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ABSTRACT

An optimization model is generally not a perfect representation
of &a complex water resources planning problem because not all
important issues can be captured in a model. Optimization
models can be wused in a planning process to generate planning
alternatives that are good and different so that the analyst and
the decision maker can examine a wide range of_alternatives to
gain insight and understanding. | This approach is = called
modeling to generate alternatives (MGA).: Several new MGA
methods, a random method, a branch and bound/screening (BBS)
method and a Fuzzy HSJ method, are described. This work also
provides an assessment of the potential use of these methods as
well as the HSJ method for generating good and different
alternative solutions; the methods are 1illustrated wusing a
wastewater treatment system planning problem, which is

formulated as a mixed integer programming (MIP) model.
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CHAPTER 1

INTRODUCTION

Optimization techniques have been shown to be wuseful for
obtaining the "optimal" solution to a mathematical model. They

may also be used to obtain a few second best solutions wusing
parametric or sensitivity analysis, a set of noninferior
solutions using multiobjective'methoda,‘or various solutions by
ad ng procedures., Many water resources planning problems are
quite complex, however, and some important 1issues ﬁay be
ﬁnmodeled. The premise of this study is thafvoptimization models
may be more useful in dealing with such.problems if they can also
be used to generate planning ‘alternatives that are good with
respect to the modeled objective(s) and different with respect to
the decisions that they specify. Some of these alternatives may
be better than others with respect to the unmodeled issues, In
general, analysts and decision makers can react to these
different solutions, so that Better understanding and insight may
be obtained. In this way, the utility of optimization models may
be extended and the possibility of using an optimization model

successfully may be greatly increased.



Given the premise, the objective of this work was to develop and
evaluate different modeling to generate alternatives (MGA)
methods for generating planning altermatives. The MGA mgthods
developed are a random genération methéd, a Fuzzy Hop, Skip, Jump
method and 8 branch and bound/screengin (BBS) method. These
methods and the Hop, Skip, Jump (HSJ) method developed by Brill
(1979) are evaluated using applications to typical water
résources planning problems formulated as an mixed integer
programming (MIP) ﬁodel. These methods are shown to be able to
generate -varioué alternatives that are good with respéct to
modeled objective(é) and different with rleect to decision

variables for the example problems.

Water reso#rces planning problems, as well as other public-sector
planning problems, are usually very complex and cannot be fullj
represented by a matﬁematical model (see, e.g., Liebman, 1976,
and Brill, 1979). The comlexity comes mainly from the fact that
many interactive issuee are involved im the planning process,
Many objectives are qualitative and conflicting; many constraints
are not clearly defined. Since the real planning problem usually
cannot be fully represented by & mathematical model, the
"optimal" solution of that model is unlikely to be the "best"
solution for the planning problem (see, e.g., Deininger, 1973,

and Roy, 1976)., Therefore, the use of an optimigation model to
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obtain directly the "best" solution for a planning problem is not

expected to be generally succeséful.

Hamming (1962) said, "The purpose of computing is 1insight, not
numbers"; Geoffrion (1976) also stated, "The purpose of
mathematical programming is insight, not numbers". Beer (1966)
suggested that a "model" is the basis of insight and prediciion.
He also stated, "The model ---- is the tool of operations
research which. enables alternative deciéions, policies and
controls to be'evaiuated and compared in quantitative terﬁs. -
The whole purpﬁse of operations research; -~-- is to aid the
manager"”. If we accept that, for a complex environmental
planning problem, an optimization model should be.used to give
insight and to aid the deéision maker in a planning process, then
one appro#ch is to use optimization models to generate

alternatives for further evaluation.

One drawback of the conventional public-sector planning process
is that only a few alternatives are wusually generated for
evaluation because of manpower, computational, and time
limitations. With the development of optimization models and
with the help of high speed digitél cﬁmputers, it is possibie to
construct optimization models to aseist in the generation of

planning alternatives.



Hahn et al. (1973) found that few alternatives have been
investigated in the traditional approach for solving regional

wastewater planning problems and suggested, "It is desirable to

investigate the largest possible number of meaningful
alternatives”. Deininger (1973) stated, "A mathematical model
gives the tool to investigate more alternatives. = = = - It

increases the capability of generating information that can be
used in the decision-making".' But few optimization models have
been used specifically to generate a wide range of alternatives.
Even thdugh the feasible space of a model may contain a large
number of solutions, it has wusually been wused to obtain the
"best" solution for the planning problem and to carry out

parametric analyses.

Multiobjective programming methods have received considerablei

attention in solving public-sector planning problems. Among
them, weighting, comstraint, gnd multiobjective simplex methods
have been proposed to generate the set of noninferior solutions;
the noninferior set estimation method has been developed to find
an approximation of the noninferior set (see, e.g., Cohon and
Marks, 1975; Cohon, 1978; and Zeleny, 1974a). One limitation of
these approaches is that the planning problem must be formulated
explicitly or at least implicitly with two or more objective

functions. Even though many public-sector planning problems are

A——

—e

L—



P—

[E——

multiobjective, not every such problem can be easily formulated
mathematically because some objectives cannot be quantified. On
the other hand, it may be computationally impractical to generate
the whole noninferior set when tﬁere are many more than two
objectives. Also, many solutions along the noninferior curve are
not significantly different from one another. Steuer (1976)
applied a filtering technique to select "dissimilar" solutions
from _ the set of noninferior exﬁfeme fpoints. However,
"dissimilar" was'defined only in objective Bpace. A premise of
this study is that differences with respect to decision sp#ce are

also important and should be considered.

Another dréwback of the set of nohinferior solutioné is that,
since theie is usuvally at ieast one objective not included in the
optimization model, the noninferior solutions may not be good
with respect to omifted issues, and the best solution may well be
located in the "inferior" region as defined by the model rather
in the noninferior set (see, e.g., Brill, 1979, and Falkenhausen,
1979). Thus, alternatives outside the mnoninferior set should

also be searched in a planning process.

Brill and Nakamura (1978) employed a branch and bound algorithm

to generate different alternatives for planning regional

vastewater treatment systems. They also used an imputed value



matrix to compare the generated alternatives. The limitation of
their approach 1is that it tends to generate too many

alternatives, and most of the alternatives are not significantly

different from one another.

Few mathematical programming methods have been developed
specifically for the purpose of generating alternatives that are
different. Church and Huber (1979) used a reverse Teitz and Bart
heuristic to find élose to optimal solutions for maximal covering
location problemé. They defined difference as '"the numbér of
gites that a solﬁtion does not share with thevidentified optimal
solution”., Consequently, even though their method identifies
alternative solutions ﬁhich have many different locations when
compared td the optimal solution, they may not be very different

when compared to each other.

Falkenhausen (1979) used a heuristic evolution strategy to
generate alternative solutions for a regional waste treatment
system planning problem. The evolutiom procedure, which is based
on the principle of biological evolution, generates new sets of
solutions by mutation and recombination of the existing set of
solutions. He also compared the evolution method to a branch and
bound method and comcluded that the evolution strategy provided

more solutions than the branch and bound method. He also pointed
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out that the evolution strategies tend to generate similar

solutions and it might not be easy to obtain initial solutions.

Brill (1979) suggested a mathematical programming method to

generate alternative solutions. This method, called Hop, Skip,

“Jump (HSJ), is designed to generate planning alternatives that

are good with respect to objectives included in the model and‘are
éignificantly different from one another. Recently, the HSJ.
method has been applied to a hypothetical land use planning
problem to genefate land use alternatives. The results .showed
that the HSJ méthod can be used to generafé numerous land use
alternatives that are good with respect to the objectives
included in the model and different with respect to én unmodeled

issue and with respect to the decision specified (Chang et al.,

1979).

Even though random generation has been used mostly to generate
input information in surveying, stochastic simulation, and
statistical process involving uncertainty, it can also be used to
generate solutions. Rosenshine (1970) and Olson and Wright
(1975) applied the random generation process to schedule police
patrols. Brooks (1958, 1959) ﬁsed a random method 1in
maximum-seeking experiments and concluded that the random method

is preferred to other methods when the number of experimental



factors is large. The Southeastern Wisconsin Regional Planning
Commission applied a similarv maximum-seeking random method to
generate land use planning solutions (SWRPC, 1973). The validity
and the efficiency of this random search technique to generate

land use plans were also evaluated by Sinha, et al. (1973).

When solutions are generated at  random, if no guidance is
fdllowed (e.g., a stratified random seérch), it is possible to
miss some good soiﬁtions in a large portion of the decision space
(Brooks, 1959). Furthermore, the generation process may bé very
inefficient for geﬁerating a good solution. dekins (1975) used
a random method to generate land use plans. The problem is that
when there #re many feasibility conétraints,,it is difficult to

generate feasible solutions,

The advantage of usiﬁg a random method in a planning process 1is
that it can generate '"unexpected" solutions to a planning
problem, thus giving new insight to the problem. It may also
spark the imagination and creativity of the analyst or decision
maker. Whether or not a random method cam be successfully
applied in & planning process to generate good and different
planning alternatives is dependent on whether the "randomness" or
"unexpectedness" of the random process can be preserved, and on

whether it can generate solutions efficiently.
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The random generation method developed in this study wuses the
original constraints of the model to ensure the solution obtgined
is feasible. Targets are also set for the planning objgctives
included in the model to make sure that the solution obtained is

good with respect to modeled objectives. An extreme point

"solution is located by maximizing anm objective function (the sum

of a set of decision variables) that is randomly generated.  In
this wvay, solutions that are feasible &nd good can be generated
efficiently, and different solutions may be generated by randomly

selecting different objective functions to be maximized.

Another approach developed in this study'to generating good and
different alternatives to‘a planniﬂg problem is first-to generate
many solutions using an existing computer code; then a screening
process can be applied to select solutions that are good and
different. For example, a branch and bound algorithm can be used
to generate numerxous feasible solutions that meet targets for the
modeled objectives; those solutions can be screened to select a
subset of solutions that gre different from each other. A method
of measuring differences among alternatives must be established
before the screening process can be applied. This approach is
called a branch and bound/screening (BBS) method. This approach
will be promieing if both the generating and screening processes

are relatively efficient.
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In addition to the various issues mentioned above, decision
making in the 7real world is fuzzy, i.e., the objectives and
constraints that are known are not precisely defined by
formulations or numbers C(see, e.g., Bellman and Zadeh, 1970).
Consequently, as discussed above, the optimal solution to an
exact mathematical model and the optimal solution to the planning

problem will not likely be the same. Thus it may be possible to

represent a planning problem more reasonably by a fuzzy
formulation with fuzzy goals and <constraints. However, since
mathematical manipulations are precise, fuzzy goals and

constraints must be defined precisely as a fuzzy set, and fuzzy
models must be converted to "crisp" models before they can be

solved (Bellman and Zadeh, 1970, and Zimmermann, 1978).

Zimmermann (1975, 1978) applied fuzzy set theory to solve linear
vector-maximization .problems by fuzzy linear programming. Since
a few assumptions must be made to convert a fuzzy LP model to a
crisp LP model that can be solved by an existing LP algorithm,
and since there is most likely an objective that is not included
in the model, the mathematically optimal solution 1is still
probably not the best solution to the real problem. Furthermore,
one solution will not provide much insight into the problem. The
concept of fuzziness can, however, be applied as part of the

above methods for generating alternatives. A Fuzzy HSJ method is

U
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proposed in this study to generate planning alternatives. It is
a modification of the HSJ method and can be used to increase the
flexibility of the feasible decision space and the targets for

the objectives included in the model.

'The general procedures of the HSJ, random, BBS, and the Fuzzy HSJ

methods are described in Chapter 2. Also included are two
methods of measuring differences amoﬁg alternatives using.
decision variables. Chapter 3 describes the hypothetical

applications of the HSJ, random, BBS and Fuzzy HSJ methods to a
wastewater system planning problem formulated as an MIP problem.

Comparisons among these methods are also included.
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CHAPTER 2

GENERAL PROCEDURES

The HSJ, random, BBS, and Fuzzy HSJ methods will be examined
using a water resources planning problems formulated as an MIP
‘model. All of these methods can be used to search the whole
decision space (both the noninferior and the inferior regioﬁs).
These approaches and two methods of measufing differences among
alternatives wusing decision variables are described in the
following-sectidns. A more detailed description of thé HSJ

method is shown elsewhere (Brill, 1979, Chang et al., 1979).

2.1 HSJ Method

A single objective (assumed here to be cost minimization) LP-

formulation for a planning problem is:
Min cX
s.t. AX=B | (2.1)
where: X is the vector of real decision variables,
C is the cost coefficient vector for decision
variables X,
A is the coefficient matrix for the constraints, and

B is the vector of right hand side values.

