lag motion, and the relative body velocity, in addi-

tion to the flapping and pitch angles of each wing. We also showed that CPG-based

flight control can stabilize and alternate two different flight modes of flapping and

gliding flight by using synchronized and symmetry-breaking (phase difference) oscil-

latory motions of two main wings. This result is interesting in the sense that tailless

flapping flight dynamics could be effectively controlled without using aerodynamic

control surfaces. This result agrees with a prior claim of biologists that birds acts

more like tailless aircraft.

Further, the 8-DOF robotic bat introduced in this chapter provides a useful contri-

bution to the state of the art. Previous models have been very limited by mechanical

simplicity to generating only sinusoidal waveforms. Our model allows not only allows

experiments involving motions not used before such as lead-lag and pitch for each

wing, but also for independent control of flapping frequency and amplitude. From

the data collected by this testing, we were able to show that CPGs allow for the

smooth transitions of control parameters, as well as generating useful wing trajecto-

ries.

We demonstrated the ability to stabilize and control longitudinal motions via

CPGs with the RoboBat. As expected, the top-level controllers are of low dimension

and can be made simply, because most of the hard work is done by the CPGs. Given
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the extent of mechanical coupling in the design, it is remarkable that such control

was immediately as effective as it was. As mechanical design of actuators develops,

we expect robotic fliers in free flight to be able to utilize the key feature of phase syn-

chronization and control of phase differences in stability and control of body motions.

The major problem of identifying a method of proving such stability analytically is

still open. However, this chatper has demonstrated the result experimentally.
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Chapter 5

Spiking Neuron Circuit for Simple

Controller

5.1 Neuron and Synapse Models

Neuroscience has not yet solved the problems of cognition, memory, or information

processing [84]. It has, however, discovered some potential tools which can be ex-

ploited for such purposes and highlighted some simple neural circuits which display

interesting, complicated behaviors. We want to preserve as many of these features as

possible, even if we don’t yet know how to fully exploit them.

The two most basic building blocks of a neural network are neurons and synapses.

Biological neurons are cells which have a membrane with low inherent ion permeabil-

ity. A combination of ion pumps and channels regulates the concentration of ions

inside and outside the membrane. An electric potential across the membrane is de-

termined by these concentrations. The time history of ion concentrations results in a

time history of the neuron’s voltage. Ion channels respond to this voltage as well as

chemical signals from synapses, opening to selectively allow ions to diffuse through

94



the membrane. Different types of neurons have different sets of relevant ions and a

variety of possible ion channel behaviors. The most basic of these responses is the

action potential, first discovered as a fast inward sodium current followed by a slower

outward potassium current. The resulting voltage behavior looks like a spike followed

by a refractory period.

Mathematical models for neuron-like objects are abundant [85]. Some, like per-

ceptron or integrate-and-fire models, have been developed primarily from simple com-

putational or theoretic principles, without regard to biological realism. Others, like

Hodgkin and Huxley’s squid axon model, have a high degree of biological realism

(modeling actual ion currents), but they can introduce computational complexity

(e.g., Hodgkin-Huxley is a fourth-order differential equation). We chose to follow

Izhikevich’s lead in selecting a reduced-dimension model which retains the ability to

produce much of the same qualitative behavior as biological neurons [86].

Neurons display very complex behaviors [87]. While we don’t know exactly which

qualitative behaviors are actually encoding information in biological systems, our

perspective is that bursting behavior and spike latency are important for even very

simple behavioral networks. For example, consider the classic half-cell oscillator [88].

It is the simplest known method of constructing a biologically-realistic central pat-

tern generator (as opposed to the mathematical abstraction introduced in Chapter 2,

which is believed to be necessary for a multitude of repeated, oscillatory behaviors

exhibited by nearly every higher animal. Besides reciprocal inhibition, this network

requires spike frequency adaptation (due to spike latency) and post-inhibitory re-

bound. Izhikevich’s model may be the simplest model which exhibits these types of

behavior [86].

