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ABSTRACT
APPLICATION OF DDDP IN WATER RESOURCES PLANNING

This is the completion report for the second phase of a research program
on advanced methodologies for water resources planning. It summarizes
the various achievements accomplished during the period of the project.
The main portion of the report, however, is devoted to the presentation of
a working manual for use by practicing water resources engineers and
analysts, showing the application of the discrete differential dynamic
programming (DDDP) which has been developed in the project. For this
portion of the report, the brief theoretical background of the DDDP
methodology and a review of the principal aspects of its theory are
included. Then, a detailed description of the DDDP methodology is given,
giving emphasis to the key steps of its procedure. The DDDP methodology
as a means to solve already formulated dynamic programming problems is
proposed. For illustrative purposes, three examples are given to show
the application of the DDDP methodology in the solution of optimization
problems arising from the planning and operation of complex water
resources projects.
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PREFACE

This is the final report of the OWRR Project B-060-ILL entitled
"Advanced Methodologies for Water Resources Planning - Phase II," which
is a continuation of "Advanced Methodologies for Water Resources Planning -
Phase I'" and covers a study period of July 1971 to January 1974. The final
report for the Phase-I study was published as University of Illinois Water
Resources Center Research Report No. 47 (UILU-WRC-71-0047) in November,
1971, and entitled "Methodologies for Water Resources Planning: DDDP and
MLOM(TLOM)'" by Ven Te Chow, the Principal Investigator (Publication Board
No. 205750, Clearinghouse for Federal, Scientific and Technical Information,
now named National Technical Information Service, U. S. Department of
Commerce, Springfield, Virginia, 22151) [Chow, 1971].

The main objective of the Phase-II research is to develop a
general analytical procedure of water resources planning by enhancing
and extending the value of the results produced by Phase I of the
research program on advanced methodologies for water resources planning.
The overall ijective of the entire research program is to investigate
a number of advanced concepts in water resources planning which are of
basic importance but have not been generally introduced into practice.
Modern concept of water resources planning is to formulate water resources
‘problems as hydroeconomic systems and then to optimize the systems by
stochastic theory and operations research techniques.

Phase I of the research program has already produced new
optimization tools for planning, including DDDP (Discrete Differential
Dynamic Programming) and MLOM (Multi-Level Optimization Model). TFor

purposes of the Phase-II research, these tools were further examined in



order to enhance their effectiveness by extending them to the practical
realm of water resources planning and by applying them to the analysis
of several water resources problems to test hydrologic, economic, urban
and other environmental aspects of the problems.

For Phase-11 of the research program, the major achievements
are as follows:

(1) Optimal operation of a flood-control reservoir system.

The technique of discrete differential dynamic programming that was
developed in the Phase-I research was applied successfully to an actual
problem. The technique is applied to the operation of a system of three
flood control reservoirs (Huntington, Salamonie, and Missisinewa) located
in the Upper Wabash River basin in Indiana. This system of reservoirs is
developed mainly for flood control, although seasonal pools are specified
by the U. S. Army Corps of Engineers for recreation, fish and wildlife.
The objective of this study is to determine a set of system operating
rules which minimize annual flood damage under the assumption that the
seasonal pool requirements are system constraints. First, a flood routing
model was developed for the reservoir system. Then, the DDDP technique
is used to determine the optimal operation. It is interesting to find
that the estimated natural flood damage for the year 1969 would be
$520,288. By actual regulation of the reservoirs by the Corps of
Engineers, the damage is reduced to $239,708. With optimization by

DDDP, the damage could be further reduced to $184,746 but it is very
close to the damage reduced by actual regulation. Finally, an opera-
ting model is formulated by multiple regression. Use of this operating
model yields a damage of $190,337, having a difference of only 3.03%

from the direct optimization. This proves, for this example, that the

DDDP technique can be a very useful tool to develop an operating rule
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formulation for the problem of project expansion, the proposed methodology
requires that each specific flood control planning problem be dealt with
individually. Thus, the proposed methodology must be considered as a
general guideline to arrive at optimum flood control plans in a specific
planning situation. This is demonstrated through its application to an
actual river basin in Illinois (Embarras River), using the technique of
discrete differential dynamic programming developed in this project to
deal with the computational complexity involved in the dynamic programming
analysis for the sequential expansion of the structural components of the
flood control project for the actual river basin.

This study is reported in detail in a doctoral thesis by

G. Cortes-Rivera [see (h) in item (5), or Cortes—Rivera, 1973].

(4) Optimal planning of a water quality system. This study

is to develop a methodology for the optimal planning of a water quality
management system in a river basin where multiple sources of wastewater
are interacting in the receiving water. The optimal system is defined as
a least—cost combination of water quality management alternatives which
if implemented will insure meeting the specified water quality standards.
The optimization of the system can be attained by applying programming
technique such aé the DDDP mentioned above. To demonstrate the practical
application of the system optimization technique, Salt Fork of Vermilion
River located in eastern Illinois is selected for analysis. This river
basin is chosen because of its adequate size, reasonably well-kept
records and convenient location. Data from waste treatment plants in the
basin collected from the Champaign County Sanitary District are analyzed.
To properly model the probabilistic characteristic of the water quality

system, it is necessary to base the analysis on short-interval, such as



daily, measurement of variables. Data from other basins are also being
collected and analyzed to supplement missing data in the chosen basin.
Daily records of flow rate and quality parameters of both wastewater and
receiving water are studied by probabilistic analysis. The probabilistic
analysis provides a mathematical model for water quality variables for
which historical records are available. It also gives a basis for con-
fidently estimating variables when historical records are incomplete or
missing. It is found that in some cases wastes associated with natural
watershed flow, agricultural runoff and storm water may contfibute
significantly to the deterioration of stream water quality. Some efforts
are therefore made to collect information in this respect which is not
generally available and difficult to find. This study is being completed
and will be reported in a doctoral thesis by C. L. Yin during the spring

semester of 1974.

(5) Publications, theses and consultation. One paper reporting

optimal operation of water resources systems was preseﬁted at the
International Symposium on Mathematical Models in Hydrology in Warsaw,
Poland, and is published in the Symposium Proceedings. One report on
DDDP and MLOM is published as a University of Illinois Water Resources
Center Research Report. One paper on farm irrigation model is published
in the American Society of Civil Engineers Proceedings, and another paper
on multi-reservoir optimization model has been submitted for publication
in the ASCE Proceedings.

Two doctoral theses were completed. A third doctoral study was
finished and its thesis will be submitted during the spring semester of

1974.




—

of the reservoir system.
This study is reported in a doctoral thesis by J. E. Schaufelberger

[see (g) in item (5), or Shaufelberger, 1971] on page 8.

(2) Development of a multi-reservoir optimization model. 1In

this study, the analysis of river basin developments is viewed as a multi-
level optimization problem. For the analysis, mixed integer programming

is coupled with historical or stochastically generated, streamfléw sequences
to derive the optimal design for a complex river basin development. In
formulating the model, emphasis is placed on the interrelationships which
exist between the various components of the system and the coordination and
integration of these components into a single economic unit. The proposed
model is designed to determine simultaneously the optimal set and sizes of
reservoirs in the system, the optimal target outputs for the tangible water
uses, power and irrigation, and the optimal operating procedure for attaining
these outputs subject to the technological constraints. Intangible water
users, such as recreation and water quality éontrol, are treated as optional
constraints and their imputed values are obtained by a multiple solution
technique. Part of the input to this model is provided by the irrigation
sub-model developed in Phase I of this research program where effort has
been made to optimize in two levels of irrigation subsystems. This con-
tinuing study is an extension of the two-level model (TLOM) and the model
(MLOM) so developed for a multi~reservoir system may therefore be conceived
as a higher level of system optimization. The objective here is to
determine the optimal level of development of a river basin system which
involves a number of potential dam sites and several competing water users.
At this level of optimization it is assumed that the demand and benefit
relationships for the various purposes have already been determined at a

lower level of optimization.



This study is reported in a paper by Windsor and Chow [see (e)

and (f) in item (5), or Windsor and Chow, 1972, 1973] on page 8.

(3) Application of systems modeling to flood control planning.

For the study of the mathematical modeling and optimization of water
resources project expansion, a methodology is developed for planning flood
control projects which are composed of structural as well as non-structural
elements. This methodology is based on mathematical programming techniques
that allow the identification of optimal flood control plans over the
planning period. 1In particular, a linear programming formulation is de-
veloped for the problem of finding the obtimum extent to which non-structural
measures should be applied, and an algorithm based on dynamic programming is
utilized for the analysis of the optimum expansion of the structural com-
ponents of the flood control project. The optimum flood control plan is
obtained from the results of the linear and dynamic programming algorithms.
These, in turn, incorporate flood-hydrology informatioﬁ resulting from
regional flood-frequency analysis. In general, investigations on project-
expansion problems in water resources planning have been mostly concen-
trated on planning water supply and wastewater treatment plants. Con-
sidering the flood control planning process as a problem of project
expansion is a contribution to such an investigation in general, and to

the study of non-structural alternatives, in particular. The proposed
methodology for the first time introduces the use of mathematical
programming techniques to the solution of flood control plénning for
finding the optimum combination of structural and non-structural alter-
natives. In fact, the planning methodology developed in this study can

be followed in any situation where comprehensive flood control planning

is desired or required. In this sense, it is a methodology of general

applicability. However, insofar as it incorporates a dynamic programming

LI
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Several meetings discussing problems of the research were held
with outside consultants and experts including: Dr. Walter O. Wunderlich
and Dr. L. N. Fan, Systems Engineers, Tennessee Valley Authority; Ing. Milan
Andjelié, Institute of Automation and Telecommunication, Belgrade, Yugoslavia;
Ing. Vladimir Petrovié, Technical Director, Morava River Corporation, Republic
of Serbia, Belgrade, Yugoslavia; Dr. J. L. Serafim, President-Director, COBA,
Lisbon, Portugal; and Dr. Warren A. Hall, then Professor of Civil Engineering,
University of California, Riverside, California, and now Director, U.S.
Water Resources Research Center.
The following is a list of publications and theses produced in
the Phase-I1 research of the project:
(a) Chow, V. T., "General Report on Optimal Operation of Water
Resources System,' Proceedings, International Sympoéium on
Mathematical Models in Hydrology, Warsaw, Poland, 26-31
July 1971, Separate Volume, pp. 1-9, July 1971.
(b) Chow, V. T., "Methodologies for Water Resources Planning:
DDDP an@ MLOM(TLOM),'" Water Resources Center, Research
Report No. 47, UILU-WRC-71-0047, University of Illinois,
Urbana, Illinois, 50 p., November 1971.
(¢) Windsor, J. S., and V. T. Chow, '"Model for Farm Irrigation
in Humid Areas," Journal of the Irrigation and Drainage
Division, Proceedings, American Society of Civil Engineers,
Vol. 97,.No. IR3, pp. 369-385, September 1971.
(d) Windsor, J. S., and V. T. Chow, '""Model for Farm Irrigation
in Humid Areas," Transactions, American Society of Civil

Engineers, Vol. 137, pp. 687-688, 1972.