An initial HSJ solution can be obtained by solving formulation

P [——
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2.1 directly. This solution is the optimal solution with respect
to the cost objective for this ﬁarticular formulation. To obtain
the second HSJ solution the sum of nonzero decision variables
(basic) in .the first solution is minimized, subject to the
original constraints. The cost is relaxed an acceptable amount
in comparison to the best possible value and specified as an
additional constraint. The formulation is designed to produée a
éolution that is "maximally different" ffom the initial solution-

Specifically, the following formulation should be solved:

bekK .
s.t. CX < T (2.2)

constraint set of formﬁlation 2.1
where X is a nonzero variable in the initial sdlution,
K is the set of indices of the nonzero variables in
the initial solution,
CX is the cost objective function,
T is the target for cost where T=c*+a where c* is the
cost obtained by sdlving (2.1), and a is the amount

that the target for cost is relaxed from c¥*,

To obtain the third and the following alternatives, a formulation
similar to formulation 2.2 can be used except that the nonzero
variables in the HSJ objective function should include all of the
nonzero variables in all previous solutions. This procedure

continues either until no more alternatives can be obtained or
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until enough different alternatives have been generated. Several
initial solutions <could be used to generate a set of solutions;
this step may be especially desirable when only a few

alternatives are generated using only one initial solution.

A facility location planning problem is used here as a typical
MIP planning problem., The formulation for a single objective
(e.g., minimize cost) problem can be statéd as follows:
Min | CIY + CX |
s.t. AY + AX =B ) (2.3)
where Y is the vector of 0,1 decision variables associated
with the exiqtence of facilities,
X is the vector of continuous variables that specify
facility capacifies,
Cl is thg vector of fixed cost coefficients for the
0,1 decision variables,.
C2 is the vector of unit cost coefficients for the
continuous decision'variables,
Al is the constraint'coefficient matrix for the 0,1
decision variables,
A2 is the constraint coefficient matrix for the

continuous decision variables, and

B is the vector of right hand side values,

Again, the initial HSJ solution can be obtained by solving

L

Mt
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formulation 2.3 -‘directly.. The second HSJ solution can be
obtained by solving a formulation analogous .to formulation 2.2
given in the linear programming case. Unlike the LP formulation,
there are two kinds of variables in an MIP formulation:/ fhe

continuous variables associated with the facility capacities, and

" the zero-one variables associated with the facility 1locations.

Since these two kinds of variables do not have the same
éroperties, one set of variables should be scaled if both of them
should appear together in the HSJ objective function. The
scaling factor,‘which should be based on the relative impértance
of facility location versus facility capacity;vwould be difficult
to determine before altermative solutioné are examined. In fact,
each set of variables can be treated individually as'a surrogate
for difference among alternatives, and either one <can be wused

alone in the HSJ objective function (see Section 4.2).

If a multiobjective LP or MIP formulation is used for a planning
problem instead of a single objective formulation, the HSJ
procedure is the same as described above, except that: (1) the
initial solution can be obtained in numerous ways, including: (a)
minimizing the weighted sum of all objectives subject to the
original constraints, (b) minimizing one objective subject to the
original constraints as well as constraints that specify targets

for the other objectives, or (c) minimizing one objective subject
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to the original constraints without placing constraints on any
other objective; and (2) targets on some or all objectives can be
relaxed an acceptable amount and treated as additional

constraints when solving a formulation such as 2.2.
2.2 Random Method

The random generation method developed and used in this study 1is
designed to generate planning alternatives that are good with
respect to the objectives included in the optimizatiom model and
significantly different with respect to o;itted issues. The
procedure is described as follows. An objective function (set of

decision variables) 1is randomly generated, and then it is

maximized subject to the original constraints. At the same time, .

additional constraints on modeled objective function values are -

added to make sure good alternatives with respect to the
objectives included in the model will be obtained. Specifically,
the following LP formulation ié used if the problem is originally
represented by formulationm 2.1.

Max z = zxk

keK
s.t. CX < T (2.4)
constraint set 2.1
where K is the set of decision variables randomly generated,

z is the sum of randomly selected decision variable

values (SORD), and

—

LS

————
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T is the target for the cost objective.

Note that constraint set 2.1 reduces the entire decision space to
the feasible decision space, while the target constraint further
reduces the feasible decision space to a space 1in 'which all
solutions are good with respect to the modeled objectives. One
SORD function is then randomly generated and maximized to 1locate
one solution on an "extreme" poinf in this decision space.
Unlike the HSJ method, since this random ﬁethod generates each
solution independently, an initial solution 1is not required.
However, the optimal solution to formulation 2.1 is still a very

useful reference and can be used to set the target for (2.4).

If a planning problem is represented by an MIP model, then there
are continuous _and zero-one variables in the formulation as
discussed in Sectionm 2.1. Again, each kind of variable can be
used alone in the random generation method to generate planning
alternatives. If the planning problem is represented by a
multiobjective formulation, thenv the target for eachlobjective

function can be specified.

2.3 A Branch and Bound/Screening (BBS) Method
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The HSJ and random methods discussed above are designed to
generate solutions directly that are good with respect to the
modeled objectives and different with respect to omitted issues.
The method discussed in this section is a two~step approach. The
first step is to generate many potential solutions using an
‘available computer <code; then a screening process is applied to

select a set of good and different solutions.

For an LP formulafion, typical LP code such as APEX provides only
one optimal soiution although sensitivity or parametric anélyses
can provide more solutions. For a singlé objective MIP
formulation, however, a typical code such as APEX MIP code can
specify feasible solutioﬁs within a certain cost limit (specified
before the execution) by the branch and bound procedure. If the
limit is set within an acceptable value, all solutions obtained
will be good witﬁ respect to the cost objective. Then the
screening process can be used to eliminate those solutions that
are similar. Thus, a set of good and different solutions can be
obtained. If a mﬁltiobjective MIP formulation is wused, one
objective can be optimized while other objectives are constrained
to meet target values to obtain a set of solutions. If
necessary, each objective <can be optimized in turm to obtain
several different sets of solutions. The screening process can
then be applied based on some method of measuring differences to

select solutions that are different from one another.

-
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In a broader sense, all methods mentioned above belong to this
two-step generation method. The only difference is that if the
alternatives generated by the HSJ or random method' are all
significantly different, the screeﬁing’process is not needed. If
some solutions generated are similar or too many solutions are
generated and only solutions with the largest difference are
needed, however, then a screening process can be wused to

eliminate those solutions that are similar.
2.4 Fuzzy HS8J Method

In the Fuzzy HsJ approach, the initial solution can be the same
as the one wused 1in ﬁSJ, i.e.; obtained by solving formulation
2.1. To obtain solutionﬁ that are different from the first
solution, a formulation similar to (2.2) can be used, except that
the objective fuﬁction and the first (cost) comstraint would now
be fuzzy, which means that we want a solution which is
"gignificantly" different from the first solution and the cost is
"not much higher" than the cost in the initial solution. The

corresponding mathematical formulation that replaces formulation

2.2 1is:
I X 2z
bekK xb ~
CX > c* (2.5)

constraint set 2.1

where X, is a nonzero variable in the initial solution,
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z is the optimal difference level desired,

K is the set of indices of the nomgzero variables in
the initial solution,

CX is the cost 6bjective function,

c* i8 the cost obtained by solving (2.1), and

2 is the fuzzy greater than or equal to sign.

The fuzzy objective function and comnstraints are characterized by
their membership . functions, sb the solution to (2.5) is the
intersection of these membership functions. Since there 1is no
fuzzy coﬁputet code that can solve (2.5) directly, formulation
2.5 must first be converted to a corresponding crisp formulation

before it can be solved (Zimmermann, 1978).

A fuzzy idea is fuzzy; it cannot actually be represented by exact .

numbers. If it must be converted to exact numbers, assumptions
nust be made. One set of assumptions is as follows. First, the
allowed 1level of difference and the allowed objective function
value can be assumed to be within ranges. 8Second, a satisfaction
(or preference) level must be assigned to each value within its
range; and third, how the decision makers evaluate the
satisfaction 1levels among different objectves should be assumed.
For example, if the range of difference is set from =z to gz+zl,
and the range of cost is from ¢* to c¢¥%+c, and then the

satisfaction level is set to be linearly decreasing from =z to

RO
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z+2z1 and from c¢¥* to c¥*+c, and if the decision makers want to
maximize the minimum satisfaction of the objectives, then (2.5)
can be converted to:
Max Min [ (z + 21 - 5 X )/zl, (c* + c - CX)/c 1]
beK _
s. t. constraint set 2.1 ' (2.6)

where z1 is the allowed range of the surrogate of difference, and

¢ is the allowed range of the cost objective.

Formulation 2.6 can then be further converted to the following:
Max 8
s.t. z + z1 - I > zls
berb : .
c* + ¢ - CX > cs (2.7)

constraint set 2.1

where 8 is the satisfaction level that can be varied from 0 to 1.
Formulation 2.7 can be solved by wusing existing LP computer
codes. Additional alternatives can be obtained using a Fuzzy HSJ
approach by solving a formulation analogous to (2.7) with nonzero

variables from all previous solutions in thel ﬁb term.

For a planning problem represented by an MIP model, a formulation
analogous to (2.7) can be used. In this case, either continuous
variables or the zero-one variables can be used as a difference
surrogate. If a multiobjective LP or MIP formulation is used,

the initial solution can be obtained as described in Section 2.1.
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Since there are many objectives, however, the allowed level of
each objective must be assumed. if necessary, the weight of each
objective can be attached to each objective. Furthermore, the
approach can also handle the case where other constraints are

fuzzy as well.
2.5 Measuring Differences among Alternatives

As discussed in Séction 2.3, the measurement of differences among
alternatives is mnecessary for eliminating solutions that are
similar. The concept of differences among plagning alternatives
is vague and there iq no perfect meaaﬁte of such differences.
Since the aiternatives generated_uaing the techniques presented

here must be good with respect to the objectives included in the

model, they must be similar with respect ¢to those objectives.

They typically are different, however, with respect to the values
of the decision variables, and these differences can be measured.
To calculate the difference between a new solution and all
previous solutions, the pairwvise differences between a new
solution and all the previous solutions must be calculated first.
Then the 1least pairwise difference can be picked as the

difference between the new solution and all previous solutions.

[——
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Two methods that can be used to calculate the pairwise difference
betveen two solutions are: (1) Calculate the number of different
nonzero variables between two solutions. This methaa will ot
measure the difference caused by a change in decision variable
values; for eiample, the difference is zero between two solutions
if x1=5 in the first solution apd x1=1000 in the second sclution.
(2) Calculate the sum of the absolute differences in decision
vatigble values between two solutions ﬁ and k+l as:

-§ |§jk - jk+1|‘ : . | (2.12)

where ‘jk is  the jth decision variable inbsolution k. Scaling
factors (or weights) can be applied to variables with different

unit or magnitude.

The second measure mentioned above is actually the metropolitan
distance 'betveeu tvo solutions in a decision space. Note that
the metropolitan diotince does not differentiate between large
differences in a small number of variables and small differences
in a8 large number of variables @as 1long as the sum of the
differences 1is the same. In contrast, a Buclidean distance
measure would put more weight on large differences in & semall
number of variables. For example, suppose the values of decision
variables (x1,x2) are (0,10), (0,0) and (5,5) ip solutions A, B
and C, respectively; the diffetence between A‘apd B can be viewed

a8 large differences in a small number of variables (10 units in
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one variable) while the difference between A and C can be viewed
as small differences in a large number of variables (5 units . each
in- two variables). The differences between A and B, and between
A and C are exactly the séme,r 10 units, if the metropolitan
distance 1is wused, but the differences are 10 and 7.07 units,
‘respectively, if the _Euclidean distance is wused. Both the
metropolitan and Euclidean measures have been tested to calculate
the differences among alternatives generated by the HSJ 'method
for the small écale land use example. The resulting profiles
were similar in shapé, although the actual values of diffefences
were lnof the =.BAame‘. The‘ metropéiitan méaéure was chosen

arbitrarily for use in the other applications.

The methods described above can be applied to MIP formulations in

several ways if slight modifications are made. First, the sum of

absolute numbers of Jdifferent nonzero variables between two
solutioﬁsf can bé Vmodified to the sum of absolufe differeht
zéro—one ;ariable valueé between two solutions. | Second,ﬁythe
differences in decision vafiable values can be éodified to the
&ifferenceq in continuous decision variable values. If the
differences in both’zero—bne variables and continuous vafiableé
values are uéed,’a weigﬁting factor could be appliéd to ome group
of values to téke into account the relative importaﬁce of

zero—one variables versus continuous variables.
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Aother method of measuring differences wused in this study is
visual inspection. Note that.each method has its advantages and
disadvantages; none is perfect for all the cases. The common
disadvantage of the above quantitétive methods of measuring
difference is that they will not measure how far apart, in the
spatial sense, location cﬁanges are. Measurement of difference
may depend on the characteristics of an individual pianning
problem, and they are wused only to select a set of different
alternatives..-Each analyst or decision maker may wish to wuse a

unique measurement of difference for this purpose.
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CHAPTER 3
GENERATING PLANNING ALTERNATIVES:

MIXED INTEGER PROGRAMMING MODELS

MGA techniques for a mixed integer programming (MIP) model are
.examined in this chapter. A regional wastewater system planning
problem is used to evaluate the HSJ method, the random method, a
branch and bound/screening (BBS) method, and a Fuzzy HSJ method
for generating good and different planning altermatives. Some
variations of the HS5J and random methods are also examined. The
CDC APEX ﬁIP code (CDC, 1979) which employs a branch and bound

procedure was used to solve the MIP models.

