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ABSTRACT

STOCHASTIC ANALYSIS OF HYDROLOGIC SYSTEMS

Hydrologic phenomena are in reality stochastic in nature; that is, their
behavior changes with the time in accordance with the law of probability
as well as with the sequential relationship between the occurrences of

the phenomenon. In order to analyze the hydrologic phenomenon, a mathe-
matic model of the stochastic hydrologic system to simulate the phenom-
enon must be formulated. [n this study, a watershed is treated as the
stochastic hydrologic system whose components of precipitation, runoff,
storage and evapotranspiration are simulated as stochastic processes by
time series models to be determined by correlograms and spectral analysis.
The hydrologic system model is then formulated on the basis of the princi-
ple of conservation of mass and composed of the component stochastic proc-
esses. To demonstrate the practical application of the method of analysis
so developed, the upper Sangamon River basin above Monticello in east
central I1linois is used as the sample watershed. The watershed system
model so formulated can be employed to generate stochastic streamflows

for practical use in the analysis of water resources systems. This is

of particular value in the economic planning of water supply and irriga-

.tion projects which is concerned with the long-range water yield of the

watershed.
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I. INTRODUCTION

It is generally noted that the natural hydrological system and
hydrologic process are truly ''stochastic'; that is, the behavior of the
system or the process varies with a sequential time function of the proba-
bility of occurrence [1,2].*% In other words, the hydrologic phenomenon
changes with the time in éccordance with the law of probability as well
as with the sequential relationship between its occurrences. For example,
the occurrence of a flood is considered to follow the law of probability
and also the relationship with the antecedant flood condition.

Most conventional methods for hydrologic designs are ''deter-

'ministic,” that is, the behavior of the hydrologic system or process is

assumed indepéndent of time variations. For example, a unit hydrograph
derived for a given river basin for flood-control project design is based
on historical flood records. Once derived, the unit hydrograph is used
for analysis of future design floods. Thus, itis automatically assumed
unchanged with time (from the past to the future) and'therefore is
deterministic.

Some conventional methods emp]oy'fhe concept of probability to
the extent that no sequential relationship is involved in the probability.
For example, the flood record is analyzed and fitted with a certain proba-
bility distribution to determine the recurrence intervals of the flood or
the flood frequencies. Such methods are ''probabilistic' but not in the

true sense ''stochastic."

* Numbers in parentheses refer to references listed at the end of the
report. ‘ ‘



The stochastic method, that is to employ the concept of proba-
bility as well as its sequential relationship, has not been well intro-
duced in the practical design and planning of hydrologic projects, because
such methods have not been fully developed. While the natural hydrologic
phenomenon is stochastic, it is important to develop the stochastic method
of hydrologic analysis for hydrologic system design. Conventional methods,
deterministic and probabilistic, which do not conform more closely to the
natural phenomenon, will produce results that depart from the true behavior
of the hydrologic phenomenon and hence have the possibility to either over-
design or underdesign the hydrologic project [3].

The objective of this study is to formulate the mathematical

.model of a stochastic hydrologic system and the mathematical models of

the hydrologic»processes in the system, using the watershed as an exam-
ple of the hydrologic system. In this study, in other words, the frame-
work of a method was developed to utilize mathematical models to simulate
the stochastic behavior of a watershed as the hydrologic system. The
mathematical models so developed should have a practical application to
the analysis of hydrologic systems in the water resources planning and
development.

The initial step of the study‘involved a comprehensive review
of the application of the theory of stochastic‘process in hydrology. The
results of this initial step of investigation are reported separately as
"Water Resources Systems Analysis - Annotated Bibliography on Stochastic
Processes'' [4] and ''Water Resources Systems Analysis - Review of Stochastic

Processes'' [5].



