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SYNOPSIS 

Urban public services are a significant component of the overall 

urban system. Increasing urbanization is, to some extent, a manifesta- 

tion of man's attempt to reap the maximum obtainable benefits from the 

collective supply of these services. One common characteristic of these 

services is that they are composed of both nodal and network components: 

the first representing the production and processing functions, the 

second representing the delivery or collection functions. In spite of 

the importance of these services, very little is known about the nature 

of their cost functions. This is especially true regarding their net- 

work components. 

This study addresses the question of understanding the nature of 

the cost functions of a service network with a public works content. 

The provision of wastewater collection services is used to demonstrate 

how technological relationships and principles of micro-economics can 

be used to generate normative cost functions for such service networks. 

In doing so, the study explores both the demand for the service, as 

measured by parameters of urban development, and the supply of the 

service, as determined by the basic technology of providing it. 

A wastewater collection network is first broken down into its 

basic component: the sewerline or link satisfying a linear demand. 

The economics of sewerline design are investigated and the application 

of optimization concepts is explored. Inputs and outputs of the 

wastewater collection process are identified. A sewerline cost equa- 

tion is empirically obtained from actual bid information. 

The concept of optimization is then explored with respect to 

overall collection networks. Present design methodology and recent 

developments in both network layout and design are explored. The 

problem of the optimal choice of a mix of diameters and slopes for a 

given network, and a specific set of economic and technological inputs, 

is fitted to a separable convex programming framework, for which a 



global optimal solution can be obtained using existing commercial 

computer programs. 

The nature of an areally distributed demand is dependent on the 

type of urban development generating it. Population, area and density 

are basic parameters for the measurement of urban settlements. Follow- 

ing a review of relevant research methodologies and concepts, a 

160-Acre experimental module is presented as a basis for the development 

of normative network cost models. Different population densities and 

subdivision patterns can be superimposed on this module in a contl-olled 

environment. 

Minimum-cost wastewater collection networks were designed and 

their costs estimated for these theoretical modules. Relationships 

between cost, area, population and density were developed. Using 

these relationships together with treatment plant cost information 

developed by others, such items as the tradeoffs between network and 

nodal costs, the minimum-cost size of total service area, and the 

overall service cost functions are explored. 

The implications of the different methodologies and models pre- 

sented in this study are finally presented. The concepts of optimiz- 

ing the design of a technologically based urban service by rigorously 

incorporating cost as an input to the design process is stressed. 

Such conceptual frameworks as the development of service cost functions 

as tools of the urban systems planning process, the use of normative 

cost relationships as guides in system design, the understanding of the 

cost implications of urban land-use patterns, the derivation of sound 

cost allocation formulae and the economic determination of optimal 

system planning horizons are outlined. 



URBAN PUBLIC SEFJICES 

Urban p u b l i c  s e r v i c e  form a  s e t  of  u rban  sub-sys tems which h a s  a  
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marked i n f l u e n c e  on every  o t h e r  sub-sys tem i n  t h e  c i t y .  These s e r v i c e s  

a l s o  a f f e c t  t h e  l i f e  of eve ry  u r b a n i t e .  T h e i r  e x i s t e n c e  i s  an o u t s t a n d i n g  

m a n i f e s t a t i o n  of t h e  economics of human c o n c e n t r a t i o n .  A t t e n t i o n  i s  p r e -  

s e n t l y  b e i n g  c e n t e r e d  on t h e  development of t h e o r i e s  which de te rmine  t h e  

optimum l o c a t i o n  of t h e s e  s e r v i c e s  on t h e  b a s i s  of economic and s o c i a l  

p r i n c i p l e s  and o b j e c t i v e s .  

Urban p u b l i c  s e r v i c e s  s h a r e  many common c h a r a c t e r i s t i c s .  Of most 

i n t e r e s t  h e r e  i s  t h e i r  compos i t ion  of  a  combina t ion  of  n o d a l  ( p o i n t s ,  

v e r t i c e s )  and network components. Each of  t h e s e  components h a s  i t s  own . 

c o s t  f u n c t i o n ,  which i n  t u r n  c o n t r i b u t e s  t o  t h e  o v e r a l l  c o s t  f u n c t i o n  of  

t h e  t o t a l  s e r v i c e .  T h i s  g e n e r a l  f u n c t i o n  d e t e r m i n e s  t h e  optimum l o c a t i o n  

of  t h e  f a c i l i t i e s  concerned.  The s p a t i a l  a s p e c t s  of t h e s e  c o s t  f u n c t i o n s  

a r e  s t i l l  f a r  from be ing  unders tood ,  and many of t h e  d e t e r m i n a n t s  of 

t h e s e  f u n c t i o n s  a r e  n o t  y e t  even q u a n t i f i a b l e .  A g r a s p  of t h e s e  a s p e c t s  
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i s  a  p r e r e q u i s i t e  t o  t h e  development of any t h e o r y  of p u b l i c  f a c i l i t y  

l o c a t i o n .  

The c o s t  f u n c t i o n s  of noda l  f a c i l i t i e s  a r e  e a s i e r  t o  deve lop  t h a n  

t h o s e  f o r  network f a c i l i t i e s .  They b e a r  more of a  resemblance t o  indus -  

t r i a l  p r o d u c t i o n  f u n c t i o n s  w i t h  which t h e  economist  i s  f a m i l i a r .  The 

c o s t  of  t h e s e  f a c i l i t i e s  u s u a l l y  d e c r e a s e  w i t h  t h e  i n c r e a s e  i n  t h e  quan- 

t i t y  of  s e r v i c e  produced,  and t h u s  w i t h  t h e  a r e a  and d e n s i t y  of t h e  

f a c i l i t y ' s  s e r v i c e  a r e a ,  u n t i l  a  c e r t a i n  l i m i t  i s  reached .  T h i s  i s  i n  

d i r e c t  comparison w i t h  t h e  c a s e  of  i n t e r n a l  r e t u r n s  t o  s c a l e  i n  c l a s s i c a l  

micro-economic t h e o r y .  

Network c o s t s  o f f e r  a  more d i f f i c u l t  s i t u a t i o n ,  e s p e c i a l l y  s i n c e  

t h e y  a r e  a f f e c t e d  by t h e  form and s t r u c t u r e  o f  t h e  a r e a s  be ing  s e r v e d .  

Economies o f  s c a l e  may be o f f s e t  by diseconomies  o f  d i s p e r s i o n ,  agglomera- 

t i o n ,  o r  s p a t i a l  ar rangement  and p a t t e r n .  Each c i t y  h a s  d i f f e r e n t  s p a t i a l  

c h a r a c t e r i s t i c s ,  d e s c r i b i n g  i t s  shape ,  s i z e ,  p a t t e r n  and d e n s i t y  d i s t r i -  

b u t i o n .  Unless  t h e s e  v a r i a t i o n s  can  be measured i n  some g e n e r a l  way, no 

o v e r a l l  t h e o r y  c a n  be mean ingfu l ly  developed.  It i s  t o  t h e  problems 

invo lved  i n  t h e  development of t h e s e  s p a t i a l  c o s t  f u n c t i o n s  t h a t  t h i s  

r e s e a r c h  b a ~ i c a l l y  a d d r e s s e s  i t s e l f .  



It i s  f e l t ,  however, t h a t  an a t tempt  t o  s tudy t h e s e  problems i n  t he  

contex t  of a  c e r t a i n  publ ic  s e r v i c e  would have i t s  payoffs  and advantages.  

It would develop a  framework and a  methodology which could be extended 

t o  o t h e r  s e r v i c e s .  It w i l l  a l s o  s e t  t h e  s t a g e  f o r  f i n d i n g  the  answers 

t o  some of t h e  ques t i ons  which r e l a t e  t o  t he  s p e c i f i c  s e r v i c e  t o  be 

s tud i ed .  We have chosen t o  s tudy a  publ ic  works o r i e n t e d  s e r v i c e ,  namely 

municipal wastewater c o l l e c t i o n  and d i s p o s a l .  It i s  our b e l i e f  t h a t  t h e  

b a s i c  approach suggested h e r e i n  can be f r u i t f u l l y  app l i ed  t o  o t h e r  systems 

of t h e  urban phys ica l  i n f r a s t r u c t u r e ,  such a s  e l e c t r i c i t y ,  gas ,  water ,  

t e lephones ,  urban communication systems,  and t h e  l i k e .  

The planning and growth of our  urban se t t l emen t s  today,  i s  t o  a  

l a r g e  e x t e n t ,  cons t ra ined  by e x i s t i n g  technologies  of u t i l i t i e s  and 

s e r v i c e s .  We must understand and analyze t h e  c o s t s  of e x i s t i n g  methods 

of supplying t h e s e  s e r v i c e s ,  i n  o rde r  t o  be a b l e  t o  eva lua t e  any break- 

through i n  technology which may be forthcoming. 

Wastewater Co l l ec t i on  Systems 

A survey of e x i s t i n g  l i t e r a t u r e  shows t h a t  empir ica l  s t u d i e s  of t h e  

s t a t i s t i c a l  type have been used t o  s tudy t h e  c o s t  behavior  of sewage 

t rea tment  p l a n t s  of d i f f e r e n t  s i z e s  and types .  Some empi r i ca l  r e l a t i o n -  

s h i p s  have been developed t o  e s t ima te  t h e  c o s t s  of sewer l i n e s ,  but  no 

at tempt  i s  made t o  understand how t h e  c o s t  of t he se  l i n e s  behave when 

they  a r e  combined t o  form networks se rv ing  popula t ions  of given s p a t i a l  

c h a r a c t e r i s t i c s .  An ex t ens ive  l i t e r a t u r e  review i n d i c a t e s  t h a t  no 

s t u d i e s  e x i s t  r e l a t i n g  t h e  t e c h n i c a l ,  s p a t i a l ,  and economic a spec t s  of 

wastewater c o l l e c t i o n  networks. The absence of such s t u d i e s  precludes 

t h e  p o s s i b i l i t y  of developing any gene ra l  sewerage c o s t  model, which 

i n t e g r a t e s  t h e  var ious  components of t h e  system i n t o  a  u n i f i e d  framework. 

A s tudy  by t h e  Business and Defense Serv ices  Adminis t ra t ion  e s t ima te s  

t h a t  $37.4 b i l l i o n  w i l l  be needed by t h e  year  1980 f o r  t h e  cons t ruc t ion  of 
2 

f a c i l i t i e s  f o r  t h e  c o l l e c t i o n  and t rea tment  of municipal wastes .  The 

United S t a t e s  Publ ic  Heal th  Service e s t ima te s  t h a t  $700 m i l l i o n  w i l l  be 

needed annual ly  during t h e  s e v e n t i e s .  The Fede ra l  Water P o l l u t i o n  Control  



Admin i s t r a t i on ' s  e s t i m a t e s  range between $26 and $29 b i l l i o n  over t h e  

coming f i v e  y e a r s .  Whatever t h e  a c t u a l  f i g u r e s  may be,  t h e r e  i s  no 

doubt t h a t  they w i l l  be of such magnitude a s  t o  form a  major d r a i n  on 

t h e  publ ic  budget,  and thus  a f f e c t  t h e  pockets  of m i l l i o n s  of i n d i v i d u a l s  

There i s  no ques t i on  t h a t  e f f i c i e n t  use of funds i s  c a l l e d  f o r  i n  o rde r  

t o  ach ieve  t h e  h i g h e s t  l e v e l s  of c o s t  e f f e c t i v e n e s s  and management 

e f f i c i e n c y .  

The above e s t ima te s  a r e  a  r e f l e c t i o n  of t h e  i n c r e a s i n g  r a t e s  a t  

which c i t i e s  grow. The c o n s t r u c t i o n  of new suburbs,  s a t e l l i t e s ,  and 

new towns emphasizes t h e  need f o r  e f f i c i e n c y  i n  t h e  planning of new 

municipal  f a c i l i t i e s ,  t he  management and ex t ens ion  of e x i s t i n g  f a c i l i -  

t i e s ,  a s  wel l  a s  t h e  development of new technologies  f o r  meeting t h e  i n -  

c r ea s ing  demand a t  lower c o s t s .  

The Business and Defense Serv ice  Adminis t ra t ion  e s t i m a t e s  a r e  

broken down among t h e  two b a s i c  components of municipal  wastewater d i s -  

posa l  systems: c o l l e c t i o n  and t rea tment ,  a s  w e l l  a s  among t h e  d i f f e r e n t  

, t ypes  of municipal s e r v i c e  demands. The breakdown shows t h a t  about 

63 percent  of t h e  t o t a l  p ro jec ted  c a p i t a l  o u t l a y s  a r e  a l l o c a t e d  t o  

c o l l e c t i o n  networks. Lawrence e s t ima te s  t h a t  t h e  average c a p i t a l  i n -  

vestment c o s t  f o r  an o v e r a l l  sewerage system i s  about $200 per c a p i t a ,  

t h r e e  q u a r t e r s  of which r e p r e s e n t s  c o l l e c t i o n  system c o s t s ,  and one 
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q u a r t e r  covers  t h e  c o s t s  of t rea tment  and d i s p o s a l  f a c i l i t i e s .  

I n  s p i t e  of t h e  l a r g e  c a p i t a l  o u t l a y s  which a r e  involved i n  t h e  

network component of municipal wastewater d i s p o s a l  p r o j e c t s ,  t h e  methods 

of des ign  remain very i n t u i t i v e ,  and no r e a l  a t tempt  i s  gene ra l l y  made 

t o  genera te  and eva lua t e  a l t e r n a t i v e  s o l u t i o n s  and des igns .  It i s  only 

r e c e n t l y  t h a t  t h e  r e l a t i o n s h i p  between sewerage systems and community 

development began t o  be app rec i a t ed ,  and t h e i r  s tudy wi th in  a  systems 

framework thought  o f .  A b e t t e r  understanding of e x i s t i n g  systems w i l l  

h e l p  improve t h e i r  des ign  methodologies and t h u s  t h e i r  t o t a l  s o c i a l  

e f f e c t i v e n e s s .  

E x i s t i n g  technology, t oge the r  wi th  t h e  h i s t o r i c ,  economic, and i n -  

s t i t u t i o n a l  c o n s t r a i n t s  a s soc i a t ed  wi th  i t ,  remain t o  be  taken  f o r  

g ran ted ,  and no r e a l  e f f o r t  i s  being undertaken t o  e v a l u a t e  t h e  b e n e f i t s  



that may accrue from the introduction of new technologies, and thus from the 

relaxation of some of these constraints. 

Empirical work has shown definite economies of scale in the nodal 

components of wastewater disposal systems, such as Treatment Plants and 
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Pumping Stations. Very little, however, is known about the cost func- 

tion of the collection network. A lack of understanding of the nature of 

this function will naturally stand as a block in the way of intelligently 

evaluating alternative system designs or urban forms. Unless these func- 

tions are clearly defined and understood, it will not be possible to 

evaluate the impact of technological innovations and breakthroughs, 

which are long overdue in a service which has undergone no basic change 

in centuries. 

While some work is being undertaken on locating treatment facilities 

on a regional basis, the determination of the number, size and location 

of treatment plants in a metropolitan area remains subject to rules of 
5 

thumb and intuition. Naturally, no method of analysis could be developed 

, until the cost behavior of networks is completely understood. 

If we hope to be able to replace some of the present intuitive judg- 

ments in municipal utility design by well-grounded scientific and economic 

criteria, a step must be taken in the direction of understanding these net- 

work cost functions within the context of the existing and proposed varieties 

of urban forms, patterns and structures. 

Objectives of the Study 

It is recognized that this research will not answer all the 

questions in the area of wastewater collection and disposal costs, let 

alone public service costs and the economics of population concentration 

in general. The research results reported herein will answer some 

of these questions, keeping in sight the ultimate objective of being able 

to integrate the cost characteristics of the various components of a system 

into a unified cost model. This model, when developed, will make possible 

the selection of the site or the family of sites which will minimize the 

cost of municipal sewage disposal in the metropolitan area. It is also 

hoped that this research will privide an insight into the trade-offs 

between network and nodal sizes and costs, which will be useful in the 
-.  



analysis of the feasibility of forthcoming technological innovations. 

The basic objectives of this study are to explore the nature of the 

cost determinants of wastewater collection lines and networks, to investi- 

gate the methodology and economics of network design, to explore the cost 

behavior of these networks under different conditions of urban form and 

structure and to rigorously develop a framework for a predictive cost 

model for wastewater collection facilities. 

The cost function of an urban public service is the summation of the 

cost functions of the network and the nodal components of the service. 

Developing these functions and understanding their implications, can 

prove to be an important tool in the analysis, formulation and implemen- 

tation of urban public policy. The basic hypothesis central to this re- 

search is that the direct unit network cost (annual and capital) of a 

certain service is a function of the technology of the service as well as 

of the characteristics of the urban area to be served. Other costs are 

incurred and benefits derived as a result of the interaction of the 

system in question with other systems in the city. 



