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The use of a rule-based modeling technique for the formal consideration of 

poorly modeled issues in a water quality management problem is illustrated in 

the context of wastewater treatment plant design. Sludge bulking is a poorly 

understood problem in activated sludge wastewater treatment plants. A n  en- 

gineer must  use judgement gained from experience when he designs an activat 

ed sludge plant to prevent bulking from causing the plant to fail. A n  attempt 

was made to use fuzzy logic in order to model that judgement. Results from 

research were taken from the literature and used independently as constraints 

to an activated sludge wastewater plant design optimization model to see their 

effect on the optimal design. Some of the research results were then formulat  

ed as rules in a rule-based system which relates design variable values to the 

likelihood of a design experiencing bulking problems. The weights of associa- 

tion of those rules to the conclusion that a given design would experience bulk- 

ing problems and the logical interaction of those rules were calibrated using an 

experienced engineer's evaluation of a set  of 15 plant designs. The consistency 

of the engineer's and the judgement model's evaluations were then checked 

with a second set  of 15 designs. The model of judgement could be used to 

evaluate the bulking potential of any design. In the particular example 

developed, the judgement model was incorporated into a wastewater treatment 

plant design optimization model so that the costeffectiveness of constraint 

combinations could be examined. The tradeoff between cost and the likelihood 

of experiencing bulking problems was examined for a typical plant design prob- 

lem. 

Keywords: Wastewater Treatment, Mathematical Models, Optimization, Expert 

Systems 
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CWAPTER 1 

INTRODUCTION 

A rule-based modeling technique is presented to illustrate the use of such an 

approach for a water-quality management problem. The illustration is a model 

developed to capture the judgement of an experienced engineer in evaluating 

the potential for sludge bulking in various designs of an activated sludge sys- 

tem. In the particular example developed, it is shown that the judgement 

model can be used to evaluate the bulking potential of any design or can be 

incorporated into an optimization model to determine the added cost associated 

with reducing the likelihood of bulking. 

The activated sludge wastewater treatment process is characterized as 

suspended growth biological treatment. Although there are many variations to 

the process, the main feature is the existence of a tank where a high concentra- 

tion of active biomass is mixed with wastewater and the substrate in the waste- 

water is consumed by the biomass in the presence of oxygen. As the microor- 

ganisms feed on the wastewater, they grow and are subsequently settled in the 

final clarifier. A portion of the sludge that is removed is returned to the aera- 

tion tank in order to maintain the high biomass concentration. 

A typical treatment plant contains not  only the activated sludge biological treat- 

ment  protess, but also may contain primary sedimentation and sludge handling 

and disposal facilities. Such a process train is shown in Figure 1. The design of 

such a plant consists of sizing the various treatment units so as to meet  the 

plant effluent requirements. The sizing of each process is determined, how- 

ever, by the various recycle and supernatant flows which i t  might receive, and 

by the efficiency of the preceding unit processes. Finding a feasible, cost- 

effective design is most definitely a challenge. 

Because the design of a plant is difficult, and because a poorly designed plant 

could violate water quality standards, many state regulatory agencies set  forth 

design standards for treatment works. However, even within the constraints set  

by the states, there are many possible design combinations. Tang, e t  al.' 

developed a model of the activated sludge process which considers the 





interaction of the various unit processes found in a conventional plant. That  

model allows one to find a system design which is costroptimal subject to the 

constraints which are imposed o n  the solution. 

While an optimization model is a powerful tool for the engineer, it does no t  

relieve him of the challenge of finding a good, cost-efficient design. Many of 

the relationships which Tang used to describe the functions of the unit 

processes are empirical and were developed for limited conditions. For  exam- 

ple, the chapman2 model is used to estimate the effluent solids concentration 

of the final clarifier. Chapman based his model on studies which he performed 

on  a pilot-scale clarifier a t  a full-scale treatment plant. H e  kept close control 

over the sludge recycle rate so  that the sludge coming from the aeration basin 

would be of a consistently good quality. Because the primary focus of his work 

was the physical nature of clarification, he  did no t  include the sludge charac- 

teristics as variables in his model. H e  recognized the omission and felt  that  

"...factors which influence the settling and clarification properties of the floc 

must  also be considered in designing and operating plants." 

In addition, there may be unmodeled issues which the designer might consider 

important. For  instance, objectives such as minimizing the sensitivity of the 

microbial population to changes in the influent conditions are not  considered in 

Tang's model and are ignored when the designer seeks only to minimize cost. 

This paper presents a modeling technique by which the judgement of an experi- 

enced engineer relative to these unmodeled issues can be formally considered. 

To illustrate this technique, a problem common to activated sludge plants, 

sludge bulking, was selected. This periodic loss of solids over the final clarifier 

effluent weir is a problem that the design engineer would want to avoid. Tang's 

design optimization model does no t  consider the problem of sludge bulking and 

the cost-optimal solutions may be such that they are likely to develop sludge 

bulking problems. This technique allows for the evaluation of a plant design 

with respect to its potential for developing bulking problems. In this particular 

case, i t  was determined that the judgement model could be incorporated into an 

optimization model so  that solutions may be found which are good with respect 



to both cost and the likelihood of a bulking problem occuring. 

A rule-based inference system was constructed in a first attempt to model the 

judgement which an experienced engineer might use in evaluating a given plant 

design for its potential for developing bulking problems. Such a judgement 

might be inferred from the values of several different design parameters which 

have been associated with bulking problems. The associations which have been 

reported in the literature are initially reviewed to identify some general trends 

between variable values and bulking problems, and some proposed variable 

boundaries. The effect of constraining the design with such boundaries are 

then investigated using Tang's model. Next, some of those trends and boun- 

daries are used in a rule-based inference model which determines the overall 

likelihood of bulking for a given design. That model is calibrated to an experi- 

enced engineer's evaluation of a set of plant designs. The consistencies of both 

the engineer and the model are then checked with the engineer's evaluation of 

a second set of designs. Finally, the inference model is incorporated into 

Tang's optimization model to identify the tradeoff between cost and the likeli- 

hood of developing bulking problems. 



CHAPTER 2 

ACTIVATED SLUDGE BULKING 

Activated sludge bulking is a common problem in activated sludge wastewater 

treatment plants. ~ o m l i n s o n ~  reports on a 1976 study of plants in the U.K. 

where 52% had experienced excessive loss of solids into their effluent. While 

there are many problems associated with activated sludge seperation in the final 

settling tank, a bulking sludge is considered to settle and compact poorly. 

When the activated sludge settles poorly, it may become difficult to maintain a 

high concentration of biomass in the aeration tank which could lead to a break- 

down in the operation of the plant. Activated sludge contains a diverse popula- 

tion of microorganisms and its properties are controlled by the relative numbers 

of the various species present. The conditions in the plant and the makeup of 

the wastewater influent seem to cause the relative numbers of microorganisms 

to change. 

There has been no good model developed which predicts the settleability of a 

sludge given the conditions of the plant and which works for a wide variety of 

plants. Experience has shown that bulking has a wide variety of possible 

causes. Table 1 summarizes some of them, and divides them into those which 

Tang's model considers, and those which it does not. 

When designing a wastewater treatment plant, the designer would like to 

minimize the chance of encountering bulking problems. While the sewage 

make-up may indicate the potential for a bulking problem, i t  normally cannot 

be altered beyond pH and micro-nutrient adjustment. Rather, the plant mus t  

be designed to avoid bulking problems. The following sections examine the 

plant design variables which the designer should evaluate in considering the 

potential for bulking problems. 

Table 1 
Factors Related to Sludge Bulking 

Considered in Design Model 
mixing characteristics 

feed pattern 
D .O. concentration 

Sludge Loading 
primary sedimentation 

Not Considered 
pH 

waste type 
micro-nutrients 

fats, starch, carbohydrates in influent 
septic sewage 



2.1 SLUDGE LOADING 

Sludge loading is a measure of the food to micro-organism ratio (F/M) in the 

aeration tank. pipes4 related the fat sludge hypothesis as an explanation of 

how sludge loading is important. Microorganisms which live in a high F/M 

environment are like pigs which are fed too much corn; they become fat and 

lazy and move slowly whereas organisms living under starved conditions are 

spartan and settle well. While a correlation between sludge loading and settlea- 

bility has been made, the numerous investigators have found sometimes 

conflicting results. Figure 2 shows six published correlations between sludge 

loading and settleability. 

Orford, e t  d . 5  studied the effect of sludge loading on the completely mixed 

activated sludge process. The results of their laboratory experiments showed a 

maximum sludge density index (minimum sludge volume index) at a sludge 

loading of 0.17 lb BOD5/lb MLVSSmd (pounds of 5 day biochemical oxygen 

demand per pound of mixed liquor volatile suspended solids per day). A t  load- 

ings above that they found a nearly linear decrease in the sludge density index. 

Manipulation of their results yields a predicted sludge volume index (SVI) of 

108 at a sludge loading of 0.3 lb BOD5/lb MLVSSeday and an SVI of 150 (an 

approximate boundary for bulking sludge) a t  a loading of 0.42 lb BOD5/lb 

MLVSSeday. 

6 Stewart presented a typical relationship between SVI and sludge loading. He 

noted that for conventional plants, loadings in the range of 0.5 to 2.0 1b BOD5/ 

lb MLVSSbday were unstable and that normally attempts are made to maintain 

a loading factor of about 0.3 lb BOD5/lb MLVSSeday. Ten years later, Ren- 

sink7 found in pilot plant studies that completely mixed units resulted in a 

filamentous bulking of Sphaerotdus natans when loaded above 0.3 kg BOD5/kg 

MLSS*day. Below 0.3, no bulking problems were noted. MLSS (mixed liquor 

suspended solids) includes the inert solids concentration with the volatile solids 

concentration as a measure of the microorganisms present. Also, chudoba8 



A .  Kalbskopf, K . H . ' ~  
B. Goodman, B.L.~'  
C1. Chudoba et a]., 
C2. Chudoba et al., 
D .  Rideau, J.P., et al., 30 

E. w.P.R.L.~' 
F. stewart6 
G.  ensi ink' 

Most of this figure is from Chambers md ~ o m l i n s o n ~ ~  

Figure 2--Relationships Between Sludge Loading and SVI 



had found in pilot plant studies that at loadings above 0.5 kg BOD5/kg MLVSS* 

day, SVI values were high.   iff' found that in a laboratory plant operated on 

settled sewage, SVI values were greater than 150 when the biomass loading was 

above about 0.35 kg/kg*day (measure of microorganisms not specified). 

Metcalf and ~ d d ~ "  suggested that a completely mixed activated sludge plant 

should have a sludge loading of between 0.2 and 0.6 kg BOD/kg MLVSS*day 
3 and a volumetric loading of between 0.8 and 2.0 kg BOD/m day. ~scrit t" ,  in 

a text on International Sewage treatment practice, reports that plants, with aver- 

age aeration basin detention times, should not be loaded above 0.03 kg 

BOD /kg MLVSS. d. The Illinois Recommended Standards for Sewage works12 

states that the organic loading density shall not exceed 35 lbs/day of BOD5 per 
3 1000 cubic feet of usable tank volume (0.56 kg BOD5/m day). 

