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ABSTRACT

A SCHEME FOR STOCHASTIC STATE VARIABLE WATER RESOURCES SYSTEMS OPTIMIZATION

This report describes the development of an analytical scheme for the formu-
lation and optimization of water resources systems. The scheme being proposed
and investigated is to model the stochastic input of annual as well as monthly
streamflows to a hydrologic and water resources system, to formulate the system
in a state variable format, and to optimize the stochastic state variable model
so formulated by dynamic programming. For annual streamflows, a second-order
autoregressive model with a data-based transformation is proposed, and both
the maximum likelihood method and the Bayesian approach are used for estima-
ting the model parameters. For monthly streamflows, two linear models are
proposed, one is the regression model and the other is the functional rela-
tionship model, and their consideration of both uncorrelated and correlated
errors and theilr techniques of generation by a stationary Markov process are
discussed. The proposed state variable approach provides a generalized frame-
work within which many different kinds of system models may be expressed and
combined for the representation of a given hydrologic and water resources
system. This simple yet general format is a major advantage of the proposed
state variable modeling. While the annual or monthly streamflows are gener-
ated as stochastic inputs to the state variable system model by the proposed
scheme, a new procedure of optimization of the system by §tochastic dynamic
programming is developed. Although the research effort should be further
extended to the development of practical procedures for application, a few
simple examples are given to illustrate the validity of such applications.

Chow, V. T., Kim, D. K., Maidment, D. R., and Ula, T. A.
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I. INTRODUCTION

1-1. Objective of the Study.

The main objecti?e of this study is to deve}op a scheme fof the
optimization of water resources systems as an advancéd methbdélogy for
the optimum planning, design and opefation of watér resources systems.
Hoﬁever, additional research will be needed to e#tend ﬁhe proposed scheme
to pfactical procedures that would be applied to the planﬁiﬁg and deéign‘
of actual water resourceé syéterﬁso |

The scheme being proposed aﬁd investigated is to model the
stochastic input of annual as well aé monthly streamflows to a hydrologié
and water resourées system, to formuiate the sysfem in a state!variablé
format, and to optimize the stochastic state variable model so formulated
by the use of dynamic programming.

Since the physical mechanism of streamflow generation is not
complétely understood, this process:may be treated as being stochastic,
aﬁd approximate mathematical models can be derived using the histofic
data. Suéh models should be simple enough to empiby a few parameters as
possible and yet be flexible enough to capture all fheréssénfiai features
of the physical process.

On the basis of a stochastic model of the streéﬁfiow proceéé,

a Monte Carlo technique is used to generate a set 6f streémflow seQﬁences
that are equally as likely to occurvas the observed Streaﬁflow sequénce;
The sequences so generated make possible a relafively comprehensivé
simulation study of the performance of a proposed Hydfologic design ésrii
responds to various possible sequences of streamflows, thus aidihg the
develobment of a well—balanced design. Fof that reason,rstreamfldw
generation héed in conjunction Qifh‘simulation provides a design eﬁalua—

tion technique which is superior to traditional methods that use only



the observed streamflow sequence in evaluating hydrologic designs. Stream-
flow generation does not provide any new information about the streamflow
process but it unveils and expands the available information in a manner
suitable for a simulationvstudy.

Both annual and monthly streamflows are frequently used as
hydrologic inputs in planning and design studies of water resources systems.
The monthly streamflows in particular, constitute a fairly general case
because of their seasonal structure. Since conventional stochastic
hydrologic modeling techniqﬁes do not adequately account for the model
parameter uncertainties, one objecti?e of this study is to explore the char-
acteristics of such uncertainties and to incorporate them in the modeling
process.

Once the stochastic inputs are modeled and can be generated,
the hydrologic and water resources system should be modeled in a flexible
format in order to accommodate the inputs and to optimize the output of
the system. 1In this respect, a new state variable approach is investigated
for serving in a generalized and flexible manner to accept the stochastic
inputs and be optimized.

The use of dynamic programming for systems optimization is a
powerful and well accepted tool. However, it is conventionally applicable
only to deterministic systems. In this study the water resources system
is made stochastic because of its stochastic inputs. Attempts have
been made to develop stochastic dynamic programming techniques; however,
they have not been too successful because many difficulties arise due to
the probabilistic nature of the system. The few stochastic dynamic pro-
gramming techniques that have been proposed previously are rather limited
to simplified assumptions. In this study, investigation is made to

develop a stochastic dynamic programming algorithm on the basis of more
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realistic assumptions so that the results of applying the proposed technique

will be closer to the real world situation.

1-2. Scope of the Study.

The scope of this stﬁdy is essentially reported iﬁ the‘subééquént
five chapters. Chapter II wiil discﬁss the stochastic:modeling and
generatioh of annual streamflows. In this chapter,bexisting metho&é of
stochastic modeling of streamflows are briefly described. 1In order to
justify the use of available'probabilistic theories which are mostly baséd
on normal distributions,bBox—Cox transformations of the variables are
inﬁroduced. The transformed streaﬁflows are then modeied By the second-
order autoregressive model. Estimation of the model parameters is ﬁade 
by the method of maximum likelihood and by the Bayesian method. Then, as
an illustration, a set of given annual streamflow data are analyzed by
the proposed scheme.

Chapter III covers the stochastic modeling of monthly stream-
flows. 1In this chapter, the development in stochastic generation of
monthly streamflows is briefly reviewed and the general linear model of
full rank is recommended for use. Estimation of the model parameters and
monthly streamflow generation are discussed for the case of uncorrelated
errors as well as for the case of correlated errors. However, because
of limitations in time, no further studies have yet been made on the
development of the algorithms for applying the proposed scheme for
generating monthly streamflows as stochastic inputs.

Chapter IV presents fhe state variable modeling of‘hydrologiq
and water resources systems. ‘The basic concepts and equations for the
state variable mathematical model are first described. Then, the for-

mulation of deterministic state variable models and stochastic state



variable models are presented with illustration by examples.

Chapter V discusses the optimization techniques of stochastic
dynamic programming. The discussion includes stochastic transformation,
formulafion of recursive equations, chance constraints and steady state
probabilities, and risk analysis. An example is given to illustrate the
optimization procedure and to discuss the results of the optimization
technique.

The report is concluded with summaries and conclusions, a list
of references, and an appendix describing the physical and economic data
for Watasheamu Dam and Reservoir, which are.used in the example of

Chapter V.
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ITI. MODELING OF STOCHASTIC INPUT: ANNUAL STREAMFLOWS

2-1. Stochastic Generation and Modeling of Streamflows.

The objective of streamflow generation is to produce avset of syﬁ—
thetic streamflow sequences that would occur equally as likély as‘the observed
streamflow sequence. Statistically, this amounts‘to the generation of a
sef of sambies from the population defining the streamflow proéess. However,
théfcharacteristics of this population are not known but can be inferréd
from tﬁe information contained inbthe observed streamflowbsequgnce. A |
dilemmabhere is that the observed streamfloﬁ sequence 1is itsélf a sampie,
and since it is typically short, the information it contains may not be
representative and reliable or may be subject to larée sampling errors.

Only within these limitations, a model fitted to the observed streamflow
sequence can be considered as representative of the stochastic character-
istics of the streamflow andbthus can be used to reproduce the streamflow
process and generate synthetic streamflow sequences. Recognizing this facf,
hydrologists have suggested several methods of streamflow geﬁeration for
extendiﬁg the information contained in a streamflow record for use in water
resoufces’syétems planning and design.

The physical mechanism of the streamflow generating process is not
completely known and a mathematical model is often derived on the basis of
the availablé historic observations to approximate the underlying process.

A model representing‘a stochastic process, such as streamflow, sﬁould be
simple enough to employ as few parameters as possible and yet be flexible
enough to capture all the essential features of the physical process.
Basically two types of models are in use today in stochastic modeling of
annual streamflows, namely the Markov models of Thomas and Fiering (1962)

and the fractional Gaussian noise (FGN) models of Mandelbrot and Wallis



(1968). Several modifications and refinements have been proposed to these
models and extensive literature reviews were made by Chow and Meredith
(1968), Kisiel (1969), and Matalas and Wallis (1975) among others.

Both types of models belong to a general class of discrete time
linear stochastic processes (Box and Jenkins, 1970). The Markov model is
simple in structure but its applicability is limited because the theoretical
autocorrelation function is not flexible enough to fit a wide range of sample
autocorrelation functions. The FGN model is a cbntinuous moving average
process of infinite order. As the first step toward its practical applica-
tion, the FGN model must be replaced by a model of discreté fractional
Gauséian noise (DFGN) process., The DFGN model has a peculiar kernel
structure which does not satisfy the Box and Jenkins (1970) definition
ofAstationarity. As the second step toward its operational uses, the DFGN
model of infinite order must be approximated by a process involving a
finiée number of terms. So far six different approximations to DFGN
may be found; namely, Types I and II (Mandelbrot and Wallis, 1969),
filtered Type II (Matalas and Wallis, 1970), the broken line process (Mejia,
Rodriguez—IturBe and Dawdy, 1972), fast fractional Gaussian noise (FFGN)
(Mandelbrot, 1971; Chi, Neal and Young, 1973), and the ARMA (1,1) with the
parameter ¢l close to 1 (0'Connell, 1971).

Type I and II, filtered Type II, and the broken line process are
moving average models of finite order. 1In general, moving average models
are inferior to autoregressive models for the following reasons: (1) The‘
autocorrelation function of an autoregressive model tails off while that
of moving average model cuts off; (2) the autoregressiye model is linear
in the parameters while the moving average model is nonlinear in the para-
meters; and (3) the autoregressive model is expressed in terms of the

observed past values while the moving average model is written in terms
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of the unobserved past random disturbances. The FFGN, as a generating
process, requires the summation of a large number of terms. ARMA (1,1)
with ¢l close to 1.0 can be regarded as an approximation to the FGN but
it may not be a good approximation to a natural streamflow process, since
the model parameters are not estimated from the observed streamflow
sequence.

In the present investigation, a new model, a second-order auto-
regressive process with a data-based transformation, is proposed to approxi-
mate the streamflow generating process. The properties of the new model
are to be presented and the parameter estimation procedures be developed.
Due to its simplicity in structure and its generality in descriptive fidel--

ity, the new model seems to be very promising for streamflow simulation.

2-2. The Box-Cox Transformations.

Streamflow sequences seldom follow the normal probability distribu~

tion. In this situation, it is often found advantageous to transform the
original sequence so that the transformed sequence can be adequately repre-
sented by a stochastic model based on the normal probability distribution
theory. The problem associated with transformatiohs is two-fold: First,
a ‘suitable transformation must be identified; and second, parameter esti-
mators must be found with desirable properties, using the transformation.
The procedure developed here considers these two aspects of the transfor-
mation problem simultanéously.

Consider a family of transformations proposed by Box and Cox

(1964):

t .
- — (170)
z = (2-1)

log Ve (x=0)



where Ve denotes the streamflow value taken at time t. Let us suppose that,
for some unknown value of X, the transformed observations can be represented

by the normal second-order autoregressive, AR(2), process:

v - 1 Y Vep = 1

B A U I (2-22)
or

zZ, = ¢o + ¢lzt—l + ¢Zzt—2 + as (t=1,2,...,n) (2-2b)
where ¢' = (¢o,¢l,¢2), which denotes the transpose of ¢, is a vector of

unknown parameters associated with the transformed data and a, is normally
and independently distributed random disturbance, with mean zero and
variance 02, or NID(O,oi). Eq. (2-2b) can also be expressed in terms of
the deviation of z, from its mean, or

(zt—u) = ¢l(zt_l—u) + ¢2(zt_2—u) +a, (2-2c¢)

where u is the mean of the process z, - By comparing Eq. (2-2c¢) with Eq.

(2-2b), it can be séen that

d) = ]J(l - ¢l - ¢2) (2—3)

(o}

Although Eq. (2-2c) is a commonly used form in stochastic hydrology, Eq.
(2-2b) will be used in the following analysis because it is linear in its
parameters. Eq. (2-2c) contains the product of parameters, ¢lu and ¢2u,

and hence it is not linear in its parameters.

2-3. Properties of the Second-Order Autoregressive Model.

When u is assumed to be zero, the AR(2) model of Eq. (2-2b) can

be written as

L e L | (2-4)
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For stationarity, the roots, l/al and l/az, of the following equation
2y _ - -
(1-¢,B-9,87) = (1 o,B) (1-a,B) = 0 . (2-5)

must lie outside the unit circle. This is equivalent to requiring

that the parameters ¢l and ¢2 lie in the triangular region:

¢2 + ¢l<l
¢2 - ¢l<1 (2-6)
—l<¢2<l
as shown in Fig. 2-1.
" The autocorrelation function for the AR(2) process is‘given by
the second-order difference equation:

t ¢

Py = 91Pp-1 t $9Pp k>2 (2-7)

with Py = 1 and pl = ¢l/(l—¢2). The solution of the difference equation

(2-7) (Stralkowski, Wu, and DeVor 1970) is

_ k k, .
P = Clal + C2a2 5 al,az being real, unequal
= (C,+C k)ak‘ 0.0, being real, equal (2~8)
172 > 71’72 ’ : »
= k‘ . 1
Cly cos(ke+C2), @50, being complex
where Cl and C2 are constants and

Y = V-9, (2-9)

- ¢
8 = cos " ( ) (2-19)

2v=¢
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of the AR(2) process.