3.1 Example Problem

One of the mixed integer formulations of & regional wastewater

system planning problem with the objective of minimizing cost is:

Min I chgj +§ § GCiJ.Z1j + § PCjPQj + i? IcijIQij
s.t. (1) Ly - IQu + 10,y = PQ

(2) PQj < Mij (3.1)

(3) IQij < Nijzij

Y A = 0,1, all variables > 0

i* "ij
vhere FCj is the fixed cost for treatment plant j,

GCij is the fixed cost for interceptor from i to j,

[——
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PC, is the cost coefficient for treatment plant j,

3

ICij is the cost coefficient for interceptor from i to
;) ,

Yj is 0,1 vafiable for treatment plant 3, which
determines whethei the fixed cost for plant j should be
included,

zij is 0,1 variabie fo; interceptor from i to j, which
determines whether the fixed cost for that interceptor
should be included,

PQj’is the amount of wastewater treated at plaht i

IQij is the amount of wastewater flow from i to j,

Lj is the amount of wastewater flow originated from j
(known consthht).

Mj is an upper bound for PQ (known constant),

N is an upper bound for IQ (known constant).

ij
This formulation will determine the locations and capacities of
wvastewater treatment plants and interceptors such that the total
cost is minimized, The assumptions of this formulatiom are: (1)
all treatment plants provide the same degree of treatment (e.g.
secondary treatment), and (2) the <cost curves for treatment
plants and interceptors are concave and can be approximated using
fixed charges. Note that planning regional wastewater treatment

system is a complex public-sector planning problem, and there are
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mani issues other than cost that should be considered but are not
included in the model. For example, political, social, and
environmental issues will also play an important role imn the
planning process (See, e.,g., Brill and Nakamura, 1977; Brill and

Nakamura, 1978.)

The example problemi used in thig chapter and the cost
approximations for treatment plants and interceptors are from
Nakamura (1977).'-The wastewater system network is shown in
Figure 3.1. There are 15 wastewater sources, 12 candidaté plant
sites and 15 poteﬁtial interceptor links. Flow is allowed in
only one direction in all interceptors, except in the one_between

sources 8 and 9. Since there is an'upper bound for each plant

and intercéptor capacity, split flows are allowed. The MIP model

of this problem, formulated to minimize the total annual cost,

has 28 =zero-one Qariables, 28 continuous variables and 43

constraints.,

3.2 Generating Alternatives Using the HS8J Method

3.2.]1 Procedures and Results

[
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Figure 3.1 Example Wastewater System
(after Nakamura and Brill, 1977)
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An initial solution, called HSJ1l, was obtained by solving the MIP
formulation (which minimizes the total annual cost) of the
example problem. The plant locations and the cost of the initial

solution are shown in Table 3.1,

To obtain a second solutidﬂ, which is different from the initial
solution, the sum of the nonzero variables in the initial
sdlution is minimized in the HSJ procedure. 1In this problem, two
different kinds ofvvariables are included in the formulation: the
zero-one variablés associated with the plant and interceptor
locations and the‘continubus variables associated vith the plant
and interceptor capacities. These two kinds of variables have
different éharacteristiéa; and each can be used alone in the HSJ
objective function as a surrogate for difference to drive HSJ
iterations. .vThe cost objective function can also be included in
the objective functiﬁn so that the solution obtained will not
include unnecessary variables which only increase the cost of the
solution; to ensure that the surrogate difference objective
dominates the combined objective function, a scaling factor can
be attached to either the surrogate difference objective or the

cost objective,

e
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Table 3.1 Plant and Interceptor Locations and Total Annual Costs
for the Alternatives Generated by the HSJ Method

: Annual Cost
Alternative Plant and Interceptor Locations ($1000)
HSJ1 Plant (2, 5, 11, 14)*, 8, 15 1917
Inte. 1-2, 3-2, 4-5, 6-5, 7-8, 9-8, 10-11, :
12-14, 13-14

BSJ2 Plant (2, 5, 11, 14), 1, 3, 9, 10, 13 2076
Inte. 7-1, 4-3, 6-11, 8-9, 12-9, 9-10, 15-11 '

HSJ3 Plant (2, 5, 11, 14), 1, 3, 8, 9, 10, 12, 15 2108
Inte. 7-1, 4-3, 6-5, 13-14

D . —————— O — ——— —— T ———— ———————————— — ————— ———————— G ————————-——

%* plants 2, 5, 11 and 14 must be in the solution because of
constraints
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For the first experiment, the continuous variables, which
indicate the capacities of the plants and interceptors, were used
alone in the surrogate difference objective function to drive the
HSJ iterations. The <c¢ost target was arbitrarily sét at
$2,108,000, 10% higher than the least cost. Three alternatives,
including the initial solution, were obtained when the HSJ
procedure was applied. The plant and interceptor locations and
the cost of these alternatives are given in Table 3.1. Note that
both the number of plants and the total cost increase
monotonically from HSJ1 to HSJ3. Since all continuous variables
were nonzero at ieast once by the 1last dblution, the HSJ

procedure terminated.

The configurations of these three alternatives, as illustrated in
Figure 3.2, are different. The differences are even more
striking if the fact'that plants 2, 5, 11, and 14 must be in the
solution because of thewcénstraints is taken into account. As
shown in Table 3.1 and Figure 3.2, the minimization of the
capacity of the six plants in HSJ1 drives only two plants (plants
8 and 15) out of the solution because plants 2, 5, 11, and 14
must be in the solution because of constraints. The capacity
reduction of plants 2 and 5 is picked up by adding plants 1 and
3, while the <capacity reduction of plants 8, 11, 14, and 15 is

picked up by adding plants 9, 10, and 13. Even though there are



33

13 7 |
2
8 3
14 |2
4
10
‘O‘IS l” 6 X,
HSJ |
($1,917,000)
7 7
Ol3 o) | | 3 Ot |
Qo2 | 02
8 .cfa 08 cfa
O|4' 12 9 14 ' 14 62-09 4
10 Q10
15 I 15 Il 6 '
O =06 (O 5 O O o=e(05
HSJ2 HSJ3
($2,076,000) ($2,109,000)

o Wastewater Source
QO Treatment Plant
- |nterceptor

Figure 3.2 Configurations of Alternatives Generated by the HSJ

Method with 10% Cost Relaxation
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only two plants in HSJl that leave the solution, five new plants
axe added to HSJ2; the total capacity of the five new plants

equals the reduction of the six plants in the initial solution.

The minimization process, on the other hand, drives all of the
nine interceptors in HSJ1l out of the solution and adds a new set
of seven interceptors to HSJ2. HSJ2 is obtained by winimizing
the sum of the capacitiee of both plants and interceptors that
appear in HSJ1, and the decreases or increases in plant
capacities are «closely related to the decreases or increases in
interceptor capacities. For example, the minimization of the sum
of the capacities of plants 2, 5, and 8 and interceptors 1-2
(source 1 to souxce 2), 3-2, 4-5, and 7-8 brings plants 1 and 3

and intexceptors 7-1 and 4-3 into the solution.

H§J3 is obtained by ﬁinimizing all nonzero continuous variables

that appear in HSJ1 or HSJ2. Bince the first two HSJ solutions
specify all interceptors, including the capacities of
interceptors in the objective function is actually an attempt to
drive all possible interceptors out of the solution. In other
vords, the minimization ¢tries to locate as many plants as
possible to reduce the capacity of interceptors. (For a large
size problem, whexe only a small portion of the interceptors are

specified in the first several solutions, this may not be true.)

et
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As shown in Table 3.1 and Figure 3.2, all potential locations of
treatment plants have been selected in HSJ3 except plant 13.
Accordingly, all interceptors which can be drivem out 6f the
solution have been driven out except interceptor 13-14. The
tendency of adding plants and removing interceptors from the
solution can also be shown by the fact that the number of plants
increases from 6 for HSJ1l to 9 for HSJ2 and 11 for HSJ3 while the
numbe: of interceptors dereases from 9 for HSJ]l to 7 for HSJ2 and
4 for HSJ3I, It can be seen from Figure 3.2 that HSJ3 is
significantly different from HSJ1 and HSJ2 even though it does
not have a compietely different set of facility locations. Note
that HSJ2 is more decentralized than HSJ1, whilé HSJ3  1is even

more dispersed. The more decentralized solution is less

cost-effective, but it may'be good with respect to other issues

(e.g., impact on the water quality, flexibility of future

recycling and reuse).

The ©pairwise differences between any two of these three
alternatives, as measured by the sum of different plant and
interceptor capacities and by the sum of different plant and
interceptor 1locations, are shown in Table 3.2. The least value
in each row is taken as the difference between the solution (the
solution in that row) and all previous solutions. Thus the

difference smong these alternatives, using the first measure,
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Table 3.2 Differences among the Three Alternatives Generated
by the HSJ Method

Alternative HSJ1 _ HSJ2 HSJ3
HSJ1 0
HSJ2 157(23) % 0
HSJ3 110(14) 74(11) 0
* g (b)

a: measured by the sum of different plant and interceptor
capacities (cfs).

b: measured by the sum of different plant and interceptor
locations (unit); the addition or removal of any plant
or interceptor contributes 1 to the sum.

—_—

_—
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/decreases from 152 cfs for HS8J2 to 74 cfs for HSJ3. Similarly,

the difference as measured by the sum of different plant and

interceptor locations decreases from 23 for HS8J2 to 11 for HSJ3,

‘The total waste flow to be treated is 79.5 cfs. Since plants

- must be located at sources 2, 5, 11, and 14 to treat at least the

waste flow originating at those pbints. the flow that «can be
Shifted around is 52.4 cfs. Thus the makimal possible difference
as measured by the sum of different plant and interceptof
capacities is 4X52.4=209.6 cfe if the flow from one source goes
through only one interceptor. The maximal possible difference as
messured by the sum of differemt plant and inteiceptor locations
is 24 -- 8 for plant locations and 16 for interceptor locatiomns.
Compared to the maximal possible difference that can be obtained,
the differendes among these alternatives wusing each method of
measuring differences are significant. The drastically different
patﬁerns of plant and interceptor locations for the alternatives
are potentially useful because the decision maker cam compare
them not only with respect to the objectives that are not
included in the model, but also with respect to cost. By
examining these alternatives, the decision maker may be able to
find overlooked issues and gain wore imsight and Dbetter

understanding of the problem.
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3.2.2 Sensitivity of the Differences Among Alternatives with

Respect to the Target for the Cost Objective

If the target for the cost objective is restricted to $2,613,000
(5% more than the oﬁtimal cost), then five alternatives are
.obtained using ihe HSJ approach. Since the fifth alternative is
exactly the same as the fourth one, the HSJ procedure terminates,
The plant and interceptor locations and the <cost of the four
different alternatives are given in Table 3.3; the configurations
are shown in Figure 3.3. There are four new plants (planté 1, 3,
9 and 10) and four new interceptors (intercepfors 7-1, 4-3, 8-9,
and 15-11) in HSJA2 in comparison to the initial solution, HSJAL,
while plants 8 and 15 and interceptors 1-2, 3-2, 4-5, 7-8, 9-8,
and 10-11 in the initial solution 1leave the solution. Even

though the number of plants leaving the initial solution is the

same for the 5% and 10% cases, the number of new plants and nev -

intefceptors in the second solution and the number of
interceptors leaving the initial solution all decrease in the 5%
case because of the cost constraint. The number of new plants
with respect to all previous solutions is reduced to one for
HSJA3 and for HSJA4. Similarly, the number of new interceptors
with respect to all previous solutions is reduced to two and zero
for HSJA3 and HSJA4, respectively. The reduction in the number

of new plants and interceptors is an indication that the

JER—
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Table 3.3 Plant and Interceptdr Locations and Total Annual Costs
for the Alternatives Generated by the HSJ Method with

5%

Alternative

Cost Relaxation

Plant and Interceptof Locations

Annual Cost
($1000)

HSJAl Plant
Inte.

HSJA2 Plant
Inte.

HSJA3 Plant
Inte.

HSJA4 Plant
Inte.

(2, 5, 11, 14)*%, 8, 15
1-2, 3-2, 4-5, 6-5, 7-8, 9-8, 10-11,
12-14, 13-14

13-14, 15-11

, 5, 11, 14), 8, 10, 12, 14
1-2, 3-2, 4-5, 6-11, 7-8, 9-10, 13-14

2013

2013

11 and 14 must be in the solution because of

*¥* plants 2, 5,
constraints
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difference between the new alternative and all previous
alternatives decreases as additional mnew alternatives are
generated. The cost of alternatives HSJA2 through HSJA4 isrclose
to the target so that the ability to generate different

alternatives is limited by the cost constraint.

It can be seen from Figure 3.3 that the four alternatives are
different from one another.. Fox example, HSJAl has the least
number of plants'(6 plants), while HSJA4 has the largest numbe?
of plants (9' plants); and the plants are evenly distfibuted,
i.e., the same nhmber of plants are located iﬁ east, west, and
central part of the region. Note that the number of plants tends
to increase (6 for HSJAI, 8 for HSJA2 and HSJA3, and 9 for HSJA4)
while the number of intefceptors tends to decrease (9 for HSJAL,
7 for HSJA2 and HSJA3, and 6 for HSJA4). Thus, more
decgntralized solufions were obtained. However, this tendency is

much less pronounced than in the 10% case.

