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ABSTRACT 

MATHEMATICAL METHODS FOR USE 
IN PLANNING REGIONAL 

WASTEWATER TREATMENT SYSTEMS 

A mathematical method presented here deals with regionali- 
zation of wastewater systems, a complex public sector planning 
problem. The method proposed focuses on generating alternative 
physical plans efficiently and systematically so that planning 
issues other than economic efficiency may be meaningfully 
integrated into the process of comparing alternative plans. 
Such a method, although simple in concept, can aid analysts in 
developing insights. 

Two types of alternative plans can be generated by the 
method, single-time period plans and simplified multiperiod 
plans. In generating alternative plans, the method takes 
advantage of the structure of a branch-and-bound algorithm. 
A branch-and-bound tree may be transformed into a matrix 
called the imputed value incidence matrix which displays the 
incidence relationship between each of the alternative plans 
and the state of variables (regional facilities) associated 
with it. Once the matrix is constructed the imputed value of 
a given variable or a given set of variables can be obtained 
from the matrix. 

An application of the method to a realistic example 
problem is presented and the interpretation of imputed values 
is discussed. 

Nakamura, Masahisa 
Brill, E. Downey, Jr. 
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Final report to the Office of Water Resources Research, 
Department of the Interior on Allotment Project 
No. A-082-ILL, November 1977, 168 p. 
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PREFACE 

The premise of this study has been that planning regional 
wastewater treatment systems is a complex public-sector problem 
and therefore the role of mathematical methods is limited. The 
first step in the research was to develop a branch-and-bound 
method which is simple to use in a single-time period problem; 
the method was specifically designed for generating alternative 
solutions efficiently. The second step was an extension of the 
method to include some features of the multiperiod planning 
problem where wastewater loads increase over time. The approach 
was to retain simplicity in generating alternatives at the 
expense of precision in obtaining a least-cost solution. The 
third step was to develop a method for examining the imputed 
values of individual facilities or groups of them; the procedure 
was designed for use in synthesizing a final plan. 

An earlier Water Resources Center report, The Japaneae 
RegiunaL WaaXewaXek TkeaXmenX SyaXema, Reaeakch RepokX No. 1 2 9 ,  
describes the complexity of such planning problems and sets 
the stage for the mathematical methods described herein. 
Although parts of the mathematical underpinnings are somewhat 
complex, the tools are easy to employ using a simple Fortran IV 
computer program. The design of these tools reflects the fact 
that they were specifically developed for use within a larger 
planning process; they are significantly different than methods 
designed for obtaining a "least cost" or "best compromise" 
solution. The approach described can also be applied to gain 
insights about other planning problems with economies of scale 
in potential facilities. 
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1, INTRODUCTION 

1.1 Preliminaries 

"The purpose of computing is insight, not numbers," 

stated R. W. Hamming (1962) in his book on numerical methods 

of analysis. The statement reflects clearly the feeling of 

many researchers who apply mathematical methods to the analysis 

of various planning problems in the private and public sectors. 

The truth of this statement, however, applies more strongly in 

the public sector because of the multiplicity of the planning 

issues involved. A comprehensive set of numbers that adequately 

reflect all of the issues is often very hard to come by. 

Planning regional wastewater systems is an exceedingly 

difficult public sector problem. The issues involved are 

usually very complex, diverse and interdependent. The resolution 

of some of the conflicting objectives is often beyond the scope 

of numbers obtained through mathematical analysis. The role of 

mathematical models for regionalization, therefore, seems to be 

limited to providing insight. The question posed here, then, 

is "How can a mathematical model be made to provide useful 

information on widely different alternatives most efficiently 

and most meaningfully?" This dissertation presents one mathema- 

tical model specifically designed for generating and comparing 

physical alternative plans for regional wastewater systems. 

1.2 Regionalization and Planning Issues 

During the last few decades regional management of waste- 

water collection and treatment has become a matter of concern 

in many metropolitan areas and in many cities and townships. 

In particular, the United States Congress passed the Federal 

Water Pollution Control Act Amendment of 1972 (PL 92-500) which 

requires stringent water quality management practices by 

municipalities and industries in the near future. Section 208 

of the law requires regional facility planning. 



This trend is not limited to the United States. Many of 

the developed nations have been and are today under severe 

pressure to cope with environmental pollution problems caused by 

rapid urbanization and industrialization (e.g., see Kelley, e.f. 

at., 1976). Regional wastewater management has been considered 

one of the most effective means of coping with water pollution 

as well as water resources management problems (e.g., Canham, ex 

at., 1971, and Lyon, 1967). Regional management in these nations 

where there are existing facilities may or may not lead to region- 

alization, the process of utilizing joint, or central, plants to 

serve several communities. Many of the developing parts of the 

world also face similar pollution problems because of extreme 

population densities now and in the future and because pollution 

abatement is virtually nonexistent. In these nations where there 

are limited human and economic resources, however, regionaliza- 

tion of wastewater facilities seems to be particularly attractive 

from the economic and managerial points of view (Thomas, 1972). 

The mode of regionalization, therefore, is likely to depend 

much on the socio-economic and cultural background of a nation, 

state and locality. It also depends on the size and the physical 

state of the region under consideration. The planning issues 

raised in the process of regionalization are, thus, very diverse. 

and difficult to generalize. The existing studies are generally 

based on a specific set of experiences. For example, Metzler, e.f. 

at. (1971) have discussed past history and the current regional 

wastewater planning experiences in the state of New York. A 

discussion of institutional patterns in evolving regional water 

supply systems in some of the major metropolitan areas in the 

United States as well as in Massachusetts communities has been 

presented by Howards and Keynor (1971). Recent experiences with 

regionalization in Britain are discussed by Ardill (1974), Buck- 

ley (1975) and Okun (1975). In addition, Brill and Nakamura 

(1977-b) have provided a review of issues raised in the process 

of regionalization in Japan. 

There exist some studies, however, which review comprehen- 

sively the issues involved in regionalization. For example, 



the united States Advisory Commission on Intergovernmental 

 elations (1962) has pointed out some of the major advantages 
of regional management of water supply and sewage disposal. 

It has also discussed the difficulties encountered during the 

early experiences with regionalization in the United States. 

A summary discussion of issues to consider in planning regional 

wastewater systems appears in Butrico and Coulter (1972). 

With respect to the current federal policy of area-wide 

planning (208 planning), critical reviews and discussions of 

planning issues and planning processes have been presented by 

many (e.g., United States Environmental Protection Agency, 1973; 

National Science Foundation, 1976; Texas Advisory Commission 

on Intergovernmental Relations, 1974). 

Some of the major issues related to planning regional 

wastewater systems are: 

(1) Economies of Scale 

Regional wastewater systems usually involve joint facilities 

for treating wastewater piped from several sources. The major 

advantages of regionalization are the potential economies of 

scale in capital and operation and maintenance costs associated 

with such joint facilities (e.g., see Linzing, 1972, and Classen, 

ex ul., 1970). Of course, there are trade-offs. A system of 

large plants may require interceptor pipes, which also exhibit 

the economies of scale (Paintal, 1975), from individual waste 

sources to the central plants. Their cost may exceed the cost 

savings accruing from the economies of scale associated with 

large plants. 

(2) Plant Performance 

Large plants are considered more reliable than small plants 

because of the highly efficient management. Some of the 

contributing factors are simplified administration, concentration 

of skilled personnel, automation of auxiliary equipment, and 

reduction in the variability of wastewater quality and quantity. 

On the other hand, large effluent flows from a small number of 

plants may pose serious threats to the natural purification 

capacities of the receiving streams (Adams and Gemmell, 1973). 



( 3 )  Long Term Planning Flexibility 

While regionalization of wastewater systems may provide 

technical flexibility in meeting the comprehensive goals of 

a region, it can also be argued that a larger number of smaller 

individual systems is more flexible in coping with the unfore- 

seen future developments in socio-economic, political and 

technical affairs. 

(4) Compatibility with Existing Systems 

A regional wastewater system involving a small number of 

large facilities may significantly alter the existing condition 

of the region. For example, drainage patterns and water supply 

patterns are most likely to be significantly altered, since a 

large quantity of water is transported from many sources to 

large central treatment plants where it is discharged after 

treatment. For the same reason water reuse and recycle possi- 

bilities may be altered. Many existing land use patterns may 

be also affected. The size of a regional treatment plant may 

disturb the local living environments, and large interceptor 

pipes, once constructed, may promote unplanned growth of their 

immediate neighborhood and surrounding areas (Binkley, e t  n L . ,  

1975). Such physical alterations invariably lead to political 

involvements of the communities concerned, and often lengthy 

and expensive transactions are required to settle the jurisdic- ' 

tional conflicts. 

There are a number of other issues which are vital to the 

planning of regionalization. For example, the institutional 

and financial arrangements, which include the ownership and 

administration of the system as well as the cost allocation 

among participating municipalities and industries, are very 

important. Also legal constraints such as treatment regulations 

and water quality standards need to be carefully examined in 

planning a regional system. 

Planning regional wastewater systems, therefore, is an 

exceedingly difficult problem which involves more than just 

solving a mathematical problem. In fact, the process of reaching 

decisions about any large-scale technological projects with 



social consequences involves a highly complex human interaction 

(Manheim, 1974). Nevertheless, in the case of planning regional 

wastewater systems, many of the issues are closely related to 

the number, size and location of regional plants and interceptors, 

and location analysis by means of mathematical techniques is an 

important part of the planning process, particularly when there 

are many possible alternative physical plans. In other words, 

different physical alternatives imply, to a great extent, differ- 

ent issues and different degrees of attractiveness. 

In the following section existing mathematical methods for 

evaluating regional wastewater systems are reviewed briefly, and 

the current trend in dealing mathematically with complex public 

sector planning problems is discussed. 

1.3 Review of Mathematical Methods of Analysis 

In the body of literature dealing with analytical methods 

pertaining to water resources management, water pollution con- 

trol and other public sector planning problems, there are some 

methods which deal specifically with regional water quality 

management and regional wastewater facility planning. For 

example, since the early 1960's many attempts have been made 

to construct mathematical models which deal with the water 

quality of river basins. Various techniques have been applied 

to several versions of this problem; a review of the literature 

in this area can be found in Pentland, ex a t .  (1972) and Dracup 

(1970). A review of literature exclusively dealing with 

mathematical models of regional water quality management is 

given by Bundgaad-Nielsen and Hwang (1976). 

One group of these models emphasizes the water quality 

aspect of the regionalization problem. The significance of 

this problem was first recognized in the late 1960's and in 

the early 1970's. The principal aim of the mathematical 

modeling approaches is to find the least-costly layout for 

regional wastewater treatment plants and the associated 

interceptors while satisfying the water quality constraints. 



For example, Graves, ex al. (1970) suggest a nonlinear 

formulation that allows at-source treatment, joint treatment 

at candidate sites, and bypass piping of water in order to 

meet explicit water quality constraints. Whitlatch (1975) 

has suggested a heuristic method, and Rossman (1974) used 

nonlinear programming and dynamic programming methods for 

solving this problem. Klemetson and Grenney (1976) have 

developed a dynamic programming model which is capable of 

analyzing the staging of regional facilities. Each of those 

models, however, deals basically with regions where waste- 

water sources are located along a river. 

Mathematical methods for a network rather than linear 

configuration have also been examined in the past several 

years. Most of the formulations are modifications of general 

facility location problems involving concave cost functions 

and a single time period (Efroymson and Ray, 1966; Feldman, 

ex ul., 1966, SS, 1969). Because of the complexity of formu- 

lation, water quality constraints are generally excluded from 

these models. This separation is reasonable if high levels of 

waste treatment are assumed. For example, Meier (1971) has 

presented a branch-and-bound procedure to solve for the 

least-costly regional system. Deininger (1972) described an 

extreme point ranking algorithm for the same problem. A 

dynamic programming method for solving this problem has been 

suggested by Converse (1972). Wanielista and Bauer (1972), 

Joeres (1974) and Lauria (1975) all suggested mixed integer 

programming approaches. Also Jarvis, ex  ul. (1975) suggested 

a network formulation and a group theoretic solution approach. 

A heuristic procedure offered by McConagha and Converse (1973) 

includes an evaluation of cost savings and cost allocation 

among participating municipalities. Weeter and Belardi (1975) 

improved the heuristic algorithm developed by McConagha and 

Converse and performed some sensitivity analysis on cost 

functions. 



Some attempts have been made also to consider several 

planning periods. A heuristic method developed for general 

facility location problems has been proposed for application 

to wastewater regionalization problems by Bhalla and Rikkers 

(1971). Lauria (1975) showed that a mixed integer programming 

can be successfully applied to multiperiod analysis. Rossman 

(1977) applied the Weeter and Belardi algorithm and dynamic 

programming method to find an approximate multiperiod solution; 

his method was shown to be more efficient than the mixed inteqer 

programming approach proposed by Lauria. 

The primary emphasis of all of the works cited above 

with the possible exception of that of McConagha and Converse 

has been to achieve computational efficiency and/or mathematical 

optimality in solving for the economically most favorable 

solution. The analysis of the overall desirability of planning 

alternatives is extremely difficult. There has been, however, 

some attempt to examine analytically planning issues other than 

economic efficiency and water quality. McAvoy (1973), for 

example, has proposed an affinity coefficient matrix for analyz- 

ing the potential for regionalizing separate political entities. 

The matrix is defined by several quantitative attributes 

associated with each of the neighboring communities. Giglio 

and Wrightington (1972) have analyzed the cost-sharing aspects 

of regional wastewater systems using several methods including 

game theoretic approaches. Heaney (1975) has suggested a game 

theoretic method for analyzing equity issues for a similar 

problem, managing urban storm water. 

A review of some of the literature which presents methods 

to deal with the multiplicity of planning issues in the general 

public sector planning problems is in order at this point. One 

of the simplest and most widely practiced methods is to rely 

heavily on the judgment of an individual or a group of indi- 

viduals with experience to reduce the number of alternatives 

at the outset to a handful of good alternatives. These alter- 

natives are then examined in more detail. An example of such 



an approach to the regionalization problem is presented by 

Palm (1972). The comparison of several selected alternatives 

may be based on some systematic evaluation criteria. Benefit- 

cost analysis (e.g., Mishan, 1971) and other similar methods 

such as the Goal Achievement Matrix Method (Hill, 1973) may 

be used. 

Although such an approach may be practical, it is often 

very difficult to preclude prejudicial judgment in selecting 

the candidate solutions. More rigorous methods of analysis 

involve, in general, mathematical optimization techniques. 

The simplest method is to formulate the model with a single 

objective and multiple constraint sets, each of which represents 

one of the planning issues. However, the number of issues 

which can be accommodated by an optimization method is generally 

very limited, partly because of the limitation in mathematical 

algorithms in dealing with a large number of variables and 

constraints, and partly because some issues cannot be repre- 

sented by mathematical logic. 

On the other hand, it is quite common to make an analysis 

of some of the selected issues on an individual basis using 

some simple optimization models. For example, in the facility 

location literature, there have been attempts to analyze some 

qualitative planning factors by introducing surrogate objectives 

for social utility. A review of such methods is found in 

ReVelle, ex al. (1970). The main thrust of these attempts is 

to avoid the explicit quantifaction of qualitative factors 

involved. Similar attempts can be found in some water resources 

management problems (Cohon, 1973). 

Mathematical methods which deal with problems involving 

more than one explicitly defined objective have been gaining 

considerable attention in recent years. Such methods are 

collectively called multiobjective optimization methods 

(Cohon, 1975). According to Cohon, the methods may be classi- 

fied into three categories; generating techniques, techniques 

which rely on prior articulation of preferences, and techniques 

which rely on progressive articulation of preferences. 



The methods which belong to the first category may be considered 

basically as extensions of the single-objective optimization 

methods with multiple sets of constraints. Based on the rela- 

tionships between the constraints and objective function, one 

can generate a set of noninferior solutions among which a final 

choice can be made. The methods which belong to the second 

category are designed to take advantage of the explicitly 

expressed preference of a decision maker prior to the mathema- 

tical analysis. These methods, therefore, place a significant 

burden on the decision maker. They also hinder the process 

of gradually developing insights into the problem, unless the 

analysis can be repeated easily and efficiently. The third 

category includes the methods which are designed to moderate 

this difficulty. 

Although some attempts have been made (e.g., Cohon and 

Marks, 1973, and Haimes, ex aR.,  1977), multiobjective methods, 

in general, are in the early development stage, and practical 

applications to public sector planning problems are yet limited. 

As for possible application to facility location problems such 

as the ones for regionalization of wastewater systems, difficul- 

ties stem from the demanding mathematical structure as well as 

from the large number of issues involved. 

1.4 Research Orientation and Thesis Organization 

The orientation of this research is based on the premise 

that it is very difficult to define, much less to find by 

mathematical means the "optimal" solution to such a complex 

public sector problem as planning regional wastewater systems 

(Rittel and Webber, 1973). Difficulties arise because many 

planning issues are involved and they are all closely inter- 

related. The resolution of some of the conflicting issues is 

simply beyond the scope of mathematical analysis. Recognizing 

this, a mathematical method for generating and comparing alter- 

native plans has been proposed as an alternative to contemporary 

multiobjective optimization approaches. 



Generation of alternatives is important for two reasons. 

