SECONDARY CIRCULATION IN NATURAL STREAMS

by
Misganaw Demissie, Ta-Wei Soong, Nani G. Bhowmik, and William P. Fitzpatrick Surface Water Section Illinois State Water Survey Champaign, Illinois 61820
and
W. Hall C. Maxwell
Department of Civil Engineering University of Illinois at Urbana-Champaign Urbana, Illinois 61801

The research on which this report is based was financed in part by the U.S. Department of the Interior, as authorized by the Water Research and Development Act of 1984. (P.L. 98-242).

Project Completion Report
Project No. G 904-02
Grant Number Int 14-08-0001-G904

July 1986

University of Illinois
Water Resources Center
Urbana, Illinois 61801

Contents of this publication do not necessarily reflect the views and policies of the U.S. Department of the Interior, nor does mention of trade names or commercial products constitute their endorsement by the U.S. Government.

Abstract

Secondary circulation which is sometimes referred to as secondary flow, secondary current or transverse current is an important phenomenon in natural streams and plays an important role in many natural processes in streams such as stream channel meander, bank erosion, bed scour, resuspension, and movement of sediment. Secondary circulation is that component of flow which is not in the main flow direction and is small as compared to the main flow velocity. A computerized data collection system for secondary circulation data acquisition in natural streams was developed and utilized in the field. The system includes an electromagnetic current meter, a micro-computer, an interface between the computer and the current meter, and a specially designed supporting structure. Secondary circulation data was collected in the Sangamon River near Mahomet, Illinois, utilizing the data collection system. A mathematical model for secondary circulation based on an existing model has been developed and tested against the data collected in the field. Model results generally reproduce similar secondary circulation patterns as observed from the field data but over-estimate the magnitudes of the velocities.

Demissie, M., Soong, T.W., Bhowmik, N.G., Fitzpatrick, W.P., and Maxwell, W. Hall C.

Secondary Circulation in Natural Streams Project Completion Report to the University of Illinois, Water Resources Center, Urbana, IL, July 1986, 89 pp. plus appendices.

KEYWORDS - computer; data acquisition; model; secondary circulation; secondary current; streams; transverse current; velocity
Page
Abstract i
Introduction 1
Objectives 1
Acknowledgments 2
Review of Literature 2
Historical Background 3
Laboratory Measurements 4
Field Measurements 4
Indirect Techniques 5
Mathematical Modeling 6
Mathematical Mode1 8
Mathematical Derivations 8
Coordinate Transformation 9
Coordinate System 9
Scaling Factors 11
Derivation of the Equation for the V_{ξ} Velocity Component 14
Derivation of the Equation for the V_{η} Velocity Component 20
Approximation of Shear Stresses 20
Computer Model 22
Phase I Analysis 25
Phase II Analysis 27
Grid System Construction 27
Solving for (Y, Z) Given (ξ, η) 28
Computation for V_{ξ} 31
Computation for V_{η}. 31
Field Data Collection 33
Field Data Collection Site 33
Instrumentation 35
Three-Dimensional Flow Measurement Setup 35
Marsh-McBirney 527 Electromagnetic Current Meter 35
Interface and Computer 37
Support System for the Current Meter 37
Rotating Bucket Current Meter 38
Suspended Sediment Samplers 38
Bed Load Sampler 39
Sonar Stage Meter 39
Data Collection Procedures 39
Secondary Circulation 39
Data Reduction 40
Sampling Period 41
Stream Discharge Measurement 47
Suspended Sediment Concentrations and Particle Size Sampling 48
Bed Load Measurement 49
Bed Material Sampling 49
Stage Measurement 49
Summary of Field Data Collected 50
Secondary Circulation 50
Stream Discharge 53
Suspended Sediment Concentration 58
Bed Load 58
Bed Material Characteristics 59
Stage 60
Model Results 62
Comparison of Computed and Measured Velocities 62
Shear Stress Distribution 68
Summary and Conclusions 83
References 85
Appendices printed in a separate volume
Appendix A. Computer Program
Appendix B. Measured Velocities
Appendix C. Computed Velocities

INTRODUCTION

The main component of flow in any stream, river, or canal might be expected to be parallel to the channel bed in the downstream direction. However, because of a variety of reasons including the resistance flow due to stream banks, a rotational or cellular movement of flow will occur in the main channel. This persistent flow component that is not in the main flow direction has been termed secondary circulation, secondary flow, secondary current, or transverse current. This type of flow, which is always present in any open channel flow, is completely different from induced flow circulations in some pockets found on the side of open channels.

The direction of secondary flow is strongly associated with the primary velocity distribution. Areas of high velocities near the bed or bank are associated with outward secondary flow, while areas of low velocities are associated with inward secondary flow. This phenomenon has significant implications with respect to bank erosion and bed scour, since areas of high velocities are much more susceptible to erosion and scour.

Considerable agreement exists among researchers that secondary circulation is an important phenomenon in natural rivers and is partially responsible for the development of meander patterns, bank erosion, bed scour, resuspension and movement of sediment, and an increase in boundary shear and flow resistance $(24,26,29,37,38,39,41,44,45,47,53,54)$. For example, the existence of strong secondary circulation near a certain region close to the bank with a component of velocity directed toward the bank will indicate the location of potential bank erosion areas.

Objectives

The main objectives of this proposed research were:

1) To determine the magnitude and nature of secondary circulation in natural streams by direct measurement in the field.
2) To develop and verify a mathematical model for predicting secondary circulation in natural streams.
3) To determine the effects of secondary circulation on bank erosion by quantifying its effects on velocity and shear stress distribution, and on dispersion and transport of sediment in natural streams.

Acknowledgments

This project was conducted under the administrative guidance of Richard J. Schicht, Acting Chief, Illinois State Water Survey, and Michael L. Terstriep, Head, Surface Water Section.

The work upon which this research is based was supported in part by funds provided by the U.S. Department of Interior as authorized under the Water Resources Act of 1984 (P.L. 98-242), Project No. G 904-02 and administered by the Water Resources Center at the University of Illinois in Urbana-Champaign.

John Ricketts, graduate student in the Civil Engineering Department at the University of Illinois at Urbana-Champaign and Mark Grinter of the Surface Water Section, Illinois State Water Survey, assisted in the collection of field data. Bruce Komadina of the Water Survey designed and built the electronic interface between the current meter and the computer. Randall K. Stahlhut wrote the sampling and data storage programs for the CBM computer. Jim Harry built the support structure for the current meter. Illustrations for the report were prepared under the direction of John Brother, Jr., Becky Howard typed the camera-ready text, and Gail Taylor edited the report.

REVIEW OF LITERATURE

It is important to have a clear understanding of what the term secondary circulation means before proceeding further. When researchers talk about secondary flow, they are actually describing the three-dimensional nature of open channel flow. Ciray (18) defined the secondary velocity as follows:

> When the magnitude of the vector composed by any two components of the local velocity vector in a three dimensional flow is small compared with the magnitude of the third component, the latter forms the main flow whereas the remaining two form the secondary.

Although this definition appears to be adequate to some extent, it lacks completeness. Perhaps more attention should be paid to the individual components of velocity than to the resultant of two vector quantities. In this line of thought, Chiu et al. (13) defined the secondary flow as the two components of flow which are in the transverse direction not coincident with the primary flow. Because of the presence of snags, obstructions, trees, etc., on the bed of a river, the velocity vector in a direction other than the
primary direction of the flow may be of greater magnitude than the primary velocity vector. Considering all these factors, Bhowmik (7) proposed the following definition:

In an open channel flow, any persistent component of velocity which is not parallel to or tangent to the center line of the channel and also not parallel to and in the same general downstream direction of the overall bed slope should be termed as secondary velocity.
Secondary current will be taken as the flow which is parallel to and also in the same direction as the secondary velocity. The definition stated above will ensure that the primary flow velocity is interpreted as the velocity in the downstream direction that coincides with the general direction of flow.

Historical Background

Historically, late nineteenth century hydraulic engineers, noting that the maximum velocity is below the water surface rather than at the water surface, offered the explanation that the frictional resistance at the airwater interface is responsible for this phenomenon. However, many researchers working at the time did not accept this idea, and they tried and were successful in correctly identifying the mechanisms of secondary circulation. They also indicated that these mechanisms might be responsible for the lower flow velocity at the air-water interface. These researchers did not identify secondary circulation by name, but they recognized its presence in concept. They include Bazin and Barcy in 1865, Gerrard in 1878, Francis in 1878, Wood in 1879, Stearns in 1883, and Cunningham in 1882 (7, 19).