The pairwise differences between any two of the four
alternatives, as measured by the sum of different plant and
interceptor capacities and by the s8sum of different plant and
interceptor locations, are shown in Table 3.4. Again, the least
value in each row is taken as the difference between the new

solution and all previous solutions. Thus the difference among
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Table 3.4 Differences among the Three Alternatives Generated

Alternative HSJAL ’ HSJA2 HSJA3 HSJA4
HSJAL 0
HSJA2 118(16)* 0
HSJA3 66(8) 119(18) 0
HSJA4 66(8) 74(12) - 67(12) 0
* a (b)

by the HSJ Method with 5% Cost Relaxation

a: measured by the sum of different plant and interceptor

b:

capacities (cfs). .

measured by the sum of different plant and interceptor
locations (unit); the addition or removal of any plant
or interceptor contributes 1 to the sum,

PN

P
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these alternatives, as measured by the sum of different plant and
interceptor capacities, decreases from 118 cfs for HSJA2 to 66
cfs for HSJA3 and HSJA4, respectively. Then it drops to zefo for
HSJAS. The difference  among these alternatives as mea;ured by
the sum of different plant and interceptor locations drops from
16 for HSJA2 to 8 for HSJA3 and HSJA4, respectively; then it
drops to zero for HSJA5. Both methods of measuring diffefeﬁce
indicgte that there are significant differences among the firs;
four alternatives and no differences between the fifth one and
the fourth one. But the levels of difference among alternatives

are less signifiéant than in the 10% case.

If the target on the coét objective is relaxed to $2,300,000 (20%
more than the obtimal cost), then three alternatives are obtained
by the HSJ approach. The second alternative is exactly the same
as that obtainedl with 10%¥ cost relaxation, indicating that
furﬁher relaxation of the cost objective from 10%Z to 20% of the
optimal <cost does not have any effect in obtaining the second
solution, The third alternative with cost $2,125,000, however,
cannot be obtained in the 10%Z relaxation case. It is interesting
to see that plants are located in 12 potential locatioms for the
third solution, Consequently all interceptors, except those
constrained to be in the solution, are out of the solution. The

cost of the third solution is 11.1%Z higher than that of the
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initial solution. The differences between the third solution in
the 20% case and that in the 10% case is that in the 20X case,
because of the further <cost relaxation, the HSJ objective
function value 1is further reduced 'by eliminating intefcepto;
13-14 and adding piant 13 to treat the waste originating at that

-source.

The differences among the sets of alternatives generated in the
52, 10%, and 20% relaxation cases, as measured by the sum of
different plant and interceptor capacities, are plotted in Figure
3.4; the differénces, as measured by the sum of different plant
and interceptor locations, are plotted in Figure 3.5. It can be
seen that the differences measured by both methods have the same

trend for each of the three relaxation cases. The difference for

HSJ2 is the same in the 10%¥ and 20% cases. The difference

decreases rapidly for HSJ3, and then the procedure stops because
no different alternative can be generated. For the 5% case, the

difference is lower than that of 10% and 20% cases for HSJ2 -~

118 cfs versus 157 cfs as measured by the sum of different plant

and interceptor capacities and 16 versus 23 as measured by the
sum of different plant and interceptor locationms., For HSJ3, the

difference in the 5% case is slightly lower than that for the 10%

and 20%Z cases. Unlike the 10% and 20% cases, however, the HSJ-

iterations continue and generate HSJ4, which has the same level

[
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Figure 3.4 Differences among Alternatives Generated by the HSJ
Method as Measured by the Sum of leferent Plant and
Interceptor Capacities
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of difference as HSJ3. The fifth alternative, however, is the

same a8 HS8J&, so the difference is zero.

Figures 3.4 and 3.5 indicate that the differences among
alternatives are not greatly affected by relaxing the cost from

10¥ to 20% of the optimal cost. When the vrelaxation is

_restricted to 5% of the optimal cost, however, more alternatives

are generated, but the diffe:enée is smaller between the first
two alternatives., Note that for HS8J3, the difference is slightly
higher for the 10% relaxation than that for the 20% relaxationm,
indicating that the relsxation from 10% to 20% does not
necessarily increase the difference among | alternatives as
measured by these ‘two wethods of measuring differences. This
result indicates slight inconmsistency between the usd surrogate
differencé objective function and the two methods wused for

measuring differences.
3.2,3 Variatione of the HSJ Method

In Sections 3.2.1 and 3.2.2, continuous variablee alone were used
to drive HS8J iterationmns. Thie section discusses wusing the
zero—~one variables associated with the plant and interceptor
locations in the surrogate difference objective function. Again,

the target on the cost objective was set at $2,108,000 (10%
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relaxation)., Three alternatives were obtained, and the plant and
interceptor locations and the cost of each alternative are shown
in Table 3.5, The first two alternatives are exactly the same,
respectively, as those <¢btained by minimizing the suﬁ of
continuous variables (see Section 3.2,1). The third alternative,
hbwever, has a lower <cost than - the corresponding alternative
obtained using continuous vafiablgs alone. The difference
between alternatives 1 amd 3 1is .that 'in alternative 1 the
wvastewater flow 6;iginated from source 12 is routed to plant 14
for treatment while in alternative 3 the same flow is treated at
plant 12. The differences between the first and the third
alternatives, as measured by the sum of different plant and
interceptor capacitiee aﬁd'by the sum of different locations, are
20 cfs and 2, respectively. Both measures indicate the
difference between alternatives 1 and 3 ie relatively

ingignificant.

The third alternative (HSJC3) obtained by minimizing the sum of
continuous variables as shown in Section 3.2.1, however, is
significantly different from the first alternative with respect
to the locations of both plants and interceptors. Compared to
that alternative, the third alternative obtained by minimizing
the sum of zero~one variables has fewer plants (7 vs. 11) but has

more interceptors (8 vs. 4), However, the total number of plants
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Table 3.5 Plant and Interceptor Locations and Total Annual Costs
for the Alternatives Generated by the HSJ Method Using
Zero-One Variables in the HSJ Objective Function

Alternative

Annual Cost

Plant and Interceptor Locationms

($1000)

e —— . e ——— e - - G e G S D G G e S S e G e D Gy - S - - D B D G G S e G e . -

HSJC1l Plant
Inte.

_HSJC2 Plant

Inte.

HSJC3 Plant
Inte.

(2, 5, 11, 14)%, 8,15

1-2, 3-2, 4-5, 6-5, 7-8, 9-8, 10-11, 12-14,
13-14

(2, 5, 11, 14), 1, 3, 9, 10, 13

7-1, 4-3, 6-11, 8-9, 12-9, 9-10, 15-11

(2, 5, 11, 14), 8, 12, 15 |
1-2, 3-2, 4-5, 6-5, 7-8, 9-8, 10-11, 13-14

G g . G - G S e G G G G G et G G G B e e S G G G S B e e e e e e S S S o e P S S G S S S - -

, 11 and 14 must be in the solution because of

* plants 2, 5
constraints
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and interceptors is the same (15) for both alternatives. Since
the zero-one varisbles associated with plants and interceptors
are equally weighted, the minimization of zero-one variables
simply reduces the total number of facilities that appéar in
previbua ‘solutions. Thus, when the total number of such plants

and interceptors cannot be reduced, the solution with 15

facilities and the lowest cost ($1,964,000) is obtained. The

minimization of continuous variables in the HSJ objective
function, however, teunds to reduce the number of interceptors
further to reduce the total capacity of facilities even though

that will also increase the number of plants.

The above results show that even though the =zero~one variables

are related to the values of the corresponding continuous

variables, thé use of zero~omne variables alone in the HSJ

objective function may not necessarily generate the same set of
alteinatives as that generaﬁed by wusing continuous variables.
Also, the wuse of zero-omne variables in the objective function
does not produce a driving force to reduce the capacities of
plants and interceptors if those capacities cannot be reduced to
zero. Thus, this approach appeare to be less effective than the

use of continuous variables in the HSJ objective function.,

i el
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Instead of wminimizing the sum of nonzero variasbles in all
previous solutions for each HSJ iteration.»maiimizing the sum of
zero variables in all preceeding solutions was also .examined
using continuous variables and zero-one variables.in the HSJ
objective function. In each case, three alternatives were

generated, The plant and interceptor locations and the cost for

‘each set of alternatives are shown in Table 3.6. Note that the

third alternative (HSJD3) ie similar to the initial solution.
HSJD3 is actually formed by sdding plant 12 and eliminating
interceptor 12-14 from the initial solution. The inhbility to
obtain a different third alternative results from the fact that
only one variable (plant 12) has not appeared in previous
solutions, the maximizatiou of the capacity of plant 12 siwmply
adde that plant to treat its own waste and removes interceptor
12-14. The minimization of nonzero variables, however, as shown
in Section 3.2.1 drives most of the interceptors out of the
éolution so that the total capacity is reduced and more

difference is obtained.

A problem with maximizing the sum of nonbasic (zero) variables to
drive the HS8J iterations is that some upnecessary variables may
come into the solution; as a result the cost of the solutiom is
unnecessarily increased. As an example, the plant locations of

alternative H8JD2 are exactly the same as the plant locations of
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Table 3.6 Plant and Interceptor Locations and Total Annual Costs
for the Alternatives Generated by the HSJ Method by
Maximizing the Sum of Zero-One Nonbasic Variables

Annual Cost
Alternative Plant and Interceptor Locations ($1000)

I. Maximizing Zero Continuous Variables

HSJD1l Plant (2, 5, 11, 14)*, 8,15 1917
Inte. 1-2, 3-2, 4-5, 6-5, 7-8, 9-8, 10-11, 12-14, :
13-14
HSJD2 Plant (2, 5, 11, 14), 1, 3, 9, 10, 13 2085
Inte. 7-1, 4-3, 6-11, 8-9, 12-9, 9-8, 9-10, 15-11
HSJD3 Plant (2, 5, 11, 14), 8, 12, 15 1964
Inte. 1-2, 3-2, 4-5, 6-5, 7-8, 9-8, 10-11, 13-14
II. Maximizing Zero 0,1 Variables
HSJEl Plant (2, 5, 11, 14)%, 8, 15 1917
Inte. 1-2, 3-2, 4-5, 6-5, 7-8, 9-8, 10-11, 12-14&,
13-14
HSJE2 Plant (2, 5, 11, 14), 1, 3, 9, 10, 12, 13 2108
Inte. 1-2, 3-2, 4-3, 7-1, 6-11, 8-9, 9-10, 15-11
HSJE3 Plant (2, 5, 11, 14), 8, 15 1937
Inte. 1-2, 3-2, 4-5, 6-5, 7-8, 9~-8, 10-11, 12-14,

* plants 2, 5, 11 and 14 must be in the solution because of
constraints
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alternative HSJ2 obtained by minimizing the basic continuous
variables (see Tables 3.9 and 3.1). Howeyer; in HSJD2, the
capacity of the interceptor 8-9 is 7.9 cfs and the capécity of
interceptor 9-8 is 1.0 cfs. It is obvious that 1.0 cfé of the
capacity of each interceptor and the zero-one variable for
interceptor 9~8 are unnecessary. For another example, in HSJE2,
the <capacity of the interceptor from source 12 to source 9 is
zero, but the zero—-one variable associated with that interceptqr
capacity 1is one. All these unnecessary variables enter the
solution because they will increase the HSJ objective‘ function:
value. The presence of the cost objective in the overall
objective function does not prevent wunnecessary variables from
entering the solution because the cost objectivek has been
multiplied by a small scaling factor to avoid affecting the
surrogate difference objective. These unnecessary variables will
increase the cost of the solution obtained but will not produce
important differences. So 1if the sum of nonbasic variables 1is
used to drive the HSJ iterations, one more step 1is needed to
remove unnecessary variables after the solution is obtained. For
such cases, there appears to be no advantage to maximizing the
sum of nonbdasic variables in comparison to minimizing the sum of

basic variables.
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Since the capacities of the interceptors are related to the
capacities of the plants, it may be simpler to use the variables
asgociated with plant capacities alone to drive ﬁhe HSJ
iterations. If the sum of all nonzero plant capacities in all
previous solutions is wminimized, four alternatives are obtained.
The fourth alternative 1is exactly the same as the initial
solution. The plant and interceptor }ocations and the cost of
the three alternatives are shown in Table 3.7. Since only the
varisbles associated with plant capacities are used in the HSJ
objective function, not all interceptors in the initial solution
are removed (interéeptor 6~5 is still in HSJF2). As discuesed in
Section 3.2.1, if <continuous variables associﬁted with both
plants and interceptors aie used in the HSJ objective function,
all interceptors in the initial solution are removed. The third
alternative (ﬁSJFS) bas one more plant than the initial solution
(HSJF1), indicating the difference between these two alternatives

may be small.