(e) Windsor, J. S., and V. T. Chow, "Multireservoir Optimization
Model," Journal of the Hydraulics Divieion, Proceedings
American Society of Civil Engineers, Vol. 98, No. HY10,
pp- 1827-1845, October, 1972.

(f) Windsor, J. S., and V. T. Chow, '"Multireservoir Optimization
Model," Transactions, American Society of Civil Engineers,
Vol. 138, pp. 532-533, 1973.

(g) Schaufelberger, J. E., "A Systems Approach to the Operation
of Flood Control Reservoirs," Ph.D. Thesis, University of
Il1linois at Urbana-Champaign, Urbana, Illinois, 1971.

(h) Cortes-Rivera, G., ''"Flood Control Project Planning by
Mathematical Programming: A Project-Expansion Approach,"
Ph.D. Thesis, University of Illinois at Urbana-Champaign,

" Urbana, Illinois, 1973.

(6) Application of research results. This research project deals

mainly with the practical application of the methodologies developed in the

project. The DDDP technique was applied very successfully to a U. S. Army

Corps of Engineers' project on the operation of three reservoirs (Huntington,

Salamonie and Missisinewa) of the Upper Wabash River. Both DDDP and MLOM
were applied, as class assignments at the University of Illinois, to the
Lincoln Lake project on the Embarrass River near Charleston, Illinois which
is also a Corps of Engineersi project that has caused a great deal of local
concern.

The DDDP and MLOM techniques have been used by the Texas Water
Development Board. Regarding this application, the following are excerpts
from a letter dated February 2, 1972, from Mr. Arden O. Weiss, former

Director of Systems Engineering Division of TWDB:

———a



"The work described in the Office of Water Resources Research
completion report, entitled '"Methodologies for Water Resources
Planning: DDDP and MLOM(TLOM)," and personal interactions
during the evolution of the subject report were most beneficial
to me and the other Systems Engineering staff of the Texas Water
Development Board. This was especially true as we were formu-
lating and implementing solution methodologies for analyzing the
dynamic interaction response of the semiarid irrigated farmstead

with the irrigation surface supply system.

"In this regard, the DDDP concepts are providing the Texas Water
Development Board (and others as knowledge of thebtechnique
spreads) with the capability to pursue and solve problems normally
thought to be outside the computational capability of dynamic
programming techniques. Of particular merit is DDDP's appli-
cability to (1) optimizing operating rules for large systems of
reservoirs as in the proposed Texaé Water System on an aggregated
basin-by-basin basis, and (2) optimizing a single reservoir's
operating rules at storage and purpose segmentation detail which

previously has not been possible.

"Also, fhe MLOM concepts and procedures were used by the Systems
Engineering staff as a point of departure in developing similar
multilevel optimization procedures. The procedures being

developed . . . are applicable to direct interface with the SIM
series of models also being developed by the Texas Water Development
Board with partial financial support of the Office of Water Resources

Research."
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Also of interest is the application of DDDP by the Tennessee Valley
Authority to the operation of the TVA reservoir system. The optimal opera-
tion of a six-reservoir subsystem of the TVA was solved by the use of DDDP.
The interest in the application of DDDP and MLOM has been developed
in other countries. For example, two engineers from Yugoslavia came
to Urbana in April 1972 to study these techniqués for their application to

the Morava River basin development in Serbia.

(7) Preparation of a working manual. Phase II of the research

program was supposed to be terminated originally in June 1973 but it was
extended to January 1974 in order to develop a working manual on the applica-
tion of the discrete differential dynamic programming for use by practicing
water resources engineers, analysts and planners. Since most of the results
of the Phase-Il research have been presented elsewhere as listed in item (5)
above, the working manual will constituent the major remaining portion of
this report.

Many persons participated in this project and contributed to the
research. In addition to the Principal Investigator, Ven Te Chow, the
following research staff members were at various times involved in the
project:

Gonzalo Cortes—-Rivera, M.S., Ph.D., Research Assistant in Civil
Engineering

Freddy Isambert, B.S., Research Assistant in CiVil Engineering
Dong Hee Kim, M.S., Research Assistant in Civil Engineering

David R, Maidment, B.S., Research Assistant in Civil Engineering
John E. Schaufelberger, M.S., Graduate Student, Civil Engineering
Latino Torelli, M. S., Research Assistant in Civil Engineering

Taylan A. Ula, B.S., Research Assistant in Civil Engineering
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James S. Windsor, Ph.D., Research Associate in Civil Engineering

Chang-lung Yin, M.S., Research Assistant in Civil Engineering

This report was mainly prepared by V. T. Chow and G. Cortes—-Rivera.
They wish to acknowledge, with great appreciation, the contributions of other
staff members involved in the project as listed above, and also those of the

authors of references quoted in this report.
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I. INTRODUCTION

The remarkable pfogress in recent years in advanced methodologies
for water resources planning and development has been made possible mainly
through the use of systems analysis and operations research techniques in
the solution of complex problems involved in the design and operation of
modern water resources projects. Much of this progress is the outgrowth
of research programs.in universities and other research institutes. 1In fact,
a number of successful applications of these techniques have been achieved
by several governmental water planning agencies and private engineering
consulting firms. Just as important as the development of these techniques
is the transfer of their methodologies to the actual practice so as to
benefit the planning and development of water resources projects.

One of the operations research techniques that are found to be
applicable to the mathematical analysis of water resources systems is the
dynamic programming, the reason being its ability to simulate the nonlinear,
sequential-decision characteristic generally exhibited by most problems
involved in the planning and operation of water resources projects. However,
conventional dynamic programming algorithms are only capable of handling
problems of very low dimensionality, i.e., a few state variables, thus
severely limiting the usefulness of the dynamic programming technique in
water resources systems analysis which often involves many variables. To
overcome the difficulties arising from the high dimensionality of water
resources systems, the methodology of discrete differential dynamic pro-
gramming (DDDP) developed at the University of Illinois [Heidari, Chow
and Meredith, 1971] may be used in many problems. The DDDP methodology

is an iterative technique which permits the solution of high—dimensional

[
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dynamic programming problems within the range of computer time and memory
capacities of high-speed digital computers now available.

This report is prepared to present a detailed discussion of the
DDDP methodology in a form suitable for its application to actual water
resources problems by practicing engineers and analysts. An attempt is
made to bridge the gap between the theory and the practice in the use of
the DDDP methodology. It is hoped that the report will serﬁe as a working
manual for practitioners.

The report will summarize in Chapter II the theoretical background
of the DDDP methodology and a review of the principal aspects of its theory
which has been developed and documented [Heidari, 1970; Heidari, Chow and
Meredith, 1970; Chow, 1971]. This will be followed in Chapter III with a
description in detail of the DDDP methodology, giving emphasis to the key
steps of its procedure. No attempt is made to elaborate on the formulation
of dynamic programming problems, but the DDDP methodology as a means to
solve already formulated dynamic programming problems is proposed. Finally,
in Chapter IV, three egamples are provided to illustrate the application of
the DDDP methodology in the solution of optimization problems arising from

the planning and operation of complex water resources projects.
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II. THEORETICAL ASPECTS OF DDDP

2-1. General Considerations.

Discrete differential dynamic programming (DDDP) is a computational
method to obtain the solution of optimization problems which can be formu-
lated in terms of dynamic programming (DP), requiring reasonably small
computer time and memory. DDDP is based on an iterative technique in which
the recursive equation of dynamic programming is used to find an improved
solution by confining the search for the improved solution in the neighbor-
hood of a trial solution. Thus, DDDP takes advantage of the knowledge of a
previous trial solution to guide the search for a new improved solution.

The application of the DDDP methodology requires that the opti-
mization problem be formulated according to the DP methodology. Since the
problem formulation is independent of the computational method used in
achieving its solution, DDDP is not an aid to the formulation of a given
optimization problem but a powerful computational tool to obtain solution
of the problem.

This section briefly describes the theoretical aspects of DDDP.
Since DDDP is based on DP, the basic theory of DP will be first presented

and then followed by a description of the DDDP.

2-2. The DP.

The DP, first introduced by Bellman [1957], is a methodology
of optimization based on the princible of optimality to conceive the
formulation of certain class of optimization problems. The problems
suitable for DP analysis should allow themselves to be decomposed into a
series of sequential problems of smaller magnitude, whose solutions are

then combined to obtain the solution of the entire problem. Because of
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its theoretical characteristics, DP is a convenient tool to formulate
sequential—décision problems; that is, problems in which a sequence of

interrelated decisions must be determined.

A. Characteristics of DP Problems. To be suitable for DP

analysis, an optimization problem should exhibit the following charac-
teristics [Chow and Meredith, 1969]:

(a) It must be a problem which can be divided into stages
with a decision required at each stage. In general terms, optimization
problems consist of finding the value of N variables which optimize (i.e., -
maximize or minimize) the value of a given objective function while subject
to a set of constraints. By the DP methodology an optimization problem is
converted into a sequence of N simpler problems, each of them having to
decide on the value of one of the N variables at a time.

Stages may represent points in space or time, or may represent
abstract steps in the problem-solving process. In water resources systems
analysis, optimization problems arise in the'desigq (space-oriented opti-
mization) or in the scheduling of construction and operation (time-
oriented optimization) of the systems; thus, stages refer either to time
or to space. In time-oriented problems, stages may be widely separated
points in time, up to decades, for example, in construction-scheduling
problems; or may be points in time closely following one another, for
example, at one-day or shorter intervals, for optimization of the operation
of flood control systems. In space-oriented optimizatidn problems, stages
may refer to different sites of water delivery, for example, in aqueduct-
routing optimization; or to sites of water storage, for example, in
problems of selection of dam sites.