Pr

AeHuo.u.eNuo»wv

___________

(0.5,0.0)

(1.0,-0.7)

0t

[P



11

The patterns in the autocorrelation function of the AR(2) process are

also illustrated in Fig. 2~1. If the roots are real, Which occurs when

¢12 + 4¢2 = 0, either the autocorrelation function will be positive as

it damps out to zero (region A), or it will alternate in sign as it damps

to zero (region B). However, if the roots are complex (¢12 + 4¢2 < 0),

the autocorrelation function is a damped sinusoidal wave (regions C and D).
The autocorrelation function for the AR(2) process is much more

flexible than that for the Markov process. The AR(2) process may be used

to fit either damped exponentials or damped sinusoidals in the sample auto-

correlation functions. As early as 1927, Yule proposed a second order

autoregressive model to describe the sequence of Wolfer's sunspot number

"over a 176 year period. Since the Yule's pioneering work, the AR(2) model

has been extensively used to describe a variety of natural phenomena. For

example, Quimpo (1968) used the AR(2) process in the modeling of daily

river flows.

2-4. Estimation of Model Parameters.

Having chosen a model which will adequately represent the stream-
flow sequence, the next step is to estimate the model parameters. It is
generally accepted that maximum likelihood estimates are asymptotically
more efficient than moment estimates. The parameters of a streamflow gener-
ating model estimated from a short historic sequence, however, are not likely
to be equal to their respective population values. We may treat this para-
meter uncertainty problem by employing the Bayesian approach of statistical
inference. Bayesian inference provides a framework to pool all the available
information to reduce the parameter uncertainty. More importantly, the
Bayesian approach can make exact finite sample probability statements about

the unknown parameters.
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The model parameters are estimated by using both the maximum
likelihood method and the Bayesian approach. A numerical example will be
given in Section 2-5 to show how some of the techniques developed could
be used in the analysis of actual hydrologic time series for water re-
sources systems planning.

The parameters are to be estimated for the general AR(p) process

which is given by an extended form of Eq. (2-2a) or Eq. (2-2b):

A A A

yx—l y -1 vy, ,—1 y -1
t - t-1 t-2 t—p _
X b F by T F b, Lt ¢p Tt e, (2-11a)

or

+ a (2-11b)

Ze = 0t 012 T2 ot e Tz ot

Eq. (2-1la) includes an AR(l) process as a special case with p=1l. When p=0,
the process reduces to a degenerate stochastic process where Y. is indepen-
dently and identically distributed. Therefore the following procedure can
also be applieq to flood frequency analysis.

It is important to note that, for given A, the autoregressive
model shown by Eq. (2-1la) is linear in the parameters. Also at time t,
yt—l’yt—Z"f"yt—p on the right side of Eq. (2-11la) have already been
observed and so they are not random variables but deterministic variables.
Henqe, this autoregressive model satisfies all the necessary conditions for
the formulation of a normal linear regression model. Therefore, the general
principles for the linear regression model are directly applicable to the
autoregressive model. |

Since A is an unknown parameter, it will be estimated along with
other unknown parameters, the ¢'s and o,- In what follows, the parameters

are to be estimated by using both the maximum likelihood method and the

Bayesian approach.
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2-5. Maximum Likelihood Estimation of Parameters.

(1) The Likelihood Function. Before discussing the maximum likeli-

hood method of estimating the parameters, the likelihood functionwill be
defined. For this purpose, the joint probability density function (pdf) of
Z: = (yl,yz,...,yn) given the parameters A, ¢, and o,» can be factored as

follows:

p(Yisyzy- .e ’Yn|>\,i’0a) = p(yl’YZ’. .o ,YP|>\,_Q_,Oa)
(2-12)

-P(Yp+lsyp+2, ce ’Ynl A 9i9oa’yl’y2’ coe ,Yp)

It is seen from Eq. (2-11a) that p(yl,yz,...,yp|A,Qﬁoa) involves the unknown

data Yo2Y- occurring before beginning of the observations. A

12 Y1

simple approximate method of resolving this difficulty is to consider

yl,yz,...,yp as fixed at their observed values; this 1s equivalent to assum-—
ing that
P(l|>\,i,0a) = p(X|>\,_‘E’Oa’yl:y2"--’yp) | (2"13)
' =
where y (yp+l,yp+2,...,yn).

Since a, in Eq. (2-11a) is NID(O,oi), the joint pdf of a'

= (ap+l’ap+2""’an) may be written as
n
2
I 2t
_ 1 _ bt =pHl
Pa i1o8p4p0 008y) = )7z & 1 7 !
2 20
(21Toa ) a
(2-14)
- 1 - 22,
ST, @2 P2
20
(210) a

From Eq. (2-11b) the following equations can be written:
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T 7] B T - e
ap+l _ zp+l _ 1 zP zp—l . z, io
1
dto 2042 1 2041 2, . zy .
. (2-15)
¢P
a z 1 z 1 Zo_o e Zn—p
U Y R N L
or in matrix notation:
a=z-x9 (2-16)

To write the joint pdf for (yp+l,y .,yn), there is the need

p+2°°°’

for the Jacobian of the transformation from (a .,an) to

p+l’ap+2"'

(yp+l’yp+2""’yn)’ which can be obtained from Eq. (2-1la) as

Ja

t =1
J =1 —| = I y (2-17)
t=p+1 ayt t=p+1 t
Then,
P(; | A:_@_’Ua) ”P(Z I l,i,oa,yl,}’z,---,yp)
u 2
Z [z, = (4, + bz, + «ov ¢pzt_p)]
_ { t=p+1
, @-p)/2 &F )
(2woa) 9a
- ' - 2-18)
- s e - [z~ x o) [z - x ¢l (

20
(Zﬂﬁa) a
When Eq. (2-18) is viewed as -a function of the parameters, it is called
the likelihood function, or
J M-ziyk-zih

— exp {- (2-19)
(n-p)/2 202

2,0, | p) =
- 2
(2ﬂ0a)
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It is often convenient to work with the log likelihood function which is

given by
L850, | 3) = log 2(¢,0, | 9

= - igégl-(log 2m + log oi) + log J

_[z2-x29]'[z - x ¢ (2-20)
—
20
a

(2) Maximum likelihood Estimates. The method of maximum likeli-
hood is preferable to the method of moments since maximum likelihood esti-

mates are, in general, asymptotically more efficient than moment estimates

-and are asymptotically unbiased (Kendall and Stuart, 1967). Maximum likeli~

hood estimates may be adjusted to derive unbiased estimates.

The maximum likelihood estimates of A,¢, and oi can be obtained
by maximizing the likelihood function of Eq. (2-19). For given A, Eq.
(2-19) is the likelihood for a standard least squares problem. Hence, the
maximum likelihood estimates of the ¢'s are the least squares estimates
of the ¢'s:

500 = "0t x'z (2-21)

It is well known that §(A) are the unbiased minimum variance estimates of

9 (2) (Scheffé, 1959). The maximum likelihood estimate of oi(k) is

e A1 - 2
820) _lz Eg(l)i_éa x30 _ Sn_(;) (2-22)

where
s20) = [z2-x 817 [z - x $OV] (2-23)

An unbiased estimate of oi(k) is given by
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20y = S | (2-24)

The residual variance has n-2p-1 degrees of freedom since there are effec-
tively n-p observations and p+l degrees of freedom are lost in fitting the
unknown constants ¢. Eqs. (2-21) and (2-22) are substituted in Eq. (2-19)
to obtain the maximized likelihood function as follows:

- np

2

2
5 (M) -
po0) = [JZ/(n—p)] (2-25)

Since there are different dimensions for different values of A, the
presence of the Jacobian in Eq. (2-25) makes the term in the bracket dimen-

sionless. Similarly, the maximized log likelihood function is given by

s? ()

27 (p)" (2-26)

= = . b-p
Lmax(A) log zmax(A) const 2 log [

-

Since only the relative value of zmax(x) is of interest, the likelihood
function is usually regarded as containing an arbitrary multiplicative
constant. Likewise, the log likelihood function contains an arbitrary
additive constant. Now Lmax(A) is evaluated for various wvalues of A and
the value X which maximizes Eq. (2-26) is the maximum likelihood estimate
for A. Then,‘Eqs. (2-21) and (2-22), evaluated for A = i, are the maximum
likelihood estimates fér ¢ and ci, respectively.

There has been discussion about whether the parameters should
be estimated from the original sample or from the transformed sample.
Matalas (1967), Burges (1972), aﬁd Matalas and Wallis (1972) suggested
calculating the sample statistics from the original data first, substi-

tuting them into the equations which relate the population parameters in

NP

)

st




17

the original and the transformed units, and then solving the equations for
the parameters in the transformed units. In this procedure the parameters
are estimated by the method of momenté. However, in the method of maximum
likelihood the parameters can be easily estimated from the transformed
data. TFor the independent lognormal'process, Finney (1941) and Aitchison
and Brown (1963) showed that maximum likelihood estimates are much more
efficient than moment estimates for large samples.

(3) Confidence Regions for ¢l andA¢2 of the AR(2) Model. The

AR(2) model is recommended for use in this study. The confidence of its
estimated parameters ¢l and ¢2 is now discussed. To a good degree of
approximation, a 100(1-o)% joint confidence region for the parameters ¢l,

¢2 for given Z is given by Stralkowski, Wu, and DéVor (1970) as
A~ . 2 A PS .
[¢1(A) - ¢1(A)] + ZOl(A) [¢1(A)'- ¢1(A)]
A ~ . 2
<20 1= § 08,0 = 8,006, ].F (2,0-5) (2-27)

where Fa(2,n—5) is the upper 100c percentage point of an F distribution

with (2,n~5) degrees of freedom. Eq. (2-27) is the equation of an ellipse

and can be written in the form

u? |, v’
2 2
B, 0% 8,0

where

u()) 1/v2 1/v2 ¢1(A>-$1(A>

(2-29)
v()) 1/V/2  -1/v2 $,(0) - $2(x)



- 18

and
PR, PG 1 1/2
oy o] 2T EOFD - 008, M1 Fy20o5)
B.(\) =
1 (m-5)[1 + 5, (V)]
'2[1 - $:(>\)6 A) = §, NP, MN] F (2,n—5)—l/2‘
g, (\) = 11 22 d » (2-30)
2 (@-5)[1 - 6, (V)] ]

In Eq. (2-28), u()) and v()) are transformed coordinates centered at $1(A),
$2(A) having directions 45° and 135° respectively and Bl(x) and BZ(A) are

the one—half lengths of the principal axes of the ellipse.

2-6. Bayesian Estimation of Parameters.

(1) The Bayesian Theorem. The basic difference between the

Bayesian aﬁd non-Bayesian (classical) approaches of statistical inference
is that the.Bayesian approach looks upon a population parameter as a random
variabie while the non-Bayesian approach looks upon a population parameter
as an unknown constant. In the Bayesian approach, a pdf can be ascribed to
a population parameter, which would contain any information known prior to
taking the data plus the information obtained from the data.

Suppose that p(z,¢) is-a joint pdf for a vector of observations z

and a vector of parameters ¢. Then,

P(2:8) = p(2[®)p @) = p(8]2)p(2) (2-31)
Given the observed data z, the conditional distribution of ¢ is

p(p|z) = P2 (ir)fz Slg) (2-32)

which can be expressed alternatively as

p(¢)z) = p(8).p(z|d) (2-33)
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or posterior pdf « prior pdf x likelihood function. Eq. (2-33) is usually
referred to as the Bayesian theorem. 1In this equation, p(¢), which tells

us what is known about ¢ without knowledge of the data, is called the prior
distribution of ¢:. The term p(z|¢), viewed as a function of ¢, is the
likelihood function. The term p(ng) is called the posterior pdf of ¢ given
2 and has all the prior and sample information incorporated in it. The
posterior pdf is employed in the Bayesian approach to make inferences about

parameters (Zellner, 1971; Box and Tiao, 1973).

(2) Posterior Pdf's for Parameters. As regards a prior pdf for

the parameters, it is assumed that the information is diffuse and represented,

following Box and Cox (1964), by

1
7(p+1)/ (n-p)

P(A;9,0,) = 0<g <05 —o<g, A< (2-34)
o)

a

where J is the Jacobian given by Eq. (2-17) and p is the order of an auto-
regressive process shown in Eq. (2-11b). Note that the ¢'s are not res-
tricted to be within the stationarity region and thus the analysis applies
without imposing the condition of stationarity on a given time series. When
some prior information about the model parameters is available, the priof
pdf in Eq. (2-34) can be altered to incorporate this information. As Benson
and Matalas (1968) and Vicens, Rodriguez-Iturbe and Schaake (1974) reported
that the regional regression models for the autocorrelation coefficient were
not very successful in providing the prior information, the above diffuse
prior is recommended.

On combining the prior pdf in Eq. (2-34) with the likelihood
function in Eq. (2-19) using the Bayesian theorem, the posterior pdf for

the parameters is obtained as:
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(n—2p—l) / (n—p) . [Z - x i] ’[Z - x 9_]
J Z - 2 Z T A
PO\ ’_‘E,Galz) e« O_(n_P+l) exp {- 202 } (2"35)
a a

It is to be noted that the likelihood function, Eq. (2-19), and the pos-—
terior pdf, Eq. (2-35), are proportional. Hence, it is expected that the
results from the Bayesian approach will be comparable to those from the
maximum likelihood method. Also in large samples, the maximum likelihood
estimates are the approximate means of the posterior pdf of the parameters,
a pdf that will usually be approxiﬁately normal (Zellner, 1971).