The pairwise difference between any two alternatives for these
three alternatives, as measured by the sum of different plant'and
inta:ceptor capacities and by the sum of different locationmns,
were calculated. The difference as measured by the sum of
different plant and interceptor capacities is 154 cfs for HSJF2,

then it drops sharply to 20 cfs for HSJP3. The difference as

i ez et
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Table 3.7 Plant and Interceptor Locations and Total Annual Costs
for the Alternatives Generated by the HSJ Method Using
Continuous Variables Associated with Plant Only in the
H8J Objective Function

Annual Cost

Alternative Plant and'Interceptoz Locations ($1000)

HSJF1l Plant (2, 5, 11. 14)* 8, 15 1917
Iﬂte. 1 2 3 2 l. 5 5' 7"'8' 9"8’ 10"11. 12"‘14'

13-1& :

HSJF2 Plant (2, 5, 11, 14), 1, 3,9, 10, 13 2068
Inte, 7-1, 4-3, 7-1, 6-5, 8~-9, 9-10, 12-9, 15~11

HSJF3 Plamt (2, 5, 11, 14), 8, 12, 15 1964
Inte. 1~2, 3-2, 4-5, 6-5, 7-8) 9-8, 10~-11, 13-14

* plants 2, 5, 11 and 14 must be in the solution because of
constraints
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measured by the sum of different plant and interceptor locations
has the same trend; it etarts with 21 for HSJF2 and drops sharply
to 2 for HSJF3. The difference for HSJF3 is much lower ihan that
for HS8J3 (obtained by ‘minimizing ‘the sum of all nénzero
continuous variagbles), indicating that the use of the continuous
variables associated with plant qapacitiee alone is less powerful

than the use of all continuous variables.

If maximizing the éum of nonbasic variables instead of minimiging
the sum of basic variables is applied wusing only the'plant
capacity variables; then exactly the same reaulis are obtained.
Since the total wastewater flow to be treated is fixed, the total
reduction of capacities of some plants wust cause an equal

increase in the total <capacities of other plants. Hence the

minimization of the sum of basic variables ie equivalent to the

maximization of the éum of nonbasic variables. Note that in this
case, the maximization of the sum of nonbasic variables will not
bring in any unnecessary variables as discussed in the previous
section if the «cost objective 1is included in the objective

function with a scaling factor.

As another experiment, the =gzero-ome variables associated with
plant locations alome were used in the H8J objective function.
Three alternatives were obtained, but the differences are much

lees than those obtained using the other HSJ objective functions.
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3.2.4 Summary Results

The above results show that the HSJ method camn be used to
generate good alternatives that are significantly différent from
one another. The number of alternatives generated is limited and
is dependent on the cost target specified. If a relatively tight
target is specified, the différenqe among alternatives is reduced
but more alternatives were_obt#ined.' For this example problem,
the use of continuous variables associated with both plants and
interceptors as the surrogate difference in the HSJ'objective
function is more effective tham the use of continuous variables
associated with plants only or the use of zero—one variables
associated with both plants and interceptors in obtaining
different alternatives. Aleo, minimizing the nonzero variables
in previous solutions is more efficient than maximizing the =zero
variables becauée the latter approach may introduce unnecessary

variables into the solution.

3.3 Generating Alternatives Using the Random Method

3.3.1 Overview
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One obvious method to generate alternatives for this wastewater
system planning problem is to select plant locations randomly
from the potential plant locations. Then the <capacity of each
plant and the 1locations and sizes of the interceptors ?an be
judgementally assigned. One problem with this approach is that
the potential solution is often infeasible. Also, if by chance a
feasible solution is generated, it may not be good with respect
to ther objective 1included in the model. If the interceptor
locations are also generated randomly, the chance of obtaining a
feasible solution 1is even less. The likelihood of feasibility
can be increased if the locations where plants must be located

are recognized.

For the example problém, there are 12 candidate plant locations.
The number df total possible solutions is 4,095 with respect to
plant locations alone. If the four locations where plants must
be lbcated are recognized, ﬁowever, the total number of possible
solutions is drastically reduced to 255. The APEX MIP code which
employs a branch and bound search obtained 32 solutions that are
good with respect to the cost objective =~ within 10Z of the
optimal <cost, but eight of them have the same plant locations.
On the other hand, there may be good solutions that cannot be
found by the APEX code because it will not continue to search

along a branch where an integer solution has been found.
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Assuming that there are 32 good solutions, the probability of
finding one randomly is approximately 1/8. Thus,‘ approximately
40 random solutions may be required to provide five. good
solutions; the probability of generating five good sélutions

consecutively is only .000023. Furthermore, there is no

- guarantee that all five good solutions are different from one

another, When the four ©plant locations where plants must be
locatgd are not recognized, the probability of obtaining one good
solution is 1/128 (32/4095). Then 640 random solutions may bé
reqﬁired.to proﬁide approximately five good solutions, and it is
almost impossibie (1 in 34,000 million) to generate five good
solutiops consecutively. So if no guidance 1is followed, the
random generation method may be very inefficient for generating

feasible and good solutions.

For the MIP examplé probelm, a random generation method like the
one described in Section 2.2 can be used. A set of continuous
decision variables is randomly generated, and then the sum of the
randomly generated decision variables (SORD) is maximized. The
cost objective is constrained to meet a specified target. The
number of randomly generated continuous decision variables can be

fixed or randomly determined.
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3.3.2 Results of the Random Method

For the first experiment, the number of continuous decision
variables to be randomly generated was arbitrarily fixed #E four
(there are 28 continuous decision variables). The target for the
cost objective was specified at $2,108,000 (10% greater than the
optimal cost). Ten alternatives were obtained by maximizing the
sum ofr the 10 sets of decision variables. The plant and
interceptor locations and the cost of each alternative are given
in Table 3.8. The cost of these alternatives does not vary
significantly; the‘highest cost ($2,018,000) ismonly 3.7%2 higher
than the lowest <cost ($1,943,000) and is only 5.3%Z higher than
the optimal cost ($1,917,000). Note that altermative 3 1is
exactly the same as alternative 2. Even though the probability

of randomly generating the same set of decision variables is very

small (in this case .0022), the probability that the same two

solutions result from the optimization step may be much larger

because of the constraints.

Since there are 28 continuous decision variables, and since each
alternative 1is obtained by maximizing the sum of four different
réndomly.specified variables, the probability that a certain
variable is not specified in 10 alternatives is .214 ((24/28)10),

This probability can be reduced by increasing the number of

VNN [
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Table 3.8 Plant and Interceptor Locations and Total Annual Costs
for the Alternatives Generated by the Random Method

Annual Cost

Alternative Plant and Interceptor Locations ($1000)
RM1  Plant (2, 5, 11, 14)%, 3, 9, 15 1991
Inte. 1-2, 4-3, 6-5, 7-8, 8-9, 10-11, 12-9, 12-14,

13-14 B
RM2  Plant (2, 5, 11, 14), 9, 10, 12 | 1997
Inte. 1-2, 3-2, 4-5, 6-5, 7-8, 8-9, 9-10, 15-11,
13-14 | '
RM3  Plent (2, 5, 11, 14), 9, 10, 12 | 1997
Inte. 1-2, 3-2, 4-5, 6-5, 7-8, 8-9, 9-10, 15-11,
13-14 .
RM4  Plant (2, 5, 11, 14), 8, 10 ’ 1990
Inte. 1-2, 3-2, 4-3, 4-5, 7-1, 6-5, 7-8, 9-8, 9-10,
12-9, 15~11, 13-14
RM5  Plant (2, 5, 11, 14), 9, 13, 15 1943
Inte. 1-2, 3-2, 4-3, 4-5, 6-5, 7-8, 8-9, 10-11, 12-14

RMé Plant (2, 5, 11, 14), 3, 8, 13, 15 1988
Inte. 1-2, 4-3, 6-11, 7-8, 9~10, 10-11, 12-14

RM7  Plant (2, 5, 11, 14), 8, 13 1946
" Inte. 1"’2’ 3"2’ 4-5. 6-5’ 7"8. 9"8. 10"'11. 12-14’
15-11, 13-14 |

RM8 Plant (2, 5, 11, 14), 3, 8, 15 1953
Inteo 1-2. 3"’2’ 4-3. 6-5" 7-8’ 9-8’ 10-11. 12-14’
13-14
BM9  Plant (2, 5, 11, 14), 3, 9, 10 2018
Inte. 1-2, 3-2, 4-3, 6-3, 7-8, 8-9, 9-10, 12-9,
15-11, 13-14
RM10 Plant (2, 5, 11, 14), 1, 8, 10 1976
Inte. 1-2, 3-2, 4-5, 7-1, 6-11, 9-8, 12-14, 13-14,
15-11

D o e D G e G G S G e e S T G W S PR T S G G G T S T e S S D Sy G S WP e W W P R e ST DGR AR D S R G G TR SR G R S e G S WS e G G S

%* plants 2, 5, 11 and 14 must be in the solution because of
constraints
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randomly sepecified continuous variables or by increasing the

number of alternatives generated.

Néte that the number of plants specified by each alternati;e is
between 6 and 8, It at firet seems thst they are not very
different from ome another. However, since plants 2, 5, 11, and
14 wust be wused, the differeﬁces ~among the alternatives are
greater. For example, in additiom to the four required plants,
alternative & locates plants at sources & and 10, while
alternative 5 specifies locations 9, 13, and 15 -- a complétely
different set.  The number of interceptors for the ten
alternatives, on the other hand, variees from 7 to 12,
Interceptor 1-2 appeata'in esach alternative, while interceptors

3-2, 6-5, 7-8, and 13~14 appear in st least eight of the ten

alternatives. Interceptore 7-1 and 6-11 appear im only two

alternatives.

The pairvise differences between any two of the ten alternatives,
as measured by the sum of differemt ©plant and interceptor
capacities and by the sum of different plant and interceptor
locations, are shown 1in Table 3,9, Note that the alternatives
have been reordered according to the difference measured by the
sum of different plant and interceptor capacities. The least

velue in each row is taken as the difference between the new

——
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Table 3.9 Differences among the Ten Alternatlvea Generated
by the Random Method

Alternative
6 9 10 5 1 4 8 2 7 -3
6 0
9 131 0
(14)*
10 90 73 0
(15) (15)
5 72 72 81 0

(9) (11) (16)

1 56 82 115 44 0
(9) (7) (18) (6)

4 117 44 42 105 127 0
(15) (7) (8) (14) (14)

(10) (11) (12) (8) (6)  (10)

7 65 99 8 57 93 65 22 87 0
(11) (13) (8) (8) (10) (8) (4) (10)

3 129 24 65 72 99 48 98 0 87 0
(17)  (5) (12) (10) (12) (8) (14) (0) (10)

—— e o G G - G G- - G - G G G G T G G G G R AR TR SE G G G G G P SR G G G e G P G G B G G TR R G D G G G G G S B S S W G

* a (b)
a: measured by the sum of different plant and interceptor
capacities (cfs).
b: measured by the sum of different plant and interceptor
locations (unit); the addition or removal of any plant
or interceptor contributes 1 to the sum.
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solution and all previous solutions and is plotted in Figure 3.6.
The difference as measured by the sum of .different capacities
decreases sharply from 131 cfs for the second alternative to 73
cfs for the third alternative and remains approximately the. same
for the fourth alternative. After that, the difference decreases
to 44 cfs for the fifth alternative, then it gradually decreases

to zero for the 10th alternative.

The difference as measured by the sum ~of different plant and
interceptor locations, on the other hand, 1is not stfictly
monotonically decreasing. It starts with 14 for the second
alternative and then increases to 15 for the third alternative.
In general, however,'even'though there exist some discrepancies,

the two methods of measuring difference indicate the same trend.

The configurations of the four most different alternatives, as

measured by each measure are shown in Figure 3.7. It can be
observed that these four alternatives are quite different from
one another, For example, in addition to the plants at sources
2, 5, 11, and 14, alternative 6 locates plant at sources 3, 8,
13, and 15; while alternative 9 locates plants at sources 3, 9,
and 10. Some of the interceptor locations are also different.
For example, alternative 6 has seven interceptors while

alternative 9 has ten. Among them, four interceptors appear in
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each solution. Note, in alternatives 5 and 9, there are some
split flows. 1In alternative 9, for example, althoﬁgh a plant is
located at source 3, thefe is s8till an interceptor .that
transports some of the waste flow from source 3 to source é. In

alternative 5, one part of the waste flow originated from source

-4 is ghifted to node 3 then to plant 2, the other part is shifted

to plant 5.
3.3.3 Variations of the Random Method

As discussed in Secton 3.2.3, in the HSJ approach the
maximization of nonbasic variables may introduce unnecessary
variables in the solution that increase the cost. This
phenoﬁenoh may also occur in the random generation method if the
sum of randoﬁly generated decision variable values, SORD, 1is
maximized. This result occurs, for example, for interceptors
that.allow flow in both directions (e.g., interceptor 8-9 and 9-8
in the example problem); if the decision variables associated

with such an interceptor are maximized, flow can result in both

directions. Of course, constraints can be specified to allow
flow in only omne direction, but that would increase the
complexity of the model. If the SORD function is minimized

instead of maximized, then unnecesssary variables will not appear

in the solution. Ten alternatives were randomly generated by
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minimizing the sum of ten sets of randomly specified <continuous
variables., As before, the number of variables selected was four,

and the cost target was $2,108,000.

