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ABSTRACT

SPATIALLY VARIED OPEN-CHANNEL FLOW EQUATIONS

Recent development and improvement in numerical techniques and computer
capability enables more accurate numerical solutions of spatially varied
flow problems such as various phases of urban storm runoffs. Consequently,
it is desirable to re-examine fundamentally the competibility of the flow
equations used in solving unsteady spatially varied flow problems. To
achieve this goal, the continuity, momentum, and energy equations for un-
steady nonuniform flow of an incompressible viscous nonhomogeneous fluid
with lateral flow into or leaving a channel of arbitrary geometry in cross
section and alignment are formulated in integral form for a cross section

by using the Leibnitz rule. The resulted equations are then transformed
into one-dimensional form by introducing the necessary correction factors
and these equations can be regarded as the unified open-channel flow equa-
tions for incompressible fluids. The flow represented by these equations
can be turbulent or laminar, rotational or irrotational, steady or unsteady,
uniform or nonuniform, gradually or rapidly varied, subcritical or super-
critical, with or without spatially and temporally variable lateral discharge.
Flow equations for certain special cases are deduced from the derived general
equations for the convenience of possible practical uses. Conventionally
used various equations for open-channel flows are shown to be simplifica-
tions and approximations of special cases of the general equations. The
inherent difference between the flow equations derived based on the energy
and momentum concepts is discussed. Particular emphasis is given to the
differences among the energy dissipation coefficient, the frictional resist-
ance coefficient, and the total-head loss coefficient. Common hydraulic
practice of using the Chezy, Manning, or Weisbach formulas to evaluate the
dissipated energy gradient or the friction slope is only an approximation.
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NOT AT ION

area of channel cross section;

free surface width of channel cross section;
Hydraulic depth;

body force per unit mass;

Vl/vgﬁ; Froude number of channel flow;
Weisbach resistance coefficient given in Moody Diagram;
energy dissipation coefficient (Eq. 112);
total-head loss coefficient (Eq. 113);
frictional resistance coefficient (Eq. 111);
gravitational acceleration;

approximate total head as defined in Eq. 101;

true cross sectional total head of flow measured in terms of
Y, (Eq. 48);

a reference head as defined in Eq. 50;

(U2/2g) + (P./y), piezometric head, with respect to horizontal
reference datum, of lateral flow when joining channel flow;

cross—sectional average piezometric head;
depth of flow, measured along y~direction;
orthogonal coordinate directions,i, i = 1, 2, 3;

piezometric pressure correction factor or local potential
energy flux correction factor (Eq. 25);

ambient piezometric pressure correction factor (Eqs.26 and 33);
direction of the normal of A;
directional normal of a surface, positive outward;

local piezometric pressure with respect to channel bottom (Eq. 23);
also, wetted perimeter;



=P + [y(y cost + z )]., piezometric pressure with respect to
horizontal reference datum of lateral flow when joining
channel flow;

= P + vz, , local piezometric pressure with respect to horizontal
reference datum; v :

= local temporal mean pressure intensity;

= pressure intensity of lateral flow when joining channel flow;
= rate of lateral flow per unit length of o}

= hydraulic radius;

= leR/u, Reynolds number of channel flow;

= normal displacement of ¢ with respect to space or time projected
on a plane parallel to A. positive outward;

= dissipated energy gradient (Eq. 54);

= friction slope (Eq. 27);

= total head gradient (Eq. 102);

= ~azb/8x, channel bottom slope;

. = force due to internal stresses Tij acting on A (Egqs. 29 and 34);
= time}

= velocity of lateral flow when joining channel flow;

. = local temporal mgan velocity component élong xi—direction;

» = turbulent fluctuation of the i-th component of local velocity

with respect to Ei;
= local temporal mean velocity vector;

. = i~th component of channel flow velocity averaged over cross
section; (Eq. 8);

= a symbol referred to conservative work done by internal and surface
stresses as defined in Eq. 51;

= longitudinal coordinate along channel bottom direction;

., = coordinate along i-th direction;

= coordinate perpendicular to x on vertical plane;

vi~
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elevation of channel bottom with respect to a horizontal
reference datum;

convective kinetic energy flux correction factor (Eqs. 44 and 52);
momentum flux correction factor (Egs. 24 and 32);

local kinetic energy flux correction factor (Eq. 43);

specific weight of fluid;

Po83

unsteady pressure correction factor (Eq. 46);

convective potential energy flux correction factor (Eqs. 45 and 53);
angle between channel bottom and horizontal plane;

density correction factor (Egqs. 9 and 31);

dynamic viscosity of fluid;

mass density of fluid;

cross—sectional average mass density (Eq. 6);

perimeter bounding cross sectional area A; and

shear stresses for 1 # j, normal stresses for i = j, (Eq. 15).
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I. INTRODUCTION

Spatially varied open-channel flow can be defined as free surface
flow in a channel with its discharge varying along the flow direction. In
urban storm drainage systems, problems of sheet flow under rainfall or with
infiltration, flow into road or roof gutters, and regulator overflow from
sewers have been solved by using simplified approximate forms of one-
dimensional equations for spatially varied flow. Other examples are routing
of floods with lateral flows and side channel spillways or weirs. By making
certain assumptions the simplified one-dimensional spatially varied flow
equations can then be solved by stepwise integration for steady flow (6)*
and by the method of characteristics or finite-difference schemes for un-
steady flow. Discussions and references on excellent previous studies on
solving the quasi-linear hyperbolic partial differential equations for un-—
steady spatially varied flow can be found elsewhere (1, 4, 13, 19, 25, 27).

However, with the recent rapid progress in computer capability and
numerical techniques, the possibility of solving more accurately open-channel
flow problems is increasingly promising. Consequently, there is a renewed
interest in critically examining the approximations involved due to the
assumptions so that the accuracy of the numerical solutions would be compat-
ible with the approximations involved in the equations. For example, con-
ventionally used simplified spatially varied and other types of open-channel
flow equations are actuaily for homogeneous fluids in two dimensional or
prismatic channels. For polluted sewer flow, stratified flow in channels, or
for flow in estuaries, such conditions often cannot be satisfied and the

approximation involved may not be negligible for accurate numerical solutions.

% -
Numerals in parentheses refer to corresponding items in References.



Moreover, for highly nonuniform or unsteady flows, the assumptions on
hydrostatié pressure and velocity distributions and resistance coefficient
are often questionable. Hence, further fundamental considerations on
spatially varied open-channel flow equations appear to be appropriate and
timely, especially in view of today's increasing sophistication in engi-
neering designs and stringency in available money to support such projects.

The present study is an attempt to formulate the continuity,
momentum, and energy equations for an unsteady spatially varied free surface
flow of an incompressible viscous nonhomogeneous fluid in a channel of arbi-
trary cross-sectional and alignment geometry by integrating the Reynolds
equation of motion over a cross—sectional area of the channel. The resulted
equations are then represented in one-dimensional form and can be considered
as unified open-channel flow equations for incompressible fluids. Flow equa-
tions for special cases can be deduced from the derived equations. By
careful examination of the resulted equations, the restrictions involved in
the conventionally used flow equations, the physical significance of certain
terms usually neglected, and the difference between momentum and energy
approaches can be revealed. The existence of‘various "resistance" coef-
ficients is also discussed. Hopefully, through the formulation and discussion
of the flow equations the present study will provide some new information on
the fundamentals of one~dimensional open-channel flow equations. As the
present study is emphasized on the formulation of the equations and examina-
tion of the physiéal characteristics of the terms involved, no attempt is

made to investigate the numerical methods to obtain solutions of the derived

equations with any specified initial and boundary conditions.

[U—
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IT. RELATED PREVIOQUS STUDIES

All but two of the early investigations related to the present
subject on flow equations formulated were for incompressible homogeneous
fluid in two-dimensional or prismatic channels and can be grouped into
two catagories: (a) derivation of one-dimensional equations for open-
channel flow without lateral discharge by integration of equations of
motion; and (b) one-dimensional formulation for spatially varied flow.

To the knowledge of the writer no derivation of one-dimensional equations
for nonhomogeneous fluids has been published.

In the first category of open-channel flow without lateral dis-
charge, much has been done on formulation of the flow equations for incom-
pressible homogeneous fluids. European hydraulicians, by using one-
dimensional approach, derived various forms of open-channel flow equations
before the turn of the century (6). Keulegan (16) was probably the first
one to formally report a fundamental derivation of one-dimensional flow
equations by integrating the equations of hydrodynamics over a control
volume for a steady flow. He also showéd that the one-dimensional dynamic
equations can be derived by using either the momentum or the energy ap-
proaches. Rouse and McNown (22) vividly explained the difference between
these two approaches. TFarell (10) further extended the formulation to an
unsteady case.

In the second category of formulation of spatially varied flow
equations by using the one-dimensional approach, Hinds (14) investigated the
steady flow of water from side-channel spillways by neglecting frictional
resistance. Favre (11) and Camp (3) each included frictional resistance

in their studies. Beij (2) investigated the case of flow in roof gutters.



