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ABSTRACT

MATHEMATICAL METHODS FOR USE
IN PLANNING REGIONAL
WASTEWATER TREATMENT SYSTEMS

A mathematical method presented here deals with regionali-
zation of wastewater systems, a complex public sector planning
problem. The method proposed focuses on generating alternative
physical plans efficiently and systematically so that planning
issues other than economic efficiency may be meaningfully
integrated into the process of comparing alternative plans.
Such a method, although simple in concept, can aid analysts in
developing insights.

Two types of alternative plans can be generated by the
method, single-time period plans and simplified multiperiod
plans. In generating alternative plans, the method takes
advantage of the structure of a branch-and-bound algorithm.
A branch-and-bound tree may be transformed into a matrix
called the imputed value incidence matrix which displays the
incidence relationship between each of the alternative plans
and the state of variables (regional facilities) associated
with it. Once the matrix is constructed the imputed value of
a given variable or a given set of variables can be obtained
from the matrix.

An application of the method to a realistic example
problem is presented and the interpretation of imputed values
is discussed.
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PREFACE

The premise of this study has been that planning regional

. wastewater treatment systems is a complex public-sector problem

and therefore the role of mathematical methods is limited. The
first step in the research was to develop a branch-and-bound
method which is simple to use in a single-time period problem;
the method was specifically designed for generating alternative
solutions efficiently. The second step was an extension of the
method to include some features of the multiperiod planning
problem where wastewater loads increase over time. The approach
was to retain simplicity in generating alternatives at the
expense of precision in obtaining a least-cost solution. The
third step was to develop a method for examining the imputed
values of individual facilities or groups of them; the procedure
was designed for use in synthesizing a final plan.

An earlier Water Resources Center report, The Japanese
Regional Wastewatern Trheatment Systems, Research Repont No. 129,
describes the complexity of such planning problems and sets
the stage for the mathematical methods described herein.
Although parts of the mathematical underpinnings are somewhat
complex, the tools are easy to employ using a simple Fortran IV
computer program. The design of these tools reflects the fact
that they were specifically developed for use within a larger
planning process; they are significantly different than methods
designed for obtaining a "least cost" or "best compromise"
solution. The approach described can also be applied to gain
insights about other planning problems with economies of scale
in potential facilities.
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1, INTRODUCTION

1.1 Preliminaries

"The purpose of computing is insight, not numbers,"
stated R. W. Hamming (1962) in his book on numerical methods
of analysis. The statement reflects clearly the feeling of
many researchers who apply mathematical methods to the analysis
of various planning problems in the private and public sectors.
The truth of this statemeht, however, applies more strongly in
the public sector because of the multiplicity of the planning
issues involved. A comprehensive set of numbers that adequately
reflect all of the issues is often very hard to come by.

Planning regional wastewater systems is an exceedingly
difficult public sector problem. The issues involved are
usually very complex, diverse and interdependent. The resolution
of some of the conflicting objectives is often beyond the scope
of numbers obtained through mathematical analysis. The role of
mathematical models for regionalization, therefore, seems to be
limited to providing insight. The question posed here, then,
is "How can a mathematical model be made to provide useful
information on widely different alternatives most efficiently
and most meaningfully?" This dissertation presents one mathema-
tical model specifically designed for generating and comparing

physical alternative plans for regional wastewater systems.
1.2 Regionalization and Planning Issues

During the last few decades regional management of waste-
water collection and treatment has become a matter of concern
in many metropolitan areas and in many cities and townships.

In particular, the United States Congress passed the Federal
Water Pollution Control Act Amendment of 1972 (PL 92-500) which
requires stringent water quality management practices by
municipalities and industries in the near future, Section 208

of the law requires regional facility planning.



This trend is not limited to the United States. Many of

the developed nations have been and are today under severe
pressure to cope with environmental pollution problems caused by
rapid urbanization and industrialization (e.g., see Kelley, et
al., 1976). Regional wastewater management has been considered
one of the most effective means of coping with water pollution
as well as water resources management problems (é.g., Canham, et
af., 1971, and Lyon, 1967). Regional management in these nations
where there are existing facilities may or may not lead to region-
alization, the process of utilizing joint, or central, plants to
serve several communities. Many of the developing parts of the
world also face similar pollution problems because of extreme
population densities now and in the future and because pollution
abatement is virtually nonexistent. In these nations where there
are limited human and economic resources, however, regionaliza-
tion of wastewater facilities seems to be particularly attractive
from the economic and managerial points of view (Thomas, 1972).

The mode of regionalization, therefore, is likely to depend
much on the socio-economic and cultural background of a nation,
state and locality. It also depends on the size and the physical
state of the region under consideration. The planning issues
raised in the process of regionalization are, thus, very diverse:
and difficult to generalize. The existing studies are generally
based on a specific set of experiences. For example,‘Metzler, et
af. (1971) have discussed past history and the current regional
wastewater planning experiences in the state of New York. A
discussion of institutional patterns in evolving regional water
supply systems in some of the major métropolitan areas in the
United States as well as in Massachusetts communities has been
presented by Howards and Keynor (1971). Recent experiences with
regionalization in Britain are discussed by Ardill (1974), Buck-
ley (1975) and Okun (1975). In addition, Brill and Nakamura
(1977-b) have provided a review of issues raised in the process
of regionalization in Japan.

There exist some studies, however, which review comprehen-

sively the issues involved in regionalization. For example,
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the United States Advisory Commission on Intergovernmental

Relations (1962) has pointed out some of the major advantages
of regional management of water supply and sewage disposal.

It has also discussed the difficulties encountered during the

early experiences with regionalization in the United States.
A summary discussion of issues to consider in planning regional
wastewater systems appears in Butrico and Coulter (1972).

With respect to the current federal policy of area-~wide
planning (208 planning), critical reviews and discussions of
planning issues and planning processes have been presented by
many (e.g., United States Environmental Protection Agency, 1973;
National Science Foundation, 1976; Texas Advisory Commission
on Intergovernmental Relations, 1974).

' Some of the major issues related to planning regional
wastewater systems are:

(1) Economies of Scale

Regional wastewater systems usually involve joint facilities
for treating wastewater piped from several sources. The major
advantages of regionalization are the potential economies of
scale in capital and operation and maintenance costs associated
with such joint facilities (e.g., see Linzing, 1972, and Classen,
et af., 1970). Of course, there are trade-offs. A system of
large plants may require interceptor pipes, which also exhibit
the economies of scale (Paintal, 1975), from individual waste
sources to the central plants. Their cost may exceed the cost
savings accruing from the economies of scale associated with
large plants. ‘

(2) Plant Performance

Large plants are considered more reliable than small plants
because of the highly efficient management. Some of the
contributing factors are simplified administration, concentration
of skilled personnel, automation of auxiliary equipment, and
reduction in the variability of wastewater gquality and quantity.
On the other hand, large effluent flows from a small number of
plants may pose serious threats to the natural purification

capacities of the receiving streams (Adams and Gemmell, 1973).



(3) Long Term Planning Flexibility
While regionalization of wastewater systems may provide

technical flexibility in meeting the comprehensive goals of
a region, it can also be argued that a larger number of smaller
individual systems is more flexible in coping with the unfore-
seen future developments in socio-economic, political and
technical affairs.
(4) Compatibility with Existing Systems

A regional wastewater system involving a small number of
large facilities may significantly alter the existing condition
of the region. For example, drainage patterns and water supply
patterns are most likely to be significantly altered, since a
large quantity of water is transported from many sources to
large central treatment plants where it is discharged after
treatment. For the same reason water reuse and recycle possi-
bilities may be altered. Many existing land use patterns may
be also affected. The size of a regional treatment plant may
disturb the local living environments, and large interceptor
pipes, once constructed, may promote unplanned growth of their
immediate neighborhood and surrounding areas (Binkley, et af.,
1975). Such physical alterations invariably lead to political

involvements of the communities concerned, and often lengthy

and expensive transactions are required to settle the jurisdic- ’

tional conflicts.

There are a number of other issues which are vital to the
planning of regionalization. For example, the institutional
and financial arrangements, which include the ownership and
administration of the system as well as the cost allocation

among participating municipalities and industries, are very

important. Also legal constraints such as treatment regulations

and water quality standards need to be carefully examined in
planning a regional system.
Planning regional wastewater systems, therefore, is an

eXceedingly difficult problem which involves more than just

solving a mathematical problem. In fact, the process of reaching

decisions about any large-scale technological projects with
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social consequences involves a highly complex human interaction
(Manheim, 1974). Nevertheless, in the case of planning regional
wastewater systems, many of the issues are closely related to
‘the number, size and location of regional plants and interceptors,
and location analysis by means of mathematical techniques is an
important part of the planning process, particularly when there
are many possible alfernative physical plans. In other words,
different physical alternatives imply, to a great extent, differ-
ent issues and different degrees of attractiveness.

In the following section existing mathematical methods for
evaluating regional wastewater systems are reviewed briefly, and
the current trend in dealing mathematically with complex public

sector planning problems is discussed.

1.3 Review of Mathematical Methods of Analysis

In the body of literature dealing with analytical methods
pertaining to water resources management, water pollution con-
trol and other public sector planning problems, there are some
methods which deal specifically with regional water quality
management and regional wastewater facility planning. For
example, since the early 1960's many attempts have been made
to construct mathematical models which deal with the water
quality of river basins. Various techniques have been applied
to several versions of this problem; a review of the literature
in this area can be found in Pentland, et af. (1972) and Dracup
(1970). A review of literature exclusively dealing with
mathematical models of regional water quality management is
given by Bundgaad-Nielsen and Hwang (1976).

One group of these models emphasizes the water quality
aspect of the regionalization problem. The significance of
this problem was first recognized in the late 1960's and in
the early 1970's. The principal aim of the mathematical
modeling approaches is to find the least-costly layout for
regional wastewater treatment plants and the associated

interceptors while satisfying the water quality constraints.



For example, Graves, ef af. (1970) suggest a nonlinear
formulation that allows at-source treatment, joint treatment
at candidate sites, and bypass piping of water in order to
meet explicit water quality constraints. Whitlatch (1975)
has suggested a heuristic method, and Rossman (1974) used
nonlinear programming and dynamic programming methods for
solving this problem. Klemetson and Grenney (1976) have
developed a dynamic programming model which is capable of
analyzing the staging of regional facilities. Each of those
models, however, deals basically with regions where waste-
water sources are located along a river.

Mathematical methods for a network rather than linear
configuration have also been examined in the past several
years. Most of the formulations are modifications of general
facility location problems involving concave cost functions
and a single time period (Efroymson and Ray, 1966; Feldman,
et al., 1966, S&, 1969). Because of the complexity of formu-
lation, water quality constraints are generally excluded from
these models. This separation is reasonable if high levels of
waste treatment are assumed. For example, Meier (1971) has
presented a branch—-and-bound procedure to solve for the
least=-costly regional system. Deininger (1972) described an
extreme point ranking algorithm for the same problem. A
dynamic programming method for solving this problem has been
suggested by Converse (1972), Wanielista and Bauer (1972),
Joeres (1974) and Lauria (1975) all suggested mixed integer
programming approaches. Also Jarvis, ef af. (1975) suggested
a network formulation and a group theoretic solution approach.
A heuristic procedure offered by McConagha and Converse (1973)
includes an evaluation of cost savings and cost allocation
among participating municipalities. Weeter and Belardi (1975)
improved the heuristic algorithm developed by McConagha and
Converse and performed some sensitivity analysis on cost

functions.
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Some attempts have béen made also to chsider several
planning periods. A heuristic method developed for general
facility location problems has been proposed for application
to wastewater regionalization problems by Bhalla and Rikkers
(1971). ©Lauria (1975) showed that a mixed integer programming
can be successfully applied to multiperiod analysis. Rossman
(1977) applied the Weeter and Belardi algorithm and dynamic
programming method to find an approximate multiperiod solution;
his method was shown to be more efficient than the mixed integer
programming épproach proposed by Lauria.

The primary emphasis of all of the works cited above
with the possible exception of that of McConagha and Converse
has been to achieve computational efficiency and/or mathematical.
optimality in solving for the economically most favorable
solution. The analysis of the overall desirability of planning
alternatives is extremely difficult. There has been, however,
some attempt to examine analytically planning issues other than
economic efficiency and water quality. McAvoy (1973), for
example, has proposed an affinity coefficient matrix for analyz-
ing the potential for regionalizing separate political entities.
The matrix is defined by several quantitative attributes
associated with each of the neighboring communities. Giglio
and Wrightington (1972) have analyzed the cost-sharing aspects
of regional wastewater systems using several methods including
game theoretic approaches. Heaney (1975) has suggested a game
theoretic method for analyzing equity issues for a similar
problem, managing urban storm water.

A review of some of the literature which presents methods
to deal with the multiplicity of planning issues in the general
public sector planning problems is in order at this point. One
of the simplest and most widely practiced methods is to rely
heavily on the judgment of an individual or a group of indi-
viduals with experience to reduce the number of alternatives
at the outset to a handful of good alternatives. These alter-

natives are then examined in more detail. An example of such



an approach to the regionalization problem is presented by
Palm (1972). The comparison of several selected alternatives
may be based on some systematic evaluation criteria. Benefit-
cost analysis (e.g., Mishan, 1971) and other similar methods
such as the Goal Achievement Matrix Method (Hill, 1973) may
be used. ‘

Although such an approach may be practical, it is often
very difficult to preclude prejudicial judgment in selecting
the candidate solutions. More rigorous methods of analysis
involve, in general, mathematical optimization techniques.

The simplest method is to formulate the model with a single
objective and multiple constraint sets, each of which represents
one of the planning issues. However, the number of issues
which can be accommodated by an optimization method is generally
very limited, partly because of the limitation in mathematical
algorithms in dealing with a large number of variables and
constraints, and partly because some issues cannot be repre-
sented by mathematical logic.

On the other hand, it is quite common to make an analysis
of some of the selected issues on an individual basis using
some simple optimization models. For example, in the facility
location literature, there have been attempts to analyze some
qualitative planning factors by introducing surrogate objectiveé
for social utility. A review of such methods is found in
Revelle, et af. (1970). The main thrust of these attempts is
to avoid the explicit quantifaction of qualitative factors
involved. Similar attempts can be found in some water resources
management problems (Cohon, 1973).

Mathematical methods which deal with problems involving
more than one explicitly defined objective have been gaining
considerable attention in recent years. Such methods are
collectively called multiobjective optimization methods
(Cohon, 1975). According to Cohon, the methods may be classi-
fied into three categories; generating techniques, techniques
which rely on prior articulation of preferences, and techniques

which rely on progressive articulation of preferences.
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The methods which belong to the first category may be considered
basically as extensions of the single-objective optimization
methodsvwith multiple sets of constraints. Based on the rela-
tionships between the constraints and objective function, one
can generate a set of noninferior solutions among which a final
choice can be made. The methods which belong to the second
category are designed to take advantage of the explicitly
expressed preference of a decision maker prior to the mathema-
tical analysis. These methods, therefore, place a significant
burden on the decision maker. They also hinder the process

of gradually developing insights into the problem, unless the
analysis can be repeated easily and efficiently. The third
category includes the methods which are designed to moderate
this difficulty.

Although some attempts have been made (e.g., Cohon and
Marks, 1973, and Haimes, et af., 1977), multiobjective methods,
in general, are in the early development stage, and practical
applications to public sector planning problems are yet limited.
As for possible application to facility location problems such
as the ones for regionalization of wastewater systems, difficul-
ties stem from the demanding mathematical structure as well as

from the large number of issues involved.
1.4 Research Orientation and Thesis Organization

The orientation of this research is based on the premise
that it is very difficult to define, much less to find by
mathematical means the "optimal" solution to such a complex
public sector problem as planning regional wastewater systems
(Rittel and Webber, 1973). Difficulties arise because many
planning issues are involved and they are all closely inter-
related. The resolution of some of the conflicting issues is
simply beyond the scope of mathematical analysis. Recognizing
this, a mathematical method for generating and comparing alter-
native plans has been proposed as an alternative to contemporary
multiobjective optimization approaches.
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Generation of alternatives is important for two reasons.
First, the "optimal" solution to a mathematical model is most
likely not the "optimal" solution to the real problem. Further,
it is quite possible that some alternatives which are consider-
ably different from the mathematically optimal solution may
turn out to be very attractive. Second, generating alternative
plans is a learning process, whereby important planning issues
may be identified and the associated economic trade-offs can be
examined. Also the display of a range of alternatives and of
the economic trade-offs between them provides a basis for
developing insights into the nature of a given regionalization
problem.

‘The ability to generate alternatives mathematically depends
on the properties of the particular modeling technigue and on
the problem to be solved. However, it is highly desirable, in
general, for a mathematical model to satisfy the following
criteria in order to be a useful tool for generating and com-
paring alternative plans; such a model should be capable of:

(1) generating many alternatives efficiently,

(2) generating alternatives systematically based

on some quantitative measure, such as cost,

(3) generating alternatives in such a way that they

may be most meaningfully related to various
planning issues, and

(4) generating alternatives with prespecified

characteristics. ‘

Although many mathematical methods may satisfy one or more
of these criteria, they may not be applicable to the regionali-
zation problem because of its demanding mathematical structure.
The branch-and-bound method presented here seems to adequately
satisfy the above four criteria.

Branch-and-bound algorithms have been extensively used
in the past for sdlving a wide variety of combinatorial

pfoblems. For example, Efroymson and Ray (1965) suggested
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the use of a branch-and-bound algorithm in solving plant
location problems using integer programming. Liebman (1967)
presented a branch-and-bound algorithm to minimize the cost
of wastewater treatment under equity constraints. S& (1968)
treated the capacitated plant location problem using an
approximation method and a branch-and-bound algorithm. A
combination of a network algorithm and a brahch—and—bound
technique has been suggested by Marks and Liebman (1970) for
solving a problem of locating solid waste management facili-
ties.. Also a branch-and-bound algorithm different from the
one presented here has been proposed by Meier (1971) for
obtaining the least-cost solution_to the problem involving
regionalization of wastewater systems.

A description of the basic concept and general properties'
of the algorithm is given by Agin (1966), Lawler and Wood
{1966) and Mitten (1970). In short, such an algorithm works
as follows. First, the entire set of alternatives may be
partitioned into mutually exclusive subsets. Using an
appropriate mathematical technique, lower and upper bounds
on the least-cost alternative plan in each of the subsets
are determined. If the lower bound found in one subset is
greater than the upper bound in one of the other subsets,
the least-cost solution to the entire set of alternatives
does not belong to the former subset. Excluding such sﬁbsets,
each of the remaining subsets may be partitioned further into
mutually exclusive but smaller subsets, and a new bound is
found on each of them. The process is continued until an
alternative is found such that the lower bounds on all of the
remaining alternatives (or the remaining subsets of alterna-
tives) are found to exceed it. The algorithm is designed,
therefore, to avoid complete enumeration of the feasible
solutions. For a discussion of the planning process as a
branch~and-bound process, the reader is referred to Harris
(1970) . |
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The evaluation of alternatives proceeds as follows.

The most fundamental dichotomy of alternatives in the
regionalization problem (and other location problems) is

the grouping of those alternatives which contain a given
facility and those which do not. From a planning point of
view this is quite an attractive dichotomy, since, as noted
earlier, many of the issues to be considered in planning
regional systems are directly related to the physical
configuration of the network of regional facilities. If

there is only one facility, x, which is of special interest,
then C(x), the cost of the least-cost alternative with facility
X, can be compared to C(x), the cost of the least-cost alterna-
tive without it. If the economic efficiency is the only
criterion for decision making, the alternative with the lowest
cost would be selected. However, if there are other issues

to be considered, then the cost difference, C(X) - C(x), can

be evaluated. This cost difference is defined as the .imputed
value associated with facility %X, and it is the basis for

the imputed value analysis described later.

Based on the research orientation described above a
mathematical model has been developed in three phases. The
first phase has been devoted to developing a basic mathematical
method for solving the regionalization problem involving static
(single-period) waste flows. The objective here has been to
make the model capable of identifying systematically many
attractive solutions while maintaining computational efficiency
and simplicity. The basic model and analysis procedure are
presented in Chapter 2. The second phase has been devoted to
modifying the model to generate alternative plans while taking
into account a simplified form of multiperiod costs. The
approach has been to take full advantage of the attractive
features of the method developed for the static case. The
multiperiod case is discussed in Chapter 3. The third phase
ihvolves the imputed value analysis. It is based on the

transformation of information from the branch-and-bound tree

[N
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into a matrix called the imputed value incidence matrix.
Chapter 4 discusses the method in detail.

The model has been tested with a small hypothetical

‘problem for each phase of development. A realistic example

case has also been studied, as described in Chapter 5. The
research findings are summarized, and additional discussion

is provided in the concluding chapter.



14

2. GENERATING ALTERNATIVE PLANS: A SINGLE-PERIOD CASE

2.1 Introduction

As described in the previous chapter, many mathematical
methods have been proposed in the past to solve for the least-
cost solution to the regionalization problem with single-
period (static) waste flows. They are generally based on the
assumption of uniform secondary treatment at each regional plant.
This type of problem, desighated as the single-period regional-
ization problem, is considered significant primarily for two
reasons. First, if the entire regional system is to be con-
structed for the entire design period within a short span of
time; the least-cost solution to the single-period regionaliza-
tion problem should provide a reasonably attractive solution.
Second, the least-cost solution to the single-period problem may
be regarded as an initial estimate of the least-cost solution
to the multiperiod (dynamic) problem. In other words, the
dynamic cost of the regional plan identified by a single-~period
cost analysis may be regarded as an upper bound on the multi-
period least-cost solution. Operations and maintenance (0O&M)
costs in the static'problem are sometimes treated as functions
of treatment capacity just as costs of construction. 1In such
cases a formulation like the one given in this chapter involving
construction costs can be directly modified to include O&M costs.
If any portion of the O&M costs is regarded as a function of
waste flows rather than capadity, then a modification of the
model becomes necessary. One such modification is proposed in
Section 3.3-A.

Although the principal role of the mathematical model
presented here is to generate alternative plans, the objective
function of the formulation is to minimize cost. The method can,
therefore, provide the least-cost solution to the single-period
regionalization problem under given cost approximations. A
special feature of the solution procedure, a branch-and-bound

algorithm, is that it also identifies a number of alternative

[
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solutions. The method is also characterized by other features
which improve computational efficiency.