II. FORMULATION OF THE HYDROLOGIC SYSTEM MODEL

In the formulation of the hydrologic system model, a watershed
is used as the hydrologic system although the mathematical approach would
be equally applicable to other kinds of hydrologic systems with some modi-
fications depending on the nature of the system. The watershed is téeated
as a hydrologic system which has an input, mainly rainfall, and an output,
mainly runoff and evapotrénspiration. The input and output are to be
treated as time series or stochastic processes which describe the stochas-
tic behavior of the input and output processes. The amount of water
stored in the watershed is also treated as a time series or stochastic

process which describes the stochastic nature of infiltration, subsurface

runoff and the soil moisture and groundwater storages.

To formulate a mathematical model for the watershed hydrologic

’ system, the runoff is considered as the integral product of three compo-

nent stochastic processes; namely, (1) a ''conceptual watershed storage'
at the end of the t-th time interval representing the storage of water

on the ground surface, such as lakes, ponds, swamps aﬁd streams, as well
as below the ground surface, such as soil moisture and groundwater reser-
voirs, (2) the total rainfall input during £he t-th time interval, and
(3) the total losses, mainly evapotranspiration, during the t-th time
interval. These three component stochastic processes can be mathemati-
cally represented respectively by time series functions [S(t); t€T],
[X{(t); teT] and [E{t); t€T] where T is the time range under consideration
or the IengtH of the hydrologic record. These stochastic processes can
be simply denoted by St, Xt and E¢» respectively. They are not considered
as independent but as a stochastic vector [S(t), X(t), E{(t); tCT]. The

theory of time series can therefore be used to formulate the stochastic



mode]l of this vector. A rigorous mathematical analysis of this vector
would require the use of the theory of multiple time series analysis [6].
In view of the accuracy of the natural hydrologic data and for the pur-
pose of practical application without resorting to excessive mathematical
involvement, the stochastic vector is to be analyzed by the single time
series analysis techniques of corre]ogrém and spectrum in combination
with the cross-spectrum theory which provides a powerful tool in the
analysis of multiple time series.

By the basic concept of system continuity, the runoff, which is
a stochastic process of total runoff output during the t-th time interval
as denoted by [Y(t); t€T] or simply Y., can be related to the other three

. component stochastic processes of the hydrologic system as follows:

S¢ = Sg-p * Xy - Yy - Ey (1)

where St-l is the conceptual watershed storage at the beginning of t-th

time interval.
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ITI. MATHEMATICAL TECHNIQUES

A. Mathematical Models for Time Series

In this study three models of time series which have been used
in hydrologic study were reviewed. These models or their combinations
would be employed to simulate the hydrologic stochastic processes. The
hydrologic time series is denoted by [ut; t€T] where ug is the hydrologic
variable attributed to thé t-th time interval and T is the length of the

hydrologic record.

1. Moving-Average Model. This model may be expressed as

Uup = ajeg + ageeo] oot an€iome] (2)

where ¢ is a random variable; Ay, gy ..., 8y are the weights; and m is
the extent of the moving average. This equation may be taken as the
model representing the relation between, say, annual runoff u and, say,
annual effective precipitation €, where m is the extent of the carryover
due to the water-retardation charactefistics of the watershed. For such
a model, the weights a1, @, «-.p @ Must be all positive and sum to
unity. By virtue of the moving average on the e's, the simulated time

series u is not random but stochastic.

2. Sum-of-Harmonics Model. This model may be expressed as
N
up = Z[ (Aj cos Z$i£_+ Bj sin Z%iﬁ_) + e, (3)
J

where Aj and Bj are the amplitudes; 2mjt/T is the period of cyclicity

‘with j=1,2,..., and N being the number of record intervals in months,



years or other units used in the analysis; and e, is a random variable.
This equation may be taken as a model representing a regular or oscilla-
tory form of variations, such as diurnal, seasonal and secular changes
that exist frequently in hydrologic phenomena. Such variations are of

nearly constant period and they may be assumed sinusocidal as simulated

in the model.