While most investigators found an increasing SVI with increased sludge load- 

ing, chuboda8 found that in completely mixed laboratory systems and with 

loadings in the range of 0.5 to 1.6 kg BOD5/kg MLVSSsd, the SVI decreased 

with increased sludge loadings. The SVI was greater than 400 ml/g in all cases. 

His findings for plug-flow systems concurred with the other investigators. 

~ a l b s k o ~ f ' ~  reported of studies on bulking in Germany. In extended aeration 

plants, SVI values of less than 100 ml/g could only be maintained when the 

sludge loading rate was less than 0.05 kg BOD5/kg MLSSeday. While the data 

are scattered, the results showed that it was necessary to load below 0.07 kg 

BOD5/kg MLSSoday to remain below an SVI of 150. He also reported on a. 

pilot plant fed with chemical and steel-producing industrial wastewater where it 

was necessary to maintain a loading of less than 0.2 kg BOD5/kg MLSSeday to 

keep an SVI of less than 150 ml/g. 

Palm, et  al.14 found that at high bulk dissolved oxygen concentrations in the 

aeration basin, high substrate removal rates are possible while maintaining 

acceptable SVI values. More on this is given in a later section on dissolved 

oxygen. He also proposed that at low loadings (below 0.2 kg COD/kg VSS-day, 

where COD refers to the chemical oxygen demand), problems with sludge 
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2.1.2 Results from O~timization Model 

The wastewater treatment plant design optimization model typically yields 

optimal solutions with sludge loadings higher than recommended values. 

Design 1 in Table 2 shows such an optimal design. Note that the sludge load- 

ing is higher and the volumetric loading is lower than recommended by Metcalf 

and Eddy (M&E). If those loadings are constrained to meet the M&E guide- 

lines, design 2 is found to be optimal. However this design still has a sludge 

loading at which several investigators have found bulking. Further constraining 

the design to the limits of sludge loading suggested by various investigators 

gives the other designs in Table 2. Note that design 6, conforming to Wagner's 

volumetric loading constraint, also satisfies the sludge loading constraints based 

on F/M ratio. 

The floc loading of the designs may be evaluated with a minor manipulation of 

Eikelboom's expression. Since substrate utilized in the activated sludge process 

is made up of degradable solids and soluble BOD, and assuming that the 

effluent soluble BOD is equal to the return sludge soluble BOD and that no 

degradable solids leave the aeration tank (as Tang originally assumed), the 

numerator represents the rate of the substrate COD utilized in the process. 

Since COD removal and ultimate BOD removal are approximately equivalent in 

the activated sludge process, the following expression holds true: 

By the definition of the recycle rate, 

Substituting (2.2) and (2.3) into (2.1), floc loading may be determined for 

designs produced by Tang's model as: 

-recycle ratio 



Table 2 
Cost Optimal Designs 

Subject to Various Loading Constraints 

c o s t  ($/yr)  500,398 509,170 544,830 526,230 546,410 546,730 
Eff . BOD 5( rn g/l) 30.0: 26.95*4 19.78*9 22.08$ 18.286 19.02p 
Elf. TSS (mg/l)  30.0 30.0* 30.0* 30.0* 30.0* 30.0 
ORPST ( m / h r )  6.0* 6.0 6.0 6.0 6.0* 6.0** 
Recycle Rake (%) 12.50 18.36 37.41 12.72 15.27 10.0 
Sludge Age (days) 2.19 2.53 4.21 3.44 4.94 4.55 
Volurne,A.T. (cu.rn) 5696 5397 6267 8967 11,582 13,371 
Area,F.S.T. (sq.rn) 684 755 993 6 87 7 17 6 53 
MLVSS (rng/l) 11187 1333 1917 1099 1210 9 68 
Sludge Loadinga 0.66 0.60* 0.42* 0.42* 0.30* 0.31 
Sludge ~ o a d i n ~ ~  0.47 0.43 0.30* 0.30 0.22 0.22 
Volumetric LoadingC 0.72 0.80* 0.80 0.46 0.36 0.30* 
Floc ~ o a d i n g ~  130 102 63 136 123 163 
Design 1 No additional constraints 

2 M&E constraints 
3 Rensink & M&E constraints 
4 Rensink constraint 
5 Stewart constraint 
6 Wagner constraint 

Notes a kg BOD 5/kg MLVSS'day 
kg BOD 5/kg hdLSS'day 

c kg BOD 5/cu.m'day 

rng  BOD^/^ MLSS 
* Binding constraint 



S=substrate utilized in aeration tank (BOD5) 

M -total solids concentration, return sludge 
t,- 

~ i k e l b o o m ' ~  recommended floc loadings between 50 and 150 mg COD/g 

MLSS. Most of the designs given in Table 2, including the original optimal 

design, satisfy his criteria. 

2.2 MIXING 

2.2.1 Background 

While sludge loading has been found to play an important role in determining 

which bacteria are dominant in the mixed cultures of an aeration basin, a 

number of investigators have found that the degree of longitudinal mixing, and 

the consequent development of a substrate or loading gradient, is also impor- 

tan t. 

The most intensive research along this line has been done by chudoba2'. He 

found that the degree of mixing influenced the selection of microorganisms in 

the culture and the lower the dispersion number, the lower the SVI. 

Van den Eynde21 explained the selection by the existence of two phases of 

microbial activity. During the exogenous phase, the organism removes sub- 

strate from solution and stores it for later use in its endogenous phase, where 

there no longer is substrate left in solution. Different organisms will remove 

substrate a,t different rates while in the exogenous phase and those with the 

greater removal rates will be able to continue their growth into the endogenous 

phase. Van den Eynde found that the substrate uptake rate of Sphaerotilus 

natans, a filamentous bacterium, was lower than that of floc-forming Arthrobac- 

ter. He also reported on the findings of Mulder and Krul. Mulder had found 

that filamentous bacteria were outgrown by the floc-forming bacteria because of 

a less economical metabolism of their. stored substrate. Krul found that Hal- 

iscomenobacterhydrossis, a filamentous bacterium, could not produce reserve 

substances. This theory could explain the reason that a reactor with a substrate 



concentration gradient favors the selection of floc-forming microorganisms. 

There appears to be a limit to that selection, however, as chudoba8 reports 

cases of high sludge loading (5.0 kg BOD/kg MLSSvd) in which plug-flow reac- 

tors produced bulking sludge. 

While it is well known that, for a given species and substrate and a first order 

kinetic model, a plug-flow reactor yields a higher conversion then a completely 

mixed stirred tank reactor (CSTR),  experiences with sewage treatment facilities 

have shown that completely mixed aeration basins have higher conversions 

than plug flow basins. The reason for this can be explained by the selection of 

different dominant microorganisms, and thus different kinetic constants, using 

different systems. The microorganisms seem to be selected primarily by the 

substrate concentration a t  the inlet end of the basin.20 

Many investigators have confirmed the work of Chudoba.   ens ink^ showed 

with synthetic wastewater in laboratory units that at a loading of 0.3 kg BOD/kg 

MLSSod the batch and plug flow reactors had SVI values below 100 while the 

completely mixed reactor had bulking problems. At  0.5 kg BOD/kg MLSSod, 

the batch reactor had a stable sludge, while the plug-flow and completely mixed 

reactors produced a bulking sludge. 

~ r o i s s ~ ~  reported on a pilot plant constructed a t  the Vienna, Austria treatment 

plant. Two parallel systems were set  up with one using a completely-mixed 

basin and the other using a series of 6 to 8 seperated tank segments. The pilot 

plant was operated for 6 months and, while the less dispersed plant did experi- 

ence bulking, it occured over a shorter period than i t  did in the completely- 

mixed plant. 

performed studies on pilot plants using aeration basins with from 1 

to 24 compartments in series. He  found that a t  a hydraulic residence time of 

eight hours, the degree of mixing did not  seem to effect the SSVI (stirred 

sludge volume index), while at lower hydraulic retention times (3.3 and 5.0 

hrs) the SSVI decreased with decreasing longitudinal dispersion. H e  also inves- 

tigated the use of an anoxic mixing zone ahead of the aeration basin and found 



its use beneficial. While a seperate anoxic mixing zone will decrease the longi- 

tudinal mixing, there may be other factors involved which could have helped 

increase the sludge settleability. 

~ a l l e r ~ ~  reported on modifications to the Lambourn Division Sewage Works 

(UK) which were intended to control bulking. The plant's problems seemed to 

arise from the summertime addition of wastes from a fruit and vegetable can- 

nery, especially the wastes from the processing of potatoes. The system was 

modified to a two stage aeration process where the first stage was high rate 

(0.72 kg BOD5/kg MLSS*d) and the second stage was low rate (0.14 kg 

BOD 5/kg MLSSed). A n  immediate improvement was seen in sludge settleabil- 

ity ( f rom SSVI=260 ml/g to SSVI=100 ml/g) and the plant has since been 

converted to permanently run as a "plug-flow" system. 

~ a c h w a l ~ ~  tried different feed arrangements in a Carrousel activated sludge 

plant. H e  found that arrangements increasing the plug-flow nature of the plant 

resulted in the best settling sludges. The best settling sludges were found asso- 

ciated with a single point feed into an anoxic zone. 

reported on the modification to the Hamilton, Ohio Water Pollution 

Control Facility. The plant had been constructed in two phases with the origi- 

nal plant's aeration basin having less longitudinal dispersion and typical SVI 

values of 50-100 ml/g. The new plant's aeration tank was nearly completely 

mixed and had typical SVI values of 300-500 ml/g. A n  aerated selector channel 

was installed in the newer basin to allow for approximately four minutes of plug 

flow of combined return activated sludge and influent before they were mixed 

with the rest of the basin. Approximately 25-30% of the soluble COD was 

removed in the selector channel. The dissolved oxygen uptake, however, did 

not  occur simultaneously. This suggests a storage of COD which is consistent 

with the theory of Van den Eynde presented earlier. The modification raised 

the settleability of the sludge from the newer aeration basin to that of the origi- 

nal basin. 



2.2.2 Results from Optimization Model 

Tang's Wastewater Treatment Plant model considers the aeration tank to be 

completely mixed. I t  was modified to represent the aeration basin as three 

CSTR tanks in series. In this modification, the degradable solids were included 

as substrate which is then utilized through the three tanks. It  was assumed that 

no degradable solids exist in the effluent of the aeration basin. Inert solids 

include the decayed cells based on the concentration of active biomass in each 

tank. 

Table 3 compares the costroptimal designs of plants with a single CSTR and 

three CSTRs in series. The cost of the plant with less longitudinal mixing is 

shown to be only 2.08% greater and is constrained by the sludge age being at its 

lower bound of 2.0 days. It  is possible that these optimally designed plants do 

not  reflect the differences in completely mixed and less mixed aeration basins 

because the kinetic constants are kept unchanged between cases, and it has 

been previously pointed o u t  that the microbial culture could be completely 

different. The hydraulic retention time of the costroptimal plant is about four 

hours which, according to , should show an increase in settleability 

with a decrease in the longitudinal mixing. 