In 1909 Gibson (30) analyzed the then-existing literature and offered his thoughts on why the filament of maximum velocity is below the water surface. He said that this phenomenon is "... due to the action of the sides of the channel in producing transverse currents inwards along the surface and outwards along the bed of the stream, thus distributing a layer of slowly moving water over the central part of the stream." He also indicated that the presence of curves in the stream's alignment can and will modify this phenomenon. He showed that the secondary flow velocity is about 5 percent of the main stream velocity.

It is noteworthy that almost 100 years after the initial postulations about the effect of wall roughness on the transverse flow phenomenon that were
made by Wood (59), Stearns (55), Francis (25), and others, Perkins (49) showed that the mean streamwise vorticity in turbulent flow arises both from mean flow skewing and from the inhomogeneity of anisotropic wall turbulence.

In the early twentieth century many others also worked on the transverse flow phenomenon. In 1917, Helstrom estimated the secondary flow velocity to be about 11 percent of the main stream velocity (32). In 1930 Nikuradse published results showing that secondary flow exists in noncircular conduits (27) .

Laboratory Measurements
Once the concept of secondary flow was recognized, researchers tried to measure the secondary circulation, especially in laboratory channels under ideal flow conditions. The simplest method is of course to use dye or neutrally buoyant particles to measure qualitatively the existence and the direction of secondary currents (3, 58). Another fairly sophisticated instrument used to measure secondary current in laboratory experiments is the hot-wire anemometer. Researchers such as Brundrett and Baines (8), Gessner and Jones (28), Hoagland (33), Tracy (57), and Liggett et al. (42) utilized hot wire anemometry systems to measure components of secondary currents. Launder and Ying (40) collected turbulence-induced secondary current data by using a DISA hot-wire probe. Muller (43) reported the results of laboratory experiments where a Laser Doppler Anemometer was used to measure the vertical and axial component of flow velocity. The presence and absence of secondary flow were interpolated on the basis of the increase or decrease of the turbulence and momentum exchange. All of Muller's experiments were conducted for supercritical flow ranges, i.e., the Froude number was more than unity. However, all these research projects were confined to laboratory experimentations.

Field Measurements

While various researchers have measured secondary circulation in laboratory experiments, field instrumentations and measurements are rare. Only a very limited number of attempts have been made to measure secondary circulation in the field.

Kanwisher and Lawson (36) have described an electromagnetic flow sensor for measuring flow in natural open channels, which can be modified to measure
both the main stream and lateral flow velocities. This electromagnetic flow sensor has the potential of being used in the field to measure secondary flow velocities.

One of the most serious and comprehensive attempts that was made by any group of researchers to measure secondary currents in gravel bed rivers was that made by Bathurst et al. (4, 5). Their measurements were made at four bends on the River Severn in Wales, United Kingdom. Direct measurements of secondary velocities were made with an electromagnetic flow meter that had the capability of measuring two mutually perpendicular components of velocity simultaneously. The measuring head was 2 inches (50 mm) in diameter, and the instrument was accurate to within $0.33 \mathrm{fps}(10 \mathrm{~mm} / \mathrm{s})$. All the measurements were confined to bends. The instrument worked out fairly well. The primary velocity data were collected with an Ott C-31 current meter. Isovels were developed, and their shapes were compared with the shape and pattern of secondary cells that could be sketched on the basis of the shape of the primary isovels. The data indicated that the peak values of shear stress were associated with the core of the maximum velocity.

Thorne et al. (56) conducted other detailed bend-flow hydraulics measurements on the Fall River, Rocky Mountain National Park, Wyoming. Primary and lateral velocity components were measured using a Marsh-McBirney Model 511 two-component electromagnetic current meter. The current meter simultaneously measures two mutually perpendicular velocity components with an accuracy of $0.01 \mathrm{ft} / \mathrm{sec}(3 \mathrm{~mm} / \mathrm{s})$. Much more accurate data were recorded, and secondary cells were often found to exist at outer and inner banks. The device used by Thorne et al. could not record the orientation of the sensor probe, which remained a difficulty in the data reduction. Demissie et al. (20,21) developed a measuring system in which the current meter is supported by a self-standing system and data are transmitted to a computer on the stream bank for processing and storage. The flow velocity components are measured by a Marsh-McBirney current meter, Model 527 , which can also measure the bearing of the sensor from the magnetic north in a clockwise direction.

Indirect Techniques

Field data collected by Bathurst et al. (4, 5) indicated that it is possible to draw secondary flow cells on the basis of the primary velocity isovels. Such an attempt was made by Bhowmik (7) for the field data collected
from the Kaskaskia River in Illinois. Fig. 1 shows the isovels at a section where the secondary flow cells were sketched. Data shown are from the same cross section but for two flow conditions: low and high flows. If it is assumed that the isovels are a set of flexible membranes held in place by fluids in between them, then a bulging or deformity in their shape indicates the presence of some force acting normal to the face of the membranes. Thus, if the membranes bulge inward, it indicates the presence of a force from the outside to the inside and vice versa. The approximate locations of the secondary cells in Fig. 1 were drawn on the basis of this technique. Data from any other isovels can similarly be used to draw the patterns of secondary cells. Brundrett and Baines (8) and Liggett et al. (42) expressed some doubt as to the validity of sketching secondary flow cells on the basis of primary velocity isovels. Their conclusions were based on laboratory experiments. However, even though it is not a precise technique, it provides a good qualitative picture of secondary circulation in natural channels.

Recently Ikeda (35) indicated a technique of sketching the patterns of secondary current cells in sand bed laboratory channels on the basis of the nature and existence of bed undulations or topography. In a deformable channel such as a sand bed channel, the bed profile in the lateral direction may partially reflect the magnitude and direction of the secondary current cells near the bed. Only qualitative information is obtained by using isovels or bed topography.

Mathematical Modeling

A few researchers have worked on the development of mathematical models related to secondary circulation in open channels. However, most of their work has been confined to cases with flow around bends. A strong secondary current is generated in a bend because of the imbalance of horizontal fluid forces; thus it is easier to quantify this current for flow around bends than for straight reaches.

Einstein and Li (23) have shown theoretically that uniform flow in straight channels can exist only in the case of laminar flow. For turbulent flow, they have shown that secondary currents will be generated and that the nonexistence of parallel isovels results from the presence of secondary flows, especially near the frictional boundary. Some other researchers who have

Figure 1. Isovels and secondary flow cells in a natural river (7)
worked on the mathematical formulation of secondary currents are Ibragimov et a1. (34), Ananian (2), Ciray (18), Prasad (50), Tracy (57), Liggett et al. (42), and Odgaard (46).

One of the most significant contributions to the mathematical modeling of secondary circulation was made by Chiu and his associates (10-17). Much of Chiu's work related to secondary circulation around channel bends. He also worked in the analyses of secondary currents in straight open channels, and has indicated that whenever the three components of shearing force are not in equilibrium everywhere in a channel, the presence of secondary current is inevitable.

By introducing a coordinate transformation function, Chiu et al. (12) developed a model which appears to have considerable potential for application to natural open channel flow problems. A curvilinear orthogonal coordinate system which is constructed by computed isovels and their orthogonal trajectories forms the basis for the model. The model was used to compute secondary flows on the basis of some hydraulic data collected from the Rio Grande Canal (12, 13). Later, different functions for approximating isovels and shear stresses were used to improve the model (14-17). Comparisons of model results with measured data on the East Fork River (Wyoming) showed reasonable agreement. Field data such as cross-sectional area, discharge, depth, water surface profile, and primary velocity distribution patterns are needed to use the model.

MATHEMATICAL MODEL

Mathematical Derivations

This part of the report discusses the derivation of equations used in a new mathematical model for calculating secondary velocity components. The model is based primarily on Chiu's work (10-17). Detailed derivations for some functions are presented here so the mathematical model can be clearly understood.