Keulegan (17) extended the problem to include certain unsteadiness effects
in two-dimensional flow. Li (18) analyzed the case of steady flow in a
trapezoidal channel with uniform lateral inflow, first neglecting the
friction resistance then including it by using Chezy's formula with constant
resistance coefficient. Traditionally, as in all the previously mentioned
studies on lateral inflow the momentum approach is adopted; whereas for the
case of lateral outflow the energy approach is used. Forchheimer (12) and
De Marchi (8) are believed to be among the first to adopt the energy
approach to derive one-dimensional flow equations with arbitrary assump-
tions on the total head or its gradient for the case of steady flow with
decreasing discharge.  Other early studies have been cited by Chow (6).
Later Iwagaki (15) adopted a pseudo—one—dimensional approach by
expressing velocities in integrals over the depth to formulate the unsteady
two-dimensional flow continuity and momentum equations. He then assumed
the flow to be laminar and neglected the effect on momentum flux due to
lateral inflow to solve for the water surface profile. Stoker (23) fol-
lowing strictly the one-dimensional approach, derived a more elaborate momen-—
tum equation for unsteady spatially varied flow, allowing variation of
channel cross sections, and carefully avoided discussion on its applica-
tion to lateral inflow or outflow cases. Chow (7) further included
energy approach to derive one-dimensional unsteady spatially varied flow
equations. Yen and Wenzel (28) accounted for the variations of pressure
and velocity over a cross section to derive, by considering the momentum
as well as energy of a control volume bounded by two cross sections, one-
dimensional momentum and energy equations for steady spatially varied
flow., They not only pointed out certain terms in the dynamic equations

which were previously neglected, but also showed clearly the difference



between the momentum and energy approaches. They further pointed out that the
traditional restriction of using momentum approach for lateral inflow and
energy approach for lateral outflow is unnecessary.

Another school of researchers investigated the problem of
spatially varied flow from the view point of rainfall-runoff relation-
ships [see e.g., Chen and Chow (4)]. In this case the problem is further
complicated by the discrete nature of the lateral input. However, most
of these studies considered the unsteady flow case,

Only recently that the dynamic equations for unsteady spatially
varied flow of incoméressible homogeneous fluids have been formulated from
a more fundamental viewpoint. Chen and Chow (4, 5) integrated Navier-Stokes
equation over the depth of flow to obtain a one-dimensional momentum equation.
However, because of certain assumptions involved in shear stresses and
boundary conditions related to the lateral flow, their result is not suffi-
ciently general. Strelkoff (24), on the other hand, gave an admirable
derivation by integrating the equation of motion and the corresponding
eneréy and continuity equations over a control volume bounded by two cross
sections. However, instead of expressing eaéh of the terms involved ex-
plicitly he lumped certain terms into a turbulent correction coefficient
and a pressure correction coefficient in his resulted one-dimensional
equations. He then proceeded to discuss the relative magnitude of these
coefficients and demonstrated the differences between momentum and energy
approaches for certain special cases. He, like Yen and Wenzel (28),
pointed out the restriction of using momentum approach for lateral inflow
and energy approach for lateral outflow is unnecessary. However, by using

the turbulence and pressure coefficients instead of expressing explicitly



the terms in the flow equations, not only certain physical insight on
the effects of unsteadiness and nonuniformity to the flow is lost, but
also that the resulted equations cgnnot readily be reduced to special
cases for application without complicated mathematical manipulations.

Thus it is clear that all the related previous studies on
formulation of open-channel flow equations, with the exception of Strelkoff's,
are either for special cases or with certain limitations or assumptions.
The limitations or assumptions are usually on thé geometry of the channel,
the pressure and velocity distributions and the shear stresses and turbu-
lence of the flow; in other words, the effects of nonuniformity and un-
steadiness and the selection of resistance coefficient. Further limitations
are also imposed on the characteristics of théwlateral flow and the homo-
geneity of the fluid. Consequently, none of the previously formulated

equations can be considered as a general unified open—channel flow equation

for an incompressible fluid.

E——



TII. CONTINUITY EQUATIONS

The channel under consideration as shown schematically in Fig. 1
has no limitation on geometry of cross section or alignment. The liquid
flowing in the channel is incompressible, viscous, and nonhomogeneous; i.e.,
both the density p and dynamic viscosity p of the fluid may vary from point
to point, and as a result of convection of the flow, from instant to instant
at any point, but the density and viscosity of an infinitesimal incompressible
element remain constant with time. The lateral flow through the free surface
such as rainfall or evaporation and through the permeable boundary such as
infiltration or seepage inflow can vary with both space and time and their
fluid properties can also be nonhomogeneous but necessarily incompressible.

Tor a point (more precisely, an infinitesimal unit volume) in a

turbulent unsteady flow the continuity equation is

Bpa.
ap i
ot T ox, O S
i
or, since the fluid is incompressible (20) — not necessarily homogeneous,
aﬁi
R )
i

in which t is time; ug is the local velocity component of the fluid along

the X, direction; and the bar represents temporal averaging over turbulent

fluctuation. Repitition of the subscript i in a term implies summation over
the three possible orthogonal coordinate directions, i =1, 2, 3.
For a channel cross section with an area A (Fig. 2), the boundary

condition is-



Fig. 1. Schematic Drawing of Spatially Varied Channel Flow
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Fig. 2. Definition Sketch of a Channel Cross Section




[G %% + Gﬁi g%f]o = J Gq do (3)
i o}
in which ¢ is the perimeter bounding A; G represents any continuous scalar
quantity under consideration at o, e.g., G = p for mass conservation; and g
is the rate of lateral flow into the channel per unit length of o, having
a dimension of length per unit time and being positive for inflow. lNote
that although q has a dimension of velocity it is not necessarily equal to
any component of the velocity of the lateral flow which may be of discrete
nature such as raindrops. It should also be noted here that the orientation.
of the coordinate system xi can be arbitrarily chosen and in general A is a
function of x; as well as of t. However, in practice as a matter of con-
venience, it is usually so chosen that the direction normal of A coincides
with one of the xi's.
The continuity equation for a channel cross section can be obtained

by integrating the point continuity equation over A. By applying the Leibnitz

rule, integration of Eq. 1 yields

Bpa.
op i 9 dA 2 - A _ (4)
('—+-—)dA=—J pdA ~ [p22] +—~J pu dA - [pu, 2] =0
JA ot Bxi ot A ot o Bxi A i i Bxi c
Or, with the boundary condition, Eq. 3 with G = p,
0 (5)

3 { 3 -
p dA + —— [ pu, dA - J pq do =
ot 0%y Jy o 1 G

which is the continuity equation in integral form for a channel cross section.
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If the cross-sectional mean fluid density N 1s defined as
1
D=K[pdA (6)
A
then Eq. 5 can be written in one~dimensional form as

3 3
.° = 7
Nt (paA) + %, (AkipaAVi) fo pq do (7)

in which the mean velocity component of the cross section, Vi’ is defined as
1 —_
vV, = A u,dA (8)
i
A
and the density correction factor A is defined as
MeiPatVy = JA pu, dA (9)

where k represents the direction of the normal of A which does not neces~
sarily coincide with one of the coordinates (i = 1, 2, 3). Note that the
subscripts of ) and other similar correction factors to be defined later
are for the purpose of indicating their directional nature and repetition
of these sybscripts does not imply summation. For homogeneous fluids

Mg = 10

Likewise, integration of Eq., 2 yields

du
i P —_ —  3A A A
f T dA = ~——~J udA = [u, 2] -~ [==] + [==]_=0 (10)
A 8xi 8xi A i i Bxi ol ot o 3t o

S i o PO

P

[O——



Hence, with the aid of Eq. 3, Fq. 10 yields

9A 8(Avi)

3t T oR, J g do
1 (e}

11

(11)

If the channel cross section is taken such that its normal is along

the direction i = 1, then, with All = )\, the continuity equations in one-

dimensional form, Eqs. 7 and 11, can be simplified as

p) 3
5t (paA) + 5% (%oaAVl) = L pq do

and

(12)

(13)
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IV, MOMENTUM EQUATIONS

IV-1. Momentum Equation in Integral Form

For the channel and flow cbnditions described in the first paragraph

of the preceding chapter, the momentum equation for a cross section can be
obtained by integrating the Reynolds equation over the cross sectional area

A. For a point in a turbulent flow the Reynolds equation of motion is

du,  _ du AL

p o +pu, —— = pF, - P4 1] (14)
ot j axj i Bxi 90X,
J

in which Fi is the component of the bhody force per unit mass along the Xy

direction; p is the local pressure intensity; and

aﬂi du,
A S P s e 15
T13 “(axj + axi) Pu;Yy (15)

in which u' is the turbulent fluctuation of u with respect to u.
With the aid of Eq. 3 and the Leibnitz rule, integration of the

left side of Eq. 14 over A yields

-2 Tan+ -2 [ omTan -
== J puidA plicy J puiu.dA J pU.q do (16)
A A Y
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in which Ui = the component of velocity of the lateral flow along X,

direction at the instant of joining the channel flow.

Likewise,
[ o=t pan-ma -2 vans| 730 D
A %4 i A Xy i A o i

in which r is the displacement of the boundary of A with respect to épace
or time along the direction of the normal N of ¢ projected on a plane
parallel to A and Ni is the i-th directional cosine of the normal N of o,
M being positive outward (Fig. 2).

Furthermore, integration of the last term in Eq. 14 yields

0T
ij N J BA . _ 3 J J ]
——=dA = — | 1, dA - [1,., ] =~ T,.dA + [tr..] N.do (18)
JA Xj ij A 13 ij ij o ij A ij - ijto ]

Therefore, by integrating Eq. 14 over A and with the aid of Egs. 16, 17,

and 18, the momentum equation for a channel cross section is

d J’ — 3 - — 3 [ =
- pu,dA + ———-J pu.,u,dA - J pU,.q do = { pF.dA - —— J dA
ot A i 9x A i7j . i A i oxX A
— 9T 9
- P o do + Sx Ti.dA + [t,.] N, do (19)
o} Xi j “A J o] 3o ]

In a gravitational field the body force can be considered derivable

from a potential such that

I A = S
Fi =-g ox, (zb + y cos6) gSOi Bxi (gy cosB) (20)
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in which g is the gravitational acceleration; 2, is the elevation of channel
bed, i.e., the lowest point in the cross section, measured from a reference
datum along the gravitational direction; y is the distance normal to the
channel bed on a vertical plane measured from the lowest point in the cross
section; 6 is the angle between the channel bed and a horizontal plane

(Fig. 1); and SOi = ~'azs/azi is the slope of channel bed along X, direction.