The mathematical model and an example application are
presented in the following sections. The branch-and-bound
method is also compared to mixed integer programming. The
reader is referred to Brill and Nakamura (1977-a) for an

earlier discussion of the model presented here.
2.2 Basic Model

A mathematical formulation of the single-period, uniform-
treatment regionalization problem is presented in this section.
The concave cost functions are approximated using linear segments,
and nonlinear constraints are associated with these segments.

The solution method is a branch-and-bound algorithm that uses a
network algorithm to solve subproblems. Some of the subproblems,

however, can be readily solved by inspection steps.
A. General Formulation of the Basic Model

The mathematical model takes into account two types of
regional facilities, treatment plants and interceptors. The
mathematical objective of the model is to find the least-costly
regional plan which specifies a configuration of plants and
interceptors and their sizes. The formulation consists of an
objective function and four types of constraints.

The objective function is the minimization of the sum of
costs of plants and interceptors. Since the cost functions
exhibit economies of scale, they are represented by piecewise
linear segments as shown in Figure 2.1. 1In this example each
facility cost is approximated by a fixed charge and by unit
costs associated with the two piecewise linear segments.

In mathematical terms, the objective function is expressed

as follows:

Minimize:

z = 155 &

. ¢ £ + Iy, (2,1)
ijk ijk ijk .

o 4TI x.. 4+ 3IDCL o
1] J

q.
i3 eIk
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Flow (MGD)

Figure 2.1 Piecewise Approximation of a Treatment~Plant

Cost Function with a Fixed-Charge Component
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Where the constants (upper case) and the variables (lower case)
are: ‘
Cijk = unit cost of the kth segment of the piecewise-
linear cost function for constructing the
interceptor from location i to location j
(dollars/year/million gallons per day (MGD)),
C., = unit cost of the kth segment of the piecewise-
linear cost function for constructing a plant
at site j (dollars/year/MGD),
fijk = kth piecewise variable for interceptor capacity
from location i to location j (measured from
break point) (MGD),
qjk = kth piecewise variable for plant capacity
' at site j f(measured from break point)
(MGD) ,
xij = fixed cost variable for constructing an intergeptor
from location i to location j (either 0 or FCij)
(dollars/year),

y. = fixed cost variable for constructing a plant

at site j (either 0 or FCT) (dollars/year),

FC, . =vfixed cost associated wit% constructing an
interceptor from location i to location j
(dollars/year), and

FC? = fixed cost associated with constructing a plant

at site j (dollars/year).

The constraints given below ensure that the capacity
variables and design flows maintain continuity at each waste
source and at additional candidate plant sites:

rz f.., - % f£,., + I q., = L. ¥ j (2.2)
ik jik ik ijk x jk J
where:
Lj = waste flow generated at location j (MGD).
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If no waste flow is generated at location j, then Lj is zero.

If location j is not a candidate site for a treatment plant,

then the term I qjk is omitted.

(2.3)

(2.4)

(2.5)

(2.6)

(dollars/year),

k
The second type of constraint introduces the slack
variable corresponding to each activity variable:
fijk + sijk = Fijk i, J, k
qjk + tjk = ij ¥ Jj, k
+u +FCP ¥ i .
ij ij ij s
T .
. + v. = FC. v
Y 3§ i J
where:
i3k = upper limit of the variable fijk (MGD) ,
ij = ypper limit of qjk (MGD) ,
sijk = slack variable associated with fij (MGD) ,
tjk = slack variable associated with qjk (MGD) ,
i = gslack variable associated with xij
and
vj = gslack variable associated with yj (dollars/year).

The third type of constraint is the set of nonlinear

constraints

£k

ijk-1 =

(2.7)

(2.8)

(2.9)

(2.10)

S,

[P
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where:

Kij = number of piecewise variables used for the
capacity of an interceptor from location i to
location j, and

K? = number of piecewise variables used for plant

capacity at site j.

The above constraints, together with those of the second type,
ensure that the piecewise variables associated with each of
the concave cost functions assume nonzero values in a proper
sequence. For example, consider Figure 2.1 which illustrates
the fixed-cost component for the approximation of a treatment
plant cost function. Constraint set (2.10) requires that

v, = 0 (and, therefore, yj = FC?) before qjl can be nonzero

J

(treatment provided). Note that the s.., and t..
ijk ijk

variables for the last segment of any approximation are not

slack

needed in constraint sets (2.7) and (2.8).
The last set of constraints are the nonnegativity

requirements:

f t.

ik’ 935k Sijk’
It should be noted that several additional types of
constraints might be useful in improving the computational
efficiency of the branch-and-bound process. Often it is
considered undesirable to split the waste flows such that two
or more interceptor pipes originate at one site or such that
a portion of a waste flow is treated and discharged at one
site and the rest is piped elsewhere for treatment. TIf there
is no capacity limit on any of the treatment plants and
interceptors, split flows are unattractive economically
because of the economies of scale. Split flows can be
prevented in the mathematical method as follows. When an

fijl variable is set equal to Fi' in the branch-and-bound

jl
process (i.e., when branching in the constraint, fij2 .
sijl = 0), then the fijk variables for the other values of

> 0 (2.11)
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the index j would be set to zero. This requirement can be

expressed using the following nonlinear constraint set:

£i41 * £i40 = O ¥i, j, k (2.12)
¥3j, #73

Similarly, if a qjk variable is set equal to ij, then all
fjik variables can be set equal to zero. The cdrresponding
mathematical constraints are:

- f... =0 ¥4, i, k (2.13)

Additionally, it is obviously impractical and uneconomical to
send some waste flows from i to j and some other flows from

j to i. Therefore, the following constraint set can be added:

fijl . fjik =0 i, j, k (2.14)

These constraints were used in some of the example problems,

as described in Section 2.5 and in Chapter 5.

B. Branch-and-Bound Method for Nonlinear Binary Constraints

The objective function (2.1) and constraint sets, (2.2)
through (2.6), form a linear programming formulation. If this
portion of the problem is solved alone, however, it is very
likely that some of the nonlinear constraints, (2.7) throﬁgh
(2.10), would be violated. 1If so, this solution is mathemati-
cally infeasible to the original formulation of the problem.
However, these nonlinear constraints have a binary charac-
teristic which suggests the following solution procedure.

Referring to Figure 2.1, consider a nonlinear constraint
of the form, qu . tjl = 0. If such a constraint is violated,
then its binary characteristic can be used as a basis for a
"branching” in a branch-and~bound algorithm. On one branch
qu would be set to zero, allowing tjl to be nonzero and, as
a result, qjl to take on different values. Or, equivalently,

'if the piecewise variable associated with the second segment
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of the cost function for plant j is set to zero, then the
piecewise variable associated with the first segment can take
on anyvvalue. On the other branch, tjl would be set to zero
(in practice qjl would simply be set to its upper bound, le),
allowing qu to be nonzero. That is, if the piecewise variable
associated with the first segment is constrained to its upper
bound, then the piecewise variable associated with the second
segment can take on any value.

These two conditions exhaust the possibilities for
satisfying the nonlinear constraint, and linearity is maintained
in the constraint set after each branching. Each of the two
new linear problems is solved, and the branch-and-bound algorithm
continues, producing a standard branch-and-bound tree like the
one in Figure 2.2. When there is no violated nonlinear '
constraint in the solution to a subproblem, then that solution
provides a feasible alternative to the original formulation of
the problem. When there is no possibility of finding a feasible
alternative costing less than a feasible solution already
obtained, then the procedure terminates. -Similar nonlinear
constraints have also been suggested for formulating one type
of water quality management problem for a river basin, although
the solution procedure in that case is different (Brill, et af.,
1976) .

C. Solving Subproblems

The linear portion of  the formulation can be solved using
any version of the simplex algorithm for linear programming.
The branching can be‘performed either by giving a sufficiently
high cost penalty to the variables to be set to zero or by
setting the activity variables to their lower or upper bounds
using‘constraints. Since many constraints (Sets (2.3), (2.4),
(2.5), and (2.6)) simply place bounds on the variables, it
would be desirable to use a linear programming code designed

to handle bounds efficiently.
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/" Node |
{ Original Solution
Jo Linear Problem

Branch 2
qjk=0

Branch |
k-1 0

Figure 2.2 Starting Nodes and Branches of a

Branch-and-Bound Tree
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The linear programming problem considered here, however,
can be viewed as a network flow problem. The network flow
representation of the linear programming formulation consists
of a set of nodes and a set of arcs. For example, Figure 2.3
illustrates a network flow representation of a region with
two sources, each of which.can also be a plant site. Node 1
and 2 represent waste sources and potential regional plants
1 and 2; nodes s and t are dummy nodes. The flow from s to

node 1 has a required flow of L, (the waste originating at

1
node 1), as indicated by the lower and upper bounds. The arcs

connecting nodes 1 and 2 represent the piecewise capacity

variables associated with potential interceptors between the
two sites. For example, the first piecewise variable repre-
senting flow from site 1 to site 2 has a lower bound of zero,

p

an upper bound of F and a unit cost of C122. The arcs

’
from nodes 1 and 2 igznode t represent the piecewise capacity
variables associated with potential plants at sites 1 and 2.
For example, the first arc from node 1 has a lower bound of

T for the

12
plant capacity located at site 1. The entire network maintains

zero, an upper bound of le, and a wnit cost of C

a circulation of flow totaling L, + 1, as indicated by the
lower and upper bounds on the arc from t to s.

Referring to the original formulation, constraint set
(2.2) represents flow conservation at the nodes and sets (2.3)
through (2.6) represent capacity limits on the arcs. The
objective function (2.1) correspbnds to the minimization of
costs over the entire network. The branching constraints
required throughout the branch-and-bound algorithm can be
readily added by setting the appropriate variables (arc flows

in the network) to their lower or upper limits, as appropriate.
D. Cost Approximations

The computational effort required by the branch-and-
bound method is greatly affected by the choice of the
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piecewise approximations of the concave cost functions. This
issue is discussed using four alternative types of approxima-
tions: |

(1) a fixed charge with one linear piece, FP;

(2) two linear pieces, PP;

(3) a fixed charge with two linear pieces, FPP; and

(4) three linear pieces, PPP,

The latter two cases offer better approximations of the
original function at the expense of increased computational
requirements. Also, as shown below, the FP and FPP approxi—
mations lead to computational advantages compared to the PP
and PPP approximations, respectively.

Several factors can be considered in making the piecewise
approximations. If a treatment plant is constructed at site ‘
j and split flows are not allowed, the capacity will be at
least as large as the waste flows generated at site j.
Similarly, if an interceptor is built from any site i to j,
the capacity will also be at least as large as the waste flows
generated at site i. Therefore, there is no advantage to

making the upper limit, Qj on the first piecewise variable

'
associated with plant j 1e;s than Lj’ the amount of waste
flows generated at that site. Similarly, Fjil should not be
less than Lj. .

In practice, however, the first linear segment in the
FP approximations or in the FPP approximations may be placed
such that the original cost function and the linear segment
coincide at Lj' This is illustrated in Figure 2.4. The
approximations of this particular kind are henceforth referred
to as the FPI and FPPI to distinguish from the general fixed
charge linear approximations. The letter I denotes the
individual flows of Lj which differ in value from one waste
source to another.

Similarly, if the le is placed exactly at Lj' then PPI
and PPPI are used to distinguish these approximations from

the general piecewise linear approximations. See, for example,



Cost
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Figure 2,4 Piecewise Approximation of a Concave Cost
Function When Split Flows Are Not Allowed
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the dotted line in Figure 2.4. Such approximations, however,
can be replaced by FPI and FPPI approximations, respectively,
with no disadvantage.: |

As shown later, the general FP and FPP approximations
are computationally more efficient than the PP and PPP
approximations, respectively, since there are fewer variables
that need to be considered in solving the network problems.
Note that in practice the branchings performed using an FP and
. T jl:o
on one branch, and qjl > Lj and, in effect, yj = FCj on.the

FPI approximation for a treatment plant would specify g

other branch. Similar branchings would be performed using the
piping variables.

E. Converting an Infeasible Node Solution
to a Feasible Alternative

As indicated above, it may be possible to reduce greatly
the size of the branch-and-bound tree by finding a "good"
feasible solution. Such solution could be found by using a
heuristic algorithm similar to those developed by Kuehn and
Hamburger (1963) and Feldman, et af. (1966) or by solving
more refined problems as suggested by Lauria (1975). By using
the method suggested here, however, a feasible upper bound can
be obtained from each of the infeasible solutions (as they are
determined) by the following simple conversion step. A solution
is infeasible because one or more of the omitted, nonlinear
constraints are violated, i.e., the piecewise variables assume
values in an improper order. The waste flows, however, are
physically meaningful since flow continuity is maintained and
all wastes are treated. Only the cost calculations are in
error because of the infeasiblelvalues of the piecewise
variables. Thus, a feasible sqiution can be found simply by
modifying the values of those,biecewise variables that violate
the omitted nonlinear constraints and by recalculating the
objective function. For example, consider the PP case shown

in Figure 2.5. When qjl = 0 and 0 < qu < sz, the solution
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is infeasible. It can be made feasible by the following

changes in the variable values:

(1) If 0 < qu < le, then replace qjl and qu with
¥ 1 ' = 1 =
qjl and qu such that qjl qu and qu 0.
! =
(2) 1If le < qu < sz, then set qjl le and

L) -
qu qu le-

In the case of an FP approximation a solution is infeasible

when qjl > 0 and Yj < FCT . It can be converted to a feasible

solution simply by letting Yj = FC?. After correcting the
ordering for all piecewise variables, the total cost can be
computed accordingly, giving a feasible upper bound (which
is an alternative regional plan) for each node in the branch-
and-bound tree. A similar procedure can be applied in the

PPP and FPP cases.
F. Obtaining Node Solution by Inspection

A very powerful step in the branch-and-bound method is
based on an extension of the above discussion on finding
feasible solutions; one may obtain the solution for some of
the immediately following nodes by inspection. Consider the
PP case shown in Figure 2.5. Assume that the current solution
gives qjl = 0 and le < qu < sz. Since it is infeasible,

a branching is performed in such a way that tjl is set to
zerxo (thus qjl is set to le) on one branch (branch one),
and qj2 is set to zero on the other (branch two). Then, the
objective function value associated with the new node on
branch one, Cn, is given by:

Cp=Co* 0y (C§1 - C?z) (2.15)
where Cc is the total cost for the current infeasible node.
The subscripts "n" and "c" refer to "new" and "current",

respectively. In other words, the only change is that qiq
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is increased by le, while qu is decreased by the same amount.
Both before and after the modifications the value of qu is
greater than zero and less than its upper limit. Since there
are no advantages in increasing or decreasing the value of qu
before the modifications are made, there are also none after
they are made. It can be readily proven that all of the other
variables would remain unchanged, and, as a result the next
node solution is obtained by this inspection step. Similar
methods of inspection can also be made to obtain the upper bound
for some of the immediately following nodes also (see Brill
and Nakamura (1977-a)).

When the current solution has many infeasibilities like
the one described above, an additional node can be evaluated
by inspection for each infeasibility. That is, a limb of the
tree can be grown using a sequence of branches where only
branch one is constructed for each successive node. This
particular trait, which will be described in more detail for
the FP case in Section 2.3-C, reduces considerably the number
of subproblem computations required to find the least-~cost
solution.

In the FP case it is always possible to evaluate one
of the two branches from each node by inspection. The only
type of violation in the branch-and-bound is the entry of
a qji (or an fijl) variable with a nonzero value when yj
(o; Xij) equals ;ero. Branch one will always yield yj =
FCj (or Xij = FCij), and the value of qjl (or fijl) will be
unchanged. Thus, when all of the cost functions are approxi-
mated using the FP approach, it will be possible to determine
one half of the node solutions by inspection.

The same basic principles apply to the FPP approximation.
For example, in the FPP case, which is shown in Figure 2.4,
if qu is constrained to be zero on branch two, then the
remaining branch-and-bound process is exactly the same as
in the FP case and the same inspection method applies.

Similarly, the inspection method developed for the PP
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approximations also applies partially to the PPP case. Note,
however, that a number of different possibilities need to be
considefed in the PPP case. For example, the occasion to
carry out a branch-one inspection for the case qj3 > 0 and
qjl = qu = 0 depends on the relative magnitudes of qj3,

le and sz.

The inspection methods for PPPI, FPPI, PPI and FPI are
also more complex since the magnitude of L. need to be taken
into account. Also, the relative magnitudes of the upper
j1° 92 3)
significantly affects the number of opportunities for using

limits of the piecewise variables (e.g., Q and Qj

inspection steps.
2.3 Standardization of the Basic Model

The FP model is significant because any of the piecewise
cost approximation methods presented in the preceding section
can be reduced to a combination of FP approximations. The
solution procedure and the structure of the branch-and-bound
tree are uniform for all approximations. Any such modified
model is called the FP model and the general mathematical
formulation of the FP model is called the FP formulation.
This uniformity leads to a straightforward way to form the

imputed value incidence matrix which is discussed in Chapter 4.

A. - FP Model

As described previousiy, the solution to the branch-one
subproblem can always be obtained by inspection if the FP
approximation is used. Also, this attractive property can be
transferred to the other approximation methods by simply replac-
ing a given set of piecewise segments with a set of equivalent FP
approximations. For example, an FPP approximation can be repre-
sented by a combination of two FP approximations as shown in
Figure 2.6. The first approximation is indicated by the line



Cost

FCiy

Figure 2.6

32

Flow

Replacing an FPP Approximation

with Two FP Approximations




33

segments connecting points f-a-b, and the second approximation
by points f-c-d. Qg is the waste flow which corresponds to the
intersection point e.

The new representation of the FPP approximation is called
the nevised FPP approximation. Cost approximations of this
type have been applied in the past in solving the regionaliza-
tion problem using mixed integer programming (Joeres, et af.,
1974, and Lauria, 1975). '

Figure 2,7 illustrates the branch-and-bound process when
the revised FPP approximation is used. Since Q is not limiting,
qu becomes nonzero before qjl’ The branch-one inspection
provides the solution to the subproblem associated with node
n,, as in the case of any FP approximation, by setting yj =
FCjZ' Also, qjl will never become nonzero in the part of the
tree under node n. since qu can be increased to any plant
size at lower cost. The additional constraint, qu = 0 is
introduced in solving the subproblem associated with node n,.
Since qjl is not constrained, it may become nonzero in node
solutions under n,. A similar branching may become necessary
at node m, to create two new nodes, my and M, for variable qjl‘
The optimal solution would never contain qu < Q§ (e.g., point
A in Figure 2.6), because a better solution (point B in Figure
2.6) can always be found. _

The inspection method is applicable for finding branch-
one solutions for both qjl and qu, and the computational
procedure is exactly the same as the case in which a single
FP approximation is used. While all of the above discussion
is based on the assumption that Qj is not limiting, the same
computational procedure can be applied if Qj is limiting.

As will be discussed later, however, the number of branchings
increases, since qjl and qu may assume nonzero values at the
same time unless otherwise constrained.

The same basic approach can be taken in the PP and the
PPP cases. For example, a PPP approximation can be repre-

sented by ‘a linear segment through the origin and two FP
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Figure 2.7 Example Branch-and-Bound Tree for
the Revised FPP Approximation
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approximations. Since there are two FP approximations, at
most two pairs of branchings per function are required --
just as in the FPP case described in Figure 2.7. The PP case
can easily be deduced. from the PPP case. Note that the
inspection method is applicable to one-half of the nodes on
the tree. If the original PP approximation is used, an
inspection step can be used only when the relationship,
le < qu < sz, holds. |

In summary, the FP model is structurally simple, but it
is extremely versatile in that its formulation and solution
procedure apply to all of the cost approximations. The FP
formulation of the regionalization problem is described in

its entirety in the following subsection.
B. General Formulation of the FP Model

The FP formulation of the regionalization problem is
analogous to the basic formulation described in Section 2.2-A.
However, there are some differences. First, the capacity

variables, f,., and q are defined differently. In the

1t
FP formulatiégkthey aiz defined as the capacity variables
associated with the kth FP approximation rather than with
the kth piecewise segment of a cost function (see Figures 2.1
and 2.6). Also, in the FP formulation, the upper bound is
the same for all of the capacity variables associated with a
given facility. Second, in the FP formulation, there are as
many fixed charge segments as there are FP approximations
used for a given cost function. Third, the nonlinear con-
straints are not needed for each pair of piecewise segments.
Rather a nonlinear constraint must be defined for each FP
component.

The objective function is expressed as follows:

Minimize

T
2= I5L Ch., + £,.. + 558 x.._ + 3L CL + q.. + 3Ty, (2.16)
ijk ijk ijk ijk ijk ik jk jk 5k jk
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where the constraints (uppér case) and the variables (lower

case) are:

Cijk = unit cost of the kth FP approximation of the cost
function for constructing the interceptor from
location i to location j (dollars/year/MGD),

C?k = unit cost of the kth approximation of the cost
function for constructing a plant at site j
(dollars/yeaxr/MGD),

ijk = capacity variable associated with the kth FP
approximation of the interceptor cost from
location i to location j (MGD),

Ay = capacity variable associated with the kth FP
variable of the plant cost at site j (MGD),

i3k = fixed cost variable associated with the kth FP
approximation of the interceptor cost from
location i to location j (dollars/year),

ij = fixed cost. variable associated with the kth FP
approximation of the plant cost at site j
(either 0 or FCijk)(dollars/year),

Fcijk = fixed cost associated with the kth FP approximation
of the interceptor cost function from location i
to location j (dollars/vear), and

FC?k = fixed cost associated with the kth FP approximation

of the plant cost function at site j (either 0 or
T
FCijk)(dollars/year)

The continuity constraint set is the same as Equation
(2.2): ‘

rr f..,,, - Lz £, + Z
1

. = L, ¥ 3 (2.17)
ik Itk g 13K

where L. is the waste flow generated at source j (MGD).
Equations (2.3) and (2.4) are replaced by the following
simple upper bound constraint sets:

fijk < Fij ¥i, 3, k (2.18)
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where

Eij = upper limit of}tge variables fijk for
k=1, 2, ..., Kij’

Qj = ypper limit of tge variables qjk for
k=1, 2, ..., Kj,

ng = number of FP approximations associated with
the interceptor cost function from location i
to location j, and '

K? = number of FP approximations associated with

the plant cost function at site j.

A slack variable is defined for each of the fixed charge

variables:

4 UL = FC % i, j, k (2.20)

ijk ijk ijk e o :

_ T .

yjk + ij = ij ¥ J, k ’ (2.21)

where
u.., = slack variable associated with x.. (MGD), and
ijk ijk
vjk = gslack variable associated with yjk (MGD) .