In general, the model consists of the momentum and the continuity equations. Once the isovels for a cross section are approximated by mathematical functions, the momentum and the continuity equations are then transformed into a curvilinear coordinate system, which is based on the simulated isovels and their orthogonal trajectories. After the transformation
of these equations, one of the secondary velocity components is computed directly from the momentum equation, and the other component is derived by solving the continuity equation. Shear stresses are assumed to vary quadratically from the boundary line to the point of maximum velocity in the new coordinate system. Finally the secondary velocity components are transformed back to the cartesian coordinate system by following inverse transformation rules.

Coordinate Transformation
Coordinate System
The curvilinear coordinate system consists of two components ξ and η as shown in Fig. 2, where a constant value of ξ is an equal velocity line (isovel) and η is the coordinate perpendicular to the ξ lines. Assuming that the primary velocity distribution follows the logarithmic rule, which is reasonable for most natural channels, the velocity distribution can be represented by:

$$
\begin{equation*}
u=\frac{u}{k} * \ln {\underset{\xi}{ },}_{\xi} \tag{1}
\end{equation*}
$$

in which
$u=$ the primary velocity
$\mathrm{k}=$ universal constant
$\xi=$ transformed coordinate
$\xi_{0}=$ coefficient characterizing the velocity distribution of the primary flow
$u_{*}=V_{g R S}=$ mean shear velocity, where
$\mathrm{g}=$ gravitational acceleration
$\mathrm{R}=$ hydraulic radius
$S_{e}=$ energy slope
Eq. 1 defines the primary velocity distribution in a direction vertical to ξ curves in the channel cross section. Since u_{*} and k are constant at a given cross section, Eq. 1 states that for a given ξ all the velocities on this curve will have the same magnitude, i.e., a constant ξ is an isovel curve. The curve $\xi=\xi_{0}$ is the line where primary velocities vanish. The coordinates of ξ and η in terms of Y and Z coordinates are given as (15):

Figure 2. Curvilinear coordinate system

$$
\begin{align*}
& \xi=Y(I-Z)^{\beta_{i}} \exp \left(\beta_{i} Z-Y+1\right) \tag{2}\\
& \beta_{i}\left[\frac{D+\delta_{y}+\varepsilon}{B_{i}+\delta_{i}}\right]^{2} \\
& \eta= \pm \frac{1}{Z}(|1-Y|) \quad \exp \left[Z+\beta i\left(\frac{D+\delta_{y}+\varepsilon}{B_{i}+\delta_{i}}\right) Y\right]^{2} \tag{3}
\end{align*}
$$

in which

$$
\begin{align*}
& Y=\frac{y+\delta_{y}}{D+\delta_{y}+\varepsilon} \tag{4}\\
& Z=\frac{|z|}{B_{i}+\delta_{i}} \tag{5}
\end{align*}
$$

β_{i}, δ_{i}, and δ_{y} are parameters determined from the distribution of the primary velocity; $i=1$ or 2 for either the left or right half of a cross section; $\varepsilon=$ the distance from the water surface to the point of maximum velocity; $\mathrm{B}_{\mathrm{i}}=$ the width of either the left or right half of a cross section; and D is the water depth (Fig. 2). The point of maximum velocity is assumed to be either below the water surface (as shown in Fig. 2 when $\varepsilon>0$), at the water surface (when $\varepsilon=0$), or above the water surface (when $\varepsilon<0$).

Scaling Factors

Eqs. 2 and 3 define a transformation relation between the new curvilinear coordinate system and the (Y, Z) coordinate system. The scaling factors are derived by referring to Fig. 3 and assuming that \vec{j} and \vec{k} are unit vectors in the Y and Z directions and tangent to ξ and η at point p; the directions of \vec{j} and \vec{k} are in the increasing direction of $\xi, \eta ; \Delta S_{\eta}$ and ΔS_{ξ} are the incremental distances along the positive ξ and η directions; and \vec{r} is the position vector to p from a fixed origin.

Figure 3. Relationship between the (Y-Z) coordinate system and the curvilinear coordinate system ($\xi-\eta$).

$$
\begin{aligned}
& \text { The derivatives of } \vec{r} \text { with respect to } \xi \text { and } \eta \text { are derived as follows: } \\
& \begin{aligned}
\frac{\partial \overrightarrow{\mathbf{r}}}{\Delta \xi} & =\lim _{\Delta \xi \rightarrow 0}\left(\frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta \xi}\right)_{\eta=\mathrm{c}} \\
& =\lim _{\Delta \xi \rightarrow 0}\left(\frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta s_{\eta}} \cdot \frac{\Delta s_{\eta}}{\Delta \xi}\right)_{\eta=\mathrm{c}} \\
& =\left(\frac{\partial s_{\eta}}{\partial \xi}\right)_{\mathrm{p}} \cdot\left(\frac{(\overrightarrow{\mathrm{r}}}{\partial s_{\eta}}\right)_{\mathrm{p}} \\
& =\left(\frac{\partial s_{\eta}}{\partial \xi}\right)_{\mathrm{p}} \cdot \overrightarrow{\mathrm{k}}
\end{aligned}
\end{aligned}
$$

Set $\mathbf{h}_{\xi}=\frac{\partial \mathbf{s}_{\eta}}{\partial \xi}$
Then

$$
\mathrm{h}_{\xi} \cdot \overrightarrow{\mathrm{k}}=\frac{\overrightarrow{\partial \mathbf{r}}}{\partial \xi}
$$

Similarly

$$
\mathbf{h}_{\eta} \cdot \overrightarrow{\mathbf{j}}=\frac{\partial \overrightarrow{\mathbf{r}}}{\partial \eta}
$$

On the other hand, the derivations of \vec{r} with respect to ξ and η can be written in terms of Y and Z as:

$$
\frac{\partial \overrightarrow{\underline{r}}}{\partial \xi}+\frac{\partial \overrightarrow{\underline{r}}}{\partial \eta}=\left(\frac{\partial \mathbf{Y}}{\partial \xi}+\frac{\partial \mathbf{Y}}{\partial \eta}\right) \vec{j}+\left(\frac{\partial Z}{\partial \xi}+\frac{\partial Z}{\partial \eta}\right) \overrightarrow{\mathbf{k}}
$$

By using the above relations the following equations are derived:

$$
\begin{equation*}
h_{\xi}^{2}=\left(\frac{\partial Y}{\partial \xi}\right)^{2}+\left(\frac{\partial Z}{\partial \xi}\right)^{2} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{h}_{\eta}^{2}=\left(\frac{\partial \mathrm{Y}}{\partial \eta}\right)^{2}+\left(\frac{\partial \mathrm{Z}}{\partial \eta}\right)^{2} \tag{7}
\end{equation*}
$$

The differentials of ξ and η with respect to Y and Z can be obtained from Eqs. 2 and 3 directly. They are:

$$
\begin{align*}
& \frac{\partial \xi}{\partial Y}=(1-Y)(1-Z)^{\beta_{i}} \exp \left(\beta_{i} Z-Y+1\right) \tag{8}\\
& \frac{\partial \xi}{\partial Z}=\beta_{i}(1-Z)^{\beta} \beta_{i} \exp \left(\beta_{i} Z-Y+1\right)\left(-\frac{Z}{1-Z}\right) \tag{9}
\end{align*}
$$

For $Y<1 \quad \frac{\partial \eta}{\partial Y}=\frac{1}{Z} C_{i}(1-Y) C_{i} \exp \left(Z+C_{i} Y\right)\left(\frac{-Y}{1-Y}\right)$

$$
\begin{equation*}
\frac{\partial \eta}{\partial Z}=\frac{1}{Z}(1-Y)^{C_{i}} \exp \left(Z+C_{i} Y\right)\left(1-\frac{1}{Z}\right) \tag{11}
\end{equation*}
$$

$$
\text { For } \begin{align*}
Y>1 \quad \frac{\partial \eta}{\partial Y} & =\frac{1}{Z} C_{i}(Y-1) C_{i} \exp \left(Z+C_{i} Y\right)\left(\frac{-Y}{Y-1}\right) \tag{12}\\
\frac{\partial \eta}{\partial Z} & =\frac{1}{Z}(Y-1)^{C_{i}} \exp \left(Z+C_{i} Y\right)\left(\frac{1-Z}{Z}\right) \tag{13}
\end{align*}
$$

where

$$
\begin{equation*}
C_{i}=\beta_{i}\left[\frac{D+\delta_{y}+\varepsilon}{B_{i}+\delta_{i}}\right]^{2} \tag{14}
\end{equation*}
$$