For a network of multiple neuron, the mathematical form of Izhikevich’s model

for ith neuron is
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Civ̇i = ki(vi − vr,i)(vi − vt,i)− ui + Ii (5.1)

u̇i = ai(bi(vi − vr,i)− ui),

with after-spike resetting

if vi ≥ +30mV, then


vi ← ci

ui ← ui + di

(5.2)

is a modified quadratic-and-fire model [33]. The main variable, v, is a voltage across

the neuron membrane. There is a single slow variable, u, which may be capable of

representing two or three known ion currents inherent in the neuron’s internal dy-

namics. C and a are the major timescales, while c and d determine the reset (and

beginning of the refractory period). Additional constants are vr and vt, the resting

potential and threshold potential, respectively. The input current, I, is general and

can incorporate multiple currents coming into the neuron. We will use the nota-

tion Ii to represent the sum of all currents going into the ith neuron. In biological

experiments, a patch clamp can inject a current. Synapses or sensors (e.g., stretch

receptors) can also produce a current in a neuron. These currents can cause an equi-

librium bifurcation, initiating a burst. During the burst, the slow variable produces

spike frequency adaptation. Finally, a limit cycle bifurcation can cause the burst to

cease.

Though we’ve determined that this model is useful for our purposes, questions

remain about the details of its dynamics. It’s not clear whether the discrete reset is

adding complexity or is benign according to Poincarè’s construction of dynamics near

a limit cycle. For example, Izhikevich claims the model can produce chaos [86], but
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it’s not clear whether this is behavior due solely to parameter selection or if chaos is

injected through the forcing function.

Our selection of Izhikevich’s model was also greatly influenced by the fact that

we can approximate its behavior with simple structures in complimentary metal-

oxide semiconductor (CMOS) hardware [89]. Ongoing work is being done to simulate

these electrical circuits in NGSPICE and prepare our ability to procure chips which

reproduce neuron networks in terms of physical voltages and currents.

Synapses provide signaling between neurons. When an action potential reaches a

synapse, it triggers vesicle fusion and release of quantized amounts of neurotransmitter

into the synaptic cleft. On incredibly short timescales, the neurotransmitter diffuses

across the cleft and binds to receptors on the post-synaptic neuron. These receptors

trigger the opening of ion channels, allowing a current to flow in the post-synaptic

neuron.

Like neurons, there is no shortage of mathematical models for synapse behavior

[34, 90, 91]. Our selection criteria were driven by control theoretic concerns (namely

delay and attenuation, detailed in Section 5.3) rather than biological realism. It is

likewise unknown which features are most important for general synaptic coding,

so future work may desire a model which reproduces quantized vesicle release more

accurately. In the model we selected (by [34]), a sigmoid function governs the turning

on of a synapse according to

S∞,ij =


tanh((vi − vth,i)/vslope,i) for vi > vth,i

0 otherwise,

(5.3)

where i is the neuron turning on the synapse and j is the neuron being influenced

by the synapse, vth,i is the synapse threshold and vslope,i defines the sharpness of
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the smoothed activation function. Then, the percentage of usable neurotransmitter

available in the cleft is described by

dSij
dt

=
S∞,ij − Sij
τij(1− S∞,ij)

, (5.4)

having intrinsic activation timescale τij. Finally, the current produced in the post-

synaptic neuron is

Iij = gij(t)Sij(t)(vj(t)− vrev,j), (5.5)

where gij is the synaptic conductance, vrev,j is the reversal voltage, and vj is from

Equation 5.1. Note that Iij may be only one component of the overall input current

to the jth neuron, Ij. Future work in self-tuning or learning networks can incorporate

synaptic plasticity - an increase or decrease in gij according to the time-history of

spiking among the synaptically connected neurons. For the remainder of this work,

we will assume constant synapse conductance (i.e., gij is constant).

We believe these structures will provide us unparalleled design flexibility. We also

expect these structures to be implementable in CMOS with a low-power footprint.

When combined with memristor technology (a variable-resistance resistor to provide

variable synapse weights), the potential is tantalizing.

5.2 Antagonistic Motoneurons

While we can reproduce neuronal/synaptic behavior in hardware, a robotics engineer

has few options for biologically-inspired sensors or actuators. Instead, electromechan-

ical devices still dominate the landscape. We must be able to incorporate inputs from

them and encode outputs which are useful to them. This process will likely lack some
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degree of biological inspiration, due not only to the difference in devices, but also

because models of biological devices are not yet fully known [92]. We will need to

make some simplifying assumptions which may be relaxed in future work.