Hence,

.9
J oFidA = gSOi J p dA - pyny f pgy cosO dA - J pgYy cosb -gi~ do
A A S 9% A o x5

3
Y 3x. dA (21)

+ g cosb J
A i

Substitution of Eq. 21 into Eq. 19 yields the following momentum
equation for a cross section in a channel of arbitrary geometry having an
unsteady nonuniform free surface flow of an incompressible nonhomogeneous

viscous fluid in it and with spatially and temporally variable lateral discharge.

aj - d —~ —
— pu,dA + -»-J pu,u.dA - f pU.q - do = gS . J p dA
ot A i ij A 11 - i oi j,~
3
—-a—f PdA—f Ps—;—dO’-Fa—X'—J Ti.dA
*3da o i 34 M
+ J [t..] N, do + g cos® J y ng-dA : (22)
s 1i'o i
in which the local piezometric pressure P in reference to the channel bottom is

P=p+ ogy cos8 (23)

[R——
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The‘physical meaning of the terms in Eq. 22 is as follows:
For the discharge through A and by referring to the i-th component, the
first term represents the time rate of change of momentum flux; the
second term is the rate of spatial change of convective momentum flux of
the channel flow; the third term is due to the momentum influx of the
lateral flow; the first term at the right of the quality sign simply
represents the component of the gravitational force; the second term is
the rate of spatial change of piezomefric pressure acting on A, the third
term represents the component of the force due toambient piezometric
pressure acting on the boundary surface; the fourth term is due to the
change of deformation stresses of the flow with space; the fifth term is
the component of the external surface stresses (such as those due to wind
or lateral flow) acting on the boundary; and finally, the sixth term is

due to the variation of density with space.

1V-2. Momentum Equation in One-Dimensional Form

In order to transform the momentum equation, Fq. 22, into one-
dimensional form, it is necessary to define the following correction co-—-
efficients. The momentum flux correction factor, or the Boussinesq

coefficient, Bki" for the cross section A can be defined as

B...0p V.V.A= f pu.u,dA (24)
A

kij"a i j

The piezometric pressure correction factor K to account for nonhydrostatic

pressure distribution is defined as

KpagAh cosd = J P dA (25)
A
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in which h is the depth of flow measured above the lowest point in the
cross section along y direction normal to the channel bed. If the density
p does not vary within A and the pressure distribution is hydrostatic, then
K =1, By referring to Eqs. 17 and 21, the ambient piezometric pressure

correction factor Kii can be defined as

A or
\ —_—— = - ————
Kkipagh cosf ™y I P o do (26)
i o i

Again, if the ambient piezometric pressure acting on the boundary o is
. . . \J -
hydrostatically distributed, Kki =
The friction slope is defined as
Sey = —~l——f [t.,] N, do (27)
i pagA . ij7o 7]
Hence, with the aid of Eqs. 6 to 9 and 24 to 27, Eq. 22 yields the following

one-dimensional momentum equation

BVi Bkki Bl 5
Aki ot +Vi( Y VJ ki Bx ) ij (Bkij Vi)

V.
1
+ (Bkij - Akikkj) pa ] (p AV ) + — pa f (Aki 1 Ui) pq do

a
=gS ., - gS.. - g — (Kh cosf) + (K',—K)gh cos8 1 o4
oi = 85g4 a K A ox;
3T . 9p
+ L 3 _ ggh cosp - —2 4 B COS8 y 2 ga (28)
p A 9x, p_ 9X, p A 9%,
a a i a A i
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in which the force due to internal stresses Tij is
T,. = J T,. dA (29)
A M

If the cross section is taken such that k = 1 = 1 and xl =X

the general channel flow direction, then the derivative of any cross-

or x, is equal to zero. IHence,

sectional mean quantity with respect to x 3

2

Eq. 28 can be simplified as

A PO R S, . e M
v, oo IR : \"' . IECIY = N it BN N . A
I Lo 4 A : \ L .

oV v

1,y 2 42y L3 . 1A
A St + Vl P (Bvl) + (B - A7) paA e (paA Vl) + (K - K'")gh cos® NE
oT
P 1 11 1
f . (Kh cosb) = gSO - gSfX + T + S A J (Ul - AVl)pq do
a a ‘ag
7 I 1 %5 | g cosd p
- SAGRN | S QAL S =t : op
Vl (Bt .lk ax) Kgh cos6 > Tx + oA J y 9 dA (30)
a a A
in which
A= AL = ——1———J pu, dA (31)
11 paAVl A 1
1 —
B =8y = —5 J puidA (32)
paVlA A
Y ot = -1 _B_E ,
Ko ] T (33)
p gh cosg —
a 9X
du —
= —_ y &
Tq f (2 P puy )dA (34)
A
= ginb.

and S =S
o} o}
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Equation 30 can be regarded as the general one-dimensional
momentum equation for open-channel flow of an incompressible fluid. The
first term in Eq. 30 is due to local acceleration of the flow. The second
and third terms represent the effect of convective acceleration, due partly

D

to the variation of channel geometry and partly to the spatial variation

> ) B

of the density of the fluid. The fourth and fifth terms are due to action
of’the piezometric pressure. The first term at the right of the equality
sign is the effect of gravity. The second term represents the frictional
force acting on the boundary, including not only that part on the solid
boundary but also the stresses acting on the free surface such as those
due to wind or rainfali. The third term is the spatial change of the
longitudinal component of the total internal stresses acting on the cross
section; excluding the pressure, but including the effect of change of
viscosity of the nonhomogeneous fluid, and this term is conventionally
neglected. The féurth term at the right represents the effect of the
lateral flow and the last three terms are due to nonhomogeneous density
of the fluid. Conventionally used various forms of open-channel flow
equations derived based on the momentum concept are simplifications and
approximations of Eq. 30. Further discussion on special cases of Eq. 30

will be given later.
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V. TINERGY EQUATIONS

V-1. Energy Equation in Integral Form

The energy equation of mean motion for a point in a turbulent

flow field of an incompressible nonhomogeneous viscous fluid is

; VQ VQ B _ 5p 3Ti.
- - + - —— —_— = - I —— ; 35
ot P 3 (b o= u) = pu,Fy - uy X, Ty %, (33)

in which

(36)

and other symbols have been defined previously.
With the aid of the boundary condition, Fq. 3, with
G = pVQ/Z and the Leibnitz rule, integration of the two terms at the left

of Eq. 35 yields

=2 =2
J 2o (o) + 52— (pp— u,)1da
A J

at 0%,
2 N/
=2 -2 -2 2
3 [ v V° 9A d Ve — v 5A
=37 | endA - [po— o] ___J p5 u dA - [p5 u, oo
ot A 2 2 dt o ij A 2 j 2 j Xj a
=2 =2 2
3 J v 3 Ve o— U
= o-— dA + ——-J p=— u,dA - J p5— q do (37)
ot A 2 9x A 2 - 2

in which U is the velocity of the lateral flow when joining the channel

flow. Likewise, for the -pressure term in Eq. 35, with the aid of the



20

continuity equation and the Leibnitz rule,

1

J o B ga
A

du,p ‘
i —_—— —_—
i x f ‘d“ﬁ%fp%ﬂ*b%%*
i A i o1 YA )

0X., O
i

(38)

in which P1, is the pressure intensity of the lateral flow when joining
the channel flow and the last term is due to unsteadiness of the flow,

For the last term in Eq. 35,

. aTi. 3 Bul
JA vy T da = JA 5x, Uy Tyg)dA - J T3y Bw, A

) ou,
- %f U, Ty gdA + J [u, .0 N, do - J T ,&i dA (39)
jla o 3o A M

From Eqs. 35, 37, 38, and 39 the energy equation for a channel

cross section with area A is

) Vv 9 V™ — U
%IDTM+§ﬁ‘T%“‘J@T+%M“
A j ‘A o

— 9 — — 9 - 5
= pu.F.dA———J' pu,dA—f-——J‘ pdA+J R 4a
JA i'i 8xi 9 A A ot

du,
— : i
" JA uyTygdh J [u;73516N; do - JA f3 5w, 4 (40)
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In a gravitational field, with the specific weight of the
fluid vy = pg, from Eq. 20 and by using the Leibnitz rule and Eqs. 1 and 3,
one obtains

Bpa,
— 3 - i
= — — 6)]dA +
JA puiFidA JA axi [Yui(zb+y cosf)]dA J g(zb+ y cosf) Bxi dA

A

B 2 - ]
= - JA y(zb+-y cose)uidA-+ {O[y(zb4-y cose)]L<1d0 - SE-JAy(zb+ y cos6)dA

(41)

since B(zb + y cos0)/3t = 0. Hence, from Eqs. 40 and 41, the energy

equation in integral form over a cross section for a nonuniform unsteady
free surface flow of an incompressible nonhomogeneous viscous fluid in a
channel of arbitrary geometry and with spatially and temporally variable

lateral discharge is

=2 =2 2
9 \Y 2 v - 9 — U
% f (p 7+ Po)dA + . j 05 ujdA + T [ PouidA - J (p§-+ PL)q do
A A i ‘A o}
- J‘ —Rg: dA +—ai f U T, dA +J [u.7,.] N_do—f T, gui dA (42)
A 5 I i s iij'o 7§ A 13 xj

in which P0 =p + v(y cos6 + zb) =P + Yz, is the local piezometric
pressure, and PL = P + [y{y cosb + zb)]L is the piezometric pressure of
the lateral flow when joining to the channel flow, both referred to the
horizontal reference datum z = 0.

