WRC RESEARCH REPORT NO. 34

The Effect of Raindrop Impact and

Surface Roughness on Sheet Flow

by

Harry G. Wenzel, Jr. Assistant Professor of Civil Engineering University of Illinois

FINAL REPORT Project No. B-018-ILL

The work upon which this publication is based was supported by funds provided by the U.S. Department of the Interior as authorized under the Water Resources Research Act of 1964, P.L. 88-379 Agreement No. 14-01-0001-1499

> UNIVERSITY OF ILLINOIS WATER RESOURCES CENTER 2535 Hydrosystems Laboratory Urbana, Illinois 61801

> > September 1970

ABSTRACT

THE EFFECT OF RAINDROP IMPACT AND SURFACE

ROUGHNESS ON SHEET FLOW

An experimental and analytical study was conducted to investigate the mechanics of sheet flow as it is affected by rainfall. Water surface profile data were taken in a laboratory flume using artificially generated rainfall and a hydraulically smooth surface. The one-dimensional spatially varied flow equation as developed from the momentum approach was then used to compute the boundary shear stress and subsequently a Weisbach type friction factor. It was found that the results below a Reynolds number of approximately 1000 could be expressed as $f = C/N_R$ where C increases with increasing rainfall intensity and surface slope. Velocity profile studies show that velocity in the surface region is retarded by the rainfall. Turbulence intensity measurements indicate that turbulence is generated at the surface due to the rainfall and also at the boundary for flow which would normally be laminar without rainfall. Spectral analysis of the turbulent measurements indicates that the rainfall shifts the turbulent energy to higher frequencies than would be the case without rainfall. Analysis of flow over rough surfaces taken by the Corps of Engineers shows that rainfall has little effect on resistance beyond the transition region and the transition point may be lowered by the presence of rainfall.

A separate study of a single drop striking a stagnant water layer shows that the velocity and pressure field can be computed using a Synthetic-Cell-Fluid scheme to solve the Navier-Stokes equations for this case. A dimensionless maximum impact pressure model was developed and the velocity field and free surface configuration were studied. It was found that surface tension is significant, the diameter of the region of disturbance was approximately one inch, and that locally high shear stress are generated. These stresses could easily cause soil erosion.

Wenzel, Harry, G. Jr.

THE EFFECT OF RAINFALL IMPACT AND SURFACE ROUGHNESS ON SHEET FLOW Final Report to the Office of Water Resources Research, Department of the Interior, September, 1970, Washington, D.C.

KEYWORDS--*impact (rainfall)/ *numerical analysis/ *raindrops/ resistance/ roughness (hydraulic)/ shear stress/ *sheet flow/ soil erosion/ transition flow/ turbulence

ii

			,		e		
				- '			
1 - E							
ŀ							
{							
6 2223							
1							
L. D							
C . 3							
1 073							
t							
•							
C							
Ι.							
	4						
[.							
t.							
e **							
ſ							
k							
(
l							
1							
1	-						
• . · .							
f							
E							
1							
с							\$
r							
l.							
1		·					
.							
,							
{							
L.,							
ſ							
Barat							

ACKNOWLEDGEMENTS

This report summarizes the results of the Office of Water Resources Research Matching Grant Project B-018-ILL, Agreement Number 14-01-0001-1499, entitled "Effects of Raindrop Impact and Surface Roughness on Sheet Flow." The project, which began in July, 1967, was under the direction of Dr. Harry G. Wenzel, Jr. and the work was conducted at the Hydraulic Engineering Laboratory, Department of Civil Engineering, University of Illinois.

This study has supported two research assistants, Dr. Raymond C. T. Wang and Dr. Yong Nam Yoon, whose doctoral theses represent a significant portion of the work. In addition the apparatus was used by another graduate student, Mr. Terry Sturm, as part of a special problem on turbulence. Furthermore, four undergraduates were supported by the project during its three year duration.

The author sincerely appreciates the significant work done by Drs. Wang and Yoon. Appreciation is also extended to Professor V. J. McDonald for his assistance on the electronic aspects of the turbulence measurements and to Mr. Jay W. Miller for his help in the design and construction of the apparatus. The author also wishes to thank Mrs. Dorothy Dilley and Mrs. Joanne Garth for typing the manuscript.

i i i

1. 1. 2. 1¹⁴ 4. -•

Fig. 1 RAINFALL IMPACT

. . . .

· · ·

	T ·
TABLE OF CONTEN	тѕ

						Page
Abstract		•••	•	•	•	. ;;
Acknowledgments	• •		•	•	•	
List of Figures	• · •	• •	•		•	. vii
Notation		• •	•	•	•	. ix
1. INTRODUCTION	• •	•••	•	•	•	. 1
1.1 - Objectives			•		•	. 1
1.2 - Previous Study			•	•	•	. 2
2. THEORY	••	•••	•		•	. 4
2.1 - Spatially Varied Flow			•	•	•	4
2.2 - Velocity Profile	•••	•••	•	•	•	. 6
2.3 - Turbulence Parameters	•••		•		•	. 8
2.4 - Single Drop Analysis	•••		•	•	•	. 9
3. EXPERIMENTAL EQUIPMENT AND PROCEDURE			•	•	•	. 13
3.1 - Rainfall-Runoff System				•	•	. 13
3.2 - Mean Velocity and Turbulence Measuremen	t.	•••	•	•	•	. 18
3.3 - Boundary Shear Stress Measurement	••	•••	•	•	•	. 18
3.4 - Turbulent Energy Spectrum Measurement	•••		•	•	•	. 20
3.5 - Single Drop Impact Pressure	••		•	•	•	. 20
4. RESULTS	••			•	•	. 22
4.1 - Effect of Significant Parameters on Flo Resistance on a Smooth Surface	w		•	•	•	. 22
4.1.1 - Computation of Friction Factor	• •		•	•	•	. 22
4.1.2 - Effect of Rainfall Intensity an	d S1	оре	•	•	•	. 23
4.1.3 - Effect of Impact Velocity	••		•	•	•	. 24
4.1.4 - Effect of Momentum Coefficient	••		•		•	. 24

e e

.

v

4.	1.5 - Effect of Froude Number	24
4.	1.6 - Direct Measurement of Boundary Shear	32
4.	1.7 - Comparison of Terms in Spatially Varied Flow Equation	32
4.2 - Ef	fect of Surface Roughness	33
4.3 - Ve	elocity Profiles	.39
4.4 - Tu	urbulence Measurements	40
4.	4.1 - Turbulence Intensity Profiles	40
4.	4.2 - Turbulent Energy Spectra	45
4.	4.3 - Macroscale of Turbulence	58
4.5 - Si	ngle Drop Impact Study	58
5. CONCLUSI	ONS	64
REFERENCES .		67
APPENDIX: S	Surface Profile Data	69

LIST OF FIGURES

1. Rainfall Impact

2. Schematic of Apparatus

3. Rainfall-Runoff System and Channel Support Scheme

4. Rainfall Module

5. Instrument Carriage and Probe

6. Friction Factor vs. Reynolds Number for $S_0 = 0.001$

7. Friction Factor vs. Reynolds Number for $S_0 = 0.005$

8. Friction Factor vs. Reynolds Number for $S_{2} = 0.005$

9. Friction Factor vs. Reynolds Number for $S_0 = 0.01$

10. Friction Factor vs. Reynolds Number for $S_0 = 0.01$

11. Friction Factor vs. Reynolds Number for $S_0 = 0.03$

12. Coefficient C vs. Rainfall Intensity

13. Contribution to S_f vs. Reynolds Number for $S_o = 0.001$

14. Contribution to S_f vs. Reynolds Number for $S_o = 0.03$

15. Friction Factor vs. Reynolds Number for Rough Surfaces

16. Velocity Profiles for $S_0 = 0.005$

17. Velocity Profiles for $S_0 = 0.005$

18. Turbulence Intensity Profiles for i = 3.75 in./hr

19. Turbulence Intensity Profiles for $S_0 = 0.005$

20. Turbulent Energy Spectra for Uniform Flow at $N_R = 4,000$ 21. Turbulent Energy Spectra for $N_R = 4,000$, i = 3.75 in./hr 22. Turbulent Energy Spectra for $N_R = 4,000$, i = 15 in./hr

23. Turbulent Energy Spectra for $N_{R} = 550$, i = 3.75 in./hr

24. Turbulent Energy Spectra for $N_{R} = 550$, i = 15 in./hr

Normalized Turbulent Energy Spectra for Uniform Flow at $N_{R} = 4,000$ in./hr 25. Normalized Turbulent Energy Spectra for $N_R = 4,000$, i = 3.75 in./hr 26. Normalized Turbulent Energy Spectra for $N_R = 4,000$, i = 15 in./hr 27. Normalized Turbulent Energy Spectra for $N_R = 550$, i = 3.75 in./hr 28. Normalized Turbulent Energy Spectra for $N_R = 550$, i = 15 in./hr 29. Normalized Macroscale of Turbulence vs. Relative Depth 30. 31. Dimensionless Maximum Impact Pressure vs. Depth for d = 3.12 mm32. Dimensionless Pressure vs. h/d Radial Variation in Pressure at Boundary 33.

34. Shear Stress Variation with r and t

C = constant depending on the channel slope and rainfall intensity

d = raindrop size

E(n) = one-dimensional energy function

F(n) = normalized energy function, E(n)/u²

f = Darcy-Weisbach friction factor

g = acceleration due to gravity

i = lateral inflow per unit length in the x direction or rainfall intensity

k_ = equivalent sand grain roughness

 L_{v} = macroscale of turbulence

l = Prandtl's mixing length

 N_{p} = Reynolds number, VY_{o}/v

n = frequency

n_ = unit outward normal

n50 = frequency which corresponds to the value where the 50% of the turbulence energy lies at frequencies less than this under the spectral curve

P = gage pressure

q = local flow rate per unit width of channel

 q_{o} = base flow rate per unit width of channel

 R_1 , R_2 = principle radii of curvature of the free surface

r = radial direction

 $S_{f} = friction slope$

 $S_{a} = channel slope$

T = temperature

t = time

U = velocity of the raindrops as they enter the main flow

ix

u	=	local point mean velocity in the x direction
<u>u</u>	=	instantaneous total velocity in x direction
u۱	=	RMS velocity fluctuation
u''	=	fluctuating component of \overline{u}
V	=	local mean velocity
۷ _r	=	radial (r) velocity component at any time t
۷ _z	=	axial (z) velocity component at any time t
x	=	direction of mean flow
у	=	direction normal to x in a vertical plane
У _о	=	local depth measured normal to the channel bottom
y _{max}	=	position of maximum point mean velocity u max
z	=	vertical direction
β	=	momentum correction factor
Г	=	survace tension force per unit length
Ŷ	=	specific weight of water
£	=	equivalent surface roughness
η	=	dimensionless parameter describing drop impact pattern
θ	=	angle between the x direction and the horizontal
κ	=	Karman's universal constant
λ	=	dimensionless parameter describing drop shape
μ	=	dynamic viscosity
ν	=	absolute viscosity
ρ	=	density of water
σij	=	stress tensor
τ	=	local mean shear stress
^τ ox		average boundary shear stress in the x direction at any x position

 Ψ = angle between the velocity vector U and the x direction

х

1. INTRODUCTION

1.1 - Objectives

The observation of raindrops striking a thin layer of water as it flows from a sidewalk or street creates an intuitive feeling that the drops must have some effect on the characteristics of flow. With the growing awareness of the importance of urban hydrology it is necessary to gain a better understanding of the runoff process so that more intelligent design procedures can be developed. Sheet flow is the initial phase of surface runoff and in impervious urban areas it is a very significant one. The effects of rainfall on sheet flow have not been thoroughly studied and it is the overall objective of this study to contribute to the understanding of this phenomenon. Another area in which this knowledge is of value is that of soil erosion.

The specific objectives of the study are:

- To experimentally investigate and describe the effect
 of rainfall on the resistance to sheet flow.
- 2. To obtain a better understanding of the mechanics of sheet flow under the action of simulated rainfall.

The second objective has resulted in doctoral disserations by Wang (1) and Yoon (2), the results of which are summarized in this report.

1. Numbers in parentheses refer to corresponding items in References.

1.2 - Previous Study

A detailed discussion of previous work related to this study was presented by Wang (1) and Yoon (2) and only a summary is presented here. The first experimental work directly concerned with the resistance to flow due to rainfall was done by Izzard(3, 4) who presented a design procedure for impervious surfaces which recognizes the effect of rainfall. Just after this initial work Keulegan (5) presented the one-dimensional equation for spatially varied flow which has served as a theoretical basis for many subsequent studies. This equation has recently been discussed in further detail by Yen and Wenzel (6). In the light of Keulegan's work Izzard developed a relationship between friction coefficient and Reynolds number for paved and turfed surfaces (7, 8) which is in qualitative agreement with more recent studies. Perhaps the most extensive study to date was reported by Woo and Brater (9) who reported the results of the effect of rainfall intensity, surface roughness, and slope on the resistance coefficient. The Los Angeles District of the Corps of Engineers obtained surface profiles and runoff hydrographs from 500 ft long concrete and turfed surfaces (10). Part of this data was analyzed by Yu and McKnown (11) who concluded that the effect of rainfall decreased and became insignificant as the Reynolds number exceeded 2,000. Robertson et al (12) performed overland flow tests using a gravel surface and a channel slope of 0.05 and obtained very high resistance coefficients.

Smerdon (13) first reported the results of velocity profile measurements of shallow sediment laden flow with rainfall using pitot tubes. Subsequent work by Glass and Smerdon (14) on concrete and plywood surfaces led to the conclusion that the velocity distribution under

rainfall was logarithmic with the value of the von Karman constant being higher than the value without rainfall. The first use of the hot film anemometer for velocity profile measurements with rainfall was reported by Threadgill and Hermanson (15) using a triangular open channel. Their results agreed approximately with those of Glass and Smerdon.

The determination of boundary shear stress is of basic importance in this study. Various methods of accomplishing this are discussed by Yoon (2). The two methods used here are the solution of the onedimensional spatially varied flow equation for the resistance term (6) and the semi-direct method of the flush mounted hot film probe. Threadgill and Hermanson (15) first used the surface probe method but difficulties with calibration made their results questionable.

Although considerable use of the hot film anemometer has been made in measuring turbulence characteristics in water, the only application to flow with rainfall was reported by Barfield (16). Although his range of flow parameters was limited, he reported relative turbulence intensity profiles, Eulerian time scale and diffusion coefficient values.

A single drop striking a fluid has aroused the interest of researchers since the time of Reynolds (17). The work by Wang (1) presents a summary of the previous work in this area as well as the numerical procedures used in recent times to treat such problems mathematically.

2. THEORY

2.1 - Spatially Varied Flow

The theoretical approach used in the present analysis of the steady state resistance to flow caused by rainfall is to treat the rainfall as a uniformly distributed lateral inflow to a two-dimensional channel flow. The general equation which describes this type of flow can be derived from either a momentum or energy approach (6). When the boundary shear is of interest the momentum approach is more appropriate, and if the pressure distribution is assumed to be hydrostatic and the momentum coefficient is constant the result is

$$\frac{dy_{o}}{dx} = \frac{S_{o} - \frac{\tau_{ox}}{\gamma y_{o}} + \frac{i}{gy_{o}} (U \cos \psi - 2\beta V)}{\cos \theta - \frac{\beta V^{2}}{gy_{o}}}$$
(2.1)

where y_0 = the local depth measured normal to the channel bottom, x = the direction of mean flow, θ = the angle between the x direction and the horizontal, S_0 = sin θ , V = the local mean velocity, τ_{ox} = the average boundary shear stress in the x direction at any x position, i = the lateral inflow per unit length in the x direction which in this case is the rainfall intensity, U = the velocity of the raindrops as they enter the main flow, ψ = the angle between the velocity vector U and the x direction, β = the conventional momentum correction factor (β = 1.20 for two-dimensional laminar sheet flow), γ = the specific weight of water and g = the acceleration due to gravity. The resistance term is sometimes referred to as the friction

4 .

slope ${\rm S}_{\rm f}.$ It is expressed here, as others have done, in terms of a friction factor f such that

$$S_{f} = \frac{\tau_{ox}}{\gamma y_{o}} = \frac{fV^{2}}{8gy_{o}}$$
(2.2)

It should be emphasized that the friction factor definition is based on the momentum rather than the energy approach and should be used in that context.

It would be useful at this point to identify the variables which may affect $\tau_{_{O}}$ and hence f.

$$τ_{o} = F(V, y_{o}, S_{o}, μ, ε, U, i, d, η, λ, ρ, g)$$
(2.3)

where ε = the equivalent surface roughness, d = the drop size and n and λ = dimensionless parameters describing the drop impact pattern and shape, respectively. Application of dimensional analysis leads to

$$\frac{\tau_{o}}{\rho V^{2}} = F_{1}\left(\frac{\rho V_{Y_{o}}}{\mu}, \frac{V}{\sqrt{gy_{o}}}, \frac{i}{V}, \frac{U}{V}, \frac{d}{y_{o}}, \frac{\varepsilon}{y_{o}}, S_{o}, \eta, \lambda\right)$$
(2.4)

The parameters in Eq. 2.4 can be combined in a more useful form

$$\frac{\tau_{o}}{\rho V^{2}} = F_{2}\left[\frac{\rho V y_{o}}{\mu}, \frac{V}{\sqrt{g y_{o}}}, \frac{\rho i y_{o}}{\mu}, \frac{U}{\sqrt{g y_{o}}}, \frac{\rho i d}{\mu}, \frac{\varepsilon}{y_{o}}, S_{o}, \eta, \lambda\right] \quad (2.5)$$

In addition to the conventional Reynolds and Froude numbers, channel slope and relative roughness, Eq. 2.5 contains rainfall parameters in the form of Reynolds or Froude numbers as well as η and λ . The parameter η could be regarded as the ratio between drop diameter and average horizontal spacing between drops while λ could represent a mean aspect ratio of the drops.

