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ABSTRACT

This thesis explores some of the main approaches to the problem of speech

signal enhancement. Traditional signal processing techniques including spec-

tral subtraction, Wiener filtering, and subspace methods are very widely used

and can produce very good results, especially in the cases of constant ambient

noise, or noise that is predictable over the course of the signal. We first study

these methods and their results, and conclude with an analysis of the suc-

cesses and failures of each. Comparisons are based on the effectiveness of the

methods of removing disruptive noise, the speech quality and intelligibility of

the enhanced signals, and whether or not they introduce some new artifacts

into the signal. These characteristics are analyzed using the perceptual eval-

uation of speech quality (PESQ) measure, the segmental signal-to-noise ratio

(SNR), the log likelihood ratio (LLR), and weighted spectral slope distance.
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CHAPTER 1

INTRODUCTION

Speech signal enhancement is performed in many systems used today. Speech

recognition and speech-to-text services such as those found in smart phones

require the ability to uncover clean speech from a signal that was recorded in

a noisy environment. Music recognition softwares require high quality signals

to be able to identify songs and artists, and so need to be able to filter out

unnecessary ambient noise from a recording.

Figure 1.1 models the high level goal of speech enhancement; we want to

be able to extract a high quality clean signal from a given noisy signal. Sig-

nal processing methods are commonly used to achieve this. Some of the

most popular algorithms include spectral subtraction, Wiener filtering, and

subspace enhancements. We will detail each of these methods in the follow-

ing chapters and conclude with a discussion of the performance of each on

various corrupted test signals.

While signal processing is often very effective, there are some issues that

come about from its use, including the inability to remove non-stationary

noise, and the inherent inability to respond to very harsh corruption in sig-

nals. As a result, machine learning approaches to this problem have been

successfully applied, and we will discuss some of the theory and reasoning

behind this.
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Figure 1.1: Spectrograms showing the STFTs of a signal with (top) and without
(bottom) corruption

1.1 Short-Time Fourier Transform (STFT)

An important step in any frequency domain speech enhancement algorithm

is finding the STFT of the noisy signal at hand. We divide the signal into

multiple frames of the same size and find the Fourier transform of every

frame. Each frame is windowed (usually using a Hamming window) and there

is some overlap between frames used so as to ensure there is no information
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loss during transformation and reconstruction. Below is the mathematical

definition of STFT of a time domain signal y(n).

Y(ω) =
∞∑

n=−∞

y(n)w(n−mR)e−jωn

where y(n) is the time domain signal at time n, w(n) is the windowing func-

tion, and R is the number of samples between each frame [1].

1.2 Noise Estimation

Every algorithm discussed in this thesis relies on some form of noise estima-

tion to enhance a given signal. The method of spectral subtraction inherently

requires some knowledge of the noise profile, as it must be subtracted from

the noisy signal to receive the clean signal. In most situations, we are not

given a noise profile and so must construct one of our own using the noisy

signal. The most widely use approach is to average the first few frames of

the noisy signal, as we can assume that the recording will contain a few mil-

liseconds of ambient noise before the speaker starts speaking. Once we have

taken the STFT of the noisy signal, we can simply take an average of the

first few frames and keep the resulting signal information aside as the noise

spectrum.

Similarly to spectral subtraction, most Wiener filtering algorithms choose

to assume that the first few frames of a speech recording are a good estimate

for ambient noise. These frames are averaged to construct a profile for the

assumed noise. Some approaches to Wiener filter even update, or add to the

noise profile by identifying segments of the signal where there is no speech

while processing each frame. This is accomplished by estimating filter coeffi-

cients at every frame of the signal, allowing for a progressively more accurate

filter [2]. Another way this can be accomplished is with voice activity detec-

tion (VAD), wherein the power of a signal is checked to differentiate between

segments with high magnitude (usually this means a speaker is speaking),

and regions with low magnitude (where ambient noise is most prevalent) [3].
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This updating is one feature that makes the Wiener approach adaptive and

helps improve the error over time.

Noise estimation in subspace enhancement is slightly different than the pre-

vious two algorithms. Subspace enhancement takes advantage of the matrix

representation of signals. Matrices are divided into subspaces whereby noise

is approximated by the smallest eigenvalues or singular values and speech is

approximated by the rest [4].