The plant and interceptor locations and the <cost of each
alternative are shown in Table 3.10. Alternative 2 is exactly
the same as alternative 1 even fhough the randomly specified
variablgs are not exactly the saﬁe. The number of plants varies
froﬁ 6 to 9, and there are two alternatives with 9 plants, In
the maximization case, no solutions with more than 8 plantd were
obtained. The number of interceptors varies from 6 to 9,
indicating a reduction in the number of interceptors compared to
the maximization case (7 to 12 interceptors). The reduction may
be caused in part by the fact that split flows are less likely in
the minimization case. For example, alternative 7 obtained in
the maximization case (Table 3.8) and alternative 1 obtained in
the minimization case (Table.3.10) have the same plant locations.
Alternative 7 includes interceptor 15-11 which shifts part of the
flow from source 15 to source 1ll, while for alternative 1 that

interceptor is not in the solution.

The pairwise differences between any two of the ten alternatives,
as measured by the s8sum of different plant and interceptor

capacities and by the sum of different plant and interceptor
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Table 3.10

Alternative

RN2 Plant
RN3 Plant

RN&4 Plant
RN5 Plant

RN6 Plant

RN7 Plant

RNS8 Plant

% plants 2,
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Plant and Interceptor Locations and Total Annual Costs
for the Alternatives Generated by the Random Method by
Minimizing the Sum of Decision Variables

Annual Cost

Plant and Interceptor Locations ($1000)
(2, 5, 11, 14)*, 8, 15 1924
1-2, 3-2, 4-5, 6-11, 7-8, 9-8, 10-11, 12-14
13-14 o
(2, 5, 11, 14), 8, 15 1924
1-2, 3-2, 4-5, 6-11, 7-8, 9-8, 10-11, 12-14,

13-14 '

(2, 5, 11, 14), 3, 8, 15 1953
1-2, 3-2, 4-3, 6-5, 7-8, 9-8, 10-11, 12-14,

13-14

(2, 5, 11, 14), 1, 3, 8, 15 ) 1988
4-3, 7-1, 6-5, 9-8, 10-11, 12-14, 13-14

(2, 5, 11, 14), 1, 3, 8, 12, 15 2036
4-3, 7-1, 6-5, 9-8, 10-11, 13-14

(2, 5, 11, 14), 8, 10 1937
1-2, 3-2, 4-5, 6-5, 7-8, 9-8, 12-14, 15-11,

13-14

(2, 5, 11, 14), 3, 9, 10, 13, 15 2062
1-2, 3-2, 4-3, 6-11, 7-8, 8-9, 9-10, 12-9

(2, 5, 11, 14), 1, 9, 15 1996
3-2, 4-5, 7-1, 6-5, 8-9, 9-10, 10-11, 12-9,

13-14

(2, 5, 11, 14), 1, 8, 15 1868
3-2, 4-5, 7-1, 6-5, 9-8, 10-11, 12-14, 13-14

(2, 5, 11, 14), 8, 12, 12, 15 1901
1-2, 3-2, 4-5, 6-5, 7-8, 9-8, 10~11

- Oe G G G G D D G G G G G g G M S G P S S E G M M e e M e e e S ——

5, 11 and 14 must be in the solution because of

constraints
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locations, were calculated. Again, the order of the alternatives
has been rearranged according to the first difference
measurement, and the least value in each row is plotted in Figure
3.8. The difference, as measured by the sum of different 'plant
and interceptor capacities, starts from 148 cfs for the second
alternative, then it sharply drops to 88 <cfs for the third
alte;native. After that, the difference decreases approximately
linearly to zero for the tenth alternafive; The difference as
measured by the different plant and ipterceptor locations shows

approximately the same shape.

The differences, as measured by the sum of different plant and

interceptor capacities, for the ten alternatives generated by

maximizing the SORD function is also plotted in Figure 3.8. Even
though the alternatives generated by minimization of SORD have
slightly larger differences up to the fifth alternative, while
the alternatives generated By maximization of SORD have slightly
larger differences from the sixth to the ninth alternative, the
two profiles show the same trend and are similar. The
minimization approach appears as effective as the maximization
approach and has less chance of generating solutions with split

flows.
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The configurations of the four most different alternatives based
on the two measurements of difference are shown in Figure 3.9.
These alternatives are quite different from one another. For

example, in addition to ' plants 2, 5, 11, and 14, which are

constrained to be in the solution, alternative 6 locates plants

at sources 8 and 10, while alternative 8 locates plants at

sources 1, 9, and 15. These two alternatives are similar,

however, with respect to the facilities associated with sources

4, 5, 6, 12, 13, and 1l4.

In the previous exﬁeriment, continuous variables associated with
the capacities of both plants and interceptors were randomly
specified to generate alternatives. Since the capacity of an
interceptor is related to the capacity of a plant, it may be more
efficient to use only the variables associated with the
capacities of the ﬁlants. To examine this approach, the number
of randomly specified variabies was fixed at four, and the target
for the cost objective was specified at $2,108,000. Ten
alternatives were generated by maximizing ten sets of variables.
The level of differences among these alternatives, as measured by
the sum of different plant and interceptor capacities and by the
sum of different locations, was comparable to that of the
alternatives obtained in using variables associated with ©both

plant and interceptor capacities,
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3.3.4 Summary

The above results show that the random generation method can be
used to generate many’ alternatiVes that are good and
significantly different for the example problem. The
minimization of the sum of randomly generated decision variable
values, SORD, can generate different alternatives as effectively
as the maximization approach. The minimization approach also has
the advantage of not generating solutions with wunnecessary
variables .in them. The use of continuous variables associated
with plant capacitiés alone in the SORD objectiQé function also

generated different solutions effectively.
3.4 Generating Alternatives Using a BBS Method

3.4.1 Introduction

The HSJ and random methods are designed to generate good and
different solutions directly. In contrast, the approach
discussed in this section is a two-step approach. The first step
is to generate many potential solutions wusing an available
computer code, and then to apply a screening process to select a

set of "good" and "different" solutions.




75

For a single objective mixed integer programming (MIP)
formulation, the APEX MIP code can be used fo obtain feasible
solutions within a certain limit of the objective functioh value
(specified before execution). If the 1limit is set.within an
acceptable value, then all solutions obtained will be good with
respect to the objective in the model. The solutions obtained,
however, may be similar and a screening process is needed to
select a set of different solutions. The APEX MIP code,
available for the CDC Cyber, implements a branch-and-bound
process, and it will specify only solutions that canm be obtained
using the corresponding mathematical steps. Not all solutions
will be obtained; for example, once a node solution is integer
only that solution will be specified, although there may be

alternatives along that branch.
3.4.2 Procedures and Results

By setting the cost limit at $2,108,700 (10% higher than the cost
of the 1least <cost solution), 278 nodes were explored and 32
feasible solutions were obtained using the APEX MIP code. The
computer time wused wae 18.3 seconds on the CDC Cyber 175 at the
University of Illinois. The plant locations and the total cost
of each solution are listed in Table 3.11. All of these

solutione are feasible and acceptable with respect to the cost
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Table 3.11 Plant Locations and Total Annual Costs for
Alternatives Generated by APEX MIP Code

Annual Cost

Solution Plant Locations _ (81000)
1 (2, 5, 11, 14)*%, 8, 15 1917
2 (2, 5, 11, 14), 9, 15 1920
3 (2, 5, 11, 14), 8, 15 . 1924
4 (2, 5, 11, 14), 8, 10 1937
5 (2, 5, 11, 14), 3, 9, 15 1957
6 (2, 5, 11, 14), 8, 10 1938
7 (2, 5, 11, 14), 9, 10 ' 1941
8 (2, 5, 11, 14), 1, 8, 15 1948
9 (2, 5, 11, 14), 1, 9, 15 1950

10 (2, 5, 11, 14), 8, 9, 15 ' 1949
11 (2, 5, 11, 14), 3, 8, 15 1953
12 (2, 5, 11, 14), 8, 9, 10 1969
13 (2, 5, 11, 14), 1, 8, 15 1956
14 (2, 5, 11, 14), 3, 8, 15 1960
15 (2, 5, 11, 14), 1, 8, 10 ' 1969
16 (2, 5, 11, 14), 1, 9, 10 1970
17 (2, 5, 11, 14), 3, 8, 10 1973
18 (2, 5, 11, 14), 3, 8, 10 1974
19 (2, 5, 11, 14), 1, 3, 9, 15 1986
20 (2, 5, 11, 14), 3, 8, 9, 15 1985
21 (2, 5, 11, 14), 1, 8, 9, 10 2001
22 (2, 5, 11, 14), 1, 8, 10 1970
23 (2, 5, 11, 14), 1, 8, 9, 15 1981
24 (2, 5, 11, 14), 1, 3, 8, 15 1985
25 (2, 5, 11, 14), 3, 9, 10 1977
26 (2, 5, 11, 14), 1, 3, 8, 15 1992
27 (2, 5, 11, 14), 3, 8, 9, 10 2006
28 (2, 5, 11, 14), 1, 3, 9, 10 2006
29 (2, 5, 11, 14), 1, 3, 8, 9, 10 2037
30 (2, 5, 11, 14), 1, 3, 8, 10 2005
31 (2, 5, 11, 14), 1, 3, 8, 10 2006
32 (2, 5, 11, 14), 1, 3, 8, 9, 15 2017

% plants 2, 5, 11 and 14 must be in the solution because of
constraints

)
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objective; the highest cost is only 6.2% greater than the least

cost.

Among these 32 solutioms, there are eight pairs that ha#e exactly
the same plant locations but a different cost because of the
different capacities of_ some plants and interceptors. For
example, the difference between solutions 1 and 3 is that in
aolution 1 the waste flow originatihg from node 9 goes to plant
8, while in solution 3 thatlflov goes to plant 11. This same
difference occurs for the other pair of solutions with the same
plant locations where the cost difference is §7,000. In Table
3.11, if the cost difference between two solutions with the same
plant locations is $1.000. then the waste flow origiﬁating from
node 9 goes to plant 10 for the more costly alternative and to

plant 8 for the less costly alternative.,

The pairvise differences among these 32 slternatives, as measured
by the sum of different plant and interceptor capacities as well
as by the sum of different plant and interceptor locations, were
calculated, Then the pairwise differences were arranged so that
the least pairwise difference between a new solution and all
previous solutions decreases (or remains the same) as new
solutions are added. The plant and interceptor locations and the

cost for the first ten alternatives, using the differences as
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measured by the sum of plant and interceptor capacities, are

listed in Table 3,12.

The pairwise differences, as measured by the sum of different
plant and interceptor «capacities as well as by the sum of
different plant and interceptor locations for the ten
alternatives, are shown in Table 3.13. The least value in each
row is plotted in Figure 3,10. The difference as measured by the
sum of different plant and interceptor capacities, drops sharply
from 80 cfs for the second alternative to 40 cfs for the third
alternative, then it decreases slightly to 38 cfs for the next
alternative. After that, it drops to 24 <cfs for the fifth
alternative and then decreases smoothly to 9 cfs for the tenth
alternative. The differences among these ten alternatives, as
measured by the sum of different plant and interceptor locations,

shows roughly the same trend.

The configurations of the four most different alternatives
(alternatives 1, 2, 3, and 4) are shown in Figure 3.,11. All four
alternatives are the same with respect to facility locations that
serve sources 12, 13 and l4. Furthermore, interceptors 1-2 and
3~2 appear in each solution. Nevertheless, these four
alternatives appear to be different from one another. For

example, in addition to the four required plants (2, 5, 11, and

[
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Table 3.12 Plant and Interceptor Locations and Total Annual Costs
for Ten Alternatives Generated by the G&S Method

Annual Cost

Alternative Plant and Interceptor Locations . ($1000)
APl Plant (2, 5, 11, 14)*, 9, 10 1941
Inte, 1-2, 3-2, 4-3, 6-5, 7-8, 8-9, 12-14, 15-11,

13-14
AP2  Plant (2, 5, 11, 14), 1, 3, 8, 15 1992
Inte. 1-2, 3-2, 4-3, 7-1, 6-5, 9-10, 10-11, 12-14,
13-14
AP3  Plant (2, 5, 11, 14), 1, 3, 8, 10 2005
Inte. 1-2, 3-2, 4-3, 7-1, 6-5, 9-8, 12~14, 15-11,
13-14
AP4  Plant (2, 5, 11, 14), 3, 9, 15 1957
Inte. 1-2, 3-2, 4-3, 6-5, 7-8, 8-9, 10-11, 12-14,
13-14
AP5 Plant (2, 5, 11, 14), 8, 15 1917
Inte. 1-2, 3-2, 4-5, 6-5, 7-8, 9-8, 10-11, 12-14,
13-14
AP6 Plant (2, 5, 11, 14), 8, 10 1938
Inte. 1-2, 3-2, 4-5, 6-5, 7-8, 9-10, 12-14, 15-11,
13-14

AP7 Plant (2, 5, 11, 14), 3, 8, 9, 15 1985
Inte. 1-2, 3-2, 4-3, 6-5, 7-8, 10-11, 12-14, 13-14

AP8 Plant (2, 5, 11, 14), 1, 8, 9, 10 2001
Inte., 1-2, 3-2, 4-5, 7-1, 6-5, 12-14, 15~11, 13-14
9
3

10 2006

AP9 Plant (2, 5, 11, 14), 1, 3, 9,
’ 8-9’ 12-14, 15-'11’

Inte. 1-2, 3-2, 4-3, 7-1, 6~

13-14
AP10 Plant (2, 5, 11, 14), 1, 9, 15 1949
Inte, 1-2, 3-2, 4-5, 7-1, 6-5, 8-9, 10-11, 12-14,

* plants 2, 5, 11 and 14 must be in the solution because of
constraints
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Table 3.13 Differences among the Ten Alternatives Generated
by the G&S Method

Alternative

1 2 3 4 5 6 7 8 9 10
1 0
2 80 0

(14)*
3 40 52 0

(10) (6)

4 42 38 72 0
(7) (7)  (11)

(8) (8) 810) (7)

6 32 55 19 75 49 0
(4) (10) (8) (11)  (6)

7 65 16 48 23 14 51 0
(9) (5) (9) (2) (5) (9)

(5) (9) (5). (12) (9) (5) (10)

10 42 38 72 9 34 71 29 57 42 0

*¥* a (b)
a: measured by the sum of different plant and interceptor
capacities (cfs).
b: measured by the sum of different plant and interceptor
locations (unit); the addition or removal of any plant
or interceptor contributes 1 to the sum.
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14), alternative 1 locates plants at sources 9 and 10, while
alternative 2 locates plants at sources 1, 3, 8, and 15, The
difference between these two alternatives, however, is smaller
than the difference between the two most different aliernativee
obtained by the HSJ or the random generation method (see Figures

3.2 and 3.7).