The differentials of Y and Z with respect to ξ and η can be obtained from equations 8 to 13 as follows:

$$
\begin{equation*}
\frac{\partial Y}{\partial \xi}=\frac{Y(1-Z)^{2}(1-Y)}{\left[(1-Y)^{2}(1-Z)^{2}+\beta_{i} C_{i} Y^{2} Z^{2}\right]} \cdot \frac{1}{\xi} \tag{15}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial Z}{\partial \xi}=\frac{-C_{i} Y^{2} Z(1-Z)}{\left[(1-Y)^{2}(1-Z)^{2}+\beta_{i} C_{i} Y^{2} Z^{2}\right]} \cdot \frac{1}{\xi} \tag{16}\\
& \frac{\partial Y}{\partial \eta}=\frac{-\beta_{i} Y Z^{2}(1-Y)}{\left[(1-Y)^{2}(1-Z)^{2}+\beta_{i} C_{i} Y^{2} Z^{2}\right]} \cdot \frac{1}{\eta} \tag{17}\\
& \frac{\partial Z}{\partial \eta}=\frac{-Z(1-Y)^{2}(1-Z)}{\left[(1-Y)^{2}(1-Z)^{2}+\beta_{i} C_{i} Y^{2} Z^{2}\right]} \cdot \frac{1}{\eta} \tag{18}
\end{align*}
$$

The scaling factors can now be derived from Eqs. 6 and 7, and Eqs. 15 to 18. As given by Chiu and Lin (16) the relations for h_{ξ} and h_{η} are:

$$
\begin{align*}
& h_{\xi}=\frac{\left(D+\delta_{y}+\varepsilon\right)(1-Z) Y}{\xi \sqrt{ }(1-Y)^{2}(1-Z)^{2}+C_{i}^{2} \mathrm{Y}^{2} \mathrm{Z}^{2}} \tag{19}\\
& \mathrm{~h}_{\eta}=\frac{\left(\mathrm{B}_{\mathrm{i}}+\delta_{\mathrm{i}}\right)}{\left(\mathrm{D}+\delta_{\mathrm{y}}+\varepsilon\right)} \cdot \frac{\xi}{\eta} \cdot \frac{\mathrm{Z}(1-\mathrm{Y})}{\mathrm{Y}(1-\mathrm{Z})} \mathrm{h}_{\xi} \tag{20}
\end{align*}
$$

Derivation of the Equation for the V_{ξ} Velocity Component

The momentum equation in the curvilinear coordinate system is derived on the assumption that the control volume in Fig. 4 represents a volume of water in the curvilinear coordinate system.

Figure 4. A control volume in the curvilinear coordinate system

Since each $\xi=\xi j$ line in Fig. 4 represents an equal primary velocity line, there is no change of primary velocity along this ξ line, i.e.,

$$
\left.\frac{\partial \mathbf{u}_{\mathbf{j}}}{\partial \eta}\right|_{\xi=\xi_{\mathbf{j}}}=0
$$

where u_{j} is the primary velocity on the j th isovel. The longitudinal component of the momentum equation in cartesian coordinates is given as :

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=-\frac{1}{\rho}\left[\frac{\partial x}{\partial \mathrm{x}}(\mathrm{p}+\rho \mathrm{gH})-\left(\frac{\partial \tau_{\mathrm{xx}}}{\partial \mathrm{x}}+\frac{\partial \tau_{\mathrm{yx}}}{\partial \mathrm{y}}+\frac{\partial \tau_{\mathrm{zx}}}{\partial \mathrm{z}}\right)\right] \tag{21}
\end{equation*}
$$

in which
x, y, z are the coordinates
$t=$ the time
$u=$ the primary velocity in x direction
$\mathrm{v}=$ the velocity components in y direction
$\mathrm{w}=$ the velocity component in z direction
$\rho=$ the water density
$\mathrm{p}=$ the hydrostatic pressure
$g=$ gravitational acceleration
$H=$ distance from the channel bottom to a datum
$\tau_{i x}=$ is the shear stress on the $i^{\text {th }}$ face acting in the x direction in which $i=x, y$, or z.
This equation can be written in x, Y, Z coordinates directly using the transformation equations given in Eqs. 4 and 5. Since the partial derivatives are as shown in the following equation:
$\partial Y=\partial y$
$\partial Z=\left\{\begin{aligned} \partial z & \text { if } z>0 \\ -\partial z & \text { if } z<0\end{aligned}\right.$
Eq. 22 will change in sign only for $z<0$.
The transformation relationship between Y, Z coordinates and ξ, η coordinates can be written in a general form as follows:

$$
\begin{align*}
& \overrightarrow{\mathrm{e} \xi}=\mathrm{h}_{\xi} \frac{\partial \xi}{\partial \mathrm{Y}} \overrightarrow{\mathrm{j}}+\mathrm{h}_{\xi} \frac{\partial \xi}{\partial Z} \overrightarrow{\mathrm{k}} \tag{23}\\
& \overrightarrow{\mathrm{e}_{\eta}}=\mathrm{h}_{\eta} \frac{\partial \eta}{\partial \mathrm{Y}} \overrightarrow{\mathrm{j}}+\mathrm{h}_{\eta} \frac{\partial \eta}{\partial Z} \overrightarrow{\mathrm{k}}
\end{align*}
$$

in which \vec{e}_{ξ} and \vec{e}_{η} are unit vectors in the ξ and η directions, respectively, and \vec{j} and \vec{k} are unit vectors in the Y and Z directions, respectively.

Using Eq. 23, the transformation relationships for the velocity components between the two coordinate systems can be written as:

$$
\begin{align*}
& \mathrm{v}_{\xi}=\mathrm{h}_{\xi} \frac{\partial \xi}{\partial \mathrm{Y}} \mathrm{v}+\mathrm{h}_{\xi} \frac{\partial \xi}{\partial Z} \mathrm{w} \tag{24}\\
& \mathrm{v}_{\eta}=\mathrm{h}_{\eta} \frac{\partial \eta}{\partial \mathrm{Y}} \mathrm{v}+\mathrm{h}_{\eta} \frac{\partial \eta}{\partial Z} \mathrm{w}
\end{align*}
$$

where V_{ξ} and V_{η} are velocity components in the ξ and η directions, respectively. Since ξ and η are orthogonal to each other as are the Y and Z coordinates, the following relations exist:
$\mathrm{h}_{\eta} \frac{\partial \eta}{\partial \mathrm{Y}}=-\mathrm{h}_{\xi} \frac{\partial \xi}{\partial Z}$
$\mathrm{h}_{\xi} \frac{\partial \xi}{\partial \mathrm{Y}}=\quad \mathrm{h}_{\eta} \frac{\partial \eta}{\partial Z}$
These can be proved by referring to Fig. 5.

$$
\begin{aligned}
& \mathrm{h}_{\eta} \frac{\partial \eta}{\partial Y}=\cos (\eta, Y)=\sin (Y, \xi) \\
& \mathrm{h}_{\xi} \frac{\partial \xi}{\partial Z}=\cos (\xi, Z)=\cos (Z, \eta)=-\sin (Y, \xi)
\end{aligned}
$$

Figure 5. Definition sketch for derivatives between Y, Z and ξ, η

Therefore,

$$
\mathrm{h}_{\eta} \frac{\partial \eta}{\partial \mathrm{Y}}=-\mathrm{h}_{\xi} \frac{\partial \xi}{\partial \mathrm{Z}}
$$

By definition,

$$
\operatorname{angle}(Z, \eta)+\operatorname{angle}(\eta, Y)=\text { angle }(\eta, Y)+\operatorname{angle}(Y, \xi)
$$

Thus,

$$
\text { angle }(Z, \eta)=\operatorname{angle}(Y, \xi) .
$$

Similarly,

$$
\begin{aligned}
& \mathrm{h}_{\xi} \frac{\partial \xi}{\partial \mathrm{Y}}=\cos (\xi, \mathrm{Y}) \\
& \mathrm{h}_{\eta} \frac{\partial \eta}{\partial \mathrm{Z}}=\cos (\eta, \mathrm{Z})
\end{aligned}
$$

Therefore

$$
\mathrm{h}_{\xi} \frac{\partial \xi}{\partial \mathrm{Y}}=\mathrm{h}_{\eta} \frac{\partial \eta}{\partial Z}
$$