First, the "optimal" solution to a mathematical model is most 

likely not the "optimal" solution to the real problem. Further, 

it is quite possible that some alternatives which are consider- 

ably different from the mathematically optimal solution may 

turn out to be very attractive. Second, generating alternative 

plans is a learning process, whereby important planning issues 

may be identified and the associated economic trade-offs can be 

examined. Also the display of a range of alternatives and of 

the economic trade-offs between them provides a basis for 

developing insights into the nature of a given regionalization 

problem. 

The ability to generate alternatives mathematically depends 

on the properties of the particular modeling technique and on 

the problem to be solved. However, it is highly desirable, in 

general, for a mathematical model to satisfy the following 

criteria in order to be a useful tool for generating and com- 

paring alternative plans; such a model should be capable of: 

(1) generating many alternatives efficiently, 

(2) generating alternatives systematically based 

on some quantitative measure, such as cost, 

(3) generating alternatives in such a way that they 

may be most meaningfully related to various 

planning issues, and 

(4) generating alternatives with prespecified 

characteristics. 

Although many mathematical methods may satisfy one or more 

of these criteria, they may not be applicable to the regionali- 

zation problem because of its demanding mathematical structure. 

The branch-and-bound method presented here seems to adequately 

satisfy the above four criteria. 

Branch-and-bound algorithms have been extensively used 

in the past for solving a wide variety of combinatorial 

problems. For example, Efroymson and Ray (1965) suggested 



the use of a branch-and-bound algorithm in solving plant 

location problems using integer programming. Liebman (1967) 

presented a branch-and-bound algorithm to minimize the cost 

of wastewater treatment under equity constraints. 56 (1968) 

treated the capacitated plant location problem using an 

approximation method and a branch-and-bound algorithm. A 

combination of a network algorithm and a branch-and-bound 

technique has been suggested by Marks and Liebman (1970) for 

solving a problem of locating solid waste management facili- 

ties. Also a branch-and-bound algorithm different from the 

one presented here has been proposed by Meier (1971) for 

obtaining the least-cost solution to the problem involving 

regionalization of wastewater systems. 

A description of the basic concept and general properties 

of the algorithm is given by Agin (1966), Lawler and Wood 

(1966) and Mitten (1970). In short, such an algorithm works 

as follows. First, the entire set of alternatives may be 

partitioned into mutually exclusive subsets. Using an 

appropriate mathematical technique, lower and upper bounds 

on the least-cost alternative plan in each of the subsets 

are determined. If the lower bound found in one subset is 

greater than the upper bound in one of the other subsets, 

the least-cost solution to the entire set of alternatives 

does not belong to the former subset. Excluding such subsets, 

each of the remaining subsets may be partitioned further into 

mutually exclusive but smaller subsets, and a new bound is 

found on each of them. The process is continued until an 

alternative is found such that the lower bounds on all of the 

remaining alternatives (or the remaining subsets of alterna- 

tives) are found to exceed it. The algorithm is designed, 

therefore, to avoid complete enumeration of the feasible 

solutions. For a discussion of the planning process as a 

branch-and-bound process, the reader is referred to ~arris 

(1970) . 



The evaluation of alternatives proceeds as follows. 

The most fundamental dichotomy of alternatives in the 

regionalization problem (and other location problems) is 

the grouping of those alternatives which contain a given 

facility and those which do not. From a planning point of 

view this is quite an attractive dichotomy, since, as noted 

earlier, many of the issues to be considered in planning 

regional systems are directly related to the physical 

configuration of the network of regional facilities. If 

there is only one facility, x, which is of special interest, 

then C(x), the cost of the least-cost alternative with facility 

x, can be compared to ~ ( x ) ,  the cost of the least-cost alterna- 

tive without it. If the economic efficiency is the only 

criterion for decision making, the alternative with the lowest 

cost would be selected. However, if there are other issues 

to be considered, then the cost difference, C (x) - C (x) , can 
be evaluated. This cost difference is defined as the impuzed 
vaRue associated with facility x, and it is the basis for 

the imputed value analysis described later. 

Based on the research orientation described above a 

mathematical model has been developed in three phases. The 

first phase has been devoted to developing a basic mathematical 

method for solving the regionalization problem involving static 

(single-period) waste flows. The objective here has been to 

make the model capable of identifying systematically many 

attractive solutions while maintaining computational efficiency 

and simplicity. The basic model and analysis procedure are 

presented in Chapter 2. The second phase has been devoted to 

modifying the model to generate alternative plans while taking 

into account a simplified form of multiperiod costs. The 

approach has been to take full advantage of the attractive 

features of the method developed for the static case. The 

multiperiod case is discussed in Chapter 3. The third phase 

involves the imputed value analysis. It is based on the 

transformation of information from the branch-and-bound tree 



into a matrix called the imputed value incidence matrix. 

Chapter 4 discusses the method in detail. 

The model has been tested with a small hypothetical 

problem for each phase of development. A realistic example 

case has also been studied, as described in Chapter 5. The 

research findings are summarized, and additional discussion 

is provided in the concluding chapter. 



2. GENERATING ALTERNATIVE PLANS: A SINGLE-PERIOD CASE 

2.1 Introduction 

As described in the previous chapter, many mathematical 

methods have been proposed in the past to solve for the least- 

cost solution to the regionalization problem with single- 

period (static) waste flows. They are generally based on the 

assumption of uniform secondary treatment at each regional plant. 

This type of problem, designated as the single-period regional- 

ization problem, is considered significant primarily for two 

reasons. First, if the entire regional system is to be con- 

structed for the entire design period within a short span of 

time, the least-cost solution to the single-period regionaliza- 

tion problem should provide a reasonably attractive solution. 

Second, the least-cost solution to the single-period problem may 

be regarded as an initial estimate of the least-cost solution 

to the multiperiod (dynamic) problem. In other words, the 

dynamic cost of the regional plan identified by a single-period 

cost analysis may be regarded as an upper bound on the multi- 

period least-cost solution. Operations and maintenance (O&M) 

costs in the static problem are sometimes treated as functions 

of treatment capacity just as costs of construction. In such 

cases a formulation like the one given in this chapter involving 

construction costs can be directly modified to include O&M costs. 

If any portion of the O&M costs is regarded as a function of 

waste flows rather than capacity, then a modification of the 

model becomes necessary. One such modification is proposed in 

Section 3.3-A. 

Although the principal role of the mathematical model 

presented here is to generate alternative plans, the objective 

function of the formulation is to minimize cost. The method can, 

therefore, provide the least-cost solution to the single-period 

regionalization problem under given cost approximations. A 

special feature of the solution procedure, a branch-and-bound 

algorithm, is that it also identifies a number of alternative 



solutions. The method is also characterized by other features 

which improve computational efficiency. 

The mathematical model and an example application are 

presented in the following sections. The branch-and-bound 

method is also compared to mixed integer programming. The 

reader is referred to Brill and Nakarnura (1977-a) for an 

earlier discussion of the model presented here. 

2.2 Basic Model 

A mathematical formulation of the single-period, uniform- 

treatment regionalization problem is presented in this section. 

The concave cost functions are approximated using linear segments, 

and nonlinear constraints are associated with these segments. 

The solution method is a branch-and-bound algorithm that uses a 

network algorithm to solve subproblems. Some of the subproblems, 

however, can be readily solved by inspection steps. 

A. General Formulation of the Basic Model 

The mathematical model takes into account two types of 

regional facilities, treatment plants and interceptors. The 

mathematical objective of the model is to find the least-costly 

regional plan which specifies a configuration of plants and 

interceptors and their sizes. The formulation consists of an 

objective function and four types of constraints. 

The objective function is the minimization of the sum of 

costs of plants and interceptors. Since the cost functions 

exhibit economies of scale, they are represented by piecewise 

linear segments as shown in Figure 2.1. In this example each 

facility cost is approximated by a fixed charge and by unit 

costs associated with the two piecewise linear segments. 

In mathematical terms, the objective function is expressed 

as follows: 

Minimize : 

z = zzz Cjk fijk + 11 xij + 11 Cjk T qjk + 
yj ijk ij jk I 



Flow (MGD) 

Figure 2.1 Piecewise Approximation of a Treatment-Plant 

Cost Function with a Fixed-Charge Component 



Where the constants (upper case) and the variables (lower case) 

are : 

P 
'ijk = unit cost of the kth segment of the piecewise- 

linear cost function for constructing the 

interceptor from location i to location j 

(dollars/year/million gallons per day (MGD)), 
T Cjk = unit cost of the kth segment of the piecewise- 
- 

linear cost function for constructing a plant 

at site j (dollars/year/MGD), 

'ijk = kth piecewise variable for interceptor capacity 

from location i to location j (measured from 

break point) (MGD) , 

'jk 
= kth piecewise variable for plant capacity 

at site j (measured from break point) 

(MGD) 1 

x = fixed cost variable for constructing an interceptor i j P from location i to location j (either 0 or FCij) 

(dollars/year) , 
= fixed cost variable for constructing a plant 

T at site j (either 0 or FC. ) (dollars/year) , 
I 

= fixed cost associated with constructing an 
"ij 

interceptor from location i to location j 

(dollars/year) , and 
F C ~  = fixed cost associated with constructing a plant 

j 
at site j (dollars/year). 

The constraints given below ensure that the capacity 

variables and design flows maintain continuity at each waste 

source and at additional candidate plant sites: 

where : 

L = waste flow generated at location j (MGD). 
j 



If no waste flow is generated at location j, then L is zero. 
j 

If location j is not a candidate site for a treatment plant, 

then the term C q is omitted. 
k jk 

The second type of constraint introduces the slack 

variable corresponding to each activity variable: 

- 
fijk + sijk - Fijk V i ,  j, k (2.3) 

where: 

Fijk = upper limit of the variable fijk (MGD) , 

'jk = upper limit of q (MGD), 
jk 

S ijk = slack variable associated with fijk (MGD), 

t 
jk 

= slack variable associated with q (MGD), 
jk 

u ij = slack variable associated with xij (dollars/year), 

and 

v = slack variable associated with y (dollars/year). 
j j 

The third type of constraint is the set of nonlinear 

constraints 



where : 

= number o f  p iecewise  v a r i a b l e s  used f o r  t h e  
K i j  

c a p a c i t y  o f  an  i n t e r c e p t o r  from l o c a t i o n  i t o  

l o c a t i o n  j ,  and 

KT = number o f  p iecewise  v a r i a b l e s  used f o r  p l a n t  
j 

c a p a c i t y  a t  s i t e  j .  

The above c o n s t r a i n t s ,  t o g e t h e r  w i t h  t h o s e  of  t h e  second t y p e ,  

e n s u r e  t h a t  t h e  p iecewise  v a r i a b l e s  a s s o c i a t e d  w i t h  each  o f  

t h e  concave c o s t  f u n c t i o n s  assume nonzero v a l u e s  i n  a  p roper  

sequence.  For example, c o n s i d e r  F i g u r e  2 . 1  which i l l u s t r a t e s  

t h e  f i x e d - c o s t  component f o r  t h e  approximat ion o f  a  t r e a t m e n t  

p l a n t  c o s t  f u n c t i o n .  C o n s t r a i n t  set (2.10) r e q u i r e s  t h a t  

v = 0 (and,  t h e r e f o r e ,  T 
j 

= FC . )  b e f o r e  q can be  nonzero 
I j 1 

( t r e a t m e n t  p r o v i d e d ) .  Note t h a t  t h e  sijk and tijk s l a c k  

v a r i a b l e s  f o r  t h e  l a s t  segment of  any approximat ion a r e  n o t  

needed i n  c o n s t r a i n t  sets (2 .7)  and (2 .8)  . 
The l a s t  set o f  c o n s t r a i n t s  a r e  t h e  nonnega t i v i t y  

requ i rements :  

u i j '  

I t  shou ld  b e  no ted  t h a t  s e v e r a l  a d d i t i o n a l  t y p e s  o f  

c o n s t r a i n t s  might be u s e f u l  i n  improving t h e  computa t iona l  

e f f i c i e n c y  o f  t h e  branch-and-bound p roce s s .  Of ten  it i s  

cons ide r ed  u n d e s i r a b l e  t o  s p l i t  t h e  was te  f lows  such t h a t  two 

o r  more i n t e r c e p t o r  p i p e s  o r i g i n a t e  a t  one s i t e  o r  such t h a t  

a  p o r t i o n  o f  a  was te  f low i s  t r e a t e d  and d i s cha rged  a t  one 

s i te  and t h e  rest i s  p iped  e l sewhere  f o r  t r e a t m e n t .  I f  t h e r e  

i s  no c a p a c i t y  l i m i t  on any o f  t h e  t r e a t m e n t  p l a n t s  and 

i n t e r c e p t o r s ,  s p l i t  f lows a r e  u n a t t r a c t i v e  economical ly  

because  o f  t h e  economies of s c a l e .  S p l i t  f lows  can  b e  

p r even t ed  i n  t h e  mathemat ica l  method a s  f o l l ows .  When an  

' i j l  v a r i a b l e  i s  se t  e q u a l  t o  F 
i j l  

i n  t h e  branch-and-bound 

p r o c e s s  ( i . e . ,  when branching i n  t h e  c o n s t r a i n t ,  ' i j 2  ' 
S 
i j l  = 0 ) ,  t hen  t h e  f i j k  v a r i a b l e s  f o r  t h e  o t h e r  v a l u e s  of  



the index j would be set to zero. This requirement can be 

expressed using the following nonlinear constraint set: 

Similarly, if a q variable is set equal to Qjk, 
jk 

then all 

fjik variables can be set equal to zero. The corresponding 

mathematical constraints are: 

Additionally, it is obviously impractical and uneconomical to 

send some waste flows from i to j and some other flows from 

j to i. Therefore, the following constraint set can be added: 

U i ,  j, k 

These constraints were used in some of the example problems, 

as described in Section 2.5 and in Chapter 5. 

B. Branch-and-Bound Method for Nonlinear Binary Constraints 

The objective function (2.1) and constraint sets, (2.2) 

through (2.6), form a linear programming formulation. If this 

portion of the problem is solved alone, however, it is very 

likely that some of the nonlinear constraints, (2.7) through 

(2.10), would be violated. If so, this solution is mathemati- 

cally infeasible to the original formulation of the problem. 

However, these nonlinear constraints have a binary charac- 

beristic which suggests the following solution procedure. 

Referring to Figure 2.1, consider a nonlinear constraint 

of the form, qj2 t = 0. If such a constraint is violated, 
j 1 

then its binary characteristic can be used as a basis for a 

"branching" in a branch-and-bound algorithm. On one branch 

qj2 would be set to zero, allowing t to be nonzero and, as 
j 1 

a result, qjl to take on different values. Or, equivalently, 

if the piecewise variable associated with the second segment 



o f  t h e  cost  f u n c t i o n  f o r  p l a n t  j i s  set  t o  z e r o ,  t hen  t h e  

p iecewise  v a r i a b l e  a s s o c i a t e d  w i t h  t h e  f i r s t  segment can t a k e  

on any va lue .  On t h e  o t h e r  branch,  til would be set t o  z e r o  

( i n  p r a c t i c e  q  would s imply  be  set t o  i t s  upper bound, Q j l ) ,  
j 1 

a l l owing  q  t o  be  nonzero.  That  i s ,  i f  t h e  p iecewise  v a r i a b l e  
j2 

a s s o c i a t e d - w i t h  t h e  f i r s t  segment i s  c o n s t r a i n e d  t o  i t s  upper 

bound, t h e n  t h e  p iecewise  v a r i a b l e  a s s o c i a t e d  w i t h  t h e  second 

segment can  t a k e  on any va lue .  

These t w o  c o n d i t i o n s  exhaus t  t h e  p o s s i b i l i t i e s  f o r  

s a t i s f y i n g  t h e  n o n l i n e a r  c o n s t r a i n t ,  and l i n e a r i t y  i s  main ta ined  

i n  t h e  c o n s t r a i n t  set  a f t e r  each b ranch ing .  Each o f  t h e  two 

new l i n e a r  problems i s  so lved ,  and t h e  branch-and-bound a l g o r i t h m  

c o n t i n u e s ,  producing a  s t a n d a r d  branch-and-bound tree l i k e  t h e  

one i n  F i g u r e  2.2. When t h e r e  i s  no v i o l a t e d  n o n l i n e a r  

c o n s t r a i n t  i n  t h e  s o l u t i o n  t o  a  subproblem, t h e n  t h a t  s o l u t i o n  

p rov ide s  a  f e a s i b l e  a l t e r n a t i v e  t o  t h e  o r i g i n a l  f o rmu la t i on  of  

t h e  problem. When t h e r e  i s  no p o s s i b i l i t y  o f  f i n d i n g  a  f e a s i b l e  

a l t e r n a t i v e  c o s t i n g  less t han  a  f e a s i b l e  s o l u t i o n  a l r e a d y  

ob t a ined ,  t hen  t h e  procedure  t e r m i n a t e s .  S i m i l a r  n o n l i n e a r  

c o n s t r a i n t s  have a l s o  been sugges ted  f o r  f o rmu la t i ng  one t y p e  

o f  wa te r  q u a l i t y  management problem f o r  a  r i v e r  b a s i n ,  a l t hough  

t h e  s o l u t i o n  procedure  i n  t h a t  c a s e  i s  d i f f e r e n t  ( B r i l l ,  e t  a l . ,  

1976 ) .  

C.  So lv ing  Subproblems 

The l i n e a r  p o r t i o n  of  t h e  fo rmu la t i on  can  be so lved  u s i n g  

any v e r s i o n  o f  t h e  s implex a l g o r i t h m  f o r  l i n e a r  programming. 