2.2 - Velocity Profile

One of the objectives of Yoon's work (2) was to investigate the velocity profile with rainfall. The two part mathematical model which resulted was based on von Karman's mixing length assumption

$$\ell = \kappa \left| \frac{du/dy}{d^2 u/dy^2} \right|$$
(2.6)

where u = local point mean velocity in the x direction, y = the direction normal to x in a vertical plane, l = Prandtl's mixing length and κ = von Karman's so called universal constant. Yoon found that the velocity profile could be characterized by a lower region starting at the boundary and extending to a point of maximum velocity, y_{max} . This was followed by a region of velocity retardation from y_{max} to the surface, y_0 .

The lower part of the profile $(0 < y < y_{max})$ is described by the conventional universal velocity distribution relationship

$$\frac{u_{\text{max}} - u}{\sqrt{\tau_0/\rho}} = -\frac{1}{\kappa} \left[\log_e \left(1 - \sqrt{1 - \frac{y}{y_{\text{max}}}}\right) + \sqrt{1 - \frac{y}{y_{\text{max}}}} \right]$$
(2.7)

The additional assumption leading to Eq. 2.7 is that a linear distribution of turbulent shear stress exists. Of course Eq. 2.7 is not valid in the viscous sublayer region where viscous shear predominates nor at a free surface where the vertical mixing must essentially vanish. Although a free surface does not exist at $y = y_{max}$, the velocity gradient is zero there which is not in agreement with the model. However, this difficiency is not unique and is not regarded as serious. The upper portion of the profile is also a von Karman model with shear stress distribution given by a linear extrapolation of the shear distribution used for the lower part.

$$\tau = \tau_{o}(\frac{y}{y_{max}} - 1) \qquad y_{max} < y < y_{o}$$
 (2.8)

Upon substituting Eq. 2.8 into von Karman's similarity hypothesis

$$\tau = \rho \ell^2 \left(\frac{du}{dy}\right)^2 \tag{2.9}$$

together with Eq. 2.6 and integrating twice the velocity profile equation becomes

$$\frac{u - u_{\text{max}}}{u^{\star}} = \frac{1}{\kappa} \left(\sqrt{y - y_{\text{max}}} + (\sqrt{y_{0} - y_{\text{max}}} + D) \log_{e} \left(1 - \sqrt{\frac{y - y_{\text{max}}}{\sqrt{y_{0} - y_{\text{max}}}}} \right) \right)$$
(2.10)

where

. <u>-</u> . .

$$u^{*} = \sqrt{\frac{\tau_{o}}{\rho \gamma_{max}}}$$
(2.11)

$$D = -\frac{u^{*}}{2\kappa \left(\frac{du}{dy}\Big|_{y = y_{o}}\right)}$$
(2.12)

The parameter D is introduced to permit a finite velocity gradient to exist at the free surface.

2.3 - Turbulence Parameters

In order to further describe the nature of the flow Yoon obtained turbulence intensity profiles. If the instantaneous total velocity component u is considered to be composed of a steady and a fluctuating component

$$u = u + u''$$
 (2.13)

such that $\overline{u^{\prime\prime}} = 0$, the turbulence intensity, u^{\prime} , is defined as

$$u' = \left[\frac{1}{t} \int_{0}^{t} (\underline{u} - u)^{2} dt\right]^{1/2} = \sqrt{u''^{2}}$$
(2.14)

where t = time.

Additional description of the turbulence is given by examining the distribution of kinetic energy per unit mass among the various fluctuation frequencies present in the flow. If 1/2 E(n)dn represents the kinetic energy per unit mass in the frequency range n - n + dn associated with the longitudinal component of velocity then

$$u'^2 = \int_0^\infty E(n) dn$$
 (2.15)

where E(n) = the one-dimensional energy function and n = frequency. Examination of the spectral function with and without rainfall shows how the additional energy supplied by the flow is distributed throughout the various frequencies.

The normalized energy function, F(n), is similarly defined as

$$F(n) = \frac{E(n)}{{u'}^2}$$
(2.16)

Except for the region of high frequencies, the normalized energy function is assumed to have the form (21, 22)

$$F(n) = \frac{4 \frac{L_{x}}{u}}{1 + \left(\frac{2\pi n L_{x}}{u}\right)^{2}}$$
(2.17)

where L_x = the macroscale of turbulence. Equation 2.17 allows to estimate the macroscale by fitting a curve of the form to the data. However, a more convenient method was suggested by Raichlen (20), namely,

$$L_{x} = \frac{u}{2\pi n_{50}}$$
(2.18)

where n_{50} = the frequency below which 50% of the turbulence energy lies.

2.4 - Single Drop Analysis

The previous discussion was based on a quasi-steady approach, treating the rainfall as a uniform lateral inflow which creates effects which can be considered as steady on the average. As an alternative approach which is much more complex and difficult, Wang (1) has examined the impact of a single drop on a stagnant water layer using a numerical solution of the Navier-Stokes equations with appropriate boundary conditions. This is a simplified model of the natural phenomenon since the water layer was not initially flowing and only one drop was considered. However, it represents a first step in a detailed analysis of the real unsteady flow field and provides some perspective from which further extensions of the approach can be made. The results, although limited by available funds for computer time, are of interest and provide support for the large scale resistance measurements.

The details of the theoretical approach and the numerical scheme are described by Wang (1) and only a brief summary is presented here. The drop impact phenomenon is assumed to be axisymmetric with constant fluid temperature and density and no interfacial tension between the drop fluid and the fluid layer is considered. The equation of continuity and equations of motion which govern the phenomenon after impact are therefore

$$\frac{1}{r} \frac{\partial (rV_r)}{\partial r} + \frac{\partial V_z}{\partial z} = 0$$
 (2.19)

$$\frac{\partial V_{r}}{\partial t} + \frac{1}{r} \frac{\partial (rV_{r}^{2})}{\partial r} + \frac{(V_{r}V_{z})}{\partial r} = -\frac{1}{\rho} \frac{\partial P}{\partial r} + v \frac{\partial}{\partial z} \left(\frac{\partial V_{r}}{\partial z} - \frac{\partial V_{z}}{\partial r} \right)$$
(2.20)

$$\frac{\partial V_z}{\partial t} + \frac{1}{r} \frac{\partial (rV_rV_t)}{\partial r} + \frac{\partial V_z^2}{\partial t} = -g - \frac{1}{\rho} \frac{\partial P}{\partial z} - \frac{v}{r} \frac{\partial}{\partial r} \left(r(\frac{\partial V_r}{\partial z} - \frac{\partial V_z}{\partial r}) \right)$$
(2.21)

where V and V = the radial (r) and axial (z) velocity components at any time t, and P = the gage pressure.

The boundary conditions include zero radial velocity, velocity gradient and pressure gradient along the z axis which is located along the drop centerline, a no slip condition along the bottom of the fluid layer (a free slip condition was also studied), a circular wall at some radial distance from the impact point to limit the computational field, and a set of equations to account for surface tension at the free surface. This latter boundary condition is expressed as

$$\Gamma(\frac{1}{R_{1}} + \frac{1}{R_{2}}) = -\sigma_{ij}n_{j} \qquad (2.22)$$

where F = the surface tension force per unit length, R_1 and R_2 = the principal radii of curvature of the free surface, σ_{ij} = the stress tensor and n_g = unit outward normal. The initial conditions required are the drop shape and velocity at the instant of impact.

The numerical method employs a Synthetic-Cell-Fluid scheme which conserves mass and momentum. The computational field is divided into a series of cells which are considered to be either empty or filled with a "synthetic-cell-fluid." Initially this fluid corresponds to the real fluid and physically represents the fractional part of a cell which is occupied by the real fluid. The movement of the synthetic fluid is governed by the continuity equation for compressible flow. If a cell contains a volume of synthetic fluid which is greater than a specified amount it is assumed to be filled with real fluid, otherwise it is empty. In this way the free surface is determined. The numerical scheme proceeds in two steps. In the first step Eqs. 2.20 and 2.21 are combined to yield a relationship which permits the pressure to be computed if the velocity field is known.

$$\frac{1}{\rho} \frac{\partial^2 P}{\partial x^2} + \frac{1}{r} \frac{\partial}{\partial r} (r \frac{\partial P}{\partial r}) = -\frac{\partial}{\partial t} \left[\frac{1}{r} \frac{\partial (r V_r)}{\partial r} + \frac{\partial V_z}{\partial z} \right] - \frac{1}{r} \frac{\partial^2 (V_r^2)}{\partial r^2} - \frac{2\partial^2 (r V_r V_z)}{\partial r \partial z} - \frac{\partial^2 (V_z^2)}{\partial z^2} (2.23)$$

Equation 2.23, in finite difference form is used with the known velocity field at time t to compute the change in the pressure field, starting at the free surface and proceeding inward. The synthetic fluid is then moved using the velocity field at time t together with the continuity equation for compressible flow. This defines the fluid domain at $t + \Delta t$. Then Eqs. 2.20 and 2.21, in finite difference form, are used to evaluate the velocity field at $t + \Delta t$. This completes the cycle which is then repeated.

3. EXPERIMENTAL EQUIPMENT AND PROCEDURE

3.1 - Rainfall-Runoff System

The laboratory flume used for the flow resistance experiments consisted of a 3 ft wide, 24 ft long flume with a 1/4 in. thick plate glass bottom and two 8 in. high plywood walls painted with epoxy. A schematic diagram of the system is shown in Fig. 2 and a general photograph in Fig. 3. The plate glass was laid directly on top of a 1/8 in. thick stainless steel plate which was supported by three 1 in. square steel bars which were glued by epoxy along the centerline and two edges of the plate. Eleven pairs of steel channel stringers, each of which was bolted by two 1/2 in. threaded rods near both ends, were connected to each of the 1 in. square steel bars by three 1/4 in. threaded rods whose upper end was screwed into each of the square bars and the other end was bolted to the upper channel stringer. This support scheme, also shown in Fig. 3 allowed for local levelling of the glass surface to within +0.005 in. of a plane surface. The lower channel stringers were welded to the upper flanges of two steel wide flangebeams running parallel along the channel basin. The beams were pivoted near the downstream end and were supported by a pair of jacks 21 ft from the downstream end, permitting the channel slope to be changed.

Rainfall was simulated by a series of 12 rainfall modules suspended from a frame above the channel from which capillary tubes protrude down. The details of a module are schematically shown in Fig. 4. The globe valve on each module was adjusted to maintain an equal flow rate from each of the 12 modules. The inflow to the modules was controled by

solenoid values and rainfall could be generated almost instantaneously and stopped within 3 seconds by this means.

The height of the modules above the channel bottom could be adjusted to a maximum of 13 ft by two ropes on each side of each module through pulleys attached to the top of the framework. For the capillary tubes used in this study the equivalent drop diameter varied from 2.92 to 3.26 mm or an average of 3.1 mm for an intensity range of 0.5-15 in./hr. The tube pattern (Fig. 4) used was based on the drop impact pattern study reported by Mutchler (18). Two drop patterns, a 1 in. and 2 in., spacing were used by Yoon (2) as shown in Fig. 4, to evaluate the effect of n in Eq. 25. A recirculating system provided water for both the rainfall modules and the head box as shown in Fig. 2. The head box provided a base flow so that a wide range of Reynolds numbers could be obtained. Separate centrifugal pumps supplied the head box and the rainfall modules via a manifold distribution tank. Flow was monitored by orifice meters calibrated gravimetrically in place. The maximum Reynolds number which could be obtained with the flow system was approximately 5,500.

Depth was measured using a micrometer point gauge which could be read to 0.001 in. With impinging raindrops, a visual micrometer reading of water surface position was not possible because of the irregular water surface caused by the raindrop impact. Therefore, an electrical resistance meter was connected between the point gauge and water. The gauge was lowered to the surface until the resistance meter began to oscillate, indicating contact with the crest of the waves. The gauge was then lowered until the meter reading dropped to a steady lower value, indicating that the point was just below the surface wave troughs. The true depths reading was taken as the

Fig. 2 Schematic of Apparatus

15

Fig. 3 Rainfall-Runoff System and Channel Support Scheme

Fig, 4 Rainfall Module

average of the crest and trough gauge readings, and the resistance meter value at that average depth was used as a reading criterion throughout the tests. To be consistent on this criterion the zero reading of resistance meter was periodically checked.

3.2 - Mean Velocity and Turbulence Measurement

A Thermo-Systems Inc. Model 1010 constant temperature anemometer was used by Yoon (2) for measurements of velocity, turbulence and boundary shear stress along with a linearizer, RMS and DC voltmeters and chart and tape recorders. The details of the circuitry, calibration and operation of the equipment was described in detail by Yoon (2). TSI boundary layer hot film sensors (Model 1218-60W) and straight hot film sensors (Model 1210-60W) having a 0.006 in. diameter quartz coated platinum-film cylindrical sensor with a sensitive length of 0.080 in. were used for these measurements.

3.3 - Boundary Shear Stress Measurement

A TSI Model 1237-LW flat surface hot film sensor coupled with the anemometer was used by Yoon to obtain a semi-direct measurement of boundary shear. The probe was mounted flush with the glass surface and was calibrated in a rectangular conduit over the same Reynolds number range as was encountered in the measurements. Photographs of the surface probe, boundary layer probe, and instrument carriage are shown in Fig. 5.

Fig. 5 Instrument Carriage and Probe

3.4 - Turbulent Energy Spectrum Measurement

In order to observe the effects of rainfall on the distribution of turbulence energy a Sangamo 3500 tape recorder was used to record the turbulence at three levels in the flow for various Reynolds numbers and rainfall intensities. The signal was analyzed using a General Radio Model 1564-A Sound and Vibration Analyzer together with the integrating portion of the mean product computer of a Hubbard Old Gold Model hot wire anemometer. The latter was used to obtain a valid average output reading from the analyzer at the various central frequencies. A band width of 16 percent of the central frequency was used, which corresponded to a rectangular response curve of unit height having the same area as that under the actual response curve. It was found that the analyzer was not capable of picking up the entire signal over all the frequencies since the area under the spectrum curve was in general lower than u². However this problem is not uncommon with this method of analysis and could only be overcome by using analog to digital conversion. This was not done because the results were judged sufficiently accurate to convey the information desired.

3.5 - Single Drop Impact Pressure

The experimental phase of the study by Wang (1) consisted of the measurement of the pressure-time relationship immediately beneath the impact point of a single drop as it struck a thin stagnant water layer. Various drop sizes, water layer depths and impact velocities were investigated. The pressure was measured by a Model 606A Kistler quartz pressure transducer in series with a Model 504 charge amplifier and a Model 548A8

filters for resonance attenuation. The signal was recorded on storage oscilloscope. The transducer was mounted flush with the bottom of a 2 ft square plexiglass tray which was oriented so that the drop struck directly over the center of the transducer. Drops were formed using a single capillary inserted through the bottom of a water container. Various drop sizes were produced by using tubes with different outside and inside diameters.

4. RESULTS

4.1 - Effect of Significant Parameters on Flow Resistance on a Smooth Surface

4.1.1 - Computation of Friction Factor

The boundary shear stress and hence the friction factor and friction slope can be computed from Eqs. 2.1 and 2.2 if all of the other terms in the resulting equation are known.

$$f = \frac{8\tau_{ox}}{\beta V^2} = \frac{8gS_f \gamma_o}{V^2} = \frac{8g\gamma_o}{V^2} \left[S_o - \frac{d\gamma_o}{dx} \left(\cos \theta - \frac{\beta q^2}{g\gamma_o^3} \right) + \frac{iU}{g\gamma_o} \cos \psi - \frac{2\beta iq}{g\gamma_o^2} \right]$$
(4.1)

Surface profiles for various slopes, rainfall intensities, values of U, and initial upstream Reynolds numbers were measured. These data are given in the Appendix. Eq. 4.1 was transformed into a difference equation using the following substitutions:

$$\frac{dy_{o}}{dx} = \frac{y_{2} - y_{1}}{\Delta x} \qquad \Delta x = 2 \text{ ft}$$

$$y_{o} = \frac{y_{1} + y_{2}}{2} \qquad (4.2)$$

$$q = q_{o} + i(\frac{x_{1} + x_{2}}{2})$$

Smooth curves were drawn through the raw surface profile data and the smoothed profiles were used to compute f values at 1 ft intervals. The initial 4 ft of development length and the downstream portion of each profile which was judged to be affected by the free overfall were not included in the calculations. The results are presented in Figs. 6-11 in the conventional form of f vs N_R with intensity as a parameter at constant
slope and drop spacing. This was found to be the best form in which to present the results. Referring to Eq. 2.5 it was found that the parameter ρ_{iy}/μ and $U/\sqrt{gy_{o}}$ did not yield any significant correlation with f. Since the drop size was essentially constant the dimensionless ρ_{id}/μ is proportional to i if the variation of μ is neglected. Since the intensity was the most significant parameter it was used in dimensional form for practical purposes. The Froude number was not of primary importance and the roughness ε was constant.