The physical meaning of the terms in Eq. 42 is as follows: For
the discharge through A, the first term is the time rate of change of
kinetic and potential energy; the second and the third terms are the rate

of spatial change of convective kinetic and potential energy fluxes,
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respectively, by the channel flow; and the fourth term is the energy
influx due to the lateral flow. The terms on the right of Eq. 42 are

as follows: The first is the rate at which work is done due to change
of internal pressure intensity over A; the second is the rate of spatial
change of work which is done by deformation stresses; the third is due
to the work done by external stresses on the boundary; and the fourth
and last term is the rate at which work is done by deformatiop stresses
to overcome the velocity gradients, i.e., the rate of energy'&issipation.
Tt is interesting to note that the nonhomogeneous nature of the fluid is

not expressed explicitly in the energy equation.

V-2. Energy Equation in One-Dimensional Form

To transfer Eq. 40 into one-dimensional form, in addition to
the correction factors defined previously, the local kinetic energy flux

correction factor B' is defined as

N =

e

p V,V.A = J %VZ dA (43)
A

The convective kinetic energy flux correction factor, or the Coriolis

coefficient, can be defined as

ukj’

u, dA (44)

The local potential energy flux correction factor n' is equal to the
piezometric pressure correction factor K defined in Eq. 25. The convec-

tive potential energy flux cocrrection factor n i is defined as

k
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= Py

nkiYaAVih cos® J uidA (45)
A

in which Y, T P8 is the cross sectional average specific weight of the

fluid. For homogeneous fluid with hydrostatic pressure distribution,

= 1, Finally, the unsteady pressure correction factor % is defined as

Mk
oh _ [ Bp
ot 3 T JA 5t A (46)

Substitution of Eqs. 43 through 46 and 25 into Eq. 42 and
dividing the result by paAg yields the one-dimensional energy equation
per unit mass of the incompressible fluid

BHB H op A 5 1

a
5t oA stV vy o, (43 35 V4V3 * 0

h cosb6 + in 2z, )

ki b

V.V,
+(0L _JJ

ki 2g + nki h cosb6 + A

1 9
ki % o A Bx; (p AV;)

2
1 J U h . 1 3 =
- — (p— +P)qdo =1+ ———-(f——-J w,1,,dA
y_A o 2 L ot yaA axj A 1L 1]

du,
+ Jc[uirij]G Nj do - JATij 5;:‘dA) (47)

in which the total head of the flow HB measured in terms of the cross

sectional averaged specific weight Y, is

V.,V

ii
25 + Kh cosH + z, , (48)
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For a flow cross section with its normal along one of the co-

ordinate direction x. = x, Fq. 47 can be simplified as

1
oH H op A oH H . 2
B B a C C 29 1 U
5 Yo A ae Tk o Bx(paAvl)—yAf(pT+PL)qdc
a a a
a @h__ i W
=t ot VlSe + YaA (49)
in which
ViVi
HC o 28 + nh cosb + Azb (50)
W =2 u,T dA + [u,t ] N, d © (51)
% 1741 YiTije Ny 9
A lof
_ -1 | ey
0 =0y =T f 7 vy da (52)
2Lya A
a2 "1
IR — J'PE A (53)
_ 11 yaAvlh cosb A "1
X o= All (Eq. 31), and the dissipated energy gradient is
1 J BEi
S = T,, =—— dA (54)
e YaAvl A 13 BXj

Equationr49 may be considered as the general one-dimensional
energy equation per unit mass for open-channel flow of an incompressible
fluyid. Like the original equation (Eq. 42) from which it is derived,
the first two terms in Eq. 49 represent the time rate of change of total

energy; the next two terms account for the convective energy exchange; and
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the fifth term is the energy influx from the lateral flow. To the right
of the equality sign in Eq. 49, the first term represents the work which
is done by the change of internal pressure with respect to time reflected
as change of depth with time; the second term accounts for energy dissipa-
tion; and the last term includes the rate of spatial change of work which
is done by internal deformation stresses and the work done by external

stresses on the boundary, respectively.

V-3. One-Dimensional Dynamic Equation from Energy Approach

In hydraulics, a one-dimensional dynamic equation somewhat similar
to the momentum equation is often derived based on the energy approach. Un-
fortunately, because of the similarities in their simplified formé, the
equations derived respectively based on the energy and momentum approaches
are often misunderstood and misused in solving problems. To facilitate
later discussion on this subject, the one-dimensional dynamic equation for
incompressible fluids is derived in this Section.

For a channel cross section with its normal along one of the co-
ordinate direction xq =X and with a nqn—erodible bed so that both 6 and z

b

are independent of time and szlax = —SO, Eq. 49, after dividing by V1 and

substitution of Eq. 12 and rearranging, can be simplified as

Y
8' Vi %5 Y4%5 38" L hocose 3K , 1

3h . 3
(K coss -r) ot + o (nh cos8)

g Vy 8t  2gV; 8t v, 8t vy
V.V av, 3V V.V, 30 AV
.V, . . . 1
+ 1111(1_'._;_1.,_ - ' 11, - %K) h 1 a
; 2g  3x g 939X [ A8") 2g (n M) cos6 ] paAVl 9%
V.V '
v didi 3 W 1 J
- — = - + + - H d
(B %8 + K h cosb) ™ Aso S, YaAVl 5 av, g (HL B)pq o

(55)
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in which HL = (U2/2g) + (PL/YL) is the local piezometric head, with

respect to the horizontal datum z = 0, for the lateral flow when joining

or leaving the main channel flow. Equation 55 is, not surprisingly, con-
siderably more complicated than any of the conventionally used corresponding
equations (6, 7, 28) as at this stage no restrictions are made on Eq. 55

provided the fluid is incompressible.
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VI. SPECIAL CASES FOR NONHOMOGENEOUS FLUIDS

The continuity, momentum, and energy.equations derived in the
preceding three chapters, both in integral and in one-dimensional forms,
are general equations for open-channel flows for incompressible fluids.
The flow can be turbulent or laminar, rotational or irrotational, steaay
or unsteady, uniform or nonuniform, gradually or rapidly varied, sub-
critical or supercritical, with or without spatially and temporally
variable lateral flows. The fluid can be nonhomogeneous, such as problems
involving stratified flows, water and thermo pollutions, estuary salinities,.
and lateral flow of different fluid properties. The channel can be of
arbitrary shape and longitudinal and lateral alignment. In fact, the
channel bed can be erodible (in this case the terms (Kh/Vl)(acose/Bt) and
(l/Vl)(sz/Bt) should be added to the left side of Eq. 55).

However, complete as they appear, these differential equa-
tions cannot readily be used in solving engineering problems because
of their highly nonlinear nature and the present knowledge in numerical
solution techniques and computer capability. Nevertheless, it is
extremely rare that such complete equations are necessary in engineering
practice, although it is worthwhile to know what terms can be neglected for
various cases. In this chapter one-dimensional flow equations.for certain
special cases of incompressible nonhomogeneous fluids are deduced for the
flow cross section with its directional normal along X, direction. The
corresponding equations for incompressible homogeneous fluids are given in
the following chapter. These equations are deduced for the purposes of
possible easy adaptation to solve probiems but also to reveal the assump-

tions and limitations involved in conventionally used equations.



28

VI~1l. Steady Spatially Varied Flow of Nonhomogeneous Fluid

For steady flow of nonhomogeneous liquid with lateral flow, the

continuity equation can be obtained from Eq. 12 as

d
o (e AV)) = | pq do (56)
o}
Or, from Eq. 13
d(AV,) :
—-———.-——--———-—dx = q dO’ (57)
o}

The momentum equation is obtained from Eq. 30 with the aid of Eq. 56 to

yield
2 2
\ A
d 1 dB ! 1, 1 dA
ot —— - I —-K - —_] = =
dX(Kh_cose) + = dx + [(K Yh cos® - 8 2 ] A ax
: 3T
[ Nter & R | .8
=S, Sfx+YaA8x +YaAJ (Ul 2>\Vl) pq do
o ,
2 2
Vv ' v dp
B "1 da 1 1 a cosf ap
+ 27 §-E;-+ (B . Kh cosf) e + oA | Y 5% dA (58)
a a A

From Eqs. 49 and 56, the energy equation per unit mass is

dH H
‘ dx 1 c _

x oA (HL A)oqdc——VS + — (59)
a . a
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VI-2. Unsteady Nonuniform Flow of Nonhomogeneous Fluid

For unsteady flow, without lateral discharge, of nonhomogeneous
incompressible fluid, the flow equations can be obtained from Egqs. 12, 30

and 49 by dropping the terms involving q and U. The continuity equation is

) ) _
T (0 A) + 5= (o AV)) = 0 (60)
Or, from Eq. 13,
3 (AV.)
A 17
™ + 5y = 0 (61)

The dynamic equation based on momentum approach is

v

EAY \Y4 . .
R WS 20 V1 1 oA
A_ 1, 1o " _ 13 B 1934
ey + e (BVl) B - 29 YA % (paAVl) + (K- K ) h cosb X ox
oT Vv
2 - I N S R Y YR VN
*ax (Khcos®) =8, = Sy Yot 0% g dt - Vit 3
1 %®a  coss 3p (62)
- Kh cosf =— —— + ——— | vy — dA
p, 9% p_A %
a a
A
From Eqs. 49 and 60, the energy equation per unit mass is
oH oH
st T Vet M) SR g (PaAVD) T MYy gy
=By  (63)

ot 1l7e Y A
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VI-3. Steady Nonuniform Flow of Nonhomogeneous Fluid

One-dimensional equations for steady nonuniform flow of non-
homogeneous liquid without lateral discharge can be obtained from Egs. 56
through 59 by dropping terms involving lateral flow or from Eqs. 60 through

63 by eliminating the unsteady terms. The continuity equation is

d
E;-(ApaAVl) =0 (64)
Or,
d(AVl)
— - 0 (65)
Consequently,
ey =0 (66)
dx a
The dynamic equation based on momentum approach is
2 2
\Y \
a Y1 ae ' iy lada_ o
I (Kh cosf) + e + [(K - K )h cosb B 2 ] ™ SO Sfx
2 2 .
dT v v dp
+ R + 2 ﬁ-—l-él-+ (B S Kh cos6) 1'—-——§-+ cosb y 20 dA
vy A dx A g dx g p dx p A X
a a a
A
(67)
The corresponding energy equation per unit mass is
dH
¢ 1dr W
Vl dx Vch A dx VlSe + Y A (68)
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VI-4. Steady Uniform Flow of Nonhomogeneous Fluid

For steady uniform flow of nonhomogéneous fluid with parallel
stream lines and without lateral flow, if 6 is a function of x, the flow
equations are essentially the same as those for the preceding case, Eqs. 64
to 68. However, if 6, i.e., the channel slope, is a constant indepenﬁent

of x, the continuity equation can be expressed as

ax = 0 | | (69a?
dVl

4 o) =0 (69¢)
dx a .