The nonlinear constraints are defined as follows:

fijk . uijk =0 * i, j, k (2.22)

cv., =0 ¥ 3, k (2.23)

95k ik

Last, the nonnegativity constraints are

£ > 0 (2.24)

Vik’ *ijk’ Yk 2

ik’ 95k’ “igk’

If all of the cost functions are approximated by a single
FP approximation, then the subscript can be eliminated from
the formulation. 1In the revised PP and PPP cases, only minor
modifications in the formulation are needed.

Note again that for any treatment plant j, if Qj is not
limiting for qjk for all k, then only one qjk takes a nonzero
value and the rest will remain at zero at any one time in the

process of the branch-ahd-bound computation. The same is true
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with the interceptors. Therefore, the solution to the
subproblem at any node on the branch-and-bound tree will
always satisfy the constraint sets, (2.17) through (2.19).
If on the other hand, Qj(fij) is limiting for qjk(fijk)'
then the following constraints must be introduced to ensure

the feasibility of the solution:

Qip * Yo =0 ¥ 3, k (2.25)
] ] ¥ k' £k
S : ¥ i, 3, k (2.26)
¥ k' #

In practice these constraints are enforced in such a way that
. T P . AL

when yjk' (Xijk') is set to chk' (FCijk,) in the branch—-and

bound process, the qjk (fijk) for k # k' are automatically set

to zero.
C. Solution Procedure for the FP Problems

The FP branch-and-bound method can be used to generate

alternative solutions and, if desired, to identify the "least-

cost" 'solution (in terms of a given set of cost approximations).

A flow chart describing the procedure is shown in Figure 2.8.

Also, the general structure of a branch-and-bound tree is shown

in Figure 2.9. The structure of the tree is such that informa- .

tion associated with each alternative plan is readily retrievable.

The branch-and-bound process starts when the initial
linear subproblem is solved using linear programming or a
network flow algorithm. The initial subproblem consists only
of the objective function (2.16) and constraint sets (2.17)
through (2.19) along with (2.24). No branching constraints
are added yet. The solution to this subproblem provides the
objective function value zy, @ lower bound on the least-cost
solution to the complete FP formulation. As shown in Figure
2.9, the entire string of nodes, 2, 3, ..., L, can then be
generated by inspection along the limb of the tree originating
from the branch-one side of node 1. This limb indicates that

(SN
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Figure 2.8 Flow Chart for the FP Branch-and-Bound Method
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the solution to the initial subproblem contains L-1 violations
of the nonlinear constraints (2.22 and 2.23). The fixed charge

components corresponding to each of the violated constraints

" are added to z, one at a time to determine the objective

function values, Zor 237 <oy Zp. The terminal node, L,
provides a feasible alternative plan, as long as none of the
Qj's or Fij's are limiting. Flow conservatioh is satisfied,
and the fixed charge associated with each of the FP variables
in the solution is added to the objective function. If some
of the Qj's or Fij
constraint sets (2.25) and (2.26) in the formulation provides
alternatives with correct costs. These additional constraints
do not alter the structure of the branch-and-bound tree, since

they are added to the subproblems simultaneously with the

's are limiting, then the introduction of

ordinary branching constraints.

The sequence order of the branching variables along a
limb of the tree can be based on the magnitude of the fixed
charge. Adding fixed charges in descending order may help in
pruning the branches closer to node 1 (vertex), since fewer
branches may be needed before an intermediate node cost exceeds
any cost limit which is used in the branch-and-bound process.
However, the generation of nodes beyond those necessary for
the completion of branch-and-bound process does not increase
the computational burden significantly; the necessary fixed
charges are simply added in the inspection steps.

The branch-two computation from the lowest-cost infeasible
node, in this case node 1, is the next step. Again the sub-
problem, consisting of the objective function (2.16) and
constraint sets (2.17) through (2.19) along with (2.24), is
solved. One branching constraint (e.g., qj'k' = 0 as shown
in Figure 2.9) is added. Again a string of nodes, L+1, L+2,
..., L+M, is generated along the limb of the tree originating
from the branch-one side of node L+1l. A feasible alternative
is identified at the terminal node, L+M. The branching

procedure then follows the rule branch §rom the Lowest bound
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(Lawler and Wood, 1966, p. 712), and the branching continues
as shown in Figure 2.9. The series of solving one subproblem
by an optimization algorithm,‘carrying out a string of inspec-
tion steps, and identifying one feasible alternative can be
repeated until a given stopping rule is satisfied.

The appropriate stopping rule depends on the purpose of
application of the method. If the objective is.to obtain z*,
the least-cost solution in terms of a given approximation
method, then the branch-and-bound process may be terminated
when all of the infeasible node costs exceed the cost of a
feasible alternative. Note that any feasible solution to the
original problem will be found only at the bottom of the tree.
If the objective is to generate alternatives within a given
cost limit, z**, then the process can be continued until all
of the infeasible-node costs exceed the cost limit,

Each limb of the tree grown by a string of inspections
is referred to as an 4inspection Limb; for example, the limb
from node 1 to node L in Figure 2.9 is an inspection limb.
There are two important node costs associated with each such
limb. One is the feasible node cost (an upper bound) at the
bottom of the limb, and the other is the infeasible node cost
(a lower bound) associated with the first intermediate node
from which no branch two has been extended. For example, in
Figure 2.9 node L provides an upper bound, and node % provides
an infeasible lower bound. These two node costs are important
for comparing economic trade-offs between different sets of
alternative plans. A more detailed discussion on the use of
lower and upper bounds is provided in Chapter 4.

The lowest of the inspection-limb lower bounds is the
current lower bound, z, of the branch-and-bound tree, and the
current lowest of the inspection-limb upper bounds is defined
as the upper bound, z. Defining the lower bound on inspection-
limb n as LB(n) and the upper bound as UB(n), the following

relationships hold:

[oE—
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Z2 < z* <z < UB(n) ' ¥V n (2.27)

Zk* . ¥ n (2.28)

If the objective is to find the least-cost solution, the

branch-and~bound process terminates when:

z¥ = z = z < LB(n) < UB(n) ¥ n  (2.29)

If alternative solutions are generated, the process terminates

when:
z** < z < LB(n) ¥ n 7 (2.30)

The FP branch-and-bound trees contain, in general, many
inspection limbs like the ones in Figure 2.9. At any given
stage of procedure, many of the nodes, e.g., nodes #+1 through
L in the figure, have not become candidates for branching since
complete branching has not yet been performed on the preceding
node, i.e., node &. Since those nodes are not actively involved
in the branch-and-bound process, they are called {nactive nodes.
Also the corresponding part of the inspection limb is called
an 4inactive porntion of the tree, and the extra inspection steps
are called {nactive inspection sieps. Other nodes obtained by
inspection, such as node 2, are in the active poxrtfion of the
tree. The importance of inactive nodes lies in their potential
for becoming active and leading to additional growth of the
tree to generate more alternative solutions.

The following relationships hold among these different

parts of the tree.

I+C=N (2.31)
N, +N; =N
I, + I, =1
C=1_+1 (2.34)
a
N, =2 +I_+1 (2.35)
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where

I = total number of inspection steps,

C = number of branch-two computations,

N = total number of nodes,

Na = number of active nodes,

Ni = number of inactive nodes,

Ia = number of active inspection steps, and
Ii = number of inactive inspection steps.

Some of these indices shown above are compared for the example
problems presented later.

2.4 Comparison of the Nonlinear Branch-and-Bound Method
and the Mixed ‘Integer Method

The regionalization problem can also be formulated as a
mixed integer programming (MIP) problem (see, e.g., Joeres,
et af. (1974) and Lauria (1975)). For example, if the cost
of treatment plant j is represented by the revised FPP
approximation described in Section 2.3-A and illustrated in

Figure 2.7, one MIP formulation includes the following

constraints:
a; < 85 le (2.36)
qu < sz . sz (2.37)
'Gjl + 5j2 <1 | (2.38)
qjk >0 k =1 and 2 (2.39)
§.. =0, 1 k =1 and 2 (2.40)

jk

where g, ik and Q. 5k are described under Equation (2.23).

The objectlve function includes terms such as & FCjk . ij,
where FCjk is the fixed cost associated with the kth FP
component of the cost function for constructing the plant

at site j.
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The integer variables accomplish what the nonlinear
binary constraints do in the formulation presented in this

chapter. Note that the number of variables and constraints

"involved in the MIP formulation is greater. The MIP formula-

tion can be solved directly using an MIP algorithm such as
the one proposed by Gomory (1960). Also branch-and-bound
algorithms, which are tailored to solve MIP formulations, are
known to be very efficient (Garfinkel and Nemhauser, '1972).
Such solution approaches, however, do not adequately fulfill
the objective of this study -- to generate alternative plans.
The primary objective of such methods is computational effi-
ciency in finding the "optimal" solution. Thus, it requires
some modifications, in general, to identify solutions which
may be converted to physically meaningful alternative plans.
In particular, when a fractional approach is used, the integer
variables are treated like continuous variables and the branch-
and-bound tree would not be as useful for comparing alternatives
as in the case of the nonlinear branch-and-bound method.
Computationally, each method has its advantages and
disadvantages. While the nonlinear branch-and-bound method
can take advantage of inspection methods and a network flow
algorithm to enhance computational efficiency, many of the
MIP codes with the embedded branch-and-bound method contain
various schemes to estimate the objective function values
associated with unexplored nodes. Many of the general purpose
MIP codes available today achieve high computational efficien-
cies. Some comparisons are made on the computational aspects

of the two methods in the following section.
2.5 Illustrative Example

A small example problem is used to illustrate the branch-
and-bound method for generating static alternative plans.
While the structure of the example problem is simple, a number



46

of interesting observations are made and outlined below; an
earlier discussion is presented in Brill and Nakamura (1977-a).
Computatidnal requirement of a mixed integer programming
approach are presented along with the requirements of the
branch-and-bound method. A comparison of the FPP approxima- .

tion and the revised FPP approximation is also presented.
A. Description of Hypothetical Example Problem

The relatively small hypothetical problem is shown in
Figure 2.10; it consists of seven communities (sources of
point waste) and eleven potential interconnecting routes.

Of the seven point gources, two (sites 2 and 6) are not allowed
to be candidate sites for regional treatment plants and six

of the eleven links allow flow in only one direction. The
amount of wastewater generated at each source is shown under
column Lj(lO) in Table 2.1. Since the same example problem

is used for the multitime period analysis, the wastewater
production at two other years are also shown in the table.

This rather simple example has 640 feasible combinations
of treatment plants and piping. For a problem of this size
it is practical to find the least-cost plan and to examine
many planning alternatives by enumeration. However, as the
number of candidate sites becomes larger, the number of
combinations grows exponentially, and total enumeration
becomes impractical. If, for example, site 2 is allowed to
be a candidate site for a regional treatment plant, the
number of feasible combinations grows to 1152, or approxi-
mately twice the original number.

The cost functions used in this example problem are

based on Deininger and Su (1971). They are:
wcX = (0.560 « g%+78) . 0.07095 (2.41)
ocM = 0.067 + 078 (2.42)
rcP = (0.040 - £9°°9) + 0.05480 - D (2.43)

et an ot
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\’Distance (Miles)

Figure 2.10 Interceptor Network and Waste Sources
for the Hypothetical Example Problem
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Table 2.1 Waste Flows Generated at Each Source

for the Hypothetical Example Problem

Waste Flows (Million Gallons per Day)

Source .Lj(o) Lj(lo) Lj(25)
1 0.20 0.39 1.00
2 0.00 0,08 0.40
3 0.10 : 0.45 1.00
4 0.50 1.30 2.40
5 1.40 2.30 2.50
6 0,00 0.08 0.20
T 0.00 0.40 1.80

Lj(t): Waste flows generated at the t-th year at site j.
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where
TCK = amortized construction cost of treatment plants
(million dollars/year),
TCM = annual operations and maintenance costs of
treatment plants (million dollars/year),
TCP = amortized construction cost of interceptors

(million dollars/year),

q = design flow for treatment plants (MGD),

Hh
H

design flow for interceptors (MGD), and

D = distance (miles).

Construction costs of treatment plants and interceptors are
amortized using 25 and 50 year design lives, respectively,

and using a discount rate of 0.05. Operation and maintenance
costs are not included in the single-period analysis.
Constraint sets (2.12), (2.13) and (2.14), which prevent split

flows and two-way flows, are included in the formulation.
B. Computational Results

Branch-and-bound trees have been grown using various
cost approximation methods. Also three solution methods, the
simplex method, the Out-of-Kilter Algorithm (OKA) and mixed
integer programming, were used. An earlier experience with
these approaches is described in Brill and Nakamura (1977-a).

In summary, the following observations were presented.

(1) For a given method, as the number of piecewise
variables increases, the size of the tree generally
increases. The number of subproblems computed also
increases approximately in proportion to the total
number of nodes in the tree.

(2) The number of feasible (physically meaningful)
alternatives tends to be proportional to the total
number of nodes generated. In particular, in cases

which involve the FPI or the FPPI approximations,
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each subproblem computation resulted in one
feasible alternative. If the first breakpoint
of the piecewise segment is placed beyond the
individual waste flows generated, however, split
flows tend to occur in many alternatives.

(3) The inspection method has been proven to be very
powerful, particularly in cases which involve the
FP type approximations. 'One-half of the total
number of nodes are generated by inspection. The
numbers of subproblems actually computed in those
cases, therefore, were less than the ones in the
corresponding cases involving the PP or the PPP
approximations. |

(4) The least-cost configuration found depends to a
great extent on the method used to approximate
costs. Also different solutions were found when
small changes were made in the locations of the
piecewise segments, although the same type of
approximations are used. This observation rein-
forces the importance of generating alternative
solutions.

(5) The nonlinear branch-and-bound method seems to be a
very efficient method for generating alternative
regional plans. Furthermore, the OKA computer cbde
was found to be much more efficient than the simplex

computer code used to solve subproblems.

Some additional observations can be made by examining
the information shown in Table 2.2 for seven different cases.
Each case involves a different set of cost approximations.
The table contains information pertaining to the type of
approximations, the statistical data associated with the tree,
the cost information, and the solution methods. The term
"least cost" refers to the solution based on the given set

of cost approximations, while the term "actual cost" refers




Table 2.2 Computational Statistics for

.SingleFPeriod Example Problem

Case A
No. of Piecewise Variables 5
Using PPI 5
FPI 0

FPPI 0

Revised FPPI 0

Total No. of Nodes 25
No. of Active HNodes 25
No. of Active Inspections 7

No. of Subproblems Computed 18
No. of Feasible Altermatives 11
Least Cost ($ x 103/year)
Actual Cost ($ x 103/year)

Solution Method » OKA

OO O v v

19

19

15%
4
2

MIP

O O U O U O

23
21
10
11
11

O O O wmy

21

21

17*
4
3

o R« JRC I o R R

76

65
32
33
31

OKA

O N M O 3 =

89

17

38
39
38

OKA

* No. of times the imbedded node value estimation is performed.
+ Excludes the solutions with improper FP approximations (see 3.3-4).

N O O 9 @

110
81
40
41
30

181.5 '181.5 181.5 181.5 184.6 184.6 184.6
191.0 191.0 191.0 191.0 181.5 191.5 191.5

OKA MIP OKA

TS
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to the cost of this solution based on the original cost
functions given in Equations (2.41) and (2.43).

When the approximate least-cost solution was found on
the tree, the branch-and-bound process was terminated in each
case. The computer program for the OKA was written in Fortran
IV and was available at the University of Illinois. The OKA
code developed by Clasen. (1968) and other advanced codés
recently developed (e.g., Barr, et af., 1974, Glover, et al.,
1974, Bradley and Brown, 1975, and Hultz, ef af., 1976) may
easily be substituted. The MIP code used is a part of the
IBM MPSX and available at the University of Illinois.

Note from the table that one of the major differences
between the nonlinear branch-and-bound and the MIP methods
is in the number of feasible alternatives. While the nonlinear
branch~and-bound tree provides at least eleven alternatives
prior to the termination in each case, the MIP branch-and-
bound tree provides only two and three feasible (physically
meaningful) alternatives in cases B and D, respectively.

The MIP method, on the other hand, has special capability

for estimating the next node solution which may reduce the
computational time considerably. For example, fifteen of the
nineteen node values were computed by such routine in case B,
and seventeen of the twenty-one node values were in case D.
The actual number of subproblems computed, therefore, was
only four in each case.

The CPU time required for cases A, C and E were about
0.6 seconds per subproblem on the University of Illinois
DEC 10 system, while the MIP code on the IBM 360/75 system
at the University of Illinois required 5.84 and 4.80 seconds
for cases B and D, respectively. When the branch-and-bound
tree was constructed for cases C and E, using a short Fortran
program (about 350 steps including OKA) on the DEC 10 system,
the total CPU time was 5.6 seconds and 12.9 seconds, respec-

tively. The computational speed of the DEC 10 system is much

(U




Lrren—

Nzt et

53

lower than that of the IBM 360/75 system,  However, no
generalization is possible on the computational efficiency
because of the limited expérience.

The differences in the computational requirements of
the FPPI and the revised FPPI approximations are shown in
cases F and G, respectively, Case F resulted in a smaller
tree than case G, and yet the number of feasible alternatives
was greater than for case G. Most of the alternative configu-
rations generated in case G were also generated in case F.
Note, however, that the computer program for case F must.
include the provisions for all the possibilities for inspection
of node solutions, while the program used for the FPI case is
directly applicable to case G. Thé CPU times for the two prob-

lems were nearly identical at 12.7 for case F and 12.9 for

case G.
An illustration of the structure of the FP tree. for case E

is given in Section 4.3. It will be shown that the information
on the branch-and-bound tree can be used for obtaining the

economic trade-offs among different alternatives.
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3. GENERATING ALTERNATIVE PLANS:
A SIMPLIFIED MULTIPERIOD CASE

3.1 Introduction

The branch—and-bound method developed in the previous
chapter has a number of unique features which make it an
attractive tool for planning analysis.  The method presented

so far, however, considers only a single time period; capacity

expansion over different time periods is not taken into account.

Thus, the cost differences between alternatives reflect only
the single-period (static) trade-off values.

In this chapter a multiperiod case is considered. The
analysis of public sector location problems based on multi-
period (dynamic) cost is extremely difficult, since it involves
many more unknown factors than the case with the analysis based
on static cost. Also the number of possible planning alterna-
tives becomes considerably larger, because construction phasing
adds another dimension. Problems possessing such characteris-
tics are collectively called multiperiod facility location
problems, and interest in the mathematical analysis of these
problems has been extensive during the past several years.

The objective of multiperiod facility location problems
is to find the least-costly locations of central facilities
which satisfy demands that change from one time period to
another, including the determination of time of construction.
It involves the economics of capacity expansion and economies
of scale. A major portion of the related literature considers
location analysis on a plane rather than on networks. For
example, Wesolowski (1973), Forcina (1974), Erlenkotter (1974),
and Sweeney and Tatham (1976) have all proposed formulations
and solution methods for multiperiod location analysis on a
plane using dynamic programming and modifications. Meier
(1974) has proposed a mixed-integer programming approach,
Wesolowski and Truscott (1975) have tested mixed-integer
programming and dynamic programming, and Eschenback and

———-
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Carlson (1975) have used a branch-and-bound technique for
the same problem.

Several techniques havé been suggested for dealing with
regional wastewater systems. The direct application of a
heuristic programming approach has been proposed by Bhalla
and Rikkers (1971). Lauria (1975) proposed that mixed integer
programming can be successfully applied to the multiperiod
analysis of regionalization. Rossman (1977) has presented
an efficient solution-approach to the same problem using a

heuristic technique in conjunction with dynamic programming.
3.2 Basic Assumptions

Besides the assumption of uniform secondary treatment,
several additional simplifying assumptions are made in this
study. These assumptions, which make the problem a special
case of the general multiperiod regionalization problem, are
based on two fundamental considerations. First, the primary
objective of the proposed method is not to find the "optimal"
solution in the strictly mathematical sense, but to generate
many different alternative plans and to compare the economic
trade-offs between them. Thus, rigorous pursuit of mathema-
tical optimality is sacrificed for the approximate but effi-
cient analysis of alternatives. Second, since the method
developed for the single-period regionalization problem has
proven quite efficient, an effort has been made to maintain
the basic features of the method.

There are three basic assumptions for the multiperiod
regionalization problem considered here:

(1) the growth of wastewater production at each source

is linear,

(2) the interim design periods are predetermined, and

each of the regional plants must be constructed
stagewise to accommodate only the incremental

design flows of each period, and
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(3) the assignment of the individual waste sources to
regional treatment plants remains unchanged over

the entire design period.

Although some slight modifications of these assumptions may
be possible without loss of generality of the method, these
assumptions reflect the basic approach to the problem. Some
additional but less critical assumptions are:
(4) existing facilities are not included in the analysis,
(5) the operation and maintenance (0&M) costs for plants
are a function of wastewater produced rather than
the capacity of the plant constructed,
(6) the 0O&M costs for interceptors are negligible,
(7) the interceptors are constructed at the outset for
the entire design period, and
(8) the same cost function applies both to initial

construction and to expansion of a treatment plant.

These additional assumptions may be modified to a significant
degree depending on the specific characteristics of the
regionalization problem.

The next sections discuss how simplified multiperiod
construction costs and O&M costs can be transformed into
single-period forms under these assumptions. The analytical

procedure is discussed in the later sections.
3.3 Multiperiod Cost Approximations

Given the assumptions stated in Section 3.2, the
approximate multiperiod costs of a plant can be transformed
into a simple form involving only the fixed charge, the cost
associated with the initial design-year flow and the cost
associated with the ultimate design-year flow. The trans-
formation is carried out in two steps. The first step is a
transformation of the O&M costs over the entire design period.