SEWERLINE COSTS 

The c a p i t a l  c o s t  of i n s t a l l i n g  a  wastewater c o l l e c t i o n  system 

i s  dependent on a  number of f a c t o r s .  This  chapter  w i l l  a t tempt  t o  i n -  

t roduce some of t he se  v a r i a b l e s  and t o  i s o l a t e  and analyze t h e  most i m -  

p o r t a n t  determinants  of t h e s e  c o s t s .  

A wastewater c o l l e c t i o n  system i s  made up of a  number of phys i ca l  

components, namely: p i p e l i n e s ,  appurtenances and pumping s t a t i o n s .  

Where t he  topography i s  f avo rab l e ,  a  simple g r a v i t y  system can  be b u i l t , .  

and no pumping c o s t s  w i l l  be i ncu r r ed .  I n  such ca se s  t h e  c o n s t r u c t i o n  

c o s t  w i l l  be t o t a l l y  made up of p i p e l i n e  and appurtenance c o s t s .  

The output  of a  sewer system i s  dependent on f a c t o r s  i n t e r n a l  t o  

e x i s t i n g  sewer flow technology. These f a c t o r s  a r e  determined by t h e  

flow process  func t ions  of open-channel hyd rau l i c s .  The output  of 

" i n s t a l l e d  flow capac i ty"  of t h e  system i s  a  func t ion  of t h e  shape, 

s i z e ,  m a t e r i a l  and s lope  of t h e  d i f f e r e n t  p i p e l i n e  s e c t i o n s  which 

combine t o  make up t h e  t o t a l  network. It i s  measured i n  terms of t h e  

number of u n i t s  of flow per u n i t  of t ime.  The i n p u t s  necessary t o  

produce t h e s e  ou tputs  i nc lude  cons t ruc t ion ,  maintenance and ope ra t i on ,  

f i nanc ing ,  and engineer ing i n p u t s .  The f i r s t  of t he se  i tems i s  by 

f a r  t h e  most important .  It i s  c l o s e l y  r e l a t e d  t o  flow and l eng th ,  

while  t h e  o t h e r  i tems a r e  independent of both of t he se  measures of 

ou tpu t .  Cons t ruc t ion  i n p u t s  u s u a l l y  determine both f i nanc ing  and 

engineer ing  c o s t s .  Financing c o s t s  a r e  a l s o  a  func t ion  of t h e  magni- 

t ude  and complexity of t h e  p r o j e c t .  Maintenance and ope ra t i ng  c o s t s  

i n  a  g r a v i t y  f low system a r e  of a  smal l  magnitude and a r e  no t  r e -  

l a t e d  t o  t h e  q u a n t i t y  of flow. I s a r d  and Coughlin have not  allowed 
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f o r  any such c o s t s  i n  t h e i r  s tudy .  Others have es t imated  annual  

sewer maintenance c o s t s  a t  a  f i xed  amount per mi le  of p ipe .  
7 

The fol lowing d i scus s ion  w i l l  e s t a b l i s h  a  genera l ized  mathematical 

model t o  e s t ima te  t h e  i npu t s  ( c o s t s )  needed t o  produce a  wastewater 

c o l l e c t i o n  s e r v i c e  of a  c e r t a i n  ou tput  ( c a p a c i t y ) .  I npu t s  and ou tpu t s  



w i l l  be r e l a t e d  on t h e  b a s i s  of t e c h n o l o g i c a l  c o n s t r u c t i o n  and f l o w  

f u n c t i o n s  i n  o r d e r  t o  o b t a i n  an  i n s i g h t  i n t o  t h e  c o s t s  of producing 

t h i s  u rban  s e r v i c e .  

C o n s t r u c t i o n  C o s t s  

A s  mentioned above,  t h e  l a r g e s t  s i n g l e  component of t h e  c o n s t r u c -  

t i o n  c o s t s o f  a  sewerage network i s  t h e  c o s t  o f  s u p p l y i n g  and i n s t a l l i n g  

t h e  d i f f e r e n t  p i p e  s e c t i o n s  which make up t h e  network.  A s t u d y  based 

on average  n a t i o n a l  f i g u r e s  e s t i m a t e s  t h a t  85  p e r c e n t  of t h e  c o s t  of 

g r a v i t y  sewer sys tems i s  devoted t o  e x c a v a t i o n ,  p ipe  supp ly  and i n s t a l l -  

a t i o n .  The remaining 15 p e r c e n t  c o v e r s  t h e  c o s t  of manholes.8 These 

e s t i m a t e s  a r e  based on t h e  most common method of c o n s t r u c t i o n ,  namely 

t h a t  of l a y i n g  a  p i p e  i n  p re -excava ted  open-cut  t r e n c h e s .  

An a n a l y s i s  of t h e  c o s t  of t h e  e x c a v a t i o n  and p i p e  components can 

form t h e  b a s i s  of p r e d i c t i v e  model f o r  p i p e l i n e  c o s t s .  C o n s t r u c t i o n  

c o s t  e s t i m a t e s  were p repared  on t h e  b a s i s  of  f i g u r e s  o b t a i n e d  f o r  t h e  
9  

, 1970 CE Cost  Guide f o r  p i p e s  w i t h  d i a m e t e r s  r ang ing  between 8  and 24 

i n c h e s  i n  d i a m e t e r ,  p laced  i n  d i f f e r e n t  t y p e s  of  s o i l  a t  d e p t h s  of up 

t o  20 f e e t .  Data were c o l l e c t e d  f o r  f i v e  sewerage c o n t r a c t s  f o r  which 

b i d s  have been p repared  by c o n t r a c t o r s .  U n i t  c o s t s  a s  e s t i m a t e d  by 

t h e  e n g i n e e r s ,  t h e  lowest  b i d d e r ,  t h e  second lowest  b i d d e r , a n d  t h e  

h i g h e s t  b i d d e r  were o b t a i n e d  f o r  each of  t h e  c o n t r a c t s  ( e x c l u d i n g  two 

f o r  which t h e r e  were on ly  two b i d d e r s ) .  Toge the r  w i t h  u n i t  c o s t s ,  

t h e  r e s p e c t i v e  d i a m e t e r s  and dep ths  of t h e  p i p e s  were o b t a i n e d  f o r  a  

t o t a l  of  18 c a s e s .  Sample s i z e s  ranged between 22 and 68.  Three  of 

t h e  c o n t r a c t s  s p e c i f i e d  c o n c r e t e  p i p e s  w h i l e  t h e  o t h e r  two s p e c i f i e d  

v i t r i f i e d  c l a y  p i p e s .  No i n f o r m a t i o n  on t h e  p r o p e r t i e s  of t h e  s o i l  

was a v a i l a b l e .  

Simple m u l t i p l e  r e g r e s s i o n  e q u a t i o n s  u t i l i z i n g  t h e  i n t e r n a l  d i a m e t e r  

of t h e  p ipe  (D) and t h e  average  dep th  of  e x c a v a t i o n  ( X ) ,  bo th  i n  f e e t ,  

a s  t h e  independent  v a r i a b l e ,  and c o s t  p e r  f o o t  l e n g t h  (C) i n  d o l l a r s ,  

were developed f o r  each s u b s e t  of t h e  d a t a  d e s c r i b e d  above.  A l l  d a t a  



groups  f i t  t h e  g e n e r a l  form 

These  e q u a t i o n s  were t e s t e d  f o r  s i g n i f i c a n c e  u s i n g  t h e  F - t e s t .  

The n u l l  h y p o t h e s i s  b  = c  = 0  was t e s t e d  a g a i n s t  t h e  a l t e r n a t i v e  

h y p o t h e s i s  t h a t  b  a n d / o r  c  a r e  n o t  e q u a l  t o  z e r o .  The s t u d e n t s '  

t - d i s t r i b u t i o n  was examined f o r  each  of t h e  r e g r e s s i o n  c o e f f i c i e n t s  

a t  t h e  5 p e r  c e n t  l e v e l  of s i g n i f i c a n c e .  Observed v a l u e s  of t ex- 

ceeded t h e  c r i t i c a l  v a l u e  f o r  bo th  v a r i a b l e s  i n  a l l  c a s e s .  

Each c o n s t r u c t i o n  company h a s  a  somewhat d i f f e r e n t  b i d d i n g  pro-  

c e d u r e  and a  s p e c i a l  b i d d i n g  s t r a t e g y  which depends on such f a c t o r s  

a s  i t s  work l o a d ,  growth and p r o f i t  o b j e c t i v e s ,  and p r o b a b i l i t i e s  of 

award i n  t h e  f a c e  of e x i s t i n g  c o m p e t i t i o n .  B idders  may p r e s e n t  un- 

ba lanced  b i d s  i n  o r d e r  t o  c a p i t a l i z e  on e x p e c t a t i o n s  of changes i n  

q u a n t i t i e s .  They may b i d  h i g h  on i t e m s  which a r e  t o  be completed 

e a r l y  i n  t h e  c o n t r a c t  i n  o r d e r  t o  o b t a i n  l a r g e r  payments a t  t h e  
10 

beg inn ing  of t h e  work and t h u s  reduce  t h e i r  need f o r  borrowed c a p i t a l .  

I n  s p i t e  of t h e s e  and o t h e r  causes  of p o s s i b l e  i n c o n s i s t e n c y  i n  b i d  

p r i c i n g ,  t h e  s t r u c t u r a l  form of t h e  g e n e r a l  model sugges ted  above 

h a s  e x h i b i t e d  a  h i g h  degree  of d e p e n d a b i l i t y  i n  p r e d i c t i n g  t h e  v a l u e s  

of t h e  b i d  u n i t  p r i c e s  i n  a l l  18 c a s e s  f o r  which r e g r e s s i o n  c u r v e s  of 

t h e  u n i t  c o s t s  on t h e  s q u a r e s  of bo th  t h e  d i a m e t e r s  and t h e  d e p t h s  

were o b t a i n e d .  These r e s u l t s  a r e  shown i n  T a b l e  1. The v a l u e s  of 

t h e  c o n s t a n t s  and t h e  r e g r e s s i o n  c o e f f i c i e n t s  v a r y  a p p r e c i a b l y ,  

r e f l e c t i n g  d i f f e r e n t  l o c a l  c o n d i t i o n s  and b i d d i n g  s t r a t e g i e s .  The 

c o e f f i c i e n t  of t h e  d iamete r  term assumes a  c o n s i s t e n t l y  l a r g e r  v a l u e  

t h a n  t h a t  of t h e  t r e n c h  dep th  t e rm.  The c o n s i s t e n c y  of t h e  s t r u c t u r a l  

form of t h e  model u n d e r l i n e s  t h e  p o s s i b i l i t y  of a p p l y i n g  a  new s e t  of 

t o o l s  t o  t h e  d e s i g n ,  e s t i m a t i n g ,  b i d d i n g  and c o n t r a c t  management 

a s p e c t s  of t h e  wastewater  c o l l e c t i o n  s e r v i c e .  



TABLE 1 

Cost  Models f o r  Concre te  and V i t r i f i e d  Clay P ipes  ik 
Laid i n  Open-Cut Trenches ,  Based on A c t u a l  Bid P r i c e s  

D and X a r e  i n  f e e t ;  C i s  i n  $ / f t .  

See n o t e s  on fo l lowing  page. 



TABLE 1 (Cont . ) 

-1. 

T h i s  a n a l y s i s  i s  based on d a t a  o b t a i n e d  from t h e  r e c o r d s  of Gree ley  and 
Hansen Engineers ,  Chicago. 

** 
Bid numbers i n d i c a t e :  (1)  Engineers '  E s t i m a t e ,  (2) Low Bidder ,  ( 3 )  Second 
Lowest B idder ,  and (4) Highes t  Bidder .  



T e c h n o l o g i c a l  R e l a t i o n s h i p s  

The b a s i c  form of t h e  p r o c e s s  f u n c t i o n  of f l o w  i n  a n  open-channel  

g r a v i t y  p i p e  i s  

Q = V A  (2) 

where Q  i s  t h e  t o t a l  o u t p u t  of t h e  p ipe  i n  

c u b i c  f e e t  p e r  second,  

V i s  t h e  mean v e l o c i t y  of f l o w  when t h e  

p i p e  i s  runn ing  f u l l ,  i n  f e e t  pe r  second,  

A i s  t h e  c r o s s - s e c t i o n a l  a r e a  of t h e  p i p e  

i n  s q u a r e  f e e t .  

The v e l o c i t y  of  f low i n  a  f u l l  sewer p i p e  i s  u s u a l l y  l i m i t e d  by 

s t a n d a r d s  t o  a  minimum of  2 f p s  ( f e e t  p e r  second) and a  maximum of  10 

f p s .  A v e l o c i t y  of 2 f p s  when runn ing  f u l l  e n s u r e s  t h a t  t h e  v e l o c i t y  

would b e  1 f p s  when t h e  sewer i s  l e s s  t h a n  17 p e r c e n t  f u l l .  T h i s  l a t t e r  

, v e l o c i t y ,  c a l l e d  t h e  s e l f - c l e a n s i n g  v e l o c i t y ,  i s  t h e  minimum needed t o  
11 

p r e v e n t  s e d i m e n t a t i o n  of s l u d g e  and l i g h t  m i n e r a l  m a t t e r .  The upper  

l i m i t  i s  f i x e d  t o  avo id  e x c e s s i v e  e r o s i o n  of  t h e  i n v e r t  of t h e  p i p e .  

The v e l o c i t y  of f low i s  a  f u n c t i o n  of t h e  roughness  of  t h e  p i p e  ( t h e  

rougher  t h e  p i p e  t h e  s lower  t h e  f l o w ) ,  of  t h e  s l o p e  of  t h e  p i p e  ( t h e  

s t e e p e r  t h e  s l o p e  t h e  f a s t e r  t h e  f l o w ) ,  and of  i t s  shape and s i z e .  

Many fo rmulae  e x i s t  f o r  t h e  d e t e r m i n a t i o n  of  t h e  v e l o c i t y  of open- 
12 

channe l  f low.  One commonly used r e l a t i o n s h i p  i s  t h e  "Manning Formula." 

T h i s  lo rmula  i s  

where V i s  t h e  mean v e l o c i t y  of f l o w  i n  f p s ,  

R i s  t h e  h y d r a u l i c  r a d i u s  of t h e  p i p e  i n  f e e t .  

I t  e q u a l s  t h e  a r e a  of t h e  p i p e  d i v i d e d  by i t s  

we t ted  p e r i m e t e r .  T h i s  i s  a  measure of b o t h  

t h e  p i p e ' s  shape and s i z e .  

S i s  t h e  s l o p e  of t h e  p i p e  i n  f e e t l f t . ,  

and n  i s  t h e  roughness  c o e f f i c i e n t  of t h e  p i p e .  



Equa t ion  ( 2 )  and ( 3 )  above c a n  be r e w r i t t e n  a s  

2 
Q = k l D  V (4 )  

where D i s  t h e  i n t e r n a l  (nominal)  d i a m e t e r  of t h e  p i p e ,  and k  and 
1 

k  a r e  f a c t o r s  which depend on t h e  shape  of  t h e  p i p e  and t h e  d e s i g n  
2  

s t a n d a r d s  b e i n g  used .  I n  t h e  c a s e  of a  c i r c u l a r  p i p e  runn ing  f u l l ,  

t h e  h y d r a u l i c  r a d i u s  i s  114 of t h e  p i p e  d i a m e t e r ,  k l  = n14, and 

k  = 0.59. I f  t h e  p i p e  i s  des igned  f o r  l e s s  t h a n  f u l l  f low,  i f  i t s  ! 

2  
shape i s  o t h e r  t h a n  c i r c u l a r ,  o r  i f  m e t r i c  u n i t s  a r e  u s e d ,  t h e s e  con- 

s t a n t s  must be  a d j u s t e d  a c c o r d i n g l y .  

Combining t h e  above two e q u a t i o n s ,  t h e  f o l l o w i n g  terms a r e  ob- 

t a i n e d  f o r  b o t h  t h e  c a p a c i t y  and t h e  d i a m e t e r :  

and ( n  )318 318 S-3/16 D =  - 
k ,  k,, 

Q 

The Q u a n t i t y  of Flow 

The t o t a l  q u a n t i t y  of  f low f o r  which a  s e w e r l i n e  i s  d e s i g n e d ,  

i s  based on t h e  peak expec ted  demand which i s  t o  be  accomodated by 

t h a t  l i n e .  I n  a  predominant ly  r e s i d e n t i a l  a r e a ,  demand i s  measured 

by t h e  number of  people  be ing  s e r v e d  and by t h e  peak expec ted  volume 

o f  was tewate r  g e n e r a t e d  by each pe r son .  

The a v e r a g e  volume of pe r  c a p i t a  was tewate r  g e n e r a t i o n  i s  u s u a l l y  

s l i g h t l y  l e s s  t h a n  t h e  a v e r a g e  q u a n t i t y  of w a t e r  s u p p l i e d  t o  t h e  

i n d i v i d u a l .  T h i s  i s  due t o  l o s s e s  r e s u l t i n g  from l e a k a g e ,  lawn s p r i n k -  

l i n g ,  and s i m i l a r  u s e s .  Both average  w a t e r  consumption f i g u r e s  and 

was tewate r  g e n e r a t i o n  r a t e s  must be  e s t i m a t e d  on t h e  b a s i s  of t h e i r  

u l t i m a t e  e x p e c t a t i o n s  d u r i n g  t h e  d e s i g n  p e r i o d  of  t h e  sys tem i n  

q u e s t i o n .  