4.1.2 - Effect of Rainfall Intensity and Slope

The most significant and obvious result is that for Reynolds numbers below approximately 2,000 the rainfall intensity increases the resistance to flow, with higher f values associated with higher intensities. Above this value, which corresponds to the usual transition range from laminar to turbulent flow as shown in Figs. 6, 7, 9, and 11 for i = 0, the effect of intensity decreases rapidly until it becomes insignificant. For Reynolds numbers below 1,000 the result can be described mathematically by a straight line parallel to the theoretical $f = 24/N_R$ for laminar flow, i.e.

$$f = \frac{C}{N_R}$$
(4.3)

where C is a function of slope and intensity. Values of C taken from the lines in Figs. 6-11 are shown as functions of rainfall intensity with slope as a parameter in Fig. 12.

4.1.3 - Effect of Impact Velocity

Tests were performed with the rainfall modules positioned 15 in., 2 ft and 13 ft above the channel producing impact velocities of approximately 8.8, 11.0 and 22.3 ft/sec (1). The tests by Yoon were performed with the modules at 3.875 ft above the channel for an impact velocity of 14.5 ft/sec. Examination of the order of magnitude of the term containing U in Eq. 4.1, as discussed in Sec. 4, indicates that it is of the order of 1 percent of S_f and thus no experimental effect was expected. This was verified in the analysis of the data and so the position of the modules was not significant.

4.1.4 - Effect of Momentum Coefficient

Velocity profile measurements by Yoon (2) indicated that the range of β with rainfall was 1.06 to 1.14. The correct values were used in Eq. 4.1 for his analysis. The rest of the data which were taken before Yoon's were analyzed using $\beta = 1.0$. This was justified by computing some typical f values using $\beta = 1.0$ and its maximum value of 1.2. The maximum effect was approximately a 5 percent change in f. Therefore, a constant value of $\beta = 1.0$ was used.

4.1.5 - Effect of Froude Number

The location of $N_F = 1.0$ is shown in Figs. 6-11. With the exception of one slope, $S_o = 0.03$, the flow was subcritical up to $N_R = 800$. In these cases no significant effect of N_F is noticeable. However, on $S_o = 0.03$ roll waves were present. Furthermore, as can be seen in Fig. 11, the transition region, which is generally characterized by a reduction in the effect

.

Fig. 8. Friction Factor vs. Reynolds Number for $S_0 = 0.005$

Friction Factor, f

Fig. 12 Coefficient C vs. Rainfall Intensity

of intensity on f, occurs at a lower Reynolds number and just after critical flow was reached. Thus, the transition to supercritical flow may be initiated by or related to the transition region. For lower slopes the critical Reynolds numbers occur in the usual transition region of $N_R = 1,000 - 2,000$ so that this effect, if it exists, is not discernible. The presence of roll waves on $S_0 = 0.03$ made the measurement of the surface profile using the point gauge more difficult and subject to additional error.

4.1.6 - Direct Measurement of Boundary Shear

Comparison of the measured and computed boundary shear stress values by Yoon (2) indicated that the hot film surface probe method produces accurate results which are not subject to the errors associated with the use of surface profile measurements and Eq. 4.1. Figures 7 and 8 include the results of f computed from Eq. 2.2 using direct measurements of τ_{ox} . Although not apparent here, comparison of τ_{ox} vs N_R curves determined by measurement and computation (2) indicate much smoother results from direct measurement. This might be expected by observing that the determination of f from τ_{ox} involves multiplication by y_o^2 , i.e. $f = 8 \tau_{ox} y_o^2/\rho q^2$. Thus, any percent error in y is doubled when computing f.

4.1.7 - Comparison of Terms in Spatially Varied Flow Equation

In order to compare the contribution to the friction slope, s_{f} , of the various terms in Eq. 4.1 it can be written as

 $s_{f} = s_{o} - s_{1} - s_{2} + s_{3}$ (4.4)

where

$$S_{1} = \frac{2 i q}{g \gamma_{0}^{2}}$$

$$S_{2} = \frac{d \gamma_{0}}{d x} (\cos \theta - \frac{q^{2}}{g \gamma_{0}^{3}})$$

$$S_{3} = \frac{i U}{g \gamma_{0}} \cos \psi$$

The values of S_{f} and the percentage contribution of $S_{1}^{}$, $S_{2}^{}$, and ${\rm S}_{3}$ as functions of ${\rm N}_{\rm R}$ are shown as Figs. 13 and 14 for the maximum and minimum slopes tested and for various rainfall intensities. Actually a band should be used instead of a line to show the relationship, but the width of the band is not great and a line shows the variation more clearly. Of these terms the most significant is S_2 which varies considerably with both N_R and S_o . On the low slope the surface profile curvature is higher while on the high slope it is almost zero. Furthermore, S_{2} can change sign but in doing so the largest absolute value at any Reynolds number is still associated with the largest rainfall intensity. The next most important term is S₁ which does not change significantly with slope at a constant intensity and Reynolds number, but its percentage contribution to S_{f} decreases with increasing slope. The term ${\rm S}_3$ is always less than 2 percent of ${\rm S}_{\rm f}$ and is not important, as verified experimentally by changing the value of U. It is interesting to note, however, that the impact velocity is very important if f were defined on the basis of the energy approach (23) rather than the momentum approach.

4.2 - Effect of Surface Roughness

Time did not permit tests to be performed using various rough surfaces. However, data taken by the Los Angeles District, Corps of Engineers (10)

were analyzed. In this study a concrete channel 500 ft long and 3 ft wide was used with rainfall produced by a series of spray nozzles suspended above. Depth was measured at 33.5 ft, 166.9 ft, and 333.5 ft from the downstream end using piezometers constructed from pipes installed in the concrete bed. Discharge was measured using weirs and a volumetric tank. Channel slopes of 0.005, 0.01 and 0.02 were used along with five types of rough surfaces: concrete, simulated turf, roughened simulated turf, excelsior turf and actual grass. Uniform steady spatially varied and unsteady spatially varied flow tests were performed.

The friction factor computations were made in the same manner as previously described, although the surface profile was defined by only three points and thereby created a possible significant source of error.

In order to isolate the effects on f of roughness from those of rainfall, uniform flow data from each surface were analyzed. Uniform flow friction factors were first computed. For the concrete and simulated turf data the results were then substituted into the Colebrook transition formula (19)

$$\frac{1}{\sqrt{f}} = -2.0 \log \left(\frac{k_s}{14.83y_o} + \frac{0.63}{N_R\sqrt{f}} \right)$$
(4.5)

in which $k_s =$ the equivalent sand grain roughness. The resulting average value of k_s for concrete was 0.0028 ft and 0.159 ft for the simulated turf. For the excelsior turf and grass the assumption was made that the flow was fully rough and the roughness computed from (19)

$$\frac{1}{\sqrt{f}} = 2.0 \log (12.62 \frac{Y_o}{k_s})$$
 (4.6)

The results indicated an average k_s value of 1.29 ft for the excelsior turf and 0.94 ft for the grass. These high k_s values (of the order of ten times the depth) indicate that for these extremely rough surfaces k_s loses any physical significance and is truly an equivalent roughness rather than a measure of the physical size of roughness elements.

The uniform data for all slopes and surfaces are shown in Fig. 15. The lines are plots of Eqs. 4.5 and 4.6 for indicated values of y_0/k_s . The results of f for the spatially varied flow computations are shown as solid points with the associated rainfall intensity values written nearby. The most obvious conclusion which can be made is that rainfall does not significantly effect the friction factor in the range of Reynolds numbers which were studied. It should be pointed out that the excelsior turf and grass restuls are in the fully rough range of flow and the data from the other surfaces is in the transition range. As can be seen in Figs. 6-11 this conclusion is in agreement with the smooth surface results, that is rainfall has a significant effect on f below the transition range. Close examination of the simulated turf data indicates that the rainfall has lowered the value of f. This is difficult to explain since it implies that the product $y_0^2 \tau_{ox}$ is lower, at a constant Reynolds number, for flow with rainfall than for uniform flow. This is not indicated by other data taken by the Corps or by Yoon. On the other hand if it is assumed that k_s is constant, then an increase in y will produce an increase in y_0/k_s which would be in agreement with the trend shown. Another explanation could lie in a change in the operation of the piezometers used to measure the depth due to the presence of rainfall, yielding erroneous depth measurements, or the estimates of

100 **v**l.96 **4**.01 0 2.0 =0**09**7 3.86 **_**3.97 3.97▲ Δ 1.94 Δ Δ Excelsion Ą ▲3.97 10 Turf and 0.107 Grass 1.05 Δ V 10.0 0.58 V -0.117 1.98 0.125 0 0 **3.8**9 0.99 ۵ പ്പ**റ്റ9**9 D 0.14 099 ۵ 0 Friction Factor, f 0.65 ▲0.60 0 □ Ŭ.Ŭ ^Δ 0.60 1.94 0 0.2 1.0 ▲ 1.00 ▲2.03 0.62 1.0 ō 2.03 3.94 1.0 Simulated 3.93 3.94 7.47 0.3 Turf п 2.0 0 3.93⊾ 2.0 7.51 0.5 3.93 7.51 Δ •^{7.43} 0.60 0.60 7.43 2.C 0.10 0.85 ●^{0.85}1.80^{■2.0} 3.0 1.0 5.0 1.01 1.80 0.91 0.91 □ ▲4.10 4.100 2.0 ⁰ - 7.39 Concrete 2.01 7.39 A 5.20 7.60 3.73 3.20 -15.0 7.60 N'n •**3**.73 o Blasius 0.02 ю3 104 Reynoids Number, N_R Uniform Flow Rainfall Uniform Flow s, Rainfall s, 0.005 0.02 0 ۵ ٠ 0.01 0.02 V Δ T (Grass)

Fig. 15 Friction Factor vs. Reynolds Number for Rough Surfaces

dy /dx used in the computation of f could be in error since the surface profile was not well defined. In any case, the data does not support a clear effect of rainfall or the rough surfaces and it is felt that additional measurements are required.

4.3 - Velocity Profiles

Some typical velocity profiles obtained by Yoon (2) are shown in Figs. 16 and 17. The lines indicated the predicted profiles using Eqs. 2.7 and 2.9. Correlation of the lower part of the velocity profile with Eq. 2.7 indicated correlation coefficients ranging from 0.903 to 0.963. Values of the von Karman constant κ were found to be 0.190 and 0.212 for uniform flow without rainfall on slopes of 0.005 and 0.01 respectively. With rainfall κ ranged from 0.192 to 0.287, increasing with intensity.

Equation 2.9 was fitted to the upper portion of the profile using a least squares criterion to determine D with the κ values from the lower portion. It was found that the velocity gradient at the surface decreased with increasing rainfall intensity at a constant Reynolds number, increased with increasing Reynolds number at a constant intensity and was lower for the smaller slope and a given intensity and Reynolds number. The relative position of the point of maximum velocity at a given Reynolds number and slope decreased with increasing intensity, it increased with increasing Reynolds number at constant intensity and slope, and it decreased slightly with increasing slope at a constant intensity and Reynolds number. These results seem reasonable based on momentum considerations as discussed by Yoon.

The most significant effect of the rainfall is to cause a logarithmic type velocity profile with surface retardation at Reynolds numbers below 1,000 where the flow would normally be laminar. The logarithmic form of the lower part of the velocity profiles is indicative of the turbulence which is generated by the drops in the surface region and diffuses downward into the flow. The velocity retardation shown in the upper portion of the profiles indicates the local effects of drop impact. Reference is made to Yoon's work (2) for a detailed discussion of the profiles.

4.4 - Turbulence Measurements

4.4.1 - Turbulence Intensity Profiles

Typical absolute longitudinal turbulence intensity profiles for i = 3.75 in./hr as obtained by Yoon (2) are shown in Fig. 18. It is seen that the intensity decreases monotically from the surface. However, the relative intensity profiles shown in Fig. 19 indicate a minimum value in the central region and a sharp rise near the surface. This is in sharp contrast to the profile without rainfall as seen in the lower two graphs of Fig. 19. The effect of rainfall intensity for Reynolds numbers below 800 is significant throughout the profile, with higher relative turbulence intensity associated with higher rainfall intensity as might be expected. As the Reynolds number enters the transition region however, the turbulence generated from the boundary dominates the lower profile and rainfall intensity has little effect as seen in Fig. 19.

L 7

Fig. 19 Turbulence Intensity Profiles for $S_0 = 0.005$

÷

4.4.2 - Turbulent Energy Spectra

Energy spectra were obtained using the method described previously at three relative depths for the cases with and without rainfall at two different Reynolds numbers. In Fig. 20 the energy spectra for uniform flow of $N_R = 4000$ are shown. The total energy content is seen to increase with the decreasing relative depths, which could be expected in view of Eq. 2.15 and the turbulence intensity profile. The spectrum taken at $y/y_0 = 0.10$ shows a somewhat larger energy content at the lower frequencies $(n < 20 H_Z)$ than the spectrum further away from the boundary at $y/y_0 = 0.95$. This is in agreement with Raichlen's measurement (20).

In Figs. 21 and 22 the energy spectra for $N_{\rm R}$ = 4000, i = 3.75 and 15 in./hr are shown for different relative depths. In contrast to the uniform flow data, the total turbulent energy content at the same Reynolds number is much greater near the water surface than near the boundary. It is also greater near the boundary than near mid-depth possibly because the wall-generated turbulence intensity is higher at the boundary than at the mid-depth. This is well evidenced by the measured RMS velocity, u', shown in the figures. This shows, as do the turbulence intensity profiles, that much of the kinetic energy of the drops is transferred to turbulent energy near the surface. Another interesting finding is the effect of rainfall on the distribution of energy over the frequency range. It is shown that for both i = 3.75 and 15 in./hr the spectra at $y/y_0 = 0.95$ show an increasing energy content at higher frequencies compared to the uniform flow case and to the case of $y/y_0 = 0.10$ and 0.50 for both rainfall intensities. This agrees with the previous work done by Barfield (16). He reported that the time for which the autocorrelations becomes zero was markedly reduced

by rainfall. Furthermore, he observed a substantial reduction in the time scale of turbulence due to the superimposed rainfall. Since the spectral density function is the Fourier transform of the autocorrelation function, the result of decreasing the time for which correlation approaches zero is the same as increasing the energy spectrum at the higher frequencies.

The energy spectra for $N_R = 550$, i = 3.75 and 15 in./hr are presented in Figs. 23 and 24. This flow would normally be laminar without rainfall and hence would have no turbulence energy if no rainfall were present. However, as shown in the figures considerable energy is present at this low Reynolds number due to the presence of rainfall. The total energy content of turbulence decreases as the boundary is approached, which agrees with the result of the absolute turbulence intensity profile previously shown in Fig. 18. The tendency toward an increasing energy content at higher frequencies as the free surface is approached is also apparent in the figures.

The energy spectra shown in Figs. 20-24 are replotted in Figs. 25-29 and compared to those obtained by Laufer (21) and Raichlen (20). The abscissa and ordinate have been normalized by multiplying by y_0/u and u/y_0 , respectively.

It is seen in Fig. 25 that for uniform flow without rainfall the data indicate less energy at the higher frequencies than was observed by Laufer and Raichlen. This may be due to the significant difference in Reynolds numbers of the tests. Figures 26-29 all show clearly the shift of energy to higher frequencies, particularly near the surface, caused by rainfall.

Fig. 28 Normalized Turbulent Energy Spectra for $N_R = 550$, i = 3.75 in./hr

4.4.3 - Macroscale of Turbulence

The macroscale of turbulence were obtained using Eq. 2.18 with the estimation of n_{50} from the linear plot of F(n) versus n. The result is shown in Fig. 30. The macroscales were normalized with respect to the flow depth and are plotted as a function of relative depth, y/y_0 . The rainfall clearly reduces the macroscale throughout the depth for both Reynolds numbers studied. The macroscale is reduced with increasing intensity at a given relative depth and Reynolds number. This implies that rainfall reduces the turbulence macroscale, or eddy size, and increases the energy spectrum at the higher frequencies.

4.5 - Single Drop Impact Study

The mathematical model permitted the computation of the pressure and velocity fields, free surface and shear stress as functions of time. Details of the results were presented by Wang (1) and are merely summarized here.

Figure 31 shows a typical plot of the dimensionless experimental and theoretical maximum impact pressure at the bottom which occurs directly under the drop impact point, and the water layer depth, h, for various values of drop impact velocity, V_0 . Good agreement was obtained. Because the maximum pressure occurs very early in the process the non-linear terms in the equations have little effect and a dimensionless model for the maximum impact pressure at the bottom under the impact point was developed by plotting the data as shown in Fig. 32. A further dimensionless correlation of the radial pressure distribution along the bottom at the instant of maximum pressure is shown in Fig. 33.
Typical analytical results for the boundary shear stress at the bottom as functions of time and space are shown in Fig. 34. This shows that high local shears can develop. For example, using the water layer depth in Fig. 34 of 0.083 in., the boundary shear for uniform two-dimensional flow on a 1 percent slope is lower than the maximum shown by a factor of 1/42. This maximum is also approximately four times greater than the permissible tractive force for canals in noncohesive material with 1 mm particles as recommended by the Bureau of Reclamation. This would imply that the impact process would cause erosion.