The second step is a transformation of the stagewise
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construction costs. All of these costs are finally aggregated
to a single function. While the cost of constructing inter-

ceptors is assumed to be based only on the ultimate design flow,

a modification is made of the cost functions so that they will

also conform to the form of plant cost functions. The aggre-
gate cost functions based on those transformations will be
used for identifying the approximate least-cost solution and

other alternative solutions to the multiperiod regionalization

problem.
A. Plant O&M Costs

Based on the assumptions that wastewater production is
linear with time at any waste source and that the assignment
of waste sources to regional plants remains unchanged over
the entire design period, the following relationship gives

the waste flow treated at a regional plant at year t.

qj(t) = qj(o) + sj -t (3.1)

A

J
t < T
where
qj(t) = waste flow to be treated at plant j at year t (MGD),
qj(O) = waste flow to be treated at plant j initially (MGD),
sj = rate of growth of waste flow at plant j over
T years (MGD/year), and

‘T = design period (year).
The annual O&M costs at year t for plant j, Mj(t) (dollars/
year) can be expressed by an exponential function of the

following form.

- BM
M(t) = oy - (q4(t) (3.2)
where
Ay = O&M costs of a reference plant,
constant (dollars/year), and
B. = economies of scale factor, constant.
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The average equivalent O&M costs, Mj (dollars/year), for
plant j is defined as: _
T ~ T

M. = © (M.(t) - DY)/ 5 bt
T og=1 t=1
T B T
=ay + I ((q;(0)+s,+t) TeDH/ T Dt (3.3)
t=1 J ] t=1

where D is the discount factor, 1/(l1+i), using a discount
rate 1. Mj, therefore, is the 0O&M costs of some hypothetical
year, t*, which can be considered a uniform annual series over
all T years, and when summed over T years after discounting,
it equals the actual cumulative discounted O&M costs over T
years (see Figure 3.1).

Also,

M, (t*) = M,
5 (89) j

or
BM
. . * _
Qg (qj(o) + sj t*) = Mj (3.4)

Equating (3.3) and (3.4),

T B T 1/8
. = . M, .t t] M W
t (l/sj) H El [qj (0) + S t)] D /til D ] d5 (0)I
T By + T & 1/By '
= 2 (g.(0)/s. +t) "D/ L D ~ q.(0)/s. (3.5)
=1 7 ] t=1 ER

Thus, t* is a function of qj(O)/sj and the constants, T, BM,
and D. The term qj(O)/sj has a dimension of time and it
characterizes the pattern of waste generation, not the absolute
amount of waste flow.

Figure 3.2 shows the relationship between T and t* for
a given set of i and qj(O)/sj and for a constant economies-

of-scale factor, B of 0.78, a typical value for wastewater

MI
treatment plants. Note from the figure that t* is rather

insensitive to qj(O)/sj because the term appears at two
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Figure 3.1 Growth of Waste Flows over T Years
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separate locations in Equation (3.5) in such a way that its
total contribution to t* is minimal. The values of t* for a
wide range of nonzero values of qj(O)/sj are only slightly
larger than the t* corresponding to qj(O)/sj = 0 as shown for
the case of i = 0.05. A similar trend has been shown to hold
for other values of i and BM. Thus, t* can be considered

nearly independent of qj(O). This result is quite convenient
since t* for qj(O) = 0 can be identified a piriori for a given
set of T, BM and i, and it can be used for nonzero values of

qj(O). The error in the cost analysis caused by this under-
estimation of t* is minimal since it contributes only slightly
to the O&M costs and even less to the sum of the O&M costs and
construction costs.

It is bossible to incorporate t* directly into the
pliecewise cost approximation of the 0O&M costs over the design
period. Let the exponential cost function for O&M costs be
approximated by the FP method as shown in Figure 3.3. The FP
approximatign, consisting of EC?, the fixed charge (dollar/
year), and C?; thé unit cost for a linear segment (dollars/
year/MGD), is:

'%C? = EC? + E? Cag(e) (3.6)
where ;C?(t) is an approximate annual O&M cost for plant j at
year t (dollars/year). The'superscript M denotes O&M costs
(superscript K is introduced later for conStruction costs) .
Then, TC?, the average equivalent annual O&M costs (dollars/

years), is:

T ~ ~ T
TcM = T (FCM +cM. q.(t)) - Dt]/ z Dt
N ~ T T
= (rel + M egem) - 3z pt/z ot
J J J t=1 t=1

~ M ~M

= FC. + C. L(t* (3.7)
j j *9yE")

From Equation (3.1), qj(t*) is given as:



A
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. (t* .(0) + g, » t*
qj( ) qj( ) sJ

q4(0) + (t*/T)-[qj(T) - qj(O)]

(1 + t*/T) 'qj(O) + (t*/T) -qj(T) (3.8)
Therefore, Equation (3.7) becomes:

~ M, M
FC. + C. « (1 = t*/T) * qg. (0
3 3 ( /T) qj( )

T
]

~M _
+ Cj (t*/T) qj(T)

M M Moy L
= FCy + c(0) * gy (0) + cY(m) + qy(m) (3.9)
where
M = M . _
Cj(O) = Cj (1 t*/T)
M = AM. *
Cj(T) Cj (t*/T)

A

and for consistence of notation FC? is replaced with FC?.
Both C?(O) and C?(T) are constants and are associated with
qj(O) and qj(T), respectively.

In summary, the. average equivalent annual O&M costs
can be expressed by a fixed charge and a unit cost modified
by t*/T. Note that when qj(O) is zero, Egquation (3.9)
reduces to an ordinary FP form and becomes a function only
of qj(T), The cost approximation for O&M costs is the same
for any stagewise construction program, as long as O&M costs
are considered to be a function of waste flow rather than of
capacity. Any portion of O&M costs which is a function of
capacity can be included as part of the construction cost,

which is a function of capacity.

B. Construction Cost of a Plant with Stagewise Expansions

Regional treatment plant capacities are assumed to be

increased stagewise over T years. The number of interim
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design periods is given a prdioni, and every plant in the
regional system must be constructed only for the required
incremental capacity. This section describes how such
stagewise construction costs can be expressed in terms of
qj(O) and qj(T) just as with the O&M costs. The discussion
is based on the two-stage construction case, for simplicity.
The amortized construction cost, Kj' of plaht j for a

design capacity of rj can be expressed by an exponential cost

function:
BK
Kj = og * rj (3.10)
where
Op = amortized construction cost of a reference plant,
constant (dollars/year), and
BK = economies of scale factor, constant.

Using the FP approximation method, the construction cost

can be approximated as follows:

TCIj< = FCI:]{ + cIj< - (3.11)
where
%CK = approximate amortized construction cost for plant j
) at year t (dollars/year),
ECK = fixed charge component of %C% (dollars/year), and
é? = piecewise cost component of %C? (dollars/year/MGD) .

Superscript K denotes construction costs.

As illustrated in Figure 3.4, for the two-stage case the
plant will be constructed to a capacity, qj(O) + (qj(T) -
qj(O)) -(Tl/T), at year zero and an expansion of (qj(T) -
qj(O)) ~(T2/T) will be added at year T Equation (3.11)
can be rewritten as follows:

1°

N N )
ok = K K, - - . - . . T
TCy = FCy + Cy + {qy(0) +(qy(T) - g5(0)) = | l/TT)J
o K AK e - . y \ - l
+ (FCS + (a; (T) a5 (0)) (T,/T)) = D
K K K
= . . . . (T . (T 3.12)
ch + CJ(O) qJ(O) + CJ( ) qj( ) (

sl
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Figure 3.4 Two-Stage Construction of a Plant
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where
K _ 2 K Ty
FC. = FC, (1 + D7)
] J
CK(O) = EK « (1 - (T./T) (T,/T) ~131)
| j 1 2
~ T
K _ JK o1
Cy(T) = cy « ((Ty/T) + (T,/T) -+ D7)
Note that both C?(O) and C?(T) are constants and are associated

with qj(O) and qj(T), respectively. When qj(O) is zero,
Equation (3.12) reduces to a simple FP form and becomes a
function only of qj(T).

The two-stage construction case can be expanded to a

general N-stage construction case without loss of generality.

Only the fixed charge and two cost coefficients associated
with qj(O) and qj(T) will change their forms as the number

of stages increases, as follows:

~ N n T _
FCI.(=FCI.<{Z T Dml]
] n=1 m=1
r
~ N n T
Koy =cX.]1- 3 (T, /T) + Dm-]']
J J n=1 =1
~ N n T
Ky =k 3 .[(Tn/T) - 7 pnM l]
J J L n=1 m=1

where T_ is defined as zero, and, thus, DO ig unity.

cC.

(3.13)

(3.14)

(3.15)

Aggregation of O&M Costs and Capital Costs of a Plant

The total plant cost is given by the sum of the O&M costs

(Equation 3.9) and construction costs (Equation 3.12) as

follows:

T M K M K
TC. = FC. + FC. + 1C.(0) + C. (0 . . (0
j 3 3 (J() j()) q4 (0)

M K
+ (cj (T) + cj(T)] a4 (T)

T T T
+ cj(o) qj(O) + CJ (T) qj( )

FC
J

(3.16)
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where
TC? = total annual cost of plant j (dollars/year),
T _ M K
FCj = FCy + FCJ ,
c3(0) = cf(o) + ), ana
Wm=c<m+cﬁm.
J J
When q.(O) = 0, Equation (3.16) contains only one variable

q (™, and it is of a 51mp1e FP form.
Equation (3.16) can be rewritten using q the difference
between qj(T) and qJ(O) (see Figure 3.1), 1nstead of qj(T) as

follows:
TC? = FC? + C?(O) + a5 (0) + C?(T) + ay(m
= ch + Eg °’qj(0)‘+ C?(T) . q? (3.17)
where
E? = C§(O) + C?(T)

Equation (3.17) is used here to solve multiperiod problems

which involve both qj(O) and qj(T).
D. Construction Cost of an Interceptor

It is assumed that the interceptors are constructed for
the entire design period at the initial design year. Thus,
the cost of constructing interceptors is based solely on the

ultimate design flow.

TC,. = FC,. + C,.(T) « £..(T) (3.18)
1] ij 13 1]
where
Tij = construction cost of interceptor from location i
to location j (dollars/year),
FClja_j = fixed charge component of TC1i°j (dollars/year),
Cij(T) = piecewise cost component of TCIJ.)_j associated with

capacity variable fij(T) (dollars/year/MGD), and
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fij(T) = capacity of interceptor from location i to
location j to be constructed for the ultimate
design period T (MGD). It is equivalent to the
ultimate design flow through the interceptor

at year T.

Egquation (3.18) is rewritten in the following form to be
consistent with Equation (3.17) for solving the multiperiod
problem.

P _ _.P P D

= ( . P .
TCiy = FCiy + Ciy(T) + £;,4(0) + Cyo(T) + £

14 i i3 (3.19)

where fij(O) is that portion of the total capacity fij(T)'
which corresponds to the initial design flows at year zero,
and f?j is defined as the difference between fij(T) and
fij(O).

In the next section a solution method for the multiperiod
regionalization problem, which involves cost approximations of
the form represented by Equations (3.17) and (3.19), will be

discussed.
3.4 Multiperiod Solution Method

The multiperiod solution method is essentially an extension
of the branch-and-bound method presented in Chapter 2. It
involves constructing two trees which are coupled by a set of
constraints.

One special case of the multiperiod problem, however, can
be reduced to the single—peribd formulation, and the branch-
and-bound method of the previous chapter can be applied. This
result is reached if the ratio of the initial design flow to
the ultimate design flow is the same for every waste source.

If this ratio is y, the following relationship holds:

a;(0) = q5(T) - ¥ ¥ j (3.20)

Eguation (3.16), then, reduces to the following form:

T _ onT . T T .
ch = ch + (v Cj(O) + Cj(T)] qj(T) (3.21)

[T
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The above equation along with Equation (3.18) leads to the
same formulation as the single-period problem and the nonlinear
branch-and-bound method can be applied.

If the above assumption does not hold, both the initial
flows and ultimate flows must be taken into account in solving
the multiperiod problem. The mathematical formulation and

solution procedures are described below.
A. Multiperiod Formulation

The mathematical formulation of the multiperiod problem

‘uses the cost approximations represented by Equations (3.17)

and (3.19) for plants and interceptors, respectively. These

equations are repeated below:

T T | =T T D .

TC> = FC. + C% + q.(0) + C.(T) * q. v 3.17
5 3 3 qj( ) J( ) qj ] ( )
P _ P - P . D L

TC;y = FCy + Cij(T) L £5500) + qij(T) £33 v i, j (3.19)

Two sets of variables are used in the above equations. The
first set, qj(O) and fij(O),Drepresgnts the initial design.
flows, and the seqond set, qj and fij’ represents the incre-
mental flows in between the initial and the terminal design
years.r The capacities to be constructed are represented by a
combination of the two types of variables (see, e.g., Figure
3.4). Recall also that the fixed charge, FC?, and cost
coefficients, E? and C?(T), in Equation (3.17) contain aggre-
gate information about the O&M costs and stagewise construction
costs for a plant at site j. As long as the assumption that

~growth of wastewater production is linear at each source holds,

those two sets of variables are the only variables involved
for any number of construction stages.

The two sets of variables are not independent, since it
is also assumed that the assignment of waste sources to plants
and interceptors remains unchanged over the planning period.

In other words, if qj(O) consists of waste flows initially
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generated by a set of waste sources, then qp must also
consist of incremental flows generated by tge same set of
sources. Similarly, in the cése of interceptors, if a set
of waste sources is assigned to the interceptor from location
i to location j, then both the initial flow, fij(O), and the
incremental flow, f?j’ consist of waste flows generated by the
sources in the assigned set. This requirement is defined as
the compatibility nequirement of FP variables. If the above
two sets of variables are introduced in one mathematical
formulation, then, a set of constraints which impose the
compatibility requirement becomes necessary. It is clearly
quite cumbersome, since the number of constraints would
generally be very large. It is not likely, further, that
such a formulation can be solved efficiently.

The method proposed here uses a form of decomposition.
If q? and f?j are disregarded from Equations (3.17) and (3.19),
then the remaining cost components would form an FP approxima-
tion and the single-period branch-and-bound formulation becomes
applicable. Similarly, if qj(O) and fij(O) are disregarded,
the remaining cost components would form a different FP
approximation. Taking the first case, the nonlinear branch-
and-bound formulation involves the following FP approximations:
D

T T T .

TC. (T) = FC., + C.(T) * q. 74 3.22
J( ) 3 J( ) 5 ] ( )
P P P . D .

Tcij () = Fcij + cij (T) fij Vi, j (3.23)

The disregarded variables, qj(O) and fij(O) along with their

respective cost coefficients, form the remaining cost components.

T 7 .

"0) = &% . q. .24
TCJ(O) CJ(O) qJ(O) Z j (3 )
rcE . (0) = cB.(7) - £..(0) % i, 3 (3.25)

ij ij ij

If the compatibility requirement is imposed fully, then the
folldwing relationships hold:
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Tc§ = TC'jI.|(O) + TC?(T) | ¥ (3.26)
P _ P P o
TCi; = TC14(0) + ek, (1) ¥ i, j (3.27)

The above observation leads to a method for solving the
multiperiod problem. Two decomposed problems are defined; one
consisting of the FP approximations represented by Equations
(3.22) and (3.23), and the other consisting of the linear
approximations represented by Equations (3.24) and (3.25).

The first problem is called the decomposed-problem 1 (DCP—l),
and the second is called the decomposed-problem 2 (DCP-2). If
the compatibility requirement is met between a solution to the
first problem and a solution to the second problem, then, the
two solutions can be joined to give an upper bound on the
least—cbst_solution to the original problem represented by
Equations (3.17) and (3.19). 1If, on the other hand, the
compatibility requirement is satisfied only partially, the two
solutions can be combined to give a candidate for a lower bound
on the cost of the least-cost solution to the original problem.
The method proposed here takes the latter approach. _

The mathematical formulation of DCP-1 conforms exactly to
the standard FP formulation given by Equations (2.16) through
(2.24). Since only one FP approximation is involved for DCP-1,
subscript k is dropped from the variables and constants, and
thus no summation over index k is necessary. Also, the
following changes are made:

fP. and q? replace fi.

ij jk and qjk’

24 T P T
Cij(T) and Cj(T) replace Cijk and cjk’

D
L. replaces L.
j *eP 3’

FP. replaces F.., and
1] 1]

D
. replaces .
Qj P Q],

]
/

where L? is the ultimate design flow less the initial design
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flow generated at site j, ng is the upper limit of variable

D

fij' and Q? is the upper limit of variable q?.

The formulation of DCP-2 is a standard linear programming
formulation consisting of an objective function, a set of flow
conservation constraints and nonnegativity constraints.

The formulation involves only Equations (2.16) through (2.18),
again without subscript k and the summation over index k. The

notation for variables and constants is changed as follows:

fij(O) and qj(O) replace fijk and qjk'

P =T P T
Cij(T) and Cj(O) replaces Cijk and Cjk'
L.(0) replaces L.,

J J
Fij(O) replaces Fij’ and
Qj(O) replaces Qj'

where Lj(O) is the initial design flow generated at site j,
Fij(O) is the upper limit of variable fij(O), and Qj(O) is
the upper limit of variable qj(O). |

DCP-1 can be solved by the nonlinear branch-and-bound
method proposed in the previous chapter, and DCP-2 can be
solved by any linear programming method or a network flow -
algorithms. _

The following section describes a method to couple the
solutions to the two decompoéed problems.

B. Coupled Branch—and-Bound Method

If the compatibility requirement is disregarded, then
DCP-1 and DCP-2 are independent. The objective function of
DCP-2 can be added to the cost of the least~cost solution of
DCP-1 to provide a lower bound on the least-cost solution of

the original problem with the compatibility requirement.

[
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This lower bound can be improved by introducing the following
coupling constraint sets to the formulation of DCP-2.

fij(O) . uij =0 ¥ i, j (3.28)

g.(0) =+ v, =0 ¥ j (3.29)
] ]

Note that variables f,;(0) and qj(O) are only in DCP-2,

while slack variables uij and Vj are associated with fixed

charge variables Xij and yj, and they appear in the nonlinear

constraint sets in DCP-1 as follows:

D _ . .

fij T Uy = 0 ¥ i, j (3.30)
D. yv. =0 ¥ j (3.31)
9 ] J i

The following discussion illustrates how those coupling
constraints work. Consider, first, Equation (3.30). At some
point of the DCP-1 branch-and-bound process, uij is set to zero
on a branch one and f?j is set to zero on the corresponding
branch two. Then, according to Equation (3.28), fij(O) is
allowed to take on any value (when ulj is set to zero), or

(0) is set to zero (when f 1 is set to zero). The latter
holds because as flJ is set to zero, uij would automatically
assume the value FC?. (since xij remains at zero). In other

1]

words, a tree structures similarly to the branch-and-bound
tree associated with DCP-1 would be constructed in the process
of solving each of the "coupled" subproblems for DCP-2. This
tree is called the constraint tree. The branch-and-bound tree
and the constraint tree are coupled to form a coupled branch-
and-bound tree. The variables uij and v. are now defined
as the coupling variables between the two problems. This
coupling step partially fulfills the compatibility requirement,
as described later. |
In practice, however, the coupling process is not so

simple, because the branch-and-bound tree for DCP-1 is grown
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by inspection from each node where a subproblem is solved,
while the corresponding constraint tree must be grown without
such inspection steps. Considér the following example shown
in Figure 3.5. Suppose a branching is to be performed from
one of the infeasible nodes on the coupled branch-and-bound
tree. The analysis procedure goes as follows. First, the
node subproblem is solved for DCP-1. The objective function
value zi is identified. A string of K-1 node costs is then
obtained by inspection, and the node costs z%, z%, . eny zé
are determined. Note that the solution identified at the
bottom of the tree is a feasible alternative to DCP-1, since
all the nonlinear constraints are satisfied. Now DCP-2 must
be solved. A set of branching variables, which correspond

to the set selected previously for DCP-1, must be constrained
in exactly the same fashion based on the coupling constraints.
Then the objective function value zi is identified. Now the
coupling of node 1 of DCP-1 and node 1 of DCP-2 is completed.
However, there are K-1 additional couplings to be performed
before the entire set of nodes along the inspection limb of
DCP-1 tree is coupled with the corresponding set of nodes on
the DCP-2 tree. After each of the K-1 additional subproblem
computations of DCP-2, the node costs 22 2

2
2, 23, > ® o 7 ZK'
determined, respectively. Now the coupling of the two limbs

are

is completed, as shown in Figures 3.5-(1) and 3.5-(2). The

node costs of the corresponding limb of the coupled tree are
z0 = z1 + 22 zo = zl + 22 z0 = zl + 22 as shown in
1 1 17 *2 2 2" vt %K K K '

Figure 3.5-(3). The number of subproblem computations
required for the complete coupling of the two limbs is,
therefore, K+1.

As the coupling procedure proceeds, the compatibility
requirement becomes satisfied to a greater extent. Note,
however, the coupling constraints for the FP variables do
not specify the amount of waste flows to be assigned to a

plant or to an interceptor, but they ensure that two coupled

—
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Figure 3.5 Coupling of Branch-and-Bound Tree

and Constraint Tree
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variables are simultaneously zero or simultaneously greater
than zero. Therefore, the compatibility requirement may not
be fully satisfied even at the bottom of the coupled branch-
and-bound tree. Further, if there are some linear approxima-
tions without fixed charges in DCP-1 and DCP-2, then it would
not be fully satisfied, since the variables associated with
linear approximations do not engage in the coupling procedure.
On the other hand, if FPI rather than FP approximations are
used, it would be satisfied to a much greater extent, since
each coupling constraint set specifies the minimum amount of
waste flows to be assigned, for example, q? > L? in DCP-1 and
ql(O) > Lj(O) in DCP-2.