3. Autoregression Model. The general form of this model may

be expressed as

+ € (%)

ug = f(ut_], Upmps woes ut—k) c

where f( ) is a mathematical function, k is an integer, and e, is a ran-

dom variable. A special case of this model is the linear autoregressive

model of the n-th order:

Up = @gUpog T 3Ugap 7 e FagU L, ey (5)

where CIE az, ceey an are the regression coefficients. For n =1, the

above equation becomes the first-order Markov process:

ug = a ut_] + €¢ . (6)

where a is the Markov-process coefficient.
The autoregression model may be used as a model representing

hydrologic sequences whose nonrandomness is due to storage in the hydro-

logic system, such as a watershed.

'B. The Correlogram

The choice of an appropriate time series model for a given

‘hydro]ogic process is not an easy task because the above-mentioned three



models all exhibit oscillations resembling the fluctuations which one
usually observes on most hydrologic data by visual inspection. A well-
known analytical approach which can help one to select the best model is
the analysis of the sample correlogram.

The correlogram is a graphical representation of the serial
correlation coefficient e as a funcﬁion of the lag k where the values i
are plotted as ordinates against their respective values of k as abscissas.
In order to reveal the features of the correlogram better, the plotted
points are joined each to the next by a straight line. The serial corre-
lation coefficient of lag k is computed by

cov(uy, ut+k)

= (7)
[var (uy) var(ut_i_k)]]/2

i

where cov(u ) is the sample autocovariance and var(ut) and var(ut+k)

t* Yk

are the sample variance; or

1
covlu, u ) =§oc Z{ Ut Ut+k

N-k - N-k
7 () v () v’ ®
t=1 t=1

var(ut)‘=N—1E- 'u% - (le)z (Z ut)z (9)

and
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N-k N-k
| 2 1 2
var(u ) = ¢ Z{ Ytrk - T o ( zi ut+k) (10)
t+k N-k (N-k)2
t=1 t=1

The correlogram provides a theoretical basis for distinguishing
among the three types of oscillatory time series mentioned previously. It
has been proved analytically that if the time series is simulated by a
moving-average model for }andom elements of extent m, then the correlo-
gram will show a decreasing linear relationship and vanishes for all
values of k > m. For a sum—of-harmonics model, the correlogram itself is
a harmonic with periods equal to those of the harmonic components of the

model and it will therefore show the same oscillations. |n the case of

an autoregression model, the correlogram will show a damping oscillating

curve. In thé'case of a first-order Markov process with a serial correlation
coefficient ry» itwill oscillate with period unity above the abscissa
with a decreasing but nonvanishing amplitude if r| is negative [7].

It may be noted that, when the time series is too short, the
computed correlogram may exhibit substantial sampling variations and thus

may conceal its actual form.

C. The Spectrum Analysis

This method is another diagnostic tool for the analysis of
time series in the frequency domain, which can help develop an appropriate
time series model for the hydrologic process.

All stationary stochastic processes can be represented in the

form

= /T elto g4z(w) (1)

=T

Ut



where i = v~1 and z(w) is a complex, random function. Using this as a
generating process, it can be shown that the autocovariance for a sta-

tionary process is [8]

= /T elkw gr () (12)

=T

Ty

where 1 = /TT, k is the time lag, w is the angular frequency, and F(w)/Y0
is a distribution functioﬁ monotonically increasing and bounded between

F(-m) = 0 and F(m) = Y, = 02 where ¢ is the standard deviation. The func-
tion F(w) is called the ''power spectral distribution function.'" For k = 0,

Eq. (12) gives

y =02 =" dF(w) (13)
o

=T
_ which shows that dF(w) represents the variance attributed to the frequency
band (w, wtdw). Thus, dF(w) = f(w)dw where f(w) is called the "power
spectrum'" of the process.