2.3 PRIMARY SEDIMENTATlON 

wagner16 reported that, in his study of plants in Germany, those plants which 

had primary sedimentation had the worst SVI values. Plants without primary 

sedimentation usually had considerably fewer filamentous microorganisms. H e  

also showed an increase in SVI with the residence time in the primary clarifier. 

Wagner proposed that filamentous microorganisms have a competetive advan- 

tage over the floc-forming microorganisms when most of the substrate is in 

solution because of their greater surface area to volume ratio. Therefore, in 

plants without primary sedimentation, where a higher percentage of substrate is 



Table 3 
Cost-Optimal D esigns 

for Different Degrees of Mixing in Aeration Basin 
Aeration Tank 1-CSTR 3-CSTR 
Cost ( $/yr) 500,394 510,784 
Eff . BOD ( mg/l) 30.0 15.4 
ER. TSS pmg/l) 30.0 30.0 
ORPST ( m  /hr) 6.00 5.21 
Recycle Rate (%) 12.5 10.75 
Sludge Age (days) 2.19 2.00 
Volume, A.T.(cu.m) 5696 6207 
Area, F.S.T. (sq.m) 684 664 
Q. , Grav. Thick. (cu.m/hr) 11.75 12.50 
~ 8 u b l e  BOD, (mg/ l ) ,  Tank #1 - 57.2 

, Tank #2 - 15.2 
, Tank #3 19.8 4.0 

Active Biomass (mg/ l ) ,  Tank #1 - 713 
, Tank #2 - 728 
, Tank #3 707 73 1 

MLVSS (mg/ l ) ,  Tank #1 - 1040.4 
, Tank #2 - 1045.0 
, Tank #3 106 1 1048 

Sludge Loading, Tank #1 - 1.88 
( kg BOD,/kg MLVSS'd) , Tank #2 - 1.06 

, Tank #3 0.66 0.28 
Volumetric Loading, Tank #1 - 1.95 
( k g  BOD,/cu.m'd), Tank #2 - I . l l  

, Tank #3 0.72 0.30 



contained in particulate matter, filamentous microrganisms enjoy less of an 

advantage over the floc-forming bacteria. 

2.3.2 Results from O~timization Model 

Cost-optimal plants resulting from Tang's model consistently show designs with 

primary clarifier overflow rates at  the upper bound of 6.0 m/hr, suggesting that 

the cost-optimal design eliminates the primary clarifier. However, that result 

depends on the influent conditions. Tang found that the primary clarifier is 

cost-effective when there is a high concentration of suspended solids in the 

influent. 

While the primary clarifier may be shown not to be cost-effective in many 

cases, it is included in many plants because of historical circumstances or for 

reasons of reliability. Clark, Viesmann, and HammerZ7 stated that completely 

mixed activated sludge processes without primary sedimentation are generally 

used only in small municipalities because of the costs involved in sludge dispo- 

sal and operation. This, however, runs contrary to the results of Tang's model 

which considers those sludge handling costs. While reliability constraints may 

call for the inclusion of the primary clarifier, cost and incidence of sludge bulk- 

ing call for small or no primary clarifiers. 

2.4 DISSOLVED OXYGEN 

Low dissolved oxygen (D.O.) concentrations in the aeration basin are quite 

often felt to be the cause of sludge bulking in activated sludge plants. Cameron, 

et  aLZ8 listed the D.O. concentration as one of the things to check if bulking 

occurs. The New York State Department of Healthzg warned operators that 

dissolved oxygen must always be present in the sewage in the final clarifiers and 

a remedial step to take after bulking occurs is to increase the time and rate of 

aeration. It was the opinion of David ~ e n k i n s ~ '  that bulking problems in 

Europe were caused by low loadings while problems in the USA were usually 



caused by low D .O. concentrations. 

0rford5 found that the sludge density index (SDI) increased only slightly with 

increasing mixed liquor dissolved oxygen concentrations. H e  found that a good 

correlation existed between the SDI and sludge loading and that he could no t  

get a better correlation by including dissolved oxygen in the expression. 

~ h a t l a ~ l  studied a full-scale plant treating a pulp and paper industrial waste. He  

initially ran the plant a t  normal aeration rates where the SVI was about 100 

ml/g. After three days, he increased the aeration levels in the tanks and found 

that the sludge bulked (SVI values greater than 230).  Initially, D.O. levels in 

the aeration basin ranged from 0 to 2.2 mg/l, whereas in the second phase the 

range was from 0 mg/l at the head end of the tanks to 6 . 3  mg/l at the outlet. 

He  found that the filamentous sludge produced a more purified effluent and 

that there existed a tradeoff between a less filamentous sludge a t  low dissolved 

oxygen levels ( below 2.5 mg/l) which would have better settling characteristics 

but  poor BOD removal and a more filamentous sludge a t  higher oxygen levels 

which settled poorly but  showed good BOD removal. I 3 0 s m a n ~ ~  also found that 

poor settling rates were the result of over aeration. He  studied extended aera- 

tion plants treating mine wastes. 

Bhatla was studying a waste known for its tendency toward bulking. The load- 

ing rate, estimated using several of the plant parameters given, was about 0.6 

kg BOD5/kg MLVSS day. His results ran contrary to those of other investiga- 

tors who found bulking caused by insufficient rather than excessive dissolved 

oxygen. 

I t  is interesting to note that the reactor which Bhatla had studied was plug flow 

and that in all cases the dissolved oxygen concentration was less than 0.5 mg/l 

at the head end of the basin. If the microorganisms which predominate are 

selected by the initial loading as has been previously proposed, then they would 

have been selected under low dissolved oxygen conditions. 

In the discussion following a paper presented by Tomlinson and 
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It should be noted however that the duration of low D.O. concentrations during 

the test was 50 hours, possibly too short of a time for the filamentous organ- 

isms to develop. 

2.4.2 Results from O~timization Model 

Tang's wastewater treatment plant model is rather insensitive to the D O  con- 

centration maintained in the aeration basin. While the cost rises with increas- 

ing D.O. concentration, the cosboptimal design is essentially the same through 

the range of dissolved oxygen levels. If the model is constrained so  that the 

BOD removal rate is lower than the bound suggested by Palm for a given D.O. 

concentration, the cost optimal solution for low D.O. levels changes. Table 4 

summarizes the designs. Note that because of the upper bound of 6.0 days 

placed o n  the sludge age and the lower bound of 10% on the recycle ratio, a 

BOD removal rate below 0.216 kg BOD5/ kg MLVSSvday is infeasible. It is 

also worth noting that Palm's experiments were carried o u t  at  a MLSS concen- 

tration of 1100 mg/l whereas the optimal designs showed MLSS concentrations 

of about 1500 mg/l. Although this concentration difference is minor, his 

bounds may not  be applicable at that higher MLSS concentration. 

The results in Table 4 show that, when the BOD removal rate is constrained as 

Palm's results suggest is necessary to eliminate sludge bulking, the least cost 

design no longer occurs where the dissolved oxygen concentration is at a 

minimum. While increasing the D.O. level in the aeration basin increases the 

cost of a plant, Palm's constraint requires lower BOD removal rates (and thus 

larger aeration tanks) at  lower D.O. levels. The result of these trends is a 

minimum cost, for the influent conditions studied, at a D.O. level of 3.7 mg/l. 

2.5 ASL/MPSL FINAL CLARIFIER 

2.5.1 Backaround 

In establishing a strategy for controlling a bulking sludge in an existing plant, 

Tomlinson and Chambers 33 suggested comparing the applied solids loading 



Table 4 
CostrOptimal Designs for Varied D.O. Levels 

, D.O. (mg/l) 5.0 4.0 3.7 3.0 2.0 1.0 

Palm Constraint on BOD Removal 
Cost ($/yr) 556,240 533,540 528,530 534,110 545,550 646,930 
ER. BOD (mg/l) 30.0 30.0 30.0 24.58gb 19.301b 11.364 
ER. TSS [mg/l) 30.0 30.0 30.0 30.0 30.0 14.596 
Sludge Age (days) 2.1924 2.1921 2.1926 2.8916 4.4222 6.0 
Recycle Ratio (q 12.466 12.544 10.0 1 1.033 14.064 10.0 
Volume,A.T. (cu.m) 5704 5686 6409 809 5 10,858 13,263 
Area,F.S.T. (sq.m) 683 684 6 53 666 7 03 1572 
MLSS (mg/l) 1514 1514 1347 1420 1614 1917 
MLVSS (mg/l) 1085 1085 9 66 102 1 1160 1329 
Sludge Loadinga 0.66% 0.66% 0.649 0.49 0.330 0.232 
BOD, Removeda 0.533 0.533 .521 0.420 0.30 0.216' 
No Additional Constraints 
cos t  ($/yr) 556,240 533,540 528,090 517,470 505,440 497,050 
ER. BOD (mg/l) 30.0 30.0 30.0 30.0 30.0 30.0 
ER. TSS [mg/l) 30.0 30.0 30.0 30.0 30.0 30.0 
Sludge Age (days) 2.1924 2.1921 2.1925 2.1923 2.1923 2.1923 
Recycle Ratio (9 12.466 12.544 12.534 22.539 12.662 12.525 
Volume,A.T. (cu.m) 5704 5686 5687 5687 5658 5690 
Area, F.S.T. (sq.m) 683 684 684 684 686 684 
MLSS (mg/l) 1519 1519 1519 1519 1519 1519 
h1LVSS (mg/l) 1088 1088 1088 1088 1088 1088 
Sludge Loadinga 0.663 0.663 0.663 0.663 0.663 0.663 
BOD, Removeda 0.533 0.533 0.533 0.533 0.533 0.533 
a kg BOD,/kg hlLVSS*day 
b ~ o n s t r a i n t  not binding 
C Design infeasible at 0.19 kg BOD,/kg MLVSSeday 



(ASL)  on  the final clarifier to the maximum permissible solids loading (MPSL) 

and determining the most  costceffective way of insuring that the ASL is less 

than the MPSL, The applied solids loading can be calculated as: 

Q 2 ( l  + r )  MLSS 
ASL = 

A/ 

=Recycle Rate 

Q2=Flow into Aeration Basin 

A -Surface Area  of Final Clarifier r 
MLSS=Mixed Liquor Suspended Solids Conc. 

while the maximum permissible solids loading is a function of the sludge 

settleability and the final clarifier underflow (recycle rate). This approach can 

also be applied a t  the design stage if a bulking problem is expected to develop. 

While the previous sections have dealt with ways of controlling the settleability, 

and thus lowering the SVI one  need assume during design (and thus raising the 

MPSL),  a more costceffective approach might be to design for higher sludge 

loadings (e.g. smaller aeration tank),  assume a higher design SVI value, and 

lower the ASL by increasing the size of the final clarifier o r  decreasing the 

MLSS, o r  increase the MPSL by increasing the recycle rate (which will also 

increase the ASL, but not  necessarily to the same extent).  A plant that has a 

lower ASL might be considered to be able to effectively thicken a sludge with a 

lower settleability and so will not  be as likely to develop bulking problems. 