Wang also presented examples of the vertical distribution of pressure, the velocity vector field and the configuration of the free surface. He showed that surface tension forces are significant throughout the impact process and that the region of influence of a drop is approximately one inch in diameter.

This work was limited because of the amount of computer time required but represents a first step in the deterministic approach to describing the effect of rainfall on sheet flow.

h (in.)

Fig. 31 Dimensionless Maximum impact Presure vs. Depth for d = 3.12 mm

Fig. 32 Dimensionless Pressure vs. h/d

d = 3.12 mm

V_o = 18.8 fps

Fig. 34 Shear Stress Variation with r and t

5. CONCLUSIONS

The following conclusions are made based on the work reported here and by Wang (1) and Yoon (2).

Concerning flow resistance:

- 1. On a hydraulically smooth surface the presence of rainfall superimposed on sheet flow causes an increase in the fraction factor providing the Reynolds number is below the fully rough range. For Reynolds numbers below 1,000 Eq. 4.3 together with Fig. 12 can be used to describe the resistance as a function of surface slope and rainfall intensity.
- The spacing of drops does not significantly effect resistance for the two spacings tested.
- The impact velocity of the drops does not effect the friction factor within a physically realistic range.
- 4. The Froude number is not significant in regard to resistance on the subcritical range of flow.
- 5. Surface roughness appears to lower the transition Reynolds number and thus lowers the upper bound on the Reynolds number range in which rainfall may have a significant effect on resistance.

Concerning the mechanics of sheet flow with rainfall:

 The local mean boundary shear stress computed from the spatially varied flow equation agrees well with measurements obtained using a flat surface hot-film sensor.

- Rainfall reduces the mean velocity at a given Reynolds number (below 1,500) and hence increases the depth.
- 3. The velocity profile with rainfall is characterized by retardation near the free surface. A two part model can be used to describe the lower and upper regions of the profile.
- 4. The momentum coefficient decreases with increasing Reynolds number and rainfall intensity, reaching a value of 1.06 in the transition region.
- 5. The longitudinal relative turbulence intensity at a given relative depth increases substantially with increasing rainfall intensities for Reynolds numbers below 800. As the Reynolds number increases beyond this value the effect decreases. At a given rainfall intensity the relative turbulence intensity decreases with increasing Reynolds numbers except on the surface region where the rainfall intensity effect is dominant.
- 6. Turbulent energy spectra show that rainfall causes a shift of energy to higher frequencies than would be the case for uniform flow. This is more prominant near the free surface than near the boundary.

Concerning the mechanics of single drop impact:

- The Synthetic-Cell-Fluid scheme introduced by Wang can be used to analyze this phenomenon.
- Dimensionless impact pressure models for maximum pressure under the impact point and radially along the boundary as shown in Figs. 33 and 34 have been developed.

- 3. Significant local disturbance within a one inch diameter region occurs.
- 4. A Strong boundary shear force is generated during the impact process, initially directed radially outward from the impact point and then
- inward at later stages of the phenomenon. The magnitude of this force can be sufficient to cause soil erosion.
- 5. Surface tension cannot be neglected in any phase of the impact process.
- 6. The total energy dissipated through viscous action is small in the early phases of the impact process.

Time did not permit a detailed study of the effect of surface roughness. This is an obvious next step in a systematic study of this subject. Previous related studies concerning roughness have suffered from a lack of clear definition of depth or rather crude apparatus or laboratory procedures. Any future study must be careful to overcome these deficiencies if satisfactory results are to be obtained.

and the second second

REFERENCES

- Wang, R.C.T., "The Mechanics of a Drop after Striking a Stagnant Water Layer," thesis presented to the University of Illinois in partial fulfillment of the degree of Doctor of Philosophy, Urbana, Ill., 1970.
 Also published as Univ. of Illinois Water Resources Center Report No. 30, by R.C.T. Wang and H. G. Wenzel, Jan. 1970.
- 2. Yoon, Y. N., "The Effect of Rainfall on the Mechanics of Steady Spatially Varied Sheet Flow on a Hydraulically Smooth Boundary," thesis presented to the University of Illinois in partial fulfillment of the degree of Doctor of Philosophy, Urbana, Ill., 1970.
- Izzard, C. F., "Overland Flow Tests -- Tabulated Hydrographs," U.S. Bureau of Public Roads, vol. 1-3, 1942-1943 (available from the Engineering Societies Library).
- Izzard, C. F. and Augustine, M. T., "Preliminary Report on Analysis of Runoff from Simulated Rainfall on a Paved Plot," <u>Trans.</u>, AGU, vol. 24, 1943, pp. 500-509.
- 5. Keulegan, G. H., "Spatially Variable Discharge over a Sloping Plane," Trans., AGU, part IV, 1944, pp. 956-958.
- Yen, B. C. and Wenzel, H. G., Jr., "Dynamic Equations for Steady Spatially Varied Flow," <u>Jour. Hydr. Div.</u>, ASCE, vol. 96, No. HY3, March, 1970, pp. 801-814.
- Izzard, C. F., "The Surface Profile of Overland Flow," <u>Trans.</u>, AGU, vol. 25, 1944, pp. 959-978.
- 8. Izzard, C. F., "Hydraulics of Runoff from Developed Surfaces," <u>Proc.</u>, Highway Research Board, 1946, pp. 129-146.
- 9. Woo, D. C. and Brator, E. F., "Spatially Varied Flow from Controlled Rainfall," Jour. Hydr. Div., ASCE, vol. 88, No. HY6, 1962, pp. 31-56.
- U. S. Army Engineer District, Los Angeles," Data Report, Airfield Drainage Investigation," Oct., 1954.
- 11. Yu, Y. S. and McNown, J. S. "Runoff from Impervious Surfaces," Jour. IAHR, vol. 2, No. 1, 1964, pp. 3-24.
- Robertson, A. F., Turner, A. K., Crow, F. R. and Ree, W. O., "Runoff from Impervious Surfaces under Conditions of Simulated Rainfall," <u>Trans.</u>, ASAE, vol. 9, 1966, pp. 343-346.
- 13. Smerdon, E. T., "Effect of Rainfall on Critical Tractive Force in Channels with Shallow Flow," Trans., ASAE, 7, 1964, pp. 287-290.

- Glass, L. J. and Smerdon, E. T., "The Effect of Rainfall on the Velocity Distribution in Shallow Channel Flow," <u>Trans.</u>, ASAE, 10, 1967, pp. 330-332, 336.
- 15. Threadgill, E. D. and Hermanson, R. E., "Effect of Rainfall on the Velocity Distribution and Tractive Force in a Triangular Open Channel," presented at the 1969 Meeting, Southeast Region, ASAE, Mobile, Alabama, Feb., 1969.
- 16. Barfield, B. J., "Studies of Turbulence in Shallow Sediment Laden Flow with Superimposed Rainfall," <u>Tech. Report, No. 11</u>, Water Rsources Institute, Texas A&M University, Jan., 1968.
- 17. Reynolds, O., "On the Action of Rain to Calm the Sea," Proc. Lit. and Phil. Soc., Manchester, 14, 1874-1875.
- Mutchler, C. K., "Using the Drift of Waterdrops During Fall for Rainfall Simulator Design," Jour. Geophysical Research, vol. 70, No. 16, 1965.
- Committee on Hydromechanics of the Hydraulics Division, ASCE, "Friction Factors in Open Channels," <u>Jour. Hydr. Div.</u>, ASCE, vol. 89, No. HY2, March, 1963, pp. 97-143.
- 20. Raichlen, F., "Some Turbulence Measurements in Water," <u>Jour. Engr. Mech.</u> <u>Div.</u>, ASCE, vol. 93, No. EM2, Apr., 1967, pp. 73-79.
- 21. Laufer, J., "Investigation of Turbulent Flow in a Two Dimensional Channel," Tech. Note, No. 2123, NACA, 1950.
- 22. Dryden, H. L., "A Review of the Statistical Theory of Turbulence," Quarterly of Applied Mathematics, Providence, R. I., vol. 1, 1943, pp. 7-42.
- Yen, B. C. and Wenzel, H. G., "Dynamic Equations for Steady Spatially Varied Flow," paper presented at ASCE Hydraulics Div. Conf., Minneapolis, Minn., Aug. 19-21, 1970.

APPENDIX

Surface Profile Data

	S	Ξ	0.001	
Drop	spacing	=	l in.	
	Ū	=	11.0	ft/sec

Note: X measured from upstream entrance Y measured normal to channel bottom

i = 1.00 in./hr	i = 1.00 in./hr	i = 1.00 in./hr	i = 1.00 in./hr	i = 1.00 in./hr
		$ \mathbf{q} = 2.040 \times 10^{-10} \times 10^{-10}$	q = 2.05/10 CIS/IL	$q = 3.030 \times 10^{\circ} \text{ cfs/fl}$
T = 71.6 ⁰ F	$T = 66.9^{\circ}F$	$T = 68.5^{\circ}F$	$T = 67.6^{\circ}F$	$T = 68.4^{\circ}F$
X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)
1	1	1		1
2	2	2	2	2
3 0.079	3 0.170	3 0.196	3 0.204	3 0.224
4 0.087	4	4		р ст <u>с</u> т
5 0.086	5 0.170	5 0,192	5 0.198	5 0.220
6 0.083	6	6	6	6
7 0.091	7 0,162	7 0 185	7 0 190	7 0 214
8	8	8	8	
o 0.097	9 0 170		0 0 199	0 0 217
				9 0.21/
11 0.099		10 108		
12 0 1 1 1				
		13 0.195	13 0.202	13 0.220
			14	
16	16	16 0.197	15 0.204	15 0.209
19		17 0.190	1/ 0.196	1/ 0.208
				18
19 0.129	19 0.176	19 0.190	19 0.196	19 0.205
20		20	20	20
	1 21 0.1/2	21 0.185		21 0.195
		22	22	22
23 0.184		23		23
24	24	24	24	24
	1		4	

	S	= 0.001	
Drop	spacing	= ~l in.	
	Ū	= 11.0 ft/sec	

Note:	Х	measured	from	ups	tre	am	entr	ance
	Y	measured	norma	el t	o c	han	nel	bottom

i = 1.00 in./hr $q_0 = 0.457 \times 10^{-2} \text{ cfs/ft}$	i = 1.00 in./hr $q_{0} = 0.795 \times 10^{-2} \text{ cfs/ft}$	i = 1.00 in./hr q_= 1.070×10 ⁻² cfs/ft	i = 1.00 in./hr $q_0 = 2.030 \times 10^{-2} \text{ cfs/ft}$	i = 1.01 in./hr q ₀ = 3.080x10 ⁻² cfs/ft
$T = 67.6^{\circ}F$	$T = 68.4^{\circ}F$	$T = 69.7^{\circ}F$	$T = 69.1^{\circ} F$	$T = 68.7^{\circ}F$
X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)
1	1	1	1	1
2	2	2	2	2
3 0.254	3 0.320	3 0.369	3 0.498	3 0.614
4	4	4	4	4
5 0.252	5 0.317	5 0.364	5 0.497	5 0.614
6	6	6	6	6
7 0.244	7 0.307	7 0.351	7 0.496	7 0.613
8	8	8	8	8
9 0.250	9 0.314	9 0.360	9 0,494	9 0.610
10	10	10	10	10
11 0.253	11 0.316	11 0.364	11 0.493	11 0.607
12	12	12	12	12
13 0.253	13 0.316	13 0.360	13 0.490	13 0.600
14		14		14
15 0.253	15 0.316	15 0.357	15 0.483	15 0.589
16	16	16	16	1 16
17 0.239	17 0.314	17 0.341	17 0.472	17 0.569
18		18	18	18
19 0.245	19 0.29/	19 0.332	19 0.457	19 0.546
20	20	20	20	20
21 0.225	21 0.2/6	21 0.316	21 0.435	21 0.518
22		22 0.296	22	22
23 0.197	23 0.244	23 0.277	23	23
24	24	24 *	24	24
L				

.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 12 12 12 12 12 12 12 12 12	X(ft) Y(in.) X(ft) YI 1 0.147 I 2 2 0.167 2 0.	$i = 4.95 in./hr$ $i = 4.91 in./q_0 = 0.0 cfs/ft q_0 = 0.212 \times 10^{-1}T = 67.6°F T = 63.8°F$	
.25 	.270	.245 .248 .248 .251 .260 .266 .266 .266 .266	(in.)	$\frac{1}{2} \operatorname{cfs/ft} \left \begin{array}{c} \mathbf{q}_{0} = 0 \\ \mathbf{q}_{0} = 0 \end{array} \right $	Note: X meas
0.300 0.278 0.242	0.320 0.319 0.309	0.000000000000000000000000000000000000	ft) Y(in.)	87 in./hr 495×10 ⁻² cfs/ft v 1 ⁰ F	U = 8.8 ft/sec ured from upstrea ured normal to ch
19 0.340 20 21 0.319 22 23 0.278 24	13 14 15 15 16 16 17 17 0.350 	4 5 6 0.353 7 0.353 9 0.355 10 0.366 11 0.364 	X(ft) Y(in.) 1 2 0.359	i = 4.99 in./hr q _o = 0.790×10 ⁻² cfs/ft T = 63.3°c	m entrance annel bottom
19 20 21 22 22 22 23 23 0.333 24 	13 14 14 0.424 15 0.417 16 17 0.401 18 	12 12 12 13 14 15 10 10 10 10 11 12 12 12 12 12 12 12 12 12	X(ft) Y(in.) 1 2 0.422 3 0.422	i = 4.91 in./hr q ₀ = 1.207×10 ⁻² cfs T = 62 5°F	

Drop spacing

് പ

0.001

. . .=

	Drop
	spacing
	B II II
1	0.001 1 in. 8.8 ft/sec

	Note:
~	\times
measured	measured
normal	from u
ť	l s dr
channe	ream en
l bottom	trance

- 498 - 95 - 95 - 95 - 95 - 95 - 95 - 95 - 95
2 4 70
- 59 - 82 - 59
665 677 664
(in.) .67 <u>6</u>
/hr -2 _{cfs/ft}

19 0.274 20 21 0.261 22 23 0.218 24	14 15 0.288 16 17 0.280 18	o 9 0.272 10 0.272 12 0.278 13 0.288		T = 65.7 F X(ft) Y(in.)	i = 10.44 in./hr q _o = 0.0 cfs/ft 	
19 0.348 20 21 0.325 22 23 0.285 24	14 15 0.368 17 0.361 18	o 9 0.363 11 0.368 12 0.372 13 0.373	0 7 6 5 4 3 2 - - - - - - - - - - - - -	T = 65.5°F X(ft) Y(in.)	i = 10.08 in./hr q _o = 0.500x10 ⁻² cfs/ft	Note:
19 0.413 20 21 0.391 22 23 0.348 24	14 15 0.441 16 17 0.426 18	0 9 10 11 11 12 12 13 0.444 		$T = 64.9^{\circ}F$ X(ft) Y(in.)	i = 10.04 in./hr q _o = 1.000x10 ⁻² cfs/ft	X measured from upstrea Y measured normal to ch
19 0.495 20 21 0.461 22 23 0.398 24	14 15 0.526 16 17 0.510 18	9 9 10 11 0.526 12 12 0.533 13 0.533	5 4 3 2 - 5 5 4 3 2 - 6 5 4 0 0 5 2 6 0 0 5 2 6 0 5 2 6 0 5 2 7	T = 66.0 F X(ft) Y(in.)	i = 9.95 in.hr 9 ₀ = 1.700×10 ⁻² cfs/ft	am entrance hannel bottom
19 0.615 20 21 0.554 22 23 0.493 24	14 15 16 17 17 0.640 18 0.617	8 9 10 11 12 13 0.666 13 0.659		$T = 66.2^{\circ}F$ X(ft) Y(in.)	i = 9.95 in./hr $q_0 = 3.000 \times 10^{-2} cfs/ft$	

 $S_{0} = 0.001$ Drop spacing = 1 in. U = 8.8 ft/sec

ηL

S _o = Drop spacing =	0.001 1 in.		
U =	8.8 ft/sec		
lote: X measured	from upstream entrance		