In the practical hydrologic application of the spectral theory
the processes are real and the imaginary component is dropped off, thus

Eq. (12) becomes

Y, = 2 /T coskw f(w)dw _ (14)
0
The mathematical inversion of the above equation gives the power spectrum

as

oo}

flo) = ;—ﬂ (v, + Z v cosku) (15)
k=1

For a finite amount of data [ut; te€T] an estimate of the power spectrum is
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: T=-1
f(w) = %}'(Co + 2 ZE Ck coskw) (16)
k=1

where Ck is the autocovariance for a time lag k.
The estimate of the power spectrum by Eq. (16) is called the
"raw spectral estimate'' because it does not give a smooth power spectral
diagram. To adjust for the smoothness, it is common to use the ''smoothed
spectral estimate'' in the‘form
flw) =

[xo(m)co + 2 xk(w)Ck cos kw] (17)

1

L
2m

A1

where Ak(w) are selected weighting factors and m is a number to be chosen
much less than T. A commonly used weighting factor is the ''Tukey~Hamming'
weights [9]:

A (w) = 0.54 + 0.46 cos IX (18)

where m is taken as less than T/10.

The significance of the spectrum is that it exhibits less
sampling variations than the corresponding correlogram. Consequently, the
estimated spectrum would provide a better evaluation of the various param-
eters involved in a model. If the genefating process contains periodic
terms, the frequencies of these terms will appéar as high and sharp peaks
in the estimated spectrum and the height of the peaks will give a rough

estimate of the amplitude.



IV. ANALYSIS OF THE HYDROLOGIC SYSTEM

A. The Watershed under Study

The watershed chosen as the hydrologic system to be analyzed in
this study is the upper Sangamon River basin of 550 sq. mi. in size, above
Monticello, I1linois, and located in east central l1linois. The criteria
for selecting this watershed are that the.available hydrologic data such
as the precipitation, stréamflow and temperature records have a reasonably
concurrent period and that additional data if needed can be relatively
easily collected due to convenient access to its location and to its
data collecting agencies. Figure 1 shows the map of the Sangamon River
basin above Monticello, I1linois with the locations of the stream gaging
.station at Monticello and the precipitation gages where data were observed

for use in the analysis.

B. The Hydrologic Data

1. Precipitation. The monthly precipitations in inches were

used in the analysis as the historical hydrologic inputs to the watershed
system. The data were taken from the '"'Climatic Summary of the United
States'' published by the U.S. Weather Bureau for I1linois. The period
of records used in the analysis extends.from October 1914 through Sep-
tember 1965 for stations at Urbana, Clinton, Bioomington and Roberts,
from March 1940 through September 1965 for the station at Rantoul, and
from June 1942 through September 1965 at Monticello. The average monthly
precipitations over the watershed were computed by the Thiessen polygon
method.

| 2. Streamflow. The monthly streamflow records for the

Sangamon River at Monticello, I1linois, were used as the historical
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hydrologic outputs of the watershed system in the analysis. The U.S.
Geological Survey, in its cooperative program with the [1linois State
Water Survey and other state, local and federal agencies, collects long-
term streamflow records to determine the performance of rivers and streams.
The gaging station on the Sangamon River about one-half mile west of
Monticello had published data available for the periods of February 1908
to December 1912 and June. 1914 to September 1968. The monthly stream-

flows from September 1914 through September 1965 were used in the analysis.

3. Temperature. In the analysis, the average monthly tempera-
tures from October 1914 through September 1965 were taken from the

""Climatic Summary of the United States' published by the U.S. Weather

‘Bureau for I1linois. The mean of the monthly average temperatures at the

stations in Urbana and Bloomington was considered as the average monthly
temperature of the watershed. The relative location of these two stations

with respect to the watershed has suggested this choice.

Lk, Potential Evapotranspiration. Necessary to the analysis of

the watershed hydrologic system is the estimation of the monthly potential
evapotranspiratioh. There are several methods for the computation of the
potential evapotranspiration. The method proposed by Hamon [10] was used
because it has been tested in I1linois [11] with satisfactory results and
the computation and the data requirement are rather simple.