2.5.2 Results From O~timizat ion Model 

A s  the settleability of the sludge decreases, the thickening action of the secon- 

dary clarifier degrades. Thickening is modeled in Tang's wastewater treatment 

plant model according to Dick's equation: 

A - Area of Final Clarifier f - 
Q5 = Final Clarifier Underflow 

aw and nw are sludge thickening constants. 



M = Underflow total solids concentration 
t5 

The thickening parameters are highly empirical and have been studied only on 

a limited basis. For  sludges with normal settling properties that were studied 

however, nw varied only slightly while ow varied over a wide range.36 

It  should be possible to link the sludge settling constants to the SVI o r  some 

other settleability measure. If nw is a measure of interference between the 

sludge flocs and aw is a measure of the settling velocity of the sludge floc, one  

could imagine that as a sludge began to bulk (as  the SVI increased), nw would 

increase (as  the filamentous microorganisms interfere with thickening to an 

extent much greater than their concentration would predict) and aw would 

decrease (as the filamentous microorganisms would form a mat  which would 

settle more slowly). While the direction of change may be intuitive, the magni- 

tude of the change is not. 

Table 5 shows the results from the optimization model when the settling con- 

stants are perturbed by 10% in each direction. It is interesting that the control 

strategy which Tomlinson and Chambers recommend for an existing plant -- 
increasing the recycle rate and decreasing the MLSS concentration -- is reflected 

in the cost optimal solutions for perturbations in the directions suggesting bulk- 

ing. This seems to imply that the cost optimal approach to designing for a 

poorly settling sludge is to increase the maximum permissible solids loading by 

increasing the sludge recycle rate and decreasing the applied solids loading by 

decreasing the MLSS concentration rather than simply increasing the area of 

clarification. The identification of the range of sludge settleability over which 

this conclusion holds might be more easily understood with the use of a more 

familiar expression of settleability, i.e. the SVI. 

Daigger and ~ o ~ e r ~ '  reported on  data obtained at pilot plants operated by the 

Milwaukee Metropolitan Sewerage District to correlate the SVI to the batch setr 

tling velocity of the activated sludge. Sludges with a wide SVI range were stu- 

died and the following equation was proposed: 

- ~0.148+0.0021O(SV1)] C, =7.80e 



Table 5 
CostrOptimal Designs 

for  Perturbed Final Clarifier Settleability Constants 
aw=2G.66 aw=21.82 aw=24.24 aw=24.24 

nw=2.3747 nw-2.6122 nw=2.1372 nw=2.3747 

Cost ($/yr) 498,170 502,060 519,630 482,100 500,304 
Eff .BOD ( mg/l) 30.0 30.0 30.0 30.0 30.0 
Eff .TSS (mg/l)  30.0 30.0 30.0 30.0 30.0 
ORPST (m/hr )  6.0 6 .O 6.0 6.0 6 .O 
Sludge Age (days) 2.1024 2.1923 2.1806 2.1978 2.19 
Recycle Rate (Q 12.167 12.924 14.772 10.004 12.50 
Volume A.T. (cu.m) 5541.3 5860.3 6330.2 5031.4 5696 
Area F.S.T. (sq.m) 685.47 682.73 686.06 685.18 68 4 
MLSS (mg/l)  1558 1474 1377 1707 1516 
Q,,, G.T. (cu.m/hr)  11.215 12.379 14.946 8.81 20 

Table 6 
Costr Optimal D esigns 

for Sludges with Varied SVI Values 
SVI ( ml/g) 60 100 140 180 210 2 GO 

Cost ($/yr) 491,120 498,222 504,510 510,400 516,010 551,700 
Eff. BOD (mg/l)  30 30 3 0 30 30 30 
Eff. TSS (mg/l)  30 30 3 0 30 30 3 0 
ORPST (m/hr )  6.0 6.0 6.0 6 .O 6 .O 6.0 
Sludge Age (days) 2.1925 2.1923 2.1022 2.1919 2.1918 2.1910 
Recycle Rate (%) 10.036 13.657 15.624 17.301 18.703 20.030 
Volume, A.T. (cu.m) 4714 5023 5705 6381 7061 7713 
Area., F.S.T. (sq.m) 697 710 704 700 698 698 
MLSS (mg/l)  1831 17 19 1514 1355 1225 1122 
Q. G.T. (m3/hr)  8.4 11.2 14.0 16.8 10.8 22.8 
~ d k l i n ~  Vel. (m/hr )  4.72 4.22 3.99 3.82 3.70 3.58 
ORFST ( m / h r )  2.15 2.11 2.13 2.14 2.15 2.15 



V2=batch settling velocity (m/hr )  

Cz=influent solids concentration ( g/l) 

This equation takes the form of the settling equation proposed by ~es i l ind ' :  

1 - blC, u i = a  e ( 2-81 

as opposed to the form proposed by Duncan and ~ a w a t a '  and used by Dick 

and Suidan to derive the expression used in Tang's model. 

Using the expression developed by Berthouex and ~olkowski '  for the limiting 

flux: 

Cu=underflow solids concentration 

a' and br are the same as in (2.8) 

and the definition of limiting flux: 

QU = final clarifier underflow 

A = surface area of final clarifier 

then substituting (2.10) into (2.9) and taking the values of a' and br from (2.7) 

the underflow concentration can be found to be directly related to the SVI: 

Substituting this equation into Tang's model allows a closer look a t  how cost- 

optimal designs change as the design sludge settleability varies. Of course, the 

change in sludge characteristics is only reflected in the thickening equation. 

Clarification, modeled according to Chapman's equation, still does not  consider 

the settleability of the sludge. 



The designs summarized in Table 6 are consistent with what was found by per- 

turbing the sludge constants in Dick and Suidan's equation. As the expected 

SVI increases, the cosboptimal plant should be designed with a larger aeration 

tank and a lower mixed liquor suspended solids concentration which effectively 

reduces the ASL. The size of the final clarifier remains constant while increas- 

ing the recycle rate dampens the decrease in the maximum permissible solids 

loading caused by the reduced settleability. 

~ e e f e r ~ ~  saw that as the SVI of a sludge rises, better removal levels are seen in 

the final clarifier until the point where the settling velocity of the sludge blanket 

is less than the overflow rate of the final clarifier. A t  that point, the sludge 

blanket would be lost over the final clarifier weir. The better removal levels 

were thought to be due to the increased contact time between the sludge flocs 

and the wastewater as the floc settled more slowly. Table 6 shows that the 

sludge settling velocities, as predicted by Daigger & Roper's equation, are 

greater than the final clarifier overflow rates for the cosboptimal designs. One 

might expect, following Keefer's observations, that the effluent would show 

better removal levels than Chapman's equation would predict in determining 

these solutions. Considering both thickening and clarification then, it would 

seem that simply increasing the size of the final clarifier is not  a cosbefficient 

approach to designing for a potentially bulking sludge. 

2.6 SUMMARY 

Although much work has been done pertaining to the study of activated sludge 

bulking, there still is no all-encompassing model of its occurence. The design 

engineer must  d e d  with the conflict and uncertainty which exists regarding the 

problem of activated sludge bulking. In many cases the engineer deals with the 

problem by conservatively oversizing the final clarifier so as to meet  the 

effluent requirements during periods when the sludge might settle poorly. 

However, this approach may not  consider the efficient design of the total sys- 

tem. I t  might be more efficient to prevent the formation of a sludge with poor 

settleability by using a lower sludge loading, decreasing the longitudinal mixing, 

or  increasing the dissolved oxygen concentration in the aeration tank. 
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MODELING THE JUDGEMENT OF A N  EXPERIENCED ENGINEER 

While the previous section showed costroptimal designs subject to the various 

single constraints proposed, it could not examine possible tradeoffs between the 

effectiveness of controlling bulking and system cost for constraint combina- 

tions. This section attempts to deal with those tradeoffs by creating a model 

which logically infers, from the values of some design variables, the likelihood 

of a given plant design experiencing bulking problems. The structure of the 

model is patterned as a rule-based system and the logical structure and the rela- 

tive truth-value of each rule are fit to one engineer's evaluation of a set of 

designs. The consistency of both the engineer and the model are then checked 

with a second set of designs. Finally, the model is incorporated into Tang's 

optimization model so that some trends in the tradeoff between cost and likeli- 

hood of bulking problems can be examined. 

3.2 BACKGROUND 

Rule-based systems are one way to manipulate a complex pathway of rules 

which an expert might implicitly use to come to a decision regarding a problem 

which is inherently fuzzy (i.e., there is a poorly understood relationship 

between pieces of evidence and a conclusion) and for which someone with a 

good deal of experience is needed. A number of rule-based systems have been 

set up for problems as diverse as medical diagnosis, civil evacuation plans, and 

structural analysis3g. ~ l o c k l e ~ ~ ~  presented a fuzzy rule-based system for the 

subjective assessment of the safety of a structure before, during, and after con- 

struction. Ishizuka, et  presented a method of rule-based inference for 

structural damage assessment. 

In the environmental engineering field, ~ l a n a ~ a n ~ ~  showed how such a system 

could be used to control the activated sludge process by interpretation of the 

dissolved oxygen profile in the aeration tank. Tong, e t  also looked at the 

problem of automatic control of an activated sludge plant and presented 20 



fuzzy rules which consider effluent water quality and several process operation 

parameters (such as MLSS concentration) to determine what changes are to be 

made to the D .O. set  point, the recycle rate, and the sludge wastage rate. 

~ o h n s t o n ~ ~  se t  up  a rule-based system to diagnose problems with the wastewa- 

ter treatment process based on the judgement of a plant operator. 

The concept of fuzzy association is used to deal with the uncertainty of infor- 

mation with which to evaluate a rule, and the uncertainty of the rules them- 

selves. A piece of evidence may only have partial correlation to a given conclu- 

sion, and so rather than throwing o u t  this incomplete knowledge and looking 

for more consistent rules, i t  is said to be fuzzily associated with that conclusion. 

The problem of determining why a given plant is experiencing bulking prob- 

lems, o r  the problem of determining if a given plant will experience a bulking 

problem, may be reduced to several sub-problems as shown in Figure 5. The 

problem may arise because of a troublesome wastewater influent, because of a 

troublesome plant design, o r  because of some combination of the two. 

Each sub-problem may be reduced again to its inter-related evidence. Influent 

characteristics which are associated with bulking problems can be related to 

types of industrial dischargers, levels of nutrients, carbohydrates, and fats, and 

septicity. Design parameters which have been found to influence the develop- 

ment  of bulking problems include BOD removal, sludge loading, dissolved oxy- 

gen, volumeteric loading, mass loading on the final clarifier, and primary 

clarifier size. 

One significant problem in the modeling of the fuzzy interaction of pieces of 

evidence and their association to the overall conclusion is determining the 

weights of association of a particular piece of evidence to a hypothesis. 

Another significant problem is determining the propositional operator which 

might best describe the interaction of several pieces of evidence to  a 

hypothesis. 