The volume of  f low v a r i e s  c o n t i r ~ u o u s l y  th roughout  t h e  day.  It 

i s  a l s o  expec ted  t o  v a r y  by t h e  day of t h e  week and t h e  month of  t h e  
-. 



yea r .  Each l i n e  must be designed t o  handle  t h e  expected peak flow. 

The r a t i o  of t h e  peak flow t o  t h e  average d a i l y  flow i s  s i g n i f i c a n t l y  

a f f e c t e d  by t h e  s i z e  of t h e  l i n e ,  i . e . ,  t h e  t o t a l  number of people 

i t  se rves .  A s  a  l i n e  g e t s  l a r g e r  and se rves  a  l a r g e r  number of 

gene ra to r s ,  t h e  p r o b a b i l i t y  t h a t  t h e  peak flows of t h e s e  gene ra to r s  

c0incid.e i s  reduced, and so  i s  t h e  r a t i o  of t h e  peak t o  t h e  average 

d a i l y  f lows.  

Many methods e x i s t  f o r  t h e  e s t ima t ion  of t h i s  r a t i o .  They vary  

from simply fol lowing r egu la to ry  s tandards  a s  t o  t h e  minimum accep tab l e  

des ign  f low r a t e s  f o r  each type of l i n e  t o  t h e  development of curves  

and equa t ions ,  r e l a t i n g  t h e  peak and average f lows.  A l l  t h e  mathemati- 

c a l  models which have been developed e x h i b i t  an i nve r se  exponent ia l  

r e l a t i o n s h i p  between t h e  r a t i o  of t h e  two flows and t h e  populat ion 

being served .  The a c t u a l  parameters used va ry ,  and records  of e x i s t -  

i n g  systems a r e  r a r e l y  complete enough t o  permit making good e s t ima te s  

of t h e  s a n i t a r y  sewage component of t h e  peak flow. 

A simple form of t h i s  r e l a t i o n s h i p  has  been used by Babbi t .  
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He sugges ts  t h a t  

where M i s  t h e  r a t i o  of t h e  maximum flow t o  t h e  average 

d a i l y  flow, 

and P i s  t h e  populat ion served i n  thousands. 

The r a t i o  given above i s  no t  t o  exceed 5  nor t o  be l e s s  than 1.5.  

Th i s  l i m i t s  t h e  use of t h e  above model t o  populat ion f i g u r e s  ranging 

from one thousand t o  412 thousand people.  Lines se rv ing  l a r g e r  demands 

must be designed f o r  a  peak flow equa l  t o  1 .5  t imes t h e  average d a i l y  

flow. 



Equa t ion  (2-8) may be r e w r i t t e n  a s  

where Q and Qav r e p r e s e n t  t h e  peak and average  d a i l y  f lows  i n  c u b i c  

f e e t  per second, r e s p e c t i v e l y ;  and f  r e p r e s e n t s  t h e  average  f low i n  

g a l l o n s  pe r  c a p i t a  per  day.  

The above e q u a t i o n  can  b e  used t o  w r i t e  a l l  t h e  above p rocess  

f u n c t i o n s  i n  terms of average  d a i l y  f low,  which can  be d i r e c t l y  r e -  

l a t e d  t o ,  and c a l c u l a t e d  from, t h e  number of people  b e i n g  se rved .  

For  ve ry  l a r g e  (more t h a n  421 thousand persons )  and f o r  v e r y  smal l  

( l e s s  than  one thousand persons)  p o p u l a t i o n s ,  a  l i n e a r  r e l a t i o n s h i p  

would e x i s t  between Q and Q a s  mentioned above. 
av  ' 

1. While t h e  v a l u e  of t h e  average  d a i l y  pe r  c a p i t a  f low w i l l  v a r y  by 

l o c a l e ,  c l i m a t e ,  socio-economic c h a r a c t e r i s t i c s  and l i v i n g  p a t t e r n s  of 

peop le ,  a  f i g u r e  of 100 g a l l o n s  per  c a p i t a  pe r  day i s  a  l i k e l y  average  

f i g u r e .  For  t h e  sake  of s i m p l i c i t y ,  t h i s  f i g u r e  w i l l  be  used i n  sub- 

sequen t  d i s c u s s i o n s  of t h e  c o s t  f u n c t i o n s .  T h i s ,  of  c o u r s e ,  does  n o t  

r educe  t h e  g e n e r a l i t y  of t h e  model, s i n c e  any f i g u r e  can a c t u a l l y  be 

used .  Equa t ion  ( 8 ~ )  c a n  t h u s  be reduced t o  t h e  form 

f o r  1 5 P _< 412 

Q = 1.5Qav f o r  P r 412 (9b) 

Q = 5Qav f o r  P I 1 ( 9 ~ )  

where Q ,  Q and P a r e  a s  d e f i n e d  above.  
av  
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Cost Functions and Sewer Design 

The relationship between the above input and output functions and 

their implications on sewer design will be investigated in this section. 

It will be shown that while one single mathematical model can be used in 

estimating the cost of a network link on the basis of physical construc- 

tion inputs, no such single continuous function can be developed to re- 

late physical inputs and flow outputs. This is basically due to two 

design limitations, namely the limitation on a minimum size pipe and 

the limitation on allowable velocity ranges. The incorporation of these 

constraints into the flow functions will result in a noncontinuous cost 

function, composed of four discrete portions. Each portion is associated 

with a certain range of flows. On the basis of the above analysis, it 

is possible to identify the different ranges over which these cost sub- 

functions are defined. It is also possible to determine the mathematical 

structure and the economic properties of these sub-functions. 

All the cost functions discussed in this chapter are long-range. 
# 

They reflect the situation where a planner or designer can select among 

the total variety of feasible choices available to him that one which 

minimizes his total cost. The long run total cost curves derived below 

will be designated (TC) and will determine the cost of transporting a 

quantity of flow of Q cubic feet per second, a distance of L feet. Unit 

and marginal costs can be derived from the total cost function by divid- 

ing it by Q and calculating its slope, respectively. 

From Eqs. (1) and (7) above, the general form of the total cost 

function can be derived: 

So long as the value of the exponent of Q is less than unity in the 

total cost function, and negative in the unit cost function, there are 

economies of scale in the construction of the facility in question. This 

indicates that as the total cost of the facility increases with size, its 

unit cost decreases. 



The usual sewer design problem is one in which the demand to be sat- 

isfied is given. It is usually exogenously determined on the basis of 

the spatial distribution of the population to be served in terms of both 

volume and flow Q and length of transmission L. The designer is faced 

with the problem of choosing the slope and diameter of the pipe in such 

a way as to satisfy the demand at the minimum cost, while satisfying 

the design standards of pipe diameter and velocity of flow. The choice 

of a larger diameter will allow a flatter slope and thus a trading-off 

of excavation costs for pipe costs. The extent of this trade-off will ' 

depend on the ratio of the coefficients b and c in Eq. (1) above. 

Since this is a case of predetermined flow, the choice of slope auto- 

matically determines the diameter. The development and calibration of 

the basic cost equation (1) above prior to the undertaking of actual 

design or estimating activities is imperative, if a minimum cost design 

is desired. It is also evident that in a situation where a certain 

demand Q is to satisfied, the minimization of the cost per unit of Q 

will result in the overall most economical solution, as will the mini- 

mization of the total cost function. 

Consider the design of a sewerline in an area having level terrain. 

Let E and E be the upstream and downstream depths of the sewerline 
1 2 

to be designed, respectively. The upstream depth is usually known so 

that the average depth of excavation will be E + SL/2. The slope S 
1 

is defined as (E - E1)/2. Substituting this value into Eq. (10) 2 
above, expanding, rearranging and dropping the negligible term of the 

square of the slope, yields: 

An optimal sewerline design can be obtained by minimizing this 

cost subject to technological constraints on diameter and allowable 

ranges of velocity. This results in a series of cost functions which 

apply at different quantities of flow. 
14 



Equation 2-11 shows that cost basically increases at a decreasing 

rate as the quantity of flow increases, while it increases at an in- 

creasing rate as the length increases. This implies that decreasing 

unit costs are realized by increasing the quantity of flow, while the 

opposite is true when the service area is increased, and the line is 

lengthened. l5 The "volume" and "distance" effects on the cost of 

sewer lines, and on most public utility lines for that matter, pull in 

opposite directions. The "volume effect" indicates decreasing unit 

costs with increasing total demand. The "distance effect'' indicates 

increasing costs with decreasing density of demand. 



NETWORK DESIGN 

The previous chapter  has presented an  empi r i ca l  and t h e o r e t i c a l  

framework f o r  the  s tudy  of the  economics of sewer l i n e  des ign .  A 

s e r i e s  of mathematical models have been developed t o  e s t i m a t e  the  

c o s t  of cons t ruc t ing  a  wastewater c o l l e c t i o n  l i n e ,  p rovid ing  f o r  

d i f f e r e n t  ranges of l i n e a r l y  d i s t r i b u t e d  demands. The i n t e g r a t i o n  

of a  l a r g e  number of l i n e s  o r  " l inks"  i n t o  a  network s t r u c t u r e  which 

se rves  a  demand of complex a r e a  s p a t i a l  d i s t r i b u t i o n  adds new dimen- 

s ions  t o  the  c o s t  and performance func t ions  suggested above. This 

i s  the  case  i n  r e a l - l i f e  urban s i t u a t i o n s  t o  which t h i s  chap te r  

w i l l  address  i t s e l f .  

The t r a d e o f f s  between the  va r ious  components of sewer l ine  des ign  

a r e  no t  e x p l i c i t l y  incorporated i n t o  t h e  process  of des ign ing  waste- 
1 

water  c o l l e c t i o n  l i n e s  o r  networks a t  t he  p re sen t  time. They a r e  only 

i n d i r e c t l y  considered a s  an  i npu t  t o  the  des ign  process  through the  

experience and engineer ing  judgment of the  des igne r .  The parameters 

of t he  sewer l ine  c o s t  func t ions  der ived  i n  t he  previous chap te r  a r e  a  

necessary  i npu t  i n t o  t he  des ign  of complete sewer networks. A t  the  

p re sen t  t ime, a t tempts  t o  produce economical network des igns  a r e  a t  

b e s t  l im i t ed  t o  t he  genera t ion  and eva lua t ion  of a  very small  number 

of a l t e r n a t i v e  s o l u t i o n s .  Time-consuming and c o s t l y  des ign  and c o s t -  

e s t i m a t i n g  techniques l i m i t  t he  f e a s i b i l i t y  of t e s t i n g  a  l a r g e  number 

of p o s s i b l e  s o l u t i o n s .  

The p re sen t  methodology of sewer system design c o n s i s t s  of th ree-  

i n t e r r e l a t e d  processes :  t he  s e l e c t i o n  of a  t rea tment  o r  d i sposa l  s i t e  

o r  s i t e s  (sometimes r e f e r r e d  t o  as  s inks  or  r o o t s ) ,  t h e  design of a  

system layout  and t h e  choice of a  s lope  and diameter combination f o r  

each l i n k  i n  t he  network. ' The s e l e c t i o n  of t h e  number and l o c a t i o n  

of s inks  i s  cons t ra ined  by the  a v a i l a b i l i t y  and c o s t  of l and ,  t h e  lo- 



c a t i o n  of such u l t ima te  d i sposa l  f a c i l i t i e s  as  a  body of water ,  the 

t e r r a i n ,  and t h e  t r a d e o f f s  between system and t reatment  c o s t s .  The 

design of t he  system layout  i s  u sua l ly  s e l e c t e d  i n  such a  manner a s  

t o  serve  each e x i s t i n g  and f u t u r e  land-use through an e a s i l y  acces s ib l e  

sewer l ine .  Lines a r e  u sua l ly  loca ted  i n  t he  right-of-way of the  s t r e e t  

system. Gravi ty flow i s  gene ra l ly  d e s i r a b l e ,  and normally fol lows the  

n a t u r a l  s lopes  of the  t e r r a i n .  The maximum q u a n t i t i e s  of flow i n  d i f -  

f e r e n t  s e l e c t i o n s  of the  network a r e  es t imated  on the  b a s i s  of f u t u r e  

land-use water consumption and socio-economic f o r e c a s t s .  The s lope 

and diameter of each l i n k  i n  t he  network a r e  chosen from s tandard  ava i l -  

ab le  alignment c h a r t s  (nomographs). This  choice i s  made cons i s t en t  w i th  

s tandard  l i m i t a t i o n s  on allowable ranges of v e l o c i t i e s  and on minimum 

conduit  diameter .  It  i s  a l s o  ad jus ted  t o  conform t o  t h e  commercially 

a v a i l a b l e  d i s c r e t e  pipe s i z e s .  

These t h r e e  processes  of design de f ine  t h e  two main s e t s  of choices  

w i th in  which a l t e r n a t i v e  so lu t ions  t o  the  sewer design problem o f f e r  
, 

themselves.  The f i r s t  s e t  of choices  c o n s i s t s  of two-dimensional loca- 

t i o n a l  choices:  i t  determines the  l o c a t i o n  of each l i n k  i n  t he  network 

and the  d i r e c t i o n  of flow i n  t h a t  l i n k .  The second s e t  of choices  de- 

f i n e s  t he  s i z e s  of t h e  d i f f e r e n t  components of t he  system and t h e i r  1.0- 

c a t i o n  i n  t h e  t h i r d  dimension of urban phys ica l  space: depth.  

A n  overwhelming number of a l t e r n a t i v e  s o l u t i o n s  e x i s t  when d i f f e r e n t  

combinations of t he  o v e r a l l  s e t s  of choices  a r e  considered.  The designer  

i n t u i t i v e l y  d i sca rds  a l t e r n a t i v e s  which a r e  obviously dominated, such as  

t h e  case  of flow aga ins t  n a t u r a l  s lopes  toward an upstream loca ted  s i n k .  

He does n o t ,  however possess  a  simple and formal methodology f o r  compar- 

ing marginal a l t e r n a t i v e s .  Nor does he possess  t h e  a n a l y t i c a l  t o o l s  f o r  

genera t ing  an "optimalt '  o r  "minimum-cost" s o l u t i o n .  No simple and econo- 

mica l  method f o r  t he  genera t ion  of a  "good" o r  "near-optimal " so lu t ion  

and f o r  e s t ima t ing  i t s  cos t  e x i s t s .  P a r t i a l  s o l u t i o n s  toward the  op t i -  

miza t ion  of each of t he  l a s t  two design processes  discussed above have 

been suggested,  but  no unique and comprehensive answer i s  a t  hand. 



This  chapter  o u t l i n e s  a s o l u t i o n  t o  t h e  problems of achieving a 

"good" o r  'hear -opt imal t t  design.  The method presented  h e r e i n  i s  se- 

q u e n t i a l  i n  t h e  sense t h a t  it s t a r t s  by assuming t h a t  a network layout  

e x i s t s  and then f i n d s  t h e  cos t  of t h e  most economical design of t h i s  

layout .  , Once a simple and economical design and e s t ima t ing  procedure 

i s  a v a i l a b l e ,  t h e  eva lua t ion  of a number of a l t e r n a t i v e  f e a s i b l e  network 

layouts  and s i n k  loca t ions  becomes poss ib l e .  The p r a c t i c a l  aspec ts  of 

t h e  method a r e  s t r e s s e d ,  and every e f f o r t  i s  made t o  adapt i t  t o  e x i s t -  

ing  and e a s i l y  acces s ib l e  computer sof t-ware.  

Network Layout 

Sewer networks a r e  man's s imula t ion  of n a t u r a l  drainage and runoff  

systems. The network r ep resen ta t ion  of both of t hese  systems has t h e  

gene ra l  form known as  a " f i n i t e - r o o t e d  t r e e .  " l7 This  i s  a network which 

i s  cha rac t e r i zed  by having no c i r c u i t s  o r  c losed  loops wi th in  i t .  Sewer 

networks, however, d i f f e r  from n a t u r a l  drainage networks i n  t h a t  they 

a re  def ined  over an e s i s t i n g  o r  proposed s t r e e t  p a t t e r n ,  which can be 

r ep re sen ted  by a h ighly  connected graph wi th  a l a r g e  number of loops or  

c i r c u i t s .  The sewer t r e e  must span each and every l i n k  i n  t h e  connected 

s t r e e t  network i n  order  t o  supply complete s e r v i c e  t o  t h e  a r e a  being 

sewered. A sewer t r e e  has  two types  of junc t ions :  i n t e r n a l  and e x t e r n a l .  