In the Bayesian approach of statistical analysis, inferences
about unknown parameters are made through the use of the posterior pdf fof
the parameters. The joint posterior pdf shown in Eq. (2-35) can be analyzed

conveniently by taking note of the following algebraic identity:
(z-x8)"(z-x¢)= (n-2p-1)s> () + [6 - )] xx [9 - )T (2-36)
On substituting Eq. (2-36) in Eq. (2-35),

(n=2p=1)/ (n-p) (n-2p-1)s>(A) +

p(A,9,0 |y) = exp {-
ol (o-p*) 0y 2

a a
m—iungzm—éun} (2-37)

Integrating Eq. (2-37) with respect to 0,0

p(A,9ly) = f p(k,g,calx) do
= o <
- J(n—2p—l)/(n-p){(n_zp_l)szm F o - §0V] -

xx [¢ - §(0)11 @P)/2 (2-38)
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- Where»kil is the i-th diagonal element of (x°x) .
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It can be seen from Eq. (2-38) that the joint posterior pdf for ¢, given A,
is in the multivariate Student t form. The marginal pdf for ¢i, given A,
is in the univariate Student t form with n-2p-1 degrees of freedom and with

the following moments:

El6, [AT = &, O
1=0,1,2,...p (2-39)

Var[¢ilk] =v%ﬁ5%§5%% sz()\)kii

1
Further, by integrating Eq. (2-37) with respect to ¢,

00

p()\’calz) = [ f . [ P()\,Q,Ual_%)di'

-0

0o 0 O
< _l exp {_ Lnizp—:L)Sz()\)} | (2_40)
G;n—Zp) 20a2

For fixed ), the marginal posterior pdf for o, is in the form of an in-

verted gamma function with the following moments:

/(n—2p-l)/2 T [(n—2p—2)/2]

Elo,[] = I'[(n-2p-1)/2] s()
2 .
Var[calk] = (nzifgggi)(l) - [E(call)]z (2-41)

To obtain the marginal posterior pdf for A, integrate Eq. (2-40)

with respect to gt
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p(Ap Jo p(r,0,[y)do,

o« J(n"ZP"l)/(H“P) [82 ()\) ]—(H‘ZP']-)/Z

-(n-2p-1)/2
52/ (0-p)
This pdf can be analyzed numerically. In the logarithmic form,
(n-2p-1) 52 (1)
log p(A|X) = const - O log [—7,—1 (2-43)

J2/(n—P)

Thus, in comparison with Eq. (2-25), it can be seen that the maximum likeli-

hood estimate of )\ is identical to the modal value of the posterior pdf for ).

(3) Contours of Posterior Pdf's for ¢l and ¢2 of the AR(2) Model.

The probability density function in Eq. (2-38) is a monotonically decreasiﬁg

function of the quadratic form [¢ - ﬁ(k)]fﬁﬂng —_é(k)]. Hence, the contours

of p[glkﬂg] are ellipsqidél in the parameter space of ¢ (Box aﬁd Tiao, 1972).
For an AR(2) process, to a good degree of approximation, the

ellipsoidal contour of p(¢l,¢2|A,X) is given by

N 2, o ~
[0 = G012 + 25,00 16,00 = §,00]
6,00 = §,001+ [5,00 = 3,017

s-;%g (1= 8,008, 00 = 8, (08, W7, 2omo5) (2-44)

This equation will delineate‘a region containing an 100(1l-a)% of the pos-
terior pdf for ¢l and ¢2 given A. The ellipsoidal posterior region enclosed
by the contour given by Eq. (2-44) is numerically equivalent to an 100(1l-a)7%

confidence region for ¢l and ¢2 given by Eq. (2-27).
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2-7. Analysis of Annual Streamflow Data.

(1) The Annual Streamflow Data. 1In this section some of the

procedures developed above are applied to an actual hydrologic time series.

The annual (calendar year) streamflow discharges of the Sangamon River near

Monticello, Illinois were taken from the U.S. Geological Survey Water-Supply
Papers No. 1308, 1728, 1915, and 2115. The data are given in.Table 2-1 and

are plotted in Fig. 2-2. For ease of reference, the streamflow series from

1945 to 1969 is called Series A; the streamflow series from 1930 to 1969,

Series B; and the streamflow series from 1915 to 1969, Series C.

(2) Model Identification. The sample autocorrelations for Series

A, B and C are shown in Table 2-2 and the correlograms are plotted in Fig.
2-3. For Series A and B, the eorrelograms exhibit damped sinusoidal
patterns‘with positiﬁe values of 51 and therefore an AR(2) model with para-—
meter values in Area D in Fig. 2-1 should be appropriate. The eorrelogram
for Series C does not reveal any apparent pattern and the series is fitted
by both an AR(1l) and AR(2) model. Computer programs are available for
analyzing time series and multiple linear regression (IBM, 1970; University
of Illinois, 1974). As is shown in Table 2-3, &2 in the AR(2) model is
very close to zero and so Series C could very well be represented by the

AR(1) model.

It is to be pointed out that although autocorrelations are not
invariant under the transformation, the general pattern of the auto-
correlations remain the same. Hence, the models identified above could

also be employed with transformation.

(3) Estimation of A. Since X is a nonlinear parameter in the

model of Eq. (2-2a), A can not be estimated in a closed form. The residual

sum of squares SZ(K) in Eq. (2—23)>for a range of values of A can be readily
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Table 2~1. Annual Discharge of the Sangamon River
Near Monticello, Illinois (1915-1969)

Discharge Discharge Discharge

Year in cfs Year in cfs Year in cfs
1915 281 1934 118 1953 172
1916 347 1935 421 1954 69.7
1917 221 1936 266 1955 197
1918 411 1937 437 1956 239
1919 323 1938 466 1957 456
1920 365 1939 476 1958 392
1921 309 1940 132 1959 329
1922 508 1941 388 1960 299
1923 561 1942 527 1961 393
1924 .. 559 1943 . 574 1962 519
1925 262 1944 297 1963 153
1926 912 1945 298 1964 241
1927 1010 1946 452 1965 320
1928 375 1947 378 1966 272
1929 646 1948 318 1967 358
1930 360 1949 514 1968 555
1931 109 1950 658 1969 409
1932 . 161 1951, 471

1933 428 1952 422

[,
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Table 2-2. Sample Autocorrelations for Series A, B and C
Number of
Series Observations Lags Autocorrelations
A 25 1-7 0.42 -0.03 -0.18 -0.35 -0.28 -0.09 -0.01
8-14 -0.04 0.05 0.19 0.20 0.08 -0.18 -0.34
B 40 1-7 0.25 -0.05 -0.13 -0.09 -0.16 -0.05 -0.01
8-14 0.09 0.08 0.0 -0.04 -0.08 -0.06 -0.14
C 55 1-7 0.30 0.07 0.10 -0.03 -0.23 -0.05 -0.15
8-14 -0.09  -0.04 -0.09 -0.04 -0.05 -0.06 -0.09
Table 2-3. The Fitted Models
Parameter
Series Model Estimates Model Equation
A AR(2) ¢l = (.55 z, = 0.55zt_l—0.27zt_2+at
¢2 = -0.27
B AR(2) ¢1 = 0.28 z, = 0.28zt_l--0.12zt__2+at
¢2 = f0.12‘~
Cc AR(1) ¢1_= 0.3 zt“=’0;3zt_i+at
’ c AR(2) ¢l = 9.31 oz, = 0.31zt_l—0.02zt_2+at
¢2 = -0.02
z denotes the deviation from the mean of the process.

t
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Figure 2-2. Annual discharge of the Sangamon River near Monticello, Illinois (1915-1969).
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(c) Series C

Figure 2-3.

Sample autocorrelations for series A, B and C.
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calculated by using a computer program for the multiple linear regression
(IBM, 1970; University of Illinois, 1974). Table 2-4 shows values of lmax(k)
in Eq. (2-25) and of p(A|z) in Eq. (2-42) over a range of X where the den-
sity is appreciable. As expected, maximum likelihood estimate of A is
identical to the modal value of the posterior pdf for X for each series.

The posterior pdf's for A shown in Fig. 2-4 are approximately normally dis-
tributed. It may be noted that log transformation (A=0), which is quite i
often used in hydrology, is not appropriate for any of thé series. The
suitable transformations are: & = 0.75 for Series A, & = 1.0 for Series B,

and & = 0.5 for Series C

(4) Estimation of ¢ and T given A. For given X, the model is-

linear in the parameters and the model parameters can be readily estimated.
by the least squares method. For each series, A=0 (log transformafion), |
A=%, and A=1 (no transformation) are applied and are fitted by Aﬁ(l) and
AR(2) model. An AR(1l) model is included because of its popular usé in
hydrology. For an AR(l) process, the likelihood function of Eq. (2-19)
involves n-1 observations. Hence, to have the same number of effective
observations for both AR(1l) and AR(2) models, one less observation is
employed for the AR(1l) model than those for the AR(2) model. Table 2-5
gives the parameter estimates for various combinations of a number of

observations, models, and A's.

(5) Confidence Regions for ¢. and ¢2 of the AR(2) Model.

1

Approximately 957 confidence regions for ¢l and ¢2 for Series A, B and C
in the original units and in the transfo;med units are constructed,‘using
Eq. (2-27), as shown in Figs. 2-5 and 2-6, respectively. They are all
within the stationarity boundary. Sampling variabilities of the para-

meter estimates are well illustrated since the estimates of ¢l and ¢2 for



Table 2-4. Values of lmax(k) and of p(k[z) Over a Range of A for Series A, B and C

Series A Series B Series C
A % e p(A |y g () P\ 2 ) p(]y)
xlO+57 xlO+104 xlO+156 |
~0.125 3.8 0.03 - 4.8 0.03
0.0 11.6 0.08 23.9 0.13
0.125 - 29.3 0.18 4.5 0.02 83.4 0.4k
0.25  60.8 0.34 13.1 0.07 198.3 0.98
0.375 105.3 0.55 32.3 0.16 329.2 1.59
0.5 154.4 0.77 66.7 0.31 381.6 1.83
0.625  194.4 0.94 117.0 - 0.53 312.9 1.51
0.75 213.7 1.01 175.9 0.76 183.3 0.91
0.875 207.9 0.99 228.6 0.97 77.5 0.41
1.0 181.3 0.88 258.4 1.09 - 23.9 0.13
1.125 143.1 0.72 256.5 1.08 5.5 0.03
1.25 103.3 Q.54 225.0 0.96 |
1.375 68.7 0.38 175.2 0.76
1.5 42.5 0.25 121.9 0.55
1.625 24.4 0.15 76.2 0.35
1.75 13.5 0.10 43.0 0.21
1.875 6.1 0.04 21.9 0.11
0.05

2.0 | 10.6

0¢

N [
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Table 2-5. Model Parameter Estimates
Data NOB ENOB Model A d)o q)l 4’2 s
from to

1946 1969 24 23 AR(L) ~ 0.0 3.147 0.454 0.4555
0.75 58.10 0.449 30.50

1.0 197.8 437 129.79

1945 1969 25 23 AR(2) 0.0 4,010 0.566 -0.262 0.4508
0.75  74.72 .563 ~0.278  30.08
1.0 253.0 0.547 -0.274 128.18

1931 1969 39 38 AR(1) 0.0 4.383 .243 0.4859
1.0 267.9 .254 137.19
1930 1969 40 38 AR(2) 4.632 0.255 -0.058 0.4918
1. 298.2 0.281 ~0.116 138.17
1916 1969 54 53 AR(1) .0 4.274 .269 0.5053
.5 25.96 .285 8.897

.0 268.9 0.304 173.9

1915 1969 55 53 AR(2) .0 4.396 .276 ~-0.028 0.5102
26.56 0.291 -0.023 8.983
.0 274.6 0.311 -0.022 175.6

*
NOB is the abbreviation for '"number of observations'.

ENOB is the abbreviation for "effective number of observatioms''.
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95% confidence regions, and also 95% contours of the posterior pdf, for eH and

em of the ‘AR(2) model for series A, B and C in the original units (A = 1.0).
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Series A lie just inside (Fig. 2-5) and outside (Fig. 2-6) of the 95% con-

fidence region for Series C.

(6) Contours of Posterior pdf's for ¢l and ¢2 of the AR(2) Model.

As was stated in Section 2-6(3), the posterior distribution for ¢l and ¢2
is identical to the confidence distribution of ¢l and ¢2. Hence, Figs. 2-5
and 2-6 also delineate a region containing 95% of the posterior probability
for ?l and ¢2 given the value of A for Series A, B and C. The mean values

for ¢l and ¢2, namely, $l and $2, are the least squares quantities given by

Eq. (2f21).
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ITI. MODELING OF STOCHASTIC INPUT: MONTHLY STREAMFLOWS.

3-1. Stochastic Generation of Monthly Streamflows.

The objective of stochastic generation of streamflows has been
discussed previously in Section 2-1. The techniques discussed in Chapter II
are not suitable for the generation of monthly streamflows because the
proposed model cannot take into account of the seasonal structure of |
streamflows. Several techniques have been proposed for the generatioﬁ of
monthly streamflows. These fechniques involve first making a reliable esti-
mate of the streamflow parameters énd then using these parameters in a model
to generate monthly streamflows. The following is a brief review of sﬁme of
these techniques of importance. |

Benson and Matalas (1967) proposed a regionalization tecﬁnique
to estimate the streamflow parameters at sites where very short or no
streamflow records are available. By using all available long streamflow
records in a region, they employed regression equations to relate the
means, standard deviations, and skewness and correlation coefficients of
monthiy and annﬁal streamflows to the physical and climatic characteristics
of the corresponding basins. They suggested that these relationships can
be used to obtain estimates of streamflow parameters at any site, within
the same region, having a very short or no streamflow record. However, they
could not obtain satisfactory relationships for the skeﬁness.and correla-
tion coefficients of monthly streamflows.