The formula proposed by Hamon is

Ep = 0.0055 D2P, (19)

where Ep is the daily potential evapotranspiration in inches, D is the

‘possible hours of sunshine in units of 12 hours and Pt is the saturation
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vapor density (absolute humidity) in grams per cubic meter at the daily
mean temperature. The value of D depends on the latitude of the watershed
and the month of the year. The value of Pt depends on the temperature.
Tables for. evaluating the values of D and P, are provided by Hamon [12].
The value of D is essentially the monthly daytime coefficient of the
Hargreaves evapotranspiration formula [13]. The value of Pt can be found
from the Smithsonian Meteorological Tables. For the watershed under con-
sideration, its average latitude is 40° N. The values of D2 for the
twelve months are 0.64 (Jan.), 0.79 (Feb.), 0.99 (Mar.), 1.22 (Apr.),
1.44 (May), 1.56 (June), 1.51 (July), 1.31 (Aug.), 1.08 (Sept.), 0.86
(Oct.), 0.69 (Nov.), and 0.61 (Dec.).

The monthly potential evapotranspiration can then be computed by

= 2
Epm = 0.0055 nkD<P, (20)

where n is the number of days for each month and K is a correction factor
equal to 1.04 because Pe is estimated for the monthly mean temperature

instead of the daily mean temperature.

C. Establishing the Recofds for Conceptual Watershed Storage

and Actual Evapotranspiration

Rewriting Eq. (1) gives

E, = X~ Yt - (St - S

t.—

Since the values of monthly precipitation X, and monthly runoff Y, are
known from the historical records, it is obvious from the above equation
that if the record for the conceptual watershed storage S, were known

then the record for the actual monthly evapotranspiration E, could be
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easily established. On the other hand, if the record of Et were known and
an initial value of St were assumed, then the record of S¢ could also be
established. Unfortunately neither St nor Et can be computed in a direct
manner. 4

It is known, however, that in late September and early October
of each year in lllinois the amount of surface water on the watershed and
the soil moisture are at a minimum. Especially in the case of very low
amount of precipitation during the months of August, September and October,
the watershed storage must be the lowest. This lowest amount of storage can
be considered as the reference point of the conceptual watershed storage.

In other words, the conceptual watershed storage is taken as zero at the

-beginning of the October of the year having very low precipitation during

the months of August, September and October. In the present analysis,
this happens to be the case for the Year of 1914.

Once the initial stage of the conceptual watershed storage is
established, the Following‘procedure may be followed to establish the

records of conceptual watershed storage and actual evapotranspiration.

If Sy + X - Yy 2 Eot where E is the potential evapotran-

pt

spiration for the t-th time interval, then the actual evapotranspira-

tion Et =E Thus, the initial storage St for the next time interval

pt’
can be computed by Eq. (1).

I Seoq + Xp = Y < Epts then E; = S, _; + X = Y¢ and Eq. (1)

gives St = Q.

The mass curves of Xt’ Yt’ E, and St -5 are shown in Fig. 2.

t t-1

The difference between ZXt and ZYt is essentially equal to ZE, since

Z(St - St—l) is relatively small as plotted in an enlarged scale. The
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mass curve for St - St—l represents the variation in conceptual watershed

storage with a mean of 3.5 inches.

D. Analysis of the Hydrologic Processes

In this analysis, the stochastic processes of precipitation,
conceptual watershed storage and evapotranspiration are not to be treated
independently of each other but they are considered as a three-dimensional
vector or a multiple-time.series. Without introducing the theory of
multiple-time series, which has yet to be further developed and refined,
the following assumptions are to be made in the present analysis:

(a) Each stochastic process consists of two parts; namely, one

deterministic and the other random and uncorrelated to the deterministic

part and the parts of other processes.

(b) The deterministic part of each stochastic process consists
also of two parts; one part depending only on time and the other part
depending on the vector of the stochastic processes of precipitation,
conceptual watershed storage and actual evapotranspiration at previous
time intervals.

Based on the aone assumptions, the first step is to determine
the deterministic part of each process whicH depends on time. From the
experience in hydrology and the exhibition of hydrologic data, the
deterministic part appears to be a periodic function rather than a poly-
nomial of time. Hence, the sample correlograms can be computed for each
process to test the existence of harmonic components in the process.

The serial ﬁorrelation coefficients ri for time lag k for the

processes of precipitation, conceptual watershed storage and the evapo-

transpiration were computed by Eqs. (7), (8), (9) and (10) for t = 1,2,...