An i n t e r n a l  junc t ion  (or  node) i s  one a t  which two o r  more branches 

( l i n k s ,  edges,  o r  a r c s )  meet. An e x t e r n a l  node i s  one from which only 

one l i n k  emanates. Both sewer and n a t u r a l  drainage t r e e s  have t h e  common 

c h a r a c t e r i s t i c  of flowing from a number of sources  i n t o  one s ink .  A s  a 

r e s u l t ,  while  many l i n k s  may be flowing i n t o  a node, only one l i n k  w i l l  

flow out  of i t .  This  c h a r a c t e r i s t i c  e l imina te s  t he  need f o r  des igna t ing  

l i n k s  by t h e  double subsc r ip t  X which i s  used i n  t h e  f a m i l i a r  t r ans -  
i j '  

p o r t a t i o n  problem.18 One subsc r ip t  s u f f i c e s  t o  denote both t h e  node and 

i t s  downstream l i n k .  



Exis t ing  l i t e r a t u r e  on sewer design o f f e r s  very few guidel ines  

f o r  the  economical layout of networks. These guidel ines  commonly 

include d e t a i l e d  desc r ip t ions  of the p re fe r red  loca t ion  of sewer l i n e s  

i n  r e l a t i o n  t o  o ther  u t i l i t i e s  i n  the  publ ic  right-of-way, and sugges- 

t i o n s  r e l a t i n g  t o  the  general  d i r e c t i o n s  of flow and the  loca t ion  and 

spacing of manholes.' Hardenbergh makes some more d e f i n i t e  suggest ions 

regarding network layouts:  

I n  planning the  layout fo r  a  sewerage system, i t  i s  not  
poss ib le  t o  follow r i g i d l y  any f ixed  procedure. However, 
a f t e r  the genera l  map of the area  t o  be sewered has been s tudied ,  
i t  w i l l  u sua l ly  be found t h a t  one or  two r a t h e r  typ ica l  layouts ,  
or  a  combination of these  layouts ,  can be r e a d i l y  adapted t o  s u i t  
t he  topographic f ea tu res .  The bes t  grades fo r  the  main sewers 
w i l l  u sua l ly  be obtained when those sewers follow the  na tu ra l  
drainage channels i n  a  general  way. But the  e n t i r e  system cannot 
always be l a i d  out t o  conform s o l e l y  t o  topography. 

The two fundamental layouts  on which the  plans for  most 
sewerage systems a re  based may be termed the  perpendicular layout 
and the  fan layout .  E i the r  of these  layouts  may requ i re  the  in- ' 
s t a l l a t i o n  of an in t e rcep t ing  sewer. 2 0 

The two layouts  suggested above a r e  shown i n  Fig.l ,Hardenbergh 

makes no fu r the r  suggest ions as  t o  how t o  choose e i t h e r  of these  systems, 

o r ,  once chosen, how t o  ass ign  l i n k s  of var ious  orders  t o  s t r e e t s .  This 

remains sub jec t  t o  the  judgment and experience of the  designer .  A s  w i l l  

be seen i n  Chapter V,  these may not  be very s i g n i f i c a n t  mat ters  i n  a  

regular  g r i d  s t r e e t  pa t t e rn .  They do, however, assume more complex dimen- 

s ions  as  the bas ic  s t r e e t  p a t t e r n  becomes l e s s  regular .  

The number of poss ib le  t r e e s  which can be constructed t o  comprehen- 
2 1 

s i v e l y  cover a  c e r t a i n  s t r e e t  network i s  overwhelmingly l a rge .  Recogni- 

zing the f a c t  t h a t  even with r ep id  e l e c t r o n i c  computers i t  would be im- 

p r a c t i c a l  t o  inves t iga te  every poss ib le  layout  for  anything but  a  t i r v i -  

a l l y  small network, Liebman developed a  h e u r i s t i c  method f o r  the  generat ion 

of a  "good" layout .  His method i s  based on a  computer search technique 

which improves upon a  given layout .  He s i t e s  the  major drawback of h i s  

method as  being the  lack of cons idera t ion  for  flow condi t ions  and thus 





i t s  l i m i t a t i o n  t o  networks composed of l i n k s  of equal  capac i ty  o r  dia-  

meter.  
2 2 

A d i f f e r e n t  quick and approximate method f o r  t he  genera t ion  of a  

sewer t r e e  which completely spans a  given s t r e e t  network, and which has 

"good" cos t  q u a l i t i e s  has  been suggested by ~a~ an i  .Z3 While i t  i s  recog- 

n i zed  t h a t  t he  outcome i s  no t  g l o b a l l y  opt imal ,  i t s  l o g i c a l  development 

i s  expected t o  lead  t o  a  b e t t e r  approximation of op t ima l i t y  than present  

i n t u i t i v e  methods. The e f f o r t  involved i n  t he  app l i ca t ion  of t h i s  

approximate method does not  d e t e r  from i t s  u t i l i t y .  The method genera tes  

s h o r t e s t  pa th  t r e e s ,  t o t a l l y  spanning a  given s t r e e t  network. I t  i s  

based on the  f a c t  t h a t  l eng th  i s  t he  most important determinant  of 

t h e  cos t  of rou t ing  flow between two given p o i n t s ,  and on the  proof t h a t  

r e l a t i v e  lengths  a r e  a  f a i r l y  dependable measure of r e l a t i v e  l i n k  c o s t s .  

The f a c t ,  remains however, t h a t  no method e x i s t s  f o r  t he  s e l e c t i o n  of an 

optimal layout .  Rat iona l  approximations may be obta ined  and an "optimal" 

o r  "near-optimal" s o l u t i o n  can then be found by designing and e s t ima t ing  
4 

t h e  c o s t s  of these  approximations and choosing t h a t  layout  which y i e l d s  

t h e  l e a s t - c o s t  system. 

Optimal System Design 

Once an acceptable  system layout  has  been genera ted ,  the  designer  

u s u a l l y  proceeds t o  choose among the  second s e t  of a l t e r n a t i v e s  open t o  

him a combination of diameter ,  s lope ,  and depth. As mentioned above, 

t hese  choices  a r e  u s u a l l y  made wi th  the  a i d  of alignment c h a r t s  f o r  each 

ind iv idua l  element i n  t he  system. The i n t e r a c t i o n  among the  d i f f e r e n t  

l i n k s ,  t he  c o s t  c h a r a c t e r i s t i c s  of the  cons t ruc t ion  ope ra t ions ,  and the  

t r a d e o f f s  between the  cos t  of one l i n k  and another a r e  u s u a l l y  no t  ex- 

p l i c i t l y  considered i n  t he  design.  It i s  c l e a r  t h a t  depending on t h e  

c o e f f i c i e n t s  of t h e  pipe and excavat ion terms i n  t h e  b a s i c  cos t  func t ion  

a  t r a d e o f f  between s lope  and diameter can always be made when a  c e r t a i n  

q u a n t i t y  of flow i s  being accommodated. Savings on pipe m a t e r i a l s  i n  

one l i n k  w i l l  u s u a l l y  r e s u l t  i n  more c o s t l y  excavat ions f o r  both the  



link in question and for the whole subsystem downstream of it. 

Two systematic methods have been suggested for the optimization 

of sewer system design, given a network layout and a set of flow 

quantities. Both methods are based on the application of optimization 

techniques to existing design rules and methodologies. Holland has 

formulated the problem in the format of a non- linear programming algo- 
24 

rithm. Voorhees suggested the use of an n-stage, two parameter pro- 

g r m i n g  appr~ach?~ The first method has the advantage of neatly 

fitting a standard mathematical formulation. The subsequent formu- 

lation is based on Holland's development and is adapted for solution 

using standard programming techniques and existing computer programs. 

While a number of cost sub-functions have been developed for a 

sewer line conveying different quantities of flow, they have all been 

derived from one basic function by applying the relevant technological 

constraints to it. This overall function has been shown to be: 

the subscript i indicates that the above cost function represents the 

link which originates from node i in the network. As has been 

mentioned earlier, one subscript completely defines a sewer network link. 

A further note on the notation being used will facilitate the develop- 

ment which follows. Symbols which are not identified by a subscript 

associating them with a specific link are assumed to be the same for all 

links. While this is usually the case, the overall model can accommo- 

date different values for these parameters. A differentiation will be 

made between the invert elevations at the upstream and downstream nodes - 
defining a link. These elevations will be denoted E. and_Ei, re- 

1 

spectively. Ground elevations at these points will be denoted and i 

si. Another terminology which will be adopted whenever generalized sub- 
scripts are used is the numerical ordering of links in a downstream di- 

rection, i.e. link i will be just upstream of link (i + 1) and just 



downstream of link (i - 1). All elevations are assumed to be 

measured with respect to a given datum. The following analysis is 

written in terms of the average quantity of flow and is applicable 

for networks consisting of fully-utilized links serving a maximum 

of 412,000 persons. 
2 6 

The overall cost of a network is the summation of all its link costs. 
- 1 

Substituting (E - E.)L. and - [(G~ + s) - (E. + E.) for the slope S 
i 1 1  2 1 1  I 

and the depth of excavation X in Eq. (12) above, the total cost of an 

n-link network can be written as: 

( n )314 315 1118 
where r = 2.5313 - 

k1k2 Qav(i) Li 

This equation is the objective function of the sewer network optimal de- 

sign problem. The only two decision variables are the summation of, and 

the difference between, the upstream and downstream invert elevations of 

each link in the network. All other entities are known and can be readily 

evaluated. The problem has thus been reduced to one of minimizing the 

value of the above objective function, subject to a certain set of tech- 

nological constraints. These constraints include the minimum allowable 

diameter, the minimum and maximum allowable velocity limits, the minimum 

pipe cover, and the diameter and invert elevation progression constraints. 

These constraints can be shown to be linear in the two variables which 

appear in the objective function. The following is a development of the 

constraint relationships: 



1. Minimum Allowable Diameter C o n s t r a i n t :  

On t h e  b a s i s  of Eq. ( 3 )  it can be r e a d i l y  shown t h a t  

- - 1613 815 - E .  5 11.9D ($-)2 Qav(i) Ei 7 min 

2 .  Allowable Ve loc i t y  Range C o n s t r a i n t :  

S u b s t i t u t i n g  t h e  v a l u e  of t h e  diameter  given i n  Eq. (7 )  i n t o  Eq. - 
(5) and r e p l a c i n g  t h e  s l o p e  S  by t h e  e q u i v a l e n t  t e rm (E - E.)/Li i 7 

y i e l d s  

t h e  l i m i t i n g  v a l u e s  of which a r e  V and V . Rearranging and s o l v i n g  
7 

m i  n  max 
i n  terms of (E - E  ) r e s u l t s  i n  t h e  c o n s t r a i n t :  

i -1 

2  
213 -8115 

o.438v8I3 max (f) k l  Q~~~ (14b) 
2 

which i n s u r e s  t h a t  t h e  v e l o c i t y  does n o t  exceed e i t h e r  of i t s  a l lowable  

l i m i t i n g  v a l u e s .  

3.  Minimum Pipe  Cover C o n s t r a i n t :  

I n  o r d e r  t o  s ecu re  t h e  minimum cover  s p e c i f i e d  f o r  l i n k  i a t  i t s  

upstream end, t h e  c o n s t r a i n t  

- - - 
2G. + (Ei - E.) - (Ei + E.) 2 2 x  min. cover r e q u i r e d  (14 c )  

1 

must be s a t i s f i e d .  The above c o n s t r a i n t  i s  equ iva l en t  t o  

- - 
i 

- E. 2 minimum a l l owab le  cover .  
1 



I f  t h e  s l o p e  of t h e  t e r r a i n  i s  s t e e p e r  t han  t h a t  of  t h e  p ipe ,  t hen  t h i s  

c o n s t r a i n t  must be  w r i t t e n  twice :  once f o r  each node i n  t h e  l i n k .  I f ,  

on t h e  o t h e r  hand, t h e  s l o p e  of t h e  t e r r a i n  i s  f l a t  o r  s l op ing  a t  l e s s  

t h a n  t h e  g e n e r a l  s l opes  of  t h e  p ipe s ,  t h e n  t h i s  c o n s t r a i n t  need on ly  be 

a p p l i e d  t o  t h e  e x t e r n a l  nodes of t h e  network. T h i s ,  of  course ,  assumes 

a  f a i r l y  r e g u l a r  t e r r a i n  a long  each l i n k .  

4.  Diameter and I n v e r t  P rog re s s ion  C o n s t r a i n t s :  

These c o n s t r a i n t s  i n s u r e  t h a t  t h e  d iamete r  of any l i n k  i s  a t  l e a s t  

equa l  t o  t h e  d iamete r  of t h e  l i n k s  which f low i n t o  i t .  They a l s o  s e t  t h e  

upstream i n v e r t  e l e v a t i o n  of any l i n k  t o  be  a t  most equa l  t o  t h e  down- 

s t ream i n v e r t  e l e v a t i o n  of any l i n k  f lowing i n t o  i t .  

From t h e  b a s i c  p rocess  f u n c t i o n s  which have been p r ev ious ly  developed,  

it can be shown t h a t  i n  o r d e r  t o  have D r D t h e  fo l lowing  c o n s t r a i n t  
i ( i - 1 )  

must be  met: 

And i n  o r d e r  t o  have E < E t h e  c o n s t r a i n t  
i -( i -1)  

must be s a t i s f i e d .  

5 .  Sink C o n s t r a i n t :  

Th i s  c o n s t r a i n t  i s  inc luded  t o  i n s u r e  t h a t  any l a t e r a l s  a r r i v i n g  a t  

t h e  s i n k  w i l l  do s o  a t  an  i n v e r t  e l e v a t i o n  equa l  t o  o r  above t h a t  of a  

main l i n e  a t  t h e  s i n k .  Th i s  w i l l  a l l ow  t h e  l a t e r a l  t o  f low i n t o  t h e  main 

l i n e  i f  a  s i n g l e  i n t e r c e p t o r  i s  needed. I f  a  l a t e r a l  j and a  main l i n e  i 

meet a t  a  s i n k ,  t hen  



The above f o r m u l a t i o n  i s  a p p l i c a b l e  t o  sewer sys tems f lowing  

t o t a l l y  by g r a v i t y  i n  f a i r l y  r e g u l a r  t e r r a i n .  However, it  can  be e a s i l y  

extended t o  i n c l u d e  t h e  c o s t s  of drop manholes o r  l i f t  s t a t i o n s .  Both 

of t h e s e  appur tenances  can  be  r e p r e s e n t e d  by terms i n  t h e  o b j e c t i v e  

f u n c t i o n .  The c o s t  of c o n s t r u c t i n g  d rop  manholes and l i f t  s t a t i o n s  c a n  

be expected t o  v a r y  a s  t h e  s q u a r e  of t h e  amount of t h e  d rop  o r  l i f t .  

A s i m p l i f i c a t i o n  of t h e  above o b j e c t i v e  f u n c t i o n  can  be made when 

t h e  t e r r a i n  i s  f l a t .  T h i s  i s  sometimes a  r e a l i s t i c  s i t u a t i o n  and may 

prove u s e f u l  i n  t h e o r e t i c a l  c o n s t r u c t s .  The s i m p l i f i c a t i o n  i s  ach ieved  

by assuming bo th  of t h e  two ground e l e v a t i o n s  a s s o c i a t e d  w i t h  each l i n k ,  - 
G1 and G t o  be e q u a l  t o  z e r o  and by c o n s i d e r i n g  t h e  datum l i n e  from 

-iY 
which t h e  i n v e r t  e l e v a t i o n s  of t h e  d i f f e r e n t  p i p e s  i s  measured t o  be t h e  

ground l e v e l .  Minor a d j u s t m e n t s  i n  t h e  f o r m u l a t i o n  of t h e  c o n s t r a i n t  

e q u a t i o n s  w i l l  a l s o  have t o  be made. 

The problem i s  t h u s  one of minimizing a  n o n - l i n e a r  o b j e c t i v e  f u n c t i o n ,  

s u b j e c t  t o  t h e  l i n e a r  c o n s t r a i n t s  g i v e n  by e q u a t i o n s  (14a) through (14 g ) .  

The o b j e c t i v e  f u n c t i o n  i s  s e p a r a b l e ,  s i n c e  i t  can be w r i t t e n  a s  a  f i n i t e  
+ 

sum of s e p a r a t e  t e rms ,  each of which i n v o l v e s  o n l y  a  s i n g l e  c h o i c e  v a r i a b l e .  

A g l o b a l  optimum s o l u t i o n  can  be  found f o r  t h i s  t y p e  of problem on ly  i f  

a l l  of i t s  s e p a r a t e  terms a r e  concave f u n c t i o n s  and i t  i s  d e s i r e d  t o  max- 

imize  t h e  o b j e c t i v e  f u n c t i o n  o r  i f  a l l  t h e  s e p a r a t e  terms a r e  convex 

f u n c t i o n s  and i t  i s  d e s i r e d  t o  minimize t h e  o b j e c t i v e  f u n c t i o n .  Such 

problems can  be s o l v e d  f o r  c o n s t r a i n t s  which a r e  e i t h e r  l i n e a r  f u n c t i o n s  

o r  n o n - l i n e a r  s e p a r a b l e  f u n c t i o n s  whose component f u n c t i o n s  a r e  a l l  

convex. 