Another approach to improve the estimate of streamflow parameters
is to augment a streamflow record by correlating it with longer streamflow
records at nearby sites. Fiering (1962, 1963) considered the case where a
short record is augmented by regression using two longef records of equal
length. Assuming that these records are samples from a trivariate normal

distribution, he compared the variances of sample means and sample
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variances obtained from the original and the augmented records. He showed
that, depending on cértaln conditions, augmentation can reduce or increase
the variances of sample mean and sample varianée. Therefore, under some
conditions, augmentation may produce poorer estimates of mean and variance
than could be obtained from the original record alone. Hence, its utility
is limited. In a similar study, Matalas and Jacobs (1964) included an
error term in the regression equation and considered the case where a short
record is augmented using a longer record. They noted that the inclusion
of the error term improves the efficiency of augmentation. Gilroy (1970)
genefalized Matalas and Jacob's formulation to the case where a short
record is augmented using any number of 1onger records of equal length.
Formulations of Fiering, Matalas and Jacobs, and Gilroy are based on the
assumption that observations in individual records are identically and
independently distributed. TFor that reason, their results are at best

e
applicable to annual streamflows for which the assumption of independence can
sometimes be justified. Frost and Clarke (1973) relaxed the assumption
of independence and considered the esfimation of parameters of a first—order
autoregressive series when a longer first-order autoregressive series which
is cross correlated with the shorter series is available.

Another approach to improve estimates of streamflow parameters is
the Bayesian approach. Bayesian estimation aims at improving estimates of
parameters by pooling all available information about the parameters. In
the Bayesian approach, population parameters are treated as random variables,
and their distributions are specified by‘”prior" distributions. Any
supplementary information about population parameters is incorporated into
the analysis through prior distributions. Estimates of pafameters are then
based on "posterior' distributions which take into account both the supple-
mentary information, which enters through prior distributions, and the

sample information, which enters through the likelihood function. Along
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this line, Lenton et al. (1974) considered a Bayesian estimation of serial
correlation coefficient of annual streamflows described by a first-order
autoregressive model. In the Bayesian approach, because of analytical
difficulties, the choice of prior distributions is usually dictated by
mathematical rather than physical considerations. The degree of complexity
in the Bayesian approach increases significantly when one considers more
than one parameter, since in that case dependence between parameters

should be taken into account. It should also be mentioned that the
Bayesian approach is still a controversial topic, especially among mathe-
matical statisticians.

Although estimates of streamflow parameters can be improved by
supplementing the sample information, the sampling errors associated with
these estimatés can never be eliminated. Statistical estimates are always
subjected to sampling errors. Therefore, a realistic approach to stream-
flow generation should recognize this fact and explicitly account for the
sampling errors inherent in the estimates of model parameters. The
present study of modeling the stochastic input to a water resources system is
motivated mainly by this consideration.

Most hydrologists have avoided the sampling error problem by
assuming that the population ﬁarameters are equal to their estimates.

This approach implies full confidence in the information used to obtain

the estimates and, hence, cannot be entirely justified either physically or
statistically. Beard (1965) attempted to account for sampling errors by
using a different set of parameter estimates for each generated streamflow
sequence. He claimed that different sets of estimates can be generated by
using the sampling distributions of the estimators. However, a problem
here is that some of the sampling distributions he used depend on the
unknown population parameters, but he did not explain how he resolved this

problem. Another problem is that some of the sampling distributions he
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used are not independent of each other; therefore, estimates cannot be
generated independently. Beard did not properly account for this
dependence either. Even if different sets of estimates can be generated
properly, this approach does not account for the effects of sampling
errors on individual streamflow sequences, because values of estimates
are held fixed for individual sequences.

In the Bayesian estimation, the sampling error problem does not
exist because Bayesian estimates are conditioned on the observed sample.
However, parameter uncertainties are still taken into account by treating
population parameters as random variables. Parameter uncertainties can
be incorporated into the analysis through Bayesian distributions which are
.obtained by integrating over the parameter space the product of the
underlying probability density function, which is conditioned on population
parameters, and the joint posterior probability density function of the
population parameters. Vicensfét al. (1974) applied this approach to the:
generation of annual streamflows using independent normal and first-order
autoregressive processes.

The approach to be discussed in this chapter is the use of a
linear model for generating monthly streamflows for which sampling errors

of model parameters are taken into account.

3-2. Linear Models for Monthly Streamflow Generation.

The linear models employed in this study have the form
= + o+ + 3-1
y = By T Byx, + Byxg BPXP e (3-1)

where y is a random variable, xz,x3,...,xp are nonrandom variables, 81,82,..,

Bp are unknown parameters, and e (error) is a random variable with zero mean.

[
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In this study, linear models are essentially used for relating
monthly streamflows to one another. 1In Eq. (3-1), y represents the
streamflow (or its, e.g., logarithmic, transformation) in a particular
calendar month, and x2,x3,...,xp represent the streamflows (or their
transformations) in p-1 preceding calendar months. A different linear
model is used for each calendar month relating the streamflow in that cal-
endar month to the streamflows in a number of preceding calendar months.
This will result in twelve different linear models; they may not be of the
same order, that is, p may take a different value for each model. The
linear model for a particular month can then be used for generating a stream-—
flow value for that calendar month each year on the basis of streamflow
values already generated for the p~1 preceding calendar months in that year.
Starting with the most recent observations in the record, and applying the
above procedure sequentially for each calendar month and cyclically for
each year, a monthly streamflow sequence of any desired length can be gen-
érated. This sequence is then divided into smaller sequences of equal
length, resulting in a set of monthly streamflow sequences that may be
used in systems analysis of water resources projects.

To apply linear models of the form (3-1) to monthly streamflows,
two different interpretations can be given:

(L) Functional—relationshiﬁ Model. Suppose that streamflow, v,

in a particular calendar month can be expressed approximately as a function

of streamflows, x2,x3,...,xp, for p-1 preceding calendar months as

p .
y &8, + ) ByX4 (3-2)
i=2

where 81,82,...,Bp are unknown parameters to be estimated. It is further
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assumed that, for fixed values of x_,X.,...,X , the true value of y will

2’73 p
fluctuate about its approximate value Bl + z Bixi in a random fashion.
i=2
With these assumptions, one can write
P
y = Bl +i£2 Bixi + e (3-3)

where e is a random variable with zero mean representing the error of
approximation. In Eq. (3-3), X2’33""’Xp are variables in the ordinary
sense, that is, they are nonrandom; and y is a random variable because it
is a funétion of random variable e. The distribution of y depends on the
nonrandom variables x2,x3,...,xp, on the unknown parameters Bl,BZ,...,Bp,
and on the distribution of random variable e. With these considerations,
the model defined by Eq. (3-3), which is referred to as the functional-

relationship model, fits into the definition of the linear model (3-1).

(2) Rggression'Model. In the functional-relationship model,

streamflows are related in a mathematical sense through the function (3-2).
However, streamflows can be also related in a statistical sense by taking
into account of theilr joint probability distribution.

Suppose that the streamflow, y, in a particular calendar month
and the streamflows, x2,x3,...,xp, in the p-1 preceding calendar months

are jointly distributed random variables such that the conditional

distribution of y given x2,x3,...,xp can be defined by the equation

P

y =8 + ) Byx, +e (3-4)
i=2

where the random variable y is conditional on the random variables

X, 3X,5+0+3X 5, € 18 a random variable with zero mean, X,,x
2°73 P ?

9 3,...,xp are

variables representing the given values of random variables xz,x3,...,x s

P

-~

[N
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and 61,82,...,Bp are the unknown parameters. The model defined by>Eq.

(3-4) also fitsAinto the definition of the linear model (3-1). 1In

a multivariate normal distribution, for example, conditional distributions

can be expressed in the form'(3—4). The generation of monthly stream-—

flows can be regarded as a problem of conditional inference since given the
streamflows in a number of preceding months, the streamflow in é particular
month is inferred; and hence, conditional distributions of the streamflows are
appropriate. In Eq. (3-4), Bl +'Ez Bixi is the conditional mean of random
variable y given the random varizgles xz,x3,.,,,xp. Therefore, there is a
linear relationship between the conditional mean of random variable y and

the given values of random variables xz,x3,...,xp. The plane defined by
this relationship is called the regression plane of y on xz,x3,...,xp.
For that reason, model (3-4) is usually referred to as a regression model.

The regression model is different from the functional-relation-

ship model in some aspects. In the regression model, streamflows are
related in a sabbatical sense through their joint probability distribu-
tion. Although there is a functional relationship between the conditional
mean of random variable y and the given values of random variables
xz,x3,...,xp, there is, in general, no functional relationship between

the random variables themselves. In Eq. (3-4), Xy ,...,xp are variables

3
representing the given values of random variables xz,x3,...,xp in the
conditional distribution of random variable y. They are not variables in
the ordinary sense because they have a random origin. However, they can
be treated as nonrandom variables with the interpretation that statistical
inferences are conditional on the observéd values of random variables
xz,x3,...,xp. The differences between the functional-relationship model

and the regression model, and their implications are discussed by

Kendall (1951) and Graybill (1961). In spite of the differences, the
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functional-relationship and regression models are similar from a statis-
tical point of view, and both can be considered as the same type of linear

models defined by Eq. (3-1).

3-3. The General Linear Model of Full Rank

Regarding the linear model (3-1), suppose that n sets of observa-
tions are available on y,xz,x3,...,xp; the relationships between these
observations can be written as

y. = Bl+ BZXjZ + B3Xj3 + ... + B X

+e,, j=1,2,...,0 3-5
j pXyp T &y 3712, R (3-5)

where yj,sz,xj3,...,xjp are the j-th set of observations on y,xz,x3,...,xp,
and ej is the unobservable value of random variable e corresponding to this
set of observations. In this stud X,n3X,seseX, represent the

Y’ Yj, JZ, 33, H Jp p
streamflow values (or their transformations) in the j—th year of the record

for a given set of p successive calendar months. Egs. (3-5) can be written

in a matrix form as

Y=X8+e (3-6)
where
_ - . " Fo A
vy (l X9 Xyg ceee le Bl {él
0 L%y %3 X0 By ey
Y= | . , X =|. . . . |, B=|. |, e=]. (3-7)
Y, 1 X o X 3 ces xan Bp—J enj

With the assumption that the rank of matrix X is equal to p <n, i.e.,full

rank, the model defined by (3-6) is referred to as the general linear model

of full rank. This is the model proposed in this study. The assumption of

5
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full rank is usually satisfied when one is dealing with continuous variables
such as is the case in this study here. If the rank of matrix X is equal
to Py where pl<p, then PPy of the variables XZ’XB"“’Xp are linear functions
of the others. 1In that case, one can exclude these variables from the anal-
ysis without ‘any loss of information and thus reduce the rank of matrix X to
the full rank Py

To make any progress with the general linear model of full rank,
some assumptions concerning the distribution of random vector e should be
made. Two types of the model will be considered; one assuming uncorrelated

errors and the other assuming correlated errors.

3-4. Linear Model with Uncorrelated Errors.

In this case, e is assumed to have a multivariate normal distribu-
tion with mean vector E(e) = 0 and covariance matrix cov(e) = 02I, where 0
is the nxl null vector, I is the nxn identity matrix, and 02 is an unknown
constant. This assuméd condition will be denoted by '"e is N(O,OZI)," where
N indicates a multivariate normal distribution. This assumption is equiva-
lent to saying that €1s€5s+..,€ are independently, identically, and nor-—
mally distributed with mean zero and unknown variance 02.

For the functional*relationship model (3-3), €128y e sl repre-
sent random errors. It is reasonable to assume that these errors are
identically distributed. Assumption of normality of errors can be justified
by appealing to the central limit theorem and by reasoning that a random
error represents the sum of‘avlarge number of independent random errors.
Assumption of independence of errors can be justified in this study on the
basis that they correspond to the streamflow observations at one year apart;
hence their time dependence can be neglected. However, this assumption will

be relaxed later in considering the case in which el,ez,...,en can be

correlated.
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For the regression model (3-4), assume that the conditional distri-

bution of random variable y, given the random variables xz,x3,...,xp, is
P

normal with mean Bl + Z Bixi and variance 02, where 02 does not depend on
i=2

x2,x3,...,xp. This 1s equivalent to saying that in Eq. (3-4) the random
variable e is normally distributed with mean zero and constant Variance 02.
In a multivariate normal distribution, for example, the conditional distri-
butions satisfy this assumption. For this case, the assumption that

el,ez,...,en are independently, ldentically, and normally distributed with

. 2 . X
‘mean zero and variance ¢~ implies that yj’XjZ’Xj3’°"’xjp (J=1,2,...,n) are

random samples taken from the joint distribution of random variables YsXys

x3,...,xp.

When e is N(O,UZI), it follows from (3-6) that Y is N(XB,OZI).
This means that Y12¥gaee-sY, are independentgy and normally distributed with
constant variance‘cr2 and that E(yj) = Bl + Z Bix,i, where E is the expecta-
tion operator. With the above assumptions igicerning the distribution of

random vector e, the general linear model of full rank can be written as

Y is N(XB,OZI)
(3-8)
rank (X) = p

This model has been discussed extensively by Graybill (1961), including the

results that may be obtained by using this model.

3-5. Streamflow Generation by Linear Models with Uncorrelated Errors.