In many cases, the weights of association are found by asking an expert for an 





opinion as to their values. I t  seems, however, that such a method assumes that 

the expert explicitly knows the relationship of the model variables to the con- 

clusion and could, if pressed, develop an empirical relationship. In other  cases, 

the weights are obtained statistically by observing a number of events where 

the piece of evidence held true and determining the fraction for which the con- 

clusion also held true. This is a good approach, but  one  which requires a good 

deal of historical data. 

Chu,  e t  a1.45 for example, estimated the relative association of different coun- 

tries to the fuzzy se t  of important trading partners with Taiwan by looking a t  

export and import volumes between Taiwan and the other  countries and 

Taiwan's total trade. 

While one may determine weights of association by statistical o r  interview tech- 

niques, the way in which pieces of evidence are combined is also important. 

While a single piece of evidence pointing toward a bulking problem may not  be 

significant, the existence of several pieces of evidence might increase the likeli- 

hood of a problem developing. Some form of fuzzy reasoning might be 

effective in modeling such an interaction. 

While boolean algebra allows for rule interaction by using AND and OR nodes 

into which the rules branch, it  cannot deal with rules which are only sometimes 

true. Fuzzy logic is a more general form of boolean logic which allows the 

truth value at a node to vary depending on its level of belief. The overall level 

of belief of a rule branch is found as: 

T. 1, 1 . = W;AiVj (3.1) 

T. . = truth value of rule branch i f o r  decision j 
273 

WZ= weight of association of rule i to higher node 

A .  . = truth of rule statement i for decision j 
$ 7 3  

A fuzzy propositional operator considers the truth values of the rules branching 

into it and passes a representative truth value to the next higher node. The OR 
operator passes the maximum and the AND operator passes the minimum of 



its branch values. The WAND operator, proposed by ~ a r a n d i ~ ~ ,  passes the 

average of the branch values. 

If the OR operator is used, the most heavily weighted piece of evidence which 

is satisfied would control the truth value of the conclusion no matter what the 

value of the other weighted branch values. The WAND operator on  the other 

hand passes a value which is influenced by the satisfaction of a piece of  evi- 

dence which might be inconsequential in the face of other evidence. I t  might 

make sense to use a fuzzy operator termed XOR which would pass the average 

of the X greatest branch values. 

~ l o c k l e ~ ~ ~  used a formulation similar to WAND in considering the imminence 

of failure of a structure. H e  considered the sum of the weighted truth values 

of 24 parameter statements for each of 23 past structural failures. The struc- 

ture which had the greatest sum was considered to be the most inevitable 

failure. 

3.3 MODEL OF JUDGEMENT 

Rather than depend on an expert to know explicitly (and be able to communi- 

cate) the relevant pieces of evidence, their weights of association to the conclu- 

sion, and the logical operation used to combine different pieces of evidence, a 

different calibration technique was used in this work, as outlined below. 

The problem, presented in Figure 5 ,  was simplified as an attempt a t  creating an 

accurate portrayal of the weighing of evidence which the expert might go 

through to make a judgement regarding the potential bulking problems in a 

plant. A concentrated effort was made a t  modeling the sub-problem of deter- 

mining if a given plant design, under normal domestic wastewater influent con- 

ditions, was likely to experience sludge bulking problems. Fifteen plant 

designs, different with respect to process parameters, yet all subject to the 

influent conditions shown in Table 7, were given to Dr .  J.T. Pfeffer, Professor 



of Sanitary Engineering at the University of Illinois (referred to as the expert o r  

the experienced engineer). Those designs are shown in Table 8. 

Table 7 
Influent Characteristics 

Flow 1500 m3/hr 
Soluble BOD 100 mg/L 
Active Biomass 
Biodegradable Volatile Solids 

5 mg/L 
100 mg/L 

Inert Volatile Solids 45 mg/L 
Fixed Solids . 50 mnjL 

The designs were chosen so that, while they are still within the bounds placed 

on  the design variables in Tang's model (e.g. sludge age of less than 6 days), 

they represented a wide range of possible designs. The sludge loading varied 

from 0.22 to 0.72 kg BOD5/kg MLVSS-day, the volumetric loading varied from 

0.29 to 0.96 kg ~ ~ ~ ~ / m ~ * d a ~ ,  the D.O. concentration varied from 1.5 to 6.0 

mg/L,  the ORPST varied from 1.5 to 6.0 m/hr,  and the MLFST varied from 
2 2.01 to 5.53 kg/m . hr. 

The expert was asked to assign a likelihood that the hypothesis is true for each 

plant design. The likelihood is a value from 0 to 1,  with 0 meaning that the 

plant would definitely not  experience sludge bulking problems, and with 1 

m e d i n g  that it definitely would. The expert was not  informed of the rules 

used to model his judgement so that his decisions would not  be influenced. 

3.3.2 Model Rules & Rule Structure 

The evidence, in the form of rules which were thought to be important in judg- 

ing a design, involved the values of the following parameters: 

1. MLFST-- Since sludge bulking is a settleability problem, plants with a high 

mass loading on the final settling tank (MLFST) might be considered likely to 

experience bulking problems. The rule that 

IF "MLFST > 97.7 kg/m2e day" THEN "there might be bulking problems " 
comes from the Illinois Recommended Standards for Sewage worlrs.l2 



'l'ahle 8 
Designs for Survey #1 

Design Parameter 1 2 3 4 5 

PST overflow rate (rn/hr) 6.0 3 .O 6 .O 6.0 6 .O 

(gpd/ft2) (3534) (1767) (3534) (3534) (3534) 
Sludge Age (days) 6.0 4 .O 2.2 2.9 4.55 
Recycle Rate (%) 10.0 30.7 12.5 11 .O 10.0 
Vol. A.T. (rn3 2 13,263 5,000 5,690 8,095 13,371 
Area, FST ( m  ) 1572 1500 684 666 6 53 
MLVSS (mg/l) 1329 2145 1088 1021 9 68 
MLSS (mg/l) 1917 29 67 1519 1420 1344 
DO Conc. (mg/l) 2.0 2 .O 6.0 3.0 1.5 
Sludge Loadinga 0.23 0.45 0.66 0.49 0.31 
Vol. ~ o a d i n ~ ~  0.31 0.96 0.72 0.50 0.30 

(19.3) (59.9) (44.9) (31.2) (18.7) 
FST Solids LoadingC 2.01 3.88 3.75 3.55 3.40 

(9.8) (19.1) (18.4) ( 17.4) (16.7) 

D esion Parameter 6 7 8 9 10 

PST Overflow rate (m/hr)  6.0 6 .O 6.0 3.0 3.0 

( gpd!ft2) (3534) (3534) (3534) (1767) (1767) 
Sludge Age (days) 4.2 2.2 2.2 2.2 3.75 
Recycle Ratio (%) 37.4 10.0 20.0 9.5 10.3 
Vol. A.T. (m3) 6267 4714 7713 6000 9 200 
Area, FST (m2)  993 697 698 690 850 
MLVSS (mg/l) 1917 1318 808 967 1093 
MLSS (mg/l) 2663 1831 1122 1341 1511 
DO Conc. (mg/l) 1.5 2.5 1.5 1.5 1.5 
Sludge Loadinga 0.42 0.64 0.69 0.72 0.40 
Vol. ~ o a d i n ~ ~  0.8 0.84 0.56 0.67 0.44 

(49.9) (52.4) (34.9) (41.8) (27.5) 
FST Solids LoadingC 5.53 4.33 2.89 3.15 2.92 

(27.2) (21.3) (14.2) (15.5) (14.4) 

Design Parameter I1 12 13 14 15 
PST Overflow rate (m/hr)  1.5 1.5 4.5 3.0 

( gpdift2) (884) (884) (2650) (1767) 
Sludge Age (days) 4.6 4.2 4.2 4.6 
Recycle IZatio (%) 7.1 22.8 34.7 13.8 
Vol. A T  (m3)  13371 6267 6267 10000 
Area, FST (m2)  653 993 993 800 
MLVSS (mg/l) 837 1658 1869 1214 
MLSS (mg/l) 1136 2250 2605 1679 
D O  Conc. (mg/l) 6.0 1.5 1.5 1.5 
Sludge Loadinga 0.35 0.43 0.42 0.22 
Vol. ~ o a d i n ~ ~  0.29 0.72 0.78 0.42 

(18.1) (44.9) (48.7) (26.2) 
FST Solids LoadingC 2.74 4.16 5.3 3.55 

( 13.5) (20.4) (26.0) (17.5) 

Notes: 
a Aeration Tank Sludge Loding,  kg B0D5/kg MLVSS*day 
b ~ e r a t i o n  Tank Volumetric Loading, kg ~ ~ ~ ~ / m ~ - d a ~ ,  (Ib BOD5/1000 ft3+day) 
c kg solids/m2* hr, (Ib solids/ft2*day) 



2. Sludge Loading -- Plants with a high sludge loading (F /M ratio) have been 

associated with bulking problems. Two variations of the sludge loading param- 

eter, SL1 ( k g  BOD5/kg MLSSsd) and SL2 ( k g  BOD5/kg MLVSS-d) were used 

in four rules. SL1>0.30 was proposed by  ensi ink^, SL1>0.35 was proposed 

by  iff^, and SL2>0.30 was proposed by stewarts as dividing points for bulk- 

ing and non-bulking conditions in the activated sludge process. SL1>0.5 was 

used to add further delineation for highly loaded processes. The three SL1 

rules might have a relationship distinct from that of the other rules since these 

rules depend on  a common parameter (e.g. SL1>0.5 cannot be satisfied while 

SL1>0.3 is not) .  

3. Volumetric Loading -- wagner16 found high SVI levels in plants with inter- 

mediate volumetric loadings and good, stable values for the SVI in plants with 
3 high o r  low volumetric loadings. The rule that 0.3<VolLoad ( k g  BOD5/m v 

day) <0.8 was used to reflect possible bulking found a t  intermediate loadings. 

The Illinois Recommended Standards for Sewage works12 requires a 

volumetric loading of less than 0.56 kg ~ ~ ~ ~ / m ~ - d a ~ .  This rule is imposed, in 

part, to reduce the risk of bulking problems. While these two rules are not  

mutually exclusive, they are conflicting as to whether a bulking problem will 

exist at volumetric loadings above 0.8 kg/m3- day. 

4. ORPST -- wagner16 found that plants with small o r  no primary clarifiers 

had a lower incidence of bulking problems. A n  overflow rate of 3.0 m/hr  was 

chosen as the dividing line between large clarifiers which may be associated 

with bulking problems and small clarifiers which may not. 

5. Dissolved Oxygen-- Palm, e t  al.14 found a relationship between the BOD 

removal rate and the minimum dissolved oxygen level needed in the aeration 

tank so as not  to experience bulking. Their relationship was linearized into the 

following rule: 

IF  "D.O. < 6.88 BOD REM - .097" 

TI-IEN "the plant will likely experience bulking problems" 

Eleven rule structures were investigated to find how well each could be fit to 



the expert's judgement as to each plant's likelihood of experience bulking prob- 

lems. For each rule structure, the weights were varied to find combinations 

which would minimize the variance of the deviation of the model's prediction 

from that of the expert. Since minimizing variance insures a minimal spread of 

deviations and not minimal deviations, the model's prediction is adjusted by 

the mean deviation from the expert's judgement in order to obtain the best fit. 