The o b j e c t i v e  f u n c t i o n  g iven  i n  Eq. (13) above i s  composed of t h e  

summation of t h r e e  s e p a r a t e  v a r i a b l e  terms and two c o n s t a n t  terms f o r  

each l i n k  i n  t h e  network.  The t h r e e  v a r i a b l e  terms r e p r e s e n t  t h e  c h o i c e  

v a r i a b l e s  r a i s e d  t o  t h e  powers -318, 2 ,  and 1, r e s p e c t i v e l y .  The f i r s t  

two exponents  i n d i c a t e  s t r i c t l y  convex f u n c t i o n s ,  w h i l e  t h e  t h i r d  r e p r e -  

s e n t s  a  l i n e a r  r e l a t i o n s h i p  which i s ,  by d e f i n i t i o n ,  bo th  convex and con- 

cave .  Hol land h a s  proved t h a t  an  o b j e c t i v e  f u n c t i o n  of t h i s  f i r m  i s  

convex by showing t h a t  i t s  Hessian m a t r i x  i s  Hermi t i an  and d i a g o n a l l y  

dominant .27  It i s  t h u s  guaran teed  t h a t  a  g l o b a l ,  r a t h e r  t h a n  a  myopic, 



minimum-cost solution can be obtained by solving the problem as formulated. 

The solution to this programming problem is based on approximating 

each non-linear function by piece-wise linear segments and thus replac- 

ing the objective function in the original problem by a summation of 

ordinary linear functions of a new set of variables. These new variables 

are obtained by decomposing each of the original non-linear separate 

functions into a number of linear approximations. An example of the re- 

formulation of the problem in this manner is given in Appendix 1. The 

solution is then obtained by the application of algorithms that use linear 

programming techniques.'' Computer programs based on these algorithms are 

readily and commercially available. 

The decomposition of the terms of the original objective function 

into linear approximations requires the introduction of a set of linear 

constraints which define the way in which each non-linear term in the 

objective function has been divided and the approximate value of the 

function at the boundaries of these linear approximations. It is this 

transformation which allows the use of the usual linear programming 

algorithms for the solution of non-linear problems. It requires the 

addition of three linear constraints for each separable function in the 

objective function. 

The optimal solution to the above problem will yield the minimum 

total cost for any sewer network as well as the accompanying values of 

the choice variables (E - E .) and (Ei + Ei) The first of these 
i -1 

variables can be used to obtain the diameter of the pipe using Eq. (3) . - 
Half the sume of the two variables gives the value of E the upstream 

i ' 
invert elevation for each lFnk in the network. This information completes 

the design of the system. 

The suggested procedure assumes that sewer pipes are available in 

any theoretical size. This assumption is not a realistic one, since only 

a set of discrete pipe diameters are commercially available. The usual 

procedure in manual traditional methods of design is to choose the next 

highest commercially available diameter. This procedure could also be 

applied to the optimal solution obtained by the above method. Theoreti- 

cally, this insures neither an optimal nor a feasible solution. Algorithms 



have n o t  y e t  been developed f o r  o b t a i n i n g  d i s c r e t e  s o l u t i o n s  t o  such 

problems, which would be  of t h e  s e p a r a b l e - i n t e g e r  v a r i e t y .  Hol land h a s  

sugges ted  t h e  u s e  of v a r i a t i o n s  of a  random sampling approach f o r  t h e  

s e l e c t i o n  of a  s o l u t i o n  c o n s i s t i n g  of commercially a v a i l a b l e  s i z e s .  

A f t e r  e l i m i n a t i n g  t h e  p o s s i b i l i t y  of u s i n g  a  random sampling approach 

t o  s e a r c h  t h e  e n t i r e  r e g i o n  f o r  an  o p t i m a l  d i s c r e t e  s o l u t i o n ,  he ex-  

per imented wi th  sampl ing about  t h e  c o n t i n u o u s  s o l u t i o n  o b t a i n e d  from 

t h e  s e p a r a b l e  programming wi th  an  i t e r a t i v e  sampl ing t echn ique .  H i s  

exper iments  a r e  l i m i t e d  t o  a  s m a l l  7 - l i n k  network,  and he does  n o t  

comment on t h e  u t i l i t y  of a p p l y i n g  t h e s e  s e a r c h  t e c h n i q u e s  t o  l a r g e r ,  

more r e a l i s t i c  networks .  He conc ludes  t h a t  t h e  random sampling t e c h -  
2 9 

n i q u e  h a s  a  h i g h  p r o b a b i l i t y  of s e l e c t i n g  t h e  b e s t  s o l u t i o n .  

For  purposes  of comparing d i f f e r e n t  d e s i g n s ,  o b t a i n i n g  o r d e r - o f -  

magnitude e s t i m a t e s ,  o r  i n v e s t i g a t i n g  t h e o r e t i c a l  c o s t  s t r u c t u r e s  and 

p a t t e r n s ,  however, i t  i s  f e l t  t h a t  t h e  con t inuous  s o l u t i o n  i s  s a t i s -  

f a c t o r y .  F u r t h e r  r e s e a r c h  i n t o  t h e  s o l u t i o n  of t h e  s e p a r a b l e - i n t e g e r  

programming problem would l e a d  t o  t h e  development of some r e a l i s t i c  

r e l a t i o n s h i p s  between t h e  t o t a l  c o s t s  o b t a i n e d  by t h e  con t inuous  and 

d i s c r e t e  s o l u t i o n s .  



NETWORK AND SYSTEM COSTS 

The p rev ious  s e c t i o n s  p r e s e n t e d  a n  a n a l y s i s  of t h e  c o s t s  of t h e  

b a s i c  cbmponents o f  wastewater  c o l l e c t i o n  networks ,  and sugges ted  methods 

f o r  o b t a i n i n g  an o p t i m a l  (minimum-cost) d e s i g n  f o r  both  a  s e w e r l i n e  

and a  c o l l e c t i o n  network.  The b a s i c  concern o f  t h i s  s e c t i o n  i s  t o  i n -  

v e s t i g a t e  t h e  d i f f e r e n t  pa ramete rs  of u rban  d e s i g n  which can  be expec ted  

t o  i n f l u e n c e  t h e  c o s t  of a  p u b l i c  u t i l i t y ,  and by app ly ing  t h e s e  pa ra -  

mete r s  t o  e m p i r i c a l  e v i d e n c e ,  demons t ra te  t h e  p o s s i b i l i t y  of deve lop ing  . 

a n  a n a l y t i c  mathemat ical  model of t h e  f u n c t i o n a l  r e l a t i o n s h i p s  between 

t h e s e  c o s t s  and paramete rs .  The l a r g e  numbers of v a r i a b l e s  invo lved ,  

however, r e q u i r e s  t h a t  a  number of s i m p l i f y i n g  assumptions  be made. 

These assumptions  w i l l  be e x p l i c i t l y  s t a t e d ,  a s  t h e y  a r e  a  necessa ry  i n -  

pu t  t o  t h e  proposed c o s t  p r e d i c t i o n  model. They do n o t  l i m i t  t h e  v a l i d i t y  

and g e n e r a l i t y  of t h e  o v e r a l l  approach,  s i n c e  t h e  r e s u l t i n g  model c a n  

b e  c a l i b r a t e d  f o r  any o t h e r  s e t  of assumptions  o r  a c t u a l  s i t u a t i o n s .  

The A n a l y t i c a l  Framework 

The c o s t  of a  p u b l i c  u t i l i t y  network i s  a  f u n c t i o n  of a  number 

of v a r i a b l e s .  Some of t h e s e  v a r i a b l e s  a r e  i n t e r n a l  t o  t h e  technology 

of t h e  s e r v i c e  i n  q u e s t i o n ,  o t h e r s  a r e  a  f u n c t i o n  of c o n d i t i o n s  which 

a r e  unique t o  a  c e r t a i n  s i t e  and l i f e  s t y l e  which t h e  p lanner  u s u a l l y  

a c c e p t s  a s  a  g i v e n ,  w h i l e  a  t h i r d  s e t  i n v o l v e s  f a c t o r s  which r e l a t e  

t o  t h e  urban morphology. These l a t t e r  f a c t o r s  c a n  be  looked upon a s  

c h o i c e  v a r i a b l e s  from t h e  p o i n t  of view of t h e  p lanner  o r  urban 

d e s i g n e r  who i s  invo lved  i n  p lann ing  a  new town o r  s t u d y i n g  t h e  c o s t  

i m p l i c a t i o n s  of a l t e r n a t i v e  zoning and development p o l i c i e s .  Some 

v a r i a b l e s  c a n  b e  e a s i l y  c l a s s i f i e d  i n  t h e  above manner, w h i l e  o t h e r s  

may f a l l  i n  more t h a n  one c a t e g o r y .  Wastewater c o l l e c t i o n  systems 

a r e  no e x c e p t i o n  t o  o t h e r  p u b l i c  u t i l i t y  networks ,  and t h e i r  c o s t  

d e t e r m i n a n t s  c a n  be  c l a s s i f i e d  i n t o  t h e s e  t h r e e  b a s i c  c a t e g o r i e s .  
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imposed, might be used to advantage. Further simplifying restrictions 

will have to be imposed regarding terrain, block shape and network 

patterns. The chosen module has the following characteristics: 

1. Module Shape and Size: A square experimental module with an 

area of 160 acres or 0.25 square miles was chosen. The dimen- 

sions of the square are 2640 x 2640 feet. This shape and 

size combination has special significance in the study of 

settlements, since it represents the quarter section: a 

traditional unit of regional land subdivision. This unit 

has been used by researchers to investigate the costs of 
30 

urban public services and utilities. 

2. Block (Cell) Shape and Size: The experimental module will 

have to be subdivided into blocks of a given shape and size 

in order to insure the comparability of the results. The 

rectangular grid pattern is by far the most common. Stone 

has stated that "unfortunately it is impractical to carry 

out theoretical studies on an adequate scale except with a 

parallel block layout !131 Most studies on urban costs with 

spatial implications assume a rectangular "grid-iron" 
3 2 

pattern. The 160-Acre experimental module will thus be 

divided in two distinct fashions: 

A. into sixteen 10-Acre square blocks, and 

B. into eight 20-Acre rectangular blocks. 

Block areas are given between the centerlines of adjacent 

streets. These two basic forms of the module are shown 
2 

in Figure . 
3. The simplifying assumption of flat terrain will be made. This 

assumption can be easily relaxed as discussed in other sections 

of this study. 

4. Texture: A range of uniform densities will be superimposed on 

each of the two variations of the experimental module. The 

densities chosen for the analysis are 10, 25, 50, 100, 150, 250, 

500, 750 and 1000 persons per gross residential acre. At these 

respective densities the 160-Acre module will house 1600, 4000, 





8000, 16000, 24000, 40000, 80000, 120,000 and 160,000 persons.  

The fo l lowing  assumptions a r e  made regard ing  t h e  t echno log ica l  

and s i t e  v e c t o r s  descr ibed  above: 

1. A l l  sewers a r e  designed a s  c i r c u l a r  pipes  flowing f u l l .  

2 .  Roughness f a c t o r  f o r  a l l  p ipes  i s  0.0013. 

3 .  Minimum and maximum a l lowable  v e l o c i t i e s  a r e  2  and 10 

f e e t  per second r e s p e c t i v e l y .  

4 .  Minimum a l lowable  p ipe  diameter  (D ) i s  8  inches .  
m i  n  

5. Minimum a l lowable  pipe cover  i s  5  f e e t .  

6 .  F l a t  t e r r a i n .  

7 .  Local cond i t i ons  such a s  s o i l ,  weather ,  l o c a t i o n ,  r e l a t i v e  

f a c t o r  p r i c e s ,  e t c . ,  a r e  r e f l e c t e d  by t h e  c o s t  func t ion  

2  2 
Cost per f o o t  = 1.403 + 1.499 D + 0.019 X 

where D and X a r e  t h e  pipe diameter  and i n v e r t  depth below 

ground l e v e l ,  both i n  f e e t .  The c o s t  per f o o t  i s  ex  pressed 

i n  Do l l a r s .  This  func t ion  i s  based on t h e  f i n d i n g s  of 

Chapter Two, f o r  l ay ing  p l a i n  conc re t e  p ipes  i n  open-cut 

t renches  i n  common s o i l .  

8 .  Average per c a p i t a  wastewater gene ra t i on  Q = 100 g a l l o n s  av 
per day. 

9. Peak (design)  f low Q" = 3  3.5 Q 4'5 f o r  1000 s P  5 412000 
av 

= 5  Qav f o r  P  < 1000 

10. A given t reatment  p l an t  ( s ink )  l o c a t i o n  a t  t h e  corner  of t h e  

experimental  module. 

The use  of t he  separab le  programming techniques i n  t he  des ign  and e s t i -  

mation of opt imal  wastewater c o l l e c t i o n  networks has  been d iscussed  above. 

The a p p l i c a t i o n  of t h i s  method p re requ i r e s  a  network layout .  As has  been 

pointed ou t  be fo re ,  it i s  apparent  t h a t  i n  t h e  case  of a  r e g u l a r  g r i d  p a t t e r n  

t h e  "perpendicular"  and "fan" layouts  i d e n t i f i e d  i n  F igure  1 a r e  v i a b l e  ecom- 

i c a l  a l t e r n a t i v e s .  They both a l low f low from a  c e r t a i n  l o c a t i o n  t o  t h e  s i n k  

through a  most d i r e c t  rou t e .  I n  o rde r  t o  eva lua t e  these two types  of 
- - 



l ayou t ,  a  t e s t  was run  on t h e  20-Acre module, i n  which t h e  opt imal  

c o s t s  of t h e  two layouts  were es t imated  under d i f f e r e n t  d e n s i t y  

cond i t i ons .  While t h e  c o s t  of t h e  "perpendicular"  layout  has  been 

found t o  be c o n s i s t e n t l y  l e s s  than  t h e  c o s t  of t h e  "fan" layout ,  

t h e  d i f f e r e n c e  i n  c o s t  i s  ha rd ly  s i g n i f i c a n t .  The two l ayou t s  can, 

f o r  a l P p r a c t i c a 1  purposes,  be considered equ iva l en t .  

The op t imiza t ion  model, which was presen ted  i n  Chapter Three 

a p p l i e s  t o  l i n k s  which a r e  running f u l l .  Under -u t i l i zed  l i n k s  must 

have t h e  minimum a l lowable  diameter ,  a s s o c i a t e d  wi th  a  s lope  t h a t  

would ensure  a  s e l f - c l eans ing  v e l o c i t y .  Such l i n k s  must be s e p a r a t e l y  

designed and es t imated ,  s i n c e  no t r a d e - o f f s  between diameter  and s lope  

a r e  pos s ib l e .  Under ou r  assumptions t h e  cu t -of f  demand f o r  s e r v i c e  

below which no op t imiza t ion  i s  necessary  i s  about 1000 persons per 

&ink  ( o r  100,000 g a l l o n s  per day).  A t  d e n s i t i e s  of 150 and 200 

persons per  g ros s  a c r e  o r  more, each and every l i n k  i n  t h e  20 and 

10-Acre block modules r e s p e c t i v e l y ,  w i l l  have a  t o t a l  load of no t  

l e s s  than  1000 persons,  and thus  be f u l l y - u t i l i z e d  t o  i t s  des ign  

c a p a c i t y .  A t  lower g ros s  d e n s i t i e s  t h e  c a p a c i t i e s  of some l i n k s  

w i l l  be onlv p a r t i a l l y  u t i l i z e d .  

Minimum system c o s t s  were es t imated  f o r  each of t h e  two expe r i -  

mental  modules developed a t  each of t h e  n ine  popula t ion  d e n s i t i e s  

mentioned above. 

I n  order  t o  ob t a in  some f u r t h e r  d a t a  on t h e  e f f e c t  of t h e  s i z e  of 

t h e  a r e a  t o  be developed on network c o s t s ,  a  s tudy of t h e  f e a s i b i l i t y  

of aggrega t ing  experimental  modules i n t o  l a r g e r  u n i t s  was undertaken. 

A s i m p l i f i e d  approximate method which can gene ra t e  opt imal  c o s t  e s t i -  

mates f o r  combinations of 160-Acre modules on t h e  b a s i s  of t h e  b a s i c  

module c o s t  was developed. Using t h i s  method, e s t ima te s  were ob- 

t a i n e d  f o r  a  640-Acre square  s i t e  (one square  mi l e ) ,  subdivided i n t o  

20-Acre b u i l d i n g  blocks.  The whole a r ea  was dra ined  t o  a  s i n g l e  

s i n k  loca t ed  a t  one co rne r .  Costs  were es t imated  f o r  va r ious  g ros s  

popula t ion  d e n s i t i e s .  