As mentioned earlier, the linear model for a particular calendar
month will be used for generating a streamflow value for that calendar
month each year on the basis of streamflow values already generated for
the p~1 preceding calendar months in that year. Suppose that yk(k=n+l,

n+2,...) represents the (k-n)th streamflow to be generated for a particular

[
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calendar month and that xk2’xk3’°'°’xkp are the corresponding streamflow
values already generated for the p-1 preceding calendar months. Based on

b
model (3-8), Vi is normally distributed with mean Bl + Z Bixki and vari-

i=2
ance 02. If Bl,Bz,...,Bp and 02 were known, then a value for streamflow yk
could be generated by drawing a‘random number from the above normal distri-

bution. Since Bl,B and 02 are unknown, they must first be estimated

2,...,sp
using the corresponding monthly streamflow observations in the record which
constitute the elements of matrices Y and X in model (3-8). Then, these

to generate a value for

estimates can be used together with x . esX

k2°*Kk3*" kp

streamflow Ve

The unknown parameters in model (3-8), 81,82,...,Bp and 02 can be
estimated by their maximum-likelihood estimates. The maximum—likelihood
estimator of B_’é_’ is given by the i~th element of the pxl vector B which

i’ i
is

B = @) ixy (3-9)

where () 1is the transpose operator. A desirable property of estimator éi
is that it is the minimum-variance unbiased estimator of Bi. In other words,
it is unbiased, i.e., E(éi) = Bi’ and, for a given sample size, it has the
minimum variance among all unbiaséd estimators of Bi. The maximuﬁ—likelihood

. 2 .
estimator of o~ (corrected for bias) is

- - _l;
52 _ YO[I-X(X’X) "X“]¥ (3-10)
n-p
where 82 is the minimum-variance unbiased estimator of 02.
Going back to the streamflow generation problem, one may assume
that the population parameters Bl,Bz,...,Bp,oz are equal to their maximum-—

likelihood estimates 31,32,...,Bp,82. ‘Under this assumption, yk is nor-

mally distributed with mean él + f éixki and variance 32. Or, equivalently,
i=2
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yk—)LkB

9

is N(0,1) (3-11)

where N(0,1) indicates a normal distribution with zero mean and unit vari-

ance, and xk is a pxl vector such that xk = (l’XkZ’XkB""’xkp)' A value

for streamflow ¥y can then be generated by drawing a random numbetr from the
standard normal distribution, multiplying it by &, and adding to it xié.
Hydrologists have taken this approach in using regression models for the

streamflow generation.

The above approach avoids the sampling error problem by assuming

that the population parameters are known. The maximum-likelihood estimates

enter into the analysis as the known values of population parameters. They
are treated as known constants, and sampling errors inherent in these esti-
mates are unaccounted for. Since maximum—-likelihood estimators 81,6

PIREEE
a2 , , . .
BD,O are unbiased estimators of the corresponding population parameters

BL’BZ"'°’BP’G s the assumption that population parameters are equal to
their maximum~likelihood estimates amounts to assuming that the maximum-

likelihood estimators have zero variances. This might be a reasonable

assumption if maximum-likelihood estimators have relatively small variances.

But, there seems to be no easy means of evaluating this assumption because
distributions of thevmaximum—likelihood estimators depend on the unknown
population parameters.

A more realistic approach would be one which recognizes and
accounts for the sampling errors inherent in the estimates of model para-
meters, With this objective in mind, consider the problem of predicting
Yy on the basis of sample observations AT ZYREREY A Let g(yl,yz,...,yn)
be a predictor of yk, where g is any function of sample observations.
Among all such predictors, one can choose a desirable predictor by using

the minimum~variance unbiasedness criterion. The minimum-variance

i kb P

[,

[N
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unbiased predictor of Vi is the predictor é(yl,yz,...,yn) which minimizes
the variance of [yk_g(yl’YZ""’yn)] over all functions g with the condition
that the expected value of [yk—g(yl,yz,...,yn)] is zero. It can be shown
that xéé is the minimum—-variance unbiased prédictor of Vi One can show

that yk-xﬁé is normally distributed with mean zero and variance
Vi 5P
Therefore, z = is N(0,1). This rela-
- - "‘l
c/l+xk(X X) Xy
tion involves the unknown parameter o; however, one can delete it easily.
22
(n-p)o
2

o)
with n-p degrees of freedom, and that it is independent of z. From the

o2 [1+x£(x‘x)'lxk] .

It can be shown that v = is xz(n—p), i.e., chi-square distribution

definition of t-distribution, it then follows that is t(n-p), i.e.,’

AR
n-p
t-distribution with n-p degrees of freedom. Therefore,

yk-xks

o) - - -l
0//l+xk(X X) X

is t(n-p) (3-12)

In the above approach, the maximum-likelihood estimators enter
into the analysis as the estimators of unknown population parameters. They
are treated as random variables, and their sampling distributions are taken
into account. In this way, the approach recognizes and accounts for the
sampling errors inherent in the maximum-likelihood estimates.

By using sample values of_é and 0, one can use relation (3-12) to
generate a value for streamflow Vi This can be done by drawing a random

number from t-distribution with n-p degrees of freedom, multiplying it by

3//i+x”k(X'X)_1xk, and adding to it xié. Relation (3-12) is for a par-
ticular calendar month, and it will be used for generating a streamflow

value for that calendar month each year. In relation (3-12), ¢ is a random

variable and 8 is a random vector. For that reason, repeated use of relation

(3-12) is allowed if values of B and 6 are varied randomly each time. But,
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the streamflow record provides only one set of values for B and . However,
if relation (3-12) is used to generate values for streamflow Vi repeatedly
with the same sample values of ¢ and é, the sampling errors associated with
these sample values are in effect accounted for by treating them as random
variables and by taking into account their sampling distributidns. Rela-
tion (3-12) is recommended for use with this interpretation. This interpre-
tation is also reaéonable by considering the problem from a Bayeslan point of
view. Zellner (1971) derived relation (3-12) by using a Bayesian approach.
In this approach, R and 3‘enter into relation (3-12) not as random varia-
bles but as fixed sample values. Therefore, relation (3-12) can be used
repeatedly with the same sample values of g and ¢ without any difficulty.
From any continuous record of streamflows, relation (3-12) can
be used to generate a set of monthly streamflow sequences. The charac-
teristics of these sequences can then be compared with those of the sequences
generated by using relation (3-11). The comparison will indicate whether
accounting for sampling errors would introduce any significant changes on
the generated streamflows.
Relations (3-11) and (3—12) can be also compared analytically
to see how they differ as far as the generation of streamflows are

concerned. The mean of t(n-p) is zero for n-p>l, and its variance is

E%§§§ for n-p>2. It can be safely assumed that n-p>2. Therefore, genera-
ting a value for streamflow Yie through relation (3-12) amounts to drawing

a random number from a normal distribution with mean xiB and variance

_n-p

——) [1+x£(X’X)_lxk]32. On the other hand, generating a value for stream-

flow Vi through relation (3~11) amounts to drawing a random number from
normal distribution with mean xiﬁ and variance 32. Thus, the means are the

same but the variances differ by the ratio

- - - _l
.—P—-nf_‘P_z [14x) (XX 7x, ] (3-13)
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It can be shown that (X"X)_l is a positive definite matrix. It then follows

is not a null vector and that xé(X’X)_lx =0

- - _l'
that xk(X X) X >0 1if x 5

k
otherwise. Therefore, the ratio (3-13) is always greater than one, which
means that the variance of the distribution from which Vi is generated 1is
greater for case (3-12) than it is for case (3-11). This is as expected
because the variance for case (3-12) includes the variances of estimates
as well as the variance of.yk. As n-p increases, t(n-p) approaches N(0,1).
Therefore, for large values of n-p and for values of ratio (3-13) close to
unity, relation (3-12) reduces to relation (3-11).

Ratio (3-13) provides a quantitative measure for assessing the
significance of sampling errors in generation of streamflows. 1In a prac-'
tical analysis using streamflow records, its behavior can be examined, and

its variation with respect to calendar months and sample sizes can be evalu-

ated.

3-6. Linear Model with Correlated Errors.

In Section (3-4), the general linear model of full rank is con-
sidered under the assumption that the random vector e is N(O,GZI). A less
restrictive assumption is that e is N(O,GZV), where V is a known nxn non-
singular matrix. This assumption implies that €3€55000s€ are normally
distributed with zero means, known ratios of variances, and known correla-
tions. This is a more general case as compared to the previous one because
it does not require thét €13€gsevese be uncorrelated or that they have
equal variances.

When e is N(O,OZV), it follows from (3-6) that Y is N(XB,OZV).
Therefére, with the new assumptions concerning the distribution of random

vector e, the general linear model of full rank can be written as
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Y is N(X8,02V)
(3-14)
rank (X) = p

The previous model (3-8) is, obviously, a special case of model (3-14) with
V=T,

Model (3~14) can be reduced to model (3-8) with a simple transfor-
mation. It can be shown that there exists an nxn nonsingular matrix P such

that PVP* = I. One can then use matrix P to show that

Y is N(XB,OZI)

) (3~15)
rank (X) = p

where Y = PY and X = PX (Scheffé, 1959). This is the same as model (3-8)
except that Y and X are replaced by ¥ and X. Therefore, the results per-
taining to model (3-8) also apply to model (3-14) provided that Y and X are
replaced by ¥ and X. Matrix P does not need to be known because it usually
appéars in expressions as P“P which is equal to V—l.

Consider, for example, the maximum-likelihood estimators é and

02 of parameters g and 02 in model (3—14). They can be obtained from

Eqs. (3-9) and (3-10) by substituting ¥ and X for Y and X. The result is

that

B = v i xev iy | . (3-16)

and

sl =1 oL =1 =1 . -1
s2 _ Y[V »—V XXV X)XV Y (3-17)

n-p

~ ~2 . , , , 2
where B and ¢~ are minimum-variance unbiased estimators of B and o~ for

model (3-14).
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The correlated errors in the linear model may be considered as
autoregressive errors, thus resulting in a linear model with autoregressive
errors. In this study, the errors, € 58,5 euse correspond to the
streamflow observations at one year apart, which might be correlated due to
somé time dependence. . Since they are one year apart, they are free of _
seasonal effects. Therefore, it is reasonable to assume that their correla-
tion structure is stationary. As a.special‘case of model (3-14), it is
assumed that el’e2""’en are’generated by arstationary first-order normal
autoregressive process (stationary Markov process). If this assumption
turns out to be unsatisfactory, the anélysis can be extended to higher order
stationary normal autoregressive processes. This model is discussed by
Johnston (1972). Regression models have been used for streamflow generation
always with tﬁe assumption that errors are uncorrelated; this model will
indicate whether there are significant correlations between errors and
whether accounting foxr these correlations will introduce significant changes
on the generated streamflows.

The errors ey:€55...,e  are said to be generated by a stationary

Markov process if, for all t,
e_=o e + u (3-18)

where o is a constant such that |a|<l, and {ut} is a sequence of random
variables independently, identically, and normally distributed with mean

2
zero and variance g, It can then be shown that sequence {et} constitutes

a normal process and that, for all t,
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E(et) =0
2 1 2
Var(et) =g = 5 94
1-a
(3-19)

Cov ( ) = o°g2 = 0,1

ov et’et+s =00 , s = 0,1,...
Cor ( ) = o = 0,1

or et’et+s o ’ s slye.s

where Var, Cov and Cor are the variance, covariance, and correlation opera-
tors, respectively. ‘It follows from the last relation that o 1s the first-
order autocorrelation coefficient of the sequence'{et}; and for better
fecognition, it will be denoted by p.

It follows that if el’er""en are generated by the stationary

Markov process (3-18), then the random vector e is N(0,02V), where

-1
1 0 oz .. "
0 1 P . . . on2
Ve=|. . . . (3-20)
pn—l pn—2 pn—3 L1

Therefore, with the assumption that the random vector e is generated by the

stationary Markov process (3-18), the general linear model of full rank can
be written as

Y is N(XB,02V)

rank (X) = p

1 p p2 e pn_ﬂ
-2
p 1 p . . pn
V=" . . . (3-21)
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Model (3-21) is a special case of model (3-14).

To be able to use model (3-2i), the matrix V should be known.
This amounts to knowing p. However, p is not known but can only be esti-
mated. As an approximation, one can repléce p by its estimate and proceed
as if it is known. -Various methods for estimating p have been discussed by
Johnston (1972). 1If p is zero, then V is the identity matrix; therefore,
model (3-21) reduces to model (3-8). A method for testing the hypothesis
p = 0 has been developed by Dﬁrbin and Watson (1950,1951). This test can
be used to check whether correlations between errors are significant. The
inverse of matrix V in model (3-21) is given by

r~ -

1 -p
2
~-p 1+p -0
' 2
-1 1 -p 1+p -p
Vv = — (3-22)

1-p .

2

-p I+p -p

The maximum~likelihood estimates é and 82 of parameters B and 02 in model

(3-21) can be obtained by using Eqs. (3-16) and (3-17) together with matrix

(3-22).

3-7. Streamflow Generation by Linear Models with Correlated Errors.

Relation (3-11) was derived for model (3-8) with the assumption
that the population parameters 81,82,...,BP,02 are equal to their maximum-—
likelihood estimates. Employing the same assumption, the analogous rela-

tion for model (3-21) is

y, ~x’B
—-lig—k— is N(0,1) | (3-23)
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A value for streamflow ¥, can then be generated by drawing a random number

from the standard normal distribution, multiplylng it by 5, and adding to

it x’é

k

In relation (3-11), streamflow yk is generated from the normal

distribution with mean xié and variance 82. In relation (3-23), streamflow

QB and variance o

Therefore, as far as generation of streamflows are concerned, relations

Yy is generated from normal distribution with mean x
(3-11) and (3-23) can be compared in terms of quantities xﬁé,az,xié and 82
In the practical analysis using streamflow records, relation (3-23) can be
used to generate a set of monthly streamflow sequences. The characteristics
of these sequences can then be compared with those of the sequences gener-
ated by using relation (3-11). The comparison will then indicate whether
accounting for correlations between errors would introduce any significant
changes on the generated streamflows.

A rélation analogous to relation (3-12) of model (3-8) cannot be
derived for model (3-21) because complications arise due to the fact that
errors are correlated. Goldberger (1962) obtained the minimum-variance
linear unbiased predictor of Vi for the general case, model (3-14), and,
also, for the Special caée, model (3-21). But, one cannot proceed with
that to derive a relation analogous to relation (3~12) because the unknown
parameter 02 cannot be eliminated. However, as an approximation, one can
replace 02 by its maximum-likelihood estimate 52 and proceed the analysis
as if it is known. " Since both p and 02 are to be replaced by their esti-
mates, B might as well be replaced by its maximum—-likelihood estimate R

and the relation (3-23) be used.

izt
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IV. STATE VARIABLE MODELING OF WATER RESOURCES SYSTEM

4-1. Basic Concepts of State Variable Modeling.