The b ranch ing  can b e  performed e i t h e r  by g i v i n g  a  s u f f i c i e n t l y  

h igh  c o s t  p e n a l t y  t o  t h e  v a r i a b l e s  t o  b e  se t  t o  z e r o  o r  by 

s e t t i n g  t h e  a c t i v i t y  v a r i a b l e s  t o  t h e i r  lower o r  upper bounds 

u s i n g  c o n s t r a i n t s .  S ince  many c o n s t r a i n t s  ( S e t s  (2.31,  (2.41,  

( 2 . 5 ) ,  and ( 2 . 6 ) )  s imply  p l a c e  bounds on t h e  v a r i a b l e s ,  it 

would b e  d e s i r a b l e  t o  u se  a  l i n e a r  programming code des igned  

t o  hand l e  bounds e f f i c i e n t l y .  
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The linear programming problem considered here, however, 

can be viewed as a network flow problem. The network flow 

representation of the linear programming formulation consists 

of a set of nodes and a set of arcs. For example, Figure 2.3 

illustrates a network flow representation of a region with 

two sources, each of which can also be a plant site. Node 1 

and 2 represent waste sources and potential regional plants 

1 and 2; nodes s and t are dummy nodes. The flow from s to 

node 1 has a required flow of L1 (the waste originating at 

node l), as indicated by the lower and upper bounds. The arcs 

connecting nodes 1 and 2 represent the piecewise capacity 

variables associated with potential interceptors between the 

two sites. For example, the first piecewise variable repre- 

senting flow from site 1 to site 2 has a lower bound of zero, 
P an upper bound of F122, and a unit cost of C122. The arcs 

from nodes 1 and 2 to node t represent the piecewise capacity 

variables associated with potential plants at sites 1 and 2. 

For example, the first arc from node 1 has a lower bound of 

zero, an upper bound of Q12, and a unit cost of cT2 for the 
plant capacity located at site 1. The entire network maintains 

a circulation of flow totaling L1 + L2 as indicated by the 
lower and upper bounds on the arc from t to s. 

Referring to the original formulation, constraint set 

(2.2) represents flow conservation at the nodes and sets (2.3) 

through (2.6) represent capacity limits on the arcs. The 

objective function (2.1) corresponds to the minimization of 

costs over the entire network. The branching constraints 

required throughout the branch-and-bound algorithm can be 

readily added by setting the appropriate variables (arc flows 

in the network) to their lower or upper limits, as appropriate. 

D. Cost Approximations 

The computational effort required by the branch-and- 

bound method is greatly affected by the choice of the 





piecewise approximations of the concave cost functions. This 

issue is discussed using four alternative types of approxima- 

tions: 

(1) a fixed charge with one linear piece, FP; 

(2) two linear pieces, PP; 

( 3 )  a fixed charge with two linear pieces, FPP; and 

(4) three linear pieces, PPP. 

The latter two cases offer better approximations of the 

original function at the expense of increased computational 

requirements. Also, as shown below, the FP and FPP approxi- 

mations lead to computational advantages compared to the PP 

and PPP approximations, respectively. 

Several factors can be considered in making the piecewise 

approximations. If a treatment plant is constructed at site 

j and split flows are not allowed, the capacity will be at 

least as large as the waste flows generated at site j. 

Similarly, if an interceptor is built from any site i to j, 

the capacity will also be at least as large as the waste flows 

generated at site i. Therefore, there is no advantage to 

making the upper limit, Qjl, on the first piecewise variable 

associated with plant j less than L the amount of waste 
j 

flows generated at that site. Similarly, Fjil should not be 

less than Li. 
J 

In practice, however, the first linear segment in the 

FP approximations or in the FPP approximations may be placed 

such that the original cost function and the linear segment 

coincide at L 
j ' 

This is illustrated in Figure 2.4. The 

approximations of this particular kind are henceforth referred 

to as the FPI and FPPI to distinguish from the general fixed 

charge linear approximations. The letter I denotes the 

individual flows of L. which differ in value from one waste 
3 

source to another. 

Similarly, if the Q is placed exactly at L then PPI 
jl j 

and PPPI are used to distinguish these approximations from 

the general piecewise linear approximations. See, for example, 





the dotted line in Figure 2.4. Such approximations, however, 

can be replaced by FPI and FPPI approximations, respectively, 

with no disadvantage.. 

As shown later, the general FP and FPP approximations 

are computationally more efficient than the PP and PPP 

approximations, respectively, since there are fewer variables 

that need to be considered in solving the network problems. 

Note that in practice the branchings performed using an FP and 

FPI approximation for a treatment plant would specify q = 0 
T jl on one branch, and q > L and, in effect, 

'i = FC. on the jl - j 1 
other branch. similar brahchings would be pe;formed using the 

piping variables. 

E. Converting an Infeasible Node Solution 
to a Feasible Alternative 

As indicated above, it may be possible to reduce greatly 

the size of the branch-and-bound tree by finding a "good" 

feasible solution. Such solution could be found by using a 

heuristic algorithm similar to those developed by Kuehn and 

Hamburger (1963) and Feldman, ex aL. (1966) or by solving 

more refined problems as suggested by Lauria (1975). By using 

the method suggested here, however, a feasible upper bound can 

be obtained from each of the infeasible solutions (as they are 

determined) by the following simple conversion step. A solution 

is infeasible because one or more of the omitted, nonlinear 

constraints are violated, i.e., the piecewise variables assume 

values in an improper order. The waste flows, however, are 

physically meaningful since flow continuity is maintained and 

all wastes are treated. Only the cost calculations are in 

error because of the infeasible values of the piecewise 

variables. Thus, a feasible solution can be found simply by 

modifying the values of those piecewise variables that violate 

the omitted nonlinear constraints and by recalculating the 

objective function. For example, consider the PP case shown 

in Figure 2.5. When q = 0 and 0 < qj2 5 Qj2, the solution 
jl 
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i s  i n f e a s i b l e .  I t  can b e  made f e a s i b l e  by t h e  f o l l o w i n g  

changes  i n  t h e  v a r i a b l e  v a l u e s :  

(1) I f  0 < q  < Q j l ,  t h e n  r e p l a c e  q  and cj w i t h  j2  - j l  j2  
q i l  and q! such t h a t  q! = q j 2  and q! = 0 .  

12 I 1 12 

( 2 )  If Q j l  < q j 2  5 Q j 2 ,  t h e n  set q !  - 
I 1 - Q j l  

and 

- q i 2  - q j 2  - Q j l -  

I n  t h e  c a s e  o f  a n  FP approxi.mation a  s o l u t i o n  i s  i n f e a s i b l e  

when q  > 0 and y  < F C ~ .  I t  can  b e  c o n v e r t e d  t o  a  f e a s i b l e  
j  1 j j  

s o l u t i o n  s imply  by l e t t i n g  y  = F C ~  A f t e r  c o r r e c t i n g  t h e  
j  j  ' 

o r d e r i n g  f o r  a l l  p i e c e w i s e  v a r i a b l e s ,  t h e  t o t a l  c o s t  can  b e  

computed a c c o r d i n g l y ,  g i v i n g  a  f e a s i b l e  upper  bound (which 

i s  a n  a l t e r n a t i v e  r e g i o n a l  p l a n )  f o r  each  node i n  t h e  branch- 

and-bound tree. A s i m i l a r  p rocedure  can  b e  a p p l i e d  i n  t h e  

PPP and FPP c a s e s .  

F. O b t a i n i n g  Node S o l u t i o n  by I n s p e c t i o n  

A v e r y  powerful  s t e p  i n  t h e  branch-and-bound method i s  

based  on an  e x t e n s i o n  o f  t h e  above d i s c u s s i o n  o n  f i n d i n g  

f e a s i b l e  s o l u t i o n s ;  one  may o b t a i n  t h e  s o l u t i o n  f o r  some o f  

t h e  immedia te ly  f o l l o w i n g  nodes by i n s p e c t i o n .  Cons ide r  t h e  

PP c a s e  shown i n  F i g u r e  2.5. Assume t h a t  t h e  c u r r e n t  s o l u t i o n  

g i v e s  q  = 0 and Q j l  < q j 2  < Q j 2 .  S i n c e  it i s  i n f e a s i b l e ,  
j 1 

a  b r a n c h i n g  i s  performed i n  such  a  way t h a t  t i s  set t o  
j l  

z e r o  ( t h u s  q  i s  set t o  Q ) on one  b ranch  (b ranch  o n e ) ,  
j l  j l  

and q  i s  set t o  z e r o  on t h e  o t h e r  (b ranch  t w o ) .  Then, t h e  
j2  

o b j e c t i v e  f u n c t i o n  v a l u e  a s s o c i a t e d  w i t h  t h e  new node on 

b ranch  one ,  Cn,  i s  g i v e n  by: 

where Cc i s  t h e  t o t a l  c o s t  f o r  t h e  c u r r e n t  i n f e a s i b l e  node. 

The s u b s c r i p t s  " n "  and "c" r e f e r  t o  "new" and " c u r r e n t " ,  

r e s p e c t i v e l y .  I n  o t h e r  words,  t h e  o n l y  change i s  t h a t  q  
j 1 



is increased by Qjl, while q is decreased by the same amount. 
j 2 

Both before and after the modifications the value of q is 
j 2 

greater than zero and less than its upper limit. since there 

are no advantages in increasing or decreasing the value of q 

before the modifications are made, there are also none after 
j2 

they are made. It can be readily proven that all of the other 

variables would remain unchanged, and, as a result the next 

node solution is obtained by this inspection step. Similar 

methods of inspection can also be made to obtain the upper bound 

for some ofthe immediately following nodes also (see Brill 

and Nakamura (1977-a)). 

When the current solution has many infeasibilities like 

the one described above, an additional node can be evaluated 

by inspection for each infeasibility. That is, a limb of the 

tree can be grown using a sequence of branches where only 

branch one is constructed for each successive node. This 

particular trait, which will be described in more detail for 

the FP case in Section 2.3-C, reduces considerably the number 

of subproblem computations required to find the least-cost 

solution. 

In the FP case it is always possible to evaluate one 

of the two branches from each node by inspection. The only 

type of violation in the branch-and-bound is the entry of 

a qji (or an fijl) variable with a nonzero value when y 
j 

(or xij) equals zero. Branch one will always yield y = 
j 

F C ~  (or xij = 
j 

) , and the value of q (or f jl) will be 
FCij jl 

unchanged. Thus, when all of the cost functions are approxi- 

mated using the FP approach, it will be possible to determine 

one half of the node solutions by inspection. 

The same basic principles apply to the FPP approximation. 

For example, in the FPP case, which is shown in Figure 2.4, 

if q is constrained to be zero on branch two, then the 
j2 

remaining branch-and-bound process is exactly the same as 

in the FP case and the same inspection method applies. 

Similarly, the inspection method developed for the PP 



approximations also applies partially to the PPP case. Note, 

however, that a number of different possibilities need to be 

considered in the PPP case. For example, the occasion to 

carry out a branch-one inspection for the case q > 0 and 
- j 3 

qjl - qj2 = 0 depends on the relative magnitudes of qj3, 

Qjl and Qj2. 

The inspection methods for PPPI, FPPI, PPI and FPI are 

also more complex since the magnitude of L need to be taken 
j 

into account. Also, the relative magnitudes of the upper 

limits of the piecewise variables (e.g., Qjl' Qj2 and Q 1 
j 3 

significantly affects the number of opportunities for using 

inspection steps. 

2.3 Standardization of the Basic Model 

The FP model is significant because any of the piecewise 

cost approximation methods presented in the preceding section 

can be reduced to a combination of FP approximations. The 

solution procedure and the structure of the branch-and-bound 

tree are uniform for all approximations. Any such modified 

model is called the FP model and the general mathematical 

formulation of the FP model is called the FP formulation. 

This uniformity leads to a straightforward way to form the 

imputed value incidence matrix which is discussed in Chapter 4. 

A. . FP Model 

As described previously, the solution to the branch-one 

subproblem can always be obtained by inspection if the FP 

approximation is used. Also, this attractive property can be 

transferred to the other approximation methods by simply replac- 

ing a given set of piecewise segments with a set of equivalent FP 

approximations. For example, an FPP approximation can be repre- 

sented by a combination of two FP approximations as shown in 

Figure 2.6. The first approximation is indicated by the line 



Flow 

Figure 2.6 Replacing an FPP Approximation 

with.Two FP Approximations 



segments connecting points f-a-b, and the second approximation 

by points f-c-d. Qjr is the waste flow which corresijonds to the 
I 

intersection point e. 

The new representation of the FPP approximation is called 

the nevided F P P  apphaximation. Cost approximations of this 

type have been applied in the past in solving the regionaliza- 

tion problem using mixed integer programming (Joeres, et at., 

1974, and Lauria, 1975). 

Figure 2.7 illustrates the branch-and-bound process when 

the revised FPP approximation is used. Since Q is not limiting, 

qj2 becomes nonzero before qjl, The branch-one inspection 

provides the solution to the subproblem associated with node 

nl, as in the case of any FP approximation, by setting y 
= 

i 
FCj2. Also, qjl will never become nonzero in the part of the 

tree under node n since q can be increased to any plant 1, j2 
size at lower cost. The additional constraint, qj2 = 0 is 

introduced in solving the subproblem associated with node n2. 

Since q is not constrained, it may become nonzero in node i 1 
solutions under n2. A similar branching may become necessary 

at node mo to create two new nodes, ml and m2, for variable qjl. 

The optimal solution would never contain q < Q? (e. g., point 
12 

A in Figure 2.6), because a better solution (point B in Figure 

2.6) can always be found. 

The inspection method is applicable for finding branch- 

one solutions for both q and qj2, j 1 
and the computational 

procedure is exactly the same as the case in which a single 

FP approximation is used. While all of the above discussion 

is based on the assumption that Qi is not limiting, the same 
J 

computational procedure can be applied if Q is limiting. 
j 

As will be discussed later, however, the number of branchings 

increases, since q and q may assume nonzero values at the 
jl j2 

same time unless otherwise constrained. 

The same basic approach can be taken in the PP and the 

PPP cases. For example, a PPP approximation can be repre- 

sented by a linear segment through the origin and two FP 





approximations. Since there are two FP approximations, at 

most two pairs of branchings per function are required -- 
just as in the FPP case described in Figure 2.7. The PP case 

can easily be deduced from the PPP case. Note that the 

inspection method is applicable to one-half of the nodes on 

the tree. If the original PP approximation is used, an 

inspection step can be used only when the relationship, 

Qjl < qj2 < Qj2, holds. 

In summary, the FP model is structurally simple, but it 

is extremely versatile in that its formulation and solution 

procedure apply to all of the cost approximations, The FP 

formulation of the regionalization problem is described in 

its entirety in the following subsection. 

B. General Formulation of the FP Model 

The FP formulation of the regionalization problem is 

analogous to the basic formulation described in Section 2.2-A. 

However, there are some differences. First, the capacity 

variables, fijk and qjkr are defined differently. In the 

FP formulation they are defined as the capacity variables 

associated with the kth FP approximation rather than with 

the kth piecewise segment of a cost function (see Figures 2.1 

and 2.6). Also, in the FP formulation, the upper bound is 

the same for all of the capacity variables associated with a 

given facility. Second, in the FP formulation, there are as 

many fixed charge segments as there are FP approximations 

used for a given cost function. Third, the nonlinear con- 

straints are not needed for each pair of piecewise segments. 

Rather a nonlinear constraint must be defined for each FP 

component. 

The objective function is expressed as follows: 

Minimize 

z = CCC Cjk fijk + CCC xijk T 
+ ?"jk ' qjk 4- 11 y 

ijk ijk lk jk jk 



where t h e  c o n s t r a i n t s  (upper  case) and t h e  v a r i a b l e s  ( lower  

case) are: 

= u n i t  c o s t  of t h e  k t h  FP approx imat ion  o f  t h e  c o s t  ' i j k  
f u n c t i o n  f o r  c o n s t r u c t i n g  t h e  i n t e r c e p t o r  from 

l o c a t i o n  i t o  l o c a t i o n  j (dol lars/year/MGD),  

cT = u n i t  c o s t  o f  t h e  k t h  approx imat ion  o f  t h e  c o s t  
j k  

f u n c t i o n  f o r  c o n s t r u c t i n g  a p l a n t  a t  s i t e  j 

(dollars/year/MGD) , 

f i j k  = c a p a c i t y  v a r i a b l e  a s s o c i a t e d  w i t h  t h e  k t h  FP 

approximat ion  o f  t h e  i n t e r c e p t o r  c o s t  from 

l o c a t i o n  i t o  l o c a t i o n  j  (MGD) , 

q j k  = c a p a c i t y  v a r i a b l e  a s s o c i a t e d  w i t h  t h e  k t h  FP 

v a r i a b l e  of  t h e  p l a n t  c o s t  a t  s i t e  j  ( M G D ) ,  

X i j k  = f i x e d  c o s t  v a r i a b l e  a s s o c i a t e d  w i t h  t h e  k t h  FP 

approx imat ion  of  t h e  i n t e r c e p t o r  c o s t  from 

l o c a t i o n  i t o  l o c a t i o n  j ( d o l l a r s / y e a r ) ,  

Y j k  = f i x e d  c o s t  v a r i a b l e  a s s o c i a t e d  w i t h  t h e  k t h  PP 

approximat ion  o f  t h e  p l a n t  c o s t  a t  s i t e  j 

( e i t h e r  0 o r  FC: j k )  ( d o l l a r s / y e a r )  , 
= f i x e d  c o s t  a s s o c i a t e d  w i t h  t h e  k t h  FP approximat ion  F C i j k  

o f  t h e  i n t e r c e p t o r  c o s t  f u n c t i o n  from l o c a t i o n  i 

t o  l o c a t i o n  j ( d o l l a r s / y e a r )  , and 
T FCik = f i x e d  c o s t  a s s o c i a t e d  w i t h  t h e  k t h  FP approx imat ion  - 

o f  t h e  p l a n t  c o s t  f u n c t i o n  a t  s i t e  j ( e i t h e r  0 o r  

) ( d o l l a r s / y e a r )  F C i j k  

The c o n t i n u i t y  c o n s t r a i n t  set  i s  t h e  s a m e  as  Equat ion  

(2 .2 )  : 

where L i s  t h e  w a s t e  f low g e n e r a t e d  a t  s o u r c e  j (MGD).  
j 

Equa t ions  (2 .3 )  and (2 .4)  are r e p l a c e d  by t h e  f o l l o w i n g  

s i m p l e  upper bound c o n s t r a i n t  sets: 

V i ,  j ,  k  (2 .18)  



where 

F = upper limit of the variables f 
ijk for ij n 

k = 1, 2, ..., KYj, - 

Qj 
= upper limit of the variables q for 

T jk k = 1 ,  2, ..., K,, 
J 

= number of FP approximations associated with Ki j 
the interceptor cost function from location i 

to location j, and 

KT = number of F P  approximations associated with 
j 

the plant cost function at site j. 