The Bas ic  Cost Model 

The c o s t  d a t a  which have been gene ra t ed  f o r  t h e  two exper imenta l  

modules and t h e  four-module composite a r e a ,  were analyzed w i th  t h e  

purpose of s ea r ch ing  f o r  under ly ing  p a t t e r n s  t h a t  cou ld  be formulated 

i n t o  a  s imple  and u s e f u l  a n a l y t i c  model. Th i s  a n a l y s i s  h a s  r evea l ed  

a  d e f i n i t e  s p l i t  of t h e  d a t a  i n t o  two d i s c e r n i b l e  s u b s e t s :  one r e p r e -  

s e n t i n g  t h e  c o s t s  of networks c o n s i s t i n g  of l i n k s  whose de s ign  c a p a c i t y  

h a s  been f u l l y - u t i l i z e d ,  and ano the r  r e p r e s e n t i n g  t h e  c o s t s  of networks 

c o n s i s t i n g  of bo th  f u l l y  and p a r t i a l l y  u t i l i z e d  l i n k s .  A s  mentioned 

above, t h e  cu t -o f f  p o i n t s  occur  a t  d e n s i t i e s  of 150 and 200 persons  

pe r  g r o s s  a c r e  f o r  20 and 10-Acre b u i l d i n g  b lock  s u b d i v i s i o n s  r e spec -  

t i v e l y .  I n  r e a l i t y ,  t h i s  c u t o f f  p o i n t  can  a l s o  b e  a t t a i n e d  by cons ide r -  

i n g  networks c o n s i s t i n g  of main l i n e s  on ly ,  and exc lud ing  a l l  under- 

u t i l i z e d  l i n k s .  

Regress ions  were f i t t e d  by t h e  method of l e a s t  squa re s  t o  t h e  

t h r e e  s e t s  of d a t a ,  u s ing  g r o s s  d e n s i t y  a s  t h e  independent  v a r i a b l e .  

* Cons i s t en t  p a t t e r n s  which were i d e n t i f i e d  among t h e  two s e t s  r e p r e -  

s e n t i n g  t h e  20-Acre subd iv i s i on  have l ed  t o  t h e i r  t r e a tmen t  a s  a  

s i n g l e  s e t  of d a t a ,  w i th  t h e  t o t a l  a r e a  be ing  cons idered  a s  a  second 

independent  v a r i a b l e .  The r e s u l t s  of t h e s e  r e g r e s s i o n s  show a  con- 

c l u s i v e  r e l a t i o n s h i p  between c o s t  and t h e s e  v a r i a b l e s .  The r e l a t i o n -  

s h i p  which r e s u l t e d  from apply ing  r e g r e s s i o n  a n a l y s i s  t o  t h e  s e t  of 

c o s t s  of f u l l y - u t i l i z e d  networks can be expressed  i n  any of t h e  

fo l l owing  t h r e e  equ iva l en t  forms: 

Network Cost = a  A~ D 
6 

wh e r e  

a  i s  a  c o n s t a n t  

A i s  t h e  o v e r a l l  a r e a  i n  a c r e s  

D i s  t h e  g r o s s  popula t ion  d e n s i t y  i n  persons  per  a c r e  
P i s  t h e  t o t a l  popu l a t i on  

- .  



CY is an exponent whose value is greater than unity 

6 is an exponent whose value is smaller than unity 

and d is the density of population beyond which all links 

are utilized to their design capacity. 

~~dcifical ly , for the experimenta 1 module subdivided into 20 -Acre 
blocks, this cost model is 

1.17 D0.30 
Network Cost = 41.91 A for D > 150 ppa. 

and for the module subdivided into 10-Acre building blocks: 

Network Cost = 46.35 A 
D ~ ' ~ ~  for D > 200 ppa 

2 
(R = 0.994) ( 18)' 

Both of these regressions indicate highly significant statistical 

relationships, i.e., less than the 0.001 level of significance. 

Figures (3) and (4) show the scatterograms and the fitted curves for 

the 20-Acre experimental modules, plotted on both arithmatic and semi- 

logarithmic scales. 

These cost functions are characterized by an increasing cost as 

both the density (or population size) and the area increase. This 

absolute increase in cost, however, is associated with a decreasing 

rate of growth with respect to density (or population size), keeping 

the area unchanged. It is also associated with an increasing rate of 

growth as the area (or total population) is increased, keeping the 

density unchanged. In other words, these cost functions confirm that 

economies of scale exist with respect to both population density 

and size, given a fixed area of service. This indicates a situation 

of continuously decreasing unit costs, as the volume of service 
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suppl ied  i s  increased  w i t h i n  given boundaries .  The p o s i t i v e  f r a c -  

t i o n a l  va lues  of t he  exponents of both t h e  populat ion s i z e  and dens i ty  

terms i n  Equation (16) above, and thus  t h e  negat ive  f r a c t i o n a l  ex- 

ponents which r e s u l t  when average of u n i t  c o s t  func t ions  a r e  der ived 

from t h e s e  equat ions ,  i n d i c a t e  t h i s  r e l a t i o n s h i p .  Diseconomies of 

s c a l e ,  on t h e  o the r  hand, a r e  i nd ica t ed  whenever a  l a r g e r  a r ea  having 

the  same populat ion dens i ty  i s  served by t h e  same s ink .  The c o s t  per 

c a p i t a  i n  t h i s  ca se  w i l l  be cont inuously r i s i n g  a s  t h e  s e r v i c e  a r ea  

i s  expanded, and a s  new a r e a s  a r e  developed a t  t h e  same populat ion 

d e n s i t i e s .  I n  c o n t r a s t  t o  t h e  s i t u a t i o n  d iscussed  above, t he  exponent 

of t he  a r ea  term i n  t h e  above equat ions  has  a  va lue  exceeding un i ty .  

Both t h e  average and marginal c o s t s  of adding an a c r e  a t  t h e  same pop- 

u l a t i o n  d e n s i t i e s  a r e  growing a t  a  diminishing r a t e .  

The b a s i c  func t iona l  forms given i n  Equation (16) above a r e  

l imi t ed  t o  networks composed of l i n k s  flowing a t  t h e i r  f u l l  capac i ty .  

It can be hypothesized t h a t  i n  t h e  absence of any design s tandards ,  

such a s  t hese  l i m i t i n g  t h e  minimum a l lowable  pipe diameter ,  t h e s e  r e -  

l a t i o n s h i p s  could be seen t o  cont inue t o  hold a t  t h e  lower extreme of 

populat ion d e n s i t i e s  a s  we l l .  Technological c o n s t r a i n t s ,  however, i n  

t h e  form of s tandards  and design c r i t e r i a ,  do not permit t h e  diameter 

of t h e  pipe t o  f a l l  below an al lowable minimum, wi th  t h e  r e s u l t  t h a t  

minimum-size pipes may be designed t o  flow a t  l e s s  than h a l f  of t h e i r  

capac i ty  and thus  may r e q u i r e  l a r g e r  s lopes .  These c o n s t r a i n t s  a r e  r e -  

f l e c t e d  i n  an inc rease  i n  c o s t  a t  lower d e n s i t i e s .  This  i nc rease ,  

over and above t h e  c o s t s  est imated by t h e  t h e o r e t i c a l  model given above, 

w i l l  be designated by a  "penal ty func t ion ."  A r eg re s s ion  was f i t t e d  

t o  t h e  r e s p e c t i v e  p e n a l t i e s  obtained by s u b t r a c t i n g  t h e  c o s t s  c a l c u l a t e d  

by Equat ions( l7)  and(l8)  above from t h e  a c t u a l  opt imal  c o s t s .  The r e -  

g re s s ion  has  i nd ica t ed  another  powerful p r e d i c t i v e  r e l a t i o n s h i p  of t he  

fol lowing genera l  mathematical form: 

Penal ty = A~ ( b ~ - ~  - c )  

= bp-Y AdY - c  Aa 



f o r  D I d  

where b  and c  a r e  t h e  r e g r e s s i o n  c o e f f i c i e n t  and c o n s t a n t ,  r e s p e c t i v e l y ,  

y i s  an exponent w i t h  a  v a l u e  of l e s s  t h a n  u n i t y  and a l l  o t h e r  symbols 

a r e  a s  d e f i n e d  above. 

The r e s u l t s  of t h e  r e g r e s s i o n  f o r  t h e  20-Acre b lock  s u b d i v i s i o n  

a r e  g i v e n  by: 

(418 D 
-0 .3  

P e n a l t y  = A - 92) f o r  D s 150 ppa 

and f o r  t h e  10-Acre s u b d i v i s i o n :  

P e n a l t y  = A 
1.17 

(813 D -Os40 - 111) f o r  D I 200 ppa 

2  
(R = 0.991) (21) 

S t a t i s t i c s  d e s c r i b i n g  t h e  power o f  t h e  r e g r e s s i o n  a r e  g i v e n  i n  

Tab le  ( 3 ) .  A l l  t h e  r e s u l t s  a r e  s i g n i f i c a n t  a t  t h e  0 .001 l e v e l .  The 

p e n a l t y  c u r v e s  a s  w e l l  a s  t h e  o v e r a l l  c o s t  c u r v e s  f o r  t h e  20-Acre sub- 

d i v i s i o n  a r e  a l s o  shown i n  F i g u r e s  (3) and ( 4 ) .  

The t o t a l  c o s t  f u n c t i o n s  o b t a i n e d  by adding t h e  t h e o r e t i c a l  and 

p e n a l t y  f u n c t i o n s  d e s c r i b e d  above,  i n d i c a t e  t h a t  t h e r e  e x i s t s  a  g r o s s  

p o p u l a t i o n  d e n s i t y  a t  which a  g i v e n  a r e a  c a n  b e  developed,  i n  o r d e r  t o  

r e s u l t  i n  a  minimum t o t a l  o r  per a c r e  c o s t  of wastewater  c o l l e c t i o n  

f a c i l i t i e s .  By v i r t u e  of t h e  s i m p l i c i t y  and d i f f e r e n t i a b i l i t y  of 

t h e s e  f u n c t i o n s ,  i t  i s  p o s s i b l e  t o  c a l c u l a t e  t h i s  minimum-cost d e n s i t y  

by d i f f e r e n t i a t i n g  and e q u a t i n g  t o  z e r o .  I t  can  be  shown t o  be about  

40 and 88  persons  per  a c r e  f o r  t h e  20 and 10-Acre s u b d i v i s i o n s ,  r e -  

s p e c t i v e l y .  A premium h a s  t o  be  p a i d ,  i f  t h e  above two modules a r e  

t o  be  developed a t  e i t h e r  a  h i g h e r  o r  a  lower d e n s i t y  t h a n  i n d i c a t e d  

by t h e s e  t h e o r e t i c a l  optima. 

The l i m i t e d  d a t a  on which t h i s  s tudy  i s  based g i v e s  a  numer ica l  

i n d i c a t i o n  of t h e  e f f e c t  on network c o s t s  of an  i n c r e a s e  i n  t h e  a r e a  of 

t h e  average  b u i l d i n g  b lock .  A l a r g e r  l i n e a r  f o o t a g e  of p ipe  i s  

needed t o  comple te ly  s e r v i c e  a n  a r e a  which i s  d i v i d e d  i n t o  s m a l l e r  

b u i l d i n g - b l o c k s .  - An i n v e r s e  r e l a t i o n s h i p  can  t h u s  be  expected t o  



exist between network cost and bloc'k size. This relationship is 

clear from equations (20) and (21). These findings substantiate 

the contention that beyond a certain level of population density, 

economies of scale can be attained. 

Extensions of the Basic Model 

The studies reported in this section have demonstrated the 

possibility of developing a network cost function on the basis of a 

design which is prepared in line with a cost-minimization policy. 

The effect of such morphologic characteristics as population size 

and density, area of development and average area of subdivision were 

investigated. The shape of the development with respect to the 

location of the treatment plant is another factor which is expected 

to have a bearing on the overall cost function. A central treatment 

plant location, for instance, would be expected to result in savings 

in network costs, albeit at the expense of more expensive land and 

undesirable environmental consequences. The areal distribution of 

the population is another factor which influences the cost structure. 

An anaiysis has been attempted, whereby four different spatial dis- 

tributions of a given population were superimposed on the experimental 

module, and optimal cost figures were generated. The interference 

of the density distribution effect and the effect of the penalty 

function has made it very difficult to derive a simple overall 

mathematical model. It should be possible, however, to generate 

such a model for networks comprising totally of fully utilized links. 

The other two factors which have been assumed to be constant 

throughout the foregoing analysis, namely technological and site 

characteristics, can be easily varied within the framework described 

above. This will allow their inclusion into the model and the evalu- 

ation of their effect on overall cost. 

As the area served by the network grows, two additional elements 

might have to be considered in the network cost function, namely: 

pumping stations and additional feeder lines. The effect of these 

two factors on the basic cost functions will be discussed below. 
-. 



As the system becomes larger, and thus the individual lines 

deeper, the designer will have to choose between extending the 

system at still costlier excavation and installing pumping stations. 

These stations have the effect of reducing the depth of the system. 

They can'either release the flow to a gravity sewer or to a pressure 

pipe. The latter is usually the case when the flow is being 

transmitted long distances for ultimate disposal. The decision, in 

this case, is made by comparing the cost function of the proposed 

line with that of a comparable gravity line, and choosing the most 

economical of the two. Transmission lines constitute an additional 

term in the overall service cost function, but they do not affect 

collection network costs, unless they are gravity lines performing a 

collection function as well. In this case the pumping (lift) station 

has the effect of splitting the total service area into two sub-areas, 

serviced by two independent networks connected at the lift station. 

'A completely new network starts downstream of the lift station. The 

cost function of this network is similar to that of the first network. 

It differs from it in only one respect: it is constructed at shallower 

depths. Excavation costs per foot of trench increases at an increas- 

ing rate as the depth increases. As the downstream system is raised, 

the depth of excavation is the only variable which undergoes change. 

As the area served by downstream network grows, the savings result- 

ing from decreasing the depth of the system increase exponentially. 

A new cost function for the overall system can be derived from. 

the original function, by subtracting this excavation saving exponential 

function and adding the cost of installing and operating the pumping 

station. The cost of pumping the flow accumulating from a network is 

a function of the area served, the population density of the area, 

the criteria used in pump design and the head which the pump is required 



t o  l i f t  t h e  sewage. Pumping c o s t s  do e x h i b i t  economies of s c a l e  and i t  h a s  

been shown t h a t  t h e  c a p i t a l  c o s t  of pumping 10 mgd i s  on ly  about  4 t imes  

a s  much a s  t h a t  of pumping 1 mgd, a t  a  head of 50 fee t .33  F igu re  7 shows 

a  s e t  of concep tua l  curves  f o r  a  c a s e  where t h e  a r e a s  served by t h e  

f i r s t  and second networks a r e  A and A r e s p e c t i v e l y .  It i s  c l e a r  t h a t  1 2 
t h e  second network must have an a r e a  i n  excess  of A i n  o r d e r  t o  j u s t i f y  

3 
t h e  s p l i t  i n  t h e  system r e s u l t i n g  from t h e  a d d i t i o n a l  l i f t  s t a t i o n .  

The second e f f e c t  on l a r g e  system c o s t  i s  t h a t  which r e s u l t s  from 

t h e  f a c t  t h a t  l a r g e  t r u n k s  ( i n  excess  of about  3 f e e t  i n  d iamete r )  a r e  

no t  u s u a l l y  used a s  c o l l e c t i n g  sewers .  Areas i n  which such l i n e s  pass  

. a r e  o r d i n a r i l y  se rved  by a  p a r a l l e l  c o l l e c t i o n  l i n e ,  connected t o  t h e  

major main a t  one o r  more p o i n t s .  The a d d i t i o n a l  c o s t  of t h e s e  p a r a l l e l  

c o l l e c t o r s  can be  assumed t o  be a  f i x e d  amount per  u n i t  of l eng th  of 

t r u n k  l i n e s  w i th  a  diameter  i n  excess  of 3 f e e t .  Th i s  l eng th  i s  expec t -  

ed t o  i n c r e a s e  s l i g h t l y  a s  t h e  a r e a  se rved  i n c r e a s e s .  The e f f e c t  of 

t h i s  f a c t o r  i s  superimposed on F i g u r e  5 ,  where i t  i s  assumed t h a t  t h e  

4 f i r s t  36" l i n e  appears  a f t e r  an a r e a  A h a s  been se rved .  The exac t  n a t u r e  4 
of each of t h e s e  two e f f e c t s  on network c o s t  f u n c t i o n s  can be a s c e r t a i n -  

ed w i t h i n  t h e  con t ex t  of a  g iven  system. 

I n t e g r a t e d  Serv ice  Cos t s  

Network c o s t s  a r e  on ly  p a r t  of t h e  t o t a l  s e r v i c e  p i c t u r e .  The 

o t h e r  p a r t  c o n s i s t s  of t h e  c o s t s  of noda l  f a c i l i t i e s ,  namely sewage 

t r e a tmen t  p l a n t s .  These c o s t s  a r e  independent  of t h e  s p a t i a l  pa ra -  

mete rs  a f f e c t i n g  network c o s t s .  They a r e  a  f u n c t i o n  of t h e  s i z e  of 

t h e  p l a n t  and t h e  degree  and t y p e  of t r e a tmen t .  