1.3 Phase Estimation

A more recently explored pitfall of signal processing techniques is the appli-

cation of the original noisy spectrum’s phase information to the enhanced

signal’s spectrum before finding the time domain signal using the inverse

STFT. As an ideal noise profile of a signal is not usually available, the phase

information from the original signal is usually assumed to be valid for the

cleaned signal as well [5]. However, this may not always be the case be-

cause the two signals can often be quite different due to the removal of noise.

Geometric approaches to speech enhancement take this into account and per-

form some manipulation on the phase information as well as the magnitude

information of the signal in order to produce a better quality enhancement

[6].

1.4 Musical Noise and Reduction

One of the biggest issues with any speech enhancement algorithm is the in-

troduction of musical noise as a result of the subtraction of the noise from

a signal [7]. Specifically in spectral subtraction, when we subtract the noise

spectrum from each frame of the noisy signal’s STFT, there arises the pos-

sibility of creating of some negative numbers. Upon reconstruction of the

enhanced signal using the inverse STFT, these negative values become ran-

dom noises that are inconsistent with the overall signal. These introduced

artifacts can be audibly disorienting and reduce the quality of the enhance-

ment. Similar effects are seen in signals enhanced using Wiener filtering and
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subspace methods as a result of overfiltering and too much removal. Figure

1.2 shows the spectrogram of an an enhanced signal showing the existence

of musical noise. One basic method of handling musical noise is to manually

alter the signal and set negative values (and optionally, very small values

determined by some threshold) produced after the subtraction to zero before

performing the inverse transform. While this may result in some information

loss, it is usually trivial compared to the qualitative benefits. Other methods

include creating filters that aim to remove musical noise from a processed sig-

nal, or applying weighting functions to different parts of a signal to minimize

the effect of musical noise [8].

Figure 1.2: Spectrogram showing the STFT of a WGN corrupted signal enhanced with
spectral subtraction. Musical noise is visible in the spectrum.
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CHAPTER 2

SPECTRAL SUBTRACTION

One of the oldest and most popular signal processing algorithms for speech

signal de-noising is spectral subtraction. While this algorithm is effective for

most applications of speech enhancement, there are some inherent shortcom-

ings with its ability to effectively remove noise, including the production of

musical noise and issues with deleting noise that is dependent on the speaker.

This process, at a high level, involves finding an estimate for assumed ad-

ditive and uncorrelated noise, and subtracting it from the original signal to

get a clean signal without any noise or unnecessary artifacts [4]. The model

of the problem is this: We are given a time domain signal y(n), which is the

combination of speech x (n) and some disruptive noise d(n) at time frames

n,

y(n) = x (n) + d(n)

We want to extract the noiseless speech signal x (n), but this is difficult in

the time domain as the noise is not so easily distinguishable from the speech

that we want to retrieve, so we take the Fourier transform to put the signal

in frequency domain. The result is

Y (ω) = X (ω) + D(ω)

Given this form, we can easily find the magnitude of the clean speech signal

by subtracting the noise profile from the corrupted signal. This gives us the

clean signal in frequency domain,

X (ω) = Y (ω) − D(ω)

Now if we take the inverse transform of the clean spectrum we get x (n).

Before going into the details of the algorithm, we discuss some important

background information.
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2.1 Spectral Subtraction Algorithm

y(n) STFT Y(⍵)

|Y(⍵)|	- |D(⍵)|

Subtract	noise	
magnitude

X(⍵)

∠	Y(⍵)

Inv STFT x(n)

Figure 2.1: Block diagram of the spectral subtraction process.

Figure 2.1 outlines spectral subtraction at a high level. Below we outline the

steps in detail for signal enhancement using Spectral Subtraction.

1. Find the STFT Y (ω) of noisy signal y(n).

2. Save phase information 6 Y (ω) from STFT of noisy signal.

3. Estimate noise magnitude D(ω) from initial few frames of noisy signal

spectrum.

4. Subtract noise from each frame of noisy spectrum to get clean signal

X (ω).