(b) Each stage must have a state vector associated with it. The
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state vector is a set of state variables containing all the information about
conditions of a system at a particular stage, and convey information about
the variation of these conditions from one stage to the next. When two or
more variables are necessary to describe the system conditions, the state
vector is said to be multidimensional. Realistic mathematical formulation

of optimization problems in water resources systems analysis usually involve
the definition of a high-dimensional state vector.

(c) The effect of a decision vector at each stage is to transform
the current state vector into a state vector associated with the next stage.
The decision vector is a set of variables representing the alternative
actions exerted upon a system at each stage. The effects of these actions
are evaluated by a suitable measure of effectiveness at each stage and for
any feasible state or condition of the system. The character of such a
measure of effectiveness must reflect the objectives of the system's design
or operation. A decision vector is multidimensional if there are two or
more actions affecting the system simultanecously at a given stage.

(d) For given current stage and state of the problem, the
optimal decision should be independent of decisions made in previous
stages. That is, the information about previous stages relevant to the
selection of optimal values for the decision variables is already contained

in the values of the state variables at the current stage.

B. The DP Recursive Equation. The recursive equation is the

basis for the formulation of any optimization problem by DP. It condenses
the sequential nature of the DP methodology and reflects the principle of
optimality [Bellman, 1957] which states:

"an optimal set of decisions has the property that whatever

the first decision is, the remaining decisions must be optimal with
respect to the outcome which results from the first decision".
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Let us assume that the optimization problem can be divided analyt-
ically into N discrete stages and that each stage n (n=1, 2, ..., N with
n=1 for the first stage, etc.) has associated with it a state vector §£.
According to the problem characteristic (c) mentioned above, Tn( ) can

‘be defined as a transformation function which acts on the state vector

Sn to convert it into a state vector §£ associated with stage n-1,

-1

because of the action of the decision vector Bh_ in the (n-1)th stage.

1

Expressing in mathematical terms:

S . =T (S

=T (5.,D_)5n=2,...,N | (2-1)

, and Dn-l G{D{l

{s},{s}
1 I n-

where 5 €{5),35 . €{5} _13 g adiDt
n n n-1 n-—

being, respectively, the admissible values of the state vector for stage n,
the state vector for stage n-1, and the decision vecfor for stage n-1.

Throughout this discussion, a forward algorithm for DP is assumed.
For this algorithm, the computation begins with the analysis of the first
stage (n=1) and continues sequentially until the analysis of the last
stage (n=N) is completed. On the contrary, backward algorithm begins with
the analysis of the last stage (n=1) and continues sequentially until the
analysis of the first stage (n=N) is performed. In this case, the order
of the stages is reversed, or n is counted backward starting with n=1
for the last stage.

Let us further define Rn(gg,ﬁﬁ_l) as the return, or the measure
of effectiveness, of the decision-induced state transformation for stage n.
If the problem's objective is to optimize (maximize or minimize) a given
function for the effectiveness of the sequence of system transformatiomns,

then, the objective function, z, can be expressed as:



18

z = Optimize f[R
D € {D}
n n

1(§i’5§)"“’ R (S D5 e Ry(SD )] (2-2)

where f[ ] is a function representing the combined effect of system trans-—

formations proceeding from an initial or original state vector SO to a

final state vector gﬁ resulting from a sequence of decision vectors

o) e Deg

Usually, the solution of Eq.(2—2)ié subject to a set of constraints
or conditions of diverse nature (budgetary, physical, political or insti-
tutional) imposed upon the system. TFor example, physical constraints may
specify limits to the magnitude of the state or decision variables, budg-
etary constraints may indicate ceilings to expenditures associated with
the decisions, and political or institutional constraints may restrict
the system to the real-world situation.

To solve Eq.(2-2)by DP, an N~stage problem is solved sequentially
stage by stage of the decision process. TFor the decomposition of Bﬁ, two

sufficient conditions are [Nemhauser, 1966]: separability, i.e.,

£[R (515D )5 R, (S,,D)), «ony R(S\HDL )] =

£ {R;(5,,D ), £,[R)(5,,D)), ---» R (SuDy NI} (2-3)

where fl and f2 are real-valued functions; and monotonicity, i.e.,

£, {R;(5,,D ), £5[R)(5,,D;)5 -+, RT(sN,DN_l)l}z

£, VR (S,,D ), £5[Ry(S,,D ), «.vy Ry(SysDy )13 (2-4)
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where f! ] = fg[ 1, and for all values of Rl(gl;ﬁo)' Thus, for the

5l

decomposition of Bﬁ,

?ptimlfe f[Rl(Sl,DO), RZ(SZ’Dl)’ . RN(SN N— l
D_ € {D}
n n

can be converted into

Optimize £, {Rl(Sl,D ), Optimize f2[R2(Sz,D Yy cens RN(SN - l)]} (2-5)

€
D, {D} Dl,..., DN_l

Additive functions are typical in the analysis of systems for which
the objective of their design or operation is to maximize the sum of the
returns or the effectiveness of the system transformation, at all the stages.

In such a case, the objective function is given by
£[R;(51,D))s ---) RN(SN -1 = nZ R (S ,D _;) (2-6)

and satisfying the conditions of separability and monotonicity, f[ ] is
therefore decomposable.
Now let F (S ) be defined as the maximum return from the system

transformations from some initial state SO to some final state SN. Then,

-— N — —
Fe(8y) = B Max nzl R (8 5D ;) (2-7)
s € {s}
n n
D S {D}n

subject to the transformation functions, Eq. (2-1), and all the constraints

imposed on the system. Because the objective function is decomposable,
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_ _ N-1
Fy(Sy) =  Max  [Ro(Sg,Dy 1) + Max Zl R (55D )] (2-8)
— — - n=
Sy € {S}N S, € {S}n
Dy € Dl D, € {0}
By definition
RN - Max - Zl R (S_,D _;) (2-9)
S €{sy ™
n n
, Dn € {D}n
then
Fy (Sy) = | Max [Ry (Sy»Dy ) + By (S )] (2-10)
S. € {s}
N
DN € {D}n

subject to Eq. (2-1) and the constraints imposed on the system. For any
stage n (n=1, 2, ..., N), Eq. (2-10) becomes the DP recursive equation
where Fo<§6) is a known quantity associated with the initial state vector

S0 representing the original condition of the system.

C. Computer Memory Required for Solving the DP Recursive Equation.

For a digital computer solution of the DP recursive equation, Eq. (2-10),

enough storage capacity is required to keep Fh— (gg—l) and Fn(§£)’ for all

1

feasible values of the state vectors Sn and gﬁ at two consecutive stages,

-1
n-1 and n, and the values Bg—l(gﬁ) of the decision vector Bﬁ—l which
satisfies Eq. (2-10) for every feasible value of the state vector §£,

n=1, 2, ..., N. This memory requirement may be enormous, as illustrated

in the following example:
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Suppose that the appropriate formulation of an optimization
problem involves N=12 stages, a four-dimensional (M=4) state vector, and
a four-dimensional (T=4) decision vector. This is a typical case in the
analysis of the yearly operation of a four—reservoir water resources
system on a monthly basis. Assume further that each variable of the state
vector can be quantized into Q=10 levels. Then, the amount of numbers
which must be stored in the computer's memory is, at least, equal to

M Y M % (S -
2Q" for Fn(Sn) and Fn—l(sn—l) and equal to TNQ for Dn_l(Sn), n=1l, 2, ..., N.

For the given example, the total numbers for Fn(EQ)’ F Sn—l)’

1 and B;‘_l@n)
amount to 500,000. Storing these numbers will require at least two million
bytes (2,000K), a quantity far larger than the total memory capacity of
available digital computers.

It cén be seen from the preceding example that the computer
memory required for the solution of the recursive equation increases
linearly with the dimensionalities of the decision vector and the number
of stages, geometrically with the number of quantized values of the state
variables, and exponentially with the dimensionality of the state vector.
The most critical factor in the determination of the required computer
memory is obviously the dimensionality of the state vector which affects
the memory exponentially. However, for a given problem, the dimensionality
of the state and decision vectors and the number of stages are fixed by
the appropriate formulation of the problem, and the accuracy of the solu-
tion depends on the fineness of the division of the state and decision
variables into quantized values. There exists then, a compromise between
the accuracy of a solution and the laboriousness of obtaining it. For a
minimum desirable number of quantized values of the state variables, the
DP solufion of a particular problem may not be possible if the entire set

of quantized values of the state variables is considered at a time. In such
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cases, DDDP allows a compatible computer solution of DP problems with high-
dimensional state and decision vectors, without any reduction in the number

of quantized values of state and decision variables.

2-2. The DDDP

DDDP is an iterative procedure by which the DP recursive equation
may be solved within a restricted set of quantized values of the state
variables, thus continuously approaching the optimal solution corresponding
to the entire set of quantized values of the state variables. The collec-
tion of restricted quantized values of the state variables at all the stages
composes what is called a corridor. The composition of corridors varies
from one iteration to the next in such a way as to obtain convergence of
the algorithm toward the optimal solution for the entire set of quantized
values of the state variables. The path of the iterations through a

corridor is called a trajectory.

Let the state vector gﬁ at stagen (n =1, 2, ..., N) be
composed of M state variables (Sl,n’ ey Sm,n’ cens SM,n) each of which
is quantized into Qm values (m= 1, 2, ..., M). Thus, the entire set of

quantized values of the variables is

Sl,n' Sl,n,l’ Sl,n,Z’ cees Sl,n,j’ PN Sl,n,Ql’ n=1, «c., N
: : ooy o =1, vo.y N
Sm,n m,n,1° °m,n,2, sm,n:j’ > m:n»Qm’ " ’ ’

: e . .o =1, ..., N
0’ SMyn, 10 Sun,2’ "Myn, it T SMye,q T T T

where s n,q is the j—-th quantized value of the m—th variable at the n-th
b 3

stage.
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Let q% 0 be the number of the Qm quantized values of the m—th
b
state variable which is considered at a time at stage n, and let Aqm 0’
b
(1 < Aq <Q;m=1, 2, ..., My n=1, 2, ..., N) be the spacing, in
m,n m
terms of numbers of quantized values, bhetween adjacent members of the re-
stricted set of the q% n numbers. This spacing specifies the width of the
b

corridor for each state variable at every stage.