A slack variable is defined for each of the fixed charge 

variables: 

X + u - P 
ijk ijk - Fijk V i, j, k (2.20) 

where 

u ijk = slack variable associated with x ijk 
(MGD) , and 

v = slack variable associated with yjk (MGD). 
jk 

The nonlinear constraints are defined as follows: 

'ijk u ijk = 0 

Last, the nonnegativity constraints are 

u ijk' 

If all of the cost functions are approximated by a single 

FP approximation, then the subscript can be eliminated from 

the formulation. In the revised PP and PPP cases, only minor 

modifications in the formulation are needed. 

Note again that for any treatment plant j, if Q is not 
j 

limiting for g for all k, then only one q takes a nonzero 
jk jk 

value and the rest will remain at zero at any one time in the 

process of the branch-and-bound computation. The same is true 



w i t h  t h e  i n t e r c e p t o r s .  T h e r e f o r e ,  t h e  s o l u t i o n  t o  t h e  

subproblem a t  any node on t h e  branch-and-bound t ree  w i l l  

a lways s a t i s f y  t h e  c o n s t r a i n t  sets ,  (2.17)  th rough  (2 .19)  . 
I f  on t h e  o t h e r  hand, Q .  f  . i s  l i m i t i n g  f o r  q j k ( f i j k ) ,  

I 1 7  
t h e n  t h e  f o l l o w i n g  c o n s t r a i n t s  must be i n t r o d u c e d  t o  e n s u r e  

t h e  f e a s i b i l i t y  o f  t h e  s o l u t i o n :  

I n  p r a c t i c e  t h e s e  c o n s t r a i n t s  a r e  e n f o r c e d  i n  such  a  way t h a t  

) i s  set  t o  F C ~  P 
when Y j k t  (x i jk1  j k '  (FCijk,)  i n  t h e  branch-and- 
bound p r o c e s s ,  t h e  q j k  ( f i j k )  f o r  k  # k' a r e  a u t o m a t i c a l l y  se t  

t o  z e r o .  

C.  S o l u t i o n  Procedure  f o r  t h e  FP Problems 

The FP branch-and-bound method can be  used t o  g e n e r a t e  

a l t e r n a t i v e  s o l u t i o n s  and ,  i f  d e s i r e d ,  t o  i d e n t i f y  t h e  " l e a s t -  

c o s t "  s o l u t i o n  ( i n  t e r m s  of  a  g iven  se t  of  c o s t  a p p r o x i m a t i o n s ) .  

A f low c h a r t  d e s c r i b i n g  t h e  p rocedure  i s  shown i n  F i g u r e  2.8.  

Also ,  t h e  g e n e r a l  s t r u c t u r e  o f  a  branch-and-bound t ree  i s  shown 

i n  F i g u r e  2.9. The s t r u c t u r e  o f  t h e  t ree i s  such t h a t  informa- . 

t i o n  a s s o c i a t e d  w i t h  each  a l t e r n a t i v e  p l a n  is r e a d i l y  r e t r i e v a b l e .  

The branch-and-bound p r o c e s s  s t a r t s  when t h e  i n i t i a l  

l i n e a r  subproblem i s  s o l v e d  u s i n g  l i n e a r  programming o r  a  

network f low a l g o r i t h m .  The i n i t i a l  subproblem c o n s i s t s  o n l y  

of  t h e  o b j e c t i v e  f u n c t i o n  (2.16)  and c o n s t r a i n t  sets (2 .17)  

th rough  (2 .19)  a l o n g  w i t h  ( 2 . 2 4 ) .  No b ranch ing  c o n s t r a i n t s  

a r e  added y e t .  The s o l u t i o n  t o  t h i s  subproblem p r o v i d e s  t h e  

o b j e c t i v e  f u n c t i o n  v a l u e  z l ,  a  lower bound on t h e  l e a s t - c o s t  

s o l u t i o n  t o  t h e  complete FP f o r m u l a t i o n .  A s  shown i n  F i g u r e  

2 .9 ,  t h e  e n t i r e  s t r i n g  o f  nodes ,  2 ,  3 ,  ..., L ,  can t h e n  be  

g e n e r a t e d  by i n s p e c t i o n  a long  t h e  l imb o f  t h e  t r e e  o r i g i n a t i n g  

from t h e  branch-one s i d e  o f  node 1. T h i s  l imb i n d i c a t e s  t h a t  
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Figure 2.9 Schematic Representation of the 

FP Branch-and-Bound Tree 



the solution to the initial su.bproblem contains L-1 violations 

of the nonlinear constraints (2.22 and 2.23). The fixed charge 

components corresponding to each of the violated constraints 

are added to zl one at a time to determine the objective 

function values, z2, z3, ..., z L' The terminal node, L, 

provides a feasible alternative plan, as long as none of the 

Q.Is or Fijls are limiting. Flow conservation is satisfied, 
3 
and the fixed charge associated with each of the FP variables 

in the solution is added to the objective function. If some 

of the Q Is or Fijls are limiting, then the introduction of 
j 

constraint sets (2.25) and (2.26) in the formulation provides 

alternatives with correct costs. These additional constraints 

do not alter the structure of the branch-and-bound tree, since 

they are added to the subproblems simultaneously with the 

ordinary branching constraints. 

The sequence order of the branching variables along a 

limb of the tree can be based on the magnitude of the fixed 

charge. Adding fixed charges in descending order may help in 

pruning the branches closer to node 1 (vertex), since fewer 

branches may be needed before an intermediate node cost exceeds 

any cost limit which is used in the branch-and-bound process. 

However, the generation of nodes beyond those necessary for 

the completion of branch-and-bound process does not increase 

the computational burden significantly; the necessary fixed 

charges are simply added in the inspection steps. 

The branch-two computation from the lowest-cost infeasible 

node, in this case node 1, is the next step. Again the sub- 

problem, consisting of the objective function (2.16) and 

constraint sets (2.17) through (2.19) along with (2.24), is 

solved. One branching constraint (e.g., qjlkl = 0 as shown 

in Figure 2.9) is added. Again a string of nodes, L+1, L+2, 

..., L+M, is generated along the limb of the tree originating 
from the branch-one side of node L+1. A feasible alternative 

is identified at the terminal node, L+M. The branching 

procedure then follows the rule brranch dkom Xhe LuweaX bound 



(Lawler and Wood, 1966, p. 712) ,  and t h e  branching con t inues  

a s  shown i n  F igure  2.9. The series o f  s o l v i n g  one subproblem 

by an o p t i m i z a t i o n  a lgor i thm,  c a r r y i n g  o u t  a  s t r i n g  of  inspec-  

t i o n  s t e p s ,  and i d e n t i f y i n g  one f e a s i b l e  a l t e r n a t i v e  can be 

r epea t ed  u n t i l  a  g iven s topping  r u l e  i s  s a t i s f i e d .  

The a p p r o p r i a t e  s topping  r u l e  depends on t h e  purpose of 

a p p l i c a t i o n  of  t h e  method. I f  t h e  o b j e c t i v e  i s  t o  o b t a i n  z*, 

t h e  l e a s t - c o s t  s o l u t i o n  i n  t e r m s  of  a  g iven approximation 

method, then  t h e  branch-and-bound p roces s  may be  te rmina ted  

when a l l  o f  t h e  i n f e a s i b l e  node c o s t s  exceed t h e  c o s t  of  a  

f e a s i b l e  a l t e r n a t i v e .  Note t h a t  any f e a s i b l e  s o l u t i o n  t o  t h e  

o r i g i n a l  problem w i l l  b e  found on ly  a t  t h e  bottom of  t h e  tree. 

I f  t h e  o b j e c t i v e  i s  t o  gene ra t e  a l t e r n a t i v e s  w i t h i n  a  g iven 

c o s t  l i m i t ,  z**, then  t h e  p rocess  can be  con t inued  u n t i l  a l l  

of  t h e  in feas ib le -node  c o s t s  exceed t h e  c o s t  l i m i t ,  

Each limb o f  t h e  t r e e  grown by a  s t r i n g  o f  i n s p e c t i o n s  

i s  r e f e r r e d  t o  a s  an  i n b p e c t i o n  L i m b ;  f o r  example, t h e  l imb 

from node 1 t o  node L i n  F igure  2.9 is  an i n s p e c t i o n  limb. 

There a r e  two impor tan t  node c o s t s  a s s o c i a t e d  w i th  each such 

limb. One i s  t h e  f e a s i b l e  node c o s t  (an upper bound) a t  t h e  

bottom o f  t h e  l imb, and t h e  o t h e r  i s  t h e  i n f e a s i b l e  node c o s t  

( a  lower bound) a s s o c i a t e d  wi th  t h e  f i r s t  i n t e rmed ia t e  node 

from which no branch two has  been extended.  For example, i n  

F igu re  2.9 node L p rov ides  an upper bound, and node R provides  

an i n f e a s i b l e  lower bound. These two node c o s t s  a r e  important  

f o r  comparing economic t r a d e - o f f s  between d i f f e r e n t  sets of  

a l t e r n a t i v e  p l a n s .  A more d e t a i l e d  d i s c u s s i o n  on t h e  u se  o f  

lower and upper bounds i s  provided i n  Chapter  4 .  

The lowest  o f  t h e  inspect ion- l imb lower bounds i s  t h e  

c u r r e n t  lower bound, - z, of t h e  branch-and-bound t ree,  and t h e  

c u r r e n t  lowes t  o f  t h e  inspect ion- l imb upper bounds i s  de f ined  - 
a s  t h e  upper bound, z.  Def ining t h e  lower bound on in spec t ion -  

l imb n  a s  LB(n) and t h e  upper bound a s  UB(n) , t h e  fol lowing 

r e l a t i o n s h i p s  hold:  



I f  t h e  o b j e c t i v e  i s  t o  f i n d  t h e  l e a s t - c o s t  s o l u t i o n ,  t h e  

branch-and-bound p roces s  t e r m i n a t e s  when: 

I f  a l t e r n a t i v e  s o l u t i o n s  a r e  gene ra t ed ,  t h e  p roces s  t e r m i n a t e s  

when : 

z * *  < z  < LB(n) - - -  V n  (2.30) 

The FP branch-and-bound trees c o n t a i n ,  i n  g e n e r a l ,  many 

i n s p e c t i o n  limbs l i k e  t h e  ones  i n  F i g u r e  2.9. A t  any g iven  

s t a g e  o f  p rocedure , ,  many o f  t h e  nodes,  e . g . ,  nodes R + 1  through 

L  i n  t h e  f i g u r e ,  have n o t  become cand ida t e s  f o r  branching s i n c e  

complete branching has  n o t  y e t  been performed on t h e  p reced ing  

node, i . e . ,  node R .  S ince  t h o s e  nodes a r e  n o t  a c t i v e l y  invo lved  

i n  t h e  branch-and-bound p r o c e s s ,  t h e y  a r e  c a l l e d  i n a c f i v e  nodeb, 
Also t h e  corresponding p a r t  o f  t h e  i n s p e c t i o n  limb i s  c a l l e d  

an Anacf ive  poktion of  t h e  t ree,  and t h e  e x t r a  i n s p e c t i o n  s t e p s  

a r e  c a l l e d  i n a c f i v e  i n a p e c f i o n  n;teps, Other  nodes ob t a ined  by 

i n s p e c t i o n ,  such a s  node 2 ,  a r e  i n  t h e  a c f i v e  p o x x i o n  of  t h e  

tree. The importance o f  i n a c t i v e  nodes l ies  i n  t h e i r  p o t e n t i a l  

f o r  becoming a c t i v e  and l e a d i n g  t o  a d d i t i o n a l  growth o f  t h e  

t ree  t o  g e n e r a t e  more a l t e r n a t i v e  s o l u t i o n s .  

The fo l lowing  r e l a t i o n s h i p s  ho ld  among t h e s e  d i f f e r e n t  

p a r t s  o f  t h e  t r e e .  



where 

I = total number of inspection steps, 

C = number of branch-two computations, 

N = total number of nodes, 

Na = number of active nodes, 

Ni = number of inactive nodes, 

Ia = number of active inspection steps, and 

Ii = number of inactive inspection steps. 

Some of these indices shown above are compared for the example 

problems presented later. 

2.4 Comparison of the Nonlinear Branch-and-Bound Method 
and the Mixed,Integer Method 

The regionalization problem can also be formulated as a 

mixed integer programming (MIP) problem (see, e.g., Joeres, 

ex aL. (1974) and Lauria (1975)). For example, if the cost 

of treatment plant j is represented by the revised FPP 

approximation described in Section 2.3-A and illustrated in 

Figure 2.7, one MIP formulation includes the following 

constraints: 

k = 1 and 2 (2.39) 

6jk = 0, 1 k = 1 and 2 (2.40) 

where q and Q are described under Equation (2.23). 
jk jk T 

The objective function includes terms such as 1 FC yjk, jk 
where F C ~  is the fixed cost associated with the kth FP 

jk 
component of the cost function for constructing the plant 

at site j. 



The integer variables accomplish what the nonlinear 

binary constraints do in the formulation presented in this 

chapter. Note that the number of variables and constraints 

involved in the MIP formulation is greater. The MIP formula- 

tion can be solved directly using an MIP algorithm such as 

the one proposed by Gomory (1960). Also branch-and-bound 

algorithms, which are tailored to solve MIP formulations, are 

known to be very efficient (Garfinkel and Nemhauser, 1972). 

Such solution approaches, however, do not adequately fulfill 

the objective of this study -- to generate alternative plans. 
The primary objective of such methods is computational effi- 

ciency in finding the "optimal" solution. Thus, it requires 

some modifications, in general, to identify solutions which 

may be converted to physically meaningful alternative plans. 

In particular, when a fractional approach is used, the integer 

variables are treated like continuous variables and the branch- 

and-bound tree would not be as useful for comparing alternatives 

as in the case of the nonlinear branch-and-bound method. 

Computationally, each method has its advantages and 

disadvantages. While the nonlinear branch-and-bound method 

can take advantage of inspection methods and a network flow 

algorithm to enhance computational efficiency, many of the 

MIP codes with the embedded branch-and-bound method contain 

various schemes to estimate the objective function values 

associated with unexplored nodes. Many of the general purpose 

MIP codes available today achieve high computational efficien- 

cies. Some comparisons are made on the computational aspects 

of the two methods in the following section. 

2.5 Illustrative Example 

A small example problem is used to illustrate the branch- 

and-bound method for generating static alternative plans. 

While the structure of the example problem is simple, a number 



of interesting observations are made and outlined below; an 

earlier discussion is presented in Brill and Nakamura (1977Aa). 

Computational requirement of a mixed integer programming 

approach are presented along with the requirements of the 

branch-and-bound method. A comparison of the FPP approxima- 

tion and the revised FPP approximation is also presented. 

A. Description of Hypothetical Example Problem 

The relatively small hypothetical problem is shown in 

Figure 2.10; it consists of seven communities (sources of 

point waste) and eleven potential interconnecting routes. 

Of the seven point sources, two (sites 2 and 6) are not allowed 

to be candidate sites for regional treatment plants and six 

of the eleven links allow flow in only one direction. The 

amount of wastewater generated at each source is shown under 

column L.(10) in Table 2.1. Since the same example problem 
7 

is used for the multitime period analysis, the wastewater 

production at two other years are also shown in the table. 

This rather simple example has 640 feasible combinations 

of treatment plants and piping. For a problem of this size 

it is practical to find the least-cost plan and to examine 

many planning alternatives by enumeration. However, as the 

number of candidate sites becomes larger, the number of 

combinations grows exponentially, and total enumeration 

becomes impractical. If, for example, site 2 is allowed to 

be a candidate site for a regional treatment plant, the 

number of feasible combinations grows to 1152, or approxi- 

mately twice the original number. 