Now the left hand side (LHS) of the momentum equation (Eg. 21) can be rewritten as:
$\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}=\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\left[v\left(\frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial Y}+\frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial Y}\right)+w\left(\frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial Z}+\frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial Z}\right)\right]$

$$
\begin{align*}
& =\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\left[v\left(\frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial Y}\right)+w\left(\frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial Z}\right)\right] \\
& =\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\left(v \frac{\partial \xi}{\partial Y}+w \frac{\partial \xi}{\partial Z}\right) \frac{\partial u}{\partial \xi} \\
& =\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\frac{v_{\xi}}{h_{\xi}} \frac{\partial u}{\partial \xi} \tag{26}
\end{align*}
$$

where only one velocity component, V_{ξ}, is retained.
The transformation of the right hand side (RHS) of the momentum equation into ξ and η coordinates can also proceed as follows:

The shear stresses in the x direction can be written as

$$
\begin{align*}
& \tau_{\mathrm{Yx}}=\left(\tau_{\xi \mathrm{X}} \cdot \overrightarrow{\mathrm{e}}_{\xi}+\tau_{\eta \mathrm{x}} \cdot \overrightarrow{\mathrm{e}}_{\eta}\right) \cdot \overrightarrow{\mathrm{j}} \\
& \tau_{\mathrm{Zx}}=\left(\tau_{\xi \mathrm{x}} \cdot \overrightarrow{\mathrm{e}}_{\xi}+\tau_{\eta \mathrm{x}} \cdot \overrightarrow{\mathrm{e}}_{\eta}\right) \cdot \overrightarrow{\mathrm{k}} \tag{27}
\end{align*}
$$

Since there is no velocity change in the η direction on each ξ curve,

$$
\begin{equation*}
\tau_{\eta \mathrm{x}}=\circ \tag{28}
\end{equation*}
$$

Substituting this equation, as well as Eq. 23 , into Eq. 27 results in the following equations:

$$
\begin{align*}
& \tau_{\mathrm{Yx}}=\tau_{\xi \mathrm{X}} \cdot \mathrm{~h}_{\xi} \frac{\partial \xi}{\partial \mathrm{Y}} \\
& \tau_{\mathrm{Zx}}=\tau_{\xi \mathrm{x}} \cdot \mathrm{~h}_{\xi} \frac{\partial \xi}{\partial \mathrm{Z}} \tag{29}
\end{align*}
$$

Using the chain rule for derivatives, the following relations can be derived.

$$
\begin{align*}
& \frac{\partial \tau_{\mathrm{Yx}}}{\partial \mathrm{Y}}=\frac{\partial \tau_{\mathrm{Yx}}}{\partial \xi} \frac{\partial \xi}{\partial \mathrm{Y}}+\frac{\partial \tau_{\mathrm{Yx}}}{\partial \eta} \frac{\partial \eta}{\partial \mathrm{Y}} \\
& \frac{\partial \tau_{\mathrm{Zx}}}{\partial \mathrm{Z}}=\frac{\partial \tau_{\mathrm{Zx}}}{\partial \xi} \frac{\partial \xi}{\partial \mathrm{Z}}+\frac{\partial \tau_{\mathrm{Zx}}}{\partial \eta} \frac{\partial \eta}{\partial \mathrm{Z}} \tag{30}
\end{align*}
$$

Substituting Eq. 29 into Eq. 30 gives:

$$
\begin{align*}
& \frac{\partial \tau_{\mathrm{Yx}}}{\partial \mathrm{Y}}=\frac{\partial}{\partial \xi}\left(\tau_{\xi \mathrm{x}} \cdot \mathrm{~h}_{\xi}\right)\left(\frac{\partial \xi}{\partial \mathrm{Y}}\right)^{2}+\frac{\partial}{\partial \eta}\left(\tau_{\xi \mathrm{x}} \cdot \mathrm{~h}_{\xi}\right)\left(\frac{\partial \xi}{\partial \mathrm{Y}} \cdot \frac{\partial \eta}{\partial \mathrm{Y}}\right) \\
& \frac{\partial \tau_{\mathrm{Zx}}}{\partial \mathrm{Z}}=\frac{\partial}{\partial \xi}\left(\tau_{\xi \mathrm{x}} \mathrm{~h}_{\xi}\right) \cdot\left(\frac{\partial \xi}{\partial \mathrm{Z}}\right)^{2}+\frac{\partial}{\partial \eta}\left(\tau_{\xi \mathrm{x}} \cdot \mathrm{~h}_{\xi}\right)\left(\frac{\partial \xi}{\partial \mathrm{Z}} \cdot \frac{\partial \eta}{\partial \mathrm{Z}}\right) \tag{31}
\end{align*}
$$

Summation of the two terms results in the following:

$$
\begin{equation*}
\frac{\partial \tau_{\mathrm{Zx}}}{\partial \mathrm{Z}}+\frac{\partial \tau_{\mathrm{Yx}}}{\partial \mathrm{Y}}=\frac{\partial}{\partial \xi}\left(\tau_{\xi \mathrm{x}} \cdot \mathrm{~h}_{\xi}\right)\left[\left(\frac{\partial \xi}{\partial \mathrm{Y}}\right)^{2}+\left(\frac{\partial \xi}{\partial \mathrm{Z}}\right)^{2}\right]+\frac{\partial}{\partial \eta}\left(\tau_{\xi \mathrm{X}} \cdot \mathrm{~h}_{\xi}\right)\left[\left(\frac{\partial \xi}{\partial \mathrm{Y}} \frac{\partial \eta}{\partial \mathrm{Y}}+\frac{\partial \xi}{\partial \mathrm{Z}} \cdot \frac{\partial \eta}{\partial \mathrm{Z}}\right)\right] \tag{32}
\end{equation*}
$$

From Eq. 25 and the equations derived from Fig. 5, the following relations can be derived:

$$
\begin{aligned}
& \left(\frac{\partial \xi}{\partial \mathrm{Y}}\right)^{2}+\left(\frac{\partial \xi}{\partial Z}\right)^{2}=\left(\frac{1}{\mathrm{~h}_{\xi}}\right)^{2} \\
& \frac{\partial \xi}{\partial \mathrm{Y}} \frac{\partial \eta}{\partial \mathrm{Y}}+\frac{\partial \xi}{\partial Z} \frac{\partial \eta}{\partial \mathrm{Z}}=-\frac{1}{\mathrm{~h}_{\xi}} \frac{1}{\mathrm{~h}_{\eta}} \cos (\xi, \mathrm{Y}) \sin (\xi, \mathrm{Y})+\frac{1}{\mathrm{~h}_{\xi}} \frac{1}{\mathrm{~h}_{\eta}} \cos (\eta, \mathrm{Z}) \sin (\xi, \mathrm{Y})=0
\end{aligned}
$$

Substituting the above relations into Eq. 32 results in the following equation:

$$
\begin{aligned}
\frac{\partial \tau_{\mathrm{Yx}}}{\partial \mathrm{Y}}+\frac{\partial \tau_{\mathrm{Zx}}}{\partial Z} & =\frac{1}{\mathrm{~h}_{\xi}} 2 \frac{\partial}{\partial \xi}\left(\tau_{\xi \mathrm{x}} \mathrm{~h} \xi\right) \\
& =\frac{\tau_{\xi \mathrm{x}}}{\mathrm{~h}_{\xi} 2} \frac{\partial}{\partial \xi}\left(\mathrm{~h}_{\xi}\right)+\frac{1}{\mathrm{~h}_{\xi}} \frac{\partial}{\partial \xi}\left(\tau_{\xi \mathrm{x}}\right)
\end{aligned}
$$