Let it also be assumed that the optimal trajectory resulting

(k=1) (k-1)

from the (k-1)-th iteration is given by Sl,t,Q* s S2,n,Qk s ases

1,n 2,n
&b D na 1, 2, o, W), where QF ,(m=1, 2, ..., M,
m:n:Qm £ M’n:QM n m,n

represents the location of the value of the m—th state variable within its
own entire set of quantized values at stage n, and that q% n,(m = 1, 2, ooy M;
b

n=1, 2, ..., N), is taken as 3 for illustrative purposes. The corridor

for the k—-th iteration is then delineated by

. (k-1) (k-1) (k-1)
S51,n° S1,n,Ll S S1,n,cl 2 Sl,n,Ul .
b bl b
s . JD D (el
m,n m,n,Lm n? m,n,Cm’n’ m,n,Um n
b ’
. o (k=1) (k-1) (k-1)
SMyn' *Myn, Ly, 0 "Mon,Cy 0 CMen,U,
bl 3 b
, *
where, if 1 < Qm,n < Qm’
n=1, 2, ..., N
- Co* - - | L
Lm,n = Max (1; Qm,n Aqm,n)’ m 1,2, ..., M (2-11)
= 0% = -
Cpn = om=1,2, ooy M (2-12)
= 1 . . * = ‘ -
and Um,n Min (Qm, Qm,n + Aqm,n)’ m=1, 2, ..., M (2-13)
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ifQ =1
Lm,n = Q;’n, m=1, 2, ..., M (2-14)
Cop = Min (Qs Q;,n thq d,m=1, 2, o, M (2-15)
and Up n = Min Qs Q;,n + 2 Aqm’n), m=1,2, ..., M (2-16)
and, if Q;,n =Q,
Lo = Max (1; Q;,n - 24q  J,m=1, 2, ..., M (2-17)
Con = Max (1; Q;,n - Aqm,n), m=1, 2, ..., M (2-18)
and Um,n = Q;,n’ m=1l, 2, ..., M (2-19)

The corridor for values of q; 0 other than 3rcan be developed
bl

following a similar reasoning.
As stated above, a trajectory, either initial or optimal, is

required for the formation of the corridor for the k-th iteration. Associ-

*
(k-1)

function which is either calculated from the transformations of the system

ated with such a trajectory there is a value F of the objective

as specified by the initial trial trajectory (if k = 1) or obtained from

the solution of the recursive equation within the corridor for the (k-1)-th

iteration (if 2 <=k <k , where k is a given maximum number of itera-
max max

tions). The solution of the recursive equation within the corridor of the

*

K for the objective function, which when

k-th iteration yields a value F
compared with the value of the objective function for previous iterations

will determine the convergence of the algorithm toward the optimal solution.

%*

| represen ts the

If the convergence is obtained, the trajectory yielding F

solution to the optimization problem.
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The procedure just described can be applied using any value of
the spacing parameter Aqm,t' To ensure that the solution by DDDP of the
optimization problem is the one corresponding to the entire set of
quantized values of the state variables, the iterative procedure must be
performed several times, in cycles, using at each cycle values for the
spacing parameters smaller than those used in the preceding cycle. The
smallest value of the spacing parameters should be 1, so that the corridors
of the final cycle are composed of contiguous values in the original set
of quantized values of the state variables.

The above discussions are the bare essentials of the theoretical

aspects of DDDP. For details, the reader should be referred to the work

of Heidari, Chow and Meredith [1971].
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ITI. THE DDDP PROCEDURE

Based on the theoretical aspects of DDDP given in the previous
chapter, a practical procedure of applying the DDDP methodology is
developed in this chapter. A brief general presentation of the procedure

will be followed by a detailed analysis of its major steps.

3-1. Description of the Procedure.

The general scheme of the DDDP procedure may be concisely re-
presented by a block diagram in Fig, 1. This diagram shows essentially
a computer program to carry out the compilations for DDDP. As can be
seen from this figure, the procedure is composed of cycles, which in turn
are made up of iterations. Each computation cycle corresponds to the
process, starting from a trial trajectory, to search for the optimal
trajectory within all corridors of a given width. The computation cycle
is complete when the search process has converged to the optimal trajectory
according to a convergence criterion to be discribed later.

For each iteration of a cycle, the optimal trajectory within a
given corridor and its return are determined by the DP methodology. A
new iteration is needed if the convergence criterion for the cycle is not
satisfied. The number of cycles for the entire procedure and the allowable
maximum number of iterations per cycle are specified in advance.

The DDDP procedure terminates either when the convergence
criterion for the last cycle is satisfied, or when the maximum number of
iterations for such a cycle is exceeded. 1In the former case, the optimal
solution of the entire optimization problem is the optimal solution
obtained in the last cycle. 1In the latter case, only a near-optimal

solution is achieved and the entire procedure may then be repeated either

——
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allowing a larger number of iterations per cycle, or modifying the
convergence criterion.

If the maximum number of iterations for the intermediate cycles
is exceeded, the DDDP procedure assigns the current optimal trajectory |
(a near-optimal trajectory for the cycle) as the trial trajectory for the
next cycle.

The scheme of the DDDP procedure shown in Fig, 1 is of general
applicability. The development of each of its major steps, however, should
depend on the optimization problem under consideration. The remaining
sections of this chapter are devoted to the discussions in some detail the

major steps of the procedure.

3-2. The Initial Trial Trajectory.

The DDDP procedure begins with the establishment of an initial
trial trajectory and its return (see block 1 in Fig. 1). A trajectory.is
the sequence of transformations of the state vector throughout the entire
period N of system analysis. A trajectory ié feasible if it satisfies all
constraints imposed on the system, and it is optimal if, besides being
feasible, it optimizes the objective criterion of system performance.

The basic i1dea behind the selection of an initial trial trajectory
is to provide, for the process of searching the optimal trajectory, both '

a starting point and a region (i.e., the corridor around the trial trajectory)
where the optimal trajectory is expected to lie.

Thus, the initial trial trajectory being the first approximation
of the optimal trajectory, should be feasible and also as close as possible
to the optimal trajectory. These requirements are to insure that at least
one of the alternative trajectories to be examined for optimality has
satisfied all the constraints and that the time of computation to reach the

optimal trajectory is as short as possible. While the satisfaction of the
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feasibility requirements can always be assessed, it is not possible to
determine in advance how actually close to the optimality is the initial
trial trajectory. 1In general, a satisfactory initial trial trajectory may
be established either by engineering judgment or by system decomposition
to determine a near-optimal initial trial trajectory.

Engineering judgment relies on information on hydrologic and
other data concerning the behavior of the system. For example, in the
analysis of the operation of a reservoir network, a trial sequence of
monthly releases or storages may be established from the knowledge on the
occurrence of wet and dry months or periods of a year. The return
corresponding to the trial trajectory established by this approach is
then readily calculated by using the values of the state and decision
variables of the trial trajectory in the expression of the problem's
objective function, Eq. (2-2).

The second approach to determine a satisfactory initial trial
trajectory consists of dividing the original system into a number of
subsystems, obtaining the trajectories which optimize each subsystem
independently, and considering the set of these optimal trajectories as
an approximation of the optimal trajectory for the entire system. The
optimization of each subsystem should be subject to the same constraints
of the original system.

This system~decomposition approach [Larson, 1968], is also
applicable to problems where there is small interaction between various
state and decision variables. In this case, the transformation function
for a given state variable, say the m-th, must depend on a few of the
other state and decision variables; namely, those with an index higher

than m. Thus,

———
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M,n’ “m,n’ m+l,n’ """’ "M,n

where S and S represent the values of the m—th state variable at
m,n+1 m,n

stages nt+l and n, respectively; Dm,n is the value of the m—th decision
variable at stage n; Tm( ) is the transformation function for the m-th
variable; and there are M decision variables and M state variables.
Thus, obtaining a trial trajectory by this approach is to reduce
the solution of an optimization problem to that of a series of optimiza-
tion problems, each possibly having one single-dimensional state variable.
As indicated in Fig. 2, each subsystem corresponds to one of the M state
variables of the original prqblem. The optimization of the m—th sub-
system incorporates the already obtained optimal trajectories of the
preceding subsystems mtl through M. As an example, for the (M-1)-th

A

subsystem, the optimization problem is to find the trajectories S

M-1

M-1,n’
n=1, 2, ..., N, or equivalently, the decision sequence ﬁM—l 0’
b
n=1, 2, ..., N, for which the objective function of the subsystem, i.e.,
Fue1 (1 Goen, 101,10 oo Tyer Gy o Dyer 0
has an optimal value (denoted by J ). Such an objective function is

composed of the returns

%Pﬂ%%LnJMimgﬂ;n=l,2,“.,N

for the transformations of the subsystem at stages 1 through N; and the

transformation equation of the subsystem, that is,

~ A

Sv-1,0+1 = ToCuyn Py 0o SM-1,0°P0-1,0°™3 B = 15 25 -0ny N

incorporates both the optimal trajectory [§M n], n=1, 2, ..., N, and the
b

optimal decision sequence [ﬁM n], n=1, 2, ..., N of the M-th subsystem.
9

D _;n) (3-1)
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Once the optimizations of all M subsystems are performed, the

initial trial trajectory for the total problem is given by the set of

optimal trajectories for all subsystems as follows: [§m n]’ m= 1, 2, ..., M;
b
n=1, 2, ..., N with the associated trial decision sequence [ﬁm n],
3
m= 1, 2, s, My n =1, 2, , N

Finally, the value of the objective function corresponding to
the initial trial trajectory is obtained by providing the values of the state
and decision variables of the initial trial trajectory to the objective

function, Eq. 2-2.

In the system—-decomposition approach to find an initial trial
trajectory, the expressions of the.objective functions for the optimization
of subsystems are of a general nature. For optimization problems of water
resources systems, however, most objective functions of the subsystems are

additive; i.e., of the form:

=z

£ [r_(s Dy eees 1(8) 0D 6M] = EENE n)  (3-2)

’D b
n=1 m,n’ m,n

m,l’Dm,l’ m,N

If the return for the transformation of the entire system is a linear
(additive) function of the returns for the transformations of the indi-

vidual subsystems at all stages, that is

M
Rh(é',ﬁ Yy =) r (S ,m); n =1, 2, ..., N (3-3)

n’n m. m n’Dm n
m l b b
and, in addition, there exists no interaction between subsystems, or

(S D ,M;n=1, 2, ..., Ny m=1, 3, ..., M (3-4)

S =T
m,n+1 m  m,n, m,n

then, the solution of the optimization problem for the entire system

RSP
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corresponds precisely to the collection of optimal solutions for the sub-

S

systems; or, optimal trajectory: [Sm n]; m=1, 2, ..., M n =1, 2, ..., N
1]

with the optimal value, J*, of the objective function being

M .
F =7 3 (3-5)

where Jm is the optimal value,of the objective function in the optimization
of the m-th subsystem. Thus, for this extreme case, the initial trial

trajectory coincides with the optimal trajectory.