A number of s t u d i e s  have been made of t h e  c o s t s  of  sewage t r e a t -  

ment p l a n t s .  A concensus e x i s t s  t h a t  a l l  t r e a tmen t  p rocesses  e x h i b i t  

s i g n i f i c a n t  economies of s c a l e .  It h a s  been found t h a t  t h e  n a t u r e  

of t h e  c o s t  f u n c t i o n  i s  such t h a t  both average  and marginal  c o s t s  

d e c l i n e  a s  t h e  s i z e  of t h e  p l a n t  i n c r e a s e s ,  and t h a t  t h e  marginal  

c o s t  of t r e a tmen t  i s  cons ide r ab ly  lower t han  t h e  average  c o s t .  

These f i n d i n g s  have led. some a n a l y s t s  t o  conclude t h a t  t h e r e  e x i s t  



T o t a l  
I systein 
1 Cost $ 

A4 A3 A2 

Area Served 

F i g u r e  (5) 

The E f f e c t  of  L i f t  S t a t i o n s  and P a r a l l e l  C o l l e c t o r  L ines  

on Network Cost  F u n c t i o n s  



s u b s t a n t i a l  economies of s c a l e  y e t  remaining a t  f a c i l i t i e s  l a r g e r  

t han  t h o s e  which have been s t u d i e d .  3 4  

Most s t u d i e s  on t h e  economics of wastewater  t r e a tmen t  f a c i l i t i e s  

have concluded t h a t  t h e  c o s t  f u n c t i o n s  of t h e  f a c i l i t i e s  can be 

expressed  by t h e  s imple  g e n e r a l  format  

S 
T o t a l  Cost ( i n  D o l l a r s )  = r P  

where P i s  t h e  popu l a t i on  se rved  ( i n  persons)  (2-2) 

r i s  a  c o e f f i c i e n t  

and s  i s  t h e  economy of s c a l e  f a c t o r  w i th  a  v a l u e  of l e s s  t han  

u n i t y .  

Th i s  r e l a t i o n s h i p  i s  f r e q u e n t l y  expressed  i n  l oga r i t hmic  form. 

Shah and Reid have noted t h a t  economies of s c a l e  a f f e c t  t h e  u n i t  

c o n s t r u c t i o n  c o s t  of d i f f e r e n t  t y p e s  of secondary t r e a tmen t  f a c i l i t i e s  

by a  f a c t o r  which changes ve ry  l i t t l e  from type  t o  type?5  Table  (4)  

' l i s t s  c o s t  f u n c t i o n s  which a r e  c a l c u l a t e d  by reduc ing  t h e  r e l a t i o n s h i p s  

ob t a ined  by t h e  U. S. Publ ic  Hea l th  Se rv i ce  and by Robert Smith, t o  

t h e  g e n e r a l  format  of equa t i on  (22) . Smi th ' s  v a l u e s  a r e  t h e  a d j u s t e d  

average  of f o u r  t r e a tmen t  p l a n t  c o s t  s t u d i e s .  The v a l i d i t y  of a l l  

of t h e s e  s t u d i e s  a s  w e l l  a s  t h a t  of most o t h e r  s i m i l a r  s t u d i e s  does  

n o t  go beyond t r e a tmen t  p l a n t s  s e r v i n g  a  popu l a t i on  i n  exce s s  of 100- 

200 thousand persons .  Few s t u d i e s  inc luded  p l a n t s  s e r v i n g  a s  much 

a s  one m i l l i o n  persons .  V a r i a t i o n s  of t h e  format  g iven  above e x i s t .  

Regional ,  temporal ,  l o c a l  and t e c h n i c a l  d i f f e r e n c e s  account  f o r  

v a r i a t i o n s  i n  t h e  v a l u e s  of t h e  parameters  ob t a ined  by t h e  d i f f e r e n t  

r e s e a r c h e r s .  It should be c l e a r  t h a t  t h e  c o s t  f u n c t i o n s  l i s t  i n  

Tab le  (2)  r e p r e s e n t  two d i f f e r e n t  s e t s  of c o n d i t i o n s ,  and t hus  a r e  

n o t  n e c e s s a r i l y  r e a d i l y  comparable.  These f u n c t i o n s  a r e  l i s t e d  t o  

i n d i c a t e  t h e  g e n e r a l  format  and o r d e r  of magnitude of t h e  r e l a t i o n s h i p s  

involved.  

Equat ion (16) ha s  suggested t h e  e x i s t e n c e  of diseconomies of 

network s c a l e ,  a s  t h e  popula t ion  se rved  i n c r e a s e s  a t  a  g iven  d e n s i t y ,  

wh i l e  equa t i on  (22) imp l i e s  t h a t  economies of t r e a tmen t  s c a l e  e x i s t  



T a b l e  (2)  

T o t a l  Cost  F u n c t i o n s  

o f  Treatment F a c i l i t i e s  

Sources:  C a l c u l a t e d  from i n f o r m a t i o n  pub l i shed  i n :  

1. U .  S. P u b l i c  H e a l t h  S e r v i c e ,  Modern Sewage 
Treatment  P l a n t s  - How Much Do They Cos t?  
(Washington, D .  C . ,  Government P r i n t i n g  
O f f i c e ,  1964) .  

2.  Robert  Smith,  "Cost o f  Convent ional  and 
Advanced Treatment  o f  Wastewater", J o u r n a l  
o f  t h e  Water P o l l u t i o n  C o n t r o l  F e d e r a t i o n ,  
Vol. 40,  September 1968, pp. 1546-1574. 



a s  t h e  p o p u l a t i o n  se rved  i n c r e a s e s .  I n  t h e  p l a n n e r s '  s e a r c h  f o r  an  

o v e r a l l  minimum c o s t  sys tem,  t h e  t r a d e o f f s  between noda l  and network 

c o s t s  i n  an i n t e g r a t e d  c o n s t r u c t i o n  c o s t  model must be i n v e s t i g a t e d .  

Such an a n a l y s i s  h a s  n o t  been p o s s i b l e  because  of l a c k  of i n f o r m a t i o n  

concern ing  network c o s t s .  I n  a t t e m p t i n g  t o  develop a  complete  economic 

a n a l y s i s  of t h e  system, however, a  problem a r i s e s  w i t h  r e s p e c t  t o  t h e  

ranges  of v a l i d i t y  of both  t r e a t m e n t  and network c o s t  f u n c t i o n s .  Both 

have been d e r i v e d  and have been shown t o  ho ld  w i t h i n  a  l i m i t e d  popu- 

l a t i o n  range .  The f o l l o w i n g  a n a l y s i s  assumes t h a t  t h e s e  c o s t  f u n c t i o n s  

can be e x t r a p o l a t e d  t o  cover  t h e  u n t e s t e d  ranges  of h i g h e r  p o p u l a t i o n s .  

Treatment  p l a n t  o p e r a t i o n ,  r e p a i r  and maintenance c o s t s  can be 

c l a s s i f i e d  a s  e i t h e r  long-run o r  s h o r t , r u n .  The f i r s t  t y p e  i s  t h a t  

which i s  a f f e c t e d  by t h e  s i z e  of t h e  p l a n t  and should t h u s  be an  

i n p u t  i n t o  t h e  sys tem p lann ing  p r o c e s s .  The second i s  a  f u n c t i o n  of 

t h e  volume of f low pass ing  through t h e  p l a n t  i n  a  g iven  per iod  of 

t i m e ,  once i t  i s  put i n  o p e r a t i o n .  Opera t ion ,  r e p a i r  and maintenance 

, c o s t s  cou ld  be i n c l u d e d  i n  t h e  a n a l y s i s  by adding t h e  p r e s e n t  worth 

of t h e i r  t o t a l  o u t l a y s  over  t h e  l i f e  of t h e  f a c i l i t y  t o  t h e  p r e s e n t  

worth of t h e  network and noda l  c o n s t r u c t i o n  c o s t s .  

The p receed ing  a n a l y s i s  can be summarized i n  a  f a s h i o n  analogous 

t o  t h e  f a m i l i a r  t h e o r y  of c o s t  i n  microeconomics. The long-run 

p lann ing  d e c i s i o n s  concern ing  t h e  p r o v i s i o n  of a  wastewater  c o l l e c t i o n  

and t r e a t m e n t  s e r v i c e  a r e  n o t  d i s s i m i l a r  t o  t h o s e  f a c i n g  an  e n t e r -  

preneur  embarking on a  major inves tment .  

The long-run t o t a l  c o s t  f u n c t i o n  f o r  t h e  complete  sys tem can be 

d e r i v e d  by adding t h e  t o t a l  c o s t  f u n c t i o n s  f o r  t h e  network and p l a n t  

components. The average  and marg ina l  c o s t s  f o r  each component and 

f o r  t h e  t o t a l  sys tem can a l s o  be d e r i v e d .  These r e l a t i o n s h i p s  a r e  

shown i n  F i g u r e  6 .  The average  t o t a l  c o s t  h a s  t h e  u s u a l  U-shape. 

The l a r g e  f a i r l y  f l a t  p o r t i o n  i n d i c a t e s  t h a t  diseconomies of s c a l e  

may n o t  be  i n c u r r e d  u n t i l  t h e  s i z e  of t h e  system becomes v e r y  l a r g e .  

An example c a l c u l a t i o n  of t h i s  s i z e  u s i n g  Robert  Smi th ' s  e s t i m a t i n g  

formula f o r  a c t i v a t e d  s ludge  t r e a t m e n t  f a c i l i t i e s  and t h e  network c o s t  

model developed above f o r  a  10-Acre s u b d i v i s i o n  a s  g iven  by e q u a t i o n s  
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Popula t ion  
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F igu re  (6)  

Long-run Cost Curves 



(18) and (21) , has been performed using gross development densities 
of 10, 25, 50, 100 and 150 persons per acre. The total population 

served at the minimum average cost point are given in Table 3. These 

calculations do not consider the effects of pumping or parallel 

collection line on the network cost functions. 

While the figures used in the above exercise are by no means 

universal, and should be only considered as part of an hypothetical 

example, some general tentative conclusions can be drawn from them. 

The most obvious conclusion being that the minimum-cost size of a 

wastewater collection and treatment service is very sensitive to the 

density of development in the area being served. This would suggest 

the need for refining the basic network cost model. The value of such 

refinements, however, is partly offset by the fact that the integrated 

unit cost curve contains a fairly large flat portion. For the case 

of a gross density of 25 persons per acre, for example, the minimum 

per capita cost is $69.6 for a population of 125,300 persons, and it 

'goes up to about $69.7 at populations of 100,000 and 200,000. While 

even such small variations in unit cost can result in substantial 

savings in the overall capital cost of the project, the marginal 

sensitivity of unit cost to size around the minimum suggests and de- 

termines the limits on time, effort and resources which should be 

spent on determining the size of the optimal service area. 

It should be noted, that the hypothetical figures derived above, 

imply the assumption that the economies and diseconomies of scale 

which have been observed in treatment and network costs continue & 
infinitum. The fact that this is not necessarily true, as shown by 

such effects as pumping and parallel collectors in the case of networks 

and by technological limitations and possible diseconomies in the case 

of treatment plants, emphasizes the need for further investigating the 

behavior of the basic cost functions. 



Table  (3)  

An I l l u s t r a t i v e  Example 

of Hypo the t i c a l  Popu l a t i on  and Area 

R e s u l t i n g  i n  Minimum Per Capi ta  Cos t s  



CONCLUSIONS 

T h i s  s t u d y  h a s  been d i r e c t e d  toward t h e  e x p l o r a t i o n  of t h e  

i n t e r f a c e  between p u b l i c  s e r v i c e  systems and p a t t e r n s  of u rban  

developments.  I n  do ing  s o ,  i t  h a s  focused  on a  s i n g l e  s e r v i c e  com- 

p r i s i n g  of a  s i g n i f i c a n t  p u b l i c  works component, namely u rban  waste-  

wa te r  c o l l e c t i o n .  P a t t e r n s  of urban development de te rmine  t h e  demand 

f u n c t i o n  f o r  a  p u b l i c  s e r v i c e ,  w h i l e  t h e  t echnology  of  p r o v i d i n g  t h e  

s e r v i c e  de te rmines  i t s  supply f u n c t i o n .  A planner  seeks  t o  r e c o n c i l e  

supp ly  and demand i n  t h e  most s o c i a l l y  d e s i r a b l e  manner. One common 

approach t o  gauging s o c i a l  d e s i r a b i l i t y  i n  a  r e s o u r c e  consc ious  

s o c i e t y  i s  t o  f i n d  a  s o l u t i o n  r e s u l t i n g  i n  t h e  minimum c o s t  pe r  

c a p i t a .  T h i s  approach h a s  been c r i t i z e d  on t h e  grounds t h a t  it 

i m p l i c i t l y  assumes o u t p u t s  t o  b e  c o n s t a n t ,  and t h u s  i s  o n l y  concerned 
3 6 , w i t h  t h e  e x p l i c i t  min imiza t ion  of i n p u t s .  The assumption of f i x e d  

o u t p u t s  i s  n o t  a n  u n r e a l i s t i c  one i n  t h e  c o n t e x t  of urban p u b l i c  

u t i l i t i e s ,  where t h e  major concern  i s  w i t h  t h e  p r o v i s i o n  of adequa te  

s e r v i c e .  Within  such a  c o n t e x t ,  t h e  p r o v i s i o n  of a  d e f i c i e n t  s e r v i c e  

o f t e n  c a u s e s  l a r g e  i n d i r e c t  c o s t s  t o  u s e r s ,  and i s  t h u s  u n a c c e p t a b l e ,  

w h i l e  t h e  p r o v i s i o n  of a n  e x c e s s i v e  supp ly  might n o t  produce any 

a d d i t i o n a l  b e n e f i t s .  

I n  e x p l o r i n g  t h e  i n t e r f a c e  between s e r v i c e  technology and u rban  

s t r u c t u r e ,  t h e  s t u d y  h a s  focused  on two b a s i c  c o n c e p t s  which a r e  

c o n s i d e r e d  t o  be  c e n t r a l  t o  t h e  r a t i o n a l  d e s i g n  of i n t e g r a t e d  urban 

systems.  These two c o n c e p t s  a r e :  

1. The concept  of "op t imiza t ion"  which g e n e r a l l y  d e s c r i b e s  

t h e  p r o c e s s  of o b t a i n i n g  t h e  "bes t "  s o l u t i o n .  For t h e  pur -  

poses  of t h i s  s t u d y ,  t h e  "bes t "  s o l u t i o n  i s  d e f i n e d  t o  be  

t h e  "minimum-cost" s o l u t i o n .  No t h e o r e t i c a l .  g e n e r a l i z a t i o n s  

c a n  b e  made about  an  u rban  s e r v i c e  u n l e s s  a  normat ive  most 

e f f i c i e n t  s o l u t i o n  c a n  be  o b t a i n e d .  O p t i m i z a t i o n  i s  

i n h e r e n t  i n  t h e  development of "p roduc t ion  f u n c t i o n s "  which 



d e f i n e ,  on t h e  b a s i s  of a  g i v e n  t echnology ,  t h e  maximum 

amount of o u t p u t  t h a t  can be  o b t a i n e d  from a  g i v e n  q u a n t i t y  

of i n p u t .  

2 .  The concep t  of t h e  " c o s t  f u n c t i o n "  which maps t h e  minimum 

monetary i n p u t  r e q u i r e d  t o  produce a  g i v e n  q u a n t i t y  of o u t p u t .  

A c o s t  f u n c t i o n  i s  g e n e r a t e d  from t h e  p roduc t ion  f u n c t i o n ,  

and i m p l i e s  t h a t  t h e  problem of optimum i n p u t  combinat ions  

h a s  been so lved .  The c o s t  f u n c t i o n  can  b e  w r i t t e n  i n  terms 

of u n i t s  of demand, such a s  p o p u l a t i o n ,  and a r e a  o r  i n  

t e rms  of i n t e n s i t y  of demand such a s  p o p u l a t i o n  d e n s i t y .  

Whichever t h e  c a s e ,  t h e  c o s t  f u n c t i o n  b r i d g e s  t h e  gap between 

s e r v i c e  technology and urban form and s t r u c t u r e .  I f  it 

cou ld  be  d e r i v e d ,  t h e n  i t  should prove t o  b e  a  u s e f u l  t o o l  

f o r  t h e  p l a n n e r ,  d e s i g n e r  and decis ion-maker  i n  t h e  p u b l i c  

s e c t o r .  

The f o l l o w i n g  paragraphs  w i l l  b r i e f l y  d e s c r i b e  t h e  methodology 

1 and f i n d i n g s  of t h e  s t u d y .  The p r a c t i c a l  i m p l i c a t i o n s  of t h e s e  

f i n d i n g s  and sugges ted  a r e a s  of e x t e n s i o n s  and f u r t h e r  r e s e a r c h  a r e  

a l s o  o u t l i n e d .  