,T.
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In the present study, T is the length of the records equal to
612 months and k is from zero to n/10,say 60. The correlograms, or the
plots of r versus k, for precipitation, conceptual watershed storage and
evapotranspiration are shown in Figs. 3, 4 and 5 respectively. For all
three processes these correlograms are oscillating without any indication
of damping, thus revealing the presenceiof harmonic components in all the
processes.

In order to determine the periods of the harmonic components
which will be included in the model to simulate the hydrologic processes
and the hydrologic system, the power spectrum for each of the processes
should be computed.

From Egs. (16) and (17), the raw and smoothed spectral estimates

may be written respectively as

m-1
L(wt) = E%i (Co + 2 ZE Cy cos E%£—+ C, cos Tt) - (22)
‘ k=1
and
m-1
Uw,) = 2—:T (koco + 2 Z ALy cos "-TL-‘} + Al cos mt) (23)
k=1 '

Substituting Eq. (18) for the Tukey-Hamming weights in Eq. (23)

and simplifying,

m=1
- Y kt
U(wt) = 77 [0.54(c, + 2 21] C, cos - + C cos mt)

m=1
+0.L46(C + 2 2[ C, cos E%E cos E%-- Cp cos wt)]  (24)

k=1



17

Since
Tkt o TK = cog 1K k(o
cos == cos <. = cos m(t+]) + cos m(t 1) (25)
and
cos Tt = --%—[cos m(t+1) + cos w(t-1)] (26)
Eq. (24) becomes
U(wt) = 0.54 L(wt)
m=1
+ 95%2-[c0 + 2 }: Ck cos E%-(tﬂ) + C cos m(t+1)]
=]
m=1
0.23 Tk, _ -
+——2Tr— [CO + 2 Z Ck [of0 1] -—n;(t I) + Cm cos ’lT(t I)] (27)

As the raw spectral estimates can be represented by Eq. (22), Eq. (27) may

be written as

U(w,) = 0.23 L(wt_]) + 0.54 L(wt) + 0.23 L(w (28)

t t+1)

Computer programs were written to compute the autocovariance by
Eq. (8) and the raw and smoothed spectrai estimates by Eqs. (22) and (28).
The smoothed spectra for precipitation, conceptﬁal watershed storage and
evapotranspiration are shown in Figs. 6, 7 and 8, respectively. The sharp
peaks exhibited in these spectra indicate a significant amount of the
variance with the periodicities of 12-month and 6-month which are

appropriate for use in the model.

E. Determination of the System Model

The proposed model for the hydrologic processes is a combination
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of the sum-of-harmonics and the autogression time series models. Since
the results of the correlogram and spectfal analyses indicate the presence
of the 12-month and é6-month periodicities, the general model for the

hydrologic stochastic processes under study may be written in the form

_ , . 27t 2mt
Ut = c] + c2 sin _T§'+ c3 cos.—Ti
byt byt .
el —_ —— !
* ¢y sin =+ cp cos -+ uy (29)

where Cls €5 Cgy C and c5 are the coefficients to be estimated and ug

27 73 7y
is the residual stochastic process with zero mean. This model was there-
fore used to fit the hydrologic processes of precipitation, conceptual
watershed storage, and evapotranspiration by the least-square method such
as the one described by Brown [14]. The coefficients of the model deter-

" mined for precipitation, conceptual watershed storage and evapotranspira-

tion are as follows:

C]v 7 C2 . - C3 CLI' C5
X, 3.0382 -0.9701  0.1365 0.3717 0.0647
S, 3.5231 0.5786 -2.3821 0.5583 -0.1366
E, 2.2346 -2.0511 0.7408 -0.1563 -0.4051

The first five terms in the time series model represented by
Eq. (29) are a portion of the deterministic part of the simulated hydro-
logic stochastic processes. The first term is a constant while the second,
third, fourth and fifth terms are deterministic harmonics as functions of
time. The last term ué represents the residual stochastic process which

may consist of a deterministic portion and the random part of the model.