Our primary assumption will be antagonistic motoneurons. Biological motoneu-

rons are antagonistic, but they also have antagonistic sensors/actuators (i.e., a bi-

ceps/triceps motoneuron pair has two stretch receptors and two muscle groups; even

this is a simplification). One interesting consequence of biological antagonistic pairs

is that coactivation can increase joint rigidity. Perhaps a clever mechanical design

can provide this feature in robotic applications in the future.

Instead, we assume that the output of antagonistic motoneurons are merely summed

(with a sign change indicating direction) before sent to a mechanical actuator. This

is sensible from an engineering standpoint, as the motoneuron outputs are merely

currents on a chip, which are easy enough to sum.

Likewise, sensing in biological systems is complicated. Even ignoring the many

layers of potential feedback (distributed cutaneous sensors, equilibrioception, etc.),

antagonistic muscle pairs have corresponding antagonistic low-level feedback in the

form of stretch receptor pairs. Instead, rotary encoders are the preferred sensor for

joint angle in robotics. We assume, for now, that these stretch receptor signals will be

additive inverses of one another (i.e., if the biceps stretch receptor signals a stretch,

the triceps stretch receptor signals a contraction of equal magnitude). Therefore, we

merely send the error signal directly to one motoneuron while sending its additive

inverse to the opposing motoneuron.
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5.3 Simple PD-like Controller

Our goal for the remainder of this chapter will be to construct a neuron controller that

behaves substantially like a classical PD (proportional-derivative) controller. Propor-

tional control is simple with antagonistic motoneurons. The challenge is implementing

derivative control that is tuneable, yet minimal. The three fundamental aspects of

derivative control are delay, attenuation, and sign change. We’ll discuss three possible

networks, which are shown in Figure 5.1

Configuration A utilizes non-antagonistic motoneurons. Instead, it uses three

neurons - one for inputting the error signal into the network, a direct path to the

motorneuron via an excitatory synapse, and an indirect path to the motoneuron

(here, Neuron 3). The indirect path has one interneuron (Neuron 2), which has an

excitatory input synapse from the error neuron (Neuron 1) and which inhibits the

motoneuron. The interneuron provides delay and attenuation, while the inhibitory

synapse provides a sign change.

It’s easy to see that this method has little need for an input neuron. Configuration

B feeds the error signal directly into the motoneuron and the interneuron. This is

likely the simplest model for controlling a single error signal in a fashion that is

PD-like. A downside to these two schemes is that they are not symmetric. Notice

that errors in one direction will elicit strong spiking behavior and activate derivative

control through the inhibitory synapse, but errors in the other direction will not. We

could consider two copies of this network arranged in an antagonistic fashion; this

would require four neurons and two synapses.

Instead, consider a single excitatory synapse between two neurons. Figure 5.2

shows an output from such a simple system. The blue neuron is exited tonically by

a step input. It triggers an excitatory synaptic response in the green neuron. Delay
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(a) Asymmetric Configuration A (b) Asymmetric Configuration B

(c) Symmetric Configuration C

Figure 5.1: Schematics for three PD-like neuron networks. Triangular connections

represent excitatory synapses while solid circles represent inhibitory synapses.
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Figure 5.2: One excitatory synapse in isolation.
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can be seen in the timing between the first spike for each signal. Attenuation can be

understood as the increased distance between spikes in the green neuron.

This leads us to propose an antagonistic two-neuron network with reciprocal ex-

citation, Configuration C. The synapse dynamics provide delay and attenuation (see

Figure 5.2), while the antagonistic nature provides the sign change. The collected

equations are
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C1v̇1 = k1(v1 − vr,1)(v1 − vt,1)− u1 + I1

C2v̇2 = k2(v2 − vr,2)(v2 − vt,2)− u2 + I2

u̇1 = a1(b1(v1 − vr,1)− u1)

u̇2 = a2(b2(v2 − vr,2)− u2)

if v1 ≥ +30mV, then


v1 ← c1

u1 ← u1 + d1

if v2 ≥ +30mV, then


v2 ← c2

u2 ← u2 + d2

S∞,12 =


tanh((v1 − vth,1)/vslope,1) for v1 > vth,1

0 otherwise,

(5.6)