5. Set negative values in X (ω) to zero to prevent musical noise.

6. Apply phase information 6 Y (ω) to cleaned signal X (ω).

7. Find the inverse STFT of the cleaned signal to get the cleaned signal

x (n) in the time domain.
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CHAPTER 3

WIENER FILTERING

Wiener filtering uses a mathematical approach to decrease error between true

clean speech and algorithmically enhanced speech signal. This approach aims

to minimize the mean-square error to get a better estimate of the noise-free

speech signal [4]. As such, the Wiener filter can be called an adaptive least

mean squares (LMS) filter. This method is often more effective than spectral

subtraction, especially in the cases where the assumptions of noise being

constant and additive do not hold. However, this method does assume zero

mean noise that is mostly uncorrelated with the signal of interest. The model

of the problem is this: we are given a signal y(n), and want to remove the

noise d(n) to recover the clean signal x (n),

y(n) = x (n) + d(n)

Wiener filtering is applicable in both the time and frequency domains. In

the time domain, we construct a filter h(n) from the autocorrelation matrix

of the noise signal, and the cross-correlation vector of the noisy and clean

signals. We now apply this filter to the noisy signal, as shown in figure 3.1.

Figure 3.1: Wiener filtering in the time domain

The resulting signal, x (n), is the enhanced signal, with noise removed. The

process is mostly similar when performing Wiener filtering in the frequency

domain. We first find the Fourier transform of the noisy signal,

Y (ω) = X (ω) + D(ω)

We do not always have access to a clean signal, so we estimate the noise from

segments of the signal without speech, and infer a filter from the estimated

8



noise and clean signals. Once we have this estimate, we construct a filter,

H (ω), designed to remove this noise from the signal, and apply it to every

frame to allow for an enhanced signal that is statistically closer to the true

clean signal.

X (ω) = H (ω)Y (ω)

The inverse Fourier transform can be applied to X (ω) to get the enhanced,

or denoised, signal x (n).

3.1 Time Domain Noise Removal Algorithm

y(n) x(n)h(n)

h(n)	coefficients	
constructed	to	
minimize	error	

Figure 3.2: Block diagram of Wiener filtering process in the time domain.

Figure 3.2 shows the high level process of Wiener filtering in the time domain.

Below we enumerate these steps, including details on how to construct the

LMS filter h(n).

1. Identify the error of approximation at time frame n as

e(n) = x (n) - x̂ (n)

where x̂ (n) can be replaced with hTy(n), or the result of filtering the

noisy signal.

2. Find the mean squared error value, which is ultimately to be minimized,

J = E
[
e2(n)

]
which we can expand by replacing e2(n) with x(n) - hTy(n) to get

J = E
[
x2(n)

]
- 2hT r−yx + hTRyyh
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such that r−yx is the cross correlation vector between the noisy and clean

signal, and Ryy is the autocorrelation matrix of the noisy signal.

3. Minimum error is reached when the derivative of J is zero, so we com-

pute the derivative with respect to h to find the necessary filter,

∂J
∂h

= -2r−yx + 2hTRyy = 0

4. Now we can construct the filter from the above,

h = R−1yy r−yx

5. Apply the filter h to the noisy signal y(n) using convolution to get the

enhanced signal,

x̂ (n) = h(n) ∗ y(n)

3.2 Frequency Domain Noise Removal Algorithm

H(⍵)	coefficients	
constructed	to	
minimize	error	

y(n) x(n)Y(⍵) X(⍵)STFT Inv STFTH(⍵)

Figure 3.3: Block diagram of Wiener filtering process in the frequency domain.

Figure 3.3 shows the high level process of Wiener filtering in the frequency

domain. Below we describe the steps for noise removal, including details on

how to construct the LMS filter H (ω).

1. Find error of approximation at frequency ω as

E (ω) = X (ω) - X̂ (ω)

where X̂ (ω) can be replaced with H (ω)Y (ω), or the result of filtering

the noisy signal.

2. Find the mean squared error value, which is ultimately to be minimized,

10



J = E
[
E(ω)2

]
which we can expand to

J = E
[
D(ω)2

]
- H (ω)Pyx(ω) - H *(ω)Pyx(ω) + H (ω)2Pyy(ω)

such that Pyy(ω) is the power of the noisy signal, Pyx(ω) is the cross

power spectrum of the noisy and clean signals, and * indicates convo-

lution.