Essentially this implies that the flow is in a prismatic channel and the
depth is constant. From Eqs. 67, 69, 23, and 25, the corresponding dynamic

equation based on momentum approach is
(70)

Or, perhaps more appropriately, since Bai/8x=0, Eq. 70 can be written as

= .Lf.l_ —2 ' =
: s0 8¢y = Y A ™ (pul +ouy” + p)dA - (71)
A

2

Likewise, from Eqs. 68, 69, 50, 51, 52, and 53, and by noting that ViVi = Vl’

one obtains the dynamic equation based on energy approach as

4 (no -i; @1, dA (72)
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Since E; = Ei and Bﬁi/Bx = 0, Eq. 72 may also be written as

1 4
1 dx (
A

—2

1 u, dA (73)

XSO - S5 = + P + pu

e yaAV

= -
S
P

Equations 70 to 73 are obviously different from the corresponding

equations for'homogeneous fluids. Even for a flow with only lateral density

variations, i.e., A#1but 3p/3x=0, only the friction slope is equal to the

channel slope (So = Sfx) and SO = Se/A. For steady uniform flow of a
homogeneous fluid in a prismatic channel of constant slope, SO = SfX = Se

and A=1. The difference is due to the spatial variation of the fluid

density for the nonhomogeneous fluid case.
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VII. SPECTAL CASES FOR HOMOGENEOUS FLUIDS

For an incompressible homogeneous fluid, neither the density nor
the viscosity changes with either time or space. Hence, p = P, and the
density correction factor A, as defined in Eq. 9, is equal to ﬁnity. Con-
sequently, the continuity equation in one-dimensional form, Eq. 7 becomes

9 (AV,)
3A+—1—=j q do (74)
. |

at 9%,
i
It should be noted here that Eq. 74 is identical with Eq. 11 which has been'
derived for nonhomogeneous fluids.

From Eq. 28, the corresponding momentum equation is

vy 3 vy 1
—_ _— + - _— = -
5t T V3 Bx, Brij Vi) + Bpyy - D e x; Aav,) +3 L V; -0;) gdo
) aT
- - e O v 1.3 1 " ij
gSOi gSfi 24 Bxi (Kh cos®) + (Kki K) gh cos® N + oA ij
(75)
Likewise, from Eq. 47, the energy equation per unit mass is
oH H v,V
B, B 2A d i3
—2, 284 e JJ 0
5t TA e TV 5%, i 2g T Mg Booos® +zp)
V.V, a(Av,) ’
33 i 417 1 - oh
O o T Mk eosOF ) ¢ %, A L A q do= oy
1.8 [ = — ouy
L . , - — 6
+ A (axj JA uiTij dA + JO [uile]O NJ do J 1J Bx dA) (76)

Equations 74 to 76 are presented without specific restriction

on the orientation of the cross section as they may be useful for curvilinear
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flows such as flow in meandering channels. For a flow cross section with

its directional normal along the direction X,

= x, the one-dimensional flow

equations can be simplified from Eqs. 74 to 76. Such equations are given

for the following special cases.

VII-1 Unsteady Spatially Varied Flow of Homogeneous Fluid

Tor the case of unsteady spatially varied flow of incompressible

homogeneous fluid in open channels, such as channel flow with rainfall or

infiltration, the flow equations can be obtained‘from Eqs. 74 to 76, or

1l

from Eqs. 12, 30, and 49 by setting A

continuity equation is

2 3(AV,) _ N
ot x ; 4

+
|

which is the same as Eq. 13 for nonhomogeneous fluids.

The momentum equation is

Y W ,
1 2 98 _ 1 _ 2 ) l oA
Er + Vl T + (2B _1)V1 e + [ (B 1)V1 + (K - K")gh cos6] X B2

' oT
2 _ G R _
+ g . (Kh cosp) = gSo gSfx + ok Tx + A Jg (U1 Vl)q do

The energy equation per unit mass is

oH 3u
B 13 c_1
sp T (e - Hp) 1o (AV)) V) 5= —KL(HL—HB)qu

oh W
;——-— V.S + YA

fl

17e

1l and p = pa = constant. The

(77)

(78)

(79)
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The correction factors and HB and H_, have been defined in Egs. 32, 48,

C
50, 52, and 53 with P, =P and A = 1 for homogeneous fluid. Various

simplified forms of Eq. 78 have been used together with the corresponding
continuity equation to solve problems numerically. For example, the con-

ventionally used unsteady spatially varied flow equation in St. Venant

equation form (1, 4, 13, 19, 25, 27) is

oV oV
1 1 5h _ _ 1 _
SE—-+ Vl 5;—-+ g cosH - g(So Sfx) + A JG (Ul Vl)q do (80)

In order to reduce Eq. 78 to Eq. 80, the following assumptions are necessary:
(a) The velocity is uniformly distributed over the cross sectional
area A so that B = 1.
(b) The pressure distribution is hydrostatic so that K = K' = 1.
(¢c) The channel slope SO, and hence 6, is constant independent of x.
(d) The variation with respect to the flow direction x of the internal
normal stresses acting on the cross section, BTll/ax, is relatively

negligible.

These assumptions essentially require that there is no rapid
changes in floﬁ cross sections. Particularly, there should be no flow sepa-
ration and the flow should not be highly curvilinear. In other words, Eq. 80
should only be used for spatially and temporally gradually varied flows, and
it is inaccurate around the region where the Froude number of the flow is
close fo unity. For the cases which the four required assumptions for Eq. 80
cannot be approximately satisfied, it is often desirable to evaluate the
problem from a three~dimensional view point instead of attempting to esti-

mate the variations of Tll and the correction factors.
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The simplified continuity equation often used together with

Eq. 80 in solving problems is

oh _ 1
Py + D % + Vl 5% = B JO q do (81)

The necessary assumptions involved to reduce Eq. 77 to Eq. 81 are as
follows:

(a) The cross sectional area A = BD, in which B is the free surface
width as defined previously and D is the hydraulic depth.

(b) The channel is sufficiently wide so that ﬁ ~ h; or, the side walls
of the channel are sufficiently steep, so that 3D/dt = dh/3t and
aD/3x =~ dh/dx.

(c) There is no rapid changes or discontinuity of the free surface
width with respect to space and time, i.e., both 9B/3t and 3B/3x

terms are relatively negligible.

Thus, it is interesting to know that the necessary assumptions
for Eqs. 80 and 81 are Completely different despite the fact that they are
often used together in solving problems. Needless to say, a solution
obtained by using these two equations should have all thg assump tions
involved 1n both equations satisfied. Unfortunately, these two equations have
often been used ignorantly without fully realizing the assumptions and limita-
tions imposed.

The friction slope Sfx appearing in the momentum equation (Eq. 78),
and consequently in Eq. 80 is often mistaken as the dissipated energy gradi-
ent Se' There is no simple way without making serious assumptions to reduce
the energy equation (Eq. 79) into the St. Venant equation form. Further

discussion on this subject will be given later in Chapter VIII.
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VII-2. Steady Spatially Varied Flow of Homogeneous Fluid

For steady spatially varied flow of homogeneous fluid having
constant density and viscosity, the corresponding flow equations can be
obtained by dropping the unsteadiness terms in Eqs. 77, 78, and 79 for
the unsteady case or by setting X = 1 and p = P, = constant in Egqs. 56,
58, and 59 for the steady nonhomogeneous case. The continuity equation

is

d(AVl)
ik = jg q do | (82)

The momentum equation is

V2 V2
1 4dg g _plyldad
s dx + [(K - K')h cos?® Bg 1 N ix (Kh cos®)
dT
1 11 1
=S, " S TiaTax T e JG (U, - 28V,)q do (83)
The energy equation per unit mass is
dH
C 1 W ‘
—_— . = _ = - + —
Vi 9% x L (HL HC)q do v.8, VA (84)

As discussed in Chapter II, many previous derivations have been
made by different investigators to formulate the flow equations for steady
spatially varied flow of an incompressi?le homogeneous fluid. So far the
most complete equations for such flpw are those derived by Yen and Wenzel (28).
To reduce Eq. 83 to the dynamic equation derived from the momentum considera-
tion by Yen and Wenzel (Eq. 12 in Ref. 28, with appropriate adjustments for

the differenges in definition for q and the correction factors), the following
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assumptions are implicitly made:

(a) The channel is straight and very wide, or alternatively, being
prismatic with sufficiently steep side walls and no rapid
change of free surface so that dh/dx & db/dx >> (D/B)dB/dx,

and hence

A dh
D dx (85)

gl&

(b) The variation with respect to x of the internal normal stress
acting on A, dTll/dx, is relatively negligible.
The most commonly used form of dynamic equations. for gradually varied flow

with lateral inflow is (6)

o) fx EK_
dh _
== 2 (86)
1 - L
gD

To reduce Eq. 83 to Eq. 86, in addition to the -two assumptions just
mentioned, the following assumptions are necessary:
(¢) The pressure distribution is hydrostatic so that K = K' = 1,
(d) The velocity is uniformly distributed over A so that B = 1.
(e) The channel slope SO, and hence 6, is constant and small, i.e.,
cosb® & 1.
(f) There is no x component of the velocity of the lateral flow,

i.e., U1 = 0,

Likewise, to reduce Eq, 84 to the dynamic equation derived from

the energy approach by Yen and Wenzel (Eq, 33 in Ref. 28) the following
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assumptions are involved:

(a) The channel flow has only longitudinal velocity component,
i.e., Vi = Vl.
(b) The assumption on channel geometry involved in Eq. 85 is wvalid.