S∞,21 =


tanh((v2 − vth,2)/vslope,2) for v2 > vth,2

0 otherwise,

dS12

dt
=

S∞,12 − S12

τ12(1− S∞,12)

dS21

dt
=

S∞,21 − S21

τ21(1− S∞,21)

I1 = I21 + Istretch = g21S21(t)(v1(t)− vrev,1) + (θ − θd)

I2 = I12 − Istretch = g12S12(t)(v2(t)− vrev,2) + (θd − θ),

where θ − θd represents the input error (denoted Istretch to make analogy to stretch

receptors). This only requires two neurons and two synapses, and it is symmetric in

the case that the appropriate constants are symmetric. For the simulations, Table 5.1
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Table 5.1: Neuron parameters

ai = 300 bi = −2 ci = −0.05 di = 0.1 Ci = 0.01 vslope,i = 0.01

ki = 700 vr,i = −0.06 vt,i = −0.04 vpeak,i = 0.035 vth,ij = −0.02 τij = 0.04

vrev,i = 0.02

gives the constants which were used for each neuron. gmax will be the parameter of

inquiry.

5.4 Variable-size Window Moving Integrator Al-

gorithm for Smoothing

The remainder of this chapter will detail a method for performing system identifica-

tion (SysID) on the neuron circuit of Equation 5.6. Our goal will be to determine

whether it behaves substantially like a PD controller. Our main tool for SysID pa-

rameter estimation will be MATLAB’s nonlinear grey box routine. It uses a spatial

measure of fit (which will be detailed in Section 5.6), but from the early trials, it

became clear that this may be problematic when applied to a spiking neuron system.

A spiking signal is stretched in the spatial domain and compressed in the temporal

domain. More importantly, any such spiking signal will eventually be filtered by a

larger mechanical system. In biology, this is the neuromuscular junction, which is not

well understood [92]. In robotics, this is likely a motor.

We would like to retain the knowledge that filtering is occurring but abstract away

from any particular plant/actuator model. This choice has some inherent risk if the

filtering performed by different actuators perform in substantially different ways. We

105



−30

−25

−20

−15

−10

−5

0

5

10

15

20

M
em

br
an

e 
P

ot
en

tia
l, 

v

2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4
0

0.1

0.2

0.3

Time (s)

B
ac

kw
ar

d−
IS

P

Figure 5.3: Example of spike identification (black circles) and ISP.
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have two real choices here. 1) We can perform smoothing as part of the SysID and

then check whether we need to make an alteration for various actuators’ responses to

the signal. 2) We can incorporate an actuator model in the SysID and then try to pull

it back out afterward. We chose the former. Rather than trying to incorporate an

entire plant in the SysID and then later trying to extract just the controller, we find

it plausible that using a simple smoothing algorithm can help us mostly characterize

the controller dynamics and that any actuator refinements can be added later. The

smoothing algorithm proceeds as follows:

1. We identify each spike and calculate the backward-ISP (inter-spike period) for

each spike. This is shown in Figure 5.3.

2. We identify the beginning/end of each burst using relative ISP (e.g., if ISP2 >

3ISP1, then spike 1 is potentially the end of a burst. This is shown in Figure 5.4.

Notice that two subsequent spikes are identified as possibly being the end of a

burst. This is corrected in the next step.

3. We identify potential singletons using absolute ISP (if the forward and back-

ward ISP are both above 12 times the median ISP for a sufficiently excited

signal, we consider it a singleton). We correct beginning/end points as neces-

sary. This is shown in Figure 5.4.

4. At all points within the burst, we smooth signal y to signal y1 with

y1(t) =
1

ISP (t)

∫ t+ISP (t)/2

t−ISP (t)/2

y(t′)dt′. (5.7)

This is shown in Figure 5.5.
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Figure 5.4: Set up smoothing regions where ISP is meaningful.
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Figure 5.5: Smoothed signal.
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Remark 1. Our definition of singletons, beginnings of bursts, and ends of bursts, is

entirely motivated by the desire to perform smoothing using ISP. It is my opinion that

there is no theoretically valid method of distinguishing between spikes and bursts in

general.