Figure 6 presents the general rule structure which was used for five of the 

cases. The blank box is the propositional operator node which contained, for 

the different cases, OR, 20R,  30R, 4 0 R ,  o r  WAND (9OR). Additionally, six 

hybrid logic structures were tried. Hybrid 1 is shown in Figure 7 and passes an 

averaged truth value of the four sludge loading rules to be combined with the 

remaining rules into an OR node. Hybrid 2,  shown in Figure 8, is similar, but 

combines only the three SL1 rules into the WAND node. Hybrid 3, shown in 

Figure 9, considers the greatest violation of the four sludge loading rules, and 

then averages that value with the branch values of the other rules. The Hybrid 

4 through Hybrid 6 formulations are shown in Figure 10 and they consider the 

greatest violation of the three SLI rules and compare that value with the other 

rules at the next higher operator. That next operator is an OR node for Hybrid 

4, a 2 0 R  node for Hybrid 5, and a 30R node for Hybrid 6. 

The non-linear optimization code G R G ~ ~  was used on a Harris 800 computer to 

find the bestrfit weights and approximately 1.5 CPU seconds were required for 

each case. Table 9 presents the weights which gave the best fit for each logic 

structure invest,igated. Additionally, alternative combinations of the weights 

were found in order to establish the sensitivity of the model to the weights 

placed on the different rules. ~ r i 1 1 ~ ~  proposed the use of an optimization model 

to explore alternative solutions to a problem by maximizing an objective func- 

tion which is a measure of difference from a previously optimal solution. To 

find the alternative weight combinations, the square of the deviation of the 

weights from t,he set of weights found to give the minimal variance was maxim- 

ized subject to an allowable 10% increase on the variance. Such alternative 

solutions are labeled in Table 9 by "mga". 



D.O.  = Dissolv~rj  O\yp,rn Conc.. Aeration Tank (mg/l )  ORPST = Overflow Rab.  primary Settling Tank (m/hr)  

LII,FST .- hlass I.oa,ling. Find S~t l l ing  Tank (kg/m2 ~day) S1.I = Sludgr Loading Aeration Tank kg UOD5/kg hlLSS daj)  

SI.? = Slud81 Load~ng  Aerat~on Tank (kg  DOD5/kg hlLVSS day) 

VolLoad = Volumetrlc Sludge Load~ng (kg  D O D ~ / ~ '  day) 

Figure 6--General Rule structure 

L 
ILL. 7sn,o 7 

0 3 C  VOL W m c O 0  

Figure 7--Hybrid 1 Rule Structure 







Table 9 

V ar 
Mean 

MLFST>97.7 
D 0 < 6.88*BODR- .097 

SL1>0.3 
SL1>0.35 
SL1>0.5 
SL2>0.3 

0.8>VL >0.3 
VL >0.56 

ORPST<3.0 
diff 

V ar 
Mean 

MLFST>97.7 
D 0 < 6.88*BODR- .097 

SL1>0.3 
SL1>0.35 
SL1>0.5 
SL2>0.3 

0.8>VL>0.3 
VL >0.56 

ORPST < 3.0 
diff 

V ar 
Mean 

MLFST>97.7 
D 0 < 6.88*BODR- .097 

SL1>0.3 
SL1>0.35 
SL1>0.5 
SL2>0.3 

0.8>VL>0.3 
V1,>0.56 

ORPST< 3.0 

Association for Best Fit 
2 0 R  2 0 R  mga  

.00633 .00698 
- .075 -.010 
3 1 9  .748 
0.0 0.0 
3 4 7  .748 
1 .O 1 .O 
1.0 .933 

.424 .299 

.474 .378 

.819 .748 
0.0 0.0 

.049 
WAND WAND mga  

.0333 .0366 
.I82 .I62 
1 .O 1 .O 
1 .O .718 
1 .I1 1 .O 
1 .O 1 .O 
1 .I1 0.0 
1 .O 1 .O 

.320 1 .O 
1 .O 1 .O 
0.0 0.0 

1.542 

Hyb 5 Hyb 6 

.0087 .0093 
- . lo9  -.I14 
.706 .7 16 
.034 0.0 
.683 .716 
1 .O 1.0 
1 .O 1 .O 
.889 .445 
.706 .652 
1 .O 1 .O 
0.0 0.0 

Weights of 
OR OR mga  

.00936 .01032 
.0066 .I44 
.517 .517 
.218 .075 
,593 .418 
.877 .730 
.943 .779 
.093 0.0 
.043 0.0 
.731 .588 
.093 0.0 

.I39 

40R 40R mga 

.00992 .0109 
- .I16 -.I16 
.671 .853 
,671 .757 
1 .O 1 .O 
1 .O 1 .O 
1 .O 1 .O 

.922 .757 

.648 .670 
1 .O 1 .O 
0.0 .395 

.224 

H y b  3 H y b  4 

.0545 .0325 
.I61 . lo2 
.656 .588 
.663 .704 
1 .O .743 

,861 1 .O 
.267 1 .O 
1 .O 1 .O 

.578 .468 
1 .O 1 .O 
0.0 0 .O 

3 0 R  3 0 R  nlga 

.00766 .00843 
- .093 - . lo2 
.747 .734 
.I26 .348 
.838 .902 
1 .O 1 .O 
1 .O 1 .O 

.747 .734 

.609 .461 
1 .O 1 .O 
0.0 0.0 

.076 

Hyb  1 H y b  2 

.0132 .0716 
.056 - .35 
.614 .614 
.I19 .I27 
1 .O 1 .O 
1 .O 3 6 1  

.575 .267 
1 .O 1 .O 
0.0 .483 
.681 .900 
,159 .300 



While a non-linear optimization code was used to find the "best" weight 

values, they may no t  be truly optimal points. In many cases, GRG terminates 

its search at local optima and it may take many different starting points to find 

what might be considered a close approximation to the global optimum. In 

each case presented in Table 9, three to five different starting points were tried, 

and the termination points are considered good. 

From an analysis of the data presented in Table 9 it seems that there may be 

many logical structures which are acceptable. The 20R and 30R formulations 

give the minimum variances (0.00633 and 0.00766 respectively) and thus a 

standard deviation (square root of the variance) of the deviation from the 

expert's rating of f 0.08 (8%). Six ou t  of the 11 formulations could be fit to a 

standard deviation of less than f 0.10 (10%) .  The WAND operator gives a 

very poor fit. This result could point to the existence of "model noise" which 

must  be filtered ou t  by considering only major associations to the conclusion. 

A t  the same time, the "mga" solutions show that alternate weight combina- 

tions may be found for a given logical formulation, with only a minor impact 

on tlie model prediction. While, for example, most  formulations give the rule 

concerning the ORPST a weight of 0.0 (meaning that the overflow rate of the 

primary clarifier being greater than 3.0 m/hr  was no t  associated with the con- 

clusion), it is possible to give the rule some weight without changing the 

model's performance significantly. 

While the weights could be interpreted as the expert's opinion as to the truth 

values of tlie rules with respect to the conclusion that the plant would experi- 

ence bulking problems, those weights are dependent on the logic structure and 

the set of rules which are being used. This is clearly shown by the different 

weighting values which are found for the different logic structures. This result 

points to the possible danger of assigning weights of association for rules 

without considering the interaction in the rule-base. 

Using the models to evaluate the likelihood that a plant will experience bulking 

problems is straightforward. First, one  of the rule structures presented in 



Figures 6-10 is chosen. Next, the rule-branch truth values are obtained using 

equation (3.1); the truth values of the pieces of evidence evaluated based o n  

the plant design parameters are multiplied by the weights presented in Table 9. 

Next, the appropriate propositional operation ( e.g. averaging the two greatest 

rule-branch values) determines the overall likelihood. Finally, the result is 

adjusted by the mean deviation of the model's evaluation from the expert's 

evaluation of the design in the first survey (also given in Table 9) .  Such a pro- 

cedure was implemented on an NEC PC-8801 personal computer in the BASIC 

language and was used to evaluate each of the plant designs in the survey. The 

results of those evaluations, along with the expert's evaluations, are presented 

in Table 10 and discussed in the following section. 

3.4 CHECK OF CONSISTENCY 

To check both the models' and the expert's consistency in judging plant 

designs, a second se t  of fifteen plant designs (shown in Table l l ) ,  satisfying the 

same influent conditions as the first set, were given to the expert. These plant 

designs, unlike the first set, had the common characteristic of being costr 

optimal designs for different combinations of rule satisfaction which correspond 

to the range of possible likelihoods. Additionally, these plants all had dissolved 

oxygen levels of 1.5 mg/l. The expert's and each model's evaluation of each of 

the designs in the second set is presented in Table 12. 

The 30R and 20R formulations accurately predict the expert's judgement for 

both the first and second set  of designs when one considers the variance of the 

deviation from the expert's judgement. In both cases, however, they produce a 

judgement regarding the second se t  of designs that is on the average 0.1 units 

(10%) high. This deviation does not  detract from the results since the rating 

scale is somewhat arbitrary and it is plausible that the expert's rating scale was 

shifted by 0.1 units from the first survey. What is more important, however, is 

the variance of the deviation. With a variance of 0.00358, the 30R model has 

predicted the expert's rating with a fairly consistent error and so the ordinal 

rankings were predicted quite well. 