3. Minimum error is reached when the derivative of J is zero, so we com-

pute the derivative with respect to h to find the necessary filter,

∂J
∂H(ω)

= H (ω)2Pyy(ω) - Pyx(ω) = 0

4. Now we can construct the filter from the above,

H(ω) = Pyx(ω)

Pyy(ω)

5. Apply the filter h to the noisy signal Y (ω) to get the enhanced signal

in the frequency domain,

X̂ (ω) = H(ω)Y (ω)

and use the inverse Fourier transform to get back the time domain

enhanced signal, x̂ (n).

11



CHAPTER 4

SUBSPACE METHOD

Subspace methods take advantage of the characteristics of singular value

decomposition (SVD) and eigenvalue decomposition (EVD) of matrices to

remove noise from corrupted signals. The main idea behind this process

is that given a noisy speech matrix, we can find two subspaces, the noisy

subspace and the noise subspace. Given this information, removing noise

from a signal can be accomplished by simply removing from the noisy speech

matrix the values and vectors associated with the noise in the signal [4]. This

method often works without the common side effects of spectral subtraction

like musical noise production; however, it does assume that the noise is zero

mean and uncorrelated with the speech signal we are trying to recover. The

model of the problem is this: we are given a noisy signal y(n), which is some

clean speech x (n) corrupted with noise d(n),

y(n) = x (n) + d(n)

In order to use subspace methods, we need to put these signals into matrix

form, which can be accomplished through the formation of Toeplitz, Hankel,

or cross correlation matrices,

Y = X + D

SVD and EVD analysis of the Y matrix can thus give us information about

X and D that we can use to eliminate the D component from Y, and give

us X [9]. Once we have this we can reconstruct a time domain signal from

the matrix to get the enhanced signal that we want, x (n).
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4.1 SVD Based Noise Reduction

y(n)
Create	

Toeplitz	or	
Hankel	
matrix

Y Singular	Value	
Decomposition USVT

USVT USVT	speech

USVT	noise

Construct	
Enhanced	

Signal	Matrix	
x(n)

Average	
Diagonals

Figure 4.1: Block diagram of SVD-based subspace enhancement.

Figure 4.1 shows the high level process behind subspace enhancement. Be-

low we detail these steps regarding speech enhancement using SVD-based

subspace algorithms.

1. Separate the noisy time domain speech signal y(n) into overlapping

frames, and perform each of the following steps for each frame.

2. Form the Toeplitz or Hankel matrix Y.

3. Find the SVD decomposition of Y such that Y = USV T . S contains

singular values along the diagonal while U and V store the left and

right singular vectors associated with the respective singular values.

4. Choose how many singular values to keep and how many to zero out

as noise. The smallest singular values (and their associated vectors)

correspond to the noise, while larger values (and associated vectors)

correspond to speech. The number of singular values retained is some

number k that is smaller than the actual number of singular values of

Y.

5. Construct an enhanced signal matrix X by finding the low rank ap-

proximation of Y using only the largest k singular values and vectors

of Y. The formula for finding this approximation is

13



X =
k∑

i=1

siuiv
T
i

ui and vTi are vectors from matrices U and V, which correspond to the

largest singular values si we choose to use from S.

6. For every diagonal in X, find the average. These averages are the values

of the cleaned signal x (n).

4.2 EVD Based Noise Reduction

y(n)
Create	

covariance	
matrix

Ry Eigenvalue	
Decomposition UΛUT

U Uspeech

Unoise

Reconstruct	
Signal

Us UsTy

x x(n)

Figure 4.2: Block diagram of EVD-based subspace enhancement.

Figure 4.2 outlines the steps for noise reduction using EVD-based subspace

algorithms at a high level. Below we detail the steps in this algorithm.

1. Given the noisy speech signal (in vector form), y = x + d, construct

the covariance matrix of y, such that

Ry = Rx + Rd

2. Find the eigenvalue decomposition of Ry such that Ry = UΛUT . U is

a matrix containing eigenvectors while Λ is a matrix containing eigen-

values on the diagonal.

14



3. The smallest eigenvalues correspond to noise while the larger ones, the

principal eigenvalues, correspond to speech. Using eigenvalues corre-

sponding to speech, construct a Us matrix such that it contains eigen-

vectors relating only to the speech.