An additional benefit to smoothing the signal is that we can rediscretize with a

larger timestep, reducing the computation time for the SysID routine. Notice further

that any choice of filter or smoother will provide tradeoffs. Our hypothesis is that if

the neuron circuit is performing differentiation, it is doing so at a very fast timescale

or instantaneously in analog. Therefore, we prefer to not have a preprocessing routine

introduce a delay, so a windowed smoother is ideal.

5.5 Nonlinear Steady-State Response

In order to capture a nonlinear ’proportional’ state response, we computed the steady-

state output of the neuron circuit for constant input values, Istretch. The results appear

in Fig. 5.6. The blue curve was produced by steadily increasing the input, then the

input was decreased back to zero for the red curve.

Note that in the two high synapse-strength cases, there are two instances which

appear to be possible hysteresis. The first instance (input<3 in both cases) is genuine

hysteresis. It is caused by the fact that the synapses are strong enough to incite

persistent mutual excitation (i.e., once the neurons start firing, the synapse strength

alone is enough to keep them firing indefinitely).

It is not clear yet whether the second instance (input≈4 for g=2.1544 and input≈7

for g=3.1623) actually represents significant hysteresis. In the tested cases, it is only

2-3 points wide. Recalling Sec. 5.2, we send the error signal to the first neuron and its

additive inverse to the second. This means that for large inputs, the second neuron is
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receiving a large inhibitory input. Even though the synapse may be wide open, this

inhibitory input overcomes the excitatory synapse, leaving the neuron in a quiescent

state.

5.6 System Identification Procedure

In order to capture several standard modes as well as a realistic signal from a system,

we constructed a single large input signal to use for further SysID estimations. It can

be seen in Fig. 5.7, and is composed of the following elements. First, we took a series

of trajectories produced by a realistic motor/pendulum system simulation. Then, a

chirp comes into existence, sweeps through a frequency range, and then fades back

out. This is followed by a few step functions and, finally, a ramp.

Model controllers which use a dynamic method to perform differentiation will

likewise produce an artificial delay. While the neuron circuit may be introducing

some delay, our hypothesis is that if differentiation is happening, it’s happening very

fast or instantaneously in analog. Therefore, for the input signal shown in Fig. 5.7,

we use a delay-free central difference method to compute the derivative for the first

ten seconds and then use a delay-free analytic derivative elsewhere. This signal is

also fed into the model controller for the SysID routine.

The flow of our procedure is shown in Fig. 5.8. MATLAB’s nonlinear grey box

parameter estimator was the main tool for performing system identification. For each

value of synapse strength, we fed the input signal through the neuron circuit. Using

the output, we estimated the parameters of the model controller. Internally, the

optimization routine minimizes the cost function
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J =
N∑
i=1

(y(ti)− ŷ(ti))
2, (5.8)

where y is the output of the neuron circuit and ŷ is the output of the model controller.

The routine outputs a fit value (represented as a percentage) defined by

fit = 100

(
1− ||y − ŷ||
||y −mean(y)||

)
. (5.9)

From early results, we determined that a sudden shift in parameters occurred

for high synapse strength cases. While this could be the result of a bifurcation, it’s

also possible that the routine was getting carried away by a local minimum. Since

each parameter estimation begins with the output of the previous estimation (from

the neighboring synapse strength), picking between multiple local minima may be a

phenomenon of the order in which we perform the estimations. Implementing a true

global search algorithm was computationally burdensome, so we compromised with

an algorithm which is likely to identify a separate local minimum and pick the better

option. The algorithm can be described as follows:

1. Sweep through the synapse strength cases, performing parameter estimation for

each case.

2. Identify the maximum distance (in parameter space) between any two solutions.

Call it Rmax.

3. Set an Rmin = Rmax/10.

4. For each synapse strength gmax,i, keep a record of initial conditions which have

been used to perform parameter estimation. If any other synapse strength has

parameters that are further than Rmin from all previous initial conditions used
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for gmax,i, then perform parameter estimation again using this point as the

initial condition.