(¢) The rate of change with respect to x of the work which is done

by the internal stresses over A is negligible, i.e.,

——-J u,T dA =0 (87)
A

(d) The rate of work which is done by the external stresses on the

boundary ¢ is negligible, i.e.,

] N, do =0 (88)

( [u,T, .
iij o ]

Is
This assumption usually does not impose much restriction. On
the free surface the shear stress is usually negligible unless
there is strong wind or large tangential component of the
lateral flow. For the solid boundary part of o, the infiltra-

tion or seepage velocity Ei is usually small.

To further reduce the energy equation to the commonly used dynamic

equation for steady flow with lateral outflow for homogeneous fluid based

on the energy approach (6)

oV
S -8 - 1 J q do
L g (89)
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in addition to the four assumptions just mentioned, the following
assumptions are necessary:

(e) The pressure distribution is hydrostatic so that n = 1.

(f) The change with respect to the longitudinal direction of the
velocity distribution on A is small so that the do/dx term
is relatively negligible.

(g) The channel slope is constant and small, and hence cosf =1,

(h) The piezometric head of the lateral flow, PL/y, is equal to
h cos8 + 2y and the velocity of the lateral flow, U, is

numerically equal to Vo Vl'

Strelkoff (24) has given an elaborated explanation on why Eq. 86
can be used as an acceptable approximation for the lateral inflow case and

Eq. 89 for the lateral outflow case.

VII-3. Unsteady Nonuniform Flow of Homogeneous Fluid

For an unsteady nonuniform flow of a homogeneous fluid with
constant p and u and without lateral flow, the flow equations can be
obtained from Eqs. 77, 78, and 79 by dropping the terms involving q and
U or from Egqs. 60, 62, and 63 by setting A = 1 and p = P, = constant.
The continuity equation is the same as Eq. 61 for the corresponding non-

homogeneous fluid case:

PURIGA

ot x 0 90
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The momentum equation is

A oV

_ 1.2 38 _ 1 8 - 1)V + (K - K')gh cos8] 124
s TVt (28 - DV, o=+ [( 1 A 3x
oT
) 1 11
L. = - = =2 1
+ g ax(Kh cosB8) gS0 gSfx R Tox (91)
The energy equation per unit mass is
oH oH
B 13 C _ dh _ W
5 T (o~ Hp) gV + V5 = e~ Vi8S, TR (92).
The St. Venant equations (6, 10, 16, 23, 24)
oV
oh 1 oh _
5?+h3x +Vl aX—O (93)
oV Y
1 1 oh _ e
5t T V19w T 8x - 865, Sy 04

are apparently appfoximations of Fgqs. 90 and 91, respectively. Since
Eq. 93 can be obtained from Eq. 81 and Eq. 94 from Eq. 80 by dropping
the lateral flow terms, the assumptions involved to obtain Eqs. 93 and

94 are exactly the same as those for Eqs. 8l and 80, respectively.

It may be appropriate to mention here that Eq. 91 (or Eq. 78
if precipitation is considered), after neglecting the BTll/ax term and
adding the Coriolis force term, becomes the one-dimensional equation of
motion for hurricane and storm surges in coastal regions and estuaries
(26). However, in practice further assumptions such as neglecting the
bed friction or the convective acceleration are made so that numerical

computation is possible.



42

VII-4. Steady Nonuniform Flow of Homogeneous Fluid

For steady flow of homogeneous liquid without lateral flow, the

continuity equation is

d(AVl)
_— = 95
o 0 (95)
The momentum equation is
d Vi 1 dA Vi dB
—— + - K’ g - — == =
dx(Kh cose) [(R - K’')h cos B8 s I N + s dx
: dT
_ 1 11
- So Sfx + YA dx (96)
The energy equation per unit mass is
dH
C W
— = -~V —_ ’
V1 Ix V15 * 1A 7
By assuming V, = Vl’ from Eqs. 97 and 95, the dynamic equation based on
i .
the energy approach is
2 2
oV v
d 1 dA 1 do _ W
dx(nh cosb) - Ag dx + 2g dx So - Se + yAV1 (98)
The conventional nonuniform flow equation for backwater
computation (6, 23)
S -8
dh o
dax 5 (59)
\Y
Lo L
gD
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is obviously an approximation of either Eq. 96 or Eq. 98. 1In Eq. 99 S is
"the slope of the flow." TIn fact, it is probébly this equation without
specifically defining S that causes many confusions in nonuniform flow compu-
tation. Both o and B have been multiplied to the term Vi/gD by different
investigators and S has been regarded as the friction slope, the energy
slope, as well as the water surface slope. Clearly, if Eq. 99 is deduced

from Eq. 96, S = S < is the friction slope and the following assumptions

f
are involved:
(a) The pressure distribution is hydrostatic so that K = K' = 1.
(b) The channel has constant slope and approximately cos6 = 1.
(¢) The assumption on channel geometry involved in Eq. 85 is valid.
(d) The cross sectional velocity distribution is uniform so that B = 1.
Or, alternatively, if the denominator is 1 - (BVi/gD) instead of
1 - (Vi/gD), the variation of the velocity distribution over A
with respect to x is small so that the dR/dx term is relatively
negligible.
(e) The variation with respect to x of the internal normal stress

acting on the cross section, dTll/dX’ is relatively negligible.

Likewise, if Eq, 99 is deduced from Eq. 98, S = Se is the dis-
sipated energy gradient and the following assumptions are involved:
(a), (b), and (c); same as Assumptions (a), (b), and (c¢) from Eq. 96
to Eq. 99, and n = 1.
(d) The cross sectional velocity distribution is uniform so that
@ = 1, Or, alternatively, if the denominator is 1 - (aVi/gD)

instead of 1 - (Vi/gD), the variation with respect to x of the
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cross sectional velocity distribution is small so that the da/dx
term is negligible.

(e) The assumptions involved in Fqs. 87 and 88 hold.

From Egs. 95, 96, and 98, it is obvious that for steady uniform

flow of homogeneous fluid, SO = Sfx = Se'
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VIII. COMPARISON BETWEEN MOMENTUM AND ENERGY

APPROACHES AND VARIOUS FLOW GRADIENTS

Despite the similarities in appearance between their siﬁplified
one-dimensional forms such as Eqs. 96 and 98, the flow eqﬁations
derived based on the momentum approach is basically different from those
based on the energy approach (10, 16, 22, 24, 28). The differences are
clearly shown in the original momentum and energy equations in integral
form, Egqs. 22 and 42. Although basically both are derived from Newton's
second law, the momentum equation is a vector relationship in which all
the forces acting on the cross section should be considered, including
the external forcesvacting on the boundary surface which may perform no
work. The energy equation, contrarily, is a scalar relationship taking
into account not only the convective energy transfer and work done by
external forces but also the work which is done by the internal forces.
In their respective one-dimensional forms, Eqs. 30 and 49 or 55, this in-
herent difference between the momentum and energy approaches are reflected
in the correction factors as well as in certain terms.

First, in the momentum approach, Eq. 30, only the component of
the velocity along the direction considered, Vl’ affects the momentum
balance, whereas in the energy approach, Eq. 55, all the three components
of the flow velocity Vi, i=1, 2, 3, are involved. Secondly, in Eq. 30,
there is only one momentum flux correction factor, 8, which is a second
order tensor, whereas in Eq. 55 two energy flux correction factors, a and

B', the former being a vector and the latter being a scalar, are involved.

Only for the special case Ei = Uy, U, = Eﬁ = 0 that B', which involves
summation over i = 1, 2, 3, is numerically equal to B but their physical

meanings are -different. In general, a #B'# B, which indicates the
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different effects of velocity distribution on momentum and energy.
Thirdly, in Eq. 30, there is only one pressure correction factor K which
is a scalar quantity, whereas in qu 55, both K and the convective poten-
tial energy flux correction factor n, which is a vector, appear. This
indicates the difference in effect of piezometric pressure distribution -
on momentum and energy. Fourthly, for a given mean velocity V1 the
effect of unsteadiness as reflected by the local acceleration,.is a
function of X for the momentum case while for the energy case it is a
function of 8' and K but not of A. Fifthly, for nonhomogeneous liquid
the cross sectional change of density with respect to time, as indicated
by 3A/3t in Eq. 30, affects the momentum balance but it has no direct
effect on the enérgy balance. Sixthly, in the momentum equation, only‘the appro-
priate component of the velocity of the lateral flow is considered, while in
the energy approach, the total magnitude of the lateral flow velocity
vector is of interest. Seventhly, as indicated by the ¢ %h/5t term in
Eq. 55, for a stationary boundary the ambient pressure does no work and
hence it vanishes in the energy equation, while as shown by X' in Eq. 30,
the effect of_the ambient pressure appears in the momentum equation as
long as there is a spatial change in flow cross section, i.e., nonuniform
fl&w. Eighthly, Eq. 30 is readily applicable to loose boundary with erosion
or deposition, whereas terms to account for the energy required for the
change of the boundary, (Kh/Vl) (3 cos6/3t) and (l/Vl) (szlat), should
be added.to the 1éft side of Eq. 55. Ninthly, except for the slopes of
the channel bottom SO and the free surface 9h/5x, no other gradients are
common to both Egs. 30 and 55.