The Opt imiza t ion  Model 

The methodology of urban wastewater  c o l l e c t i o n  network d e s i g n  h a s  

n o t  undergone any b a s i c  changes i n  a  long t i m e .  It b a s i c a l l y  i n v o l v e s  

l a y i n g  o u t  a  network a long  e x i s t i n g  and proposed s t r e e t  sys tems,  and 

t h e n  d e s i g n i n g  each l i n k  i n  t h e  network a s  a  s e p a r a t e  e lement .  The 

d e s i g n  i s  based on c e r t a i n  h y d r a u l i c  r e l a t i o n s h i p s  and i s  c o n s t r a i n e d  

by d e s i g n  c r i t e r i a  and s t a n d a r d s .  T h i s  methodology s e e k s  t o  approach 

o p t i m a l i t y  th rough  t h e  " p r o f e s s i o n a l  judgment" and "exper ience"  of 

t h e  d e s i g n e r .  It does  n o t  r i g o r o u s l y  i n c o r p o r a t e  t h e  economics of 

t h e  sys tem i n t o  t h e  d e s i g n  p r o c e s s .  The f i r s t  problem which t h u s  had 

t o  be  a t t a c k e d  was t h a t  of c o n s c i o u s l y  approach ing  t h e  optimum i n  t h e  

d e s i g n  p r o c e s s  i t s e l f .  T h i s  invo lved  a  d e t a i l e d  a n a l y s i s  of t h e  t e c h -  

nology and economics of f low i n  g r a v i t y  sewers .  Data on t h e  c o s t  of 
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construction of sewerlines were collected. They were found to fit 

a mathematical model composed of a linear combination of the squares 

of conduit diameter and depth of excavation. On the basis of this 

relationship as well as the hydraulics of flow and design criteria, a 

series of cost functions was developed to indicate the cost behavior 

of a single sewerline accomodating different levels of demand. The 

mathematical derivation of these functions is, of course, based on a 

optimal design. 

The next step has been to investigate the question of system 

optimality. These functions were used as a basic input to a non- 

linear programming model which generates a minimum-cost design and 

a cost estimate for a chosen wastewater collection network or for a 

set of alternative network layouts. This model has been adapted for 

solution by commercially available computer programs. 

In an era of increasing demand for urban services, and the 

accompanying phenomena of increasing costs and scarcity of resources, 

the importance of the existence of such an operational tool can be 

hardly underestimated. It: 

1. Allows the testing of alternative wastewater collection 

network and system designs. The time and costs involved 

in designing and estimating such systems have hitherto 

limited this activity to a very small number of alternatives 

at the very best. By far the most common practice involves 

designing and estimating a single system. The analysis of a 

larger number of alternatives can conceivably result in 

appreciable savings. Alternatives can be defined in their 

spatial, temporal or technological contexts. 

2. Allows the analysis of the wastewater collection cost 

implications of alternative urban designs and the mapping of 

network cost functions for varying design parameters. 

3. Allows the rigorous incorporation into the design process of 

such important local consideration as relative factor prices, 

different technological capabilities of the construction 

industry, subsurface conditions and other economic, geographic 



and t e c h n o l o g i c a l  f e a t u r e s  of  t h e  s e r v i c e  a r e a .  

4.  Allows t h e  i n v e s t i g a t i o n  of t h e  c o s t  i m p l i c a t i o n s  of waste-  

w a t e r  c o l l e c t i o n  d e s i g n  s t a n d a r d s  and c r i t e r i a .  Th i s  i n c l u d e s  

such requ i rements  a s  t h e  minimum and maximum a l l o w a b l e  

v e l o c i t i e s ,  t h e  peak laverage  f low r a t i o ,  t h e  minimum a l low-  

a b l e  p i p e  d i a m e t e r  and t h e  minimum a l l o w a b l e  p i p e  c o v e r .  

5 .  Allows t h e  i n v e s t i g a t i o n  of t h e  c o s t  i m p l i c a t i o n s  of a l t e r -  

n a t i v e  t e c h n o l o g i c a l  o p t i o n s ,  such  a s  t h e  use  o f  d i f f e r e n t  

p i p e  m a t e r i a l ,  and t h e  i n s t a l l a t i o n  of l i f t  s t a t i o n s  and 

p a r a l l e l  c o l l e c t o r  l i n e s .  

The p r e s e n t  r e s e a r c h  s u g g e s t s  a  s e q u e n t i a l  network d e s i g n  

p r o c e s s ,  whereby a  "good network l a y o u t  i s  s e l e c t e d ,  and t h e  o p t i m a l  

d e s i g n  f o r  t h i s  network i s  g e n e r a t e d .  F u r t h e r  r e s e a r c h  i s  war ran ted  

i n t o  t h e  problem of s i m u l t a n e o u s l y  s e l e c t i n g  t h e  minimum-cost l a y o u t  

and d e s i g n .  F u r t h e r  p o s s i b l e  r e f inements  i n c l u d e  t h e  s o l u t i o n  of  t h e  

d e s i g n  problem a s  a n  i n t e g e r  n o n - l i n e a r  programming problem. No ' 
a l g o r i t h m s  a r e  a s  y e t  a v a i l a b l e  t o  make such a  r e f inement  p o s s i b l e .  

Network Cost  F u n c t i o n s  

A  second b a s i c  o u t p u t  of t h i s  r e s e a r c h  h a s  been t o  demons t ra te  

t h e  p o s s i b i l i t y  of  g e n e r a t i n g  was tewate r  c o l l e c t i o n  c o s t  f u n c t i o n s  f o r  

a  g iven  a r e a  on t h e  b a s i s  of l o c a l  i n f o r m a t i o n .  These c o s t  f u n c t i o n s  

map t h e  l o c u s  of  a l l  p o i n t s  r e l a t i n g  minimum network c o s t  and some 

paramete r  o f  urban s t r u c t u r e .  When t h i s  l o c u s  was mapped f o r  c o s t  v s .  

p o p u l a t i o n  d e n s i t y ,  i t  was found t h a t  a  minimum-cost d e n s i t y  e x i s t e d  

( s e e  F i g u r e  3 ). This  i s  t r u e  because  each  sys tem i s  composed of  b o t h  

f u l l y  and p a r t i a l l y  u t i l i z e d  l i n k s .  The f i r s t  type  e x h i b i t s  economies 

of  s c a l e ,  w h i l e  e x i s t e n c e  of  t h e  second adds  t o  t h i s  b a s i c  c o s t  func- 

t i o n  a  p e n a l t y  f u n c t i o n  which d e c r e a s e s  a s  t h e  d e n s i t y  i n c r e a s e s .  The 

minimum-cost d i n s i t y  seems t o  l i e  a t  v a l u e s  which a r e  o f  common p r a c -  

t i c a l  s i g n i f i c a n c e  and t o  i n c r e a s e  a s  t h e  a v e r a g e  b u i l d i n g - b l o c k  a r e a  

d e c r e a s e s  ( o r  a s  t h e  s t r e e t  d e n s i t y  i n  f e e t  p e r  a c r e  i n c r e a s e s ) .  



T o t a l  network c o s t s  f o r  a  g iven  p o p u l a t i o n  d e n s i t y  a r e  shown t o  e x h i -  

b i t  d iseconomies  of s c a l e  a s  t h e  t o t a l  a r e a  ( o r  p o p u l a t i o n )  se rved  i s  

i n c r e a s e d .  Th i s  i n d i c a t e s  a  c o n t i n u o u s l y  i n c r e a s i n g  u n i t  c o s t  a s  t h e  

s i z e  of a  c o n s t a n t - d e n s i t y  s e r v i c e  a r e a  i s  i n c r e a s e d .  

The b a s i c  c o s t  f u n c t i o n s  which have been developed f o r  b o t h  l i n k s  

and networks  s p e l l  o u t  t h e  n a t u r e  of t h e  complementa r i ty  t h a t  e x i s t s  

between t h e  e f f e c t s  on c o s t  o f  t h e  two o u t p u t s  of was tewate r  c o l l e c t i o n  

network,  namely: q u a n t i t y  of f low and a r e a  of  s e r v i c e .  A t  a  g iven  

l e v e l  of inves tment  t r a d e o f f s  e x i s t  between t h e s e  two measures  of  

s y s  tem o u t p u t .  

The f a c t  t h a t  network c o s t  f u n c t i o n s  c a n  be  g e n e r a t e d  f o r  a  

g iven  a r e a  h a s  a  number of  i m p l i c a t i o n s  f o r  t h e  p l a n n i n g ,  d e s i g n  and 

management of  t h e s e  networks .  Among t h e s e  i m p l i c a t i o n s  a r e  t h e  

f o l l o w i n g :  

1. I f  t h e  p o p u l a t i o n  d e n s i t y  i n  a n  a r e a  f o r  which a  mass waste-  
# w a t e r  c o l l e c t i o n  network i s  d e s i r e d  i s  l e s s  t h a n  t h e  minimum- 

c o s t  d e n s i t y ,  t h e n  s e r i o u s  c o n s i d e r a t i o n  should  be g iven  t o  

non-conven t iona l  c o s t - s a v i n g  methods. These i n c l u d e  t h e  

p o s s i b i l i t y  of d e s i g n i n g  t h e  sys tem f o r  some h i g h e r  d e n s i t y  

o r  r e l a x i n g  t h e  s t a n d a r d  v e l o c i t y  c o n s t r a i n t s .  The b e n e f i t s  

d e r i v e d  from such a c t i o n s  must be  weighed a g a i n s t  t h e  c o s t  of 

some remedia l  a c t i o n  such a s  f l u s h i n g  and c l e a n i n g .  

2. I f  b o t h  e x i s t i n g  and f u t u r e  c o s t - d e n s i t y  p o i n t s  l i e  on t h e  

r i s i n g  p o r t i o n  of t h e  c u r v e ,  t h e n  t h e  d e s i g n e r  must choose  

h i s  p l a n n i n g  h o r i z o n  i n  such a  way a s  t o  b a l a n c e  t h e  economies 

of s c a l e  and t h e  c o s t  of money e f f e c t s .  Such a  b a l a n c e  w i l l  

de te rmine  t h e  op t imal  p l a n n i n g  h o r i z o n ,  and t h u s  t h e  economi- 

c a l  amount of a d d i t i o n a l  c a p a c i t y  t o  be b u i l t  i n t o  t h e  sys tem.  

3 .  While t h e  development of  c o s t  f u n c t i o n s  c a n  c o n t r i b u t e  t o  t h e  

e f f i c i e n t  p l a n n i n g  and d e s i g n  of  was tewate r  c o l l e c t i o n  network,  

i t  can  a l s o  c o n t r i b u t e  t o  s o l v i n g  t h e  problem of  f i n d i n g  a  

formula f o r  t h e  e q u i t a b l e  a l l o c a t i o n  of  c o s t s  among t h e  bene- 



f i c i a r i e s  of the  system. The e x i s t e n c e  of an o p e r a t i o n a l  

methodology f o r  genera t ing  des igns ,  e s t ima te s  and c o s t  

func t ions  al lows f o r  t he  p a r t i t i o n i n g  of t he  t o t a l  network 

c o s t  between p re sen t  and f u t u r e  u s e r s ,  a s  w e l l  a s  among 

use r s  with d i f f e r e n t  l oca t ions  and waste  genera t ion  r a t e s .  

Such a  three-dimensional s p l i t  of c o s t  can f o r  the b a s i s  f o r  

an  e q u i t a b l e  d i s t r i b u t i o n  of  c o s t s  among system u s e r s ,  both 

p re sen t  and p o t e n t i a l .  It a l s o  al lows a  f r e s h  look a t  t he  

m u l t i p l i c i t y  of  e x i s t i n g  wastewater d i s p o s a l  p r i c i n g  

s t r u c t u r e s .  

4. While i t  i s  r e a l i z e d  t h a t  the  c o s t  of wastewater c o l l e c t i o n  

i s  by no means the  on ly ,  l e t  a long the  most important ,  con- 

s i d e r a t i o n  i s  land use planning,  y e t  a  r igorous  a n a l y s i s  of 

t he  c o s t  imp l i ca t i ons  of var ious  land use  p a t t e r n s  i s  v i t a l .  

Cost func t ions  such a s  those developed i n  t h i s  d i s s e r t a t i o n  
, form an  i n t e r f a c e  between land-use and publ ic  u t i l i t y  n e t -  

work planning.  They provide t he  t o o l s  f o r  ana lyz ing  some 

c o s t  and performance imp l i ca t i ons  of land-use and zoning 

p o l i c i e s .  

Fur ther  r e sea rch  i n t o  the  c h a r a c t e r i s t i c s  of network c o s t  func- 

t i o n s  should a l s o  be d i r e c t e d  towards the  q u a n t i t a t i v e  de te rmina t ion  

of the  changes i n  network c o s t s  r e s u l t i n g  from the  i n s t a l l a t i o n  of 

l i f t - s t a t i o n s  which incorpora te  such f a c t o r s  a s  the  e f f e c t  of va r ious  

s p a t i a l  d e n s i t y  d i s t r i b u t i o n s  of demand w i l l  conceivably add t o  t h e  

p r a c t i c a l  va lue  of the f i nd ings  repor ted  he re in .  

I n t e g r a t e d  Serv ice  Cost Funct ions 

While no previous a n a l y s i s  of network c o s t  func t ions  e x i s t e d  , 
s i m i l a r  c o s t  r e l a t i o n s h i p s  have been empi r i ca l l y  e s t a b l i s h e d  by a  

number of i n v e s t i g a t o r s  f o r  c e n t r a l  t reatment  f a c i l i t i e s .  These two 

func t ions  can  be added t o  o b t a i n  an i n t e g r a t e d  s e r v i c e  c o s t  func t ion .  



While pe r  c a p i t a  network c o s t s  have been shown t o  i nc rease  a t  a  

dec reas ing  r a t e  a s  t h e  a r e a  (or  popula t ion)  i s  increased a t  a  given 

d e n s i t y ,  pe r  c a p i t a  t reatment  c o s t s  i n d i c a t e  a  continuous decrease  

w i th  i nc reas ing  s i z e .  The r e s u l t i n g  o v e r a l l  u n i t  c o s t  curve has t he  

convent iona l  u-shape, which i n d i c a t e s  the  e x i s t e n c e  of a  minimum-cost 

s i z e  f o r  a  wastewater d i s p o s a l  s e r v i c e  a r ea .  The l a r g e  f l a t  p o r t i o n  

of t h e  curve suggests  an i n s e n s i t i v i t y  of u n i t  c o s t  t o  s i z e  around t h e  

minimum. This s tudy  a l s o  shows t h a t  t h i s  s i z e  i s  h ighly  s e n s i t i v e  t o  

t he  popula t ion  d e n s i t y  i n  t h e  a r e a  being served.  The minimum-cost 

s i z e  of t he  s e r v i c e  a r e a  drops apprec iab ly  i n  low d e n s i t y  developments. 

This sugges ts  t he  need f o r  i nco rpo ra t i ng  t h i s  type of a n a l y s i s  of t h e  

a l t e r n a t i v e  courses  of a c t i o n  i n  r e g i o n a l  wastewater c o l l e c t i o n  and 

d i s p o s a l  planning s t u d i e s .  A t  h igh d e n s i t i e s ,  however, t he  economies 

of t rea tment  s c a l e  tend t o  a lmost  coun te rac t  t h e  diseconomies of n e t -  

work s c a l e ,  wi th  t he  r e s u l t i n g  minimum-cost s i z e  assuming f a i r l y  

l a r g e  t h e o r e t i c a l  va lues .  

The i n t e g r a t e d  s e r v i c e  c o s t  func t ion  can a l s o  be used t o  determine 

whether a  mass wastewater c o l l e c t i o n  network i s  economically j u s t i f i a b l e  

This involves  t h e  development of the  c o s t  func t ion  of i nd iv idua l  d i s -  

posa l  systems (such a s  s e p t i c  t anks ) .  The p o i n t  of i n t e r s e c t i o n  of t h e  

two curves  determines t he  cu t -o f f  p o i n t  beyond which a  mass system i s  

v i ab l e .  S i m i l a r  ana lyses  of new technologies  can a l s o  be undertaken. 

F i n a l l y ,  i t  should be pointed o u t ,  t h a t  the  concepts  which have 

been pursued i n  t h i s  r e p o r t  and appl ied  t o  t h e  urban wastewater 

c o l l e c t i o n  func t ion ,  should be equa l ly  a p p l i c a b l e  t o  o t h e r  urban pub l i c  

u t i l i t i e s  and se rv i ce s .  The comprehension of t he  c o s t  behavior  of t he  

bas i c  elements which make up the  i n t e rming l ing  f a b r i c  of urban s e r v i c e  

networks and te rmina ls  i s  a  necessary p r e r e q u i s i t e  t o  the  understanding 

of the  i n t e r a c t i o n  between land-use and urban s e r v i c e s .  Such an under- 

s t and ing  i s  a  v i t a l  component of t he  r a t i o n a l  approach t o  urban systems 

planning . 
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