The RHS of the momentum equation can now be rewritten as:

$$
\begin{aligned}
& -\frac{1}{\rho}\left[\frac{\partial}{\partial \mathrm{x}}(\mathrm{p}+\rho \mathrm{gH})-\left(\frac{\partial \tau_{\mathrm{xx}}}{\partial \mathrm{x}}+\frac{\partial \tau_{\mathrm{Yx}}}{\partial \mathrm{Y}}+\frac{\partial \tau_{\mathrm{Zx}}}{\partial \mathrm{Z}}\right)\right] \\
& =-\frac{1}{\rho}\left[\frac{\partial}{\partial \mathrm{x}}(\mathrm{p}+\rho \mathrm{gH})-\frac{\partial}{\partial \mathrm{x}}\left(\tau_{\mathrm{xx}}\right)-\frac{\tau_{\xi \mathrm{x}}}{\mathrm{~h}_{\xi}^{2}} \frac{\partial}{\partial \xi} \mathrm{~h}_{\xi}-\frac{1}{\mathrm{~h}_{\xi}} \frac{\partial}{\partial \xi}\left(\tau_{\xi \mathrm{x}}\right)\right]
\end{aligned}
$$

An equation to further simplify the term involving $h \xi^{2}$ is derived as follows.
Since $\mathrm{h}_{\xi} \frac{\partial \xi}{\partial \mathrm{Y}}=\mathrm{h}_{\eta} \frac{\partial \eta}{\partial Z}$, differentiating both sides by ξ and using the same relationship again results in

$$
\frac{1}{\mathrm{~h}_{\xi}} \frac{\partial \mathrm{h}_{\xi}}{\partial \xi}=\frac{1}{\mathrm{~h}_{\eta}} \frac{\partial \mathrm{h}_{\eta}}{\partial \xi}
$$

This equation is substituted into the transformed RHS equation above; then

$$
\text { RHS }=-\frac{1}{\rho}\left[\frac{\partial}{\partial \mathrm{x}}(\mathrm{p}+\rho \mathrm{gH})-\frac{\partial}{\partial \mathrm{x}}\left(\tau_{\mathrm{xx}}\right)-\frac{\tau_{\xi \mathrm{x}}}{\mathrm{~h}_{\xi} \mathrm{h}_{\eta}} \frac{\mathrm{h}_{\eta}}{\partial \xi}-\frac{1}{\mathrm{~h}_{\xi}} \frac{\partial}{\partial \xi}\left(\tau_{\xi \mathrm{x}}\right)\right]
$$

Equating the transformed LHS and RHS equations results in the following momentum equation.

$$
\frac{\partial \mathrm{u}}{\partial \mathrm{t}}+\mathrm{u} \frac{\partial \mathrm{u}}{\partial \mathrm{x}}+\frac{\mathrm{V}_{\xi}}{\mathrm{h}_{\xi}} \frac{\partial \mathrm{u}}{\partial \xi}=-\frac{1}{\rho}\left[\frac{\partial}{\partial \mathrm{x}}(\mathrm{p}+\rho \mathrm{gH})-\frac{\partial}{\partial \mathrm{x}}\left(\tau_{\mathrm{xx}}\right)-\frac{\tau_{\xi \mathrm{X}}}{\mathrm{~h}_{\xi} \mathrm{h}_{\eta}} \frac{\partial \mathrm{h}_{\eta}}{\partial \xi}-\frac{1}{\mathrm{~h} \xi} \frac{\partial}{\partial \xi}\left(\tau_{\xi \mathrm{x}}\right)\right]
$$

or

$$
\left.\left.\mathrm{V}_{\xi}\left(\frac{\rho}{\mathrm{h}_{\xi}} \frac{\partial \mathrm{u}}{\partial \xi}\right)=-\rho \frac{\partial \mathrm{u}}{\partial \mathrm{t}}-\rho \mathrm{u} \frac{\partial \mathrm{u}}{\partial \mathrm{x}}-\frac{\partial}{\partial \mathrm{x}}(\mathrm{p}+\rho \mathrm{gH})+\frac{\partial}{\partial \mathrm{x}}\left(\tau_{\mathrm{xx}}\right)+\frac{\tau_{\xi \mathrm{x}}}{\mathrm{~h}_{\xi} \mathrm{h}_{\eta}} \frac{\partial \mathrm{h}_{\eta}}{\partial \xi}+\frac{1}{\mathrm{~h}_{\xi}} \frac{\partial}{\partial \xi} \tau_{\xi \mathrm{x}}\right)\right]
$$

or
$\left.\mathrm{V}_{\xi}=\left(\frac{\rho}{\mathrm{h}_{\xi}} \frac{\partial \mathrm{u}^{-1}}{\partial \xi}\right)^{\left[-\rho \frac{\partial \mathrm{u}}{\partial \mathrm{t}}\right.}-\rho \mathrm{u} \frac{\partial \mathrm{u}}{\partial \mathrm{x}}-\frac{\partial}{\partial \mathrm{x}}(\mathrm{p}+\rho \mathrm{gH})+\frac{\partial}{\partial \mathrm{x}}\left(\tau_{\mathrm{xx}}\right)+\frac{\tau_{\xi \mathrm{x}}}{\mathrm{h}_{\xi} \mathrm{h}_{\eta}} \frac{\partial \mathrm{h}_{\eta}}{\partial \xi}+\frac{1}{\mathrm{~h} \xi} \frac{\partial}{\partial \xi}\left(\tau_{\xi \mathrm{x}}\right)\right]$
where the velocity component in the ξ direction is isolated from the velocity component in the η direction.

Derivation of the Equation for the v_{η} Velocity Component

The continuity equation in the $\mathrm{x}, \mathrm{Y}, \mathrm{Z}$ coordinate system is

$$
\frac{\partial u}{\partial \mathrm{x}}+\frac{\partial \mathrm{v}}{\partial \mathrm{Y}}+\frac{\partial \mathrm{w}}{\partial \mathrm{Z}}=0
$$

Applying the transformation rule between the two coordinate systems on $\partial \mathrm{v} / \partial \mathrm{Y}$ and $\partial \mathrm{w} / \partial \mathrm{z}$ results in the following relation:

$$
\frac{\partial \mathrm{v}}{\partial \mathrm{Y}}+\frac{\partial \mathrm{w}}{\partial \mathrm{Z}}=\frac{1}{\mathrm{~h}_{\xi} \mathrm{h}_{\eta}}\left[\frac{\partial}{\partial \xi}\left(\mathrm{h}_{\eta} \mathrm{V}_{\xi}\right)+\frac{\partial}{\partial \eta}\left(\mathrm{h}_{\xi} \mathrm{V}_{\eta}\right)\right]
$$

The continuity equation in the curvilinear coordinate system is therefore:

$$
\frac{\partial \mathrm{u}}{\partial \mathrm{x}}+\frac{1}{\mathrm{~h}_{\xi} \mathrm{h}_{\eta}}\left[\frac{\partial}{\partial \xi}\left(\mathrm{h}_{\eta} \mathrm{V}_{\xi}\right)+\frac{\partial}{\partial \eta}\left(\mathrm{h} \xi \mathrm{v}_{\eta}\right)\right]=0
$$

or

$$
\frac{\partial}{\partial \eta}\left(\mathrm{h}_{\xi} \mathrm{v}_{\eta}\right)=-\mathrm{h}_{\xi} \mathrm{h}_{\eta} \frac{\partial \mathrm{u}}{\partial \mathrm{x}}-\frac{\partial}{\partial \xi}\left(\mathrm{h}_{\eta} \mathrm{v}_{\xi}\right)
$$

Integrating both sides of this equation results in:

$$
\mathrm{h}_{\xi} \mathrm{v}_{\eta}=-\int_{\eta^{*}}^{\eta}\left[\left(\mathrm{h}_{\xi} \mathrm{h}_{\eta} \frac{\partial \mathrm{u}}{\partial \mathrm{x}}+\frac{\partial}{\partial \xi}\left(\mathrm{h}_{\eta} \mathrm{v}_{\xi}\right)\right] \mathrm{d} \eta+\mathrm{C}\right.
$$

in which
$\eta^{*}=$ the η value on the water surface
$C=$ an integration constant
The integration constant can be determined by using the boundary condition on the water surface. The continuity equation in the x, ξ, η coordinate system can finally be written as:

$$
\begin{equation*}
\mathrm{v}_{\eta}=-\frac{1}{\mathrm{~h}_{\xi}} \int_{\eta^{*}}^{\eta}\left[\left(\mathrm{h}_{\xi} \mathrm{h}_{\eta} \frac{\partial \mathrm{u}}{\partial \mathrm{x}}+\frac{\partial}{\partial \xi}\left(\mathrm{h}_{\xi} \mathrm{v}_{\xi}\right)\right] \mathrm{d} \eta+\mathrm{v}_{\eta^{*}}\right. \tag{34}
\end{equation*}
$$

where $\mathrm{V}_{\eta^{*}}$ is the velocity V_{η} at point (ξ, η^{*}). The velocity component in the η direction is therefore computed from Eq. 34.