3-3. Construction of Corridors.

After the determination of an initial trial trajectory, the next
step of the DDDP procedure consists of constructing a corridor around it,
which specifies the limiting values of the state variables used in the
optimization of the system. In the procedure, two actions regarding the
corridor should be taken: (a) the selection of an initial width of the
corridor (see block 2 in Fig. 1) and its‘subéequent modifications (see
block 9 in Fig. 1), and (b) the actual construction of the corridor

around a trial trajectory (see block 4 in Fig. 1).

A. Selection of Corridor Widths. As stated previously, a

corridor specifies the wvalues of each state variable which are considered
at a time or stage in the optimization process. Any of such values should
belong to the feasible range of variation of the state variable under
consideration. In order to reduce the computer memory requirement to a
minimum in the solution of a multi-dimensional DP problem, the number of
values (qm’n, using the notation of Section 2-3) of each state variable
considered at a time should be as small as possible. The most satis-—

factory number has been proved to be three [Heidari, Chow, and Meredith,
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1971; Shaufelberger, 1971; Cortes, 1973; Tauxe, Hall and Yeh, 1973].

For a given corridor, the difference between adjacent values of
a state variable is the width of the corridor, as far as that variable
is concerned. Each variable may have a different corridor width, de-
pending on its nature and its range of variation.

Fig. 3, where again the notation corresponds to that used in
Section 2-3, illustrates the concept of corridor width. The figure shows
the corridor for the m—th state variable during the k—th’iteration of
a computation cycle. The trial trajectory is given by the values of the
optimal trajectory resulting from the (k-1)-th iteration; that is,
ls,n =1, 2, ..., N. It shows that the width of the corridor,
being constant in this case, is equal to Aqm,n (= 3 in Fig. 3) times

the smallest increment of the m-th state variable. This increment depends

on the number of values into which a state variable is divided for analysis.

This number is usually large, generally at least 50. If they are so con-
sidered at a time, the solution of a multi—-state optimization problem
becomes computationally infeasible by the conventional DP.

In the specification of the initial corridor width and its
subsequent modifications, a coarse-grid technique is followed, which
selects a large width for the first cycle of the DDDP procedure, and
smaller widths for the subsequent cycles. 1In general, the larger the
corridor width and the closer the trial trajectory to the optimal
trajectory, the smaller the number of iterations are required to reach
convergence to the optimal trajectory for a given cycle. Consequently,
the use of larger widths for earlier cycles ensures that the optimal
trajectories for such cycles are obtained within a small number of

iterations. Furthermore, since the trial trajectory for any later

[
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cycle is the optimal trajectory for its preceding cycle and thus closer
to optimality than any arbitrary one, smaller corridor widths can be
used in later cycles to search for the optimal trajectory, also within
a small number of iterations. In this manner, the total number of itera-
tions in the process of finding the optimal solution for the entire
problem can be kept within reasonable limits.

The most appropriate number of computation cycles, or the
most appropriate number of different corridor widths, has been reported
to be at least 6, the corridor width used in a given cycle being from
70 to 50 percent of the width used in the preceding cycle. Accordingly,
the coarse-grid technique can be summarized as follows: For the first

cyele (3=1),

Q

= _m, = . = -6
(Aqm,n)j = m 1, 2, ..., My n 1, 2, ..., N (3-6)

where Aqm,n and Qm have been defined in Section 2-3, and x is a factor
which specifies the initial corridor width. For example, if x = 10, the
boundaries of the initial corridor for a state variable cover one-fifth
of the range of variation of the variable. For subsequent cycles

(j =2, ..., NC; NC = number of cycles),

(Aq ). E%— (Aq_ )

mngel3 ® T 1 2 e Mn= 1,2, o, N (3-7)

B. Design of the Corridor. In general, a cofridor composed of

3 values of the state variable should be constructed symmetrically around
the trial trajectory whenever possible. However, asymmetrical corridors
may result if any of the boundaries of the corridor exceeds the limits

(upper or lower) of the variable. A 2-valued corridor is produced if the
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trial trajectory passes through the upper or lower limit of the state
variable. Fig. 4 illustrates the construction of the corridor for a
variable quantized in 9 (= Qm) values, and with the corridor width

Aqm n - 2 form=1, 2, ..., 7. It can be seen that the corridor is
b

symmetrical at stages n 1, 2, 4, 6, 7; asymmetrical at stage n = 5,

and 2-valued at stage n 3.

Although, conceptually speaking, the corridor width for a
given variable may change from stage to stage during the same computa-
tion cycle, it is customarily to treat the corridor width as a constant -
for all stages throughout the cycle. Also, it is generally recommended

to construct 3-valued corridors for all state variables. The corridor

width, nevertheless, may be different for each variable.

3-4., Optimization Within a Corridor

As indicated in block 5 of Fig. 1, after the construction of a
corridor around the trial trajectory, the optimal trajectory, and its
return, within the corridor should be found. This is done by means of
a convenﬁional DP algorithm for the search of the optimal trajectory,
however restricting the computations only to those values of the state
variables defined by the corridor.

Thus, the solution of the DP recursive equation, Eq. 2-10, is
carried out insidé the corridor, subject to the transformation equations,
Eq. 2-1, and all the constraints imposed on the system. The solution of
the DP recursive equation gives the optimal value of the objective
function (i.e., the optimal return) and can be obtained by a DP algorithm
of a suitable direction (backward or forward). The optimal trajectory
is retrieved by means of computations which follow a direction contrary

to the one used in the solution of the DP recursive equation.
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The step indicated in block 5 of Fig. 1 is performed for every
iteration of a éomputation cycle. Hence, it is essential that the opti-
mization algorithm be as efficient as possible. A discussion on the
various means of increasing the efficiency of DP algorithms is beyond the
scope of this study, but a detailed treatment of such search procedures
can be found in a number of texts on optimization [for example, Wilde,

1964].

3-5. Tests for Convergence

The purpose of these tests [see block 6 of Fig. 1] is twofold:
(a) to determine, for the last computation cycle of the DDDP procedure,
whether or not the optimal trajectory has been approached; and (b) to
decide, for any intermediate cycle, if the optimal trajectory resulting
from a given iteration of the cycle represents a significant improvement

over the trial trajectory of the cycle.

A, Tests for Intermediate Cycles. Theoretically, the trial

trajectory for any cycle should be the optimal one corresponding to the
previous cycle, so that the trial trajectory represents the best approxima-
tion of the overall optimal trajectory available at the'beginning of the
cycle. As previously indicated, the optimal trajectory for each cycle

is approached iteratively; each iteration provides a trajectory whose
return is at least equal to the return of the trajectory for the preceding
iteration. However, the improvement in return from trajectories of
consecutive jiterations decreases as the number of iterations increases,

the largest improvement corresponding to the first iteration; that is,

(F-F2) > (F{-F7_); i=2,3, ..., I (3-8)
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where FZ, n=1, 2, ..., I, represents the return from the optimal trajec-
tory for the n-th iteration of a given cycle, I is the maximum number of
iterations per cycle, and F; is the return associated with the initial
trial trajectory.

Then, a measure of the improvement of the returns from consec-
utive iterations, relative to the improvement obtained in the first

iteration, is given by

P F
61=W; i=l,2, ceasy L (3"9)
1 o

If, during any of the intermediate cycles, the iterative process yields a
value of Gi which does not represent a significant improvement in the

return; that is, whenever

§. < g3 i=1,2, ..., I (3-10)

then the computation cycle should be terminated. A value of 0.10 for e
has been found satisfactory in this study.

It should be noted that, while this test may prevent the optimal
trajectory for an intermediate cycle from being approached, it does
provide a satisfactory trial trajectory for the next cycle within a
small number of iterations. Since an iteration includes the solution
of an optimization problem (Section 3-4), this test will give a satisfac-

tory trial trajectory at substantial savings in computer time.

B. Test for the Final Cycle. This test is designed to determine
the convergence of the DDDP algorithm toward the solution for the optimiza-
tion problem. It consists of assessing, for every iteration of the final

cycle, if
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—5—— < A; i=1,2, ..., 1 (3-11)

where ) is an arbitrary convergence parameter and all other terms have been
defined before. For practical purposes, a value of A = 0.001 can be con-
sidered adequate.

As soon as the convergence criterion of Eq. (3-11) is obtained,
the DDDP procedure stops, then, the optimal solution of the optimization
problem is represented by the trajectory which yields the optium return

F*.
1
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IV. ILLUSTRATIVE EXAMPLES

4-1. Example 1: Operation of a Multi-Purpose, Multi-Unit System.

This example, adapted from Heidari, Chow, and Meredith [1971],
is employed to illustrate in detail the DDDP procedure discussed in the

previous chapter.

A. Description of the System. The water resources system as

shown in Fig. 5 consists of four reservoirs which control the flow in two
streams primarily for the purposes of hydropower production and irrigation
water supply. The operation of the reservoirs is subject to seasonal
storage requirements for flood contrdl, which dictate the maximum storage
capacity of the reservoirs; and to requirements for recreation and fish
conservation in the reservoirs, which impose a minimum storage capacity.
Table 1 shows the feasible range of variation of the storage in the four
reservoirs on a monthly basis.

The natural inflows into reservoirs 1 and 2 are given in Fig. 6
and represent the hydrologic input to the system.

Prior water rights downstream of each reservoir require that
reservoir releases be not less than a specified minimum amount. Further-
more, the capacity of the power generators sets a maximum limit to
reservoir releases. Maximum and minimum 1limits for the reservoir releases

in this system are given in Table 2.

The system is to be operated on a monthly basis and the reservoirs

begin and end their yearly operational cycle with given amounts of water

stored as shown in Table 3.

The net revenues from hydropower and irrigation obtained from the
operation of the system are assumed proportional to the reservoir releases.

The unit net revenue function for each reservoir is presented in Table 4.