In fact, the difference between the friction slope S and the

fx

dissipated energy gradient Se illustrates characteristically the difference
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between the momentum and the energy concepts. The friction slope accounts
for the resistance due to external boundary stresses as defined by Eq. 27
whereas the dissipated energy gradient accounts for the rate of energy
dissipation due to internal stresses working over a velocity gradient

field as defined in Eq. 54.  The relationship between S_  and Se can be

fx
obtained from Eqs. 30 and 55,

2 9V SH V.V
N T 3 1'1
S = —_ —- —— — — —_ - -——— —
e = M T 5 v, ot M AR [(AR = mh cosb] == (0 =527
2
X, ‘AR Ve

3 2
* ey BV F OB —e) 5=+ (8 - ADA =

) 1 9 1 %A
- _— A (K - K Z o8
+ (AK = n)h cos#H] paAvl Bx(paAvl) +A(K - K')h cos$® A %
3T V.V V2
A 11 W A 2PN . ii 21 oA
- 2 = T O CE 4 gy 24
TR om +YAV+gV13t+(B %% g+thos)ax
a a 1
3p
+ Kh cos6 ——-axa A Czse f gg-dA
pa A x
1 2Vi AL
+ 5 AV1 JU (HL - HB + A Ef-— E-Ulvl)pq do (100)

In hydraulics, a total head H is often used in one-dimensional

analysis. The total head of the flow at a cross section is defined as

H=H +z + — \ (101)

in which Hp is the cross sectional average piezometric head of the channel

flow with respect to the channel bottom, i.e., to the lewest point of the
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channel cross section. Hence, the total head gradient S, is

H
2
9H v
oH P 9 1
= - = - - = (= 10
SH 9x So 90X 9x (Zg (102)
Consequently, from Eqs. 30 and 102,
2 2
v \ v
) A1 1 3B 9 1
= + - S—=t ==+ (B - 1) — (=
Sy sfx laxr(Kh cos® Hp) teor tE o 8 - 1) o (2g
+ (8 xz)-v—la—-( AV.) + (K - K') h cosb + oo
- yaA X pa 1 ‘ ¢ A 93x
oT v
1 11 1 - do + L 3A _ v 92
YA 9% T YA J (V) - Uy s Ge ™ Vi'ax)
a a
o}
ap
+ Kh cosh i —2 - €088 | 00 4 (103)
p_.9x p A 9x
a Ta A
From Eqs. 55 and 102,
S oH V2 v,V
e 1 B . o%h d n 9, 1 13 i'di
= — 4 e (= - e - - - 2 (=—=) + = — ,
Sm T T T G = typ) t g GRocosd ~H) -G + %k (0 g )
ey y —E 2 (o Av) - (H, - z +2h coss) +2
G B’ o AV Bx Ca"'l B~ % T X ox
AR iv J (i, - Hp)eq do (104)
Ya™'1 Pa™1 /o
Similar expressions, of course, can be obtained for the gradients of
HB and HC. However, they are omitted here because of their infrequent use in

practice. Nevertheless, it should be mentioned here that the true cross sec-
tional averaged total head measured in terms of the cross sectional averaged

specific weight, Yoo is HB as defined in Eq. 48. However, because of its
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frequent appearance in steady flow equations, H, 6 as defined in Eq. 50 is

C

often mistaken as the total head of the flow. Worse still, in practice,
perhaps as a matter of convenience, the appro#imate total head H as defined
in Eq. 101 is usually used. For flow of homogeneous liquid with approx-
imately hydrostatic pressure distribution, HC differs from H only by the

factor o in the velocity head term. But in general, H HC’ and H, and

B’

consequently their corresponding gradients with respect to x, are different.
From Eqs. 100 and 103 or 104 it can be shown that in general for

open—channel flow S_ , Se’ and SH are not equal and none is equal to the

fx

channel slope S0 or the free surface slope with respect to a horizontal
datum, (3h/ox) - Sof Apparently, the differences are due to the unstead-
iness and nonuniformity of the flow and nonhomogeneous properties .of the

fluid. Even for steady flow of homogeneous liquid with Vi = Vl and V2 =

V, = 0, by noting that in this case A = 1, B' = B, H_ = Kh cos6 (Eq. 25),

3
and with the aid of Eq. 82, Egqs. 100, 103, and 104 can only be simplified

P

respectively to the following:

. 2
d Vl d
Se = Sfx +-g§ [(K=n)h cosB] +-—§-a§-(28 - a)
2
v dT
1 ' l_dA B 1 11 W
+ [ (o B)g + (X K)hcosG]A—dx YA Tdx +—-—YAVl
1 Vi 1
+ v, JU [ - Ho + (28 = ) == 20V, 14 do (105)
2 2
\Y \Y
1 dB 1 1 dA
* + — — - — - ' —_ —
Sg ™ Sey s dx + [ -8) g T (K - K') h cos®] + 50

1 9T,

1
i T EK'JU [(28 ~ 1)V, -V ]qdo ~ (106)
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and

2 : 2

v v
= d - 1 da _ "1 dA
Sy =8, tgx [(h - K h coge] * o dx T (1 - ) o

W 1 Vi
- YAVl A J [H, - H, + (1 - 0) g-] q do (107)
o

In addition to the just mentioned five slopes (S S, S So’ and

fx* e’ "H?

9h/9x%), there are three other gradients which are of interest from hydraulics
viewpoint: One is the gradient of the so-called acceleration head, (aVl/Bt)/g;
the second is the gradient of the cross sectional average piezometric head
with respect to the channel bottom, BHp/Bx; and the third is the hydraulic
gradient, (BHP/BX) - So’ which is simply the slope of the hydraulic grade

line or the gradient of Hp referred to a horizontal reference instead of the
channel bottom. Only for steady uniform flow of homogeneous fluid with q = 0

are So’ S, , Se, SH’ and the hydraulic gradient equal to one other and 9h/3x =

fx
aHp/ax = aVl/Bt = 0. In general, none of these eight gradients is equal to
any one of the other gradients and, for example, for certain spatially véried
flows such as sheet flow under rainfall the values of Se can be of order of
magnitude larger than SH’ Sfx’ or So (29). Unfortunately, in hydraulic
computations care is usually not being taken in distinguishing and selecting
the appropriate gradients to be used in the corresponding approximate flow
equations. Often the 'slope'" in these equations is approximated by using the
Chezy or Manning formulas, or simply by S0 or the free surface slope.

In their complete one-dimensional form, the momentum and energy
equations, Eqs. 30 and 49, can be applied to open—-channel flows of incompres-

sible fluid without restriction. In practice, however, it is necessary to

neglect the relatively small terms in these equations so that solutions are

Sa——r
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possible. For example, for a hydraulic jump of a homogeneous liquid, the
energy dissipation, and hence Sé’ is large and usually not readily known,
consequently the energy relationship, Eq. 98, is not suitable to be used.

On the other hand, the magnitude of S0 - S as well as those for (K - K'),

fx
d B/dx, and dTll/dx terms in the momentum relationship is relatively small,

and hence they can be neglected, Consequently, Eq. 96 is reduced to

A%

=N
<

av
dA _ 1M1
rriaill Bl e (108)

d
I (Kh cosB) = B q

|

w

If hydrostatic pressure distribution is assumed, K = 1. Yor a two-

dimensional flow, the area per unit width is A = h and the discharge, V_h, is

1

constant independent of x. Furthermore, if 6 = constant and dg/dx negli-
gible, Eq. 108 yields

2

i;; (}21— cos8) = - % [% (W,h) V,] (109)

Integration of Eq. 109 from a section immediately before the jump with depth
h., to the section after the jump with a depth h2, the sequent depth relation-

1

ship for the hydraulic jump is obtained

=2

2 1 / 2
=5 (¢ 1+ 8F -1 (110)
1

in which'IFl = Vl//ghl/Bcose is the approaching flow Froude number. Similar
techniques can be adopted to apply Eq. 96 to abrupt expansion of the channel.

However, it is beyond the scope of this report to cite the numerous possible

applications of the flow equations derived.
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As mentioned in Chapter II, Strelkoff, in his excellent paper (24),
also pointed out the fundamental difference between the momentum and energy
approaches. He integrated the point form continuity, momentum, and energy
equations for homogeneous liquid ovér a control volume and by using the
Gauss transformation to obtain the equations in differential-integral form.
When taking the limit of the length of the control volume approaching zero,
Strelkoff's flow equations would be transformed to Egs. 5, 22, and 42 with
p = constant. He then proceeded to define a turbulence correction factor
and a nonuniformity and unsteadiness correction factor to one dimensionalize
the mdmentum and energy equations and discussed the nature of these two
factors for various special cases. Consequently,his resulted equations appear
considerably different from their counterparts in this study, Egs. 78 and 79.
The two correction-factors as defined by Strelkoff may be convenient in
utilizing detail laboratory turbulence and velocity measurements to detect

the nature of their variations. The present study, on the other hand, derived

the equations by integration over the cross section with the aid of the Leibnitz

rule and the resulted one-dimensionalized equations are derived having cor-
rection factors defined with the intention to preserve the physical nature

and easy adoption for practical uses.
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IX. RESISTANCE TO OPEM-CHANNEL FLOW

One of the difficulties involved in engineering computation and
design of open-channel flow problems is the determination of the flow
resistance. Rouse (21) gave a vivid discussion on the subject. He sub-
divided open-channel flow resistance into surface resistance, form resistance,
wave resistance, and resistance due to unsteadiness (local acceleration).