5. Save the best estimates.

5.7 Model Controller Results

The input system was run through the neuron controller described by Equation 5.6

and smoothed according to Section 5.4. Then, the system identification procedure

optimized the parameters of a modified PD controller, described by

u = k(θ) + θ̇(a+ bθ2 + cθ4), (5.10)

where the variables a, b, and c are being estimated by the SysID routine and k(θ) is the

curve defined by the steady-state ’proportional’ response. Multiple controller models

were tried, but we report only the best fit. The fit quality and estimated parameters

for each synapse strength are shown in Figure 5.9. For the low synapse strength

cases, the fits are good, and the linear damping parameter is increasing in strength,

as expected (while the other effects are much smaller, showing that the derivative

term is mostly linear). A large shift occurs near the point at which the hysteresis

develops - the point at which initiation of spiking causes self-sustained spiking. The

fit also goes down at this point, but rebounds above. Future work should focus on

this region, perhaps pinpointing the bifurcation with numerical continuation.

Nevertheless, we compare the neuron controller to the model controller on a sim-

ple nonlinear damped pendulum, chosen for its familiar characteristics with regard

to controllers. Figure 5.10 shows a mock-up of the neuron circuit driving the pendu-

lum. Figure 5.11 shows the pendulum response to the neuron circuit and the model
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controller.

The general characteristics are similar. Since the steady-state part of the con-

troller, k(θ) varies with synapse strength, the steady-state response does as well.

Notice that for high synapse-strength cases, k(θ) is nonmonotonic, which enables the

possibility of producing multiple steady-states for a single synapse-strength. While

we do not include a figure showing this, we note that it has been seen in simulations.

5.8 Chapter Summary

Biological neurons come in many shapes, sizes, and flavors. Biological synapses do,

as well. It will take many studies to begin producing genuinely general results which

elucidate large-scale design principles for varieties of neurons and varieties of net-

works. Instead of starting with many neurons (i.e. ’neuron soup’), we focused on a

simple two-neuron, two-synapse network composed of identical components. Izhike-
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vich’s neuron model and Rabinovich’s synapse model are a compromise between to-

tal biological realism, dynamical systems similarity, and manufacturing capability.

Nevertheless, the key insights of delay, attenuation, and sign change allowed us to

construct a PD-like network.

We detailed a smoothing scheme alongside a system identification procedure to

analyze the circuit. The controller exhibits derivative control, but also has a nonlinear

steady-state response with hysteresis behavior and a discontinuous jump for high

synapse-strength cases. These results had high fit values away from what appears

to be a bifurcation, and this was confirmed by simulations of a pendulum being

controlled by the neuron circuit and the model controller.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The objective of this dissertation was to explore strategies inspired by nature, par-

ticularly with respect to flapping flight. We focused on three main control schema:

coupled limit-cycle generation, mode switching, and low-level neuromorphic control.

High-level flight controllers were tested in simulation and experimentation. In addi-

tion, a PD-like neuron circuit was analyzed using system identification techniques.

Flapping fliers often produce complicated, coupled wing motions which drive com-

plicated, oscillatory locomotion through the air. The first step in this dissertation

was to analyze a method of producing those wing motions with coupled limit cycle

oscillators. The goal here was to provide a reduced set of control parameters with

which we could design a top-level controller. We chose the Hopf oscillator for several

of its properties: smooth, robust, and symmetric. Coupled together with propor-

tional coupling, the oscillators can synchronize. We gave rigorous proofs describing

the conditions under which these networks will exhibit phase synchronization. Phase

synchronization is one of the key tools to utilizing limit cycle CPG control for flap-
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ping flight. In addition, coupled Hopf oscillators provide capabilities for frequency

modulation, amplitude modulation, and fast inhibition via bifurcation.

Fast inhibition implicates a switched systems framework. We cast the limit-cycle

problem as one of multiple, possibly non-equilibrium steady-states. Using Lyapunov

functions to link the spatial and temporal domains, we built entry-sets and a no-

escape set with an associated dwell time. While this was a true generalization of

previous work, our use of Lyapunov derivatives introduced some complications. In

the end, however, our method produces tighter bounds and is applicable to systems

with more useful dynamics.

These methods were applied in both simulation and experimentation. A full 6DOF

dynamic simulation captured realistic aerodynamics using blade-element theory and

quasi-steady assumptions. Through a combination of frequency control, symmetric

and anti-symmetric phase differences, and symmetric and antisymmetric amplitude

modulation, we controlled all body modes through ascending and turning flight. In

addition, we switching between flapping and gliding rapidly for altitude regulation by

changing the bifurcation parameter.