19

This deterministic portion may be correlated with the vector of the proc-
esses of precipitation, conceptual watérshed storage and evapotranspira-
tion at.prev[ous time intervals, while the random part of the process may
be simulated by a representative pfobability distribution. The determina-
tion of a suitable model for the residual stochastic process will require
further ihvestigation. In further investigation, it may be suggested

that the deterministic portion of the residual stochastic processes be

anélyzed by the cross-spectrum theory [8]. Although the residual stochas-

tic process is a significant component of the model, its magnitude is of
relatively low order. As a first approximation the residual stochastic
processes in the watershed system may be considered completely random

with their means equal to zefo. Thus, for the present study, X£=E£=S£=O

and their variances were found to be 2.754, 0.465 and 4.136 respectively.

_Their probability distributions may be roughly assumed as normal at present

until better probability distribution models are to be found in future
investigation.

With the hydrologic processes of precipitation, conceptual
watershed storage and evapotranspirétion being determined, the runoff

process may be formulated from Egs. (1) and (29) as
Vo= X - B - (S, - Siy) - (30)
or

Y, = 0.8036 + 0.502k sin "—g+ 1.7778 cos % = 0.0303 sin %

+0.6064 cos 1+ 0.5786 s;‘n.'lth_gl_ 2.3821 cos 'n(tgl)

m{t-1)

ﬂ(t‘l) T =3 |
3" 0.1366 cos ——— + Xt Et (St s )

3 t-1

+ 0.5583 sin

(31)
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This is the system model expressed for the runoff process of the upper
Sangamon River basin above Monticello, [1linois. This model can be
employed to generate stochastic monthly streamflow values for use in the
analysis of water resources systems. It is of particular value in the
economic planning of water supply and irrigation projects which is con-

cerned with the long-range water yield of the watershed.
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V. CONCLUSIONS

The ultimate objective of the research on the stochastic analy-
sis of stochastic hydrologic systems is to formulate the mathematical
model for a stochastic hydrologic system for which a watershed is con-
sidered. The upper Sangamon River basin above Monticello, I1linois, is
taken as an example of the watershed. This study has demonstrated that
such a model is feasible aﬁd its application to a practical problem is
workable.

For this study the literature on stochastic processes and their
application in hydrology were reviewed. It was found that the applica-
tion of the theory of stochastic processes in hydrology has barely begun

and the theory has applied mostly to single processes but not to composite

hydrologic systems. The mathematical theory of stochastic processes is

very extensive, but unfortunately most of it is written not for practic-
ing engineers and hydrologists. Furthermore, a systematic theory for
the formulation of a stochastic system model is unavailable because the
formulation of the model requires the practical knowledge on the physi-
cal characteristics of the process and the system which is usually lack-
ing on the part of the mathematician. This étudy therefore attempts to
introduce the use of a theoretical model to thefsimulation of a practi-
cal hydrologic system.

Based on the principle of conservation of mass, the watershed
system is represented by the mass balance equation in which the system
components of‘precipitation, conéeptual watershed storage, evapotranspir-
ation and runoff are considered as stochastic processes. While the data

of precipitation and runoff are given, a method was developed to estab~



22

lish the unknown records of conceptual watershed storage and evapotran-
spiration.

-A deterministic portion of the system component process is
analyzed by the theory of correlogram and spectrum. Computer subroutines
were programmed for the computation of correlograms and spectra of a
discrete time series of finite length. The expected values of the system
components of precipitation, conceptual watershed storage and evapotran-
spiration were thus found to be best simulated by harmonics of 12-month
and 6-month periodicities. This analysfs constitutes an importanrt step
in the attempt of considering the nonstationarity of the processes involved
in the hydrologic system because the expected values are taken as func-
tions of time but not constants.

The hydrologic system model so formulated for the upper Sangamon

- River basin can be used to generate stochastic streamflows for the use in

the planning of water supply and irrigation projects in the basin. The
method developed in this study is therefore formed to be of practical

value in the analysis of water resources systems.
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