The ten most different alternatives obtained wusing the sum of
different plant and interceptor locations as the criterion were
also examined. The ten alternatives were not the same, only six

alternatives, 1, 5, 7, 9, 26 and 28, appear in both sets, but the

‘differences among alternatives are comparable.

3.5 Generating Alternatives Using the Fuzzy HSJ Method
3.5.1 Overview

Since objective function values and constraints usually cannot be

precisely defined by formulations or numbers, a "fuzzy"
représentation of those objective function and constraint values
has been suggested for obtaining the optimal solution. For
example, when the HS8J method was used in Sectiom 3.2 to generate
alternatives, the cost objective was relaxed to $2,108,000 to

obtain maximally different alternatives. It is usually not easy
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to determine the proper 1level of relaxation for the cost
objective. If it is relaxed too much, large differences among
alternatives may be obtained, but all of them may have only
relatively fair performance with respect to the cost objective.
On the other hand, if it is relaxed too little, the alternatives
obtained will be good with respect to the cost objective, but
less differences among alternatives will be expected.
Furthermore, some constraints in the exact formulation may be too
restrictive or rigid; since the feasible space is too limited,

some good alternatives may be excluded.

In this section, the fuzzy concept is incorporated into the HSJ
approach to generate alternatives that are good and different.

The general procedure is described in Section 2.4.
3.5.2 Application of the Fuzzy HSJ Approach

An initial solution is obtained by solving the original MIP
formulation of the example problem. Before searching for an
alternative which is different from the first solution and good
with respect to the cost objective, a few assumptions, such as
the following, must be made. First the satisfaction level 1is
assumed to change linearly with respect to the value of cost and

surrogate difference, respectively. The satisfaction 1level is

[

¢
[
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1.0 if the surrogate difference (sum of decision variable values
in the objective function after optimizationi is 0 «cfs and
linearly decreases to 0 if the surrogate difference is 119 cfs.
Note that a value of zero for the surrogate difference ‘indicates
a completely different solution, The same, or a very similar
solution, is obtained if the sum of nonzero variables in the
initial solution is not reduﬁed at all, For the cost objective,
the_satisfaction level is 1.0 if ﬁhe cost is the same as that in
the optimal initial solution ($1,917,000) and decreases linearly
to 0 if the cost is $2,108,000. Second, it is assumed that the
objective is to maximize the minimum satisfaction level for
surrogate difference and cost, The formulation to be solved to
obtain the second alternative is :
Max 8
s.t. I X, + 1198 < 119 (3.2)
1eK 1 -
cost (X) + 191,000s < 2,108,000

original constraint set

Where K is a8 set of indicies of continuous variables that are
nonzero in the initial solution and cost (X) is the cost

objective function.

To ensure that a cost effective solution is obtained, the cost
function was also included in the objective function with a small

scaling factor &0 that it will not affect the 8 value in the



86

solution., The third and the following alternatives were obtained
by solving formulations similar to formulation 3.2 except that

the I X term includes the nonzero variables from all previous

i

solutions.,

As before, only the continuous variables associated with the
capacities of plants and interceptors were included in the
surrogate difference objective functién. Five alternatives were
obtained before all continuous decision variables were in the
solution. The plant and interceptor locations and the cost of
each alternative are shown in Table 3.14. The highest cost
(82,060,000 for FHSJ5) is omly 7.5% higher than the least «cost
($1,917,000 for FHSJ1). The number of plants increases from 6

for FHSJ1 to 8, 9, aud 10 for FHSJ2, FHSJ3, and FHSJI4,

respectively, then it decreases to 9 for FHSJ5. The number of

interceptors, however, tends to decrease. It starts with 9 ;

interceptors for FHSJ1, then it decreases to 7, 6, and 5 for
FH8J2, FH8J3, and FH8J4, respectively. Finally, it increases to
6 for FHSJS. This tendency was also observed for the
alternatives generated by the HSJ method, 88 discussed in Section

3.2.1.

Nt s [ [RE—
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Table 3.14 Satisfaction Levels, Plant and Interceptor Locations
and Annual Costs for the Alternatives Generated by
the Fuzzy HSJ Method

Satisfaction Annual Cost
Alter. Level Plant and Interceptor Locations ($1000)
FHSJ1 - Plant (2, 5, 11, 14)*, 8, 15 1917
Inte. 1-2, 3-2, 4-5, 6-5, 7-8, 9-8,
10-11, 12-14, 13-14
FHSJ2 .5153 Plant (2, 5, 11, 14), 1, 3, 9, 10 2010
Inte. 7-1, 4-3, 6-5, 8-9, 12-14, 13-14,

FHSJ3 .2924 Plant (2, 5, 11, 14), 3, 8, 10, 12, 15 2045
Inte. 1-2, 4-3, 6-5, 7-8, 9-10, 13-14

FHSJ4  .2479 Plant (2, 5, 11, 14), 1, 3, 8, 10, 13, 15 2052
Inte. 4-3, 7-1, 6-11, 9-8, 12-14

FHSJ5  .2378 Plant (2, 5, 11, 14), 3, 8, 9, 10, 15 2060
Inte. 1-2, 4-3, 6-5, 7-8, 12-9, 13-14

* plants 2, 5, 11 and 14 must be in the solution because of
constraints
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The configurations of these five alternatives are shown in Figure
3.12. It can be seen that alternatives 1, 2, 3, and 4 are quite
different. Alternative 5, however, is similar to alternative 3.
The difference between the ¢two 1is that the plant locaéed at
source 12 in alternative 3 shifts to source 9 in alternative 5

and that interceptor 9-10 in alternative 5 shifts to 12-9.

The differences among these five alternatives, as measured by the
sum of different ﬁlant and interceptor capacities and by the sum
of different locétions, are shown in Table 3.15. The least value
in each row by the first measure is plotted in Figure 3.13. The
difference, as measured by the sum of different capacities,
decreases approximately linearly from 118 cfs for FHSJ2 to 29 cfs
for FHSJ5. The difference as measured by the sum of different

locations, on the other hand, decreases sharply from 16 for FHSJ2

to 10 for FHSJ3. Affer that, it remains at 10 for FHSJ4, then it

drops to 4 for FHSJS5. Both methods of measuring difference
indicate a decrease 1in differences among alternatives when
additional alternatives are generated. The same effect was also
observed with the HSJ approach. The satisfaction.level shown 1in
Table 3.14 also indicates the decrease in differences and can be

used to stop the generation process.

—
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Table 3.15 Differences among the Five Alternatives Generated by

the Fuzzy HSJ Method

Alternative FHSJ1

s W G e G O S B G G G S S G G S G S G Gy G G G - — S o S S G G S S N G S G G = Gy S G G G G S SR G G G G N G A G G G G o=

88(12)

57(10)
72(10)

0
58(12)
29(4)

0

62(12)

e e A = S G - G = TE G S Sm S S G G R G G G R G G G G S G G G S e G G G G GE N W G e D G e S e W Em =

FHSJ1 0
FHSJ2 118(16)%
FHSJ3 93(10)
FHSJ4 90(14)
FHSJ5 96 (10)

* a (b)

a: measured by the sum of different plant and 1nterceptor

capacities (cfs).

b: measured by the sum of different plant and interceptor
locatiops (unit); the addition or removal of any plant
or interceptor contributes 1 to the sum.

——e

S, R
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The differences as measured by the sum of different plant and
interceptor capacities among the alternatives generated by the
HSJ method with 5% and 10% relaxation of the least cost are also
shown in Figure 3.13. It can be seen fhat the second a1te£native
generated by the Fuzzy approach is the same as that generated by
HSJ5% and thus has the same difference. But it has less
difference and a better objective function value than that
génerated in the HSJ10% case. The third alternative, however,
has more difference than the alternatives generated by HSJ5% and
HSJ10Z. Its objective function value 1is better than that in

HSJ10% case but worse than that in the HSJ5% case. While HSJ5%

and HSJ10%Z generated four and three different altermnatives, .

respectively, Fuzzy HSJ generated five. The number of

alternatives that can be generated, however, is dependent on the

specified satisfaction level. As another experiment, the

satisfaction level of the cost objective was changed so that

s=1.0 for $1,917,000 and s=0 for $2,300,000; then only three

alternatives were obtained.

3.5.3 Summary

The Fuzzy HSJ approach generated several good and different
alternatives for this example problem. The difference plot is

similar to that in the HSJ approach. However, there is a balance

e

[SS———
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between the surrogate difference and the cost target for the
fuzzy approach. Depending on the satisfaction 1e§e1 specified,
the fuzzy approach can locate a solution with more differeﬁce at
the expense of cost or choose a less costly solution .at the

expense of surrogate difference.
3.6 Comparisons among the HSJ, Random, and BBS Methods

Three criteria were used to compare the three methods for
generating planning alternatives for the example wastewater
treatment system‘planning problem. They are performance with
respect to the objective function vaiue included in the model
(total annual cost), | differences among the alternatives

generated, and computational requirements,.

3.6.1 Comparisons Based on the Performance with Respect to the

Objective Function Value

The t&tal annual cost for each set of alternatives generated by
the HSJ, random, and BBS methods are shown in Table 3.16. The
first set of alternatives (HSJ10) was obtained by the HSJ method
with the cost target set at $2,108,000 (10%Z higher than the
optimal cost). The second and the third sets of alternatives

were obtained by the HSJ method with the cost target set at
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Table 3.16 Total Annual Costs for the Alternatives Generated

by the HSJ, Random and G&S Methods

No. of Annual Cost for Each

Method Alter.

Alternative ($1000)

—— S G G S . e B G G M G G e G S S S G S G - S G S S G e B G S G S D M G G G G G G G S - G S

HSJ10 3 1917, 2076, 2108
HSJS 4 1917, 2010, 2013,
HSJ20 4 1917, 2076, 2125
Random 10 1991, 1997, 1997,

1988, 1946, 1953,

G&S 10 1941, 1992, 2005,
» 1938, 1985, 2001,

2013

1943,
1976

1917,
1949

Mean Sta. Dev.
($1000)
2034 102
1988 48
2039 109
1980 25
1969 32

- S o - - Y G G G I G R En R M S e S MR e e e e M S M S m s S e R M B G e G e D M W e e e S
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$2,013,000 and $2,300,000, respectively (5% and 20%, respectively
higher than the 1least cost). The initial splufion for each of
the three sets is the same -- the minimal cost solution of the
original model. The fourth and fifth sets of alternatiQes were
obtained by the random and BBS methods, respectively, with the
cost target set at $2,108,000. The alternatives generated by the
BBS method have the lowest average annual cost, followed by the
alternatives generated by the r#ndom'method. Even though thg
cost target for these two sets of alternatives is $2,108,000, all
alternatives generated have a lower cost. The alternatives
generated by the HSJ method with the same cost target have a
higher average annual cost ($2,034,000) and higher standard
deviation ($102,000). The high variation is caused by the 1low
cost of the initial solution and the high cosf (close to the
target value) for the other solutions. The average annual cost

for the alternatives generated by the HSJ method with a cost

.target of $2,300,000 (HSJ20) is only slightly higher than that

for HSJ10. The average annual <cost for the alternatives
generated by the HSJ method with cost target of $2,013,000 (HSJ5)
is not much higher than that obtained in the random and BBS
cases. Since all alternatives generated are within the cost
target specified and have similar costs, they all are considered
good with respect to the cost objective. The better performance
of the random and BBS methods occurs because the cost target is

not binding, a problem dependent situation.
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3.6.2 Comparisons Based on the Differences among Alternatives

Difference, as measured by the sum of different plant and
interceptor capacities (absolute sum of differences Setween
continuous decision varisbles), was used as a criteriom for
comparing the sets of alternatives. This criterion is by no
means perfect and the result should be interpreted judgemently.,
The ‘differences among alternatives for each set of alternatives
are plotted in Fighre 3.14. The order of the alternatives has
been rea:ranged'for.the alterﬁatives generated by the random and
BBS methods so that the'largest difference wili'appear first and
ﬁhe difference among alternatives decreases monotonically. HSJ20
is excluded because the difference profile of HSJ20 is similar to

HSJ10.