If the compatibility requirement is fully satisfied at
the bottom of the limb of the coupled branch-and-bound tree,
then the node solution is an alternative to the original
multiperiod regionalization plan. If it is only partially
satigfied, then the node cost gives a lower bound to the cost
of that alternative. Therefore, when the least-cost multi-
period plan is to be found, the coupling process may be
terminated along the limb of the coupled branch-and-bound
tree whenever a node cost exceeds the current upper bound on
cost. When, on the other hand, it is desired to identify
alternative plans within a given cost range, then the coupling
procedure may be continued until all of the infeasible node
costs exceed that cost range. Note that any DCP-1 alternative
solution can be converted to an alternative multiperiod
solution by simply computing the multiperiod cost based on

its flow assignment.
C. Modifications of the Coupled Branch-and-Bound Method

The coupled branch-and-bound method presented in Section
3.4-B provides many alternative multiperiod plans including
the approximate least-cost solution. Computational efficiency
of the method, however, depends on the number of subproblem

computations required, particularly on the constraint tree

[
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for DCP-2. The large number of computations for DCP-2 offsets
the computational efficiency attained by the inspection method
for DCP-1. '

For the purpose of obtaining the information on approximate
costs of alternatives, which will be used for the trade-off
analysis, the coupled branch-and-bound method may be modified

as follows to increase the computational efficiency. Since

1 1 1 2 2 2 0 1 2
z, < z3 < 0. < Zgr and z, < Z3 < ool < Zge then, z'2 = 2, + Zy
0 1 2 .0 1 2
1 — ] —_
z'y = 23 + Z1r ey and z K = zK + zl are less than or equal to
0 0 0 . 2,
Zor Zgs eeer Zpg respectively. In other words, z] instead of
zﬁl(k=1, ..., K) can be added directly to each of the node costs

on the DCP-1 branch-and-bound tree. This approach is equivalent
to the relaxation of the compatibility requirement.by omitting
some coupling constraints in DCP-2. Therefore, the lower bounds
in the coupled branch-and-bound tree becomes less tight. This
modification reduces the number of subproblem computations

in DCP-2 to only one for each DCP-1 subproblem computation.
There is, however, a trade-off. Because of the looser lower
bounds, the branch-and-bound process may have to be continued
longer than in the previous case.

Note that when the values of the initial flow variables,
fij(O) and qj(O), are relatively smaél compaged with the values
of the incremental flow variables, fij and qj, the relative
contribution of the DCP-2 cost to the total cost of each alter-
native is even smaller since DCP-1 includes the fixed charge
associated with both. If the costs of DCP-1 do dominate, the
coupled tree would not be significantly different than a tree
grown using the coupled branch-and-bound method without the
modification. If, on the other hand, the values of the
incremental flow variables are relatively small compared with
the values of initial flow variables, the fixed charges can be
combined with the initial flow variables rather than incremental

flow variables. Then the DCP-2 can be solved by the nonlinear
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branch-and-bound method and the DCP-1 can be sol
linear programming method. Thus the above modif
the coupled branch-and-bound method applies equa
this case.

ved by a
ication of
11y well to

In summary, the modified coupled branch-and-bound method

is computationally efficient and the information

is just as useful as in the unmodified case.

3.5 Additional Considerations

on the tree

The method of analysis for multiperiod regionalization

problems can be modified further. For example,

than the FP approximations can be used to approx
tion and O&M costs. Also, the coupled branch-an
may be modified to deal with arbitrary growth of
using multiple branch-and-bound trees and constr

Constraints to prevent split flows can be easily

the FPP rather
imate construc-
d-bound method
waste flows,
aint trees.

introduced

to the current formulation of the problem.. As the formulation

is made more sophisticated, however, the solution procedure

becomes more complex and time-consuming, and may
purpose of generating alternatives efficiently.
On the other hand, the method proposed here
on a number of assumptions. The assumptions may
practicality of this approach in determining the
phasing schedule of the regional system. Such a
is beyond the scope of this analytical method.
here is most useful for identifying many alterna
systematically based on cost. The alternatives
can be evaluated based on the economic trade-off
the imputed wvalue method proposed in the next ch
illustrative example introduced in the following

focuses on generating alternatives in the multip

3.6 TIllustrative Example

defeat the

is based
limit the
precise

capability

The approach

tive plans
identified
s, using
apter. The
section

eriod case.

The methods proposed for generating multiperiod alternative

plans have been tested using the same hypothetical example
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problem described in Section 2.5, The waste-flow data over

the 25 year period are shown in Table 2.1, and the regional
facility network is shown in Figure 2,10. The cost functions
used are given in Equations (2.41), (2.42) and (2.43) for plant
construction, plant O&M costs, and interceptor construction,
respectively. A discount rate of 0.05 and design lives of

25 years for plants and 50 years for intercepfors are used.
Waste flows increase at each site as shown in Table 2.1 and in
Figure 3.6. The figure also indicates the lines connecting the
initial and terminal year flows for each site; those lines are
used later in the application of coupled branch-and-bound method.
The examples presented are based on two-stage construction; the
first design year is assumed to be the tenth year, and the
second design year is assumed to be the terminal year.

Consider first the application of the single-period
branch-and-bound method based on the assumption that the growth
of waste flow at each source may be reduced to a simple linear
form represented by Equation (3.20). Two values of y were
tested. In case A, Y was simply assumed to be zero, and in
case B, Y was assumed to be 0.3, an approximate ratio of the
sum of initial design year flows and the sum of terminal design
year flows. These two approximations are shown in Figure 3.7.
The computational results for the two cases are illustrated
in Figure 3.8. Two cost relationships are indicated for each
alternative solution represented by its approximate two-stage
cost. The first is the one-stage (single-period) cost of that
alternative based on the actual cost functions. The second is
the two-stage cost of the same alternative based on the actual
cost functions.

It is apparent from the figure that the approximate costs
in Case B represent the actual two-stage costs better than
those in Case A. Also note that the actual two-stage costs
and actual one-stage costs are very close in both cases. The
close fit between the approximate costs and actual costs in
Case B does not imply that this method of analysis is justified
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for any growth patterns of waste flow, since the assumption
given by Equation (3.20) is not generally applicable. However,
it is interesting to note tﬁat the approximation did show a |
close fit in this particular example.

The relatively small difference between the one-stage
and two-stage costs based on actual cost functions is not
accidental. Recall the assumption that the iﬁterceptor costs
occur only at the initial year. Now that the one-stage and
two-stage costs are computed for the same facility locations,
the interceptor costs are exactly the same for both cases.
Further, since the O&M costs are based solely on the annual
flows treated by the plant, they are the same for both cases
also. The only cost difference incurred is due tonfhe economies |
of scale for plant construction and to the discounting of the
second stage plant construction costs. This difference seems
to be relatively small for this example problem.

The computational results for the coupled branch-and-
bound method, Case C, based on the two-point flow approximation
given in Figure 3.6, are shown in Figure 3.9. Although the
approximate two-stage cost for each alternative gives a slight
underestimation of the actual cost, the relative fit is quite
close. Again the one-stage and two-stage costs based on the
cost functions show relatively small difference. Although the
results of Cases B and C turned out to be quite similar with
respect to their close representations of actual costs, the.
additional mathematical flexibility of the latter outweighs
the simplicity of the former. The coupled branch-and-bound
method can be applied to any set of two-point approximations
of waste flows over the design period, and what is more, the
infeasible lower bdunds on the branch-and-bound tree provide
useful information on the alternatives yet to be generated.

As in the case with the single-period branch-and-bound
method, the tree can be grown to generate many additional
alternative plans by simply increasing the cut-off value z**.

For example, if the tree is grown to the point where the lowest



84

0L0

UOT3IONIAISUOD

2be31g-0M], I0J POYIOW punog-pue-youeid

po1dno) 8yl Aq poleIBUSH SSATIBUIDITY

(4034 / Si0jjOoQ UOI||IN) 150D 30D}S—-om| ajpowixoiddy

$9°0 090

SS°0

0s0

sv’0

6°¢ 2anbt3

oo

}s0) (puoidung 3bbig— om] o
1So) |puoijoung aboig — 3uQp e

-

mm

1

r

asp)

0s°0

—466°0

—109°0

—{s90

0L'0

(103, /S4D}{OQ UOI}|IN) $SOD |puolduUNg Bulpuodsalio)d



85

of the infeasible lower bounds exceeds z** of $550,000/yvear
rather than terminating the computation when the approximate

least-cost solution z* of $516,000/year is found, the number

of generated alternatives increases from 12 to 34. As z**

is increased further to $570,000/year, then the number of
alternatives also increases further to 45. The computational
statistics for the three runs are shown in Table 3.1. The
analysis of the alternatives generated in each of the three
runs will be discussed in Section 4.4 of the following

chapter.
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Table 3.1 Computational Statistics for Generating
Additional Alternatives for Case C

Run 1 Run 2 Run 3

Cut-off Costt (z**) 516.0*  550.0 570.0
Total No. of Nodes 46 o7 118
No. of Active Nodes 27 83 107
No. of Active Inspections 13 41 53
No. of Subproblems Computed 28 84 108
No. of Feasible Alternatives 12 34 45

t Thousand dollars per year.
+ Also the least cost (z*%).
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4. COMPARING ALTERNATIVE PLANS: IMPUTED VALUE ANALYSIS

4.1 FP Branch-and-Bound Tree and Imputed Values

Given the four criteria presented in Chapter 1 for
measuring the performance of a mathematical model as a tool to
generate and compare alternative plans, the branch-and-bound
method appears to perform quite well. First, the method takes
advantage of a network flow algorithm and inspection steps to
make it computationally efficient. Second, it can identify the
lower and upper bounds on the cost of alternatives which are
systematically generated. Third, economic trade-offs among |
different sets of alternatives can be related to other planning
issues for gaining insights. And last, the branch-and-bound
tree may be grown at will to generate alternatives with pre-
specified physical characteristics.

In particular, the FP branch-and-bound method appears quite
attractive because of its flexibility in adapting to many dif-
ferent cost approximations, because of its versatility in handling
both single-period and multiperiod formulations, and because of
its mathematical simplicity which results in high computational
efficiency. One of its most attractive features, however, is
that it allows efficient comparisons of economic trade-offs
associated with regional facilities and boundaries in terms of
the "Aimputed vafues". An imputed value is defined as the cost

difference between the least-cost solution with a facility (a

.set of facilities) and the one without it.

Imputed value analysis is based on the binary grouping of
alternatives. There are those alternative plans which contain
a given facility and those which do not. The fundamental mathe-
matical approach of the FP branch-and-bound process is also a
binary grouping of alternatives into mutually exclusive subsets.
The mathematical problem is constrained to generate two kinds of
alternatives: one allows a facility to be constructed, and the
other does not. This dichotomy is automatically ensured as long
as the facility cost is approximated by any combination of the

FP approximation. When a cost approximation involves a piecewise
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linear segment through the origin, as in the case of the
revised PP or the revised PPP approximations, the linear seg-
ment can be artificially consfrained in adapting to a branch-
and-bound process. Consider, for example, the case illustrated
in Figure 2.7. The figure shows the branch-and-bound process
for the revised FPP approximation. The alternatives generated
under node m, are forced to exclude the treatment plant (plant
j in this case), and those under nodes ny and my are forced to
include it. The imputed value of plant j is simply the cost
difference between the least-cost alternative which belongs to
the former group and the one which belongs to the latter.

An imputed value of facility x, as described in Chapter 1,
is the implicit economic gain (if C(X) - C(x) > 0) or implicit
economic loss (if C(x) - C(x) < 0) of including that facility
in the regional plan, as opposed to excluding it from the plan.
In other wrods, it is a measure of the economic trade-off between
two mutually exclusive sets of alternative plans. Since it is
an implicit economic value, it is relatively easy to gain a sub-
stantive "feel" for the significance of such a facility or such
a set of facilities in the regional plan. For example, one may
wish to examine issues other than cost and to compare them with

the imputed values. Such an exercise provides an opportunity to

gain insights into the problem of planning wastewater facilities

in the given region.

Conceptually, the comparison of alternatives may be carried
out directly using the branch-and-bound tree as described in
Chaper 1. For example, a least-cost solution is found to require
an interceptor, say interceptor A, which is relatively undesira-
ble for noneconomic reasons (e.g., the crossing of a political
boundary). The existing tree can be evaluated to explore this
issue. All of the nodes which are at the end of tree branches
may be reevaluated to see if they contain interceptor A in the
corresponding alternative plans. If necessary, the tree can be
extended to find the least-cost solution without it. It may be
possible, however, to examine the already existing feasible solu-

tions and to choose one which appears attractive with respect to

[T

RN

[N
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all of the planning objectives. Since lower bounds are avail-
able for each node solution, it may not be necessary to examine
any new branches.

The economic savings incurred by crossing the boundary is
the difference between the cost of the least-cost alternative
which excludes interceptor A and the one which includes it. It
becomes attractive to cross over the political boundary only when
there are economic savings which exceed the implicit costs of

political transactions associated with the boundary. Therefore,

the difference between the two costs as defined above can be

regarded as the imputed value of crossing the political boundary.

The set of imputed values provides valuable information.
First, it provides an estimate of the trade-offs between cost
and the political issue related to crossing the boundary.
Second, it suggests the relative importance of the boundary
in comparison to the other boundaries. Such information may
be important in arriving at a relatively small set of alterna-
tive regional plans for more detailed evaluation.

While the conceptual application of the branch-and-bound
tree described abqve for analyzing alternative plans may be.
used for small problems, it may not provie very practical for
large ones, because the size of the tree becomes too large for
display, and because the retrieval of information becomes too
cumbersome. The following section deals with the transformation
of the branch-and-bound tree into a form of matrix which is
designed to be more practical for analyzing the imputed values

in large problems.
4.2 The Imputed Value Incidence Matrix
A. Structure of the Matrix

The fundamental structure of the FP branch-and-bound
tree has been described in Section 2.3-C and is illustrated
in Figure 2.9. This structure is common to both the single-
period branch~and-bound tree and the coupled branch-and-bound

tree in the multiperiod problems. While the FP tree is very
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well structured, it cannot be used directly for an imputed
value analysis since it is extremely difficult to retrieve
information systematically. it is possible, however, to trans-
form some of the information on the branch-and-bound tree into
matrix form. The matrix displays the incidence relationship
between the state of the branching variables and the alternative
physical plans identified at the extreme ends of the inspection
limbs. Since a simple search through the matrix can provide
imputed values, it is defined as the imputed value LAncidence
matnix. Also, for convenience, it will henceforth be referred
to simply as the 4ncdidence matrix.

In any FP problem each alternative plan is described by the
state of the FP variables. When an FP (FPI) variable is con-
strained to be greater than zero (greater than Lj) on branch one,
then the facility represented by the variable would be forced to
exist in the alternative plan generated. When it is constrained
to be zero on branch two, then the facility would be prevented
from existing. Such incidence relationship can be expressed by
introducing the incidence index, a .- The index describes the
state of the nth FP variable in the mth alternative plan. The
index may take the value of 1 (representing "branch one") or 2
(representing "branch two"). The incidence matrix contains M
rows for the alternatives and N columns for the FP variables.

Additional index values are also used. First, some FP
variables may not be constrained in the process of generating
an alternative, and yet they may assume the value zero in the
solution to a subproblem. Since these variables assume the
value zero but are not so constrained, the index value asso-
ciated with them is defined to be -2. 1In this way it is
possible to distinguish between such variables and those
constrained to be zero with an index value of 2.

Second, while all of the variables associated with the
inspection limb from a parent node would be assigned the
index value of 1, some of these nodes belong to the active
portion and others are in the inactive portion of the limb.

Since the variables in the active portion define the lower
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bound on the cost of all the possible alternatives which
could be generated by further branching of the tree, they are

distinguished from the ones in the inactive portion. The

variables which belong to the inactive portion are assigned

the index value of -1 and the variables which belong to the
active portion retain the index value of 1.
The four index values described above are illustrated
using the example shown in Figure 4.1. The figure displays
the inspection limb m' which is associated with alternative
m' and the inspection limb associated with alternative m.
The following notation is used to represent various nodes
and variables. There are K nodes, or K-1 branch-one inspection

steps, on the inspection limb m. These nodes are denoted lm,

2m’ —— km’ ceey Km. Associated with each of these nodes is
its cost, z(lm), z(2m), ce ey z(km), ooy z(Km). The notation
for inspection limb m' is similar. Node lm is the parent node
for inspection limb m, and node 1./ is the parent node for
inspecton limb m'. In the entire tree there are N branching
variables, of which L are shown. They are Ny, Doy eeey Doy
--+r Npi n; and n, are associated with inspection limb m',
and nj through n, are associated with inspection limb m.

The incidence index a ., can be described in the context
of branch-and-bound process. Assume first that inspection
limb m' has been constructed, but branch two has not been
extended from node 2m" Since the inspection limb m is not
generated yet, an for all n is null. At some point of the
branch-and-bound process, branch two from node 2m' perides
node 1m’ which leads to inspection limb m and the feasible
alternative at node K, At this point the mth row is
added to the incidence matrix. The elements of this row
correspond to variables Ny, Nys, +-ey N and contain the

L
following incidence index values:
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The value of a n is 1 because the branch-one inspection from
1

node 1m' involves variable n, and leads to an active node.

1

The value of ann is 2 because the branch-two computation

2

constrains variable n, to be zero. The values of amn3’ ceor
aan are all -1, because branch~one inspections are performed
and, at this point in the branch-and-bound process, they are
inactive nodes. 1If, for example, node 2m is selected for
branching at a later point in the algorithm, then amn3 would
change from -1 to 1.

A similar process continues until the branch~and-bound
process terminates. Suppose at the time of termination of
the branch-and-bound process the active portion of the tree
is extended to node km. Then z(km) is a lower bound for any
possible alternatives yet to be generated under node k . Also,
z(Km) at the end of the limb is an upper bound for the least-
cost solution among such alternatives since it represents the
cost of one of the feasible alternatives. In other words,
while the mth row of the matrix represents the mth alternative
identified at the bottom of the tree through the mth inspection
limb, it may also be considered to represent the mth subset of
alternatives of which only one is explicitly specified. At

this point the column elements of the row m in the matrix are:

Note here that the lower bound on the cost of mth subset of
alternatives is defined only by variables with an index value
of 1 or 2. The branching variables associated with a path
from the vertex of the tree to node lm' are not shown in
Figure 4.1, but the column elements corresponding to such
variables are assigned the incidence index value of 1 or 2.
Suppose there are variables which are observed to assume the

value zero in the solution to the subproblem associated with
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node lm. The column elements of row m corresponding to these
variables are assigned the incidence index value of -2,

The schematic descriptioh of the incidence matrix
is shown in Figure 4.2. As described previously, there
are M rows for M alternatives and N columns for variables.
Therefore, there are M+*N matrix elements, each of which contains
one of the four incidence index values. The lower. and upper
bounds associated with each row and the index values of each
row provide the information required for the imputed value
analysis. The incidence matrix is constructed simultaneously
as the branch-and-bound process proceeds. As the process
continues, the number of alternatives being generated increases,
and the number of rows of the matrix élso increases (the number
of columns remains the same). However, as noted above, as
alternatives are generated, some of the incidence index values
may change. Another important characteristic of the matrix is
the fact that all of the necessary information for-an ‘imputed
value analysis is available and can be used repeatedly to
calculate imputed values. Further, the incidence information
is sufficient to reconstruct the original branch-and-bound
tree, if it is desired to add branches from any of the inactive
nodes. '

In summary, an incidence matrix contains the following

information: V

(1) M feasible alternative plans generated on the branch-
and-bound tree,

(2) lower and upper bounds on the cost of the least-cost
alternative in each of M sets of possible alternatives,
and

(3) the structure of the original branch-and-bound tree
and the location of inactive nodes from which

additional branches can be added.

B. Obtaining Imputed Values from the Matrix

The procedure for obtaining imputed values can be illustrated

using a hypothetical incidence matrix which contains all of the
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UB LB 1 2 . . n . . T
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Numerical index associated with each of M sets of
potential alternatives. ‘

Upper bound on the cost of the least-cost alternative
in each of M sets of potential alternatives.

Lower bound on the cost of the least-cost alternative
in each of M sets of potential alternatives.
Incidence index of n th variable in the m th set of
alternatives.

Figure 4.2 Imputed Value Incidence Matrix
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possible alternative plans (actually infinite in number) for a
given regionalization problem. One can identify the least-cost
alternative among those which include facility x (i.e., have an
incidence index value of 1 under the column representing facility
x), and the least-cost alternative among the remaining alterna-
tives which exclude it (i.e., have an incidence index value of 2).
The exact imputed value of facility x is obtained by subtracting
the cost of the former from the cost of the latter. The imputed
values of any facility or any combinations of facilities can be
obtained in just the same way.

Although there are an infinite number of solutions for any
given regionalization problem, the branch-and-bound process would
provide, at its termination, M explicitly specified alternative
plans. Each plan belongs to one of the M subsets of potential
solutions. Further, the cost range of the least-cost solution
in each subset of solutions is specified by lower and upper bounds.
The upper bound is given by the cost of the alternative explicitly
specified. The lower bound is given by the cost of the subprob-
lem solution which is only partially constrained and has a lower
cost than the least-cost solution in that subset. ‘

Consider, for example, identifying the imputed value range of
facility x, assuming that the facility cost is approximated with
a single FP variable, n. The imputed value is defined as‘the
difference between C(nx), the cost of the least-cost alternative
having variable n, constrained to be zero, and C(nx), the cost of
the least-cost alternative having variable n. constrained to be
greater than zero. The upper bound on C(nx) and C(nx) can be
readily obtained from the upper bounds of the M sets of alterna-
tives. The lowest upper bound, UB(nx) is equivalent to the least-
cost alternative among those which specifies the variable n, to be

positive (amn is 1 or -1). Similarly, the lowest upper bound,
X

UB(H%), on C(H%) is equivalent to the least-cost alternative among
those M alternatives which specify the variable n, to be zero
(amnx is 2 or -2). Therefore,

UB(n,) = min[U_ | i, " 1 or -1] (4.1)

P
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UB(HX) = min[Um | a = 2o0r -2] (4.2)
X .

where Um is the upper bound associated with the mth inspection

. 1imb and is shown in the mth row of the incidence matrix, as

illustrated in Figure 4.2. Note here that one of the two sets of
alternatives described above may be empty.