The stochastic models of annual and monthly streamflows as described
in Chapters II and III can be used as input to a water resources system model.
In this chapter, a state variable approach is proposed to model the water re-
sources system. This approach to model a dynamic system in general has been
originally developed in the field of automatic control (Athans and Falb, 1966;
Ogata, 1967; Gupta and Hasdorff, 1970).

In applying the state variable approach, the systems may be linear
or nonlinear, time-variant or time-invariant, deterministic or stochastic,
and of multiple inputs and‘multiple outputs. A diverse range of system models
may therefore be derived as special cases of the general state variable forms.
For a system to be amenable to state variable analyses, however, it must be
lumped. This means that the system must evolve in only one dimension such as
time or space and be describable by ordinary differential or difference equa-
tions. Water resource systems are usually distributed and are properly
described by partial differential equations. For optimization purposes
however, it is normally quite satisfactory to approximate the distributed
system behavior by using linked lumped systems.

The system concept used in the state variable approach may be
shown in Fig. 4-1. It shows that some input flow medium enters the plant
or structure of the system where it is modified by physical processes until
it leaves the system as output. Since the system is dynamic, the input
vector u and the output vector y are both functions of time.

The system structure is given explicit representation as a vector
X, x ={ K> Xy Kgy o+ xn}, of state variables which is a function of

time. The "state" of the system at any given time t. is given by the values

1
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Figure 4-1. Basic systems concept.




[N

57

of the state variables: 'xl(tl), Xz(tl)’ e e ey xn(tl), which constitute
the state vector'g(tl). This 1s the fundamental concept of state variable
modeling. Commonly used '"state" quantities include the level of stock in
an inventory and the volume of water in a reservoir. In water resources
systems, the state variables are usually expressed in volumetric or mass
units while the input and output variables are volume or mass flow rates.
The state of the system is a measure of the level of activity in each of its
components and can be thought of as the interface between the past and the
future of the system's time history. Conceptually, the idea of 'state' used
in state variable methodology is the same as that used in matrix-type Markov
chain models.

In the mathematical formulation of the model, the change of the
state of the system over time in response to the inputs is described by a
sét of ordinary, first—order differential or difference equations, in matrix
form called the "state equation'. The state of the system and in some cases
the inputs, are related to the outputs through the 'output equation', which
is algebraic.

Where vector-matrix operations are used, the notation employed is
that a lower case letter, a, is a scalar; a lower case letter underlined,

a, is a vector; and an upper case letter, A, is a matrix.

4-2. Deterministic State Variable Model

(1) Formulation. For practical purposes, the basic form of the

state variable model is given by Eqs. (4-1) and (4-2).

x(t) = A x(t) + B u(t) (4-1)

y(t) = C x(t) + D u(t) : (4-2)
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where

x, (0) |

x(t) Xz(t)

tey |
Xn(t)J

F‘ ha|
y, (8

y(t) yz(t)”

yrkt)

i |

Since there are n state variables, p

bles, A is an n X n matrix, B an n x
r x p matrix, The elements of A, B,

current state vector and time. Egs.

, X(t) = >'<2(t)

u () ]
, u(e) =] (o)
u &t)
P

input variables, and r output varia-

p matrix, C an r X n matrix, and D an
C, and D, may be functions of the

(4~1) and (4-2) thus form a nonlinear

and time-variant, dynamic system model. The matrix elements may be functions

of time alone in which case the model is linear and time-variant. If the

matrix elements are all constant, then the model is linear and time-invariant.

In the formulation of actual water resources system models, an

appropriate special case of Eqs. (4-1

) and (4-2) must be chosen. Then, two

approaches may be taken: The first approach is to break the system down

into more manageable subsystems. For each subsystem, a state variable model

is formulated according to a physical reasoning, then these models are linked

together using the matrix format to produce a model of the whole system

(Muzik, 1974). In the second approach, the physical laws are assumed to be

too complex for exact representation

by an aggregate of simple models so

instead an abstract structure is hypothesized whose characteristics are

inferred from the input and output data available (Chow, 1964; Duong, Wynn,

and Johnson, 1975).

[
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In order to apply the model of Egqs. (4-1) and (4~2) to actual water
resource systems'using a digital computer, the time horizon must be discre-
tized into stages of length At. The differential %x(t) may be approximated
by the difference Aﬁ(k)/At where k 1s the stage index. The state at the next

stage, §(k+l); may be found from Eq. (4-3), or
x(k+1) = x(k) + Ax(k) (4-3)

The analogous discrete time model to Eqs. (4-1) and (4-2) is there-

fore formulated as
x(k+1) = Ax(k) + Bu(k) ' (4=4) -

and y(k) = Cx(k) + Du(k) (4-5)

To use Eqs. (4-4) and (4-5) as a water resources system model,

the input sequence u(k) is known for the period of analysis made up of K
stages, k=1, 2, ..., K. The‘initial state of the system x(1) is also known.
The computations are performed recursivély from stage to stage. Beginning
with k = 1, Eq. (4-5) may be used to calculate y(1) and Eq. (4-4) to calcu-
late x(2). Proceeding to the next stage, y(2) and x(3) may be calculated
using x(2) and u(2) and so on.

For the linear, time—~invariant, discrete time model, Egqs. (4-4)
and (4-5), to be stable, the eigenvalues of the A matrix in the model must
all lie within the unit circle (Koenig, Tokad and Kesavan, 1967). The
stability requirements for nonlinear and time-variant models are discussed
by Willems (1970).

It is normally necessary to use a parameter optimization method

to obtain the best fit of the model to a set of data. If the model formu-

lated is based on physical hypotheses, this parameter fitting may often be
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accomplished using linear regression. Nonlinear programming methods

(Himmelblau, 1972) may also be used.

(2) An Example. The application of the state variable modeling
approach to a hydrologic system is illustrated with the following example.

The objective is to formulate a deterministic model of the direct storm runoff.
The formulation used is adapted from Chow and Kulandaiswamy (1971) and illus-
trated with data from the U.S. Army Corps of Engineers (1954). These data

comprise the rainfall hyetograph and streamflow hydrograph for the storm of

April 4-5, 1941 on the 247-square mile Wills Creek watershed near Cumberland,
Maryland. The storm duration of 65 hours is divided into hourly stages,
k, k=1,2,...,65. The model has one input variable, u(k), the volume of effec- *
tive rainfall in stage k; one output variable, y(k), the volume of direct [

streamflow in stage k; and three state variables, x(k) ='{xl(k),x2(k),x3(k)}.

The formulation is given in Eqs. (4-6) and (4-7):

x, (k1) 1 1 o | rxl(k)_ 0
xz(k+1) = 0 1 1 xz(k) + 0| u(k) (4-6)
x3(k+l) -o ~0, 0, x3(k) 1
Y@ = oy ow agl [ x00]
xz(k) (4-7)
|50

Several methods were used to choose the optimum values of the five

IRV

parameters, @15 Oys 5 Oge Chow and Kulandaiswamy (1971) used a linear

regression approach employing a watershed storage function which is a linear

combination of the parameters and derivatives of x(k) and y(k). A linear
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programming approach is now formulated for the same problem. The objective
function and constraints in this linear programming are given by Eqs. (4-8) and
(4—9) respectively.

K

min F = } Ipk) + q(k)] (4-8)
k=1

S(k) + p(k)-q(k) = S_(k), k=1,2,...,K (4-9)

L]

where p(k) and q(k) are the poéitive and negafive errors respectively, between
the actual storage Sr(k) and the computed storage S(k). The storage equation
itself at each stage forms a further set of K equality constraints.

To allow negative parameter values, each parameter must be includea
as the sum of a negative and a positive dummy variable. With a small variable
cost attached, these are added into the objective function so .that only one
of the two dummy variables will appear in the solution.

This linear program was solved using the ALPS linear programming
code on the IBM 360/75J digital computer of the University of Illinois at
Urbana. The results are very close to those obtained by the linear regres-
sion. It(is concluded, however, that the linear regression is an easier
approach to implement because of the prpblems with negative parameter values
in the linear programming formulation.

Two direct search methods, the relaxation method and the steapest
descent method, may be also used to find optimum parameter set. To apply

these methods the following objective function is formulated:

K
min F= ] [y()-y (017 (4-10)
k=1

where yr(k) is the actual streamflow. An iterative scheme is employed

whereby a parameter set is chosen, the model response and the value of the
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objective function are computed, and then a new parameter set is chosen,
using the search method until a satisfactory solution is obtained. It is
found that the relaxation method is superior to all other approaches. This
method consists of freezing all parameters except one, allowing this one to
vary and then freezing it and releasing the next one, and so on. A com-
parison between the modeled streamflow and the actual streamflow is shown

in Fig. 4-2 for the two methods of fitting the ﬁarameters. The model itself
is computationall{lvery efficient since the simulation of one storm hydro-

graph took only 0.04 seconds of computer time for this example.

4-3. Stochastic State Variable Model.

(1) Formulation. To extend the ‘discrete time model of Eqs. (4-4)
and (4-5) to incorporate stochastic inputs, a vector of random variables
wi(k) ='{wl(k), wz(k), cees wm(k)} is defined. This vector is usually con-
sidered to be independently, normally distributed with zero mean and unit
variance. These variables are joined to the matrix equations to produce a
stochastic discrete time state variable model as shown in Egs. (4-11) and

(4-12) (Aoki, 1967; Meditch, 1969; Astrdm, 1970; Schweppe, 1973):
x(k+1) = Ax(k) + Bu(k) + Gw(k) (4-11)

yk) = Q§(k) + Du (k) (4-12)

This model is very suitable for representing the behavior of water
resources systems subject to.stochastic inputs. Stochastic models of hydro-
logic time series data may be developed by using methgds such as those
described in Chapters 2 and 3. To émploy such a stochastic input model in

an optimization study for planning purposes, it may be combined with a model

[
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Figure 4-2. Comparison of results of parameter fitting methods.
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of the system itself and then subjected to mathematical programming procedures.
This is the main objective of Chapter 5. The first step in such an approach
is to represent the stochastic hydrologic system model in stafe variable form.
Autoregressive and moving average models are well suited to this purpose.

The linear autoregressive model of p-th order is given by Eq. 2-11b.
The output of the model in the last p stages 1s defined as the values of the

p state variables. In state variable format this model appears as follows:

*xl(k+l)~ 0 1 0 ------0 'xi(k)_ [ 0]
xz(k+1) 0 0 1 L0 - 9 x, (k) 9
. i . ; | !
| \\ i i j ) '
| = 0 ; + | 1 | w(k)  (4-13a)
| | ; !
| R S ! 0
xp(k+l) by T by by xp(k) 1
y (k) = [0 0 =--—-—-—-—-0 1] xl(k)—
xz(k)
i (4-13b)
L xp(k)_

A linear moving average model of q-th order may be written as

y(k) = [6,w(k-1) + 6 w(k-2) + ... + eqw(k—q) (4-14)

The random disturbances which have occurred in the last q stages are taken
as the state variables. The state variable form of this model is shown as

follows:
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xl(k+1) 0 1 Q —————— 0 xl(k) 0
x, (k+1) 0 0 1 0---0 x, (k) 0
. 2 | AN N . 2 )
! | NN X ! |
| = RN } L] | wk) (4-15a)
N l
" : s AN : !
l \\ \\ i I
I 0 s 1 | 0
| \\ t
k+1 0-----=~--=--0 k 1
"ot || 0~ x, ()
yky = [-00, =6y = 0,] x, (K)
x, (k) ’
(4-15b)
k
Xq( )~

Since both parts of an autoregressive moving average (ARMA) model
are representable in state variable form»i; is reasonable to expect that
they may Be joined in this framework. A direct synthesis.of the two models
may lead to unnecessary duplication of the state variables however. Con-
sider an ARMA (1,1) normalized process, which is identical to the auto-

regressive integrated moving average (ARIMA) (1,0,1) process:

Y(k)_= ¢ly(k—l)+-w(k)—6lw(k—l) (4-16)

In the state variable form, only one state variable is needed; thus

x(k+1l) = ¢lx(k) + (¢l—91)w(k) (4-17a)

y(k) = x(k) + w(k) (4-17b)
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Once an appropriate state variable model of the hydrologic inputs
has been formulated it may be combined with another state variable model
representing the behavior of the system.in response to the inputs. The
basic principle for this second model is usually the equation of continuity
of flow, though more complex system models can be formulated by thé state

variable approach if necessary.

(2) An Example. A mathematical model of a storage feservoir,
Fig. 4-3, subject to stochastic inpﬁts is now formulated according to the
state variable approach. This model is to be incorporated into a stochastic
dynamic programming algorithm in Chapter 5 to find the optimal release policy
for the reservoir. The data used for this model in the example application
are given in the Appendix.

The volume of storage at the beginning of stage k is denoted by
x(k). During stage k the release is denoted by u(k) and the inflow by

g(k). Using the principle of conservation of mass:

x(k+l) = ax(k) - u(k) + q(k) | | (4-18)

where a is a coefficient accounting for seepage, evaporation, and spillway
losses. The output equation expresses the volume of outflow from .the reser-

voir as
y(k) = ex(k) + u(k) (4-19)

where ¢ is a coefficient relating spillway flow to storage volume, x(k).
Assuming that q(k) is an independently distributed random variable with known
mean p(k) and variance oz(k), Eqs. (4~18) and (4-19) may be expressed accor-~

ding to the general format of Eqs. (4-11) and (4-12) as

-

o

[S——;
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Figure 4-3. A storage reservoir system.
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x(k+1) = ax(k) + [~1 l]['u(k)] + g (k)w(k)
u (k)

y(k) = ex(k) + [1 0] u(k)
u (k)

If the inflows q(k) to the storage reservoir of Fig.