Note:	Х	measured	from	upst	ream	entr	ance
	Y	measured	norma	l to	char	nel	bottom

i = 10.08 in./hr -2	i = 10.12 in./hr	i = 14.99 in./hr	i = 14.99 in./hr	i = 14.81 in./hr
q _o = 3.670x10 ² cfs/ft	$q_0 = 4.370 \times 10^{-2} \text{ cfs/ft}$	$q_0 = 0.0 cfs/ft$	$q_0 = 0.467 \times 10^{-2} \text{ cfs/ft}$	$q_{0} = 1.052 \times 10^{-2} cfs/ft$
<u> </u>	$T = 64.6^{\circ}F$	$T = 61.7^{\circ}_{F}$	$T = 65.3^{\circ}F$	T = 64.7 [°] F
X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)
1	1	1	1	1
2 0.758	2 0.809	2 0.302	2 0.393	2 0.477
3 0.743	3 0.797	3 0.301	3 0.381	3 0.472
4 0.736	4 0.793	4 0.306	4 0.384	4 0.474
5 0.739	5 0.795	5 0.313	5 0.389	5 0.473
6 0.737	6 0.787	6 0.319	6 0.398	6 0.477
7 0.719	7 0.779	7 0.320	7 0.382	7 0.470
8 0.714	8 0.802	8 0.318	8 0.382	8 0.471
9 0.740	9 0.789	9 0.335	9 0. 39 7	9 0.486
10 0.739	10 0.809	10 0.342	10 0.407	10 0.492
11 0.730	11 0.785	11 0.347	11 0.412	11 0.492
12	12	12	12	12
13 0.721	13 0.787	13 0.354	13 0.419	13 0.491
14	14	14	14	14
15 0.716	15 0.768	15 0.359	15 0.413	15 0.490
16	16	16	16	16
17 0.686	17 0.739	17 0.346	17 0.405	17 0.472
18	18	18	18	18
19 0.649	19 0.723	19 0.339	19 0.392	19 0.466
20	20	20	20	20
21 0.627	21 0.689	21 0.317	21 0.372	21 0.438
22	22	22	22	22
23 0.559	23 0.600	23 0.276	23 0.336	23 0.381
24	24	24	24	24
<u></u>		<u> </u>		1

$S_o = 0.001$ Drop spacing = 1 in. U = 8.8 ft/sec

Note: X measured from upstream entrance Y measured normal to channel bottom

i = 14.99 in./hr	i = 14.99 in./hr	i = 15.30 in./hr
$q_0 = 1.770 \times 10^{-2} \text{cfs/ft}$	$q_0 = 3.230 \times 10^{-2} cfs/ft$	q _o = 5.970×10 ⁻² cfs/ft
$T = 63.1^{\circ}F$	T = 62.6 ⁰ F	$T = 63.5^{\circ}F$
X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

23 24 	22	21 0.062	19 0.055 20	81	17 0.051	16		13 0.059	12	11 0.056	10		Ž 0.045	6	5 0.039	 ۱ س ا	> - 	אנור) דנוח.)	T = 68.7°F	$q_0 = 0.0 \text{ cfs/ft}$	i = 0.95 in./hr	
23 24 	22	21 0.113	19 0.111 20 1	18	17 0.106	16 0.116		13 0.111	12	11 0.115	10		Ž 0.110	6	5 0.102	 3 0.107	2		$T = 68.5^{\circ}F$	$q_0 = 0.154 \times 10^{-2} \text{ cfs/ft}$	i = 0.95 in./hr	
23 24 	22	21 0.130	19 0.125 20	18	17 0.124	15 0.125	14	13 0.128	12	11 0.135	9 0.127) • 1 • 1	Ž 0.130	6	5 0.122	 3 0.131		א(דב) א(יח.)	$T = 68.0^{\circ}F$	q _o = 0.267x10 ⁻² cfs/ft	i = 0.01 in./hr	Y measured normal to ch
23 24 	22	21 0.152	19 0.156	81	17 0.155	16 0.160	14	13 0.158	12	11 0.156	10 //) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0	7 0.159	6	5 0.147	2 0.152		X(ft) Y(In.)	T = 68.2 ⁰ F	$q_0 = 0.459 \times 10^{-2} \text{ cfs/ft}$	i = 1.00 in./hr	hannel bottom
24	22	21 0.165	19 0.171	8	17 0.169	15 0.180	14	13 0.170	12	11 0.173	10) (0)) 	7 0.185		עער 0 בין ע	3 0 169		X(ft) T(In.)	T = 68.0 ⁰ F	$ q_0 = 0.657 \times 10^{-2} \text{ cfs/f}$	i = 1.03 in./hr	

S₀ = 0.005 Drop spacing = °l in. U = 11.0 ft/sec ġġ

Note: X measured from upstream entrance

LL

3 0.210 4 0.201 6 0.201 9 0.201 10 0.221 12 0.228 14 0.221 15 0.221 18 0.221 19 0.221 20 0.221 22 0.221	X(ft) Y(in.) X 1 2	i = 1.01 in./hr i = $q_0 = 1.083 \times 10^{-2} \text{ cfs/ft} q_0 =$ T = 67.8°F T =	
3 3 4 4 4 4 4 4 4 4 5 4 4 4 5 4 4 5 4 4 5 4 10 9 9 0 0 32 6 11 10 0 32 6 11 10 0 32 6 11 10 0 32 6 11 10 0 32 6 11 10 0 32 6 11 10 0 32 6 11 10 0 32 6 11 10 0 32 6 11 10 0 32 6 11 10 0 32 6 11 10 0 32 6 11 10 0 32 6 11 12 0 32 6 13 20 0 32 6 13 20 0 32 6 13 20 0 32 6 13 20 0 32 6 13 20 0 32 6 14 19 0 0 32 8 19 0 0 32 8 19 0 0 32 8 19 0 0 32 8 19 0 0 32 8 19 0 0 32 8 19 0 0 32 8 10 10 0 32 8 10 10 10 10 10 10 10 10 10 10	2	1.03 in./hr 2.460x10 ⁻² cfs/ft q _c	Drop s Note: X
3 4 4 5 6 0.522 7 10 10 10 12 12 0.502 14 12 0.502 14 12 0.502 14 15 0.502 16 0.509 16 0.509 16 0.509 16 0.510 16 0.509 16 0.510 19 0.509 19 0.486 19 0.510 19 0.509 10 0.505 10 0.505 10 0.505 10 0.505 10 10 0.505 10 10 0.505 10 10 0.505 10 10 10 10 10 10 10 10 10 10	X(ft) Y(in.) 1 2	i = 1.01 in./hr _ = 5.460x10 ⁻² cfs/ft r = 67.1°F	spacing = 0.005 U = 1 in. U = 11.0 ft/sec measured from upstrea measured normal to ch
3 0.173 4 0.173 6 0.173 9 0.173 11 0.179 12 0.179 12 0.179 14 0.189 15 0.194 16 0.189 19 0.185 18 0.185 22 0.184 23 0.184	X(ft) Y(in.) 1 2	i = 2.72 in./hr q _o = 0.615x10 ⁻² cfs/ft T = 66.3 ⁰ F	om entrance bannel bottom
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X(ft) Y(in.) 1 2 0.210	i = 2.72 in./hr $q_0 = 0.856 \times 10^{-2} cf_{s}/ft$ T = 66.7°F	

		Y measured normal to c	hannel bottom	
i = 2.68 in./hr U = 11.0 ft/sec $q_0 = 1.190 \times 10^{-2} cfs/ft$ T = 68.9°F	i = 2.76 in./hr U = 11.0 ft/sec $q_0 = 1.73 \times 10^{-2} cfs/ft$ T = 66.2°F	i = 4.93 in./hr U = 8.8 ft/sec $q_0 = 0.0 cfs/ft$ T = 64.0 ⁰ F	i = 4.93 in./hr U = 8.8 ft/sec $q_0 = 4.060 \times 10^{-2} cfs/ft$ T = 63.7°F	i = 4.91 in./hr U = 21.0 ft/sec q _o = 0.0 cfs/ft T = 70.8 ⁰ F
X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
22 0.224 23 0.219 24	22 23 0.255 24	22 0.122 23 24	22 0.428 23 24	22 0.136 23 24
				· · · · · · · · · · · · · · · · · · ·

Note: X measured from upstream entrance

 $S_0 = .0.005$ Drop spacing = 1 in.

				······	
20 0.175 21 0.161 22 0.166 23 0.161 24	12 13 14 15 15 16 0.152 16 0.165 18 0.166 19 0.164	 	X(ft) Y(in.) 1 2	i = 4.98 in./hr q _o = 0.240x10 ⁻² cfs/ft T = 70.5 ⁰ F	
20 0.176 21 0.182 22 0.170 23 0.177 24	12 13 14 14 15 14 15 0.180 17 0.180 18 0.173 19 0.177	4 4 5 6 0.155 0.158 0.154 0.154 0.161 0.173 0.184	X(ft) Y(in.)	i = 4.99 in./hr q _o = 0.405×10 ⁻² cfs/ft T = 71.0 ⁰ F	Note:
20 21 21 0.195 22 0.185 23 0.187 24 	12 13 14 15 15 16 0.196 17 0.198 18 0.191 19 0.193	3 4 5 6 7 8 0.177 9 0.172 9 0.173 11 0.191 0.197	X(ft) Y(in.) 1 2	i = 4.93 in./hr $q_0 = 0.647 \times 10^{-2} \text{ cfs/ft}$ $T = 66.4^{\circ}\text{F}$	X measured from upstrea Y measured normal to ch
20 21 21 22 22 0.237 23 0.234 24 0.229	12 13 14 15 15 16 0.244 16 0.244 17 0.236 18 0.236 19 0.229	3 4 0.218 6 0.224 7 0.224 9 0.225 10 0.225 11 0.239 0.239	X(ft) Y(in.) 1 2	i = 4.91 in./hr q _o = 0.937×10 ⁻² cfs/ft T = 70.0 ⁰ F	am entrance hannel bottom
20 21 21 22 22 0.432 23 0.419 23 0.415 24 	12 13 14 15 0.422 15 0.429 16 0.447 16 0.437 18 0.437 18 0.437 18 0.439 19 0.429 19 0.429	3 4 5 6 7 6 0.425 9 0.425 10 0.433 10 0.441 0.417 0.417	X(ft) Y(in.) 1 2	i = 4.99 in./hr q _o = 4.450x10 ⁻² cfs/ft T = 68.0 [°] F	

 $S_{0} = 0.005$ Drop spacing = 1 in. U = 21.0 ft/sec

. . . .

X(ft) 10001 120001 140001 150001 220001 150001 1000000	i = 7.65 in./h U = 8.8 ft/sec _D = 0.0 cfs/ft T = 63.5 ⁰ F
× 222210987654321 243210987654321 (f	i = 11.65 U = 8.8 f o = 0.262 T = 59.5 ⁰
Y(In.) Y(In.)	Note in./hr t/sec x10 ⁻² cfs, F
n an	
× × × × × × × × × × × × × ×	X measured Y measured i = 9.95 i U = 21.0 f q ₀ = 0.262x T = 67.7 ^o F
<pre>(in) (in) (in) (in) (in) (in) (in) (in)</pre>	from upstre normal to c normal to c normal to c normal to c normal to c t/sec t/sec t/sec t/sec
	tt q _o U -i nn
$\begin{array}{c} \times & \times \\ \times \\$	entrance nel bottor = 9.95 i = 21.0 f = 0.245x = 66.7 ⁰ F
<pre>~ (17) ~ (1</pre>	n ./∺r n./∺r t/sec 10-2 cfs/
a series and a series and a series and a series and a series of the seri	
х 2 2 2 2 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2	i = 9.90 i j = 21.0 f $_{0} = 0.373x$ $_{1} = 67.6^{0}F$
Y(in.) 0.170 0.174 0.175 0.175 0.175 0.177 0.178 0.178 0.178 0.219 0.219 0.225 0.225 0.225 0.225 0.225 0.223 0.223 0.223 0.234 0.238 0.238	h./hr t/sec 10 ⁻² cfs/
	ı → 1

. م ا -

Contraction of

جد: : :

ŗ

 $S_0 = 0.005$ Drop spacing = 1 in.

1242 į.

18

Drop	
spacing	Ś
. 11	1
l'in.	0.005

2.4	-			
24	24	24	24.5	24.5
23	23 0.509	23 0.418	23.5 0.343	23.5 0.267
22 0 20	22 0.538	22 0.393	22.5 0.301	22.5 0.300
2]	21 0.514	2] 0.410	21.5 0.310	21.5 0.296
20° 0.21:	20 0.537	20 0.419	20.5 0.352	20.5 0.317
	19 0.520	19 0.418	19.5 0.354	19.5 0.321
18 0.20	18 0.541	18 0.428	18.5 0.360	18.5 0.319
	17 0.525	17 0.408	17.5 0.357	17.5 0.307
16 0.200	16 0.541	16 0.446	16.5 0.359	16.5 0.301
15	15 0.560	15 0.451	15.5 0.354	15.5 0.313
14 0.195	14 0.513	14 0.411	14.5 0.373	14.5 0.302
	13 0.508	13 0.362	13.5 0.349	13.5 0.302
12 0.176	12 0.563	12 0.403	12.5 0.325	12.5 0.295
<u> </u>	11 0.532	11 0.416	11.5 0.370	11.5 0.318
10 0.168	10 0.482	10 0.410	10.5 0.350	10.5 0.315
9	9 0.486	9 0.413	9.5 0.339	9.5 0.293
8 0.14	8 0.517	8 0.415	8,5 0.265	8.5 0.268
7	7 0.523	7 0.394	7.5 0.328	7.5 0.286
6 0.13	6 0.513	6 0.394	6.5 0.331	6.5 0.268
ۍ ۱	5 0.490	5 0.397	5.5 0.311	5.5 0.281
4 0.12	ų 0.491	4 0.404	4.5 0.335	4.5 0.269
ں ا ا	3 0.509	ω 1	3.5 0.327	3.5 0.274
2 0.11	2 0.505	2	2.5 0.316	2.5 0.267
	1 0.493		1.5 0.327	1.5 0.294
X(ft) Y(in	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)
$T = 64.4^{\circ}F$	$\ddot{T} = 67.3^{\circ}F$	$\ddot{T} = 65.4^{\circ}F$	$T = 66.5^{\circ}F$	$T = 65.9^{\circ}F$
q_ = 0.0 cfs/ft	$q_{2} = 6.00 \times 10^{-2} \text{ cfs/ft}$	$q_{\rm A} = 3.930 \times 10^{-2} {\rm cfs/ft}$	q _o = 1.890x10 ⁻ cfs/ft	$q_0 = 1.377 \times 10^{-2} \text{ cfs/ft}$
U = 8.8 ft/sec	U = 21.0 ft/sec	U = 21.0 ft/sec	U = 21.0 ft/sec	U = 21.0 ft/sec
1 = 14 99 in /h	i = 10.03 in./hr	i = 9.95 in./hr	i = 9.95 in./hr	i = 9.95 in./hr
·	nannel bottom	Y measured normal to ch		
	am entrance	X measured from upstrea	Note:	

28

	S	=•	0.005
Drop	spacing	=	l in.
 ·	U U	=	8.8 ft/sec

Warnen

Note:	Х	measured	from	upstream	entrance	
					-	

X	measured	Trom up	ostream ent	rance	
Υ.	measured.	normal	to channel	bottom	1

	Note: X Y	X measured from upstrea Y measured normal to cl	am entrance hannel bottom	
i = 15.44 in./hr $q_0 = 0.357 \times 10^{-2} \text{ cfs/f}$ $T = 63.0^{\circ} \text{F}$	i = 14.99 in./hr $q_0 = 0.443 \times 10^{-2} \text{ cfs/ft} q$ $T = 66.4^{\circ} \text{F}$	i = 15.01 in./hr $q_0 = 1.010 \times 10^{-2} \text{ cfs/ft}$ $T = 64.6^{\circ}\text{F}$	i = 14.99 in./hr $q_0 = 1.270 \times 10^{-2} \text{ cfs/ft}$ $T = 65.1^{\circ}\text{F}$	i = 14.99 in./hr q _o = 1.750x10 ⁻² cfs/ft T = 65.9 ⁰ F
$\begin{array}{ccccc} X(ft) & Y(in.) \\ 1 & \\ 2 & \\ 3 & 0.197 \\ 4 & 0.201 \\ 5 & 0.200 \\ 6 & 0.211 \\ 7 & 0.209 \\ 8 & 0.206 \\ 9 & 0.218 \\ 10 & 0.239 \\ 11 & 0.243 \\ 12 & 0.243 \\ 12 & 0.243 \\ 13 & 0.237 \\ 14 & 0.258 \\ 15 & 0.264 \\ 16 & 0.265 \\ 18 & 0.265 \\ 18 & 0.265 \\ 19 & 0.273 \\ 20 & 0.277 \\ 21 & 0.270 \\ 22 & 0.262 \\ 23 & 0.274 \\ 24 & \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

s

83 1 450

.

S_o = 0.005 Drop spacing = 1 in.