Approximation of Shear Stresses

To compute the velocity component V_{ξ} from Eq. 33, the shear stresses are needed. However, the shear stresses are also dependent on the velocity components. Therefore an additional equation is needed to solve the shear stresses and velocities. The additional equation is provided from the
distribution of shear stress in the new coordinate system. Chiu and Hsiung (14) assumed that the shear stress varies quadratically in the ξ direction as follows:

$$
\begin{equation*}
\tau_{\xi \mathrm{x}}(\xi, \eta)=\alpha_{0}+\alpha_{1}\left[\xi_{\max }(\eta)-\xi\right]+\alpha_{2}\left[\xi_{\max }(\eta)-\xi\right]^{2} \tag{35}
\end{equation*}
$$

in which α_{0}, α_{1}, and α_{2} are coefficients and $\xi_{\max }(\eta)$ is the maximum ξ value on an η curve. The coefficients α_{0}, α_{1}, and α_{2} are determined from boundary conditions. As developed by Chiu, these are:
a) $\varepsilon<0$ (the point of maximum velocity is below the water surface)

$$
\begin{align*}
& \alpha_{o}=\mathrm{o} \tag{36}\\
& \alpha_{1}=f_{1}\left(\xi_{\mathrm{o}}, \quad, \eta\right) \tag{37}
\end{align*}
$$

in which

$$
\xi_{0}^{\prime}=\xi \text { curve that approximates the channe } 1 \text { boundary and }
$$

$$
\mathrm{f}_{1}(\xi, \eta)=\frac{-\mathrm{h}_{\xi} \mathrm{F}_{\mathrm{o}}-\alpha_{2}\left\{2-\frac{1}{\mathrm{~h} \eta} \frac{\partial \mathrm{~h} \eta}{\partial \xi}\left[\xi_{\max }(\eta)-\xi\right]\right\}\left(\xi_{\max }(\eta)-\xi\right)}{1-\frac{1}{\mathrm{~h}_{\eta}} \frac{\partial \mathrm{h} \eta}{\partial \xi}\left[\xi_{\max }(\eta)-\xi\right]}
$$

where

$$
\begin{equation*}
\mathrm{F}_{\mathrm{o}}=\rho\left(\frac{\partial \mathrm{u}}{\partial \mathrm{t}}+\mathrm{u} \frac{\partial \mathrm{u}}{\partial \mathrm{x}}\right)+\frac{\partial}{\partial \mathrm{x}}(\mathrm{p}+\rho \mathrm{gH})-\frac{\partial \tau_{\mathrm{xx}}}{\partial \mathrm{x}} \tag{38}
\end{equation*}
$$

$\xi_{\max }(\eta)=1$ for η curves that intersect with the stream banks or bed For η curves that intersect with the water surface, it can be reasonably assumed that $\tau_{\xi \eta}=0$ if the wind effects are ignored; then

$$
\begin{equation*}
\alpha_{1}=-\alpha_{2}\left[1-\xi_{\mathrm{D}}(\eta)\right] \tag{39}
\end{equation*}
$$

where $\xi_{D(\eta)}$ is the ξ value of this η curve at the water surface.

$$
\begin{equation*}
\alpha_{2}=\left[\overline{\overline{\xi_{\max }(\eta)-\xi_{\mathrm{o}}^{\prime} \mathrm{f}_{2}(\eta)}}\right]\left[\overline{\rho \mathrm{gS}} \mathrm{f}+\mathrm{h}_{\xi} \mathrm{F}_{\mathrm{o}} \mathrm{f}_{2}(\eta)\right] \tag{40}
\end{equation*}
$$

in which

$$
\begin{equation*}
\mathrm{f}_{2}(\eta)=\frac{\xi_{\max }(\eta)-\xi_{\mathrm{o}}^{\prime}}{1-\frac{1}{\mathrm{~h}_{\eta}} \frac{\partial \mathrm{h} \eta}{\partial \xi}\left[\xi_{\max }(\eta)-\xi_{\mathrm{o}}^{\prime}\right]} \tag{41}
\end{equation*}
$$

and the overbar means the average value over the wetted perimeter, which is computed as

$$
\begin{equation*}
\overrightarrow{\mathrm{A}}=\frac{1}{\mathrm{~W} \cdot \mathrm{P}} \cdot \int_{\mathrm{W} \cdot \mathrm{P}} \mathrm{~A} \mathrm{~h}_{\eta}\left(\xi_{0^{\prime}}, \eta\right) \mathrm{d} \eta \tag{42}
\end{equation*}
$$

and W.P. = total length of wetted perimeter.
b) $\varepsilon=o$ (the point of maximum velocity is on the water surface). For this case, Eqs. 36,37 , and 40 can still be used.
c) $\varepsilon>o$ (the point of maximum velocity is above the water surface). In this case the maximum value of $\xi(\eta)$ at the water surface is
$\xi_{\max }(\eta)=\xi_{o}(\eta)$
and Eqs. 36, 37, and 40 are still valid.

Computer Model

The mathematical equations for computing the secondary velocities were presented in the preceding section. The equations, which were established in cartesian ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) coordinates, were first translated into the cross-sectionwise ($\mathrm{x}, \mathrm{Y}, \mathrm{Z}$) coordinates, and were then transformed into the curvilinear (x, ξ, η) coordinates. Several parameters were used in these translation and transformation processes. The functions of these parameters were to relate the channel geometry and primary velocity distribution pattern to the governing equations.

After the equations in the curvilinear coordinate system are established, the computations are carried out in a grid system constructed on the (ξ, η) coordinates. The secondary velocities in the (x, y, z) coordinate system are obtained by using inverse transformations.

The overall computational procedures are hence separated into two phases. Phase I determines the best fitted coefficients $\xi_{i}, \beta_{i}, k, \delta_{y}, \xi_{o}{ }^{\prime}$, and ξ_{o} for approximating the primary velocity distribution and the channel geometry. Phase II uses these parameters to construct a computational grid system and carries out the computations for secondary circulation. In order to make a clear presentation of the model, two flow charts, shown in Figs. 6 and 7 , are used to illustrate the computational procedures.

Figure 6. Flow chart of phase I analysis

Figure 7. Flow chart of phase II analysis

Phase I Analysis

The Phase I analysis performs the following functions: 1) analyzes field data and determines parameters; 2) derives parameters for Phase II computations.

The channel cross section and isovels of the measured primary velocities are plotted first. Then determinations are made of the mean elevation of the channel bottom, H; the hydraulic radius, R; and the distance from the water surface to the point of maximum velocity, ε (Fig. 8). The axis which passes through the point of maximum velocity divides the channel cross section into two computational halves, as defined by subscripts $i=1$ or 2 previously. The water surface width of each half, B_{i}, and the water depth D are then determined. Before proceeding to the steps described in Fig. 6, additional data need to be determined. These include (y_{b}, z_{b}) i, and the corresponding slopes S_{i} for each bank. This information is needed for the following computations.