We developed an 8DOF RoboBat and mounted it on a compound pendulum,

isolating the longitudinal modes. Open-loop experiments supported the hypothesis

that flapping/lead-lag phase differences were a potential control parameter for pitch

dynamics and would have less affect on the other states. Closed-loop experiments

confirmed this hypothesis by allowing us to stabilize an unstable system and exert a

measurable amount of control authority.

Desire for low-level reflex behavior and a control schema that could satisfy size,

weight, and power constraints for a variety of micro vehicles, we also investigated

spike-bursting neuron control. We selected Izhikevich’s neuron model and Rabi-

novich’s synapse model for their combination of biological realism, ability to produce
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relevant dynamic phenomena, and propensity to be implementable in hardware. A

two-neuron, two-synapse, mutually-excitatory circuit was developed to produce PD-

like control behavior in an antagonistic set-up, exploiting the properties of delay and

attenuation. Interpolating on inter-spike distance allowed us to exploit a variable-size

window integrator smoothing algorithm allowed us to provide high-quality smoothed

signals from the spiking signal.

Since global optimization is too time-consuming, we developed a not-entirely-

local optimization algorithm to help avoid some possible local minima. Using this

in combination with system identification techniques, high fit values supported the

hypothesis that the neuron circuit was acting much like a PD controller. Finally,

driving a pendulum with both the model controller and the neuron circuit produced

substantially similar results, confirming the hypothesis.

6.2 Future Work

As this dissertation touched broadly on multiple areas of interest, there are many

problems which can be explored in continuing work. In particular, the neuron circuits

in Chapter 5 represent a very new intersection between neuroscience and engineer-

ing, leaving much to be done. The following is a list of potential applications and

challenges which follow from this work:

• Explicit characterization of death of oscillation and the relation to Splay states:

This dissertation provided some new insight into Splay states and the inner

workings of contraction theory. It remains to characterize these states explicitly

or to determine whether coupling structures for networks of size greater than

two can mitigate the phenomenon. The onset of global contraction may also
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correspond to a bifurcation which extends the observed behavior to be provable

for all coupling gains.

• Theoretical bridge between network control and switching: This dissertation

required strong assumptions on switched systems which may be difficult to sat-

isfy for a complicated plant, particularly when being driven by complicated net-

works. This gap must be addressed from both sides. Oscillator network-driven

plants need methods to guarantee passivity-like properties or other bounded-

ness properties. In turn, one could attempt to weaken the switched Lyapunov

assumptions in order to utilize these properties.

• Onboard, open-air flapping flight: This dissertation provided experimental vali-

dation only on a constrained compound pendulum with external measurements

provided by encoders. A platform which produces sufficient thrust for forward

flight and which remains stable and controllable by means of only the two main

wings is an admirable goal. To confirm the capabilities beyond question, sensing

and processing should be all onboard, allowing continuous outdoor flight apart

from encoders or external camera systems.

• Gain ranges for neuron circuits: This dissertation showed a small range of PD-

like gains for a simple neuron circuit. Parameter selection, mechanical design,

or populations of neurons could be used to extend these ranges. Populations of

neurons could be used to improve robustness to chip failures. There appears to

be a qualitative change in the high synapse-strength cases. Bifurcation analysis

could shed light on methods to directly extend the range of useful synapse

strengths along with the gains, directly.

• Self-tuning neuron circuits: If we think of a dynamic controller as a plant,

122



itself, then this dissertation did a kind of open-loop analysis on it. We may

want to add circuit complexity which is specifically designed to provide self-

tuning capabilities. This open loop analysis may inform the particular goals

which are set for such a circuit.

• Modular, hierarchical neuron structures: This dissertation only analyzed a very

simple neuron circuit with rather simple control properties. However, the overall

theme clearly points to developing circuits which oscillate to produce locomo-

tion, select behaviors, and/or incorporate strong reflex responses. The smooth-

ing and system identification tools used here, along with insight gained about

the intuitive properties of neurons and synapses, may be useful for proposing

or analyzing other structures. Structures with complicated functionality can be

imported and analyzed for suitability in engineered projects. Those structures

can be combined hierarchically to produce a whole-vehicle neuromorphic con-

troller, which could even be decentralized in the same way that the peripheral

nervous system operates in mammals or sucker ganglia operates in octopuses.
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