Note:	Xm	easured	from	upst	ream	entr	ance
	Ym	easured	norma	1 to	char	nel	bottom

i = 21.96 in./hr U = 8.8 ft/sec $q_0 = 0.0 cfs/ft$ T = ff 2°f	i = 18.00 in./hr U = 21.0 ft/sec $q_0 = 0.0 cfs/ft$ T = 65.2°r	i = 18.00 in./hr U = 21.0 ft/sec q = 0.366x10 ⁻² cfs/ft	i = 18.00 in./hr U = 21.0 ft/sec q = 1.117x10 ⁻² cfs/ft	i = 18.00 in./hr U = 21.0 ft/sec q = 2.100x10 ⁻² cfs/ft
(-1 - 55.3 F)	1 = 05.2 + 100.2 + 1	1 = 65.3 +	$1 = 63.1^{-1}F$	= 03.0 F
	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)
1	1 0.106	1 0.199	1 0.277	1 0.330
2	2 0.108	2 0.198	2 0.277	2 0.340
3 0.168	3 0.113	3 0.199	3 0.276	3 0 .339
4 0.156	4 0.134	4 0.203	4 0.281	4 0 .345
5 0.157	5 0.136	5 0.205	5 0.271	5 0.325
6 0.171	6 0.155	6 0.221	6 0.295	6 0.358
7 0.175	7 0.140	7 0.214	7 0.292	7 0.370
8 0.173	8 0.146	8 0.211	8 0.284	8 0.327
9 0.187	9 0.164	9 0.222	9 0.300	9 0.340
10 0.215	10 0.177	10 0.245	10 0.320	10 0.383
11 0.225	0.191	11 0.269	11 0.328	11 0.352
12 0.216	12 0.194	12 0.245	12 0.3 20	12 0.359
13 0.223	13 0.201	13 0.263	13 0.311	13 0.352
14 0.245	14 0.217	14 0.261	14 0.327	14 0.380
15 0.254	15 0.211	15 0.277	15 0.328	15 0.389
16 0.255	16 0.218	16 0.278	16 0.338	16 0.373
17 0.257	0.223	17 0.279	17 0.332	17 0.361
18 0.263	18 0.223	18 0.284	18 0.333	18 0.380
19 0.273	19 0.225	19 0.279	19 0.338	19 0.380
20 0.279	20 0.218	20 0.275	20 0.336	20 0.394
21 0.281	21 0.226	21 0.270	21 0.326	21 0.358
22 0.279	22 0.232	22 0.276	22 0.325	22 0.315
23	23 0.233	23 0.272	23 0.322	23 0.311
24	24	24	24	24

• •	Note:	X measured from upstrea Y measured normal to cl	am entrance hannel bottom		
i = 17.77 in./hr $q_0 = 3.970 \times 10^{-2} \text{ cfs/ft}$	i = 17.77 in./hr q _o = 5.170x10 ⁻² cfs/ft	i = 17.87 in./hr q _o = 6.170x10 ⁻² cfs/ft	i = 20.52 in./hr q _o = 9.770×10 ⁻² cfs/ft	i = q _o =	cfs/ft
$T = 63.3^{\circ}F$	$T = 63.5^{\circ}F$	$T = 63.9^{\circ}F$	$T = 62.7^{\circ}F$	Τ=	
X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft)	Y(in.)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	

 $S_0 = 0.005$ Drop spacing = 1 in. U = 21.0 ft/sec

21 22 23 0.106 24 	18 19 0.103 20	13 14 15 16 16 17 0.105	9 0.108 10 11 0.097 12	4 5 6 7 7 0.103 8 	X(ft) Y(in.) 1 2 3 0.104	i = 0.50 in./hr q _o = 0.148x10 ⁻² cfs/ft T = 67.0 ⁰ F
21 22 23 23 24 24 24 24	18 19 20 	13 14 15 15 16 17 0.123	9 0.126 10 11 0.116 12	4 5 6 7 7 0.115 8 	X(ft) Y(in.) 1 2 3 0.119	i = 0.50 in./hr q _o = 0.252x10 ⁻² cfs/ft T = 68.8 ⁰ F
21 0.143 22 23 0.140 24	18 19 20 	13 14 15 16 17 0.151 17 0.147	9 0.152 10 11 0.147 12	4 5 6 7 7 0.146 8 	X(ft) Y(in.) 1 2 3 0.150	Y measured normal to ch i = 0.50 in./hr q _o = 0.371×10 ⁻² cfs/ft T = 66.8 ⁰ F
21 22 23 24 	18 19 20 	13 14 15 16 17 0.156	9 0.155 10 11 0.149 12	4 5 0.147 6 7 0.152 8	X(ft) Y(in.) 1 2 3 0.155	iannel bottom i = 0.50 in./hr q _o = 0.459x10 ⁻² cfs/ft T = 70.1 ⁰ F
21 0.164 22 23 0.155 24	18 19 0.166	13 14 15 16 17 17 0.156	9 0.171 10 11 0.156 12	4 5 0.166 7 0.167 8	X(ft) V(in.) 1 2 3 0.158	i = 0.50 in./hr q _o = 0.562x10 ⁻² cfs/ft T = 70.5 ⁰ F

So = 0.005 Drop spacing = 2 in. U = 11.0 ft/sec Note: X measured from upstream entrance

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X(ft) Y(in.) X(ft) Y(i 1 1 1 2 2 3 0.181 3 0.2 4 5 0.174 5 0.1	i = 0.50 in./hr $i = 0.50 in./lq_0 = 0.676 \times 10^{-2} \text{ cfs/ft} q_0 = 0.818 \times 10^{-2}T = 69.5^{\circ}\text{F} T = 70.8^{\circ}\text{F}$
200 21 0.207 22 87 22 87 23 0.197 24	85 13 14 14 15 15 16 17 0.224 18 19 0.208 19 0.191	96 102 7 96 103 7 96 100 7 96	n.) X(ft) Y(in.) 1 2 2 2 3 0.204 4 82 5 0.189	Note: A measured from upstree Y measured normal to c r i = 0.50 in./hr $c_{fs/ft} q_0 = 0.942 \times 10^{-2} c_{fs/ft}$ T = 69.9°F
20 21 22 22 23 23 2. 24 0.209 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 7 8 9 0.217 10 11 0 .218 12 	X(ft) Y(in.) 1 2 3 0.218 4 5 0.206	eam entrance channel bottom i = 0.50 in./hr t q _o = 1.026x10 ⁻² cfs/ft T = 70.8°F
20 21 22 22 23 23 2.3 0.253 24 	13 14 15 15 16 17 17 0.273 18 19 0.258 19 0.254	6 7 8 9 10 11 10 0.267 12 0.260	X(ft) Y(in.) 1 2 3 0.261 4 4	i = 0.50 in./hr q _o = 1.610×10 ⁻² cfs/ft T = 68.3 ⁰ F

ζ8

S = 0.005 Drop spacing = 2 in. U = 11.0 ft/sec

ï

۰. ان

			<u></u>	·1
20 21 0.350 22 23 0.336 24	12 13 14 15 15 15 15 0.325 16 17 17 0.344 19 0.341	5 6 7 8 9 0.347 10 0.351	X(ft) Y(in.) 1 2 3 0.362	i = 0.50 in./hr q _o = 2.710×10 ⁻² cfs/ft T = 68.3 [°] F
20 21 21 22 23 23 24 	12 13 14 15 15 16 17 17 18 17 19 0.440 19 0.427	5 6 7 8 9 10 11 11 0.449	X(ft) Y(in.) 1 2 3 0.464 4	i = 0.50 in./hr q _o = 4.290×10 ⁻² cfs/ft T = 68.8 ⁰ F
20 21 0.512 22 23 0.503 24	12 13 14 14 15 15 0.520 16 17 0.524 18 19 0.524	5 6 7 8 9 9 0.508 10 0.509 11 0.534	X(ft) Y(in.) 1 2 3 0.569	Y measured normal to ch i = 0.50 in./hr $q_0 = 6.048 \times 10^{-2} cfs/ft$ $T = 68.3^{\circ}F$
20 21 22 22 23 23 24 24 	12 13 14 15 15 16 17 16 17 0.113 18 0.115 19 0.118	65 1 67 65 1 7 0.123 110 0.123 110 0.123	X(ft) Y(in.) 1 2 0.125 3	i = 1.25 in./hr $q_0 = 0.173 \times 10^{-2} cfs/ft$ $T = 68.6^{\circ}F$
20 21 22 22 23 0.129 24 0.130	12 13 14 14 15 15 15 0.124 16 18 0.133 19 0.127	65	X(ft) Y(in.) 1 2 0.137 3	i = 1.25 in./hr q _o = 0.230x10 ⁻² cfs/ft T = 68.6 ^o F

S₀ = 0.005 Drop spacing = 2 in. U = 11.0 ft/sec Note: X measured from upstream entrance

-88

	S	= *.	0.005
Drop	spacing	=	2 in.
	U	=	ll.0 ft/sec

.

Note: X measured from upstream entrance Y measured normal to channel bottom

		. *		T measureu			Jiii		
i = 1.25 $q_0 = 0.32$ T = 69.9	in./hr 9x10 ⁻² cfs/ft ⁰ F	i = 1.25 $q_0 = 0.43$ T = 69.9	in./hr 5x10 ⁻² cfs/ft ⁰ F	i = 1.25 $q_0 = 0.560$ $T = 67.6^{\circ}$	in./hr x10 ⁻² cfs/ft F	i = 1.25 $q_0 = 0.701$ $T = 68.3^{\circ}$	in./hr x10 ⁻² cfs/ft F	i = 1.25 $q_0 = 0.825$ $T = 68.3^{\circ}$	in./hr x10 ⁻² cfs/ft F
				1 - 0/10			·		
X(ft)	Y(in.)	X(ft)	Y(in.)	X(ft)	Y(in.)	X(ft)	Y(in.)	X(ft)	Y(in.)
1		1	. 	1	·	. 1	 .	1	
2	0.155	2	0.171	2	0.185	2	0.209	2	0.226
3		3		3		3		3	
4	0.134	4	0.151	4	0.170	4	0.187	4	0.200
5	·	5		5		5	'	5	
6	0.138	6	0.149	6	0.170	6	0.192	6	0.210
7		7		7		7		7	
8	0.126	8	0.138	8	0.153	8	0.181	8	0.199
9		9		9		9		9	
10	0.147		0.165		0.1//	10	0.202	10	0.224
12	0.142		0.154	12	0.1/1	12	0.194	12	0.209
13	0.143	15	0.152	13	0.169	13	0.109	13	
1.4		14	0 161	14	0 177	14	0 202	14	0.215
15	0.146	16		16	0.177	16	0.205	16	0.210
17	0 1/17	17	0.155	10	0 175	10 17 ·	0.195		0 215
18		18		18		18		18	
19	0 140	19	0.156	19	0.169	19	0.190	19	0.212
20		20		20		20		20	
21	0.146	21	0.158	21	0.175	21	0.194	21	0.211
22		22		22		22		22	'
23	0.147	23	0.155	23	0.176	23	0.191	23	0.209
24		24		24		24		24	.
		ł		·					

۰.,

.

	S	=	0.005	5
Drop	spacing	=	2 in.	
	U	=	11.0	ft/sec

Note:	Х	measured	from	up	str	ream	enti	rance
	Y	measured	norma	1	to	char	nel	bottom

i = 1.25 in./hr $q_0 = 0.927 \times 10^{-2} \text{ cfs/ft}$	i = 1.25 in./hr $q_0 = 1.026 \times 10^{-2} cfs/ft$	i = 1.25 in./hr $q_0 = 1.590 \times 10^{-2} \text{ cfs/ft}$	i = 1.25 in./hr $q_0 = 2.650 \times 10^{-2} \text{ cfs/ft}$	i = 1.25 in./hr $q_0 = 4.230 \times 10^{-2} \text{cfs/ft}$
$T = 68.8^{\circ}F$	$T = 69.4^{\circ}F$	$T = 68.3^{\circ}F$	$T = 69.0^{\circ} F$	$T = 69.3^{\circ}F$
X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)
1	1	1	1	1
2 0.241	2	2	2	2
3	3 0.220	3 0.265	3 0.350	3 0.468
4 0.205	4	4	4	4
5	5 0.211	5 0.249	5 0.332	5 0.421
6 0.216	6	6	6	6
7	/ 0.230	7 0.274	7 0.332	7 0.437
8 0.202	8	8	8	8
9	9 0.213	9 0.243	9 0.321	9 0.425
			12 0.332	12 0.425
	14 0 224	14 0 255		13
15 0.231	15	15		14 0.420
16	16 0.207	16 0.250	16 0.336	16 0 434
17 0.223	17	17		
18	18 0.219	18 0.257	18 0.346	18 0.431
19 0.213	19	19	19	19
20	20 0.212	20 0.247	20 0.332	20 0.421
21 0.223	21	21	21	21
22	22 0.217	22 0.251	22 0.343	22 0.431
23 0.208	23 0.217	23 0.253	23 0.366	23 0.429
24	24	24	24	24

	S	= -	0.005
Drop	spacing	=	2 in.
	U sin	=	<pre>ll.0 ft/sec</pre>

I.

Note: X measured	from	upstream	entrance
------------------	------	----------	----------

Y measured normal to channel bottom

•

i = 3.74 in./hr $q_0 = 0.983 \times 10^{-3} \text{ cfs/ft}$	i = 3.74 in./hr $q_0 = 0.260 \times 10^{-2} \text{ cfs/ft}$	i = 3.74 in./hr $q_0 = 0.484 \times 10^{-2} \text{ cfs/ft}$	i = 3.74 in./hr $q_0 = 0.638 \times 10^{-2} \text{ cfs/ft}$	i = 3.74 in./hr $q_0 = 0.840 \times 10^{-2} \text{ cfs/ft}$			
T = 66.3 F	$T = 66.9^{\circ}F$	T = 67.2 F	T = 67.8°F	T = 69.0 F			
X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)			
1	1	1	1	1			
2	2	2 0.198	2	2			
3 0.112	3 0.142	3	3 0.205	3 0.233			
4		4 0.183		4			
5 0.116			5 0.204	5 0.220			
	7 0 153						
8	8	8 0,170		/ 0.235			
9 0.124	9 0.165	9	9 0 218	9 0 240			
10	10	10 0.193	10				
11 0.123	11 0.149	11	11 0.204	11 0.229			
12	12	12 0.189	12	12			
13 0.126	13 0.150	13 0.193	13 0.211	13 0.243			
14	14	14	14	14			
15 0.133	15 0.156	15 0.199	15 0.216	15 0.244			
16			16	16			
17 0.131			17 0.214	17 0.244			
	19 0.159	19 0.192	19 0.215	19 0.240			
20	20		20	20			
	27	21 0.202		21 0.245			
23 0.139	23 0.161	23 0.197	22				
24	24	24	24	24			
							

S_o = 0.005 Drop spacing = 2 in. U = 11.0 ft/sec

Note: X measured from upstream entrance Y measured normal to channel bottom

i = 3.74 in./hr $q_0 = 1.081 \times 10^{-2} \text{ cfs/ft}$	i = 3.74 in./hr $q_0 = 1.539 \times 10^{-2} \text{ cfs/ft}$	i = 3.74 in./hr q = 2.062×10 ⁻² cfs/ft	i = 3.74 in./hr $q_0 = 3.136 \times 10^{-2} \text{ cfs/ft}$	i = 3.74 in./hr $q_0 = 4.222 \times 10^{-2} \text{cfs/ft}$			
$T = 67.4^{\circ}F$	$T = 67.2^{\circ} F$	$T = 67.7^{\circ}F$	$T = 68.1^{\circ}F$	$T = 68.3^{\circ}F$			
X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)			
1	1	1	1				
2	2	2	2	2			
3 0.250	3 0.247	3 0.311	3 0.376	3 0.468			
4	4	4	4	4			
5 0.236	5 0.260	5 0.278	5 0.361	5 0.462			
6	6	6	6	6			
7 0.262	7 0.286	7 0.306	7 0.373	7 0.443			
8	8	8	8	8			
9 0.277	9 0.293	9 0.304	9 0.379	9 0.436			
10	10	10	10	10			
11 0.245	0.273	11 0.306	11 0.374	11 0.446			
12			12	12			
13 0.235	13 0.261	13 0.282	13 0.366	13 0.455			
15 0.262	15 0.296	15 0.321	15 0.404	15 0.454			
				16			
1/ 0.254		1/ 0.304					
19 0.240	20	19 0.296	19 0.397	19 0.435			
20							
	27 0.290	21 0.31/		21 0.453			
23 0 216	23 0.269	23 0 295	23 0.384	22 = -			
	24	24	25 0.504				

S₀ =-0.01 Drop spacing = 1 in. U = 11.0 ft/sec 1

Note: X measured from upstream entrance Y measured normal to channel bottom

21 22 22 23 24 	14 15 0.086 16 17 0.071 18 19 0.075	7 0.080 8 10 0.076 11 0.079 12 13 0.078	X(ft) Y(in.) 1 2 3 0.080 4 5 0.076 6	i = 0.99 in./hr $q_0 = 0.115 \times 10^{-2} cfs/ft q_0$ $T = 70.7^{0}F$
21 0.094 22 23 24	14 15 16 17 17 0.093 18 19 0.088 	7 0.090 8 9 0.085 10 11 0.085 12 0.089 13 0.090	X(ft) Y(in.) 1 2 3 0.095 4 5 0.089 6	; = 0.99 in./hr ₅ = 0.204x10 ⁻² cfs/ft T = 70.4 [°] F
21 22 22 23 24 24 	14 15 16 17 17 0.105 18 19 0.103	7 0.103 8 9 0.098 10 11 0.103 12 13 0.102	X(ft) Y(in.) 1 2 3 0.104 4 5 0.098 6	i = 1.00 in./hr q _o = 0.303x10 ⁻² cfs/ft T = 70.0 [°] F
20 21 22 22 23 0.124 24 24 	14 15 16 16 17 17 0.126 18 	7 0.126 8 9 0.119 10 11 0.121 12 13 0.123	X(ft) Y(in.) 1 2 3 0.129 4 5 0.115 6	i = 0.99 in./hr q _o = 0.480×10 ⁻² cfs/ft T = 71.0 ⁰ F
20 21 22 22 23 23 0.143 24 	14 15 16 17 17 0.146 19 0.147 	7 8 9 10 11 12 13 0.141 12 13 0.141	X(ft) Y(in.) 1 2 3 0.149 4 5 0.144 6	i = 0.99 in./hr q _o = 0.792x10 ⁻² cfs/ft T = 71.4 ^o F