The cost functions used in this example problem are 

based on Deininger and Su (1971). They are: 

TC* = (0.560 q0w78) 0.07095 (2.41) 

T C ~ =  0.067 q 0.78 (2.42) 
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Table 2 . 1  Waste Flows Generated a t  Each Source 

fo r  t he  Hypothetical Example Problem 

Waste Flows (Million Gallons per Day) 

Source 

5 .  (t) : Viaste flows generated at the t-th year at site j. 
J 



where 

TCK = amortized construction cost of treatment plants 

(million dollars/year) , 
TCM = annual operations and maintenance costs of 

treatment plants (million dollars/year), 

TCP = amortized construction cost of interceptors 

(million dollars/year) , 
q = design flow for treatment plants (MGD), 

f = design flow for interceptors (MGD), and 

D = distance (miles) . 
Construction costs of treatment plants and interceptors are 

amortized using 25 and 50 year design lives, respectively, 

and using a discount rate of 0.05. Operation and maintenance 

costs are not included in the single-period analysis. 

Constraint sets (2.12), (2.13) and (2.14), which prevent split 

flows and two-way flows, are included in the formulation. 

B. Computational Results 

Branch-and-bound trees have been grown using various 

cost approximation methods. Also three solution methods, the 

simplex method, the Out-of-Kilter Algorithm (OKA) and mixed 

integer programming, were used. An earlier experience with 

these approaches is described in Brill and Nakamura (1977-a). 

In summary, the following observations were presented. 

(1) For a given method, as the number of piecewise 

variables increases, the size of the tree generally 

increases. The number of subproblems computed also 

increases approximately in proportion to the total 

number of nodes in the tree. 

(2) The number of feasible (physically meaningful) 

alternatives tends to be proportional to the total 

number of nodes generated. In particular, in cases 

which involve the FPI or the FPPI approximations, 



each subproblem computation resulted in one 

feasible alternative. If the first breakpoint 

of the piecewise segment is placed beyond the 

individual waste flows generated, however, split 

flows tend to occur in many alternatives. 

( 3 )  The inspection method has been proven to be very 

powerful, particularly in cases which involve the 

FP type approximations. One-half of the total 

number of nodes are yenerated by inspection. The 

numbers of subproblems actually computed in those 

cases, therefore, were less than the ones in the 

corresponding cases involving the PP or the PPP 

approximations. 

(4) The least-cost configuration found depends to a 

great extent on the method used to approximate 

costs. Also different solutions were found when 

small changes were made in the locations of the 

piecewise segments, although the same type of 

approximations are used. This observation rein- 

forces the importance of generating alternative 

solutions. 

(5) The nonlinear branch-and-bound method seems to be a 

very efficient method for generating alternative 

regional plans. Furthermore, the OKA computer code 

was found to be much more efficient than the simplex 

computer code used to solve subproblems. 

Some additional observations can be made by examining 

the information shown in Table 2.2 for seven different cases. 

Each case involves a different set of cost approximations. 

The table contains information pertaining to the type of 

approximations, the statistical data associated with the tree, 

the cost information, and the solution methods. The term 

"least cost" refers to the solution based on the given set 

of cost approximations, while the term "actual cost" refers 



Table 2.2 Computational Statistics for 

Single-Period Example Problem 

Case A B C D 6 F G 

No. of Yiecewise Variables 5 5 5 5 7 7 7 
Using PPI 5 5 0 0 0 0 0 

FPI 0 0 5 5 7 5 5 
rnPI 0 0 0 0 0 2 0 

Revised FPYI 0 0 0 0 0 0 2 

Total No. of Nodes 25 19 23 21 76 89 110 

Wo. of Active Nodes 25 19 21 21 05 77 81 
No. of Active Inspections 7 15* 10 17* 32 38 40 
No. of Subproblems Computed 18 4 11 4 33 39 41 
No. of Feasible Alternatives 11 2 11 3 31 38 30 
Least Cost ( S  z 10'/~ear) 181.5 181.5 181.5 181,5 184.6 184.6 184.6 
Actual Cost (S x 10~/~ear) 191.0 191.0 191.0 191,O 191.5 191.5 191.5 
Solution Nethod OKA BIIP OKA &TIP OYd OKA OKA 

* No. of times the imbedded node value estimation is perfomea. 
+ Excludes the solutions with improper FP spproximatiom (see 3.3-A). 



to the cost of this solution based on the original cost 

functions given in Equations (2.41) and (2.43) . 
When the approximate least-cost solution was found on 

the tree, the branch-and-bound process was terminated in each 

case. The computer program for the OKA was written in Fortran 

IV and was available at the University of Illinois. The OKA 

code developed by Clasen (1968) and other advanced codes 

recently developed (e.g., Barr, e t  at., 1974, Glover, e t  at., 
1974, Bradley and Brown, 1975, and Hultz, e f  al., 1976) may 
easily be substituted. The MIP code used is a part of the 

IBM MPSX and available at the University of Illinois. 

Note from the table that one of the major differences 

between the nonlinear branch-and-bound and the MIP methods 

is in the number of feasible alternatives. While the nonlinear 

branch-and-bound tree provides at least eleven alternatives 

prior to the termination in each case, the PlIP branch-and- 

bound tree provides only two and three feasible (physically 

meaningful) alternatives in cases B and D, respectively. 

The NIP method, on the other hand, has special capability 

for estimating the next node solution which may reduce the 

computational time considerably. For example, fifteen of the 

nineteen node values were computed by such routine in case B, 

and seventeen of the twenty-one node values were in case D. 

The actual number of subproblems computed, therefore, was 

only four in each case. 

The CPU time required for cases A, C and E were about 

0.6 seconds per subproblem on the University of Illinois 

DEC 10 system, while the MIP code on the IBM 360/75 system 

at the University of Illinois required 5.84 and 4.80 seconds 

for cases B and D, respectively. When the branch-and-bound 

tree was constructed for cases C and E ,  using a short Fortran 

program (about 350 steps including O K ~ )  on the DEC 10 system, 

the total CPU time was 5.6 seconds and 12.9 seconds, respec- 

tively. The computational speed of the DEC 10 system is much 



lower than that of the IBM 360/75 system, However, no 

generalization is possible on the computational efficiency 

because of the limited experience. 

The differences in the computational requirements of 

the FPPI and the revised FPPI approximations are shown in 

cases F and G, respectively. Case F resulted in a smaller 

tree than case G, and yet the number of feasible alternatives 

was greater than for case G. Most of the alternative configu- 

rations generated in case G were also generated in case F. 

Note, however, that the computer program for case F must 

include the provisions for all the possibilities for inspection 

of node solutions, while the program used for the FPI case is 

directly applicable to case G. The CPU times for the two prob- 

lems were nearly identical at 12.7 for case F and 12.9 for 

case G. 

An illustration of the structure sf the FP tree for case E 

is given in Section 4.3. It will be shown that the information 

on the branch-and-bound tree can be used for obtaining the 

economic trade-offs among different alternatives. 



3. GENERATING ALTERNATIVE PLANS: 
A SIMPLIFIED MULTIPERIOD CASE 

3.1 Introduction 

The branch-and-bound method developed in the previous 

chapter has a number of unique features which make it an 

attractive tool for planning analysis. The method presented 

so far, however, considers only a single time period; capacity 

expansion over different time periods is not taken into account. 

Thus, the cost differences between alternatives reflect only 

the single-period (static) trade-off values. 

In this chapter a multiperiod case is considered. The 

analysis of public sector location problems based on multi- 

period (dynamic) cost is extremely difficult, since it involves 

many more unknown factors than the case with the analysis based 

on static cost. Also the number of possible planning alterna- 

tives becomes considerably larger, because construction phasing 

adds another dimension. Problems possessing such characteris- 

tics are collectively called multiperiod facility location 

problems, and interest in the mathematical analysis of these 

problems has been extensive during the past several years. 

The objective of multiperiod facility location problems 

is to find the least-costly locations of central facilities 

which satisfy demands that change from one time period to 

another, including the determination of time of construction. 

It involves the economics of capacity expansion and economies 

of scale. A major portion of the related literature considers 

location analysis on a   lane rather than on networks. For 

example, Wesolowski (1973) , Forcina (1974) , Erlenkotter (1974) , 
and Sweeney and Tatham (1976) have all proposed formulations 

and solution methods for multiperiod location analysis on a 

plane using dynamic programming and modifications. Meier 

(1974) has proposed a mixed-integer programming approach, 

Wesolowski and Truscott (1975) have tested mixed-integer 

programming and dynamic programming, and Eschenback and 



Carlson (1975) have used a branch-and-bound technique for 

the same problem. 

Several techniques have been suggested for dealing with 

regional wastewater systems. The direct application of a 

heuristic programming approach has been proposed by Bhalla 

and Rikkers (1971). Lauria (1975) proposed that mixed integer 

programming can be successfully applied to the multiperiod 

analysis of regionalization. Rossman (1977) has presented 

an efficient solution-approach to the same problem using a 

heuristic technique in conjunction with dynamic programming. 

3.2 Basic Assumptions 

Besides the assumption of uniform secondary treatment, 

several additional simplifying assumptions are made in this 

study. These assumptions, which make the problem a special 

case of the general multiperiod regionalization problem, are 

based on two fundamental considerations. First, the primary 

objective of the proposed method is not to find the "optimal" 

solution in the strictly mathematical sense, but to generate 

many different alternative plans and to compare the economic 

trade-offs between them. Thus, rigorous pursuit of mathema- 

tical optimality is sacrificed for the approximate but effi- 

cient analysis of alternatives. Second, since the method 

developed for the single-period regionalization problem has 

proven quite efficient, an effort has been made to maintain 

the basic features of the method. 

There are three basic assumptions for the multiperiod 

regionalization problem considered here: 

(1) the growth of wastewater production at each source 

is linear, 

(2) the interim design periods are predetermined, and 

each of the regional plants must be constructed 

stagewise to accommodate only the incremental 

design flows of each period, and 



(3) the assignment of the individual waste sources to 

regional treatment plants remains unchanged over 

the entire design period. 

Although some slight modifications of these assumptions may 

be possible without loss of generality of the method, these 

assumptions reflect the basic approach to the problem. Some 

additional but less critical assumptions are: 

(4) existing facilities are not included in the analysis, 

(5) the operation and maintenance (O&M) costs for plants 

are a function of wastewater produced rather than 

the capacity of the plant constructed, 

(6) the O&M costs for interceptors are negligible, 

(7) the interceptors are constructed at the outset for 

the entire design period, and 

(8) the same cost function applies both to initial 

construction and to expansion of a treatment plant. 

These additional assumptions may be modified to a significant 

degree depending on the specific characteristics of the 

regionalization problem. 

The next sections discuss how simplified multiperiod 

construction costs and O&M costs can be transformed into 

single-period forms under these assumptions. The analytical 

procedure is discussed in the later sections. 

3.3 Multiperiod Cost Approximations 

Given the assumptions stated in Section 3.2, the 

approximate multiperiod costs of a plant can be transformed 

into a simple form involving only the fixed charge, the cost 

associated with the initial design-year flow and the cost 

associated with the ultimate design-year flow. The trans- 

formation is carried out in two steps. The first step is a 

transformation of the O&M costs over the entire design period. 

The second step is a transformation of the stagewise 



c o n s t r u c t i o n  c o s t s .  A l l  o f  t h e s e  c o s t s  a r e  f i n a l l y  aggregated 

t o  a  s i n g l e  func t ion .  While t h e  c o s t  of  c o n s t r u c t i n g  i n t e r -  

c e p t o r s  is  assumed t o  be based on ly  on t h e  u l t i m a t e  des ign  f low, 

a  mod i f i ca t ion  i s  made of t h e  c o s t  f u n c t i o n s  s o  t h a t  they  w i l l  

a l s o  conform t o  t h e  form o f  p l a n t  c o s t  f u n c t i o n s .  The aggre- 

g a t e  c o s t  f u n c t i o n s  based on t h o s e  t r ans fo rma t ions  w i l l  be 

used f o r  i d e n t i f y i n g  t h e  approximate l e a s t - c o s t  s o l u t i o n  and 

o t h e r  a l t e r n a t i v e  s o l u t i o n s  t o  t h e  mu l t i pe r iod  r e g i o n a l i z a t i o n  

problem. 

A .  P l a n t  O&M Cos ts  

Based on t h e  assumptions t h a t  wastewater p roduc t ion  i s  

l i n e a r  w i t h  t ime a t  any waste  source  and t h a t  t h e  assignment 

o f  waste  sou rces  t o  r e g i o n a l  p l a n t s  remains unchanged over  

t h e  e n t i r e  des ign  pe r iod ,  t h e  fo l lowing  r e l a t i o n s h i p  g i v e s  

t h e  waste  f low t r e a t e d  a t  a  r e g i o n a l  p l a n t  a t  yea r  t. 

where 

qi ( t)  = waste  flow t o  be t r e a t e d  a t  p l a n t  j a t  yea r  t ( M G D ) ,  
J 

qi (0) = waste  f low t o  be t r e a t e d  a t  p l a n t  j i n i t i a l l y  ( M G D ) ,  
J 

s = r a t e  of  growth o f  waste  f low a t  p l a n t  j ove r  
j 

T y e a r s  (MGD/year) , and 

T = des ign  per iod  ( y e a r ) .  

The annual  O&M c o s t s  a t  yea r  t f o r  p l a n t  j ,  M .  ( t)  ( d o l l a r s /  
I 

yea r )  can be expressed by an exponen t i a l  f u n c t i o n  of t h e  

fo l lowing  form. 
A 

M .  (t) = BM ( q j ( t ) )  
@M 

I 
where 

a~ = O&M c o s t s  o f  a  r e f e r e n c e  p l a n t ,  

cons t an t  ( d o l l a r s / y e a r ) ,  and 

@M 
= economies of  s c a l e  f a c t o r ,  c o n s t a n t .  



The average equivalent O&M costs, M (dollars/year), for 
j 

plant j is defined as: 

where D is the discount factor, 1/(1+1), using a discount 

rate i. M therefore, is the O&M costs of some hypothetical 
j 

year, t*, which can be considered a uniform annual series over 

all T years, and when summed over T years after discounting, 

it equals the actual cumulative discounted O&M costs over T 

years (see Figure 3.1). 

Also, 

M. I (t*) = M j 

Equating (3.3) and (3.4), 

Thus, t* is a function of q.(O)/s and the constants, TI BM, 
I j 

and D. The term q.(O)/s has a dimension of time and it 
I j 

characterizes the pattern of waste generation, not the absolute 

amount of waste flow. 

Figure 3.2 shows the relationship between T and t* for 

a given set of i and q.(O)/s and for a constant economies- 
I j 

of-scale factor, PM, of 0.78, a typical value for wastewater 

treatment plants. Note from the figure that t* is rather 

insensitive to q.(O)/s because the term appears at two 
I j 





Average Equivalent Year, 1' 



separate locations in Equation (3.5) in such a way that its 

total contribution to t* is minimal. The values of t* for a 

wide range of nonzero values of q.(O)/s are only slightly 
3 j 

larger than the t* corresponding to q. (O)/s = 0 as shown for 
I j 

the case of i = 0.05. A similar trend has been shown to hold 

for other values of i and BM. Thus, t* can be considered 

nearly independent of q.(O). This result is quite convenient 
3 

since t* for q. (0) = 0 can be identified a phiohi for a given 
3 

set of Tt BM and it and it can be used for nonzero values of 
qj(0). The error in the cost analysis caused by this under- 

estimation of t* is minimal since it contributes only slightly 

to the O&M costs and even less to the sum of the O&M costs and 

construction costs. 

It is possible to incorporate t* directly into the 

piecewise cost approximation of the O&M costs over the design 

period. Let the exponential cost function for O&M costs be 

approximated by the FP method as shown in Figure 3.3. The FP 

approximation, consisting of FCM the fixed charge (dollar/ 
j 

year), and CM the unit cost for a linear segment (dollars/ 
j 

year/MGD) , is: 

A M where TC.(t) is an approximate annual O&M cost for plant j at 
3 

year t (dollars/year). The superscript M denotes O&M costs 

(superscript K is introduced later for construction costs). 

Then, T C ~  the average equivalent annual O&M costs (dollars/ 
j 

years), is: 

A M  T 
TC;= 1 [(FC. + CM qj(t)) * D  

t=l 3 j 

From Equation (3.1) , q . (t*) is given as: 
3 





Therefore, Equation (3.7) becomes: 

T C ~  = kM + GM (1 - t*/T) qj (0) 
j j j 

+ CM (t*/T) qj (T) 
I 

where 

A 

and for consistence of notation F C ~  is replaced with FC M 

M M j j' Both C, (0) and C, (T) are constants and are associated with 
J J 

q . (0) and qj (T) , respectively. 
I 

In summary, the,average equivalent annual O&M costs 

can be expressed by a fixed charge and a unit cost modified 

by t*/T. Note that when q, (0) is zero, Equation (3.9) 
J 

reduces to an ordinary FP form and becomes a function only 

of qj(T). The cost approximation for O&M costs is the same 

for any stagewise construction program, as long as O&M costs 

are considered to be a function of waste flow rather than of 

capacity. Any portion of O&M costs which is a function of 

capacity can be included as part of the construction cost, 

which is a function of capacity. 

B. Construction Cost of a Plant with Stagewise Expansions 

Regional treatment plant capacities are assumed to be 

increased stagewise over T years. The number of interim 



design periods is given a pkiaki, and every plant in the 

regional system must be constructed only for the required 

incremental capacity. This section describes how such 

stagewise construction costs can be expressed in terms of 

q.(O) and q.(T) just as with the O&M costs. The discussion 
3 3 
is based on the two-stage construction case, for simplicity. 