(4-20a)

(4-20b)

4-3 are con—

sidered to be serially correlated with first-order correlation coefficient

r(k); they may be described by the following equation (Fiering and Jackson,

1971):
R T O S s NIy (PRI
Let

| _ qQ1)-p(k-1)
%) (k) = o (k=1)

Hence, from Eq. (4-21)

x (+1) = T(x, (k) + a-r2 w2 v

and

4 = (O Tx (&) + u) + o) Ar2 W)Y v

Combining Eq. (4-18), (4-22) and (4-23), the complete state equation is

formulated as

xl(k+1) [ r (k) 0 ][xq G0 0 0] [ u
= +
x2(k+l) Lo(k)r(k) a xz(k) -1 1 (k)

B (l_rZ(k))l/Z
o (k) (L-r2(k)) /2| W

(4-21)

(4-22)

(4-23)

(4-24)

1
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V. WATER RESOURCES SYSTEMS OPTIMIZATION BY STOCHASTIC DYNAMIC PROGRAMMING

5-1. Stochastic Transformation of Water Resources Systems.

The objective of‘ghe optimization is to choose the decision policy
for the system which is best according to its performance function. This
function measures the degree of attainment of the goals set for the system.
The policy may.be in the form of a set of charts which speqify the required
decisions in stage k, u(k), as a function of the state of the system at the
beginning of the Stage,‘i(k). In this study, a stochastic dynamic program-
ming technique is.proposed to optimize the water resources system.

To apply dynamic programming for system optimization, the behavior .
of the system must be described by a state transformation equation. This
equation expresses the output values of the state variables at each stage
as a function of the'iﬁput values of these variables and the inputs and
decisions occurring during the stage. The state variable approach may be
used to formulate such equations. When the inputs at each stage are
stochastic, the output values of the state variables become random varia-
bles describable by probability distributions.

For discussion purposes, consider the system describéd by Eq.
(4-20). The feasible range of the state variable x(k), xmin(k) to xmax(k),
may be divided into I intervals, i = 1, 2, ..., I; each of size Ax(k).
Likewise, the feasible range of x(k+l) may be divided into J intervals of
length Ax(k+1l). 1In the dynamic programming procedure, assume that the
optimal decision at interval i of x(k) isvto be chosen from avset of decis-
ions U(k). The expected value E[x(k+1l)] and variance Var[x(k+1l)] of the
reéulting state, x(k+l), may be found from Eq. (4-20) for any specified
decision u(k). The resulting probability distribution for the output state

x(k+1) may appear as in Fig.. (5-1).
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The "expected transformation'" is that which would occur if the
mean inflow occurred. Since the input state is assumed known, the standard
deviation of the output state probability distribution is the same as that

for the flow distribution at this stage, o (k).

5-2. The Recursive Equation.

If vi(k) is the value of being at interval i of x(k), the recursive

equation of dynamic programming may be written:as

J
v, (&) = opt[R(x(k), u(k)) + [ p, . (k)v, (kt1)] (5-1)
u(k)eU (k) =1 4

where‘pij(k) is the probability that the state of the system x(k+l) will fali
within interval j, and vj(k+l) is the corresponding value attached to this
interval from the optimization of stage k+l. If x(k+l)Ais assumed to be nor-
mally distributed, pij(k), may be readily calgulated from a normal distribu-
tion table since E[x(k+1l)] and Var[x(k+1)] are known. If x(k+l) has some
other distribution, then the calculations are more complicated but still
feasible.

If the flow means, u(k), and standard deviations, o(k), are
constant and independent of the stage, the sequence of values of the state
variable, x(k), k = 1, 2, ..., K, constitutes a single-step Markov process.
The optimal policy can be found by a successive approximations method of
White (1963). The principle upon which this method is based is as follows:
If Eq. (5-1) is applied recursively backward over a number of stages, it is
found thaﬁ the relationship between vi(k) and vi(k+l) becomes approximately

linear as follows:
vi(k) = vi(k+l) + gi; i=1, 2, «ee, I (5-2)

where gy is a so called "gain'" for state i. To find the optimal policy, the
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computations are carried out for sufficient stages until all the individ-
ual state gains converge to a single value, independent of the state.

Su and Deininger (1972) have extended White's method to incorpo-
rate periodic Markov processes. These have statistics which vary from stage
to stage but which are periodic after N stages, e.g., p(k+N) = u(k). This
formulation is appropriate for the optimization of monthly decisions for
reservoir operation over a year. If the gain is now interpreted as the
increase 'in value over a period of N stages, the same optimization approach

as for the single-step Markov process can be applied.

5-3. Chance Constraints and Steady State Probabilities.

Since the output state at each stage is described as a random
variable, the state boundary constraints which confine the Behavior of the
system within the feasible range of the state variables, must be set on a
probabilistic or '"chance constraint' basis. Thus at any stage, if the
probability of the reservoir emptying out cbmpletely is greater than an
allowable 1imit, then the decision under consideration is rejectéd. Simi-
larly, the decision is rejected if the probability of overtopping the
reservoir is greater than an éllowable limit (Askew, 1974a, 1974b).

Once a policy has been chosen for the system, the stochastic
nature of the behaﬁior of the storage is a fixed Markov process. Conse-
quently the steady state probabilities of occupancy of any storage state
may be found by using the transition probability matrices from each stage.
At each stage and state during the optimization of the recursive Eq. (5-1),
the transition probabilities, pij’ resulting from the optimal decision are
stored. Once a complete period of N stages of policy optimization has been
performed backward over the stages, the probability distribution of the

storage in each stage may be found by calculating forward over the stages.

J— i siad

U
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The probability distribution of the input states at the first stage, pi(l),
may initially be assumed to be uniform. The probability distribution of the
output states at stage l,pj(l), may be found from the following equation with
k=1:

I
p (k) = izl p; ()P, ()5 3=1,2,...,J. (5-3)

For stage 2, the output state probability distribution for stage 1 becomes
the input state probability distribution, pi(2). Hence, pj(2) may be found
and the calculations for all succeeding stages proceed analogously. From
the results of the last stage, the probability distribution of the input
states at the first Stage is reinitialized and the cycle repeated until the
probability distributions at each stage converge to steady values. This
usually requires 3 or 4 cycles of computation over all N stages. As the

policy converges, so do the steady state probability distributionms.

5-4., Risk Analysis.

The procedure of deriving the steady state probability distribu-
tions provides a link between the classical theories of reservoir storage
based on Markov chain analysis (Moran, 1959; Chow, 1964; Lloyd, 1967) and
operational policy determinations made using dynamic programming. With
this information it is possible to assess the risk of failure of the system

" is defined to have occurred

at any point in the planning horizon if "failure
when the values of the state variables fall into an unacceptable range, e.g.,
an empty reservoir. The policy derivation may then be made sensitive to the
risk of system failure as well as to the optimization of the usual net bene-
fits function. This may be accomplished by using penalty functions to

preclude policies involving a high risk of failure or by manipulating the

chance constraints on the state variables so as to allow optimization of
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the system policy within constraints imposed by failure considerations

(Klemes, 1975).

5-5. An Example.

(1) Description of the System. The system selected to demonstrate

the proposed methodology is the proposed Watasheamu Dam anleeservoir (U.s.
Bureau of Reclamation, 1962). The project is located on the East Fork of the
Carson River in Nevada. The reservoir has a capacity of 160,000 acre-feet
and a mean inflow of 259,000 acre-feet per year. The example considers opera-
tion for hydroelectric power, irrigation and flood control. Details of the
physical and economic data used in the example are given in the Appendix.

The volume of storage in the reservoir is taken as a state variable,
the decision variable is the release to be made through the dam in each stage
of one month duration. The feasible range of the state variable at each stage
is divided into intervals of 10,000 acre~feet. A flood storage reservation
at the top of the dam is made in those months where flood control is neces-
sary. The number of storage intervals varies from 10 to 17 per stage de-
pending on the magnitude of the flood storage reservation. The feasible
range of the decision variable at each stage is taken as 0 to 100,000 acre-
feet.

The state variable model for the system is Eq. (4-20) where the
loss coefficient "a'" depends on x(k) and k and accounts for evaporation.
The means and standard deviations for each stage are estimated from the
historic inflow data at the site. The probabiliﬁy distribution of the
output state at each stage, x(kt+l), is normal with mean, ax(k) - u(k)
+ p(k), and standard deviation, o(k).

The objective of the optimization is to maximize the benefits

obtained from the operation of the system. The hydropower benefits are

NAtmtens s
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the value of the energy generated at each stage which is a nonlinear function
of storage and release. Power generation ceases when the elevation of water
in the reservoir is below a specified minimum. The benefits from irrigation
are estimated by piecewise linear functions of the release. Details are
given in the Appendix. The combined objective function is thus nonlinear

and discontinuous.

(2) Optimization Procedure and Results. The optimization proce-

dure used is a backward, stochastic dynamic programming algorithm. In
outline, the procedure is as follows: The value of all output states at
the last stage is initialized to zero. Computations proceed backwards by
stages until a stable policy and expected annual returns from the operation
of the system have been found. Although the statistical parameters of the
inflow distribution vary from month to month within a year, they are periodic
from year to year. One year of twelve stages of computation therefore con-
stitutes an iteration of the optimization procedure. If the value of all
output states at the last stage for each iteration is set equal to the value
of the corresponding input states at the beginning of the first stage of the
previous iteration, the cumulative expected value grows as shown in Fig. 5-2.
From the figure, it may be seen that after two or three iterations, the
increase in value for any.state over one year is constant and independent
of the state. This is the expected annual return from the operation of the
system or "gain'. The cumulative return decreases with storage however as
can be seen from the difference between the two lines in Fig.'542. Since
the lines are paralléi after ﬁhe policy hés stabilized, the difference
between them can be interpreted as the relative value of beginning operation
in the highest storage state instead of the lowest.

This relative value function may be used at the beginning of the

first stage of an iteration to reinitialize, for the next iteration, the



Cumulative Expected Value in Millions of $

3.5

3.0

2.5

2.0

1.5

1.0

0.5

76

[ Highest storage state

N
haN

Lowest storage state

1 iteration = 1 year of operation

Iteration

Figure 5-2. Expected value growth with iteration

for two reservoir states.

s




Value Relative to Lowest State in $1000

140

120 }—

100 —

80 |—

60 |—

40 |— Before first iteration
—_———a— After firet wﬁmﬁwnwob
—— After all subsequent

20 — iterations

0 SRR SRR MRS RS NS S— |

0 10 20 30 40 50 60 70 80 90 100

Storage in 1000 Acre-feet (KAF)

Figure 5-3. Relative value of beginning operation with initial storapge.

LL



Gain in $1000

840

820

800

780

760

740

720

700

680

78

Highest storage state

Lowest storage state

| | | |

1 2 3 4 5

Iteration

Figure 5-4, Gain vs. Iteration for various states.

e




s

in §

Difference d

g

79

10

10" —

107 —

10

10 |—

d = max [g(i)] - min [g(di)]

& i=1,1, i=1,1,
dg = difference in gain
g(i) = gain for state i at

stage 1, i=1,2,...,I

1

I | I ]

Figure 5-5.

2 3 4 5 6
Iteration
Difference between greatest and smallest gains vs.

Iteration.




p

Policy convergence criterion, d , in 1000 acre-feet

700

600

500

400

300

200

100

80

N I
d = -
D nzl 121 abs[Di’n(new) Di,n(Old)]
dp = policy convergence criterion
Di = decision for state 1 at stage n;

i=1,2,...1_; n=1,2,...,N.
n

"new" and "o0ld" refer to current and previous
iterations respectively.

Iteration

Figure 5-6. The policy convergence.




81

values of the output states at the last stage. The rapid stabilization of
the relative value function is seen in Fig. 5-3. The shape of the function
in this figure is probably due to the fact that a given release generates
more energy when made from a higher elevation or storage but the marginal
worth of increasing the storage decreases with incréasing storage since the
additional increments of elevation decrease.

The individual state gains, calculated according to Eq. (542)
applied over each period of 12 stages, also converge quickly as can be seen
in Fig. 5-4.

A convergence criterion may be defined as the difference between
the highest and iowest gains on an iteration. This criterion is shown as
a function of iteration in Fig. 5-5. Another measure of convergence is the
change in the derived policy from one iteration to the next. A policy con-
vergence criterion is defined as the sum of tﬁé absolute values of the
differences between the policy obtained on the current iteration and that
of the previous iteration. The rapid convergence of the policy using this
criterion is shown in Fig. 5-6.

To find the optimal decision from a state space point a simple
search procedure is used which consists of testing each decision in a set
defined around the previously optimal decision for this state space point.
The number of decisions used is 10 and the difference between adjacent
decisions, the step size, is set at 10,000 acre-feet for the first itera-
tion. The step size is halved after each iteration to a minimum of 1000
acre-feet. Thus, the range of this set is initially the entire feasible
decision range and successively smaller portions of it in later iterations.
The policy derived is shown in Table 5-1. The form of the optimal policy

reflects the nature of the system. As available storage rises so does the
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release to be made. The major releases are made in the irrigation season,
May through October.

The effect of raising the minimum feasible decision at each stage
is to constrain the choice of policy. Consequently the gain of the system
falls as shown in Fig. 5-7.

The effect of vérying the chance constraint for the lower boundary

of the storage space on the relative value function is shown in Fig. 5-8,

This shows that as the constraint becomes more stringent, it is more valuable

to begin operation in a higher storage state. The gain of the system is not
significantly affected by the variation of this chance constraint.

After each iteration of policy determination, the steady state
probabilities of stbrage at all stages aré calculated using Eq. (5-3). The

resulting probability distribution for storage at the beginning of stage 1,

January, is shown in Fig. 5-9 for several policy iterations. The probability

distribution is rather more sensitive to changes in policy than is the rela-
tive value function.