4. Reconstruct the clean signal vector by projecting y onto the speech

subspace of the signal,

x = UsU
T
s y

This gives us the enhanced signal, x (n).
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CHAPTER 5

METRICS

We analyze the effectiveness of the discussed methods with a variety of met-

rics. The four main objective measures we will use are segmental SNR, PESQ

measure, LLR measure, and WSS distance.

5.1 Segmental SNR

Signal-to-noise ratio (SNR) measures the ratio between the amount of im-

portant content and noise content in a signal. SNR can be calculated over an

entire signal, but the segmental SNR is often better at providing a measure

of the quality of a signal as it calculates the SNR frame by frame [10]. As

segmental SNR is a ratio, a higher dB value denotes a better quality signal.

The SNR of an entire signal is calculated as follows, where x(n) is the clean

or enhanced signal and d(n) is the noise signal at time n. The SNR calcu-

lates the ratio of the power of the signal-to-noise content. The noise signal

is obtained as the difference between the clean and corrupted speech signals.

SNR = 10 log10

N∑
n=1

x(n)2

N∑
n=1

d(n)2

where n is the current time frame and N is total number of samples. We can

calculate segmental SNR by applying the above to single frames of the signal

and doing some preprocessing during the process. This involves removing

SNR values that may be too high or too low to indicate any change in quality.

Segmental SNR is therefore calculated as follows:
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Segmental SNR =
10

M

M−1∑
m=0

log10

Lm+L−1∑
n=Lm

x(n)2

Lm+L−1∑
n=Lm

d(n)2

where L is the number of samples per frame and M is the number of frames

in the signal.

5.2 PESQ Measure

The perceptual evaluation of speech quality (PESQ) measure is a widely

used metric for judging signal intelligibility, and is often used as a standard

for speech signal quality. This measure came up as a replacement for the

traditional use of human listening tests to judge speech signal quality. The

scores range from 1 to 5, with higher values indicating a better quality signal

[11].

5.3 LLR Measure

The log likelihood ratio (LLR) is a measure of the distance of a corrupted

(or enhanced) signal from the clean signal by comparing the linear predictive

coding (LPC) vectors of the clean and corrupted speech [12]. This metric is

calculated with a log function, so smaller values indicate signals closer to the

true clean signal.

The LLR is calculated as

LLR = log

(
adRca

T
d

acRcaT
c

)
where ad is the LPC vector of the corrupted signal, ac is the LPC vector for

the clean signal, and Rc is the auto correlation matrix for the clean signal.
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5.4 WSS Distance

The weighted spectral slope (WSS) distance measures the difference in spec-

tral slopes of difference frequency bands in each frame of the distorted or

enhanced signal from that of the clean signal [13]. This way, the difference

in actual signal intensity is given less importance, and speech quality is mea-

sured on the basis of the similarity of changes in signal intensity to that of

the clean signal. A lower measure indicates a higher similarity, and thus a

cleaner signal.

The WSS distance for a signal can be calculated as follows. The metric

takes into account the different frequency bands present in each frame of the

signal.

WSS Distance = 1
M

M−1∑
m=0

K∑
j=1

W (j,m)(Sc(j,m) − Sd(j,m))2

K∑
j=1

W (j,m)

where K is the number of frequency bands, M is the number of frames in

the signal, Sc is the spectral slope of the clean signal, Sd is the spectral slope

of the corrupted signal, and W is the weight for a specific frequency band

at a certain frame. The weights are calculated using characteristics of the

spectra of both signals.
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CHAPTER 6

RESULTS AND ANALYSIS

6.1 Noisy Signal Database

Each algorithm was used to enhance 1080 speech signals taken from the

NOIZEUS database. The speech signals include short sentences spoken by

both male and female speakers. There were 9 different noise types tested

against, including an ideal case of white Gaussian noise (WGN) corruption.

For each noise type, we had signals with 4 different amounts of noise corrup-

tion. White Gaussian noise (WGN) is the most assumed case for noise in a

signal. WGN is stationary, uncorrelated, and fairly constant over the course

of a signal. To create these noisy signals we added to the clean speech signals

different scaled amounts of random white noise depending on what level of

corruption (SNR) we wanted. Since signal processing algorithms are most ef-

fective on stationary noise, we should expect to see better performance when

enhancing signals corrupted with WGN rather than colored noise.