The amortized construction cost, Ki, of plant j for a 
J 

design capacity of r can be expressed by an exponential cost 
j 

function : 

where 

a = amortized construction cost of a reference plant, K 
constant (dollars/year) , and 

f3 = economies of scale factor, constant. K 

Using the FP approximation method, the construction cost 

can be approximated as follows: 

A ^ K  ^K T C ~  = FC. + c r 
j 

(3.11) 
I j j 

where 
A 

TCK = approximate amortized construction cost for plant j 
j 

at year t (dollars/year) , 
A 

FCK = fixed charge component of Tc! (dollars/year), and 

AK = piecewise cost component of TCK (dollars/year/~GD) . 
'j j 

Superscript K denotes construction costs. 

As illustrated in Figure 3.4, for the two-stage case the 

plant will be constructed to a capacity, q. (0) + (q. (T) - 
3 3 

qj (0) ) (Tl/T) , at year zero and an expansion of (q. (T) - 
3 

qj (0) ) (T~/T) will be added at year T1. Equation (3.11) 

can be rewritten as follows: 





where 

K K Note that both Ci(0) and Ci(T) are constants and are associated 
J J 

with q . (0) and q. (T) , respectively. When q. (0) is zero, 
3 3 3 

Equation (3.12) reduces to a simple FP form and becomes a 

function only of qi (T) . 
J 

The two-stage construction case can be expanded to a 

general N-stage construction case without loss of generality. 

Only the fixed charge and two cost coefficients associated 

with q.(O) and q.(T) will change their forms as the number 
3 3 

of stages increases, as follows: 

where To is defined as zero, and, thus, D ~ O  is unity. 

C. Aggregation of O&M Costs and Capital Costs of a Plant 

The total plant cost is given by the sum of the O&M costs 

(Equation 3.9) and construction costs (Equation 3.12) as 

follows: 



where 

TCT = total annual cost of plant j (dollars/year) , 

T M K Cj (0) = C. (0) + C. (O), and 
3 3 

T M K cj (0) = Cj (T) + C. (T) . 
3 

When q. (0) = 0, Equation (3.16) contains only one variable 
3 

qj (T), and it is of a simple FP form. 

Equation (3.16) can be rewritten using qD the difference 
j 

between q . (T) and q . (0) (see Figure 3.1) , instead of q . (T) as 
7 3 3 

follows : 

T T T TcT = FC. + C. (0) q. (0) + Cj (TI qj (TI 
j 3 I 7 

where 

Equation (3.17) is used here to solve multiperiod problems 

which involve both q. (0) and q. (T) . 
3 3 

D. Construction Cost of an Interceptor 

It is assumed that the interceptors are constructed for 

the entire design period at the initial design year. Thus, 

the cost of constructing interceptors is based solely on the 

ultimate design flow. 

where 

= construction cost of interceptor from location i 
Tij 

to location j (dollars/year) , 
FC:~ = fixed charge component of TCP~ (dollars/year) , 
P C. . (T) = piecewise cost component of TC;~ associated with 
1 3  

capacity variable f (T) (dollars/year/MGD) , and 



i j (T) = capacity of interceptor from location i to 

location j to be constructed for the ultimate 

design period T (MGD). It is equivalent to the 

ultimate design flow through the interceptor 

at year T. 

Equation (3.18) is rewritten in the following form to be 

consistent with Equation (3.17) for solving the multiperiod 

problem. 

TC:~ - - FCij P + Cij P (T) fij (0) + cPj (TI fij D (3.19) 

where f ij (0) is that portion of the total capacity f ij (T) , 
which corresponds to the initial design flows at year zero, 

and fy is defined as the difference between f (T) and 

fij (0) 

In the next section a solution method for the multiperiod 

regionalization problem, which involves cost approximations of 

the form represented by Equations (3.17) and (3.19) , will be 
discussed. 

3.4 Multiperiod Solution Method 

The multiperiod solution method is essentially an extension 

of the branch-and-bound method presented in Chapter 2. It 

involves constructing two trees which are coupled by a set of 

constraints. 

One special case of the multiperiod problem, however, can 

be reduced to the single-period formulation, and the branch- 

and-bound method of the previous chapter can be applied. This 

result is reached if the ratio of the initial design flow to 

the ultimate design flow is the same for every waste source. 

If this ratio is y, the following relationship holds: 

Equation (3.16), then, reduces to the following form: 



The above equation along with Equation (3.18) leads to the 

same formulation as the single-period problem and the nonlinear 

branch-and-bound method can be applied. 

If the above assumption does not hold, both the initial 

flows and ultimate flows must be taken into account in solving 

the multiperiod problem. The mathematical formulation and 

solution procedures are described below. 

A. Multiperiod Formulation 

The mathematical formulation of the multiperiod problem 

uses the cost approximations represented by Equations (3.17) 

and (3.19) for plants and interceptors, respectively. These 

equations are repeated below: 

Two sets of variables are used in the above equations. The 

first set, qj (0) and f (0) , represents the initial design 
ij n D flows, and the second set, q. and fij, represents the incre- 

I 
mental flows in between the initial and the terminal design 

years. The capacities to be constructed are represented by a 

combination of the two types of variables (see, e.g., Figure 

3.4) . Recall also that the fixed charge, F C ~  and cost 
-T T jr coefficients, C. and C.(T), in Equation (3.17) contain aggre- 

I I 
gate information about the O&M costs and stagewise construction 

costs for a plant at site j .  As long as the assumption that 

growth of wastewater production is linear at each source holds, 

those two sets of variables are the only variables involved 

for any number of construction stages. 

The two sets of variables are not independent, since it 

is also assumed that the assignment of waste sources to plants 

and interceptors remains unchanged over the planning period. 

In other words, if q.(O) consists of waste flows initially 
I 



generated by a set of waste sources, then qD must also 
j 

consist of incremental flows generated by the same set of 

sources. Similarly, in the case of interceptors, if a set 

of waste sources is assigned to the interceptor from location 

i to location j, then both the initial flow, fij (O), and the 
D incremental flow, fij, consist of waste flows generated by the 

sources in the assigned set. This requirement is defined as 

the e o m p a t i b - U i t y  hequihbment of FP variables. If the above 

two sets of variables are introduced in one mathematical 

formulation, then, a set of constraints which impose the 

compatibility requirement becomes necessary. It is clearly 

quite cumbersome, since the number of constraints would 

generally be very large. It is not likely, further, that 

such a formulation can be solved efficiently. 

The method proposed here uses a form of decomposition. 
D 
j 

are disregarded from Equations (3.17) and (3.19). 
If and 'ij 
then the remaining cost components would form an FP approxima- 

tion and the single-period branch-and-bound formulation becomes 

applicable. Similarly, if q. (0) and fij (0) are disregarded, 
3 

the remaining cost components would form a different FP 

approximation. Taking the first case, the nonlinear branch- 

and-bound formulation involves the following FP approximations: 

T T D TC. (TI = FC. + C? (TI qj v j (3.22) 
3 3 I 

The disregarded variables, q.(O) and fij (0) alonff with their 
3 

respective cost coefficients, form the remaining cost components. 

T 
TC. (0) = T? (0) qj (0) 

3 3 

If the compatibility requirement is imposed fully, then the 

following relationships hold: 



The above observation leads to a method for solving the 

multiperiod problem. Two decomposed problems are defined; one 

consisting of the FP approximations represented by Equations 

(3.22) and (3.23), and the other consisting of the linear 

approximations represented by Equations (3.24) and (3.25). 

The first problem is called the decomposed-problem 1 (DCP-l), 

and the second is called the decomposed-problem 2 (DCP-2). If 

the compatibility requirement is met between a solution to the 

first problem and a solution to the second problem, then, the 

two solutions can be joined to give an upper bound on the 

least-cost solution to the original problem represented by 

Equations (3.17) and (3.19) . If, on the other hand, the 

compatibility requirement is satisfied only partially, the two 

solutions can be combined to give a candidate for a lower bound 

on the cost of the least-cost solution to the original problem. 

The method proposed here takes the latter approach. 

The mathematical formulation of DCP-1 conforms exactly to 

the standard FP formulation given by Equations (2.16) through 

(2.24). Since only one FP approximation is involved for DCP-1, 

subscript k is dropped from the variables and constants, and 

thus no summation over index k is necessary. Also, the 

following changes are made: 

fyj and q D replace fijk and qjkt 

P T P 
Cij (TI and C. (TI replace cijk T 

I and Cjkt 
D L. replaces L 
I j 
D 
Fi replaces Fi j, and 

D Q. replaces Q 
I j 

where L~ is the ultimate design flow less the initial design 
j 



flow generated at site j, Fii is the upper limit of variable - 
D fij , and QD is the upper limit of variable q D 

j I *  
The formulation of DCP-2 is a standard linear programming 

formulation consisting of an objective function, a set of flow 

conservation constraints and nonnegativity constraints. 

The formulation involves only Equations (2.16) through (2.18), 

again without subscript k and the summation over index k. The 

notation for variables and constants is changed as follows: 

and q. (0) 
I 

replace 

P T and Cjk, Cij (T) and E?(o) replaces Cijk 
I 

L. (0) replaces L 
I j 

Fij (0) replaces F ij' and 

Q. (0) replaces Q 
I j' 

where L.(O) is the initial design flow generated at site j, 
I 

Fij (0) is the upper limit of variable f (O), and Qj (0) is ij 
the upper limit of variable qi (0). 

J 

DCP-1 can be solved by the nonlinear branch-and-bound 

method proposed in the previous chapter, and DCP-2 can be 

solved by any linear programming method or a network flow 

algorithms. 

The following section describes a method to couple the 

solutions to the two decomposed problems. 

B. Coupled Branch-and-Bound Method 

If the compatibility requirement is disregarded, then 

DCP-1 and DCP-2 are independent. The objective function of 

DCP-2 can be added to the cost of the least-cost solution of 

DCP-1 to provide a lower bound on the least-cost solution of 

the original problem with the compatibility requirement. 



This lower bound can be improved by introducing the following 

coupLing c o n n t h a i n t  sets to the formulation of DCP-2. 

Note that variables fij(0) and q.(O) are only in DCP-2, 
I - 

while slack variables uij and v are associated with fixed 
j 

charge variables x and y., and they appear in the nonlinear i j I 
constraint sets in DCP-1 as follows: 

The following discussion illustrates how those coupling 

constraints work. Consider, first, Equation (3.30). At some 

point of the DCP-1 branch-and-bound process, uij is set to zero 

on a branch one and fyj is set to zero on the corresponding 

branch two. Then, according to Equation (3.28), fij (0) is 

allowed to take on any value (when uij is set to zero), or 

fij (0) is set to zero (when fyj is set to zero). The latter 
D holds because as fij is set to zero, u would automatically ij 

assume the value F C ~  (since x remains at zero). In other 
ij ij 

words, a tree structures similarly to the branch-and-bound 

tree associated with DCP-1 would be constructed in the process 

of solving each of the "coupled" subproblems for DCP-2. This 

tree is called the c o n n t n a i n t  t h e e .  The branch-and-bound tree 

and the constraint tree are coupled to form a coupLed bhanch- 
and-bound t n e e .  The variables uij and v are now defined 

j 
as the c o u p L i ~ g  vaniabLen between the two problems. This 

coupling step partially fulfills the compatibility requirement, 

as described later. 

In practice, however, the coupling process is not so 

simple, because the branch-and-bound tree for DCP-1 is grown 



by inspection from each node where a subproblem is solved, 

while the corresponding constraint tree must be grown without 

such inspection steps. Consider the following example shown 

in Figure 3.5. Suppose a branching is to be performed from 

one of the infeasible nodes on the coupled branch-and-bound 

tree. The analysis procedure goes as follows. First, the 

node subproblem is solved for DCP-1. The objective function 
1 value zl is identified. A string of K-1 node costs is then 

1 1  obtained by inspection, and the node costs z2, z3, ..., z 1 K 
are determined. Note that the solution identified at the 

bottom of the tree is a feasible alternative to DCP-1, since 

all the nonlinear constraints are satisfied. Now DCP-2 must 

be solved. A set of branching variables, which correspond 

to the set selected previously for DCP-1, must be constrained 

in exactly the same fashion based on the coupling constraints. 

Then the objective function value z: is identified. Now the 

coupling of node 1 of DCP-1 and node 1 of DCP-2 is completed. 

However, there are K-1 additional couplings to be performed 

before the entire set of nodes along the inspection limb of 

DCP-1 tree is coupled with the corresponding set of nodes on 

the DCP-2 tree. After each of the K-1 additional subproblem 
2 2 2 computations of DCP-2, the node costs z2, z3, ..., z are Kt 

determined, respectively. Now the coupling of the two limbs 

is completed, as shown in Figures 3.5-(1) and 3.5-(2). The 

node costs of the correspondinq limb of the coupled tree are - - - 
0 1 2 1 2 z1 = z1 + zl, Z; = z2 + z2, . . ., z: = z; + z asshownin K 

Figure 3.5-(3). The number of subproblem computations 

required for the complete coupling of the two limbs is, 

therefore, K+1. 

As the coupling procedure proceeds, the compatibility 

requirement becomes satisfied to a greater extent. Note, 

however, the coupling constraints for the FP variables do 

not specify the amount of waste flows to be assigned to a 

plant or to an interceptor, but they ensure that two coupled 
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Figure 3.5 Coupling of Branch-and-Bound Tree 

and Constraint Tree 



variables are simultaneously zero or simultaneously greater 

than zero. Therefore, the compatibility requirement may not 

be fully satisfied even at the bottom of the coupled branch- 

and-bound tree. Further, if there are some linear approxima- 

tions without fixed charges in DCP-1 and DCP-2, then it would 

not be fully satisfied, since the variables associated with 

linear approximations do not engage in the coupling procedure. 

On the other hand, if FPI rather than FP approximations are 

used, it would be satisfied to a much greater extent, since 

each coupling constraint set specifies the minimum amount of 

waste flows to be assigned, for example, qi - > L: in DCP-1 and 
J J 

ql(0) 2 L. (0) in DCP-2. 
I 

If the compatibility requirement is fully satisfied at 

the bottom of the limb of the coupled branch-and-bound tree, 

then the node solution is an alternative to the original 

multiperiod regionalization plan. If it is only partially 

satisfied, then the node cost gives a lower bound to the cost 

of that alternative. Therefore, when the least-cost multi- 

period plan is to be found, the coupling process may be 

terminated along the limb of the coupled branch-and-bound 

tree whenever a node cost exceeds the current upper bound on 

cost. When, on the other hand, it is desired to identify 

alternative plans within a given cost range, then the coupling 

procedure may be continued until all of the infeasible node 

costs exceed that cost range. Note that any DCP-1 alternative 

solution can be converted to ,an alternative multiperiod 

solution by simply computing the multiperiod cost based on 

its flow assignment. 

C. Modifications of the Coupled Branch-and-Bound Method 

The coupled branch-and-bound method presented in Section 

3 . 4 - B  provides many alternative multiperiod plans including 

the approximate least-cost solution. Computational efficiency 

of the method, however, depends on the number of subproblem 

computations required, particularly on the constraint tree 



for DCP-2. The large number of computations for DCP-2 offsets 

the computational efficiency attained by the inspection method 

for DCP-1. 

For the purpose of obtaining the information on approximate 

costs of alternatives, which will be used for the trade-off 

analysis, the coupled branch-and-bound method may be modified 

as follows to increase the computational efficiency. Since 

z1 < z1 < < z1 and z 2 < z3 - < ... 2 ,o 1 2 
2 -  3 - - * -  - Kt 2 - - < zKI then, z = z2 + zlI 

1 2 z'! = z3 + zl, ..., and z'i = z1 + z: are less than or equal to K 

0 0 
Z2, Z3' - - I  Z~ O respectively. In other words, z: instead of 

Z zk (k=l, ..., K) can be added directly to each of the node costs 
on the DCP-1 branch-and-bound tree. This approach is equivalent 

to the relaxation of the compatibility requirement by omitting 

some coupling constraints in DCP-2. Therefore, the lower bounds 

in the coupled branch-and-bound tree becomes less tight. This 

modification reduces the number of subproblem computations 

in DCP-2 to only one for each DCP-1 subproblem computation. 

There is, however, a trade-off. Because of the looser lower 

bounds, the branch-and-bound process may have to be continued 

longer than in the previous case. 

Note that when the values of the initial flow variables, 

i j (0) and q.(O), are relatively small compared with the values I D of the incremental flow variables, fij and qD the relative 
j 

contribution of the DCP-2 cost to the total cost of each alter- 

native is even smaller since DCP-1 includes the fixed charge 

associated with both. If the costs of DCP-1 do dominate, the 

coupled tree would not be significantly different than a tree 

grown using the coupled branch-and-bound method without the 

modification. If, on the other hand, the values of the 

incremental flow variables are relatively small compared with 

the values of initial flow variables, the fixed charges can be 

combined with the initial flow variables rather than incremental 

flow variables. Then the DCP-2 can be solved by the nonlinear 



branch-and-bound method and the DCPrl can be solved by a 

linear programming method. Thus the above modification of 

the coupled branch-and-bound method applies equally well to 

this case. 

In summary, the modified coupled branch-and-bound method 

is computationally efficient and the information on the tree 

is just as useful as in the unmodified case. 

3.5 Additional Considerations 

The method of analysis for multiperiod regionalization 

problems can be modified further. For example, the FPP rather 

than the FP approximations can be used to approximate construc- 

tion and O&M costs. Also, the coupled branch-and-bound method 

may be modified to deal with arbitrary growth of waste flows, 

using multiple branch-and-bound trees and constraint trees. 