		21 0.166 21 0.211 2	20 20 2	19 0.165 19 0.209 1		17 0.164 17 0.209 1		15 0.168 15 0.209 1		13 0.158 13 0.210 1		11 0.161 11 0.208 1	i 01 01	9 0.161 9 0.209	8 1	7 0.163 7 0.213	6 6	5 0.167 5 0.221	4 4 0.213	3 0.170 3 0.209	2 2 1	 X(ft) Y(in.) X(ft) Y(in.) X($T = 71.7^{\circ}F$ $T = 69.8^{\circ}F$ $T = 7$	$q_0 = 1.017 \times 10^{-2} cf_s/ft q_0 = 1.790 \times 10^{-2} cf_s/ft q_0 = 2$	i = 0.99 in./hr i = 0.97 in./hr i = 0	Note: X meas Y meas
	0.248		0 0.252	و -	8 0.248	7	6 0.259	U1	4 0.246	ω ¦	2 0.257	=	0 0.247	و ۲-	8 0.255	7 7	6 0.259	5 1	4 0.255	ω ¦	2 0.256	 (ft) Y(in.)	70.2 ⁰ F	2.500×10 ⁻² cfs/ft).99 in./hr	sured from upstrea sured normal to ch
24 0.304	22	21 0.307	20	19 0.311	81	17 0.300	91	15 0.309	14	13 0.303	12	11 0.304	01	9 0.299	8	7 0.299	6	5 0.310	4	3 0.306	2	 X(ft) Y(in.)	$T = 70.5^{\circ}F$	$q_0 = 3.600 \times 10^{-2} \text{ cfs/ft}$; = 0.99 in./hr	am entrance nannel bottom
24	22	21 0.401	20	19 0.401	81	17 0.399	91	15 0.393	14	13 0.401	12	11 0.392	10	9 0.401		7 0.399	6	5 0.410		3 0.401	2	 X(ft) Y(in.)	$T = 71.2^{\circ}F$	$q_0 = 5.700 \times 10^{-2} cf_s/ft$	i = 0.99 in./hr	

S₀ = 0.01 Drop spacing = 1 in. U = 11.0 ft/sec

76
21 0.105 22 23 24	15 16 17 18 19 19 20 20 20 20	5 6 7 8 9 9 0.074 10 0.083 11 12 0.083 12 12 0.083	X(ft) Y(in.) 1 2 3 0.065 4	$i = 4.95 \text{ in./hr}$ i $q_0 = 0.0 \text{ cfs/ft}$ $q_0 = 1.0 cfs/ft$
21 0.151 22 23 24	15 16 17 17 18 19 19 0.155 20 	5 6 7 7 8 8 9 9 0.139 10 11 10 0.140 12 12 0.147 13 0.147	X(ft) Y(in.) 1 2 3 0.141 4 	= 5.0 in./hr = 0.347x10 ⁻² cfs/ft = 71.7 ⁰ F
21 0.162 22 23 24	15 16 17 17 18 18 19 0.164 19 0.161	5 6 7 8 9 10 10 11 10 15 11 12 0.15 12 12 0.15 12 12 0.15 12 12 12 12 12	X(ft) Y(in.) 1 2 3 0.156 4 0.156	i = 4.90 in./hr q _o = 0.723x10 ⁻² cfs/ft T = 71.6 ⁰ F
21 0.185 22 23 24	15 16 16 17 17 18 19 19 0.177	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X(ft) Y(in.) 1 2 3 0.173 4	i = 4.95 in./hr q _o = 1.010x10 ⁻² cfs/ft T = 71.5 ⁰ F
21 0.213 22 23 24	15 16 16 17 18 19 0.195 19 0.204	5 6 7 8 9 9 0.194 11 10 0.191 12 0.193 	X(ft) Y(in.) 1 2 3 0.198 4	i = 4.95 in./hr q _o = 1.443×10 ⁻² cfs/ft T = 70.8 ⁰ F

So = 0.01 Drop spacing = 1 in. U = 11.0 ft/sec ł

Note: X measured from upstream entrance Y measured normal to channel botto

S₀ = 0.01 Drop spacing = 1 in. U = 11.0 ft/sec

Note: X measured from upstream entrance Y measured normal to channel bottom

i = 4.95 in./hr	i = 4.95 in./hr	i = 4.95 in./hr	i = 10.08 in./hr	i = 10.04 in./hr
$q_{1} = 2.050 \times 10^{-2} \text{ cfs/ft}$	$q = 3.120 \times 10^{-2} \text{ cfs/ft}$	$q = 5.030 \times 10^{-2} \text{ cfs/ft}$	g = 0.0 cfs/ft	$q = 0.480 \times 10^{-2} \text{ cfs/ft}$
$T = 70.5^{\circ}F$	T = 71.9° F	$T = 71.8^{\circ}F$	$T = 72.5^{\circ}F$	$T = 72.0^{\circ} F$
X(ft) Y(in.)	X(ft) Y(in.) 1	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)
2	2	2	2	2
3 0.235	3 0.289	3 0.376	3 0.082	3 0.157
5 0.239 6	5 0.300 6	5 0.387 6	5 0.088 6	4 5 0.157 6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 0.288 8 9 0.289	7 0.374 8 9 0.370	7 0.094 8 9 0.107	$\begin{array}{ccc} 7 & 0.159 \\ 8 & \\ 9 & 0.164 \end{array}$
10	10	10 11 0.381	10	10
11 0.236	11 0.296		11 0.114	11 0.174
12	12	12	12	12
	13 0.294	13 0.384	13 0.124	13 0.166
	14	14	14	14
15 0.240 16 17 0.243	15 0.291 16 17 0.285	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 0.142 16 17 0.138	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
18	18	18	18	18
19 0.248	19 0.304	19 0.382	19 0.141	19 0.174
21 0.244 22	20 21 0.298 22	21 0.369 22	21 0.151	20 21 0.175 22
23	23	23	23 0.147	23 0.176
24	24	24	24	24

-				
	Note:	X measured from upstrea Y measured normal to ch	am entrance annel bottom	
i = 10.04 in./hr _?	i = 10.04 in./hr	i = 10.06 in./hr	i = 10.06 in./hr _2	i = 10.03 in./hr
$q_{o} = 1.013 \times 10^{-2} \text{ cfs/ft}$	$q_{o} = 1.430 \times 10^{-2} \text{ cfs/ft}$	$q_{0} = 2.383 \times 10^{-2} \text{ cfs/ft}$	$q_0 = 3.530 \times 10^{-2} \text{ cfs/ft}$	$q_0 = 6.200 \times 10^{-2} cf_s/ft$
$\dot{T} = 72.0^{\circ}F$	$T = 73.1^{\circ}F$	T = 73.0 ⁰ F	T = 72.9 ⁰ F	T = 73.3 ⁰ F
X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)
2 3 0.174	2 3 0.200	3 0.257	2 3 0.316	2 3 0.441
4	4	4	4	
5 0.180	5 0.205	5 0.256	5 0.321	5 0.447
Ž 0.187	Ž 0.200	Ž 0.250	7 0.319	7 0.442
9 0 169 	9 0.203	9 0.254	α α 	9 0 453
10	01		01	
11 0.183	11 0.203	11 0.262	11 0.324	11 0.439
13 0.184	13 0.216	13 0.272	13 0.330	13 0.441
14	14 15 0 228	14		
16	91	16 ,	16	16
17 0.18 2	17 0.225 18	17 0.273 18	17 0.331 18	17 0.426
19 0.189	19 0.221	19 0.283	19 0.339	19 0.452
	21 0 237	20 n 282	20 	20
22	22 `	22	22	22
23 0.196	23 0.230	23 0.284	23340	23 0.433
			-	

So = Drop spacing =

0.01

n.

S₀ = 0.01 Drop spacing = 1 in. U = 11.0 ft/sec

Note: X measured from upstream entrance Y measured normal to channel bottom

i = 14.99 in./hr	i = 14.99 in./hr	i = 14.99 in./hr	i = 14.99 in./hr	i = 14.99 in./hr
$q_0 = 0.0 \text{ cfs/ft}$	$q_0 = 0.501 \times 10^{-2} cfs/ft$	$q_0 = 1.176 \times 10^{-2} \text{ cfs/ft}$	$q_0 = 2.273 \times 10^{-2} \text{ cfs/ft}$	$q_0 = 3.953 \times 10^{-2} c_{fs/ft}$
$T = 66.3^{\circ}F$	$T = 66.0^{\circ}F$	$T = 65.8^{0}F$	$T = 66.5^{0}F$	$T = 66.3^{\circ}F$
X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)
		-		1
2 0.095	2 0.176	2	2	2
3 0.101	3 0.166	3 0.185	3 0.264	3 0.333
5 0 113	5 0.181	5 0.192	+ ج 0.249	4 <u></u>
6 0.120	6 0.18 6	6	6 0.285	6
7 0.125	7 0.179	7 0.199	7 0.256	Ž 0.328
0 0 131	9 0.186	9 0.205	9 0 2 5 5	
10 0.135	10 0.189	10 0.209	10 0.262	10 0.337
			11	
12 0.137	12 0.204		12 0.261	12 0.333
	14 0.194	14 0.206	14 0.276	
15 0.151	15 0.209	15 0.215	15 0.272	15 0.341
16	16	16	16	16
17 0.157	17 0.203	17 0.226	17 0.296	17 0.344
18 0.165				18
20 0.166	20	20 U.233	0,281	
21 0.182	21 0.199	21 0.236	21 0.301	21 0.376
22 0.181	22 0.193	22	22	22
23 0.176	23 0.181	23 0.228	23 0.277	23 0.337
+7	24	+7		24

		Drop		
	U	spacing	ŝ	
-	11	II	ļļ J	
1	11.0 ft/sec	l in.	0.01	

ر د.

. : . . .

Note: X measured from upstream entrance Y measured normal to channel bottom

<pre>x10⁻² cfs/t r(in.) v(</pre>

	_			_						and the second second					_	_		- and the second se	_		1
23 0.077 24	21 0.082 22	19 0.086 20	18	17 0.082	15 0.086	14		11 0.084	10	9 0.079	7 0.079 8		5 0.086		3 0.074		X(ft) Y(in.)	T = 64.0°F	$q_{o} = 0.156 \times 10^{-2} \text{ cfs/ft}$	i = 0.5 in./hr	
23 0.094 24	21 0.099 22	19 0.104 20	18	17 0.103	15 0.102 16	14	13 0 101 	11 0.103	10	9 0.100	7 0.103	6	5 0.099	+- · · · · · · · · · · · · · · · · · · ·	3 0.099	2 	X(ft) Y(in.)	T = 64.0 ⁰ F	$q_0 = 0.272 \times 10^{-2} \text{ cfs/ft}$	i = 0.5 in./hr	
23 0.102 24	21 0.110 22	20 0.118	18 ,	17 0.115	15 0.119	14	13 0 112	11 0.113	10	9 0.113	7 0,119	6	5 0.113		3 0.112		X(ft) Y(in.)	$T = 65.0^{\circ}F$	$q_0 = 0.380 \times 10^{-2} cfs/ft$	i = 0.5 in./hr	
23 0.120 24	21 0.123 22	19 0. 127 20	18	17 0.123	15 0.126 16	14	12	11 0.122	10	9 0.130	7 0.128	6	5 0.122	۲- ۱ ۱ ۱	3 0.119		X(ft) Y(in.)	$T = 65.0^{\circ}F$	$q_0 = 0.493 \times 10^{-2} \text{ cfs/ft}$	i = 0.5 in./hr	ומווופו שטר נטוו
23 0.131 24	21 0.137	19 0.135 20	18	17 0.130	15 0.138	14		11 0.134	10	9 0.133	7 0.142	6	5 0.135	4	3 0.130		X(ft) Y(in.)	T = 66.0 ⁰ F	$ q_0 = 0.599 \times 10^{-2} c_{fs}/ft$	i = 0.5 in./hr	

Note: X measured from upstream entrance Y measured normal to channel bottom

S₀ = 0.01 Drop spacing = 2 in. U = 11.0 ft/sec

	s	=	0.01	
Drop	spacing	=	2 in.	,
	U	=	11.0	ft/sec

Note:	Х	measured	from	up	str	eam	entr	ance
	Y	measured	norma	1	to	char	nel	bottom

∬i = 0.5 i a = 0.710	n./hr 0x10 ⁻² cfs/ft	i = 0.5 i	n./hr x10 ⁻² cfs/ft	$i = 0.5 i_{1}$	n./hr x10 ⁻² cfs/ft	i = 0.5 i	n./hr x10 ⁻² cfs/ft	i = 0.5 ir	n./hr x10 ⁻² cfs/ft
^т о	010710		X10 013/12			ر <u>ح</u> ادا م ²			
T = 66.0 ^C	°F	T = 66.3 ⁰	F	$T = 66.2^{\circ}$		T = 64.5 ⁰	F	$T = 65.5^{\circ}$	-
X(ft)	Y(in.)	X(ft)	Y(in.)	X(ft)	Y(in.)	X(ft)	Y(in.)	X(ft)	Y (in.)
1		.1	· · · · ·	1	·	ſ		1	
2		2		2		2	_ _ ¹	2	
3	0.141	3	0.152	3	0.161	3	0 165	3	0.203
Ĺ		4		4		4		ű á	
5	0.148	5	0.154	5	0.164	5	0 171	5	0.202
6		6		6		6		6	
7	0.149	7	0.162	7	0.167	7	0 174	7	0.207
, 8		8		8		8		8	
9	0.136	9	0.152	9	0.160	9	0 168	9	0.201
10		10		10		10		10	
11	0.146	11	0.158	11	0.165	11	0 174	11	0.199
12		12		12		12		12	
13	0.142	13	0.150	13	0.157	13	0 163	13	0.196
14		14		14		14		14	
15	0.151	15	0.162	15	0.165	15	0.174	15	0.206
16		16	· ·	16		. 16		16	
17	0.143	17	0.155	17	0.163	17	0.174	1.7	0.201
18		18		18		18		18	
19	0.144	19	0.161	19	0.166	19	0.177	19	0.211
20		20		· 20		20	- <u>-</u>	20	
. 21	0.140	21	0.154	21	0.165	21	0.172	21	0.201
22	 · ·	22		22		22		22	
23	0.137	23	0.147	23	0.155	23		23	
24		24		24	 .	24		24	
		4				1		1	

.

S₀ = 0.01 Drop spacing = 2 in. U = 11.0 ft/sec

Note: X measured from upstream entrance Y measured normal to channel bottom

i = 0.50 in./hr $q_0 = 2.762 \times 10^{-2} cfs/ft$	i = 0.50 in./hr $q_0 = 4.455 \times 10^{-2} cfs/ft$	i = 0.50 in./hr $q_0 = 6.096 \times 10^{-2} \text{ cfs/ft}$	i = 1.25 in./hr q _o = 0.182x10 ⁻² cfs/ft	i = 1.25 in./hr q _o = 0.275x10 ⁻² cfs/ft
$T = 66.5^{\circ}F$	$T = 66.1^{\circ}F$	$T = 66.6^{\circ}F$	$T = 65.8^{\circ}F$	$T = 66.3^{\circ}F$
X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)
1	1	1,	1	1
2 3 0 280	3 0.364	2 3 0.424	2 3 0.090	2 3 0.096
4	4	4	4	4 0.101
5 0.278	5 0.354	5 0.408	5 0.089	5
7 0.282	7 0.353	7 0.406	7 0.093	7 0.101
8	8	8	8	8
9 0.279	9 0.342		9 0.092	9 0.107
11 0.274	11 0.345	11 0.400	11 0.097	11 0.102
12	12	12	12	12
13 0.270	13 0.339	13 0.396		13 0.108
15 0.281	15 0.354	15 0.412	15 0.095	15 0.109
16	16	16	16	16
17 0.279	17 0.352	17 0.402	17 0.093	17 0.109
	19 0.352	19 0.409	10	10 19 0 10 9
20	20	20	20	20
21 0.273	21 0.342	21 0.397	21 0.101	21 0.106
22	23	23		22
24	24	24	24	24

		Y measured normal to ch	nannel bottom	
i = 1.25 in./hr	i = 1.25 in./hr	i = 1.25 in./hr	; = 1.25 in./hr	i = 1.25 in./h́r
$q_0 = 0.344 \times 10^{-2} cfs/ft$	$ q_0 = 0.450 \times 10^{-2} \text{ cfs/ft} $	$q_0 = 0.563 \times 10^{-2} \text{ cfs/ft}$	$q_0 = 0.666 \times 10^{-2} \text{ cfs/ft}$	$q_0 = 0.827 \times 10^{-2} c_{fs/ft}$
$T = 67.0^{\circ}F$	$T = 67.7^{\circ}F$	$T = 67.2^{\circ}F$	τ = 68.0 ⁰ F	T = 68.1°F
X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)
	·		-	-
2	- 2	2	2	2
4- V +	4 0.121	4	3 0.142	4 0.156
5 0.112	5 0.131	5 0.137	5 0.148	5 0.155
7 0.112	7 0.128	7 0.141	7 0,152	7 0.159
00	©	∞ .	8	00
9 0.109	9 0.122	9 0.143	9 0.146	9 0.156
11 0.113	11 0.129	11 0.144	11 0.152	11 0.163
12	12	12	12	12
13 0.112 14 0.114	13 0.123 14 0.129	13 0.136 14	13 0.145 14	13 0.157 14
15 0.117	15 0.130	15 0.144	15 0.152	15 0.164
17 0.119	17 0.125	17 0.138	17 0.144	17 0.157
81	18		81	
20 0.119	19 0.134	19 0.150	19 0.154	19 0.164
21 0.114	21 0.131	21 0.146	21 0.150	21 0.164
22	22	22	22	22
23 0.109	23 0.126	23 24	23	23
			2+	+7

S = 0.01 Drop spacing = 2 in. U = 11.0 ft/sec te: X measured from upstream entrance

20 21 21 22 22 23 23 24 24 2-	14 14 16 16 17 0.165 19 0.163	7 8 9 10 11 12 0.160 12 	5 4 3 2 - 5 4 0.156	<pre>i = 1.25 in./hr q₀ = 0.934x10⁻² cfs/ft c T = 68.2^oF X(ft) Y(in.)</pre>
20 21 22 22 23 23 24 24 24 24	14 14 15 16 17 17 17 17 18 17 19 0.174 19 0.176	/ 0.1/2 8 9 0.169 10 11 0.176 12		i = 1.25 in./hr o = 1.040x10 ⁻² cfs/ft T = 68.4 ⁰ F X(ft) Y(in.)
20 21 22 22 23 23 24 24 24	14 15 16 17 17 18 18 18 19 18 18 19 19 19	/ 0.184 8 10 0.179 11 0.189 12 12	0.181 0.181	<pre>i = 1.25 in./hr q₀ = 1.254x10⁻² cfs/ft T = 68.6^oF X(ft) Y(in.)</pre>
20 21 22 22 22 23 23 24 	14 14 15 15 16 17 0.204 18 18 	7 0.199 8 9 0.196 11 0.204		$i = 1.25 \text{ in./hr} q_0 = 1.569 \times 10^{-2} \text{ cfs/ft} T = 69.0^{\circ}\text{F} X(ft) Y(in.)$
20 21 22 22 22 23 23 0.254 24 24	13 14 15 16 17 17 0.255 18 18 	7 8 9 0.261 10 12 0.258 12 		i = 1.25 in./hr $q_0 = 2.740 \times 10^{-2} cfs/ft$ T = 67.6°F X(ft) Y(in.)