We tested the three methods on 8 other noise types at different corrup-

tion levels. These signals were corrupted with ambient noise related to an

airport, babble, car, exhibition, restaurant, station, street, and train. De-

pending on the characteristics of these noise types as being more varied than

WGN, as well as their characteristics relative to each other, we can expect

to see different results.

6.2 Spectral Subtraction

Below we explore the results of enhancing various corrupted signals with

spectral subtraction. First we look at the most ideal case of stationary, zero

19



mean, white gaussian noise (WGN).

6.2.1 White Gaussian Noise

Figure 6.1: Comparison of segmental SNR (top left), PESQ measure (top right), LLR
(bottom left), and WSS distance (bottom right) for WGN corrupt signals and spectral
subtraction enhanced signals. In all plots, the dark purple bars refer to the corrupt
signals, while the light yellow bars refer to the enhanced signals.

As seen in figure 6.1, spectral subtraction improved the segmental SNR of

the signal by quite a lot. Even the case of highest corruption (0 dB SNR)

resulted in an improvement in overall quality.

The PESQ is a measure of signal quality, looking more at whether or not

the signal is understandable. From the PESQ plot in figure 6.1, we see that

in the case of highest level of corruption (0 dB SNR), spectral subtraction

does not do enough to improve the quality of the signal, mainly due to gar-

bling and musical noise (as showed by listening tests). However, in all other

cases, there is an improvement, and the amount increases as the level of cor-

ruption in the original signal decreases.
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LLR is a measure of intelligibility of a signal. Looking at the LLR plot

in figure 6.1, in the case of highest level of corruption (0 dB SNR), the en-

hanced signal is slightly less understandable, probably due to musical noise

and overlapping. In the other cases, we have improvement in LLR (lower is

better), but the improvement is not too great, indicating that the enhanced

signal is not of very high quality.

WSS compares spectra of the noisy and enhanced signals with that of the

clean signal. As discussed earlier, a smaller distance indicates closer values.

As seen from the previous three plots, spectral subtraction has been remov-

ing a good amount of noise from the signal. However, from the WSS plot

in figure 6.1 we see that the WSS measure indicates an increase the spectral

distance. This would thus indicate the introduction of random artifacts dis-

torting the signal spectra. While the perceived quality of the signal may be

better, and the level of noise may be reduced, the modifications to the signal

are clearly compromising the quality of the enhanced signal.

6.2.2 Other Noise Types

Given the results for signals corrupted with the ideal case of white Gaussian

noise, it follows that the performance of spectral subtraction on various other

noise types (as described in the introduction to this chapter) will be lesser

in quality. In figure 6.2, we can see that segSNR and PESQ measure are

improved on average, while LLR and WSS reflect a drop in signal quality.
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Figure 6.2: Comparison of segmental SNR (top left), PESQ measure (top right), LLR
(bottom left), and WSS distance (bottom right) for corrupt signals and spectral
subtraction enhanced signals. In all plots, the dark purple bars refer to the corrupt
signals, while the light yellow bars refer to the enhanced signals. Results are averaged
values of signals corrupted with 8 different noise types and their respective enhanced
signals.

6.3 Wiener Filtering

Below we explore the results of enhancing various corrupted signals with

Wiener filtering. First we look at the most ideal case of stationary, zero

mean, white Gaussian noise (WGN).
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6.3.1 White Gaussian Noise

Figure 6.3: Comparison of segmental SNR (top left), PESQ measure (top right), LLR
(bottom left), and WSS distance (bottom right) for WGN corrupt signals and Wiener
filtered signals. In all plots, the dark purple bars refer to the corrupt signals, while the
light yellow bars refer to the enhanced signals.

Figure 6.3 shows an improvement in segmental SNR for all levels of cor-

ruption when enhancing with Wiener filtering. This does not say too much

about quality, but it shows that there is a decrease in the amount of random

noise present in the enhanced signal from the corrupt signal.

From figure 6.3, we can see that in the cases of less corruption (5 dB to

15 dB SNR), the PESQ measure is appropriately improved, indicating that

the subjective quality of the signal improves after filtering. However, the

most corrupt signal’s quality actually decreased, possibly due to overfilter-

ing, and thus removal of some speech.