Constraints to prevent split flows can be easily introduced 

to the current formulation of the problem. As the formulation 

is made more sophisticated, however, the solution procedure 

becomes more complex and time-consuming, and may defeat the 

purpose of generating alternatives efficiently. 

On the other hand, the method proposed here is based 

on a number of assumptions. The assumptions may limit the 

practicality of this approach in determining the precise 

phasing schedule of the regional system. Such a capability 

is beyond the scope of this analytical method. The approach 

here is most useful for identifying many alternative plans 

systematically based on cost. The alternatives identified 

can be evaluated based on the economic trade-offs, using 

the imputed value method proposed in the next chapter. The 

illustrative example introduced in the following section 

focuses on generating alternatives in the multiperiod case. 

3.6 Illustrative Example 

The methods proposed for generating multiperiod alternative 

plans have been tested using the same hypothetical example 



problem described in Section 2.5, The waste-flow data over 

the 25 year period are shown in Table 2.1, and the regional 

facility network is shown in Figure 2.10. The cost functions 

used are given in Equations (2.41), (2.42) and (2.43) for plant 

construction, plant O&M costs, and interceptor construction, 

respectively. A discount rate of 0.05 and design lives of 

25 years for plants and 50 years for interceptors are used. 

Waste flows increase at each site as shown in Table 2.1 and in 

Figure 3.6. The figure also indicates the lines connecting the 

initial and terminal year flows for each site; those lines are 

used later in the application of coupled branch-and-bound method. 

The examples presented are based on two-stage construction; the 

first design year is assumed to be the tenth year, and the 

second design year is assumed to be the terminal year. 

Consider first the application of the single-period 

branch-and-bound method based on the assumption that the growth 

of waste flow at each source may be reduced to a simple linear 

form represented by Equation (3.20). Two values of y were 

tested. In case A, y was simply assumed to be zero, and in 

case B, y was assumed to be 0.3, an approximate ratio of the 

sum of initial design year flows and the sum of terminal design 

year flows. These two approximations are shown in Figure 3.7. 

The computational results for the two cases are illustrated 

in Figure 3.8. Two cost relationships are indicated for each 

alternative solution represented by its approximate two-stage 

cost. The first is the one-stage (single-period) cost of that 

alternative based on the actual cost functions. The second is 

the two-stage cost of the same alternative based on the actual 

cost functions. 

It is apparent from the figure that the approximate costs 

in Case B represent the actual two-stage costs better than 

those in Case A. Also note that the actual two-stage costs 

and actual one-stage costs are very close in both cases. The 

close fit between the approximate costs and actual costs in 

Case B does not imply that this method of analysis is justified 



Figure 3.6 Original Piecewise Approximation and 

Two-Point Approximation of Waste Flows 

for the Hypothetical Example Problem 



Figure 3.7 Fixed Ratio Linear Approximations of Waste 

Flows for the Hypothetical Example Problem 
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for any growth patterns of waste flow, since the assumption 

given by Equation (3.20) is not generally applicable. However, 

it is interesting to note that the approximation did show a 

close fit in this particular example. 

The relatively small difference between the one-stage 

and two-stage costs based on actual cost functions is not 

accidental. Recall the assumption that the interceptor costs 

occur only at the initial year. Now that the one-stage and 

two-stage costs are computed for the same facility locations, 

the interceptor costs are exactly the same for both cases. 

Further, since the O&M costs are based solely on the annual 

flows treated by the plant, they are the same for both cases 

also. The only cost difference incurred is due to the economies 

of scale for plant construction and to the discounting of the 

second stage plant construction costs. This difference seems 

to be relatively small for this example problem. 

The computational results for the coupled branch-and- 

bound method, Case C, based on the two-point flow approximation 

given in Figure 3.6, are shown in Figure 3.9. Although the 

approximate two-stage cost for each alternative gives a slight 

underestimation of the actual cost, the relative fit is quite 

close. Again the one-stage and two-stage costs based on the 

cost functions show relatively small difference. Although the 

results of Cases B and C turned out to be quite similar with 

respect to their close representations of actual costs, the 

additional mathematical flexibility of the latter outweighs 

the simplicity of the former. The coupled branch-and-bound 

method can be applied to any set of two-point approximations 

of waste flows over the design period, and what is more, the 

infeasible lower bounds on the branch-and-bound tree provide 

useful information on the alternatives yet to be generated. 

As in the case with the single-period branch-and-bound 

method, the tree can be grown to generate many additional 

alternative plans by simply increasing the cut-off value z** .  

For example, if the tree is grown to the point where the lowest 
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of the infeasible lower bounds exceeds z * *  of $550,00O/year 

rather than terminating the computation when the approximate 

least-cost solution z* of $516,00O/year is found, the number 

of generated alternatives increases from 12 to 34. As z**  

is increased further to $570,00O/year, then the number of 

alternatives also increases further to 45. The computational 

statistics for the three runs are shown in Table 3.1. The 

analysis of the alternatives generated in each of the three 

runs will be discussed in Section 4.4 of the following 

chapter. 



Table 3.1 Computational Statistics for Generating 

Additional Alternatives for Case C 

R u n 1  Run 2 E I . ~  3 

Cut-off cost? ( a + * )  516.0+ 550.0 570.0 
T o t a l  No. o f  Nodes 46 97 118 

No. of Active Modes 27 8 3  10 7 
No. of  Active Inspec t ions  13 4 1  53 
No. of Subproblems Computed 28 8 4  108 

No. of Feas ib le  A l t e r n a t i v e s  12 34 45 

? Thousand d o l l a r s  per year. 

+ Also t h e  l e a s t  cos t  (2%). 



4. COMPARING ALTERNATIVE PLANS: IMPUTED VALUE ANALYSIS 

4.1 FP Branch-and-Bound Tree and Imputed Values 

Given the four criteria presented in Chapter 1 for 

measuring the performance of a mathematical model as a tool to 

generate and compare alternative plans, the branch-and-bound 

method appears to perform quite well. First, the method takes 

advantage of a network flow algorithm and inspection steps to 

make it computationally efficient. Second, it can identify the 

lower and upper bounds on the cost of alternatives which are 

systematically generated. Third, economic trade-offs among 

different sets of alternatives can be related to other planning 

issues for gaining insights. And last, the branch-and-bound 

tree may be grown at will to generate alternatives with pre- 

specified physical characteristics. 

In particular, the FP branch-and-bound method appears quite 

attractive because of its flexibility in adapting to many dif- 

ferent cost approximations, because of its versatilityin handling 

both single-period and multiperiod formulations, and because of 

its mathematical simplicity which results in high computational 

efficiency. One of its most attractive features, however, is 

that it allows efficient comparisons of economic trade-offs 

associated with regional facilities and boundaries in terms of 

the "impu;ted v a l u e a " .  An imputed value is defined as the cost 

difference between the least-cost solution with a facility (a 

set of facilities) and the one without it. 

Imputed value analysis is based on the binary grouping of 

alternatives. There are those alternative plans which contain 

a given facility and those which do not. The fundamental mathe- 

matical approach of the FP branch-and-bound process is also a 

binary grouping of alternatives into mutually exclusive subsets. 

The mathematical problem is constrained to generate two kinds of 

alternatives: one allows a facility to be constructed, and the 

other does not. This dichotomy is automatically ensured as long 

as the facility cost is approximated by any combination of the 

FP approximation. When a cost approximation involves a piecewise 



linear segment through the origin, as in the case of the 

revised PP or the revised PPP approximations, the linear seg- 

ment can be artificially constrained in adapting to a branch- 

and-bound process. Consider, for example, the case illustrated 

in Figure 2.7. The figure shows the branch-and-bound process 

for the revised FPP approximation. The alternatives generated 

under node mo are forced to exclude the treatment plant (plant 

j in this case), and those under nodes nl and m are forced to 1 
include it. The imputed value of plant j is simply the cost 

difference between the least-cost alternative which belongs to 

the former group and the one which belongs to the latter. 

An imputed value of facility x, as described in Chapter 1, 

is the implicit economic gain (if ~ ( x )  - C(x) - > 0) or implicit 

economic loss (if ~ ( x )  - C(x) - < 0) of including that facility 

in the regional plan, as opposed to excluding it from the plan. 

In other wrods, it is a measure of the economic trade-off between 

two mutually exclusive sets of alternative plans. Since it is 

an implicit economic value, it is relatively easy to gain a sub- 

stantive "feel" for the significance of such a facility or such 

a set of facilities in the regional plan. For example, one may 

wish to examine issues other than cost and to compare them with 

the imputed values. Such an exercise provides an opportunity to 

gain insights into the problem of planning wastewater facilities 

in the given region. 

Conceptually, the comparison of alternatives may be carried 

out directly using the branch-and-bound tree as described in 

Chaper 1. For example, a least-cost solution is found to require 

an interceptor, say interceptor A, which is relatively undesira- 

ble for noneconomic reasons (e.g., the crossing of a political 

boundary). The existing tree can be evaluated to explore this 

issue. All of the nodes which are at the end of tree branches 

may be reevaluated to see if they contain interceptor A in the 

corresponding alternative plans. If necessary, the tree can be 

extended to find the least-cost solution without it. It may be 

possible, however, to examine the already existing feasible solu- 

tions and to choose one which appears attractive with respect to 



all of the planning objectives, Since lower bounds are avail-- 

able for each node solution, it may not be necessary to examine 

any new branches. 

The economic savings incurred by crossing the boundary is 

the difference between the cost of the least-cost alternative 

which excludes interceptor A and the one which includes it. It 

becomes attractive to cross over the political boundary only when 

there are economic savings which exceed the implicit costs of 

political transactions associated with the boundary. Therefore, 

the difference between the two costs as defined above can be 

regarded as the imputed value of crossing the political boundary. 

The set of imputed values provides valuable information. 

First, it provides an estimate of the trade-offs between cost 

and the political issue related to crossing the boundary. 

Second, it suggests the relative importance of the boundary 

in comparison to the other boundaries. Such information may 

be important in arriving at a relatively small set of alterna- 

tive regional plans for more detailed evaluation. 

While the conceptual application of the branch-and-bound 

tree described above for analyzing alternative plans may be 

used for small problems, it may not provie very practical for 

large ones, because the size of the tree becomes too large for 

display, and because the retrieval of information becomes too 

cumbersome. The following section deals with the transformation 

of the branch-and-bound tree into a form of matrix which is 

designed to be more practical for analyzing the imputed values 

in large problems. 

4.,2 The Imputed Value Incidence Matrix 

A. Structure of the Matrix 

The fundamental structure of the FP branch-and-bound 

tree has been described in Section 2.3-C and is illustrated 

in Figure 2.9. This structure is common to both the single- 

period branch-and-bound trke and the coupled branch-and-bound 

tree in the multiperiod problems. While the FP tree is very 



w e l l  s t r u c t u r e d ,  it c a n n o t  be used d i r e c t l y  f o r  an  imputed 

v a l u e  a n a l y s i s  s i n c e  it is  ex t remely  d i f f i c u l t  t o  r e t r i e v e  

i n f o r m a t i o n  s y s t e m a t i c a l l y .  It is  p o s s i b l e ,  however, t o  t r a n s -  

form some o f  t h e  i n f o r m a t i o n  on t h e  branch-and-bound tree i n t o  

m a t r i x  form. The m a t r i x  d i s p l a y s  t h e  i n c i d e n c e  r e l a t i o n s h i p  

between t h e  s t a t e  o f  t h e  b ranch ing  v a r i a b l e s  and t h e  a l t e r n a t i v e  

p h y s i c a l  p l a n s  i d e n t i f i e d  a t  t h e  ext reme ends  o f  t h e  i n s p e c t i o n  

l imbs .  S i n c e  a s imple  s e a r c h  th rough  t h e  m a t r i x  can  p r o v i d e  

imputed v a l u e s ,  it i s  d e f i n e d  as t h e  imputed value incidence 

mathix. Also,  f o r  convenience ,  it w i l l  h e n c e f o r t h  b e  r e f e r r e d  

t o  s imply  as  t h e  incidence mathix. 

I n  any FP problem each  a l t e r n a t i v e  p l a n  i s  d e s c r i b e d  by t h e  

s t a t e  o f  t h e  FP v a r i a b l e s .  When an FP (FPI)  v a r i a b l e  i s  con- 

s t r a i n e d  t o  be g r e a t e r  t h a n  z e r o  ( g r e a t e r  t h a n  L.) on b ranch  one ,  
7 

t h e n  t h e  f a c i l i t y  r e p r e s e n t e d  by t h e  v a r i a b l e  would b e  f o r c e d  t o  

e x i s t  i n  t h e  a l t e r n a t i v e  p l a n  g e n e r a t e d .  When it i s  c o n s t r a i n e d  

t o  b e  z e r o  on  b ranch  two, t h e n  t h e  f a c i l i t y  would b e  p reven ted  

from e x i s t i n g .  Such i n c i d e n c e  r e l a t i o n s h i p  can  be e x p r e s s e d  by 

i n t r o d u c i n g  t h e  i n c i d e n c e  index ,  a mn ' The index  d e s c r i b e s  t h e  

s t a te  o f  t h e  n t h  FP v a r i a b l e  i n  t h e  mth a l t e r n a t i v e  p l a n .  The 

index  may t a k e  t h e  v a l u e  o f  1 ( r e p r e s e n t i n g  "branch o n e " )  o r  2 

( r e p r e s e n t i n g  "branch t w o " ) .  The i n c i d e n c e  m a t r i x  c o n t a i n s  M 

rows f o r  t h e  a l t e r n a t i v e s  and N columns f o r  t h e  FP v a r i a b l e s .  

A d d i t i o n a l  index  v a l u e s  are a l s o  used.  F i r s t ,  some FP 

v a r i a b l e s  may n o t  b e  c o n s t r a i n e d  i n  t h e  p r o c e s s  o f  g e n e r a t i n g  

an  a l t e r n a t i v e ,  and y e t  t h e y  may assume t h e  v a l u e  z e r o  i n  t h e  

s o l u t i o n  t o  a subproblem. S i n c e  t h e s e  v a r i a b l e s  assume t h e  

v a l u e  z e r o  b u t  are n o t  s o  c o n s t r a i n e d ,  t h e  i n d e x  v a l u e  asso-  

c i a t e d  w i t h  them i s  d e f i n e d  t o  b e  -2.  I n  t h i s  way it i s  

p o s s i b l e  t o  d i s t i n g u i s h  between such v a r i a b l e s  and t h o s e  

c o n s t r a i n e d  t o  b e  z e r o  w i t h  an index  v a l u e  o f  2 .  

Second, w h i l e  a l l  o f  t h e  v a r i a b l e s  a s s o c i a t e d  w i t h  t h e  

i n s p e c t i o n  l imb from a p a r e n t  node would b e  a s s i g n e d  t h e  

index  v a l u e  of 1, some o f  t h e s e  n o d e s b e l o n g  t o  t h e  a c t i v e  

p o r t i o n  and o t h e r s  are i n  t h e  i n a c t i v e  p o r t i o n  o f  t h e  l imb.  

S i n c e  t h e  v a r i a b l e s  i n  t h e  a c t i v e  p o r t i o n  d e f i n e  t h e  lower 



bound on t h e  c o s t  of a l l  t h e  p o s s i b l e  a l t e r n a t i v e s  which 

could be genera ted  by f u r t h e r  branching o f  t h e  tree, they  a r e  

d i s t i n g u i s h e d  from t h e  ones i n  t h e  i n a c t i v e  p o r t i o n .  The 

v a r i a b l e s  which belong t o  t h e  i n a c t i v e  p o r t i o n  a r e  ass igned  

t h e  index va lue  of -1 and t h e  v a r i a b l e s  which belong t o  t h e  

a c t i v e  p o r t i o n  r e t a i n  t h e  index va lue  of 1. 