Finding a lower bound on C(nx) or C(H%) is somewhat more
involved. Consider finding the lower bound on C(nx).first.
Among the M sets of possible alternative represented by the M
rows, some have already been constrained to have facility X as

a regional facility. The incidence index, an for such rows
X
is 1. The lower bounds associated with such rows are candidates

for the lower bound on C(nx). Note, however, that the lower
bounds associated with rows whose incidence index under the
IB{th column is either -1 or -2 are also candidates, since
variable n  may later be constrained to be positive and the

incidence index value may be changed to 1. Therefore,

LB(n ) = min [L_ | amnx =1, -1 or -2] (4.3)

where Lm is the lower bound associated with the mth inspection
limb. The lower bound on C(Hx) is identified in a similar
fashion. The incidence index value of the candidate alternative
seté must be either 2, -1 or -2. Therefore,

LB(n,) = min [Lm| amnx = 2, -1 or -2] (4.4)

Note, however, that the lower bound may be improved for LB(nx)

when an is -1. The incidence index -1 means that variable
Ux
n, is not constrained, or it is in the inactive portion of the

inspection limb. Adding n to the active constraint set is
equivalent to adding the fixed charge associated with N, FC(nxL

to the current lower bound. Therefore,

LB(n) =m§.ln {[Lm la =1, =21, UL, la,, =-1 +FC(n )1} (4.5)
X X

The ranges for C(nx) and C(E%) as well as for the imputed

value associated with variable n_» IV(nxL are given as follows:
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LB(n,) < C(n,) < UB(n) (4.6)

LB(n,) < C(n,) < UB(n)) (4.7)

ILB(n,) <IV(n ) < IUB(n.) (4.8)
where

ILB(n,) = LB(E%) - UB(n,) (4.9)

IUB(n,) = UB(E%) - LB(n ) _ ©(4.10)

Note that the lower bound on the imputed value, ILB(nX), and the
upper bound on the imputed value, IUB(NX), depend on the relative
values of the lower and upper bonds on C(nx) and C(nx), and can
take negative values. A negative imputed value indicates that
the least-cost solution without facility x (nx assumes the value
zero) has a lower cost than the least-cost solution with facility
X (nx assumes a positive value). Note that for the analysis of a
single-facility imputed value either C(nx) or C(nx) is equal to
z*, the overall least-cost solution, if the branch-and-bound tree

is extended to provide z* on one of its nodes.
The impact of including or excluding a set of facilities

rather than a single facility is just as important, since
many planning issues are related to a group of facilities.
As examples, the water quality of a particular stream may be
a critical issue reiated to the location of plants at any of
the potential sites along its length, the water reuse policy
of a region may be evaluated by placing a group of treatment
plants in specific strategic locations, and jurisdictional
boundaries which. . encompass several plants and interceptors
may be studied for their political implications.

Depending on the analysis to be performed, the imputed
value of a set of facilities may be defined in many different
ways. For example, the imputed value associated with a pair
of variables, n, and ny, may be defined by any of the following:

(1) IV(n, ny/Hx, H&) = c(Hx, E&) - C(n,, ny) (4.11)
(2) IV (n, ny/HX, n,) = C(ng, n,) = Clny, n.) (4.12)
(3) IV(n,, ny/nx, H&) = C(ng, Hy) - C(n,, ny) (4.13)
(4) IV(n, E&/ﬁx, H&) = C(ng, Hy) - Clng, H&) (4.14)

it s
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(5) IV(nx, ﬁ&/ﬁx( ny) = Q(H&, ny) - C(nx, H&) (4.15)
(6) Iv(n,, ny/’ﬁx, 'ny) = C(A,, 'rYy) - C(n,, ny) (4.16)
| where, for example, C(H*, H&) indicates the cost of the
least-cost solution with both n, and ny constrained to be
zero, C(nx, ny) indicates the cost of the least-cost solution
with both n. and n_ constrained to be greater than zero, and
IV(nx, ny/ﬁk, ny) is the notation used to denote the imputed
value as defined by the difference between the two. Note
also that

Iv(Nl/NZ) = _IV(NZ/NI) (4.17)

IV(Nl/Nl) =0 (4.18)

where Nl and N2 denotes a given set of indexed variables.
These cases are omitted from the above list.

The same basic principles developed for one variable apply
to the analysis of imputed values involving sets of variables.
An application example of such an analysis is given in the

following section.
4.3 TIllustrative Examples

Two illustrative examples of an imputed value analysis
are’described here. The first example is based on the inci-
dence matrix associated with Case E of the single-period example
problem shown in Table 2.2. The second example is based on
the incidence matrix associated with Case C of the multiperiod
analysis given in Section 3.6. The imputed value analysis
procedure and computational results are presented. All of the
analyses were carried out by hand. A more detailed discussion
on practical applications is presented in Chapter 5.

A, Imputed Value Analysis for a Single-Period
Example Problem

Case E of the single-period example problem involves
seven FPI variables; two are for interceptors, and five are

for plants. The structure of the imputed value incidence matrix
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associated with the branch-and-bound tree is described, and
a procedure for using this information is outlined.

A portion of the branch-and-bound tree for this example
is shown in Figure 4.3. Three alternative plans are identified
at the bottom of the inspection limbs. Also one infeasible
solution is identified. The alternatives identified are
designated as Alternative 1, Alternative 2 and Alternative 4
according to the order of generation. Alternative 3 is not
shown in the figure. The incidence matrix corresponding
to the entire branch-and-bound tree is shown in Figure 4.4.

The rows 1, 2 and 4, of course, correspond to the paths from
the vertex to the nodes 6, 11 and 20, respectively.

The structure of the tree is represented by the inci-
dence matrix (see Figure 4.4). For example, consider the
inspection limb associated with Alternative 1. The variables 1,
2, 4 and 6 are constrained to be positive and they are in the
active portion of the tree. Thus, the incidence index values
associated with columns, 1, 2, 4 and 6 are all 1 in row 1.
Variable 7 is not constrained to be in the active portion of
the tree. Thus the index value is -1. Although variables 3
and 5 are not explicitly constrained to be zero, the index
values for them are 2, because they are implicitly constrained
by constraints that prevent split flows. Similar relationships
exist between each row of the matrix and each path on the tree.

Assuming that the FPI approximations used in this example
case closely represent the actual cost of the facilities, the
matrix provides abundant information on the imputed values of
various facilities and various combinations of facilities.

Some example results of an imputed value analysis are provided
in Table 4.1. The table shows 9 cases; seven are for a single
facility, and two are for a pair of facilities.

The computational procedure of the imputed value analysis,
described in Section 4.3, is illustrated for Case 5 in which
the imputed value of the fifth variable, which corresponds to
the interceptor 7-5, is to be obtained. First, an upper bound
on the cost of the alternatives which are constrained to

include this interceptor is:

SR
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Figure 4.3 A Portion of the Branch-and-Bound Tree for

Case E of the Single-Period Example Problem
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COST Variables

UB 1B 1 2 3 5 6 7
193.3 187.4 1 1 2 1 2 1 -1
194.8 189.0 2 1 2 - 1 2 1 =1
191.0 185.1 1 2 1 1 2 1 -1
201.7 189.6 2 2 -2 1 2 -1 =1
188.9  188.9 1 2 2 1 2 1 1
193.5 187.6 1 2 1 2 1 1 -1
195.7 188.9 1 1 2 2 1 1 -1
189.2 189.2 1 2 1 2 2 1 1
191.4 185.6 2 1 2 2 -2 1 -1
189.9 189.9 1 1 2 2 2 1 1
185.5 185.5 1 2 2 1 2 2 1
185.7 185.7 1 2 1 2 2 2 1
184.6 184.6 1 1 2 2 2 2 1
188.0 188.0 1 1 2 2 2 2 2
187.5 187.5 1 2 1 1 2 2 1
186.2 186.2 2 1 2 2 -2 2 1
190.8 190.8 1 2 2 1 2 2 2
191.3 191.3 1 2 1 2 2 2 2
189.5 189.5 2 1 2 2 -2 2 2
188.0 188.0 1 1 2 1 2 2 1
190.0 190.0 1 2 1 2 1 2 1
192.7 192.7 1 2 1 1 2 2 2
191.3 191..3 1 1 2 1 2 2 2
189.6 189.6 2 1 2 1 2 2 1
191.2 191.2 1 2 2 1 2 1 2
191.8 191.8 - 1 2 1 2 2 1 2
190.5 184.6 1 1 2 2 1 2 1
192.9 192.9 2 1 2 1 2 2 2
192.2 192.2 1 1 2 2 2 1 2
195.2 195.2 1 2 1 2 1 2 2
Facility 5 4 ? 7 7 3 1

5 5
Figure 4.4 Imputed Value Incidence Matrix for Case E

of the Single-Period Example Problem

[
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Table 4.1 Imputed Value Analysis for Case E
of the Single-Period Example Problem

Case  Variable Facility Imputed Value*
1B UB
1 1 5 1.0 1.6
2 2 4 1.5 0.9
3 3 4-5 1.1
4 4 7 -0.9
5 5 7=5 -5.4 0.0
6 6 3 -4.3 ~0.5
7 7 1 3e3
8 1,2 4,5 2.0 7.1
9 3,5 , - 4<5,T7=5 -5.4 -3.0

% Thousand dollars/year.
LB: Lower Bound.
UB: Upper Bound.
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UB(5) = min|U a =1, -1 = 190.0 (4.19)
m [Jnl m5 ! ]

Second, an upper bound on the cost of alternatives which
are constrained to have variable 5 equal to zero is:

UB(5) = min|u_la . =2, -27| = 184.6 (4.20)
m [:m m5 ’ j

Third, a lower bound on the cost of all potential alternatives

which may include the interceptor is:

min {E‘..mlams =1, -2:|,]:(Lm| as=-1) + FC (nx):| }
m

184.6 (4.21)

LB(5)

Fourth, a lower bound on the cost of all potential alternatives

which may not include the interceptor is:

LB(5) = m;n Lm {ams =2, -1, -2} = 184.6 (4.22)

Therefore,
184.6 < C(5) < 190.0

184.6 < C(5) < 184.6
and
-5.4 < IV(5)

I
o
L]

In other words, it costs somewhere between zero and $5,400/
year more to have the interceptor in the regional plan than
it does to exclude that interceptor. 1If it is the only
facility that requires consideration of issues other than
cost, then the maximum extra cost of $5,400/year gives one
guantitative measure of its economic trade-off. The cost
may be assessed against the implicit values of the other
issues associated with the interceptor.

The range of imputed value may be tightened by extending
the branches from the tree. For example, four inspections
and four subproblem computations are required to tighten the
above range to the actual imputed value, $5,400/year. In many

.cases, however, lower and upper bounds provide information

Nttt




105

that is as useful as the exact imputed value.

B. Imputed Value Analysis for a Multiperiod
Example Problem ‘

Case C of the multiperiod problem involves nine FPI
variables, each of which represents a facility. The alterna-
tives were generated using the coupled branch—and—bound method.
The computational results have already been presented in
Section 3.6. Recall that the coupled branch-and-bound tree
was grown stagewise in three different runs. The imputed
value ranges for five individual facilities and six sets of
facilities have been analyzed from the incidence matrix
associated with each of the three runs. The three matrices
are shown in Figure A-1, A-2 and A-3 in Appendix A. A summary -
of the imputed value analysis for eleven different cases is
shown in Table 4.2. The number of facilities directly involved
in the analysis is one in Cases 1 through 7, two in Cases 8
through 10, and three in Case 1ll1l. 1In cases 3 and 10 the
imputed value analysis was performed while keeping the variable
1l positive. In other words, those cases give the conditional
imputed values. The same is true with Case 6, but in this case
both variables 1 and 3 are kept positive.

The following observations can be made based on the

information in the table:

(1) The most noticeable trend is that the ranges of
imputed values become tighter as the tree is grown
further to generate more alternatives. The total
number of subproblems computed increased from 14
in the first run, when the approximate least-cost
solution z* was identified as $516,100/year, to
42 and then to 54 as the cutoff 'value z** was
increased to $550,000 and to $570,000/year,
respectively. Note that as the cutoff value is

increased, the matrix becomes larger, and some of
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Table 4.2 Imputed Value Analysis for Case C
' of the Multiperiod Example Problem

Case Variable* Imputed Value Range ($ x 103/year)
Run 1 Run 2 Run 3
LB UB LB UB 1B
1 1 ~15.0  ~1.2 -15.0 15,0
2 3 ~10.6 =2.1 -10.6 -10.6
3t (1),3 ~72.6  -4,5  -35.8 -27.2 ~35.8
4 5 ~40.4 0.0  -40.4 0.0 -40.4
5 7 -15.0 0.0  =15.0 0.0 -15.0
6% (1),(3),7 -54.2 87.5  =13.7 3.4 5.1
7 9 1.1 10.6 10.6 10.6
8 1,3 ~73.8 =19.5 ~50.7 -42.1 -50.7
9 3,7 -73.8 -2,1  -55.8 -10.6 -55.8
10t (1),3,7 ~72.6 NI ~23,2  -14.7 . -23.2
11 1,3,7 ~73.8 ~ =33.1 -=55.8 -47.3 -55.8

* Variables 1, 3, 5, 7 and 9 correspond to plants 5, 7 and 3 and
interceptors 4-5 and 3-4, respecitively.
+ The facilities represented by the variables in parenthesis are

constrained to exist in all alternative plans involved in the .

analysis.
NI: Not identified(the tree is not grown sufficiently yet).
IB: Lower bound. |
UB: Upper bound.

UB

0.0
0.0

i

R
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the negative incidence index values change to
positive values in the subsequent run(s).

The upper and lowér bounds converged as the tree

is grown larger. The upper and lower bounds
converged in nine of the eleven cases in Run 3,
while only three cases converged in Run 2.

The imputed values become noticeably larger in
general as the number of variables in the set being
examined increases. However, since an imputedvvalue
represents the cost difference between two sets of
alternatives, it is not always true. (The least-
cost solution with both plants A and B constrained
to exist would tend to have a greater cost than the
least-cost solution with only plant A constrained

to exist. Similarly, the least-cost solution with
both plants A and B constrained out of the plan
would tend to have a greater cost than the least-
cost solution with only plant A constrained out.

But the cost difference between the least-cost
solutions containing or excluding two plants, A

and B, may or may not be greater than the cost
difference between the least-cost solutions contain-
ing or excluding a single plant, A.) For example,
the absolute imputed values in Case 3 was greater
than the corresponding absolute imputed value in
Case 2, while the absolute imputed values in Case 10
was less than the corresponding absolute imputed
values in Case 9. In other words, the relative
significance of the existence of a facility or a
combination of facilities depends on the existence
of other facilities. ,

Generally, the lower and upper bounds on an imputed
value provide relatively strong indications of the
magnitude of the actual imputed value. For example,

all three converged imputed values in Run 2 correspond
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to the lower or upper bounds identified for the
corresponding cases in Run 1. Similarly, eight of
the nine converged imputed values in Run 3 correspond
to the upper or lower bounds of the corresponding '

cases in Run 2.
The significance of the imputed value analysis for planning
"will be discussed using a large scale example problem in the

following chapter.

stk
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5. EXAMPLE APPLICATIONS
5.1 Problem Description and Input Data

In this chapter a relatively large scale example case
is studied, using the method developed in previous chapters
for generating and comparing alternative regionalization plans.
The area chosen for study is DuPage County, Illinois.

DuPage County is a growing area where regionaliiation of
wastewater systems is considered beneficial. For example,
the current proliferation of small and inefficient treatment
facilities has been considered to be detrimental to the
environment, and those plants may be replaced by larger and
better-operated regional systems which can improve the quality
of the environment at lower cost. Further, the t0pography of
the region is such that wastewater can be transported through
interceptors without great difficulty, and that there are
potentially favorable locations for constructing regional
treatment planté. In fact, extensive study of alternative
regionalization plans has been performed by the Northern
Illinois Planning Commission (1969) and by the Illinois
Pollution Cohtrol'Board (1974) .

_Although this case study makes use of the available
information on DuPage County, the example problems are
constructed using many simplifying assumptions. It is, there-
fore, not the intent of the study to examine or evaluate the
proposed regionalization policy of the county, nor are the
example problems in any way designed to influence the current
and future regionalization efforts.

The primary objective of this study is to demonstrate
that the branch-and-bound method described in previous chapters
is applicable to problems of realistic size and is potentially
useful for examining widely different plans. To fulfill the
objective five example problems are constructed. The first

two problems are designed to allow only large regional
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facilities, and they are called the large-scale problems.

The third and fourth problems are designed so that only small
and medium size regional faciiities are allowed, and they are
called the small-scale problems. Further, the first and third
problems involve multiperiod (dynamic) costs. The fifth prob-
lem is the same as the first one except that the cost functions
are modified to examine the effects on the branch-and-bound
process and on the imputed values. These five problems are
identified as the Static Large-Scale Problem (S-LSP), the
Dynamic Large-Scale Problem (D-LSP), the Static Small Scale
Problem (S-SSP), the Dynamic Small-Scale Problem (D-SSP) and
the Modified Static Large-Scale Problem (MS-LSP).

Each of the static problems is solved for the approximate
least-cost solution as described in Section 2.3-C and each of
the dynamic problems is solved for the approximate least-cost
solution as described in Section 3.4-C. Split flows are allowed
only in the small-scale problems. The alternatives generated
for each problem are examined, and a trade-off analysis is per-

formed on each problem based on some hypothetical scenarios.
A. General Description of DuPage County

DuPage County is 1écated immediately west of, and at
its closest point only fifteen miles from downtown Chicago.
It is nearly rectangular in shape as shown in Figure 5.1 and
it covers an area of 331 square miles. Prior to World War II
it was primarily agricultural farmland with a few rail commuter
suburbs and farm trade centers. The postwar growth in the
metropolitan economy has brought population and development
pressures to the county, and today the eastern half is already
densely inhabited and the western half is expected to sustain
the growth in the next few decades.

The population of this county has been growing steadily
at a high rate, and it is estimated to be 572,000 in 1975 and
to grow to 1,200,000 by 2005. There is only a limited amount

_—
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of industry in the county; industrial waste does not currently
comprise a significant portion of the total wastewaters
generated within the county, nor is it expected to do so in
the future.

Topographically the county is highlighted by extensive
glacial deposits which produce the rolling characteristic of
the countryside. The general slope of the terrain is from the
north to the south with a maximum difference in elevation of
approximately 250 feet. The county is drained by three major

streams nearly parallel to each other several miles apart.

B. Basic Assumptions

‘The same set of cost functions used for the illustrative
examples (ee Section 2.5-A) is used in this study. Similarly,

the discount rate and design lives of treatment plants and
interceptors are assumed, as before, to be 0,05, 25 years and

50 years, respectively. When the method is applied in an actual
planning problem, however, the cost functions and design para-
meters should be evaluated for the particular conditions of the
region under examination.

The estimated wasteflbws generated by each of the 20 major
aggregate waste sources‘in the next 30 years are based on popu-
lation estimates for each of the 9 subregions identified by the.
Illinois Pollution Control Board (1974). The per capita waste-
water production is assumed to be 100 gallons/day. The interim
construction years for the multitime period problem are assumed
to be the 10th (1985) and 20th (1995) years in addition to the
initial year, 1975. No consideration is given to the existing
facilities.

The FPI approximations are used for both static and dynamic
problems. The modified coupled branch-and-bound method is used

for solving the dynamic problems.

C. Original Regional Network

The schematic description of the original regional network

consisting of wastewater sources and possible interceptor routes

————
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is shown in Figure 5.2. There are 20 wastewater sources and
22 interconnecting links for interceptors. The amount of
wastewater generated at each source node and the distance
between each pair of interconnected nodes are shown in Tables
5.1 and 5.2. The linear approximation of growth of waste
flows for the dynamic problems is based on projections for

the years 1985 and 2005, since the first design target year

is 1985. The waste flow at the initial reference year, Lj(O),
is that of 1975 for every source and is given by extrapolation.
The original network will be modified in each of the following
problems; some of the wastewater sources are aggregated and
represented as a single source and some of the interceptor
routes are deleted. The maximum capacity for each interceptor
and plant is determined for each new network.

D. Large-Scale Problems

The selection of candidate plant sites and interceptor
routes for the large-scale problems is based on the consideration
that each of the plants can accommodate flows from at least
several wastewater sources. As shown in Figure 5.3, six poten-
tial large-scale plant sites are established in this problem.
Three of the six sites are located about midway through each of
the interceptor routes running vertically from the north to the
south, and the remaining three are located at the extreme south
end of these interceptor routes. There are nine wastewater
sources of which six coincide with candidate plant sites. There
are altogether eleven interconnecting links for interceptors.
Three of the eleven interceptor links allow flow in either
direction. Some of the nodes which appear in the original
network shown in Figure 5.2 are collapsed into other nodes;
Table 5.3 summarizes the relationship between the two networks.
The S-LSP cost data for plants and for interceptors are given
respectively in Tables B-1 ‘and B-2 in Appendix B. The minimum
capacity of a plant is given by the waste flow generated at that
site, and the maximum capacity is given by the maximum possible

flow which can be assigned to the plant. The same principle
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Table 5.1 Projection of Wastewater Production

Source Community
Index Index Name 1970 1975 1985 2005

A Al Itagca 1.4 54 5.6 5.8
A2 Wooddale

B Bl Addison 4.8 9.3 9.3 12.0
B2 Bensenville

c C Villa Park 7.4 8.5 8.5 8.8

D D Oakbrook 0.6 1.2 1.2 1.2

E El Hinsdale 3.3 6.9 Tel Te5
E2 Clarendon Hills

P P (Dummy Source) 0.0 0.0 0.0 0.0

G G Darien 0.8 0.8 1.6 3.0

H Hl Roselle 0.8 0.8 1.0 1.4
H2 Bloomingdale

I I Glendale 1.1 1.3 1.6 2.2

J J Lombard 3.7 4.4 5.3 7.0

K K Glen Ellyn 2.2 2.6 3.1 4,1

L L1 = Lisle 4.9 8.8 10.4 13.5
L2 Downers Grove

M M Woodridge 1.5 1.8 3.2 5.9

N N Wheaton 2.9 4.8 6.5 10.0

0 01 Hanover Park 0.5 1.2 1.8 3.1
02 Bartlett
03 Wayne

P P Carol Stream 0.6 1.4 2.2 3.7

Q Q Winfield 0.4 0.8 1.5 2.6

R R West Chicago 1.0 2.3 3.6 6.1

S S Warrenville 0.3 0.4 0.7 1.0

T T Naperville 2.5 4,0 5.3 8.0

* Million gallons/day (MGD).
+ Wastewater flows of more than two communities are aggregated.
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Table 5.2 Distance between Waste Sources

Distance (Miles)
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3.1
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~Table 5.3 Relationships between the Original
Network and the Large-Scale Network
Node in LS-N* Node in O-N'
1 A

W 0 I & 1 & W N
H
-
o
-
=

* Large-scale network.

+ Original network.
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' applies to interceptor capacities, except they are based on
the flows at the origin of the interceptor links. The MS-LSP
1 cost data are the same as the ones for the S-LSP except that:
’ ‘the costs of the plant at site 2 and of the interceptors from
; node 1 to node 2, node 2 to node 5, and node 3 to node 6 are
assumed to be 20 percent more than the corresponding costs
{ for the S-LSP; and the costs of the plants at nodes 6 and 8
are assumed to be 20 percent less. These assumptions are
arbitrary, but the intent here is to examine how the size of
the branch—-and-bound tree and the costs of alternatives
generated differ from the original S-LSP. The D-LSP cost
data for plants are given in Table B-3 in Appendix B. The

interceptor cost data for the D-LSP are the same as those for
the S~LSP.