He further cleverly demonstrated the effects of nonuniformity and un-
steadiness on flow resistance and the difficulties involved in determining
it. The flow resistance he referred to is "... that part of the slope
corresponding to the local dissipation rate in unsteaay flow" (21), which
is obviously the dissipated energy gradient, Se’ defined by Eq. 54 in this

study. The friction slope, S__, named as traditionally used, as defined

fx
in Eq. 27 referring to the résistance force due to bqundary shear stresses,
is apparently corresponding to the surface resistance diécussed by Rouse.

As discussed in the preceding chapter, in addition to Se and
Sfx’ the total head gradient is also often used as an indication of the
flow resistance. 1In practice the gradient corresponding to the flow
resistance is usually expressed alternatively in some form of resistance
factor for more general use. Among the various proposed resistance factors,
Weisbach's f, Manning's n, and Chezy's C are the most popular ones used in
open-channel flows. Their values as well as the relationship among them
have been well established for steady uniform flow of homogeneous fluids.
Particularly, the Weisbach f can be found from the Moody diagram as a
function of the Reynolds number of the flow and the relative boundary

roughness. However, the validity of using the Moody diagram values for cases

other than steady uniform flow has always been subject to question.
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According to Weisbach's pipe flow resistance concept, a frictional

resistance coeff

momentum concept

in which P is th
hydraulic radius

be defined as

and the total he

Only for steady

is ff = fe = fH

the Moody diagram. In general the values of f

and SH’ are not

icient ff corresponding to S can be defined based on the

fx

[Tli]O Nida
8 . 8gRSfX
£, = - = : (111)
f v 2 P v 2
P 1

e wetted perimeter of the cross section and R = A/P is the

of the section. The energy dissipation coefficient fe can

o= (112)

ad loss coefficient fH as

8gRSH
fH = - (113)
v 2
1

uniform flow of homogeneous fluid without lateral discharge
and the value is equal to the corresponding Weisbach f giVen in

£ fe, and fH’ just as S S ,

fx? “e

equal and are different from that given by the Moody diagram

for the same Reynolds number and relative roughness. The amount of devia-

tions of ff, fe’
nonuniformity of
to be determined
on the effect of

Certain cases of

by Keulegan (16)

and fH from the Moody diagram value due to unsteadiness,
flow, nonhomogeneous fluid, and lateral discharge have yet
individually as well as collectively. Limited information
unsteadiness on flow resistance can be found in Ref. (21).
negligible turbulence or nonuniformity effects were discussed

and Strelkoff (24).
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Recently, Yen and Wenzel (29) found that for a two-dimensional
steady Stokes flow of an incompressible viscous homogeneous liquid under

creeping motion on a uniformly sloped plane with lateral flow,

U
o 24 q .1
fp=pr 4 [ -1, (114)
1 1 b? .

. 2

_ 24 q_ .12 U
fomp A G0 -3y -t L, (115)

1 1 V2

fo=2% 410 1L . - EJi)] (116)

H R Vl 1 Vl zb,h

in which IR = leR/u is the Reynolds number of the flow, the subscripts zb

and h indicate that the terms inside the bracket are to be evaluated at both

the bottom and the free surface, and

9.3 122
C; =5~ 8o R fe * Topg R fs (117)

27 9 27 -2 .2 1 3.3
Ch =T - s5eRfr * 5560 % f¢ ~ 71E0 K ' (118)

They also showed some experimental results of steady sheet flow of water
under rainfall which is reproduced here as Fig. 3.

Although at the present only limited quantitative information is
available on fhe flow resistance other than the steady uniform case, none-
theless useful qualitative information can be obtained from careful examina-
tion of Egs. 30, 55, 100, and 102 to 107. For example, from Eq. 100 it is

obvious that the lateral flow can play an important role in the difference

between S_ and Sfx’ and hence fe and ff. From Eqs. 100 and 104, since the
e -
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magnitude of HL - HB is usually of the order of U2/2g - Vlz/Zg, for the
case of large lateral inflow velocity, i.e., for ‘U‘ >> Vl’ fe can be much
greater than either ff or fH. Such is the case of sheet flow under rain-
fall as shown in Fig. 3, for whiéh the major part of the raindrop energy
brought into the channel flow is simply dissipated through the disturbance
the drops generated. Thus, with the exception of rare cases, usually for

channel flow with lateral inflow, fe > fH > f Likewise for channel flow

£
with lateral outflow, usually fe < fH < ff, which can also be observed from
Eqs. 114 to 116.

On the other hand, the effect of nonhomogeneous fluid on the

differences between fe and fH and f,. depends mainly on the magnitude of A

f
and the sign of apa/ax. The effect of nonhomogeneous density on the flow
resistance is due primarily to the modification of pressure distribution
and only indirectly to the velocity distribution. For steady uniform

stratified flow with q = O, fe is greater than f_ since from Eqs. 71 and

f
73,Se = ASf. In open channels, the change of density, if any, is often
small in comparison to the liquid density. Consequently, the value of A

is usually smaller than that for B and mostiy is between 1.0 and 1.1, and
Bpa/ax and 9A/9x are also small. Contrarily, the effect of nonhomogeneous
viscosity on the flow resistance is through the modifications of stresses
(Eq. 15) and energy dissipation process through viscosity, and this effect
is not reflected explicitly in the flow equations.

It méy be appropriate to note here that, in view of the usually
relatively small variation of density in the flow and low velocity near the
channel bottom, o 2 g' 28 2, In fact, one advantage of using the one-
dimensionalized flow equatioﬁs is that the values of o, B', and B usually

do not vary rapidly with respect to space and their values can often be

roughly estimated. Consequently, sufficient computational accuracy can

57
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often be met by including the estimated values of o, R', and B without
éonsidering their spatial variations. Moreover, for a wide channel or a
rectangular cross section with constant density over A (but p can vary with
x), if the»piezomet;ic pressure P increases with increasing depth, then
n > K > 1; whereas if P decreases with increasing depth, n < K < 1.
Physically, the effects of unsteadiness and nonuniformity of the’
flow on resistance ié through modifications of the pressure and velocity
distributions of the flow as reflected by the pressure and velocity correc-
tion factors appearing in the appropriate flow equétions. It is plausible
that any change in pressure would correspond to acceleration and any change
in velocity gradient would result in different energy dissipation rates
and shear distribution. Again, like the effect of density, the effects of
unsteadiness and nonuniformity of the flow on the differences between fe
and ff or fH depend on whether the flow is locally or convectively accelera-
ting or decelerating. Conceivably, for an accelerating flow, fe is smaller
than ff or fH while for a decelerating flow fe may be considerably greater
than fH or ff.
Nevertheless, cpnsiderable efforts are needed in the future to
establish quantitatively more general and useful information on resistance
to open-channel flows. As can be seen from Eqs. 100 and 103 or 104, accurate

flow resistance coefficients determination requires detail measurements of

the flow and it is by no means an easy task.
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X. CONCLUSIONS

Continuity, momentum, and energy equations in integral form for
a cross section of a spatially varied flow of an incompressible nonhomogeneous
fluid in open channels can be derived by integrating the corresponding differ-
ential form continuity equation, Reynolds equation, and energy equation with
the aid of the Leibnitz rule and appropriate boundary conditions. The re-
sulting equations, Eqs. 5, 19 and 40, give a clear insight on the mechanics
of the flow and clearly show the differences between momentum and energy
concepts. However, engineering applications of these integral equations
require detail information on velocity, pressure, stress, and density distribu-
tions of the flow which is often unavailable. By using cross sectional mean
values of the flow, one-dimensional continuity, momentum, and energy equations
can be obtained from the corresponding equations in integral form. The derived
one—-dimensional flow equations are more suitable for simplification with
appropriate assumptions for numerical computation than the original integral
equations.

The one-dimensional equations derived in the present study, Eqs. 12,
13, 30, and 49 can be regarded as unified general open-channel flow equa-
tions for incompressible fluid with the terms due to various effects such as
density variation, lateral flow, and local acceleration expressed explicitly.
Corresponding flow equations for special cases such as the following can
easily be obtained from the general equations: (a) unsteady spatially varied
flow of homogeneous fluid; (b) wunsteady nonuniform flow of homogeneous fluid
without lateral discharge; (¢) steady spatially varied flow of homogeneous
fluid; (d) steady nonuniform flow of homogeneous fluid without lateral
discharge; (e) steady uniform flow of homogeneous fluid; (f) unsteady non-

uniform flow of nonhomogeneous fluid without lateral discharge; (g) steady
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spatially varied flow of nonhomogeneous fluid; (h) steady nonuniform flow
of nonhomogeneous fluid without lateral discharge; and (i) steady uniform
flow of nonhomogeneous fluid without lateral discharge. Conventionally used
open—channel flow equations can be obfained by simplifications of the herein
derived flow equations based on certain assumptions.

The one-dimensional dynamic equation based on the momentum conéept,

“Eq. 30, is inherently different from that based on the energy concept, Eq. 55.

In particular, the dissipated energy gradient Se is different from the
frictiop slope Sfx; and both are different from the total-head gradient
-3H/3x, the hydraulic gradient (BHP/BX) =S, and the channel bottom slope
SO. Relationship between any two of these gradients can be derived from the
general flow equations. Only for steady uniform flow of homogeneous fluid
without lateral flow that these five gradients are equal to one another.

Some qualitative nature of the dissipated energy coefficient fe’ friction
resistance coefficient ff, and total head loss coefficient fH can be observed
from the derived equations. However, further study is needed on the quan-

titative variations of f fe and fH due to unsteadiness and nonuniformity of

f’

flow, nonhomogeneous fluid, and lateral flow.
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