[V
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Range of Feasible Storage Capacities for Reservoirs of Example 1

(1000 ac-ft)

Capacity of

Capacity of

Capacity of

Capacity of

Month Reservoir 1, Sl Reservoir 2, 52 Reservoir 3, 53 Reservoir 4, S
max min max min max min max min

1 1200 100 1800 100 800 100 1500 100
2 1200 100 - 1700 100 800 100 1500 100
3 1200 100 1500 100 800 100 1500 100
4 1000 100 1500 100 800 100 1500 100
5 900 100 1500 100 800 100 1500 100
6 800 100 1200 100 800 100 1500 100
7 800 100 1200 100 800 100 1500 100
8 900 100 1500 100 800 100 1500 100
9 1000 100 1700 100 800 100 1500 100
10 1000 100 1800 100 800 100 1500 100
11 1200 100 1800 100 800 100 1500 100
12 1200 100 1800 100 800 100 1500 100
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Table 2. Range of Feasible Reservoir Releases for Example 1

D
1000 | Dy D, Dy Dy
Release from Release from Release from Reléase from
ac-ft Reservoir 1 Reservoir 2 Reservoir 3 Reservoir 4
Max/mo 400 450 450 800
Min/mo 0.5 0.5 0.5 0.5

Table 3. Storage in the Reservoirs at the Beginning and Ending of a Year's
Cycle for Example 1

Reservoir N Storage, 1000 ac-ft

1 600
2 600
3 600
4 800
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Table 4. Unit Net Revenue Functions for Example 1

($/1000ac-£ft/mo)

Reservoir 1 Reservoir 2 Reservoir 3 Reservoir 4
Month

(Hydropower) (Hydropower) {(Hydropower) (Hydropower
and

Irrigator)
1 110 140 100 260
2 100 110 100 290
3 100 100 120 360
4 120 100 180 440
5 180 120 250 420
6 250 180 : 220 400
7 220 250 200 380
8 200 220 ' 180 410
9 180 200 220 360
10 220 180 180 310
11 180 220 140 270
12 140 180 110 250




42

B. TFormulation of the Optimization Problem. The objective of

the optimization of the water resources system is to obtain the maximum
net revenue from the yearly (12-month) operation of the system for

hydropower production and irrigation water supply; that is, to

max ) Z Cm(t) Dm(t) _ (4-1)
m

where C (t) is the net revenue from a unit release from the m-th
m

reservoir during the t-th month (Table 4) and Dm(t) is the release from
the m-th reservoir during the t-th month. This maximization is subject

to the following requirements:

(a) Storage Constraints. The storage at the beginning of the

first month of any year should be a known quantity (Table 3):

S (1) = 600,000 ac-ft; m = 1, 2, 3

5,(1)

(4-2)

it

800,000 ac~ft
Because the system is operated on a monthly basis but with yearly cycles,
Sm(13) = Sm(l)’ m=1, 2, 3, 4.

For all other months, the storage in the reservoirs should belong

to the set of admissible storages as indicated in Table 1; that is,

min max -
S, (t) < Sm(t) =S (t); £t=2, ..., 12 (4-3)

where Sm(t) is the storage in the m-th reservoir at the beginning of the
t—th month; and Szln(t) and Szax(t) are, respectively, the minimum and

maximum storages in the m~th reservoir at the beginning of the t-th month.

(b) Release Constraints. The reservoir releases during any

month should belong to the range of feasible releases (Table 2):
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max
m

™ (e) < (6) < DIF(e)s £ = 1, 2, ..., 12 (4-t)

where Dm(t) represents the volume released from the m—th reservoir during
i ma

the t-th month; and Dzln(t) and Dm X(t) are, respectively, the lower and

upper limits for the release from the m-th reservoir during the t-th

month.

(c) System Transformation Functions. They are expressed by the

principle of continuity for each reservoir:

Sl(t) = Sl(t+l) + Dl(t) - Il(t); t=1, 2, ..., 12
Sz(t) = Sz(t+l) + Dz(t) - Iz(t); t=1, 2, , 12
(4-5)
SS(t) = S3(t+l) + D3(t) - Dz(t); t=1, 2, «.., 12
SA(t) = SA(t+l) + D4(t) - Dl(t) - D3(t); t=1, 2, «.., 12

where Il(t) and Iz(t) are the inflows into reservoirs 1 and 2, respectively,
during the t-th month (Fig. 6), and all other terms have been defined
previously.

In the DP formulation of this problem, there exist 12 stages
(t=1, 2, ..., 12); a four-dimensional state vector

— -
Sl(t)

_ 8,(t)
5 = (4-6)
53(t)

Sa(t)
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and a four-dimensional decision vector

— —

D, ()

3 D, (t)
D_ = (4~7)
D, (t)

Da(t)
L _

The DP recursive equation is expressed, for any stage t, as

4
) = max {mzl c_(t) D () + F (8} (4-8)

Ft+l (St+l
subject to the constraints of Egs. (4-2) to (4-5).

C. Solution by DDDP. (a) Quantization of State Variables. The

smallest division for each state variable is selected as 1000 ac-ft. Hence,
the total number of quantized values for each variable changes with the
month, within the limits indicated in Table 5. By the DDDP procedure, only

a few of these variables are considered at a time.

(b) Corridors. In applying the DDDP procedure, 8 cycles are con-
sidered, and for each cycle a maximum number of iterations, 15, is permitted.
The corridor widths for each cycle are chosen as shown in Table 6. Using

these widths, 3-valued corridors are constructed around the trial trajectories.

(¢) Initial Trial Trajectory. In Table 4, it can be observed

that the net revenue per unit of reservoir release is greater for the months
5 through 10 than for other months of the year. Therefore, an initial trial
trajectory is constructed which allows large releases during those months.

The trajectory so generated is presented in Table 7 and its return is

$2,702,700.
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Table 5. Number of Quantized Values for
State Variables in Example 1

Number of Values

Variable

‘ max min
Sl 1100 700
82 1700 1100
83 700 700
54 1400 1400

Table 6. Corridor Widths for State Variables
in Example 1

Corridor Width, 1000 ac-ft

erete 51 5 53 54
1 440 440 440 440
2 220 220 220 220
3 110 110 110 110
4 55 55 55 55
5 30 30 30 30
6 15 15 15 15
7 6 6 6 6
8 1 1 1 1
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Initial Trial Trajectory for Example 1

Month

Storage at beginning of month
(1000 ac-ft)

Release during month
(1000 ac-ft)

N 5, S, s, D, D, D, D,
1 600 600 600 800 50 40 40 60
2 600 600 600 830 50 20 20 50
3 650 650 600 850 150 50 50 50
4 700 800 600 1000 200 50 50 150
5 800 950 600 1100 350 250 100 750
6 800 1100 750 800 250 250 200 450
7 800 1200 800 800 200 300 400 600
8 800 1200 700 800 125 450 350 475
9 800 1000 800 800 125 130 230 555

10 800 1000 700 600 75 220 120 395

11 800 900 800 400 75 150 250 25

12 900 850 700 700 400 320 420 720

13 600 600 600 800
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(d) Tests for Convergence. The following convergence parameters

are used: € = 0.10 and A = 0.001.

(e) Results. TFig. 7 shows the overall convergence of the pro-
cedure toward the optimal solution. It can be seen that no intermediate
cycle more than 4 iterations is needed to converge to a satisfactory trial
trajectory for the next cycle. The optimal solution is presented in
Table 8. It can be noted that releases at or near the maximum reservoir
releases should be made during the months of highest unit net.revenue
(Table 4). The net return obtained from the optimal operation of the
system is $3,079,800.

Because, in this particular example, the objective function,
Eq. (4-1), is linear, it is possible to check thé accuracy of the DDDP
solution against the results of a linear programming (LP) forﬁulation of
the problem. The optimal solution by the LP methodology is $3,082,665.
Therefore, the DDDP solution differs less than 0.1% from the LP solution.

For all practical purposes, this difference is negligible.

4-2. Example 2: Operation of a Multireservoir Flood Control System

In this section, the optimization of the daily operation of a
flood control system is presented. The example, adapted from Shaufelberger
[1971], illustrates the system-decomposition approach to derive the initial

trial trajectory by the DDDP procedure.

A. The Flood Control System. The three-reservoir flood control

system is sketched in Fig. 8. There exist 4 flood-damaging reaches
(DRm; m=1, e 4), and 5 streams whose flows (IS’ 19, Ill’ 112’ 113)
are not controlled by the reservoirs. The purpose of this reservoir

system is to modify the natural flows in the controlled streams (I], 12, I3)
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Table 8. Optimal Trajectory and Releases for Example 1
(1000 ac-ft)

Storage at beginning of month Release during month
Honth 5, 5, 5, 5, D, D, D, D
1 600 600 600 800 27 205
2 623 435 800 830 5 2
3 718 503 800 835 5 5 5 73
4 913 698 800 772 366 5 250 800
5 847 893 555 588 397 93 450 800
6 800 1200 198 635 398 350 448 800
7 652 1200 100 681 396 448 447 799
8 456 1052 101 725 44 450 144 800
9 537 852 407 113 11 221 450 200
10 651 761 178 374 395 4 25 2
11 331 877 157 792 5 446 1 1
12 501 531 602 797 1 1 3 1
13 600 600 600 800
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so as to minimize the annual flood damages in the flood-damaging reaches.
Although the three reservoirs are basically single-purpose flood control
reservoirs, seasonal pools have been specified for recreation and wild
life. Fig. 9 presents the variation of the storage available for flood
control as a result of the seasonal pool requirements. A minimum release
for each reservoir has been established at 20 cfs. The maximum release
for a given storage in each reservoir depends on the capacity of its
outlet works. 1In Fig. 10, the maximum releases are shown as fuﬁctions
of the storage in each reservoir.

Routing equations describing the flow of water through the
system from the distributed inputs to the system output are obtained by
a multiple linear regression analysis of historic streamflow records as
follows:

(a) Discharge at Reach 2.

I7(t) = 0.25 I7(t—l) + 0.75 Dl(t) - 0.114 14(t)

+ 1.164 15(t) + 0.75 Dz(t) + 0.287 I6(t) (4-9)

where I7(t) and I7(t—l) are the flows at reach 2 during days t and t-1;
Dl(t) and Dz(t) are the releases from reservoirs 1 and 2 during day t;
Ié(t)’ 15(t) and 16(t) are the flows at gaging stations 4, 5, and 6

during day t.

(b) For Discharge at Reach 3.