E. Small-Scale Problems

Flow directions and the capacity limits on plants and
interceptors in the small-scale problems are specified a priord
so that a plant would receive waste flows from at most three or
four sources. Since these problems are highly constrained, |
many mathematically infeasible solutions emerge on the branch-
and-bound tree. Also split flows are expected to occur in many
of the alternatives generated. If split flows are allowed (as
assumed here), many feasible alternatives can be generated.

On the other hand, if they are not, the number of feasible
‘‘‘‘‘ alternatives would be quite limited,

The network associated with the small-scale problems
consists of fifteen wastewater sources and fifteen inter-
connecting interceptor links (see Figure 5.4). Of the fifteen
sources, eleven are also candidate plant sites. There is only
one link, 8-9, which allows flow in either direction. Note
that the links between nodes D and K and between nodes R and S
in the original network shown in Figure 5.2 are omitted. The
relationship between the original network and the network for
the small-scale problems is given in Table 5.4. The S-SSP

cost data are given in Tables B-4 and B-5 in Appendix B for
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Table 5.4 Relationships between the Original
Network and the Small-Scale Network

Node in SS~N¥ Node in o-n*
1 A
2 B
3 C
4 D
5 E, F
6 G
7 H
8 I, J
9 K
10 L
11 M
12 N
13 0
14 P, 9, R
15 s, T

* Small-scale network.

+ Original network.
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plants and interceptors, respectively, and the D~SSP data for
plants are given in Table B-6 in Appendix B. The minimum and
maximum capacities are determined as in the case of the large-
scale problems. The interceptor cost data for the D-SSP are
the same as those for the S-SSP.

The results of the branch-and-bound analysis for each

of the five problems are presented in the next two sections.
5.2 Frequency Distribution of Alternative Plans

The statistics on the computational requirements for
obtaining the least-cost solution are presented in Table 5.5
for each of the five problems. Only a moderate computation
was required in each case, although the size of the tree and
the number of alternatives generated varied from one problem
to the other. Several observations about the information
given in the table are presented below. 7

The total number of nodes and the number of alternatives
generated on the branch—and-bound tree for the dynamic problens,
D-LSP and D-SSP, was found to be about one-half of those for
the corresponding static problems, S-LSP and S-SSP. On the
other hand, the number of subproblem computations required
for the former problems was about the same as for the latter
problems. In other words, for the dynamic problems, it takes
about twice as many computations to generate the same number
of alternatives, but it requires half as many node evaluations
to reach the least-cost solution. The small size trees for
the dynamic problems are attributed to high fixed charges
associated with the branch-and-bound variables. Twice as many
computations were required because one is needed for the
branch-and-bound tree, and another is needed for the constraint
tree.

The number of subproblems computed, the number of alter-
natives generated, and the number of nodes on the branch-and-
bound tree for the MS-LSP were found to be two-thirds of those
for the S-LSP. The modification of costs resulted in a

‘reduction of computational requirements for finding the least-
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Table 5.5 Computational Results for Five Example Problems

o=LSP D-LSP S-53P D-S8P MS-LSP

No. of FP Variables | 20 20 28 28 20
Potal No. of Nodes 1362 169 659 347 234
No. of Active RNodes 187 87 301 153 121
No. of Active Inspections 93 43 150 76 60
No. of Subproblems Computed 94 88* 151 154% 61
No. of PFeasible Alternmatives . 52 25 65 28 - 36
Least Cost ($ million/year) 2.256 4.274 2,473 5.723 1.988
Maximum Cost™ 107.5 109.8 104.7 103.4 114.5
GPU Time (seconds) ' 24,34 17.51 77.42 51.46 18.59

¥ Includes the coupled subproblems.

+ Identified on the branch-and-bound tree grown to find the least-
cost solution, and expressed as a percentage of the corresponding
least cost. |
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cost solution, since the bounding of the nodes on the branch-
and-bound tree becomes more efficient for asymmetric problems.

The range of feasible coéts among the generated alternatives
was greater for the large-scale problems than for the small-scale
problems. This is due primarily to the fact that the incremental
costs from one alternative to another is much smaller fbr the
small-scale problems, since many of the potentiélly high cost
alternatives become mathematically infeasible. Also, the cost
range associated with the MS-LSP turned out to be much greater
than the one associated with the S-LSP, because the former prob-
lem has a less symmetric cost structure. Of'course, the cost
ranges may widen as the branch-and-bound trees are grown further
to generate more alternatives. |

The frequency distribution of alternative plans for the
large-scale and the small-scale problems with respect to the
number of plants are shown in Figures 5.5 and 5.6, respectively.
The difference in the pattern of frequency distribution between
the static and dynamic problems are evident. While many of the
alternatives generated in the S~LSP and MS~LSP have three or
four plants, no alternative in the D-LSP has more than two
plants. Similarly, while some of the S-SSP alternatives have
seven plants, none of the D-SSP do.'

Figures 5.7 and 5.8 show the frequency distribution of
alternatives with respect to each of the candidate plants |
for the large-scale and small-scale problems, respectively.
In Figure 5.7 one can note the trend expected from the design
of the MS-LSP in comparison to the S-LSP. Since the plant
located at site 6 (or plant 6) is 20 percent less costly, it
appears more frequently than in the S~LSP. The same is true
with plant 8. Similarly, plant 2 which is 20 percent more
costly appears less frequently. The noticeably less-frequent
occurrence of plants 3 and 9 resulted from waste Shipments to
plant 6. The D-LSP follows basically the similar pattern as
the S-LSP, except that plant 8 occurs less frequently. Also

the D-LSP shows a greater tendency toward centralization at

plants 3 and 6.
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In the small-scale problems, shown in Figure 5.8, the most
noticeable tendency is that many of the plants appear in all of
the alternatives generated.' This tendency is greatest in the
D-SSP where five of the twelve plants appear in all of the
alternatives generated. These plants are necessary to maintain
mathematical feasibility because of the capacity limits on
plants which are given a prioiri. Their sizes, however, are
not known prior to solving the problem. Although omitted here,
a similar analysis can be made regarding interceptors.

It is not possible from these example problems to make any
conclusive statements as to the general patterns of alternatives
generated in any given static and dynamic problems, since such
results are clearly dependent on the individual regional network.
However, it is important to recognize that the patterns do depend
on the cost criteria used. 1In all, these preliminary analyses
provide insights about the system behavior under different
problem designs.

The following section presents the imputed values asso-
ciated with some of the facilities in the alternative regionali-
zation plans generated by the five example problems. It also
provides the hypothetical scenarios which have been examined
using the imputed value matrices associated with the branch-

and-bound trees for the three static problems.
5.3 Trade-off Analysis Using Imputed Value Incidence Matrices

Various economic trade-off analyses were performed for each
of the five static and dynamic problems, and the computational
results are presented here in three parts. The first part pre-
sents the imputed value ranges for each of the five problems.
They are based on the ordiginal Aimputed value incidence matrices
which are associated with the oradiginal branch-and-bound trees
grown to the point of identifying the respective least-cost
solutions. The second part is devoted to analyses of alter-
native solutions, or regional plans, based on six hypothetical
scenarios. These analyses are performed for three static

problems by growing additional branches from the respective
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branch-and-bound trees to provide additional alternatives,
The incidence matrix associated with each of the extended trees,
or the aughented branch-and-bound trees, is called an augmented
imputed value incidence matrix. The third part provides observa-
tions on the computational results given in the first two parts.
It was demonstrated that an imputed value incidence matrix
provides valuable insights into the characteristics of the alter-
native plans generated and provides opportunities to make trade-
off analyses by iterative use of the computer capability. How-
ever, since each of these problems is constructed based on many
arbitrary simplifications, no attempts have been made to relate
the imputed values obtained from one problem to those obtained
from another. |

A. Imputed Values from the Original Matrices

The imputed values Obtained from the original matrix for
some of the regional facilities as well as some combinations
of them in each of the five problems are described in Tables
5.6 and 5.7. Note that ranges are given using the method
described in. Chapter 4, and the values give the economic
trade-offs between placing a facility (or a set of facilities)
in the regional plan and excluding that facility. They are
ekpressed as a percentage of the cost of the corresponding.
least~cost solution, without signs, since no attempts are made
here to evaluate the individual imputed values.

Table 5.6 shows eight cases for the small-scale problems.
Case 1, for example, shows the imputed value range for plant 3
in the S-SSP as 0.0 - 2.2, indicating that the cost difference
between the least-cost solution with plant 3 and the one without
it is greater than or equal to 0.0 and less than or equal to
2.2 percent of the overall least-cost solution. The first six
cases deal with a single plant, and the seventh and eighth cases
deal with two and three plants, respectively.

The imputed value for all cases in both the S-SSP and D-SEP

is less than 2.2 percent of the corresponding least-cost solution.

EEESREI
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Table 5.6 Typical Imputed Values for
‘Facilities in .S~SSP and D~SSP

Imputed Value (% of least cost)

| Case Plant at site $-SSP D-SSP
{ .
o 1 3 0.0 - 2,2 *
_____ 2 8 0.0 - 1.1 0.2 - 1.2
; 3 10 0.0 - 0.6 0.0 - 1.3
4 12 0.0 - 1.2 0.3 - 1.3
5 13 0.0 - 0.9 0.0 - 1.2
6 15 0.0 - 0.6 0.0 - 1,2
{ 7 9,13 0.6 - 1.2 1.3 - 1.8
8 9,13,15 0.6 - 1.2 1.3 - 1.8

¥ Not identified. All of the alternatives generated so far
contain a plant at site 3.
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Table 5.7 Typical Imputed Values for Facilities
in S-LSP, D-LSP and MS~LSP

Case Pacility at Site

1 2

2 3

3 5

4 6

5 8

6 9

7 2-3

8 2-3,5-6

9 2-3,5-6,8=9

* Not identified.

Imputed Value (% of least cost)

- S-LJP

0.1-2.7
0.1-2.0
0.1-4.2
0.1-2.1
0.0-1.6
0.1-3.9
0.0-0.3
0.2-5.5
2.3-5.5

D-LSP

5.7~7.8
0.0-0.7
6.0-7.0
0.0-0.5
2+3-5.5
4,8-6.4
0.0-0.1
0.1-9.3
1.3~ %

MS-ISP

2.7-10.1
0.7- 5.3
0.5~ 4.6
0.7- 5.1
0.0
0.7- 5.1
0.0
0.6-10.3
1.0-10.3

[e—
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This result can also be inferred from the percent cost range
between the lowest and the highest costs, 4.7 for the S-SSP
and 3.4 for the b-SSP, as shown in Table 5.5. In other words,

“there is only a slight cost difference between the least-cost

alternative with one of the specified facilities (or a combina-
tion of them) and the least-cost alternative without it. The
contribution of each of these facilities to the total cost of
the regional system is small in the small-scale problems; the
placement of one or a few of them in or out of the system does
not significantly alter the total cost.

On the other hand, as shown in Table 5.7, the imputed
value ranges are larger in the S-LSP and the D-LSP, primarily
because the facilities are much latger and the cost of one
facility represents a larger portion of the costs of the
entire system. This trend becomes even more noticeable when:
the cost structure of the problem is less symmetric. As
indicated in the table, both the upper and lower bounds on
the imputed values of the MS-LSP are much greater than those
of the S-LSP, and their ranges are also much greater.

In either case, however, the imputed values of a small
number of facilities do not seem to be large enough to be
significant at the sc¢creening stage of a planning process.

This result occurs because there are no pronounced physical
features in this problem which make any specific set of alter-
natives particularly attractive. It is to be noted, however,
that if there are pronounced physical features which lead to
greater cost differences among alternatives, the branch-and-
bound process for identifying the least-cost solution would
require fewer node evaluations, there would be somewhat fewer
alternatives generated, and the imputed values would most

likely be greater.
B. Analysis of Hypothetical Scenarios

The design of a mathematical model usually involves many

simplifications and implicit assumptions. It is, therefore,
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quite important that a mathematical model have an analytical
capability to deal with as many as possible of the hidden
aspects of the problem. In the case of the regionalization
problem, important issues drastically affect the desirability

of different combination of candidate plant sites and inter-
ceptor routes. It is very important that a mathematical method
be capable of generating alternative plans and facilitating
comparisons between them. Excessive computations, of course,
would be required to deal with all of the possible permutations
of candidate facilities in most realistic problems. The branch-
and-bound tree and the associated imputed value incidence matrix
offers promise in coping with this demanding problem, as is
demonstrated next using different planning scenarios.

Altogether six hypothetical scenarios are presented here.
Scenarios 1 and 2 are associated with the S$-SSP, Scenarios 3
and 4 with the MS-LSP, and Scenarios 5 and 6 with the S-LSP.
Although each is associated with one of the three static
problems, similar analyses may be performed using the dynamic
models. These analyses are based on the original as well as
the augmented incidence matrices.

As a first step of analysis the alternatives which satisfy
or may satisfy the given conditions are identified on the
original incidence matrix. Recall that each row of the matrix
represents a set of alternatives, and each set of alternatives
includes one alternative which is completely specified by the
inspection limb (primary alternatives). The upper bound on
the cost of the least-cost alternative in the set is given the
primary alternative.

For example, consider the case where it is desired to
find the least-cost solution which contains a given facility.
From the column of the imputed value matrix corresponding to
the given facility, one can find the rows (or sets of alter-
natives) which contain the incidence index values:

1 (The facility is already constrained to exist in all

of the alternatives in the set),
-1 (The facility is not yet constrained to exist to be

U

e it
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excluded in any alternatives in the set of alternatives,
but the primary alternative contains the facility), and
-2 (The facility 1is not'yet constrained to exist nor to be
excluded in the set, but the primary alternative does
not contain the facility).
The alternatives which belong to the first group already
contain the facility, and, therefore, no additional constraints
are required to include it in the analysis of the corresponding
node of the branch-and~bound tree. The alternatives which
belong to the latter two groups are constrained to contain
the facility.
On the other hand, if it is desired to find the least-

~ cost alternative which does not contain the facility, it is

necessary to find the alternative which contain the index
values 2, -2, and -1. The alternatives which belong to the
first group already exclude the facility, and, therefore, no
additional constraints are required, and the alternatives
which belong to the latter two groups can be constrained

to exclude it.

When there are multiple facilities which are constrained
to be "in" or "out" of the solution, an appropriate combination
of the above two situations must be considered. For example,
consider the case where two facilities are to be considered.
There are nine incidence index values to consider; whether
both are constrained in, both are constrained out, or one is
constrained in and the other out. In practice, however, the
identification requires only a simple search through the

matrix.
B.l Scenarios 1 and 2

Scenarios 1 and 2 pertain to $S-SSP (see Figure 5.4),
and they deal with a situation where it is desired to modify
the original set of candidate facilities after the imputed
value analysis based on the original incidence matrix. For

example, a set of candidate plant sites may be removed from
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further consideration and an additional set of alternative
plans may be generated to examine such issues as municipal
water supply, flood control, stream water quality, and,

perhaps, the local autonomy of communities,
In Scenario 1, four sites 3, 8, 10 and 12 are removed

from the set of candidate plant sites. Note that the removal
of these sites not only limits the number of available plant
sites but also breaks the interceptor links through these
sites because of the capacity limits on the remaining plants.
The overall effect would be to use the remaining eight sites
which tend to be dispersed at the outer edge of the network
except site 9 in the center.

In Scenario 2, site 15 is removed from the set of
candidate plant sites, and interceptor links 3-2, 8-9 and 9-8
are also removed. In addition, a plant is constrained to be
constructed at site 12. These additional constraints arbitra-
rily divide the region diagonally into two subregions; the
northwestern portion and the southeastern portion. Regionali-
zation would be carried out in each of the two subregions,
but the plants would still be dispersed over each of them
because of the capacity limits.

Table 5.8'summariz¢s the analysis procedure and results
for the two scenarios. The table contains the following
information:

(1) Set No. - The number of the particular set of

alternatives in the original branch-and-bound tree.
It is also the row number of the original incidence
matrix..

(2) CostIRange - The rénge of the cost of the least-cost
alternative in the corresponding alternative set.

(3) Least Cost - The least cost identified on the
augmented branch-and-bound tree.

(4) No. Comp. - The number of subproblem computations
required to identify the least-cost alternative on
the augmented branch-and-bound tree.

Cost figures are presented using four significant digits for

illustration purposes only. The table indicates that in each

[P
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Table 5.8 Analysis of Scenarios 1 and 2

Scenario Set No. From Original Matrix From Augmented Matrix

{ Cost Range Least Cost No.' Comp.
i 5 2,479 - 2.504 2.504 4
fgﬁ 29 2.479 - 2.504 2.504 4
, 54 2.481 - 2.556 * 1
| 12 2,486 - 2.564 * 1
| 2 43 2,525 - 2,559 2,559 50
48 2.479 - 2.536 2.563 12

* Solution infeasible.
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scenario four sets of alternatives were identified in the
original branch-and-bound tree as the possible candidates for
further analysis. |

In Scenario 1, all of the alternatives in the four sets
have already been constrained to exclude sites 3, 8 and 10
from the candidate plant sites in the original branch-and-
bound tree. (Therefore, the incidence index values corre-
sponding to the variables representing these sites are 2.)

The variable representing site 12 has not been constrained

in any set, but the primary alternatives in sets 5 and 29 do
not contain any plant at that site. (Therefore, its incidence
index value is -2 in these sets.) 1In sets 53 and 54 they
include plants at site 12. (The index value is -1 in these
sets.) These four sets provide candidates for the least

cost alternative for Scenario 1.

Using the augmented branch-and-bound tree, it was found
that in sets 5 and 29 the least-cost alternative was in fact
the primary alternative>(the alternative whose cost is the
upper bound of the range), and that in sets 53 and 54 there
was no feasible alternative which excludes the four plant
sites. The number of subproblems computed for constructing
the augmented branch-and-bound tree was four for sets 5 and
29, and only one for sets 53 and 54. Of the four computations
only one resulted in a feasible alternative for sets 5 and 29.
The data in Table 5.8 for sets 5 and 9 (and 53 and 54) are
identical because of rounding off of costs obtained by hearly
identical branching specifications throughout the tree.

A similar analytical procedure applies to Scenario 2.
In this case, however, the number of computations required to
find the least-cost alternatives in the augmented branch-and-
bound tree were much greater than in Scenario 1. The computa-
tional requirements seem to depend on the additional constraints;
additional branching was required for variables with minor
fixed charges.

The results of the analysis for the two scenarios indi-

cate the following. The cost of the least-cost alternative

[
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for Scenario 1, which achieves a more dispersed configuration,
is identified as $2.504 million per year as compared with the

original least-cost solution of $2.473 million per year. The

‘difference of $31,000 per year is the incremental cost of such

a decentralization. Note, however, that the incremental cost
is only 1.3 percent of the original least-cost solution, and

it is well within the range of computational error. Similarly,
the cost of the least-cost alternative for Scenario 2, which
divides the region diagonally in two subregions, is identified
as $2.559 million per year. The difference of $85,000 per year
is the incremental cost of such modification. This difference
is only 3.5 percent of the original least-cost solution. These
small imputed values result from the small capacity limits of
regional facilities and also from the lack of pronounced physi--
cal features (see Section 5.3-A). If the imputed values are,
in fact, so small, then the selection of a plan may be based

mainly on issues other than costs.
B.2 Scenarios 3 and 4

Scenario 3 is an evaluation of a hypothetical boundary

‘line-which divides the region into northern and southern

subregions. Scenario 4, on the other hand, is an evaluation
of a hypothetical boundary line which divides the region into
eastern and western subregions. The imputed value analyses
of these boundary lines were performed for the large-scale
regionalization using the MS-LSP (see Figure 5.3).

The imputed value analysis for Scenario 3 involves finding
the least-cost alternative which contains all of the three net-
work links, 2-3, 5-6 and 8-9, and the least-cost alternative
which contains none of them. These three links cross the hypo-
thetical north-south boundary line of the region. In Scenario
4, the imputed value analysis involves finding the least~cost
alternative which contains the:.links-1~4 or 4~1,.2~5 or 5-2,
and 3-6 or 6-3, and finding the least-cost alternative which
contains none of the six interceptor routes. These interceptor
links cross the hypothetical east-west boundary line.
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From the original incidence matrix it is known that: 1) the
least-cost solution which contains all of the interceptor links
over the hypothetical north-south boundary line costs $1.988
million per year, 2) the least-cost solution which contains one
interceptor link from each of the three pairs over the hypotheti-
cal east-west boundary line is $1.989 million per year, 3) the
least-cost solution which does not contain any df the interceptor
links over the north-south boundary line is known to be somewhere
between $2.008 and $2.192 million per year, and 4) the least-cost
solution which contains none of the links over the east-west
boundary line is known to cost at least $2.010 million per year
but its upper bound is not known. Although the information pro-
vided by the original incidence matrix may be sufficient for
planning analysis, these ranges can be tightened to find the
actual imputed value.

A summary of analyses for the two scenarios is presented
in Table 5.9. The table includes information similar to that
presented in Table 5.8. Four significant digits are presented
for cost figures for illustration. The least costs for some
alternative sets are given in terms of a range, since for each
scenario the new least-cost alternative was found prior to the

complete branching of the augmented tree. In Scenario 3, alter-

native set 17 was already constrained not to include any inter-
ceptor links over the north-south boundary line; thereforerits
upper bound was used to prune the branches on the augmented
branch-and-bound tree. In Scenario 4, the annual cost of the
feasible alternative identified in set 23, $2.117 million per
year, was replaced by the cost of the new feasible alternative
identified in set 24, $2.116 million per year in pruning other
branches.

The least-cost solution identified in the augmented branch-
and-bound tree for Scenario 3 costs $2.192 million per year, and
for Scenario 4, it costs $2.116 million per year. The imputed
value of the hypothetical north-south boundary line, therefore,
is the difference between $2.192 and $1.988 million, or $204,000

per year. Similarly, the imputed value of the hypothetical east-
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! Table 5,9 Analysis of Scenarios 3 and 4

Scenario Set No, From Original Matrix From Augmented Matrix

Cost Range Cost Range No. Comp.
» 5 2,008 = 2.099  2.239 - 2.295 7
| 9 2.105 - 2.196  2.231 - 2.323 9
o 3 13 2,019 - 2,081  2.249 - 2,277 18
| | 17 2.060 - 2,192 2.192 7
| 36 2.049 - 2,299 2,270 - 2.431 19
| 2 2.063 - 2.289 * 1
21 2.043 - 2,226 * 1
23 2.010 - 2.102 2.117 8
4 24 2,016 - 2.017 2.116 10
26 2.094 - 2.326 * 1
32 2.043 - 2,293 2,228 - 2,325 1
36 2.049 - 2,299 * 1

\ * Solution infeasible.