The fou r  index va lues  desc r ibed  above a r e  i l l u s t r a t e d  

us ing  t h e  example shown i n  F igu re  4 . 1 .  The f i g u r e  d i s p l a y s  

t h e  i n s p e c t i o n  l i m b  m '  which is  a s s o c i a t e d  wi th  a l t e r n a t i v e  

m '  and t h e  i n s p e c t i o n  l imb a s s o c i a t e d  w i t h  a l t e r n a t i v e  m. 
The fo l lowing  n o t a t i o n  i s  used t o  r e p r e s e n t  v a r i o u s  nodes 

and v a r i a b l e s .  There a r e  K nodes, o r  K - 1  branch-one in spec t ion  

s t e p s ,  on t h e  i n spec t ion  l imb m. These nodes a r e  denoted lm, 

Z m r  - - - ,  km, ..., Km. Associa ted wi th  each of  t h e s e  nodes i s  

i t s  c o s t ,  z (1,) , z (2,) , . . . , z (k,) , . . . , z (K,) . The n o t a t i o n  

f o r  i n s p e c t i o n  l imb m '  i s  s i m i l a r .  Node lm i s  t h e  pa ren t  node 

f o r  i n s p e c t i o n  l imb m,  and node lm, i s  t h e  p a r e n t  node f o r  

inspec ton  limb m ' .  I n  t h e  e n t i r e  tree t h e r e  a r e  N branching 

v a r i a b l e s ,  of which L a r e  shown. They a r e  nl,  n2 ,  ..., n g ,  

..., nL: n1 and n2 a r e  a s s o c i a t e d  wi th  i n s p e c t i o n  limb m ' ,  

and n3 through nL a r e  a s s o c i a t e d  wi th  i n s p e c t i o n  l i m b  m. 
The inc idence  index amn can be  desc r ibed  i n  t h e  c o n t e x t  

of  branch-and-bound process .  Assume f i r s t  t h a t  i n s p e c t i o n  

limb m '  has  been cons t ruc t ed ,  b u t  branch two has  n o t  been 

extended from node 2,'. S ince  t h e  i n s p e c t i o n  l imb m i s  no t  

genera ted  y e t ,  amn f o r  a l l  n  i s  n u l l .  A t  some p o i n t  of  t h e  

branch-and-bound process ,  branch two from node 2m, p rov ides  

node lm, which l e a d s  t o  i n s p e c t i o n  limb m and t h e  f e a s i b l e  

a l t e r n a t i v e  a t  node Km. A t  t h i s  p o i n t  t h e  mth row is 

added t o  t h e  inc idence  ma t r ix ,  The e1emen.t~ of  t h i s  row 

correspond t o  v a r i a b l e s  nl,  n2 ,  ..., n~ and con ta in  t h e  

fol lowing inc idence  index va lues :  





The value of amn is 1 because the branch-one inspection from 
1 
I 

node lm, involves variable n and leads to an active node. 
1 

The value of amn is 2 because the branch-two computation 
2 

constrains variable n2 to be zero. The values of amn , .... 
3 

amn are all -1. because branch-one inspections are performed 
L 

and, at this point in the branch-and-bound process, they are 

inactive nodes. If, for example, node 2m is selected for 

branching at a later point in the algorithm, then amn would 

change from -1 to 1. 3 

A similar process continues until the branch-and-bound 

process terminates. Suppose at the time of termination of 

the branch-and-bound process the active portion of the tree 

is extended to node km. Then z(km) is a lower bound for any 

possible alternatives yet to be generated under node km. Also, 

z(Km) at the end of the limb is an upper bound for the least- 

cost solution among such alternatives since it represents the 

cost of one of the feasible alternatives. In other words, 

while the mth row of the matrix represents the mth alternative 

identified at the bottom of the tree through the mth inspection 

limb, it may also be considered to represent the mth subset of 

alternatives of which only one is explicitly specified. At 

this point the column elements of the row m in the matrix are: 

Note here that the lower bound on the cost of mth subset of 

alternatives is defined only by variables with an index value 

of 1 or 2. The branching variables associated with a path 

from the vertex of the tree to node lm, are not shown in 

Figure 4.1, but the column elements corresponding to such 

variables are assigned the incidence index value of 1 or 2. 

Suppose there are variables which are observed to assume the 

value zero in the solution to the subproblem associated with 



node lm. The column elements of row m corresponding to these 

variables are assigned the incidence index value of -2. 

The schematic description of the incidence matrix 

is shown in Figure 4.2. As described previously, there 

are M rows for M alternatives and N columns for variables. 

Therefore, there are M*N matrix elements, each of which contains 

one of the four incidence index values. The lower and upper 

bounds associated with each row and the index values of each 

row provide the information required for the imputed value 

analysis. The incidence matrix is constructed simultaneously 

as the branch-and-bound process proceeds. As the process 

continues, the number of alternatives being generated increases, 

and the number of rows of the matrix also increases (the number 

of columns remains the same). However, as noted above, as 

alternatives are generated, some of the incidence index values 

may change. Another important characteristic of the matrix is 

the fact that all of the necessary information for an imputed 

value analysis is available and can be used repeatedly to 

calculate imputed values. Further, the incidence information 

is sufficient to reconstruct the original branch-and-bound 

tree, if it is desired to add branches from any of the inactive 

nodes. 

In summary, an incidence matrix contains the following 

information: 

(1) M feasible alternative plans generated on the branch- 

and-bound tree, 

(2) lower and upper bounds on the cost of the least-cost 

alternative in each of M sets of possible alternatives, 

and 

(3) the structure of the original branch-and-bound tree 

and the location of inactive nodes from which 

additional branches can be added. 

B. Obtaining Imputed Values from the Matrix 

The procedure for obtaining imputed values can be illustrated 

using a hypothetical incidence matrix which contains all of the 



Cost Variables 

ALT : 

UB: 

Numerical index associated with ezch of M s e t s  of 
potent ia l  a l ternat ives.  
Upper bound on the cost o f  the least-cost a l ternat ive 

i n  each of IbT s e t s  of potent ial  al ternatives.  
Lower bound on the cost of the least-cost a l ternat ive 
i n  each of s e t s  o f  potent ial  al ternatives.  
Incidence index o f  n t h  variable i n  the m t h  s e t  of 
a l ternat ives 

Figure 4.2 Imputed Value Incidence Matrix 



possible alternative plans (actually infinite in number) for a 

given regionalization problem. One can identify the least-cost 

alternative among those which include facility x (i.e., have an 

incidence index value of 1 under the column representing facility 

x), and the least-cost alternative among the remaining alterna- 

tives which exclude it (i.e., have an incidence index value of 2). 

The exact imputed value of facility x is obtained by subtracting 

the cost of the former from the cost of the latter. The imputed 

values of any facility or any combinations of facilities can be 

obtained in just the same way. 

Although there are an infinite number of solutions for any 

given regionalization problem, the branch-and-bound process would 

provide, at its termination, M explicitly specified alternative 

plans. Each plan belongs to one of the M subsets of potential 

solutions. Further, the cost range of the least-cost solution 

in each subset of solutions is specified by lower and upper bounds. 

The upper bound is given by the cost of the alternative explicitly 

specified. The lower bound is given by the cost of the subprob- 

lem solution which is only partially constrained and has a lower 

cost than the least-cost solution in that subset. 

Consider, for example, identifying the imputed value range of 

facility x, assuming that the facility cost is approximated with 

a single FP variable, nx. The imputed value is defined as the 

difference between c(Kx), the cost of the least-cost alternative 

having variable nx constrained to be zero, and C(nx), the cost of 

the least-cost alternative having variable n constrained to be 
X 

greater than zero. The upper bound on C (nx) and c (Ex) can be 
readily obtained from the upper bounds of the M sets of alterna- 

tives. The lowest upper bound, UB(nx) is equivalent to the least- 

cost alternative among those which specifies the variable nx to be 

positive (a is 1 or -1). Similarly, the lowest upper bound, 
mnx 

UB (fix), on C (fix) is equivalent to the least-cost alternative among 

those M alternatives which specify the variable nx to be zero 

(am,X is 2 or -2). Therefore, 
UB (nx) = min [Urn I a = 1 or -11 (4.1) 

mnx 



where Um is  t h e  upper bound a s s o c i a t e d  w i t h  t h e  mth i n s p e c t i o n  

l imb and i s  shown i n  t h e  mth row o f  t h e  i nc idence  m a t r i x ,  a s  

i l l u s t r a t e d  i n  F igu re  4.2. Note h e r e  t h a t  one o f  t h e  two sets of 

a l t e r n a t i v e s  de sc r ibed  above may be  empty. 
F ind ing  a lower bound on C (nx) o r  c (nx) i s  somewhat more 

involved.  Consider f i n d i n g  t h e  lower bound on C(nx) f i r s t .  

Among t h e  M sets of  p o s s i b l e  a l t e r n a t i v e  r e p r e s e n t e d  by t h e  M 

rows, some have a l r e a d y  been c o n s t r a i n e d  t o  have f a c i l i t y  X as 

a r e g i o n a l  f a c i l i t y .  The i nc idence  index ,  amn , f o r  such rows 
X 

i s  1. The lower bounds a s s o c i a t e d  w i th  such rows a r e  c a n d i d a t e s  

f o r  t h e  lower bound on C ( n x ) .  Note, however, t h a t  t h e  lower 

bounds a s s o c i a t e d  w i th  rows whose i nc idence  index  under t h e  

n x t h  column i s  e i t h e r  -1 o r  -2 a r e  a l s o  c a n d i d a t e s ,  s i n c e  

v a r i a b l e  nx may l a t e r  be c o n s t r a i n e d  t o  be p o s i t i v e  and t h e  

i nc idence  index  v a l u e  may be changed t o  1. The re fo re ,  

LB (nx) = min [Lm 1 a = 1, -1 o r  -21  
mnx 

where Lm i s  t h e  lower bound a s s o c i a t e d  w i t h  t h e  mth i n s p e c t i o n  

limb. The lower bound on c(%) i s  i d e n t i f i e d  i n  a s i m i l a r  

f a sh ion .  The i nc idence  index  v a l u e  o f  t h e  c a n d i d a t e  a l t e r n a t i v e  

sets must b e  e i t h e r  2 ,  -1 o r  -2.  There fore ,  

Note, however, t h a t  t h e  lower bound may b e  improved f o r  LB(nx) 

when a is  -1. The i nc idence  index -1 means t h a t  v a r i a b l e  
mnx 

nx is  n o t  c o n s t r a i n e d ,  o r  it is  i n  t h e  i n a c t i v e  p o r t i o n  of  t h e  

i n s p e c t i o n  limb. Adding nx t o  t h e  a c t i v e  c o n s t r a i n t  set  i s  

e q u i v a l e n t  t o  adding t h e  f i x e d  charge  a s s o c i a t e d  w i th  nx, FC(nx), 

t o  t h e  c u r r e n t  lower bound. There fore ,  

LB (n,) = min { tLm 1 a = l ,  -21 ,  t ( L m  1 a = -1) + FC (nx) 1 ) (4 .5)  
m mnx mnx 

The r anges  f o r  C(nx) and c(Cx) a s  w e l l  a s  f o r  t h e  imputed 

v a l u e  a s s o c i a t e d  w i t h  v a r i a b l e  nx, IV(n x ), a r e  g iven  a s  fo l l ows :  



where 

ILB(nx) = L B ( ~ ~ )  - UB(nx) (4.9) 

IUB (n,) = UB(E~) - LB (nx) (4.10) 

Note that the lower bound on the imputed value, ILB(nx), and the 

upper bound on the imputed value, IUB(Nx), depend on the relative 

values of the lower and upper bonds on C(nx) and c(Ex), and can 

take negative values. A negative imputed value indicates that 

the least-cost solution without facility x (nx assumes the value 

zero) has a lower cost than the least-cost solution with facility 

x (nx assumes a positive value). Note that for the analysis of a 

single-facility imputed value either C(n ) or c(<) is equal to 
X 

z * ,  the overall least-cost solution, if the branch-and-bound tree 

is extended to provide z* on one of its nodes. 
The impact of including or excluding a set of facilities 

rather than a single facility is just as important, since 

many planning issues are related to a group of facilities. 

As examples, the water quality of a particular stream may be 

a critical issue related to the location of plants at any of 

the potential sites along its length, the water reuse policy , 

of a region may be evaluated by placing a group of treatment 

plants in specific strategic locations, and jurisdictional 

boundaries which encompass several plants and interceptors 

may be studied for their political implications. 

Depending on the analysis to be performed, the imputed 

value of a set of facilities may be defined in many different 

ways. For example, the imputed value associated with a pair 

of variables, nx and n may be defined by any of the following: 
Y' 



(5) 
- 

IV(nx, /Kx, ny) = c(Kx, n - C(nx, 
Y Y "Y) 

(4.15) 

(6) - 
IV(iixf nyfix, 5 = WEx, ny) - C(fix, Y "Y) (4.16) 

- 
where, for example, C(Kx, n indicates the cost of the 

Y 
least-cost solution with both nx and n constrained to be 

Y 
zero, C(nx, n ) indicates the cost of the least-cost solution 

Y 
with both nx and n constrained to be greater than zero, and 

Y 
IV(nx, n /% n ) is the notation used to denote the imputed 

y XI Y 
value as defined by the difference between the two. Note 

also that 

where N1 and N2 denotes a given set of indexed variables. 

These cases are omitted from the above list. 

The same basic principles developed for one variable apply 

to the analysis of imputed values involving sets of variables. 

An application example of such an analysis is given in the 

following section. 

4.3 ~llustrative Examples 

Two illustrative examples of an imputed value analysis 

are described here. The first example is based on the inci- 

dence matrix associated with Case E of the single-period example 

problem shown in Table 2.2. The second example is based on 

the incidence matrix associated with Case C of the multiperiod 

analysis given in Section 3.6. The imputed value analysis 

procedure and computational results are presented. All of the 

analyses were carried out by hand. A more detailed discussion 

on practical applications is presented in Chapter 5. 

A. Imputed Value Analysis for a Single-Period 
Example Problem 

Case E of the single-period example problem involves 

seven FPI variables; two are for interceptors, and five are 

for plants. The structure of the imputed value incidence matrix 



associated with the branch-and-bound tree is described, and 

a procedure for using this information is outlined. 

A portion of the branch-and-bound tree for this example 

is shown in Figure 4.3. Three alternative plans are identified 

at the bottom of the inspection limbs. Also one infeasible 

solution is identified. The alternatives identified are 

designated as Alternative 1, Alternative 2 and Alternative 4 

according to the order of generation. Alternative 3 is not 

shown in the figure. The incidence matrix corresponding 

to the entire branch-and-bound tree is shown in Figure 4.4. 

The rows 1, 2 and 4, of course, correspond to the paths from 

the vertex to the nodes 6, 11 and 20, respectively. 

The structure of the tree is represented by the inci- 

dence matrix (see Figure 4.4). For example, consider the 

inspection limb associated with Alternative 1. The variables 1, 

2, 4 and 6 are constrained to be positive and they are in the 

active portion of the tree. Thus, the incidence index values 

associated with columns, 1, 2, 4 and 6 are all 1 in row 1. 

Variable 7 is not constrained to be in the active portion of 

the tree. Thus the index value is -1. Although variables 3 

and 5 are not explicitly constrained to be zero, the index 

values for them are 2, because they are implicitly constrained 

by constraints that prevent split flows. Similar relationships 

exist between each row of the matrix and each path on the tree. 

Assuming that the FPI approximations used in this example 

case closely represent the actual cost of the facilities, the 

matrix provides abundant information on the imputed values of 

various facilities and various combinations of facilities. 

Some example results of an imputed value analysis are provided 

in Table 4.1. The table shows 9 cases; seven are for a single 

facility, and two are for a pair of facilities. 

The computational procedure of the imputed value analysis, 

described in Section 4.3, is illustrated for Case 5 in which 

the imputed value of the fifth variable, which corresponds to 

the interceptor 7-5, is to be obtained. First, an upper bound 

on the cost of the alternatives which are constrained to 

include this interceptor is: 



Variable Number 
Cost 

(M i l l i on  D o l l a r s / Y e a r )  

Inspection Limb 

Solution Infeasible 

lnfeasible Lower Branch 

0.1933 9 . 1 g 4 6 q  0.2017@- 

Feasible Upper Bound 

Alternative I Alternative 2 Alternative 4 

Figure 4.3 A portion of the Branch-and-Bound Tree for 

Case E of the Single-Period Example Problem 
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Figure 4.4 Imputed Value Incidence Matrix for Case E 

of the Single-Period Example Problem 
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Second, an upper bound on the cost of alternatives which 

are constrained to have variable 5 equal to zero is: 

Third, a lower bound on the cost of all potential alternatives 

which may include the interceptor is: 

Fourth, a lower bound on the cost of all potential alternatives 

which may not include the interceptor is: 

LB(5) = min Lm {am5 = 2, -1, -21 = 184.6 (4.22) 
m 

Therefore, 

184.6 5 C(5) - < 190.0 

184.6 - < ~ ( 5 )  - < 184.6 

and 

-5,.4 - < IV(5) < 0 . - 

In other words, it costs somewhere between zero and $5,400/ 

year more to have the interceptor in the regional plan than 

it does to exclude that interceptor. If it is the only 

facility that requires consideration of issues other than 

cost, then the maximum extra cost of $5,40O/year gives one 

quantitative measure of its economic trade-off. The cost 

may be assessed against the implicit values of the other 

issues associated with the interceptor. 

The range of imputed value may be tightened by extending 

the branches from the tree. For example, four inspections 

and four subproblem computations are required to tighten the 

above range to the actual imputed value, $5,40O/year. In many 

cases, however, lower and upper bounds provide information 



that is as useful as the exact imputed value. 

B. Imputed Value Analysis for a Multiperiod 
Example Problem 

Case C of the multiperiod problem involves nine FPI 

variables, each of which represents a facility. The alterna- 

tives were generated using the coupled branch-and-bound method. 

The computational results have already been presented in 

Section 3.6. Recall that the coupled branch-and-bound tree 

was grown stagewise in three different runs. The imputed 

value ranges for five individual facilities and six sets of 

facilities have been analyzed from the incidence matrix 

associated with each of the three runs. The three matrices 

are shown in Figure A-1, A-2 and A-3 in Appendix A. A summary 

of the imputed value analysis for eleven different cases is 

shown in Table 4.2. The number of facilities directly involved 

in the analysis is one in Cases 1 through 7, two in Cases 8 

through 10, and three in Case 11. In cases 3 and 10 the 

imputed value analysis was performed while keeping the variable 

1 positive. In other words, those cases give the conditional 

imputed values. The same is true with Case 6, but in this case 

both variables 1 and 3 are kept positive. 

' The following observations can be made based on the 

information in the table: 

(1) The most noticeable trend is that the ranges of 

imputed values become tighter as the tree is grown 

further to generate more alternatives. The total 

number of subproblems computed increased from 14 

in the first run, when the approximate least-cost 

solution z* was identified as $516,10O/year, to 

42 and then to 54 as the cutoff value z** was 

increased to $550,000 and to $570,00O/year, 

respectively. Note that as the cutoff value is 

increased, the matrix becomes larger, and some of 


































































































