Ilo(t) = 0'302'110(t_l) + 0.700 I7(t) + 0.700 D3(t) + 1.130 Ig(t) (4-10)

where Ilo(t) and Ilo(t—l) are the discharges at reach 3 during days t and
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t-1; D3(t) is the release from reservoir 3 during day t; Ig(t) is the stream-

flow at gaging station 9 during day t; and I7(t) has been defined above.

(c) For Discharge at Reach 4.

Ila(t) = 0.297 IlACt—l) + 0.358 I7(t—l) + 0.350 I7(t)

+

0.403 [Ill(t—l) + Ilz(t—l)] + 0.360 [Ill(t) + IlZ(t)]

+

0.895 113(t) (4-11)

where 114(t) and IlA(t_l) are the discharges at reach 4 during days t and
t-1; and Ill(t), Ill(t—l), Ilz(t), Ilz(t~l), Il3(t) and 113(t—1) are the
streamflows at gaging stations 11, 12, and 13, respectively, during days t
and t-1.

Flood damages accrue in the form of non-crop and crop damages.
Non—-crop damages are given in Fig. 11 as functions of the flow at each
reach; crop damages are functions of both the discharge at the damage
reaches and the time of the flood occurrence, as illustrated in Figs. 12

and 13.

B. Formulation of the Optimization Problem. The operational

objective of the multi-unit flood control system is minimization of flood

damages; that is,

4 T=365 _
Min ] ] DAY, [D(t)] (4-12)
i=1 t=1 ‘

where DAMj[ﬁ(t)] represents the crop and non-crop damages in the j-th

reach as a result of the set Bﬁ(t), m=1, 2, 3, of releases from the

reservoir system during the t—th day.

it A
Nt i
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As can be seen from the damage functions in Figs. 11 to 13 with
the routing equations (4-9) to (4-11), the objective function or Eq. (4-12)
is nonlinear. Furthermore, because flood damage in any reach is a function
of both river discharge and time, the problem is one of sequential decisions
both in time and space. As shown by the lagged variables in the routing
equations (4-9) to (4-11), water released from the reservoirs require time
to flow through the system. Thus, a forward DP algorithm for the T-day
operational process (T=365) may be developed, with daily reservoir releases
as the decision variables, storage volumes as the state variables, and

time t as the stage variable. The DP recursive equation may be written as:

4
) = Min { ) DAM[D(t)] + F _(5)} (4-13)
=1 3 t ot

Ft+l<st+l

where F (§

t+1 t+l) and Ft(st) are the minimum damages from the beginning of

the year to the beginning of days t+1 and t, respectively, as functions

of the sets of storage volumes §£

+1 and §£, respectively, at the beginning

of these days; DAMj[ﬁ(t)] has been defined before; and the sets §t+l and

St are given by

St+1 = Sm(t+l); m=1, 2, 3

S, = s (t);m=1, 2,3 (4-14)

The solution of the DP recursive equation (4-13) is subject to

folloﬁing conditions:

(a) Storage Constraints.

na __
SP_(t) <8 (t) =8 *ty; m=1,2,3; t=1, 2, ..., T (4—7”‘1.5)
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where Sm(t) is the storage in the m—th reservoir at the beginning of the
m-th day; SPm(t) is the seasonal pool requirement in the m-th reservoir

. max , .
at the beginning of the t-th day; Sm (t) is the maximum storage for flood
control in reservoir m at the beginning of the t-th day. The range of
variation of the usable storage volume for flood control is given in Fig. 9.
Furthermore, the system operation is subject to the requirement that the
reservoirs be at their seasonal pools at the beginning of the first day of

each year; that is,

Sm(l) = Sm(366) = SPm(t); m=1, 2, 3 (4-16)

(b) Release Constraints,

max

20 cfs < Dm(t) < Dm [Sm(t)]; m=1,2, 3; t=1, 2, ..., T (4~17)

where Dm(t) has been defined before; and Dzax

[Sm(t)] is the maximum release
from the m-th reservoir during the t-th day as a function of the storage

volume Sm(t) at the beginning of that day (Fig. 10).

(¢) System Transformation Functions. These are the expressions

for the principle of continuity for each reservoir:
Sm(t+1) = Sm(t) + Im(t) - Dm(t); m=1, 2, 3; t=1, 2, ..., T (4-18)

where Im(t) is the natural flow into the m-th reservoir during day t, and

all other terms have been defined before.

C. Solution by DDDP. (a) Initial Trial Trajectory. In order

to find a close-to-optimal system operating policy, a spatial incremental

dynamic programming (SIDP) technique is developed, based on the concepts

[SoS——

S
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of the system—decomposition approach (Section 3-2). The technique begins
with the division of the flood control system into three spatial sub-—
systems, each of which contains only one reservoir, as illustrated in
Fig. l4. Starting with the uppermost subsystem, the algorithm is carried
through down the river, in an incremental manner, optimizing the operation
of each subsystem over all the T days, subject to the suboptimal operating
policies of the upstream subsystems.

The SIDP methodology begins with subsystem A optimizing the
operation of reservoir 1, and considering only flood damages at reach 1.
The operation of reservoir 2 is optimized considering only subsystem B,
taking into account the damages in reach 2 exclusively, with daily re-
leases from reservoir 1 as obtained according to the previously determined
operating policy. 1In optimizing the operation of reservoir 2, daily
streamflows in reach 2 are established according to the routing equation
(4-9). Next, the operation of reservoir 3 is optimized considering sub-
system C. Daily releases from the upstream reservoirs are fixed in
accordance with previously determined release policies. The streamflow
at reach 3 is determined with routing equation (4-10) and that at reach 4
with routing equation (4-11). Only damages in those two reaches are con-
sidered in the optimization of subsystem C.

The operation of each reservoir is optimized individually by
DDDP optimization technique. Because each subsystem has only one
state variable, it could also be optimized by conventional DP. By using
DDDP, however, a finer grid of state-variable wvalues can be defined.
The initial trial trajectory is that defined by the seasonal pool storage
for each reservoir. A single-cycle DDDP algorithm using a corridor widthof

1.6 kilo ac~ft for each state variable and an ll-valued corridor is developed.
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The algorithm terminates when the incremental reduction in damage iteration

is less than one thousandth the value of damage for the last iteration.

(b) Corridors. In applying the DDDP procedure for the optimiza-
tion of the entire system, 2 computation cycles are considered; and for each
cycle, an arbitrary maximum number of iterations is allowed. The corridor

widths used for each cycle are as follows:

Corridor Width, 1000 ac-ft

Computation
Cycle El, E& Eé_ Eﬂ
1 3.2 3.2 3.2 3.2
1.6 1.6 1.6 1.6

Using these widths, 3-valued corridors are constructed around the trial

trajectories.

(c) Test for Convergence. For both computation cycles, the test

for convergence corresponding to a final cycle (Section 3-5,B) is adopted

with A = 0.001.

(d) Results. The result of optimization of the system for the
water year 1957 is presented in Fig. 15, where curve A gives the result
corresponding to a DDDP procedure without the SIDP algorithm (Section 4-2,C,a),
and curve B indicates the result of including such an algorithm in the DDDP
procedure. The initial trial trajectory for the DDDP procedure is repre-
sented by the sequence of seasonal pool storages in the three reservoirs.
The number of computation cycles and the corridor widths are also those
given above. By using the system-decomposition approved (Section 3-2) to
find the initial trial trajectory, computer time requirements are reduced
from 83 minutes to 38 minutes. It may be noted that the number of itera-

tions required to reach the optimal solution with the SIDP algorithm is
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less than half the number required without it and that there is less than

one percent difference between the two solutions.

4~-3, Example 3: Planning for Expansion of a Flood Control Project

This example, adapted from Cortes [1973], illustrates the use
of DDDP procedure to solve high—-dimensional DP problems which arise in

the analysis of water resources systems planning.

A. Description of the System. The system for a flood control

project consists of structural components designed to control floodwaters
physically, and non-structural comﬁonents to reduce damages caused by
overflowing waters. Fig. 16 shows the location of the project components
on a river basin. A detention reservoir and two downstream levees form
the structural components of the system. The agricultural land-use in
the tracts behind and protected by the levees forms the non-structural
component.

A previous parametric linear programming analysis of the non-
structural components [Cortes, 1973] has provided the optimal land-use
policy as well as the net economic benefit from that policy, for any
sequence of expression of the structural components. The optimization
problem to be solved by the DDDP procedure then consists of finding the
sequence of expansion of the structural components so that the net

economic benefits are maximized over the planning period.

Table 9 presents the physical characteristics for the alternative

magnitudes of the structural components of the system. The total capacity
of the detention reservoir corresponds to the capacity required to route
safely the spillway design flood through the reservoir, with a 5-ft

freeboard, for a given capacity at the gpillway crest level. Since, for

all capacities, the outlet works are assumed the same, the only variable
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Table 9. Physical Data for Structural Components

Detention Reservoir
Order Capacity 1000. ac-ft Land Required for Detention
At Spillway Crest Total Reservoir (acres)
1 0 0 0
2 10 208.3 3785
3 20 245.3 4435
4 30 272.8 4939
5 40 296.5 5373
6 50 319.1 5710
7 60 339.3 5998
Order Elevation at Levee 3 Volume Land Required for
(feet above msl) (103 cu yd) Levee 3 (acres)
1 460.0 0 0
2 462.5 55.2 22.9
3 465.0 114.9 28.2
4 467.5 196.7 33.6
5 470.0 301.6 39.2
6 472.5 430.6 45.0
7 475.0 584.7 51.0
8 477.5 765.0 57.1
9 480.0 972.5 63.4
Order Elevation at Levee &4 Volume Land Required for
(feet above msl) (103 cu yd) Levee 4 (acres)
1 424.0 0 0
2 426.5 382.2 158.4
3 429.0 782.0 191.6
4 431.5 1,717.4 293.5
5 434.0 2,676.2 348.2
6 436.5 3,770.3 394.3
7 439.0 6,502.7 440.3
8 441.5 7,331.2 485.6
9 444.0 8,147.8 531.4
10 446.5 9,975.2 577.1
11 449.0 11,982.7 622.6
12 451.5 14,181.1 668.4




[PUS—

ki

57

in the design of the detention reservoir is its storage capacity.