‘For this Markov chain analysis, two extra storage states must be
defined at each stage to account for the probability of emptying the reser-
voir or overtopping the maximum desirable storage. To avoid making these
states into "trapping stétes" from which no exit is possible, it is assumed
that identical transitions may be made from these states as for the adjacent
states in the interior of the dynamic programming state space. This does
not necessarily lead to a zero steady state probability of occurrénce of
the two exterior states however. Although the probability of emptying the
reservoir in January is negligible in Fig. 5-9, there is more than 5%
probability that the reservoir will be above 95 KAF in storage which means
that it will infringe on the flood storage reservation with this probability

throughout the project life when the derived policy is used. If it were
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desired to have more detailed information about the degree to which the
flood storage reservation would be infringed upon, this could be found by
defining extra states in the flood storage region for the Markov chain

analysis.
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VI. SUMMARIES AND CONCLUSIONS

6-1. On Stochastic Modeling of Annual Streamflows

In this part of the study, a brief review of the vgrious models
proposed for streamflow simulation has been presented. Basically two
types of models are in use today in annual streamflow modeling, namely, the
Markov models and the fractional Gaussian noise (FGN) models. Both models,
however, belong to a general class of discrete time linear stochastic
processes. The Markov model is simple in its structure but its applicability
is limited because the theoretical autocorrelation function is not flexible
enough to fit a wide range of sample autocorrelation functions. The FGN
model is a continuous moving average process of infinite order. As the
first step toward practical application, the FGN model must be replaced by
a discrete fractional Gaussian noise (DFGN) model. The latter has a
peculiar kernal structure which does not satisfy the Box and Jenkins's
(1970) definition of stationarity. As the second step toward operational
uses, the DFGN model of infinite order must be approximated by a process
involving a finite number of terms; consequently, it becomes stationary. So
far six different approximations to the DFGN model have been proposed.

In general, moving average models are inferior to autoregressive
models for the following reasons: (1) The autocorrelation function of
autoregressive model tails off while that of moving average model cuts off,
(2) the autoregressive model is linear in the parameters while the moving
average model is nonlinear in the parameters, and (3) the autoregressive
model is expressed in terms of the observed past values while the moving
average model is written in terms of the unobserved past random dis-
turbances. A so-called fast FGN model requires the summation of a
large number of terms. The ARMA(1l,1) model with ¢l close to 1 can be

regarded as an approximation to the FGN model but, if ¢1=l, it may not be
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an approximation to natural streamflow processes since ¢l as a parameter
of the model is not estimated from the observed historical streamflow
sequences.

In this study, a new model, a second order autoregressive
process with a data-based transformation is proposed to approximate the
underlying streamflow generating process. Due to its simplicity and
generality, the new model séems to be very promising for annual stream—
flow modeling.

Both the maximum likelihood method and the Bayesian approach
are used to estimate the model parameters and statistical inferences about
the parameters are ﬁade. For large samples, the maximum likelihood esti--
mates have smaller variance than the method of moments estimates and are

therefore statistically more efficient.

Since streamflow sequences seldom follow the normal probability
distribution, it is often found advantageous to transform the original
sequence so that the transformed sequence can be adequately represented
by a stéchaétic model based on the normal probability distribution theory.
The problem associated with transformations is two-fold: First, to
identify a suitable transformation; and second, to determine whether the
parameters would be better estimated from the transformed data or from
the original data. The proposed procedure considers both aspects of
the transformation problem simultaneously.

The parameters of a streamflow generating model estimated from
a short historic sequence are not likely to be equal to their respective
population values. This parameter uncertainty problem may be treated by
employing the Bayesian approach of statistical inference. The Bayesian
infereﬁce provides a framework to pool all the available information to

reduce the parameter uncertainty. More importantly, the Bayesian approach
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gives a probability distribution rather than unique values for the unknown
parameters. It is noted that the likelihood function is proportional to

the posterior probability density function (pdf) with diffuse prior pdf.
Hence, the results from the Bayesian approach are comparable to those from
the maximum likelihood method. .- Also, in large samples, the maximum likeli-
hood estimates are the approximate means of the posterior pdf of the para-
meters, a pdf that will usually be approximately normal. Confidence regions
for the parameters of the AR(2) models are constructed. The contours of

the posterior distributions for the parameters are identical to the con-

fidence regions for the parameters.

6-2. On Stochastic Modeling of Monthly Streamflows.

This part of the study considers the generation of monthly stream-—
flow sequences. A monthly time interval is chosen for two reasons; first,
monthly streamflows are frequently used in design studies of hydrologic

systems; and second, monthly streamflows constitute a fairly general case

because of their seasonal structure. Seasonal structure is a characteristic.

of all streamflow events except the annual ones.

In hydrology, many models have been considered for the generation
of monthly streamflows, including regression models, autoregressive models,
FGN models, broken liﬁe models and multiplicative seasonal ARIMA models.

In this study, a new linear model approach is prdposed.

The proposed approach accounts for the sampling errors associated
with the estimates of model parameters. Conventional regression models,
which do not account for sampling errors, are shown to be special cases of
the pfoposéd model. Regréssion models used forkstreamflow generation always

assume that the errors are uncorrelated. In addition to this conventional
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case, this study considers a more general case in which errors are assumed

to be generated by a stationary Markov process.

6-3. On State Variable Modeling.

The state variable approach to the mathematical modeling of
hydrologic or water resources systems provides a generalized framework
within which many different kinds of system models may be expressed and
combined for the representation of a given system. Linear or nonlinear,

\
time invariant or time-variant, deterministic or stochastic systems with
multiple inputs and multiple outputs may be modeled by this approach.
This simple yet general format is a major advantage of the state variable-
modeling.

The state variable models are particularly appropriate for
their incorporation into optimization procedures to determine the
optimum policy for the system. This may be accomplished by embedding the
state variable model within an analytic optimization procedure. Dynamic
programming and the Pontryagin maximum principle are two procedures which
are excellent for this purpose. This may also be accomplished when the
optimization involves repeated simulations of the system's behavior in
wﬁich case the state variable approach may be used to formulate the
simulation model. The state variable models are well suited to digital
computation. This computational efficiency is often a critical factor
in an optimization study where the computer limitations prohibit the use
of very sophisticated mathematical models (Chow, Maidment,and Tauxe, 1975).

A disadvantage of the state variable approach is that since its
mathematical format is generai, there may be easier ways to formulate

models of specific phenomena. For example, the storm runoff model

présented in Section 4-2(2) could be much simpler to solve by the well
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known unit hydrograph concept for some simple cases instead of going

through the more elaborate procedure of matrix representation.

6-4. On Systems Optimization by Sfochastic Dynamic Programming.

The principal advantage of the combined stochastic state variable
dynamic programming is that the stochastic nature of the water resource
system inputs is embedded directly within the optimization procedure with-
out requiring computationally expensive system.simulations or discretized
probability distributions. Using the powerful state variable modeling
approach, the stochastic model of the system inputs is made a part of the
mathematical model of system instead of being external to it as is required
by other procedures. The optimization procedure thus accounts for the
uncertainties in the system inputs which are truly stochastic in character.
The methodology allows for the synthesis of the theory of Markov chains
with the dynamic prog:amming in a practical way so that the tradeoffs
between system optimization and risk of failure may be evaluated.

As is to be expected, some problems are encountered in applying
the methodology to a practical system. The first is the so-called '"negative
flow'" problem. Whenever a normgl distribution is used for the flows, there’
is a finite chance of having a negative inflow. Since this is clearly not
a natural behavior, some adjustment must be made to preclude negative
flows. The procedure adopted is to distribute the probability of negative
inflows over the positive inflow range of the probability distribution by
proportion to the positive probability ordinate values.

A second problem occurs when the standard deviation of the out-
put state variable is much smaller than the intervals into which this variable
is discretized for dynamic prograﬁming purposes. The situation can arise
where the probability distributions resulting from two different decisions

can both lie completely within one output state interval.
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It is not easy to differentiate between the values of two
decisions involved. This problem is overcome by defining a set of 5 sub-
intervals within the state interval in question and using linear inter-
polation to assign a value to each subinterval for the expected value
computations. In general, however, it is considered desirable to discretise
the state space into intervals no larger than twice the standard deviation

of the inflow distribution at that stage.

6-5. Recommendations for Future Studies.

\ It has been stated in the beginning of this report that the

. present investigation is only to propose and devélop an analytical scheme

for the optimization of water resources systems with stochastic inputs.

! Future research is therefore needed on the application of the proposed
scheme to pfactical water resources projects and on the modification and

‘ extension of the scheme as a result of the future applied research.

The immediate extension of the study on stochastic modeling of

annual streamflows would be a development of seasonal multisite stream-
flow simulation models. Another area of further.research is the
investigation of the combined use of regional and at-site hydrologic data
to reduce the parameter uncertainty.
.... For the monthly streamflow generation, adequate algorithms
should be developed and the results be interpreted also from a Bayesian
i point of view. The algorithms for the conventional regression model
and the new algorithms should be compared numerically to see whether
accounting for sampling errors would intréduce any significant changes
in the generated streamflows.

3 More applications of the streamflow generation techniques along

with the simulation of water resources systems to various real~life

[P

situations would be highly desirable so as to better assess their potential.
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It should be noted that the simultaneous optimization and
Markov chain procedure opens up a new field in the treatment of the re-
lationship between the system optimization and thé risk of failure.
Important questions which remain to be investigated include: How
sensitive is the riskkof féilure to changes in the policy near the optimum?
How can other kinds of risk such as the failure to meet a reduired decision
be incorporated into the analysis? How sensitive are the steady state
probability distributions to the formulation of the model for the stochastic
inputs?

The direct application of the stochastic state variable dynamic
programming. to multiple unit systems is limited by computational require-
ments. It is considered that these limitations could be overcome to a
large extent by using the steady state probability distributions for each
single unit as a means of isolating individual units for analysis. The'
optimum for the combined system would be approached by successive
approximations, each unit being optimized using the previously derived
policies for the others.

The discrete differential dynamic programming, DDDP, (Heidari,
Chow, Kokotovic and Meredith, 1971; Heidari, Chow and Meredith, 1971;

Chow and Cortes-Rivera, 1974) is a powerful optimization technique which
overcomes many of the computational limitations of conventional dynamic
‘programming. The incorporation of the stochastic state variable model
into this procedure would allow DDDP to consider stochastic inputs.

The above recommendations and suggestions are made in the
realization that this study has not investigated all of the possible im-
provements and extensions that can be made to the proposed approach and

its applications to actual systems.
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APPENDIX. PHYSICAL AND ECONOMIC DATA FOR WATASHEAMU DAM AND RESERVOIR

The data in this appendix were derived from Butcher and Fordham

(1970).

A-1. Evaporation.

Evaporation is accounted for using the loss coefficient "a' in

Eq. (4-20). For each storage the volume of evaporation loss was calcu-
lated as the product of the reservoir area and an estimated depth of evapora-

tion as shown in the following:

Month Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

Evap. 0.036 0.072 0.157 0.215 0.322 0.502 0.716 0.716 0.502 0.301 0.143 0.072

where the evaporation values are expressed in feet/month.

The reservoir area as a function of storage was calculated using Eq. (A-1).
(A-1).

area = 89.67 + 0.01559x(k) - 0.3619 x 10'7x2(k) (A-1)

where area is in acres and x(k) is storage in acre-feet.

A-2. Energy.

To find the energy generated by a given release, the average
elevation of reservoir during the stage, H, is needed. The storage—elevation’

functions used for this purpose are given in Eqs. (A-1) and (A-2).

=
I

58.2 + 1.83 x 10 Jx(k) - 4.64 x 10 %2 (k)
30,000 < x(k) < 160,000 (A-2)

= 4.06 + 4.76 x 10 Sx(k) - 5.19 x 10~ Sx2(k) + 2.83 x 10 1% (k)

=
!

-19_4
- 5.57 x 10 x (k) (A-3)

x(k)<30,000; x(k) > 160,000
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where h = elevation in feet. The energy in Kw-hr is computed using Eq.

(A-4)
energy = 0.76808 u(k)h (A-4)

where u(k) is the release in acre-feet/month. The price of energy is taken

as 0.71 cents/kw-hr. Energy production ceases when h is less than 138 feet.

A-3. Irrigation.
Irrigation water is assumed to be sold at $2.50 per acre-foot up

to a specified maximum volume in each irrigation month as follows:

Month. May  June July Aug Sept Oct
Max Vol. 25 30 45 45 45 20

where maximum volume of irrigation sales in each month is expressed in KAF.

A-4. TFlow Statistics.

The mean, standard deviation and serial correlation with the

previous month of the inflows in each month are shown below.

Month Jan Feb Mar Apr May June
Mean 9948 10908 14630 35420 67794 58406
St. Dev. 6865 7553 5909 13120 23760 27720

Ser. Corr. 0.754 0.452 0.237 0.355 0.500 0.729

Month July Aug Sept Oct Nov Dec
Mean 23086 8251 5205 4858 8078 12365
St. Dev. 16670 4511 2336 1534 11460 16090

Ser. Corr. 0.934 0.920 0.955 0.802 0.211 0.669

- where flow statistics are in acre—-feet per month.
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A-5, Storage Range and Discretisation.

In some months, flood storage 1s reserved at the top of the

reservoir as follows:

Month Nov Dec .Jan " Feb Mar Apr
Flood .
Reservation 35 65 65 =~ 55 45 35

where flood reservation is expressed in thousands of acre-feet.

The total storage below the spillway is 160 KAF. 1.1 KAF of dead storage
exist below the lowest outlet point in the dam. Thé state space for storage

was made up of 10 KAF intervals except at the bottom where the first interval

is from 1.1 KAF to 5 KAF.

[

[P