Further quality decrease is visible in the LLR plot in figure 6.3, showing

that the LLR of the enhanced signals are actually higher than those of the

corrupt signals. It would appear that the Wiener filter used to enhance the
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signal fails to improve the intelligibility of the signal, possibly removing too

much, or introducing some new artifacts that are skewing the LPC coeffi-

cients by a large amount. This assumption is further backed by the increase

in WSS distances, as seen in the WSS plot in figure 6.3.

6.3.2 Other Noise Types

Figure 6.4: Comparison of segmental SNR (top left), PESQ measure (top right), LLR
(bottom left), and WSS distance (bottom right) for corrupt signals and Wiener filtered
signals. In all plots, the dark purple bars refer to the corrupt signals, while the light
yellow bars refer to the enhanced signals. Results are averaged values of signals
corrupted with 8 different noise types and their respective enhanced signals.

The results displayed in figure 6.4 reflect a similar trend to those for the WGN

corrupted signals. The PESQ measure is more or less unchanged, though

there is a more significant drop in the case of most corruption. However

from the large increases in LLR and WSS, it follows that the Wiener filtering

would have removed noise but introduced extra artifacts into the signal that

resulted in some garbling.
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6.4 Subspace Enhancement

Below we explore the results of enhancing various corrupted signals with

subspace enhancement. First we look at the most ideal case of stationary,

zero mean, white Gaussian noise (WGN).

6.4.1 White Gaussian Noise

Figure 6.5: Comparison of segmental SNR (top left), PESQ measure (top right), LLR
(bottom left), and WSS distance (bottom right) for WGN corrupt signals and Subspace
enhanced signals. In all plots, the dark purple bars refer to the corrupt signals, while the
light yellow bars refer to the enhanced signals.

We see from figure 6.5 that segmental SNR is almost always improved by sub-

space enhancement. There is a slight drop in the segSNR value in the case

of least corruption (15 dB SNR), which could be from discarding too many

singular values due to over-assuming the amount of noise that is present. We

also see a trend of increasing improvements in PESQ measure as the level

of corruption goes down. Clearly, the quality of the signal is improving with

the application of the subspace method.
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LLR is worsened in the case of highest level of corruption, as seen in the

LLR plot from figure 6.5, but the LLR is reduced in all other cases, though

the amount of improvement is small. We also see that WSS distance, how-

ever, does not improve, but slightly worsens. These results could reveal a

shortcoming in the algorithm, demonstrating either too much removal, or

too little.

6.4.2 Other Noise Types

Figure 6.6: Comparison of segmental SNR (top left), PESQ measure (top right), LLR
(bottom left), and WSS distance (bottom right) for corrupt signals and Subspace
enhanced signals. In all plots, the dark purple bars refer to the corrupt signals, while the
light yellow bars refer to the enhanced signals. Results are averaged values of signals
corrupted with 8 different noise types and their respective enhanced signals.

The results displayed in figure 6.6 follow the trend seen in the enhancement

of WGN corrupted signals. On average, segSNR and PESQ measure are

either increased, or stay around the same, and LLR and WSS distance are

worsened. This shows that the algorithm is canceling out either too much or
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not enough noise, and that it is not robust enough to produce high quality

results in response to non-ideal noises.

6.5 Comparison of Algorithm Performance

In this section we analyze the performance of each algorithm by comparing

their abilities to improve each metric.

Figure 6.7: Comparison of the effect of Spectral Subtraction, Wiener Filtering, and
Subspace Enhancement on segmental SNR. These results are averaged over signals
corrupted at 10 dB WGN.

Segmental SNR is the best metric for checking removal of noise content in a

signal. The higher the segmental SNR, the less noise there is present. Figure

6.7 shows that all three algorithms are able to almost double the segmental

SNR of a signal with respect to the original corrupt signal. Evidently, the

algorithms are successful at noise removal.
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Figure 6.8: Comparison of the effect of Spectral Subtraction, Wiener Filtering, and
Subspace Enhancement on segmental SNR. These results are averaged over signals
corrupted at 10 dB WGN.

The PESQ measure attempts to replicate the results of human listening tests,

so can be said to estimate intelligibility of a signal. Figure 6.8 summarizes

the effect of the algorithms on corrupted signals, and shows a small improve-

ment in the PESQ measure. Previous analysis also showed similar results of

moderate improvement in this measure. Since we know that noise is removed

as shown by figure 6.7, clearly the enhanced signals are still not qualitatively

much better than the corrupted signals. This shows that there must be some

different disruption introduced.
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Figure 6.9: Comparison of the effect of Spectral Subtraction, Wiener Filtering, and
Subspace Enhancement on segmental SNR. These results are averaged over signals
corrupted at 10 dB WGN.