The design variable for the levees is their elevation at their
respective control gaging stations along the river. The areas required
for the construction of the levees, as well as their embankment volumes
are calculated using topographical information and typical cross sections
of the levees. The area required for the construction of the reservoir is
calculated acéording to the land inundated in the passage of the 1l0-year
flood through the detention reservoir.

Economic benefits of the project will result from (a) reduction
of direct and indirect flood damages; and (b) efficient utilization of
land and properties within the floodplain. For a given degree of flood
protection, direct damages increase with time according to the economic
growth of the floodplain. Indirect damages are usually evaluated as a
percentage of direct damages. In this example, an arithmetic growth rate
of 2 percent per year and an indirect—-damage factor of 25 percent are
assumed, considering the agricultural character of the floodplain.

The expected annual direct damage is a function of the magnitude
of the structural components. Figs. 17 to 19 are a sample of three-
dimensional direct damage functions, from which other similar functions
can be developed, corresponding to floodplain conditions existing in the
beginning of the planning period.

Expected annual land-enhancement benefits from the project are
the difference between the expected net annual income with the project and
the expected net annual income if without the project. The expected annual
income varies with the magnitude of the project. Figs. 20 and 21 are
samples of a three-dimension income function, showing the expected income

variation.
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Reservoir construction costs are evaluated according to the

following relation adapted from Dawes and Wathne [1968]:

Cp = 15.26st°‘5"“4 (4-19)

where CR is the construction cost in dollars, S is the total storage capac-
ity in acre feet, and HW is the Handy-Whitman cost index for the year for
which costs are estimated. The cost of construction of levees are evaluated

as

C, = pV (4-20)

where Cl is the construction cost in dollars, p is the unit cost in dollars

per cubic yard, and V is the embankment volume in cubic yards.

Land acquisition costs are computed as

CL_ = CL_(I+r t

t (4-21)

9,

where CLt is the unit land-value at year t from the beginning of the planning

period, r, is the annual rate of'land—value differential inflation, and CLo

d
is the unit land-value at the beginning of the planning period. Operationm,

maintenance, and replacement costs are assumed to be fixed percentages

(1.0 for detention reservoir and 2.0 for levees) of construction cost.

B. Formulation of the Optimization Problem. The purpose of the

analysis of the expansion process is to determine the sequence of expansions
of the structural components of a flood control project which would maximize
the net economic benefits from the project throughout the period of analysis.
It is assumed that the project is to be developed for a planning period of

N years, and that any expansion of the project, if made at all, will be made

—
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every At years. The planning period is then divided into T planning sub-

periods, each of duration At years; that is,

N = TAt (4-22)

Expansions of the project will be considered at the beginning of each sub-
period, so that it will be effective throughout that and the following sub-
periods.

Let the state variables represent the magnitude of the structural
components of the project and also the land available to construct them.
Considering the land available as a state variable allows the analysis of
the effects of land-value differential inflation on the timing of construc-
tion and expenditures for the project. A 6-dimensional state vector §£

at stage t can be defined as

B ]
S51,t
St =
56t
L _
r- . 4-23
S, = s, ] (4-23)
where Sm t; m=1, 2,...,6, are magnitudes of the structural components and

the amount of land available for the project during stage t.
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In addition, let ﬁt be a 6-dimensional decision vector

representing the expansion of the project at the beginning of the stage t;

that is,
D1t
Dt =
D6,t
or
D, = [Dm,t] ' (4-24)
where Dm t; m=1, 2,...,6, are the expressions of the project components
bl

at the beginning of the t-th stage.
The, R(§t,5t,t) can be defined as the value, at the beginning of
stage t, of the net economic benefit from the project during that stage,

and can be evaluated as

R(St,Dt,t) = DAM[(St)O,t] - DAM[St,Dt,t]
+ G= - G,=
St,t (St)o,t

- [c(ﬁt,t> + 0MR(§t,5t,t)] (4-25)
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where DAM[(E;)O,t] is the expected flood damage during stage t which would
occur in the floodplain if no structural components were in place, i.e.,
if the state during stage t were (gt)o; DAM(§£,5£,t) is the expected flood

damage during stage t which would occur if the state were St during that

stage as a result of 5?; Gz is the net income from the agricultural use

St’
of the land in the floodplain during stage t for the optimal land-use

policy (see earlier mentioning in this Section about parametric linear
programming analysis of the non-structural components) associated with

the state §£; G is the net income from the agricultural use of the

(5,),t
land for the optimal land-use policy associated with the conditions of no
structural components in place; C(Et,t) is the construction and land
acquisition costs of the expansion 5; at stage t; and OMR (gé,ﬁ£,t) is the
operation, maintenance and replacement costs during stage t of the project
components of magnitude gt as a result of the expansion'ﬁt.

Thus, the objéctive function of the planning optimization problem

can be written as follows:

T
Max ) [R(§t,Dt,t)/(l+r)(t_l)At (4~26)
t=1

where r is the annual rate of discount, and all other terms have been
defined before.
The DP recursive equation for a forward DP formulation is then
expressed as
R(S_,D, ,t)

F (S.) =max [————+ F (5. D] (4-27)
£t 7t t-1 “Yt-1
(l+r)(t—1)At

t—l(gt—l) represent the maximum present values of the net

economic benefits of the project when it is in a state §£ during stage t,

where Ft(st) apd F
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and in a state §£ during stage t-1, respectively. This maximization is

-1

subject to the following conditions:

(a) Constraints on the State Variables.

0 <5 <S sy t=1,2, ..., T3 m=1, 2, ..., 6 (4-28)

where Szax is the largest feasible magnitude of the m~th project component
(Table 9).

Sm,t - Sm',t—l B Sm,t—2 T T Sm,t—Apm (4-29)

which is the expression of an institutional constraint and where

Sm,t—j; =1, 2, ..., Apm is the magnitude of the m-th structural com-
ponent during the (t—j)-th planning subperiod, and Apm is the number of

consecutive planning subperiods during which the m~th structural component

can not be modified.

(b) Restrictions on the Decision Variables.

m,t m Sm,t—l; m=1,2, ..., 65 t=1,2, ..., T (4-30 )

(¢) Budgetary Constraints.

C(Bt,t) SBGTt; (t_l’ 25 ooy T) (4‘31)

where BGTt represents the budget available at the beginning of planning sub-

period t to meet the construction and land acquisition costs C(Bt,t).
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(d) State-Transformation Function.

5, =T.(S_;sD) =58, +D (4-32)

or equivalently in expanded form,

S =S + D m=1, 2, ..., 65 t=1,2, ..., T (4-33)

m, t m, t—-1 m, t’
where all terms have been defined before.

C. Solution by DDDP. (a) Initial Trial Trajectory. For this

example on planning water resources systems, the initial trial trajectory
corresponds to one of the many alternatives on planning; namely, the do-
nothing alternatives. This particular trajectory is as valid and as good

as any other arbitrarily chosen, as was confirmed by using different initial

trial trajectories.

(b) Corridors. With 3 computatioh cycles, each allowing a
maximum of 10 iterations, the DDDP procedure incorporates 3-valued corridors
for each state variable. The corridor widths used in the procedure, which

are independent of the stage variable t in this case, are as follows:

Corridor Widths (Aqm g3 m= 1, 2, ..., 6)

Computation Reservoir T.evee 3 Tevee 4 Land for Land for Land for
Cycle Capacity Elevation Elevation Reservoirs Levee 3 Levee 4
1 3 4 6 3 : 4 6
2 2 2 3 2 2 3
3 1 1 1 1 1 1

The quantized values for each state variable in the DP formulation

are given in Table 10.



Table 10.

Quantized Values of the State Variables

in the DP Formulation

%9

Order Reservoir Elevation Elevation Land for Con- Land for Con- Land for Con-
Capacity of Levee 3 of Levee 4 struction of struction of struction of
(ac-ft) (ft above (ft above Detention Res- Levee 3 (ac) Levee 4 (ac)
msl) msl) ervoir (ac) :

1 0 460.0 424.0 0 0.00 0.00
2 10,000 462.5 426.5 3,785 22.88 158.41
3 20,000 465.0 429.0 4,435 28.18 191.61
4 30,000 467.5 431.5 4,737 33.61 293.47
5 40,000 470.0 434.0 5,373 39.24 348.18
6 50,000 472.5 436.5 5,716 45.00 394.29
7 60,000 475.0 439.0 5,998 50.99 440.28
8 477.5 441.5 57.12 485.56
9 480.0 444.0 63.43 531.39
10 446.5 577.07
11 449.0 622.55
12 451.5 668. 38
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(¢) Convergence Tests. In this example, the following conver-

gence parameters are used: ¢ = 0,10 and X = 0.001.

(d) Results. Optimal expansions of the structural components of
the flood control project, as identified by the DDDP procedure, can be
obtained for a number of budgetary and institutional constraints, for
various values of the rate of discount, and for various values of the rate
of land-value differential inflation. Thus, the DDDP analysis makes it
possible the investigation of the sensitivity of the expansion of the project
in response to changes in economic factors for which it might not be feasible
to assign specific values at the time the analysis is made. Here only
results for various budgetary constraints are presented. TFurther results
are presented elsewhere [Cortes, 1973].

Throughout the sensitivity analysis for the budgetary constraints,
other factors are assumed and kept invariable as follows: r = 5.5 percent

per year; r, = 3.3 percent per year; Apm =lym=1, 2, ..., 6.

d
Fig. 22 shows the optimal expansion of the structural elements
of the project under the following budgetary constraints:

A. BGTt unconstrained; t = 1, 2, ..., T

$12,000,000; t

It
'—l
N
3

B. BGT
t

il

H]
'_l
N
H

C. BGTt $5,000,000; t

For case A, the optimal solution consists of installing, at the
beginning of the planning period, the detention reservoir with a capacity
of 60,000 acre feet at the spillway crest level (339,271 acre-feet of total
storage capacity), levee 3 with an elevation of 475.0 ft above msl, and
levee 4 with an elevation of 4440 ft above msl. No modifications should

be made to the structural components throughout the planning period. With
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a reduction in the budget available (Case B), the construction of the deten-
tion reservoir is no longer a part of the optimal expansion, and the con-
struction of the levees should be carried out by stages. The final eleva-
tion of levee 4 is larger than its final elevation for the case of un-
constrained budget. TFurther reduction in the budget available (Case C)
results in the construction of levee 3 in one stage and the delay of the
construction and staging of levee 4. The final elevations 6f the levees
remain unaltered by  the reduction in the available budget from Case B. to

Case C.
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