Note: X measured from upstream entrance Y measured normal to channel botto 0.01 2 in. 11.0 ft/sec

S = Drop spacing = U =

70L

S₀ = 0,01 Drop spacing = 2 in. U = 11.0 ft/sec ļ

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i = 3.74 in./hr i $q_0 = 4.266 \times 10^{-2} \text{ cfs/ft} q_0$ $T = 67.4^{\circ}\text{F}$ T
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Note: = 3.74 in./hr = 5.409x10 ⁻² cfs/ft = 66.8 ⁰ F
2222219 221 222 225 227 227 227 227 227 227 227 227	<pre>U = 11.0 ft/sec X measured from upstre Y measured normal to c i = q₀ = cfs/ft T =</pre>
1 2 2 3 4 5 5 5 5 6 6 7 8 8 7 9 8 7 10 12 12 12 14 12 12 14 12 12 14 12 12 12 12 12 12 12 12 12 12 12 12 12	am entrance hannel bottom i = q_o =cfs/ft T =
2222220 221 221 221 221 221 221 221 221	

Drop spacing

ر مور ۱۱۱۱

്റ്

0.01

in.

۲o۱

19 0.102 20 21 22 22 23 24	X(ft) Y(in.) 1 2 3 0.101 4 5 0.098 6 9 0.104 10 11 0.097 12 0.100 13 0.101 14 0.101 15 0.101 16 17 0.094	i = 1.00 in./hr i $q_0 = 0.600 \times 10^{-2} \text{ cfs/ft} q_0$ T = 65.0°F T	
19 0.115 20 21 22 22 23 24 24	X(ft) Y(in.) 1 2 3 0.115 4 0.108 6 0.108 6 10 0.122 13 0.117 14 0.115 15 0.115 16 17 0.115 18	= 1.00 in./hr = 0.833×10 ⁻² cfs/ft = 65.1 ^o F	Drop Note:
19 0.135 20 21 22 23 23 24	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i = 1.00 in./hr q _o = 1.127×10 ⁻² cfs/ft T = 65.2°F	<pre>S = 0.03 Spacing = 1 in. U = 11.0 ft/sec X measured from upstrea Y measured normal to ch</pre>
19 0.146 20 21 22 23 24	X(ft) Y(in.) 1 2 3 0.150 4 0.145 6 10 0.144 10 0.144 12 0.144 12 0.144 15 0.144 16 16 16 17 0.146 18	i = 1.00 in./hr q _o = 1.500x10 ⁻² _{cfs/ft} T = 64.2 ⁰ F	am entrance hannel bottom
19 0.174 20 21 22 23 24	X(ft) Y(in.) 1 2 3 0.165 4 0.165 4 0.168 6 10 0.173 8 0.166 11 0.173 14 0.173 15 0.168 13 14 0.173 15 0.173 16 17 0.172 18	i = 1.00 in./hr q _o = 2.130×10 ⁻² cfs/ft T = 64.5 ⁰ F	

$S_0 = 0.03$ Drop spacing = 1 in. U = 11.0 ft/sec

Note: X measured from upstream entrance Y measured normal to channel bottom

i = 1.00 in./hr	i = 1.00 in./hr	i = 1.00 in./hr	i = 5.00 in./hr	i = 5.00 in./hr
$q_0 = 3.030 \times 10^{-2} \text{ cfs/ft}$	$q_0 = 4.330 \times 10^{-2} \text{ cfs/ft}$	q _o = 6.000x10 ⁻² cfs/ft	$q_0 = 0.0 \text{ cfs/ft}$	$q_0 = 0.236 \times 10^{-2} \text{ cfs/ft}$
T = 65.2°F	T = 65.4°F	T = 65.6 [°] F	$T = 64.6^{O}\text{F}$	$T = 63.0^{\circ} \text{F}$
$T = 65.2^{\circ}F$ $X(ft) Y(in.)$ 1 2 $3 0.214$ 4 $5 0.219$ 6 $7 0.220$ 8 $9 0.203$ 10 $11 0.208$ $12 0.202$ 13 $14 0.210$ $15 0.208$ 16 $17 0.206$ 18 $19 0.206$ 20 21 22	$T = 65.4^{\circ}F$ $X(ft) Y(in.)$ 1 2 $3 0.274$ 4 $5 0.260$ 6 $7 0.256$ 8 $9 0.257$ 10 $11 0.263$ $12 0.258$ 13 $14 0.264$ $15 0.253$ 16 $17 0.264$ 15 $17 0.264$ 18 $19 0.251$ 20 21 22	$T = 65.6^{\circ}F$ $X(ft) Y(in.)$ 1 2 $3 0.331$ 4 $5 0.318$ 6 $7 0.311$ 8 $9 0.312$ 10 $11 0.308$ $12 0.305$ 13 $14 0.317$ $15 0.313$ 16 $17 0.310$ 18 $19 0.320$ 20 21	$T = 64.6^{\circ}F$ $X(ft) Y(in.)$ 1 2 $3 0.053$ 4 $5 0.062$ 6 $7 0.067$ 8 $9 0.070$ 10 $11 0.073$ $12 0.074$ 13 $14 0.075$ $15 0.071$ 16 $17 0.078$ 18 $19 0.079$ 20 $21 0.086$	$T = 63.0^{\circ}F$ $X(ft) Y(in.)$ 1 2 $3 0.089$ 4 $5 0.089$ 6 $7 0.095$ 8 $9 0.090$ 10 $11 0.094$ $12 0.086$ 13 $14 0.098$ $15 0.097$ 16 $17 0.100$ 18 $19 0.092$ 20 $21 0.099$
23	23	23	23 0.082	23 0.102
24	24	24	24	24

1				Note:	X measured Y measured	from upstrea normal to ch	am entrance nannel botto	om		
i q _o	= 5.00 = 0.477	in./hr /x10 ⁻² cfs/ft	i = 5.00 i q _o = 0.579>	n./hr <10 ⁻² cfs/ft	i = 5.00 $q_0 = 0.815$	in./hr ×10 ⁻² cfs/ft	i = 5.00 $q_0 = 1.120$	in./hr <10 ⁻² cfs/ft	i = 5.00 q _o = 1.360	in./hr <10 ⁻² cfs/ft
T	= 62.3	<u>'F</u>	T = 63.9		T = 65.2		T = 66.0	-	T = 62.2	
	X(ft)	Y(in.)	X(ft)	Y(in.)	X(ft)	Y(in.)	X(ft)	Y(in.)	X(ft)	Y (in.)
	I		× . 1		1	·	1		ſ	
	2		2		2		2		2	
	3	0.099	3	0.103	3	0.125	3	0.128	3	0.134
	4		4	0	4		. 4		4	
	5	0.094	5	0.103	5	0.115	5	0.129	5	0.134
	6		6		6		6		6	
	7	0.102	7	0.105	7	0.121	7	0.132	7	0.137
	8		8		8		8		8	
	9	0.092	9	0.101	9	0.120	9	0.124	. 9	0.130
	10		10		10		10		10	
	11	0.098		0.101	11	0.114	11	0.129	11	0.132
	12	0.096	12	0.101	12	0.117	12	0.128	12	0.138
	13		13		13		13		13	
	14	0.101	14	0.101	14	0.115	14	0.131	14	0.138
	15	0.096		0.102	15	0.113	15	0.126	15	0.138
	16				16		. 16		16	
	17	0.099		0.102	1/	0.109	1/	0.129	17	0.145
	10				18		18		18	
	19	0.102	19	0.106	19	0.116	19	0.134	19	0.143
	20		20		20		20		20	 0 150
	∠ I つつ	0.102		0.10/	21	0.115	21	0.144	21	0.152
	22		22			0 115	22	0.100	22	~-
	20 24	0,100	2) 24	0.100	∠) 21,		23	0.130	23	0.142
	24		<u> </u>		24		24		24	

S = 0.03 Drop spacing = 1 in. U = 11.0 ft/sec Note: X measured from upstream entranc

¢.

•

[|]

					_				_					-			-		-	۹.
23 0.166 24	20 21 0.171	19 0.164	17 0.166	15 0.157 16	14 0.153	12 0.156 13	11 0.157	10	0 0 157	Ž 0.161	6 U.150		3 0.160	2		X(ft) Y(in.)	$T = .63.3^{\circ}F$	$q_o = 1.920 \times 10^{-2} cfs/ft$	i = 5.00 in./hr	
23 23 24 	20 21 0.205	19 0.202	17 0.202 18	16 16	14 0.201	12 0.193 13	11 0.185	10		Ž 0.201	6 0.198		3 0.202	2		X(ft) Y(in.)	$T = 64.2^{\circ}F$	$q_{o} = 2.700 \times 10^{-2} \text{ cfs/ft}$	i = 5.00 in./hr	
22 23 0.245 24	20 21 0.259	19 0.269	17 0.263	15 0.272 16	14 0.265	12 0.260 13 0	11 0.259	01	a 0 245 8	Ž 0.259	9 967.0 5		3 0.283	2		X(ft) Y(in.)	$T = 64.0^{\circ}F$	$q_{o} = 4.870 \times 10^{-2} cfs/ft$	i = 5.00 in./hr	
22 23 0.300 24	20 21 0.302	19 0.309	17 0.300	15 0.294 16	14 0.307	12 0.304 13	11 0.290	10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ž 0.305	6 0.311	4	3 0.324	2	1	X(ft) Y(in.)	$T = 64.0^{\circ} F$	$q_0 = 6.120 \times 10^{-2} \text{ cfs/ft}$	i = 5.00 in./hr	ופתחפו מסררמוו
22 23 0.105 24	20 21 0.098	19 0.103	17 0.095	16 0.085	14 0.082	12 0.085	11 0.084			7 0.074	6 0.0/1	4	3 0.056	2		X(ft) Y(in.)	$T = 63.8^{\circ}F$	$ q_0 = 0.0 \text{ cfs/ft}$	i = 9.99 in./hr	

Note: X measured from upstream entrance Y measured normal to channel bottom : 0.03 : 1 in. : 11.0 ft/sec

S = Drop spacing = U =

	S	=	0.03
Drop	spacing	=	1 in.
	U	=	11. 0 ft/sec

A 111 111

ť.

Note:	X	measured	from	upstr	eam	entr	rance	
1. 	Y	measured	norma	l to	char	nel	bottom	

i = 9.99 in./hr q _o = 0.240x10 ⁻² cfs/ft	i = 9.99 in./hr q _o = 0.693x10 ⁻² cfs/ft	i = 9.99 in./hr q _o = 1.120x10 ⁻² cfs/ft	i = 9.99 in./hr q _o = 1.986x10 ⁻² cfs/ft	i = 9.99 in./hr $q_0 = 3.148 \times 10^{-2} \text{ cfs/ft}$
$T = 63.6^{\circ}F$	$T = 64.4^{\circ}F$	$T = 61.7^{\circ}F$	$T = 63.2^{\circ}F$	$T = 63.0^{\circ}F$
X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)	X(ft) Y(in.)
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
21 0.117 22 23 0.109 24	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21 0.150 22 23 0.145 24	21 0.222 22 23 0.207 24	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

X(ft) Y(in.) 1 2 3 0.266 4 0.251 6 0.251 10 0.252 10 0.252 11 0.245 15 0.255 15 0.255 16 17 0.245 18 0.255 19 0.255 20 21 0.249 18 0.256 20 21 0.249 18 0.256 20 21 0.258 21 0.266 22 23 0.266	i = 9.99 in./hr q _o = 4.290x10 ⁻² cfs/ft T = 63.5 ⁰ F
X(ft) Y(in.) 1 2 0.296 4 0.295 6 0.295 6 0.295 6 0.281 10 0.277 12 0.292 13 0.282 14 0.283 16 19 0.284 18 19 0.284 19 0.284 19 0.298 20 21 0.312 24 	i = 9.99 in./hr $q_0 = 5.490 \times 10^{-2} cfs/ft$ T = 63.6°F
X(ft) Y(in.) 1 2 3 0.070 4 0.085 6 0.094 8 0.094 11 0.092 12 0.109 14 0.112 15 0.109 16 17 0.116 18 19 0.113 20 0.111 21 0.111 22 23 0.117	Y measured normal to c i = 14.99 in./hr q _o = 0.0 cfs/ft T = 63.7 ⁰ F
X(ft) Y(in.) X(ft) Y(in.) X(<pre>nannel bottom i = 14.99 in./hr q₀ = 0.248x10⁻² cfs/ft T = 63.2^oF</pre>
X(ft) Y(in.) 1 2 2 3 3 4 4 5 5 0.147 6 12 12 14 14 15 0.142 14 15 0.142 14 15 0.142 16 17 0.142 18 0.142 19 0.142 19 0.142 19 0.142 10 0.142 10 0.142 12 0.142 15 0.142 12 0.145 12 0.145 12 0.145 12 0.145 12 0.145 14 15 0.145 12 0.145 12 0.145 12 0.145 12 0.145 14 15 0.155 23 0.153 24 0.153 15 15 15 15 15 15 15 15 15 15	i = 14.99 in./hr q _o = 1.000x10 ⁻² cfs/ft T = 63.2 [°] F

S = 0.03 Drop spacing = 1 in. U = 11.0 ft/sec Note: X measured from upstream entrance

711.

	S	=	0.03	
Drop	spacing	=	1 in.	
	U	=	11.0	ft/sec

i = 14.99 in./hr		i = 14.99 in./hr		i = 14.99 in./hr	
$q_0 = 1.840 \times 10^{-2} cfs/ft$		$q_0 = 3.520 \times 10^{-2} \text{ cfs/ft}$		$q_0 = 5.243 \times 10^{-2} \text{ cfs/ft}$	
T = 62.3 [°] F		$T = 64.0^{\circ}F$		$T = 64.0^{\circ}F$	
X(ft)) Y(in.)	X(ft)	Y(in.)	X(ft)	Y(in.)
1	 ,	1		1	·
2		2		2	
3	0.170	3	0.239	3	0.287
4		4		4	
5	0.169	5	0.233	5	0.291
6		6		6	!
7	0.189	7	0.232	7	0.286
8		8		8	
9	0.169	9	0.238	9	0.294
10	·	10		10	
11	0 169	11	0.245	11	0.293
12	0 169	12	0.241	12	0.289
13		13		13	
14	0.173	14	0.236	14	0.286
15	0.174	15	0.234	15	0.292
16		16		16	
17	0.180	17	0.245	17	0.286
18		18		18	
19	0.173	19	0.246	19	0.303
20		20		20	
21	0.188	21	0.262	21	0 318
22		22		22	
23	0.184	23	0.253	23	0 325
24		24		24	
- 1		1			

Note: X measured from upstream entrance Y measured normal to channel bottom

· · ·

. . . na ^{na}na tanan ang tana

.

. .

. .

. .