Figure 6.9 supports the claim that some new corruption is introduced to the

enhanced signals that reduce the qualitative improvements of the algorithms.

Spectral subtraction and subspace enhancement succeed in slightly reducing

the LLR, showing that the intelligibility is improved by a small amount.

However Wiener filtering is unable to improve this metric and actually wors-

ens it. We saw in figure 6.7 that Wiener filtering was most successful at

improving segmental SNR, showing that it is very effective at noise removal,

but figures 6.8 and 6.9 that the speech signal quality is compromised, in-

dicating possible overfiltering of the signal. With spectral subtraction and

subspace enhancement however, PESQ measure and LLR are improved but

not significantly. This shows that the noise removal results in the introduc-

tion of musical noise, which serves to reduce the quality of the signal despite

removing the initial noise.
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Figure 6.10: Comparison of the effect of Spectral Subtraction, Wiener Filtering, and
Subspace Enhancement on segmental SNR. These results are averaged over signals
corrupted at 10 dB WGN.

The last metric we discuss is WSS distance. Figure 6.10 indicates that none

of the algorithms were able to minimize this distance. As explained in the

previous chapter, the WSS distance measures the difference in the spectra

of two signals of interest. The fact that none of the algorithms were able

to minimize this distance shows that the enhanced signals’ spectra are not

more similar to those of the clean signals than those of the noisy signals. This

supports the notion of introduced musical noise affecting the smoothness of

the spectra of the enhanced signals.

Overall, we notice that the algorithms discussed in this thesis are quite effec-

tive at removing noise from a signal, but are not very successful at improv-

ing the signal quality. While numerical measures are not the best means for

measuring signal intelligibility, listening tests conducted confirmed the re-

sults shown by the objective metrics. There is definitely reduction in noise,

but musical noise affects the smoothness of the spectrum and the subjective

quality of the signal is not completely preserved [14]. While such results may

not be extremely useful in trying to improve quality of speech signals, for the

purposes of feature extraction, they are quite reliable.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

As we discussed in the previous chapters, signal processing approaches can

be quite effective at canceling out noise in a signal, but do not always remove

all types of noise, and often fail when noise is correlated to the speech in the

signal or is not constant and hence difficult for a static model to predict. As

we saw in the previous chapter, signals with high levels of corruption (and

therefore lower SNRs) were not always improved with the methods used. And

even if they were improved, it was not by a great amount. For relatively lower

levels of corruption, and where ambient noise was much more stationary over

the course of the entire signal, noise removal improved a good amount after

running enhancement algorithms on them, as indicated by the increases in

PESQ measures and segmental SNR values, but not without comprising the

intelligibility, as demonstrated by the LLR and WSS distance results. In

these cases, listening tests also showed decreases in noise content, but not

necessarily improvement in speech quality.

Spectral subtraction, Wiener filtering, and subspace enhancement have been

some of the more popular algorithms used for decades to achieve noise re-

moval, and are still used in many applications of signal processing and not

just in speech and sound research. However, there is still the problem of

efficiently solving the problem of removing non-ideal unwanted noise from

a signal, especially in a way that does not create new artifacts that only

reduce the quality of the enhancement [15]. There are also the problems of

assuming that the first few frames of a signal are noise, and assuming the

phase information of the noisy signals is also that of the clean signal. Speech

enhancements and denoising using deep learning, however, is a more recent

approach that is generally more accurate at creating very close estimates to

true clean speech.
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Neural networks are modeled after neural systems found in the brain. They

are adaptive and robust models that make them ideal for many machine

learning or big data tasks that require handling and large amounts of data.

Speech enhancement tasks can be easily applied to neural networks [16].

Given a large amount of available noisy signals y(n) and their associated

clean signals x (n), a network could be trained to identify noise in a sig-

nal and then remove it, with minimal difficulties in removing non-stationary

noise. Performing enhancements on the signals used to generate the results

in chapter 6 would most probably result in cleaner signals.
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