Table 10 
Likelihood of Bulking for First Set of Designs 

Design Pfeffer 1 OR 20R 3 0 R  40R WAND Hyb 5 Hyb 6 

1 .O 5 .050 .162 .110 .046 .218 .126 .212 
11 .10 . lo0 .137 .156 .114 .293 .187 . lo8 
5 .10 .225 .137 .198 .282 -404 .198 . lo8 
15 .15 .225 .162 .152 .214 .329 .137 .212 
14 .20 .225 .162 1 5 2  .214 .329 .137 .212 
10 .45 .225 .374 .40 1 .444 .440 .434 .434 
4 .60 .600 .586 .G38 .526 .440 .650 .570 
12 .60 .738 .758 .769 .782 .773 .756 .744 
13 .65 .738 .744 .738 .700 .662 .756 .744 
2 .80 ,738 .758 .769 .782 .626 .748 .744 
3 .85 .884 .849 3 5 3  3 6 4  .662 .854 .886 
6 .90 .738 .744 .738 .700 .626 .756 .744 
8 .90 3 8 4  .849 .769 .782 .662 .756 .712 
7 .90 384  .849 3 5 3  .864 .849 .854 ,886 
9 .9 5 .950 .925 .907 .884 .884 .854 .886 

Mean dev - .0003 .0003 -.0002 .0001 .0002 0.0 0 .O 
Mean Jdevl .064 .060 .068 .070 ,155 .077 .070 

Var. .00936 .00633 .00766 .00992 .0333 .00865 ,00925 



Table 11 
Designs for Survey #2 

Design # 1 2 3 4 5 

ORPST 3 .O 6.0 6.0 3 .O 3.0 
Sludge Age (days) 6 .O 2.942 4.729 5.663 2.225 
Recycle (%) 10.0 12.23 10.0 10.58 13.21 
Vol A T  (rn3) 13,510 7,309 13,369 13,421 4838 
Area FST (rn2) 168 1 690 658 855 703 
MLVSS (mg/ l )  1204 1151 1005 1111 1216 
MLSS (mg/ l )  1685 1600 1399 1530 1675 
BOD rem 0.232 0.419 0.273 0.250 0.567 
SL 1 0.178 0.35 0.214 0.196 0.509 
SL 2 0.249 0.486 0.299 0.270 0.702 
Vol Load 0.299 0.56 0.30 0.30 0.854 
ML FST 39.9 1 94.28 84.71 71.53 97.70 

Design # 6 7 8 9 10 

ORPST 3 .O 6.0 3.0 6.0 6 .O 
Sludge Age (days) 2.248 5.895 2.226 2.195 3.456 
Recycle ( f l  12.32 13.136 13.21 13.13 13.12 
Vol A T  (rn3) 5120 13,775 4833 5159 8,209 
Area FST (rn2) 690 703 703 703 703 
MLVSS (rng/l) 1162 1200 1217 1201 1205 
MLSS (rng/l) 1600 1675 1675 1675 1675 
BOD rern 0.558 0.232 0.566 0.535 0.368 
SL 1 0.50 0.179 0.510 0.477 0.300 
SL 2 0.689 0.250 0.702 0.666 0.417 
Vol Load 0.80 0.299 0.854 0.800 0.503 
ML FST 94.28 97.70 97.70 97.70 97.70 

llcsign # 11 12 13 14 15 

ORPST 3 .O 3.0 6.0 3.0 6.0 
Sludge Age (days) 3.737 3.176 2.193 5.188 4.847 
Recycle (%) 13.20 12.31 13.13 13.21 13.13 
Vol A T  (rn3) 8,212 7,314 5,152 11,298 11,427 
Area FST ( m 2 )  703 690 703 703 703 
MLVSS (mg/ l )  122 1 1166 1201 1218 1203 
MLSS (rng/l) 1675 1600 1675 1675 1675 
BOD rern 0.367 0.419 0.536 0.277 0.275 
SL 1 0.30 0.35 0.478 0.218 0.215 
SL 2 0.412 0.480 0.667 0.30 0.30 
Vol Load 0.503 0.56 0.801 0.365 0.361 
MI, FST 97.70 94.28 97.7 97.70 97.70 

Notea: 
ORPST : Overflow Rate,  Prirna,ry Settling Tank, rn/hr 
BOD rern : BOD5 removal in Aeration Tank, kg BOD5/kg MLVSSsday 
SL 1 : Aeration Tank Sludge Loading, kg BOD5/kg MLSSeday 
SL 2 : Aeration Tank Sludge Loading, kg BOD5/kg MLVSSaday 
Vol Load : Aeration Tank Volumetric Loading, kg BOD /rn3*day 
ML FST : Mass Loading, Final Settling Tank, kg ~ ~ ~ ~ f r n ~ * d a ~  
All designs have an aeration tank D.O. conc = 1.5 mg/l 
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The prediction of the different models for the designs of the first survey (Table 

lo ) ,  and the same information for the designs of the second survey (Table 12) 

show the abilities of the models to rank the designs as compared with the 

expert's rankings. Since the rating scale is arbitrary, the proper ranking rather 

than an actual rating of the likelihood of bulking might be the proper objective 

of this work. Both Table 10 and Table 12 show several cases where the models 

do not indicate differences between designs which the expert felt to be 

different. This is caused by the limited number of rules that were used in the 

rule base. For example, designs 14 and 15 of the first survey have different 

volumetric loadings (0.42 and 0.36 kg/rn3v day respectively), but are the same 

with respect to the volumetric loading rules used. The problem could probably 

be alleviated by the use of more rules, but the ranking error is a t  most two 

positions and does not appear serious. 



EXPLORATION OF THE MODEL RESULTS 

Tang's wastewater treatment plant design optimization model does not  include 

a means of determining the potential for activated sludge bulking problems. If 

the judgement model developed in the previous section is incorporated into the 

optimization model, a tradeoff between optimal cost and the likelihood of 

experiencing bulking problems can be obtained for a given set  of design condi- 

tions. 

A rule-based system utilizing fuzzy logic can deal with not  only the fuzzy rules 

relating a piece of evidence to a conclusion, but  also with the fuzziness of 

whether a piece of evidence has or has not  been satisfied. For  example, the 

engineer might design for a sludge loading of 0.3 kg BOD5/MLSS*day. Whether 

that loading is actually maintained depends on the variation in the influent 

BOD5, the MLSS concentration maintained in the aeration tank, and the 

operator's response to changing plant conditions. For  this problem, however, 

the fuzziness of whether the evidence regarding the design of the plant was no t  

considered. 

If only absolutely yes or  no truths of the rules are given, the judgement model 

necessarily yields discrete levels of the likelihood of bulking. Each likelihood 

value can be generated as one of many possible combinations of rule satisfac- 

tion. For example, for the 20R logic structure there are 18 possible values of 

the likelihood of bulking. Presented in Table 13  are four combinations of rule 

satisfaction which will give a likelihood of 0.3345: 

Since Tang's model has 9 degrees of freedom (there are 64 variables and 55 

equality constraints), it is possible to think of the cost function as a surface in a 

Table 13 
Rule Combinat.ions 

Rule Truth Value 
MLFST>97.7 
D.O.<6.88*BOD.REM-.097 
SL1>0.3 
SL 1 > 0.35 
SL1>0.5 
SL2>0.3 
0.3<VoILoad<0.8 
VolLoad>O.56 
ORPST<3.O 

0 0 

0 0 1  
0 1 0  

1 1 0 0  
0 

0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  

0 

1 
1 



9-dimensional space. The 9 rules related to bulking would be multi- 

dimensional borders of that space which define regions of equal likelihood of  

bulking. In a 9 rule structure, there are 512 possible rule combinations. Many 

of those combinations, however, may be infeasible and many of the regions 

delineated by the rules may have the same likelihood of bulking. In the case 

shown in Table 13, the four regions yield the same likelihood. 

During the optimization process, the GRG algorithm determines the 9- 

dimensional slope of the surface and searches for the low point in the con- 

strained region. Determining the cost-optimal design for a given likelihood o f  

bulking involves searching the feasible regions which have that likelihood, and 

finding the region that has the lowest cost. I t  typically takes from 5 to 10 CPU 

minutes, depending on the feasibility and quality of the initial starting point, to 

solve the constrained design optimization program on the Harris 800 computer. 

Table 14 gives the optimal design for the 11 feasible values for the 20R formu- 

lation, and Table 15  gives the optimal design for the 15  feasible values for the 

30R formulation. In both cases the costroptimal solution without bulking con- 

straints has a high likelihood of bulking (about  0.85 in each case). Optimal 

designs with a high likelihood of bulking differ from those with a low likelihood 

of bulking mainly in the size of the aeration tank. Plant designs with a low 

likelihood of bulking are more expensive because they have a larger aeration 

tank. 

Figure 11 shows a plot of the likelihood of bulking and the optimal cost for the 

two formulations. Note that while the general trend is that there is an increase 

in cost associated with decreasing the likelihood of bulking, this does not  hold 

when comparing discrete values of the likelihood. Looking a t  the 30R formu- 

lation, it is not  desirable to design for a likelihood of bulking of 0.2823 (point  

A in Figure 11) since one can decrease both the likelihood and the cost by 

designing for a plant with a likelihood of 0.152 (point  B in Figure 11). The 

stepwise decreasing lines are representations of the non-inferior se t  for both 

formulations. 



Ta.ble 14 
20R Formulation--Cost Optimal Designs 

Likelihood -.075 .I37 .I62 .334 5 .374 
c o s t  ($/yr)  547,136 548,662 542,696 555,646 522,494 

Efl .BOD ( mg/l) 18.68 18.65 18.46 16.91 22.04 
EA.TSS (mg/ l )  30.0 30.0 30.0 30.0 30.0 
ORPST (m/hr )  6.0 6.0 6.0 6.0 6.0 

Sludge Age (days) 4.729 4.706 4.847 5.881 3.456 
Recycle (%) 10.0 10.0 13.13 13.14 13.12 
VAT ( m 3 )  13,369 13,390 11,427 13,750 8209 
AFST ( m 2 )  6 58 6 58 703 703 703 

MLVSS (mg/ l )  1005 1000 1203 1200 1205 
MLSS (mg/ l )  1399 1400 1675 1875 1675 

BOD Rem.  0.273 .274 .275 .233 .368 
SL 1 .214 .214 .215 .I79 ,300 
SL 2 .299 .30 .30 .250 .417 

Vol Load .300 .300 .361 .300 .503 
MLFST 84.71 84.78 97.7 97.7 97.7 

Likelihood .57 15 .5855 ,744 .758 .8485 .925 
cost ,  ($ /yr)  522,360 514,210 522,474 

EA. BOD5 (mg/ l )  21.90 24.32 21.77 
Efl. TSS (mg/ l )  30.0 30.0 30.0 
ORPST ( m / h r )  6.0 6.0 6 .O 

Sludge Age (days) 3.492 2.942 3.529 
14.32 12.23 15.50 
7837 7309 7523 
7 20 690 737 

MLVSS (mg/ l )  1276 1151 1343 
MLSS (mg/ l )  1774 1600 1867 

BOD R e m .  .369 .418 .369 
SL 1 .300 .350 .300 
SL 2 .417 .486 .4 17 

Vol Load ,532 .56 .56 
hlLFST 102.01 94.28 105.95 

Notes: 
ORPST: Overflow R,a.te, Primary Settling Tank, m/hr  
BOD Rem.:  BOD5 Removal rate in Aeration Tank, kg BOD5/kg MLVSS.day 
SLl :  Sludge Loading, Aeration Tank, kg BOD5/kg hlLSS~day 
SL2: Sludge Loa.ding, Aeration Tank, kg BOD5/kg hlI,VSS*day 
Vol Load: Arration Tank Volumet.ric Loading, kg l 3 0 ~ ~ / m ~ * d a . ~  
MLFST: Mass Loading Final Settling Tank, kg M L S S / ~ ~ . ~ ~ ~  



Table 15 
30R Formulation--CosbOptimal D esigns 

Likelihood - .093 -.051 . l l  .I52 .I56 
Cost ($/yr) 555,807 547,136 564,580 542,696 555,794 

EB. BOD5 (mg/l) 16.89 18.68 16.89 18.46 16.88 
EB. TSS (mg/l) 30.0 30.0 30.0 30.0 30.0 
ORPST ( rn /hr) 6 .O 6.0 6.0 6 .O 6.0 

Sludge Age (days) 5.895 4.729 5.865 4.847 5.898 
Recycle ( %  ?! 13.14 10.0 13.13 13.13 13.19 