\\\\\
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- west boundary line is $127,000 per year. In other words, it
costs about 10 percent more for the north-south subregionaliza-
tion and about 6 percent more for the east-west subregionaliza-
tion in this particular problem. Although the imputed values
turned out to be much greater in these cases, whether or not any
planning significance can be associated with imputed values of
this magnitude depend on individual cases. If the magnitude of
the imputed values is considered significant, the trade-offs
between the imputed values and noncost issues need to be care-

fully examined in a more refined and detailed fashion.
B.3 Scenarios 5 and 6

‘Many different cases can be evaluated using the same imputed
value incidence matrix. This advantage is illustrated using two
scenarios for the S-LSP. The scenarios presented here analyze
the cost increase associated with an increase in the number of
plants to be constructed in the region and the cost increase
associated with the increase in capacity of a given plant. The
same incidence matrix is used for both scenarios and for differ-
ent cases within the same scenario.

Scenario 5 deals with a situation in which a number of
plants is given a pnioni. Three cases were analyzed as shown
in Table 5.10. Case 1 allows only two plants, and Cases 2 and
3 allow three and four plants respectively} The incremental
cost over the overall least-cost solution, which contains only
one plant, is determined for -each of the three cases from the
original matrix. The maximum incremental cost for the 2-plant,
case is $36,000 per year, or 1.6 percent increase. The maximum
incremental cost for the 3-plant case is $80,000 per year, or
3.5 percent increase. Since these maximum costs do not seem
to be very significant, the analysis for identifying the exact
incremental cost may simply be terminated in these cases. On
the other hand, the range of the incremental cost for the 4-
plant case was found to be much greater, from the minimum of
$28,000 to a maximum of $141,000 per year. Thus the augmented
branch-and-bound tree was constructed, and the exact incremental
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Table 5.10 Analysis of Scenarios 5 and 6

Scenario Case Incremental Costt
1: 2 plants 0. - 36,
5 2: 3 plantse 28. - 80.
3: 4 plants 28. - 141.
141,.*
1: 27.8 MGD 28. - 61.
61, *
6 2: 42.5 MGD 33, - 151.
92,.%
3: 52.5 NGD 33. - 151.
95, %

% Incremental Cost

0.0 - 1.6
1.2 - 3.5
1.2 - 6.3
6.3%
1.2 - 2.7
2.7%
1.5 - 6.7
4.1%
1.5 - 6.7
4.2%

* From the augmented imputed value incidence matrix.

+ Thousand dollars per year.
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cost was found to be equal to the maximum value of $141,000
per year. 1In other words, cost must increase at least 6.6
percent in comparison to the léast-cost solution if there are
to be four plants in the region.

Scenario 6 analyzes the situation in which the capacity of
a plant at site 2 is varied. Lower bounds on that plant's capa-
city are implied as branching constraints are added. For example,
if a plant is located at site 2, its capacity must be at least
27.8 MGD (q2 > L2). If the interceptor between site 1 and site 2
is constructed (f12 > Ll), the capacity of the plant must be at
least 42.5 MGD. As in Scenario 5, the incremental costs can be
identified. The range of the incremental cost for case 1 which
is obtained from the original imputed.value matrix indicates that
the maximum is $61,000 per year, only 2.7 percent of the least
cost. Although no further analysis may be needed since the maxi-
mum is so small, the exact incremental cost was identified using
the augmented tree, as the maximum of the range. Similarly, the
ranges of the incremental costs for cases 2 and 3 were determined
from the original matrix, and the exact incremental costs were
determined from the augmented matrix. The exact incremental
costs for each of these cases turned out to be about the midpoint
of the original range.

Because of the problem structure (see Section 5.3-A) the
incremental costs in these two Scenarios are also rather small.
In an actual application such small differences would not probably
be significant. The general applicability of the method to a
planning process, however, seems to be adequately demonstrated by
these example problems. A systematic analysis of the imputed
value incidence matrix generates abundant information with a

limited number of additional computations.
C. Summary of Example Applications

The imputed value incidence matrix is used for identifying
economic trade-off values among different sets of alternative
plans in the previous two sections. It was demonstrated that

the analysis can be performed efficiently and that the matrix

—ans
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provides abundant information on economic trade-offs. Although
it is not possible to make any generalization based on this
particular example, some observations on the results of the
“analysis are summarized as follows:

(1) the cost ranges associated with the large-scale
problems were much greater than those associated
with the small-scale problems, -

(2) the typical cost of alternatives in the large-scale
problems was significantly less than the cost of
alternatives in the small-scale problems,

(3) the cost ranges associated with the dynamic problems

were much greater than those associated with the
static problems, and
(4) the cost range within any given problem was rela-
tively small. As a result, the economic trade-off
5 values including the imputed values between alter-
native plans also turned out to be relatively small.
The first observation is quite intuitive. As discussed
! earlier, a slight change in the location pattern of large
facilities would alter the total costs significantly, while
! such is not the case with small facilities.
‘ The second observation implies that there is an imputed
‘ valué between large-scale and small-scale solutions. For
example, the cost difference ($217,000 per year) betweeh the
f5¢ least-cost in the S-LSP and the least-cost in the S-SSP can be
o considered as an imputed value of scale. In other words, the
g implicit benefits associated with implementing a plan with
) small plants should exceed that value before such a plan becomes
attractive. Implicit benefits of small-scale regionalization
] could include, for example: an improvement in water quality
because of more dispersed effluents, the enhancement of water
] recycle possibilities at the fringe areas, and the coherent
development of wastewater systems with regard to land use plans
or to jurisdictional boundaries. Of course, the analysis of
such benefits is an extremely difficult process in itself, and

it was not included in this study.
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The third observation stems from the assumption that each
plant is to be expanded exactly three times at a set of fixed
intervals. The fixed cost associated with each plant, and thus
the cost ranges between alternative solutions, are relatively
larger in the dynamic problems than in the static problems.
The small cost range within any given problem, the fourth
observation, results primarily from the relatively symmetric
network of plant sites and interceptors and from the simplified
problem design. The small cost ranges imply that in these
particular example problems there are many solutions that are
nearly as efficient economically as the least-cost solution.

The economic trade-off values obtained from the inci-
dence matrix provide a guide to a systematic evaluation of
alternative plans. For example, if the trade-off between
two sets of alternatives is relatively small, then economic
efficiency may not be a dominant factor in determining the
overall desirability of one set over the other. On the other
hand, if the cost trade-off is large, then the evaluation of
the additional planning issues becomes important.

Although no attempts have been made in this study to
integrate the evaluation process of issues other than costs,

the easy access to economic trade-off values itself is a

significant contribution to the formulation of a regionalization

plan which is attractive in a realistic sense. The imputed
value method provides an opportunity for the analyst to reflect
on the trade-offs associated with planning issues which might
affect the overall desirability of a plan.

As for the computational aspects, the augmented branch-
and-bound analyses were performed using a FORTRAN IV program
which has an interactive capability of generating alternatives
from any nodes of the original tree (i.e., from any row of
the incidence matrix ). The number of subproblems computed
vary, depending on the problem analyzed as indicated in Tables

5.8 and 5.9. The computation time required for each analysis
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also varies. For example; the total CPU time required for
Scenario 1 was 8.3 seconds for 10 subproblem computations
and the total CPU time required for Scenario 2 was 44.62
seconds for 91 subproblem computations, using the DEC 10
system at the University of Illinois. Once imputed value
matrices were obtained, the trade-off analyses were carried
out by hand. Of course, a simple utility program may be

easily substituted for hand computations.
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6. SUMMARY AND DISCUSSION

Public sector planning problems generally involve a number
of complex quantitative and qualitative planning issues. Plan-
ning regional wastewater systems is no exception. There are
many planning issues such as the cost of regional plants and
interceptors, the quality and quantity of the receiving streams,
land use planning, and political autonomy of the participating
communities. }

Because of this complexity, mathematical optimization
methods offer the potential of being valuable tools for use in
planning regional wastewater systems. The general emphasis to
date in using mathematical models has been, however, on finding
the mathematically optimum solution under a set of assumed condi-
tions. Although such solutions are useful, it is not always
possible to apply mathematical methods to find the truly
optimal solution since it is quite likely that better plans
might be drastically different from the theoretical optimum.

As discussed in Chapter 1, the branch-and-bound method proposed
here is an attempt to modify such an approach based on the
premise that it is not always possible to define, much less

to find, the optimal sclution and that mathematical models
should stimulate thoughts and provide an intuitive understanding
of the behavior of the system under study. The emphasis in
designing the method has been placed on generating many alter-
native plans in a systematic fashion so that many valuable
insights can be obtained through the interaction between the
analyst and the model.

Chapter 2 demonstrates that the branch-—-and-bound method
developed for single-period problems is efficient in generating
many alternative plans, including the approximate least-cost
solution. It is also shown that the branch-and-bound method
is so structured that the economic trade-offs between alter-
hatives can be obtained in a very systematic fashion. The use
of a network solution algorithm and an inspection method for

[ — [ [——
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identifying many node vaiues on the branch-and-bound tree
contribute to computational efficiency. Also, as shown in

Chapter 3, the method can be extended to a special case of

the multiperiod problem.

The alternatives that are generated can be displayed, and
the trade~offs can be analyzed efficiently using the imputed
value incidence matrix, which is a direct transformation of
some of the information on the branchQand—bound tree. The
matrix structure and the imputed value analysis procedure
are described in Chapter 4. The proposed method was applied
to a realistic problem in Chapter 5, and the computational
results indicate that the method is potentially very useful,
as it can provide many valuable insights in the process of
generating and comparing alternative plans. '

While there are many attractive features which make this
method potentially very useful for use in planning régional
wastewater systems, it has some shortcomings. They are:

(1) the method involves cost approximations which may
introduce significant errors in the costs of alter-
natives ahd the imputed values between alternatives.

(2) it is relatively difficult to analyze the sensitivity
of the altérnatives which are generated with respect
to cost parameters such as the discount rate and
design lives, and

(3) many simplifying assumptions are introduced in the
multiperiod analysis which may not necessarily suit
a given problem under study.

The first two shortcomihgs are common to many mathematical
methods which make use of piecewise approximations for the
original cost functions. They are not critical, however, to
the proposed method, since the primary objective is to generate
alternative plans based on approximate costs, rather than to
find the exact optimum. Further, each of the alternatives may
be reevaluated with any desired cost functions with a minor

computatibnal burden. Similarly, the actual multiperiod costs
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based on the original waste generation patterns and any
desired phasing schedule may be obtained relatively easily
for each alternative generated. In general, simplifying
approximations and assumptions are less critical for a method
of generating alternatives than for a method designed to find
the optimal solution.

The imputed value incidence matrix can be refined further
by incorporating weights to the branching variables. Such
weights can be selected in such a way that they represent the
magnitude of an impact which is associated with a particular
set of facilities. Once the matrix is constructed, the matrix
structure remains unchanged, but the selected sets of weights
may alter the alternatives selected for further analysis. Of
course, such an approach faces the same difficulties which any
other methods involving weights face, namely the difficulty
in defining the weights.

In an actual planning process of facility location, mathe-
matical analysis may have only a limited role. For example,
the process may be dominated by ?olitical issues, which require
a complex human interaction for their resolution. Further, the
value of a plan changes over time as the economic, political
and social climate changes. A plan which is considered the best
today may no longer be so tomorrow, and the planning process
must continually adjust to such changes. 'Still, mathematical
analysis can make a significant contribution if appropriately
designed and used. The branch-and-bound method proposed here
for the analysis of location of regional wastewater facilities
has been designed to provide an opportunity for the analyst to
develop insights and intuitive understanding of the behavior of
the system under study so that he may have a more active role
in integrating the complex planning issues. The general method-
ology is potentially applicable to many public sector location

problems that are similar to the problem described here.
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APPENDIX A

IMPUTED VALUE INCIDENCE MATRICES FOR CASE C
OF THE MULTIPERIOD EXAMPLE PROBLEM
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Table A-1
COoST
UB LB

636.7 536.3
585.8 546.7
544.7 536.2
589.9 535.6
553.7 533.2
537.8 517.3
536.1 529.2
516.1 516.1
531.1 524,.2
526.7 518.2
556.5 524.5
547.0 526.4

Facility
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Variables
4 5
-1 -2
-1 =2
1l =2
-1 =2
1l =2
2 =2
1l -2
2 =2
2 =2
2 =2
2 =1
1 -2
1 3

Imputed Value Incidence Matrix for Run 1

-1
-1
-2
-2
-1
-1
-1

-1
-2

-1
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Table A-2 Imputed Value Incidence Matrix for Run 2

COST
UB IB -
636.7  597.7
585.8 578.9
544.7  544.7
589.9  567.7
55347

561.3  561.3
563.5  563.5
566.7  566.7

600.6 576.5
548.7  548.7
550.9  550.9

Facility
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Variables
5 6 T 8

W NONOHELOVNNNVHENONHENDNNO R
H
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Table A-3 TImputed Value Incidence Matrix for Run 3

ALT CcosT
UB LB
1 636.7 597.7
2 585.8 578.9
3 544.7 544.7
4 539.9 581.3
5 553.7 553.7
6 537.8 537.8
T 536.1 536.1
8 516.1 516.1
9 531.1 531.1
10 526.7 526.7
11 556.5 556.5
12 547.0 547.0
13 571.4 571.4
14 561.3 561.3
15 563.5 563.5
16 566.7 566.7
17 567.7 567.7
18 584.3 584,3
19 553.6 553.6
20 571.9 571.9
21 545.0 545.0
22 571.5 571.5
23 600.6 576.5
24 548.7 548.7
25 550.9 550.9
26 573.8 573.8
27 560.7 560.7
28 580.5 573.6
29 546.,1 546.1
30 565.7 565.7
31 580.6 580.6
32 557.4 557.4
33 559.9 559.9
34 566.7 566.7
35 553.1 553.1
36 561, 561.2
37 563.6 563.6
38 567.0 567.0
39 601.3  601.3
40 571.6 571.6
41 607.4 607.4
42 606.1 574.1
43 573.9 573.9
44 606.4 574 .4
45 584.7 576.2

Facility

VM HHERPNRENREHEHEEHEERPRREOOHHEHNHEHENPROHEHENDHNDHEHENNOHENDOHHHENN R

R NN NHEMPNPDNODMNPDNPODNDNDHEFEFEFNDPDPRDNDEHEMNDNDNODEHENMNDEHEPDDNDNDNDODEMNMPNOHEHENDNONDNDODEHEEF N

' ‘ 1
H HNRONRONRNHHEHENHEREENDENMREHEFROHEREDNHEEDDHERDNNNHENDNONONHENHEHREFH A

5 6
-2 =2
-2 =2
-2 =2
-y =P
-2 1
-2 1
-2 =2
- =2
=2 2
-2 =2
1 =2
=2 2
1 1
1 =2
1 2
1 -2
1 1
1 1
2 =2
-2 =2
2 1
1 =2
-2 <=1
2 1
2 =2
1 2
2 2
-2 1
2 =2
-2 =2
1 1
2. 1
2 1
-2 =2
2 2
2 1
2 1
=2 2
1 =2
-2 =2
-1
-1 =2
-2 =2
-1 =2
-2 <2
3 1

Variables
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APPENDIX B

COST APPROXIMATION DATA FOR
THE DUPAGE COUNTY EXAMPLE
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Table B-1 Piecewise Approximatiohs of the Annual
' Coats of Plants in the S-LSP

Plant Minimam Maximuam

Site Capacity Capacity

2 ' 22.0 52.5

3% 10.5 106.9
5 13.3 52.5
6% 19.4 106.9
8 15.5 25.5
9 9.0 34.5

Pixed
Cost

($/yr.)
132,700
153,200
104,400
153.200
89,100
76 , 400

Unit
Cost

($/MGD/yx. )
14,100
12,900
14,600
12,900
16,000
16,000

¥ Approximated by a piecewise linearization between

20 MGD and 100 MGD.
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Table B~-2 Piecewise Approximations 6f”the Annual
‘ Costs of Interceptors in the S-LSP

Interceptor "Minimum  Maximum Fixed Added¥* Unit

Route Capacity ' Capacity . Cost F.C. Cost
MGD) %MG—D) ($/year) ($/year) ($/MGD)
1-2 5.8 7.2 13,800 75,500 3,860
2-3 22,0 52.5 30,600 45,600 1,150
1-4 5.8 5.8 9,500 - 1,650
41 1.47 1.4 4,600 - 3,340
2-5 22,0 29.2 33,000 - 1,300
5m2 13.3 30.5 128,900 - 1,430
36 10.5 63.0 45,900 - 1,790
6-3 19.4 96,5 60,700 - 1,400
4~5 1.4 7.2 7,100 33,500 3,770
5 13.3 52.5 26,000 52,500 1,390
7-5 10.0" 10.0 19,700 - 1,980
7-8 10.0" 10.0 11,100 - 1,110
9-6 9.0 34.5 28,300 - 1,600
8-9 ~15.5 25.5 40,000 52,500 2,500

* Pixed cost associated with collapsed nodes.

+ Piecewise linear epproximation of the cost function is based
on the assumption that the minimum capacity is 0.1 MGD less
than the maximum capacity.
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Table B-3 Piecewise Approximations of the Annual
Costs of Plants in the D-ILSP

Plant Minimum Maximum Fixed Unit
Site Capacity Capacity Cost Cost
%MGD) (MGD) ($/yr.) ($/M6D/yr.)
2 a) 17.6 36.9 357,600 38,500
b) 22.0 52.5 - 22,800
3 a) 7.7 65.4 269, 300 36,200
b) 10.5 106.9 - 20,900
5 a) 8.3 36.9 280,200 40,100
b) 13.3 52.5 - 23,300
6 a) 10.6 65.4 410,100 35,200
b) 19.4 106.9 - 20,100
8 a) 5.8 10.6 235,200 44,900
b) 15.5 25.5 - 24,700
9 a) 4.4 15.0 202,600 44,700
b) 9.0 34.5 - 24,800

a): Data for the first portion of the coupled branch-
and-bound problem dealing with the initial-year flows.

b): Data for the second portion of the coupled branch-
and-bound problem dealing with the terminal-year flows.
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Table B-~-4 Piecewise Approximations of the Annual
' Costs of Plants in the S-SSP

Plant Minimum " Maximum Pixed Unit
Bite Capacity Capacity Coat - Cost
(MGD) (MGD) ($/yr.) ($/MGD/yr.)
1 5.8 T.2 37,400 20,500
2 12.0 26.6 80,800 16,300
3 8.8 ~10.0 50,100 18,900
5 7.5 11.7 49,700 18,900
8 9.2 0 13.3 56, 700 18,200
9 4.1 14.1 40,100 19,400
10 13.5 17.6 73,600 17,000
11 5.9 19.4 52,4500 18,000
12 10.0% 10.0 52 4500 18,700
13 3.1% 3.1 20,900 24,200
14 12.4 22.4 77,400 16,600
15 9.0% 9.0 48,300 19,100

Piecewise linear épprpximation of the cost function is
based on the assumption that the minimum capacity is 0.1
MGD less than the maximum capacity.
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Table B~5 Piecewise Approximatiohs of the Annual

Coste of Interceptors in the S-SSP

Interceptor Minimum  Maximam Fixed Added Unit

Route Capacity* Capacity Cost F.C.™  Cost
(MGD) MGD)  ($/year) ($/year) ($/MGD)

1-2 5.8 5.8 12,100 - 2,100

3-2 8.8 8.8 10,100 - 1,100

4=3 1.2 1.2 6,100 - 5,300

4-5 1.2 1.2 4,700 15,000 5,000

7-1 1.4 1.4 4,600 - 3,400

6=5 3.0 3.0 54600 - 1,900

6-11 3.0 3.0 11,500 - 3,900

7~8 1.4 1.4 4,600 6,500 4,500

8-9 9.2 9.2 9,900 - 1,100

9-8 4.1 4.1 6,600 - 1,600

9~10 4.1 4.1 - 9,300 - 2,300

| 10-11 13.5 13.5 13,300 - 1,000
- 12-9 10.0 10.0 19,700 - 2,000
| 12-13 10.0 10.0 11,100 - 1,100
15-11 9.0 9.0 21,300 - 2,400

13-14 3.1 3.1 9,500 17,500 4,400

¥ Piecewise linear approximation ¢f the cost function is based
) - on the assumption that the minimum capacity is 0.1 MGD less
o than the maximum capecity. ' '

+ Fixed cost associated with collapsed nodes.
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Table B-6 Piecewise Approximations of the Anmmal
Costs of Plants in the D-S8P

Plant Minimum Maximum Pixed Unit
oite Capacity Capacity Cost Cost
{uGD) (GD)°  (§/yr.) (8/MGD/yr.)

1 a) 5.4 6.2 100,900 55,500
b) 5.8 7.2 - 35,600

2 a) 8.0 ‘ 14,2 194,400 46,400
b) 12.0 19.2 - 27,200

3 a) 8.4 9.6 135,200 51,000
b) 8.8 10.0 - 35,200

5 a) 0.0 7.7 114,000 63,500
b) 0.0 10.5 - 37,400

8 a) 4.4 7.0 127,000 52,600
b) 7.0 11.1 - 30,200

9 a) 2.6 7.4 107,100 53,500
b) 4.1 14,1 - 30,300

10 a) 8.8 11.4 197,600 46,600
b) 13.5 17.6 - 26,900

11 a) 2.3 11.1 141,500 49,800
b) 6.1 19.6 — 27,900
12 a) 4.8 4.8 140,500 51,900 .
b) - 10.0 10.0 - 29,000

13 a) 1.2 1.2 56,400 67,600
b) 3.1 T 3.1 - 37,200

14 a) 4.6 9.4 20,410 46,600
b) 12.4 22,4 - 25,700

15 a) 4.4 4.4 126,900 23,100
b) 9.0 9.0 ~ 29,700

a): Data for the first portion of the coupled branch-
and-bound problem dealing with the initial-year flows.

b): Data for the second portion of the coupled branch-
and-bound problem dealing with the terminal-year flows.