From Figure 3.l4, it can be seen that alternatives generated by'

the HSJ method with cost target of $2,108,000 (HSJ10) have the
latgest difference for the second and the third alternatives,
However, the HSJ iterations stop after that because all variables
have been in the solution ét least once, and no more solutions
can be obtained without restarting the procedure. The difference
among alternatives generated by the random method is smaller than
that of HSJ10 for the second alternative, and is only slightly

smaller for the third alternative. The random method, however,
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continues to generate moré alternatives with considerable
differences. The alternatives generated by the HSJ method with
cost target of $2,013,000 (HSJS5) have slightly smaller
differences than those of the random method for the second,.third
and fourth alternatives. After that, the HSJ iterations stop.
The BBS also generates a large number of alternatives. ' However,
the differences among alternatives are considerably smaller than

those of the random method.

Note that additional solutions can be generated wusing the HSJ
approach by using a different initial solution. For this example
problem, ten solutions were obtained wusing three initial
solutions (obtained " from the branch and bound tree). The

difference profile of these ten solutions is also plotted in

Figure 3.14,. Even though higher differences among the HSJ

solutions is observed for the second, third, fifth and eighth‘

alternatives, the overall 1level of differences among these HSJ

alternatives is similar to that of the random method.

It is interesting to observe that the three methods yield sets of
alternatives that are different in different ways. For the
example problem, the HSJ method tends to generate alternatives
that differ in the degree of centralization. The random method

tends to generate alternatives with a similar number of plants
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and interceptors, but with these facilities in different
locations. The BBS method tends to generate alterﬁatives in which
some part of the wastewater system is constant but combined witﬁ
different arrangements of the remainder of the system. .Aqy of
these types of difference might be useful in exposing the range

of alternatives and previously unmodeled objectives.
3.6.3 Comparisons Based on Computational Effort

For the HSJ method, the initial solution is obtaimed by 'solving
the original formulation 3.1 using the APEX MIP code. For each
additional alternative, the nonzero <continuous variables in
previous. solutions muét be identified, the original data file
must be modified accordingly, and then the modified file must be
solved, The modification step <can be accomplished either by
directly changing the original data file if the problem size 1is
small (e.g., the size of this example problem) or by creating a
revised file using a simple FORTRAN program which uses a previous
éolution as input. The revised file <can then be directly
provided to the APEX code as another input file. When the
problem size 1is large, the 1latter approach is much more
efficient. The computer time required for <creating a revised
file 1is trivial. The computer time used to solve the revised

problem to obtain a new alternative for the example problem was
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approximately the same as that wused to solve the original
problem, from 1.16 to 6.14 computer seconds with an average of
2.72 seconds on the CDC Cyber 175 at the University of Illinois.
The computer time for a HSJ solution with a relatively tighp cost
target constraint was usually higher than that for a HSJ solution
with a more relaxed «constraint. For example, the average
computer ;ime for a HSJ solution with cost target of $2,300,060
was 1.54 seconds, while for a solution with <cost target of

$2,013,000 it was 4.45 seconds.

For the random genération method, no initial solution is needed,
and each alternative is generated independently. However, the
minimal cost solution wouid probably be desirable for use as a
reference in specifing the <cost target. To generate an
alternative, A set of decision variables must be generated, and
then the appropriate modification of the original data file caﬁ
be made. The modified file is then solved. The generation of
the decison variables and the modification of the original file
can be accomplished at the same time by using a simple FORTRAN
program to create a revised file. The revised file and the
original data file are then used as two input files to the APEX
code to obtain an alternative. The computer time to create a
revised file is trivial. The computer execution time to obtain
an alternative for the example problem varied from 1.59 to 4.68

seconds with an average of 2.36 seconds.
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The BBS method, as implemented for the example problem, was to
use the APEX code to generate many solutions within the specified
range of the least cost solution, and then a screening process
was used to select several solutions that are siénificantly
different from one another. The cost target was specified at
$2,108,000, and 32 solutions were obtained. Ten alternatives
were selected by the screening process. The computer execution
time wused was 18.3 seconds for generating the 32 solutions. The
secreening process employed a FORTRAN program to calculate the
difference between each pair of solutions and then to.tablulate
all solutions in an order such that the largest difference
appears first and the differences decrease monotonically. Since
ten solutions were sélected, the computer time required for each
solution is <calculated as 18.3/10=1.83 seconds. The computer
time required to calculate the differences among alternatives and
then to tabulate the alternatives is dependent on the number of
decision variables in the problem and the total number of
solutions generated. For this example problem, the execution

time was only 0.2 seconds.

In summary, the average computer time required for generating one
solution is shown in Table 3.17. The average computer time is
smallest for the BBS method, followed by the random method, and

the HSJ method. However, the difference is not very significant
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Table 3.17 Computer Time Used for Generating One Alternative
Using the HSJ, Random and G&S Methods

Mathematical Program Requirement :
Method Range © Mean Other Requirements

HSJ 1.16 - 6.14% 2.72 create revised file .2
Random 1.59 - 4.68 2.36 create revised file .2
G&S' 1.83 1.83 screening .2

* geconds on CDC Cyber 175 computer at the University of Illinois
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for this example problem. The total computing requirement,
however, wére quite modest for each technique for this example
problem; in general, computing requirements are expectedv to be
highly problem dependent. For larger MIP problems, the computing

requirement may be substantial or may even not converge.



104

CHAPTER 4

FINAL REMARKS

This study was designed to provide an assessment of the pot;ntial
use of several modeling to generate alternatives (MGA) methods --
the HSJ, random, BBS, andrFuzzy HSJ methods =-- for generating
good and differenmt planning alternatives. Since an optimization
model is not a perfect representation of a complex real world
planning problem,' the optimal solution to .the model is not
necessarily the ‘best solution to the problem. The oﬁtimal
solution will prbvide limited insight and mcannot illustrate
characteristics of other good solutions to help the analyst or
decision maker 1learn aBout the problem and identify overlooked

issues. A premise of this work is that optimization models can

be wused, in some <cases, in a planning process to generate

altetpatives that aré good and different so that the analyst and
decision maker <can examine the range of choice to gain insight
and understanding. An example wastewater system planning problem
formulated by wusing a mixed integer programming model has been

used to examine the four generation methods.

The HS8J method can be used to generate good alternmatives that are

significantly different from one another. The 1level of

differences among alternatives is higher for the first several
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alternatives and decreases for additional alternatives. Also,
the number of alternatives generated is depepdeﬁt on the targets
epecified, If the targets are stringent, more alternatives can
be obtsined, but the level of differences among ‘them is

decreased.

The difference between the the LP and MIP formulations is that
there are two sets of decision variables in the MIP formulation:
the continuous variables and the zero-one variables. Each set
can be used alone to drive the HSJ iteratioms. For the MIP
example problem, the use of continuous variables appeared to be
more effective in generating different alternatives than the use
of zero-one variables. The use of the continuous. variables
associated with plant capacities alome, however, was less
effective than the use of all of the continuous variables, The
maximization of zero variables appearing in all previous
sdlutions is conceptually the.same as the minimization of nonzero
variables, but less effective because it tends to include

unnecessary variables in the solution,

Since the total number of decision variables is fixed, the number
of alternatives that can be generated by the HSJ wmethod is also
fixed if only one initial solution is used. For the MIP example

problem, only three to four alternatives were generated by the
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HSJ method. To increase the number of alternatives, the HSJ
objective function <can be modified to include only some of the
nonzero variables (those variables with large values) in previous
solutions. O0f course, additional élternatives can algo be
obtained by using another initial solution as illustrated 1in
Section 3.6.2. There are other variations-  of the HSJ method.
For example, weights could be applied to selected variables, and
constraints can be wused to retain the attractive parts of a

certain alternative.

The random generation method developed in this Qtudy can be used
to generate good and different alternatives efficiently. It
generated many alternatives with considerable differences among

them. It 1is possible that two alternatives randomly generated

are exactly the same even though the decision variables rahdomly

specified may be different. The possibility of generating the
same élternative is larger for a small planning problem thah for
a large problem. Since the random method generates alternatives
independently, when a solution is duplicated, it can be ignored

and the process can be continued.

There are many potential variations of the proposed random
generation method. For example, the sum of randomly generated

decision variables could be minimized instead of maximized. This
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approach has the advantage of excluding unnecessary variables
from the solution when applied to MIP formulatidns, as discussed
in Section 3.3.3. Also, the decision variables could be.divided
into categories, and a certain number of decision variaﬁles could
be randomly generated from each category. Furthermore a weight

could be attached to each variable.

The BBS method is a two-step method. It uses the APEX code to
generate many good solutions, then it uses a screening process to
select those solutions that are different from each other. Thus,
the differences among alternatives depend“on how many solutions
are generated. Since the APEX code does not generate all
feasible solutions within the specified cost target, however, it
cannot be expected that maximally different alternatives will Dbe

provided.

Tﬁe example results show that BBS method <can provide many
different alternatives, but that the level of differences among
alternatives is less thanm in the HSJ and random cases,
However,as discussed in Section 3.6.2, these three methods yield
sets of alternatives that are different in different ways. It is
assumed that higher levels of differences among alternatives may
offer more insight to the analyst or decision makers. In some

cases, however, alternatives with higher levels of differences
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among them using a8 particular method of measuring differences may
not necessarily provide more insight to a certain amnalyst or
decision maker than alternatives with lower levels of

differences.

The Fuzzy HSJ method, & modification of the HSJ method, 1is
designed to increase ‘the flexibiligy of the HSJ approach. The
rebults_show that the alternatives generated by the Fuzgzy HSJ
method may be different from those generated by the HSJ method,
but the differences among the alternatives have the same géneral
trend as in the HSJ case. The wmethod is more flexible in
specifying the targets but requires more information from the
decision maker. The fuzzy approach can also be incorxrporated into

other generation methods.

There is no generallj applicable criteriomn for the number of
different alternatives that should be provided to the analyst or
decision maker. Five to ten different alternatives, for example,
may be reasonable. The analyst and the decision maker can
examine these alternatives to look for insights and
understanding, and additional alternatives can be generated as

desired.
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Even though some specific issues related to the MGA methods
examined in this study (e.g., levels of tﬁrgets, number of
decision variables specified in the SORD function inv random
method) would vary for differenf applications, thé general
procedures outlined here can be applied to other planning
problems formulated as LP or MIP models. It is not possible,
howvever, to generalize about outcomes. For some problems, for
example, there may be very few alternatives that can be generated
within specified»targeta, for other problems, there may be many
alternativea,- but they may not be very different. Nevetthelees,
such insights ﬁay enhance understanding of the particular problem
at hand., Further experiments to examinme the general behavior of
these methods and the.applicatioﬁ of these methods to problems
modeled using other mathematical formulations (e.g., dynamic

programming) are needed.

The results of this study suggest that the four MGA methods can
be used in a complex water resources planning process to generate
planning alternatives that are good and different, The results
are strengthened somewhat by the fact that realistic data were
used for these example problems. Through MGA approaches, the use
of an optimization model in a planning frocess is no longer
limited to obtaining the "optimal" solution or a few "second

best" solutions (or parametric analyses). Using MGA methods, the
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decision maker or the analyst can examine various solutions to
gain insight and understanding and to find overlooked issues. If
an unmodeled objective is found and quantified, it may be
possible to include it in the model. Then the generation p?ocess

can be started again.

Since the human mind is.usually preoccupied with past experience
and intuition, it may be difficult for a human to synthesize
innovative solutioﬁs, especially for a complex planning problem.
Optiﬁization models,A however, can be used to gemnerate différent
or unexpected‘solufions in a defined decision space. A wide
range of such solutions may spark the imagination of the ﬁnalyst
or decision wmaker, and aid the analyst in considering overlooked

issues of the problem and in synthesizing better solutions. A

decision based on this information may be better than a decision

made by examining 'only the "optimal™ solutionm or a few second

best solutions.

Note that the generation of good and different alternatives 1is
not designed to replace the generation of noninferior solutions
or sensitivity analysis, but to provide additional imsight. The
MGA approaches are not applicable to problems which can be
clearly defined by amn optimization model. Furthermore, no

methods wused in this study cam be guaranteed to find the set of

[—;
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the most different solutions in a defined decision space because
differences cannot be perfectly defined and the generation

process 1s limited.

The common disadvantage of the quantitative methods of measuring
differences among alternatives wused in this study is that they
cannot measure how far, in the spatial sense, the changes are
made. Even though any measurement of differences among
alternatives may be problem dependent and imperfect, further
exploration in this area is needed. Further research on how to
present these different solutions to the dééision maker so that
he can perceive the differences among these alternatives and find

them useful in the decision making process is also needed.
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