Vol. A T  ( m  13,775 13,369 13,781 11,427 13,756 
Area FST ( m  ) 703 658 703 703 703 
MLVSS (mg/l) 1200 1005 1200 1203 1203 
MLSS (rng/l) 1675 1399 1676 1675 1680 
BOD Rem. .232 .273 .232 .275 .232 

SL 1 .I79 .214 .I79 .215 .I79 
SL 2 .250 .299 .250 .300 .250 

Vol Load .299 .300 .300 .361 .300 
MLFST 97.70 84.71 97.70 97.70 97.91 

Likelihood .I98 .2823 .5313 .608 .6383 
Cost ($/yr) 548,662 588,782 530,722 522,360 514,195 

EB. BOD (mg/l) 18.65 14.31 20.60 2 1.90 24.32 
EB. TSS (mg/l) 30.0 22.34 30.0 30.0 30 .O 
ORPST (m/hr)  6 .O 6 .O 6.0 6 .O 6.0 

Sludge Age (days) 4.706 5.939 3.899 3.492 2.941 
Recycle ( %  d 10.0 36.97 27.49 14.32 12.23 
Vol A T  ( m  ) 13,390 6246 5813 7837 7310 

Area FST (m2)  658 1894 919 720 690 
MLVSS (mg/l) 1000 2867 1918 1276 1151 
MLSS ( rng/l) 1400 3728 2667 1774 1600 

BOD Rem. .274 .279 .374 .369 .419 
SL 1 .214 .215 .300 .300 .350 
SL 2 .300 .300 .417 .417 .487 

Vol Load .300 .800 .800 .532 .560 
MLFST 84.78 97.70 134.04 102.01 94.28 

Likelihood .6843 .7383 .7687 .853 .907 
c o s t  ( $ 1 ~ )  516,562 522,474 507,795 498,227 499,535 

EB. BOD5 (mg/l) 23.51 2 1.77 26.93 30.0 30 .O 
EB. TSS (rng/l) 30.0 30.0 30 .O 30 .O 30.0 
ORPST (m/hr )  6 .O 6 .O 6.0 6.0 5.797 

Sludge Age (days) 3.103 3.529 2.531 2.193 2.194 

(7 13.12 15.50 10.0 13.64 17.99 
Vol. A T  ( m  7367 7523 7165 5027 4 196 

Area FST ( m  ) 703 737 658 710 774 
MLVSS (mg/l) 1206 1343 1006 1231 1471 
MLSS (mg/l) 1675 1867 1400 1717 2052 

BOD Rem. .403 .369 .465 .538 .560 
SL 1 .334 .300 .400 .480 .500 
SL 2 .464 .417 .557 .670 ,697 

Vol Load .560 .560 .560 .825 1.026 
MLFST 97.7 105.95 84.76 99.56 113.38 





It  is important to consider what such a tradeoff represents. The optimization 

model considers thickening in the final clarifier as a function of the SVI (which 

is held constant at 100) and considers clarification to be independent of the 

sludge settleability. The design shown for a low likelihood of bulking was 

determined with the same SVI as was used for the design which exhibits a high 

likelihood of bulking. Since the SVI is a measure of sludge settleability, one  

would expect a lower SVI for plants with a low likelihood of bulking and thus 

the cost of such plants should be lower than what the model predicts (better 

settling and less recycle pumping needed). Conversely, plants with a high likel- 

ihood of bulking can be expected to have a higher cost than what t.he model 

predicts. 

However, the settleability of the activated sludge a t  any plant does not remain 

constant. Rather it varies with changes in the influent and plant conditions. 

The optimization model, being a steady-state model, cannot capture such varia- 

tion. Instead, it examines what might be considered as average operating con- 

ditions a t  the plant. The plant is optimally designed for such conditions and the 

likelihood of bulking is an indication of the amount of time that the plant is 

operating a t  conditions significantly different than what is assumed. 

Exploring the range of designs which are assigned the same likelihood of bulk- 

ing is useful in two ways. First, it is interesting to consider the range of alter- 

natives available to the designer restricted to one level of the likelihood of  

bulking. Second, it may lend insights into how the model can be refined. 

Assuming an acceptable likelihood of about 0.15, one can see from Tables 14 

and 15 that both the 20R and 30R formulations give the same design. I t  

should be noted that at that likelihood, a discrepency between the expert's 

judgement and the model exists. Table 11 shows that the expert saw a 

difference in designs 14 and 15 to which the models assigned the same likeli- 

hood. If the model is to be fine tuned so that it may determine the same 

differences as the expert, designs which are sufficiently different, but  still con- 

strained to the same likelihood of bulking, should be examined. 

Table 16 shows alternative designs subject to an allowable increase in cost of 



Table 16 
Alternative Designs for Likelihood = .15 

Optimal Al t  1. Al t  2. Al t  3. Al t  4. 

c o s t  ($/yr) 542,696 548,120 548,120 548,120 548,120 
Eff. BOD5 (mg/l)  18.46 18.46 17.07 18.30 18.71 
Eff. TSS (mg/l)  30.0 30.0 26.62 30.0 30.0 
ORPST (m/hr )  6 .O 6.0 6.0 3.74 6.0 

Sludge Age (days) 4.847 4.839 4.992 5.068 4.699 
Recycle (%) 13.13 10.30 16.33 13.18 10.00 
Vol A T  (m3)  11,427 13,415 9856 11,344 13,313 

Area FST ( m 2 )  703 662 863 703 658 
MLVSS (mg/l)  1203 1024 1435 1212 1005 
MLSS (mg/l)  1675 1427 2000 1675 1399 

BOD Rem.  .275 .268 .276 .276 .274 
SL 1 .215 .210 .215 .217 .215 
SL 2 .30 .293 .30 .30 .30 

Vol Load. .361 .300 .430 .364 .301 
MLFST 97.7 86.1 97.7 97.7 84.7 

Notea: 
ORPST: Overflow Rate,  Primary Settling Tank, m/hr 
BOD Rem: BOD5 Removal Rate, Aeration Tank, kg BOD5/kg MLVSSeday 
SL1: Sludge Loading, Aeration Tank, kg BOD,/kg MLSS*day 
SL2: Sludge Loading, Aeration Tank, kg BOD,/kg MLVSSgday 
Vol Load: Aeration Tank Volumetric Loading, kg ~ ~ ~ ~ / m ~ * d a ~  
MLFST: Mass Loading on the Final Settling Tank, kg M L S S / ~ ~ - ~ ~ ~  



1% above the optimal value. Alternatives 1 and 2 represent design approaches 

different than a least cost approach. Alternative 1 was generated by finding the 

design with the maximum aeration tank volume, while alternative 2 was found 

by maximizing the size of the final clarifier. While both the flow rate and the 

solids concentration of the flow from the aeration tank to the f ind clarifier have 

increased, the larger clarifier size gives a better clarified effluent which exceeds 

the suspended solids standard. Such alternatives can be examined readily by a 

design engineer using models such as those used here. 



CONCLUSION 

One purpose of integrating a model of judgement about a fuzzy problem into 

an exact mathematical optimization model is to learn more about the problem. 

Considering the tradeoff analysis presented for the example problem, a plant 

which will have a low likelihood of experiencing bulking problems could be 

built at only about a 10% increase in cost over the optimal design when bulking 

is not  considered. On the other hand, the optimal design obtained without con- 

sidering bulking would have a high likelihood of bulking. While the change in 

clarification efficiency with settleability has not  been incorporated in the model, 

i t  seems that the most  cosbefficient design strategy for lowering the potential 

for experiencing bulking problems is to design a larger aeration tank. While 

that conclusion is based on the specific influent conditions studied, the model 

developed here could prove to be a useful starting point for helping the design 

engineer identify cost-effective ways of reducing the likelihood of bulking for 

any influent conditions. 

The results of this work should not  be interpreted as the way to alleviate bulk- 

ing problems when designing an activated sludge plant. Rather it  is a represen- 

tation of one engineer's opinion. As there are many differing opinions regard- 

ing the bulking problem, it might be expected that the same approach would 

give different results if used to model another experienced engineer's judge- 

ment. The approach is useful, however, in that the judgement model helps to 

screen the results of the optimization model so that the range of choice may be 

considered by the designer. 

Another result that has come from this work is a feeling for the nature of the 

inter-relationship of rules and their association to a conclusion in a rule-based 

system. The weights of association seem to depend on the way in which the 

rules are logically combined. Methods which solicit weights of association 

independent of the logic structure in which they will be used o r  the use of 

weights in a structure expanded beyond that in which the weights were origi- 

nally assigned should be cautiously evaluated. 



While the calibrated rule-base presented here matches the expert's judgement 

fairly well, it can be improved. If more rules are incorporated into the rule 

base, it might be able to distinguish between designs in a manner closer to that 

of the expert. Besides increasing the number of breakpoints used for a specific 

variable, more process variables might be considered. For  example, while the 

sludge loading rules implicitly considered the MLSS and MLVSS concentra- 

tions, it might be helpful to use rules which would link these variables directly 

to the conclusion. Additionally, mixing was not  considered in the presentation 

of the designs to the expert or  in the rule base. Values of dispersion number 

are generally not  given for plants, and may not be closely controlled during the 

design process. Research has shown that mixing is very much associated with 

bulking problems and it should be incorporated. 

A closer approximation of the non-inferior set  of solutions and a clearer picture 

of the most cost-effective approach to reaching a specific likelihood of bulking 

can be found if the discrete nature of the rules is avoided. It  might be worth 

investigating the use of a continuous association function as used by Soula and 

~ a n c h e z ~ ~  in setting up a model For medical diagnosis. Rather than using vari- 

able ranges to formulate rules, a generic function (possibly linear) could specify 

the association given the variable value. The attributes of the function (e.g. the 

slope and the y-intercept) could be found in a manner similar to that followed 

in the work here. 

The problem that was considered in this work dealt only with plant designs for 

normal domestic wastewater. The larger problem of identifying if a plant, con- 

sidering both the design and the influent conditions, will experience bulking 

problems should be pursued. A complete model of the judgement used in 

evaluating the problem shown in Figure 5 might be a powerful tool for diagnos- 

ing and predicting the potential for bulking problems at a specific plant. Then,  

in combination with an optimization model, the most cosbeffective remedy to 

the problem may be found. 

The ability to manipulate rule-bases efficiently is a powerful tool which the 

environmental engineer could use to help insure the proper operation of the 



plant he designs. Formalizing expert fault diagnosis techniques into a rule- 

based system could tremendously aid plant operators determine possible 

sources and solutions to problems which arise in their plants An expert sys- 

tem could make the information currently available in a plant operation and 

mainteilance manual quickly accessible by giving the operator only information 

which might be relevant to the problem at hand. The work presented here is 

one step toward such a goal. 

The rule-based approach may, of course, be helpful for other types of pollution 

control problems. I t  may be especially important to develop such models to 

assist in the design or management of environmental systems where the 

number of experts is limited. It may also be desirable to incorporate results 

from rule-based analyses into other optimization models, as illustrated by this 

work. 
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