Figure. 8. Definition sketch for field parameters

On the assumption that the ξ_{0} ' curve approximates the channel geometry, this curve should pass through $\left(y_{b}, z_{b}\right)$. At such a point, the slope of the ξ_{o} ' curve (i.e. boundary) is

$$
\begin{align*}
\mathrm{S}_{\xi} & =\frac{\partial \mathrm{y}}{\partial \xi}=\frac{\partial \xi \partial \mathrm{z}}{\partial \xi / \partial \mathrm{y}}=\frac{(\partial \xi / \partial \mathrm{z})(\partial \mathrm{z} / \partial \xi)}{(\partial \xi / \partial \mathrm{Y})(\partial \mathrm{Y} / \partial \mathrm{y})} \\
& =\beta_{\mathrm{i}} \frac{\mathrm{D}+\delta_{\mathrm{y}}+\varepsilon}{\mathrm{B}_{\mathrm{i}}+\delta_{i}} \frac{\mathrm{Y} \cdot \mathrm{Z}}{(1-\mathrm{Z})(1-\mathrm{Y})} \tag{43}
\end{align*}
$$

Equation 43 can be rewritten as

$$
\begin{equation*}
\beta_{i}=\left(\mathrm{S}_{\xi}\right) \frac{\mathrm{B}_{\mathrm{i}}+\delta_{\mathrm{i}}}{\mathrm{D}+\delta_{\mathrm{y}}+\varepsilon} \frac{\left(\mathrm{B}_{\mathrm{i}}+\delta_{\mathrm{i}}-\mathrm{z}_{\mathrm{b}}\right)\left(\mathrm{D}+\varepsilon-\mathrm{y}_{\mathrm{b}}\right)}{\mathrm{z}_{\mathrm{b}}\left(\mathrm{Y}_{\mathrm{b}}+\delta_{\mathrm{y}}\right)} \tag{44}
\end{equation*}
$$

On the other hand, the ξ_{o}^{\prime} curve can also be described, by using Eq. 2, as

$$
\begin{equation*}
\xi_{o}^{\prime}=\frac{y_{b}+\delta_{y}}{D+\delta_{y}+\varepsilon}\left(1-\frac{\left|z_{b}\right|}{B_{i}+\delta_{i}}\right)^{\beta_{i}} \exp \left(\frac{\beta_{i}\left|z_{b}\right|}{B_{i}+\delta_{i}}-\frac{y_{b}+\delta_{y}}{D+\delta_{y}+\varepsilon}+1\right) \tag{45}
\end{equation*}
$$

or as

$$
\begin{equation*}
\beta_{i}=\frac{\ln \left(\delta_{y}\right)-\ln \left({ }_{b}+\delta_{y}\right)+{ }_{b} /\left(\mathrm{D}+\delta_{\mathrm{y}}+\varepsilon\right)}{\mathrm{z}_{\mathrm{b}} /\left(\mathrm{B}_{\mathrm{i}}+\delta_{\mathrm{i}}\right)+\ln \left(\mathrm{B}_{\mathrm{i}}+\delta_{\mathrm{i}}-\left|\mathrm{z}_{\mathrm{b}}\right|\right)-\ln \left(\mathrm{B}_{\mathrm{i}}+\delta_{\mathrm{i}}\right)} \tag{46}
\end{equation*}
$$

This β_{i} value is the same β_{i} value described by Eq. 44. Moreover, the boundary condition at the origin gives the ξ_{o}^{\prime} value as

$$
\begin{equation*}
\xi_{o}^{\prime}=\frac{\delta_{y}}{D+\delta_{y}+\varepsilon} \exp \left(-\frac{\delta_{y}}{D+\delta_{y}+\varepsilon}+1\right) \tag{47}
\end{equation*}
$$

which is derived from Eq. 45 by setting $y_{b}=z_{b}=0$. Equating Eqs. 44 and 46 gives an equation which contains two unknowns: δ_{i} and δ_{y}. By assuming a δ_{y} value, δ_{i} and β_{i} values can be computed. Therefore an iterative procedure to determine the δ_{i} and β_{i} values is used to generate the closest computed velocity distribution to the measured primary velocities in a given channel.

Since the boundary curve ξ_{0} ' and all the other ξ curves have to fit a logarithmic velocity distribution as described in Eq. 1, the following iterative steps depicted in Fig. 6 are used to determine the coefficients needed for Phase II.
(1) assume trial δ_{y} values
(2) calculate $\delta_{\mathbf{i}}$ from Eq. 44 and Eq. 46
(3) compute β_{i}
(4) compute ξ values at every data point where u is measured
(5) perform linear regression on u / u_{*} and $\ln \xi$
(6) determine k and ξ_{0} from intercept and slopes of step (5)
(7) repeat $s t e p$ (1) to step (6)

The ξ_{o} value obtained in step 6 is the line which defines zero velocity, while the $\xi_{0}{ }^{\prime}$ line is the line which approximates the boundary. The best fitted coefficients are those coefficients which generate a primary velocity distribution that has the least standard deviation in comparison with the measured velocities.

The measured hydraulics parameters, i.e., $D, B_{i}, \varepsilon, H, R$, and the derived parameters $\delta_{i}, \beta_{i}, k, \xi_{0}, \xi_{0}{ }^{\prime}$, and τ_{*}, are then transmitted to Phase II for velocity and shear stress computations.

Phase II Analysis

The Phase II analysis involves solving the equations discussed in the last section for field variables. The parameters, determined from field data in Phase I, relate these equations to local hydraulic conditions. The characteristics of these equations require building the computations on a grid system, similar to that of a finite difference method. Using the ξ and η curves to form the grid, field data parameters are calculated at the grid nodal points. Also many variables (e.g., h_{ξ} and h_{η}) require the corresponding Y, Z coordinate values in their calculations. Consequently the Y, Z coordinates at each grid point have to be retrieved.

Grid System Construction

The grid system is constructed by drawing ξ curves and η curves with predetermined $\Delta \xi$ and $\Delta \eta$ intervals, between the maximum ξ and η values and the minimum ξ and η values. These maximum and minimum ξ and η values can be derived from Eqs. 2 and 3 once the parameters which depend on field data are determined through Phase I analysis, but the $\Delta \xi$ and $\Delta \eta$ values have to be determined by trial and error. The $\Delta \xi$ and $\Delta \eta$ values, once determined, are used in the numerical evaluation of the velocity components V_{ξ} and V_{η}, and significantly affect the accuracy and cost of computations. From Eq. 34 it can be seen that a smaller $\Delta \eta$ value will give greater accuracy in the numerical integration. On the other hand, a larger $\Delta \eta$ value will result in a shorter computation time. It is therefore desirable to have the $\Delta \eta$ value as
large as possible and to keep the computational error within an allowable range.

The $\Delta \eta$ values, however, depend on $\Delta \xi$ (Eq. 34) values. The $\Delta \xi$ value becomes available in the numerical evaluation of derivatives with respect to ξ. Finer $\Delta \xi$ values are needed near the channel boundary areas, since the primary velocity gradient is the highest at this location. The derivatives with respect to ξ, when evaluated by a numerical method, produce error. This error is the sum of two errors, truncation and rounding off. The round-off error is negligible on a large machine such as the CDC-6400 that carries numbers to 5 digits beyond the decimal point; therefore the $\Delta \xi$ value is selected to minimize the truncation error. The computation of $\Delta h_{\xi} / h_{\eta} \xi$ (in Eq. 33) is used for checking this $\Delta \xi$ selection. Two examples of a grid system generated using the procedures above are illustrated in Fig. 9.

Solving for (Y, Z) Given (ξ, η)
The values of ξ and η can be computed directly from given Y, Z coordinates by using Eqs. 2 and 3. However, obtaining the values of Y and Z for given ξ and η coordinates requires solution of the two nonlinear equations. The "modified Regula Falsi" iteration method (51) is used to solve these non-linear equations. Since the variations of ξ and η curves are different in various regions, the following four algorithms are used to solve the equations:
(1) Solve Y for fixed Z from ξ curve
(2) Solve Z for fixed Y from ξ curve
(3) Solve Y for fixed Z from η curve
(4) Solve Z for fixed Y from η curve

The algorithms are illustrated in Fig. 10. With these four algorithms, one can solve for Y (or Z) for an assumed value of Z (or Y) on a selected curve of ξ or η. The choice of the ξ (or η) curve for solutions depends on the tangent values at two consecutive points on that curve. If the tangent values are very close to each other on one curve, then the other curve is selected. The algorithm converges quickly after the first (Y, Z) coordinate point is found, which then becomes the initial trial value for the next (Y, Z) point.

DISTANCE, ft

Figure 9. Grid systems for computational model

Figure 10. Algorithms for solving Y or Z from ξ and η

Computation for $V \xi$
The V_{ξ} component is computed from Eq. 33 on every grid point. In general, the normal stress term $\partial \tau_{\mathrm{xx}} / \partial \mathrm{x}$ is small and is included in the hydrostatic pressure variation term. If the flow is steady and uniform, then

$$
\begin{equation*}
\frac{\partial}{\partial \mathrm{x}}(\rho \mathrm{gH})=\rho \mathrm{gS} \tag{48}
\end{equation*}
$$

where S is the slope of the channel bottom. Since the primary velocity is assumed to have a logarithmic distribution, and the shear stress a quadratic distribution, the velocity and shear stress derivatives can be written as:

$$
\begin{equation*}
\frac{\partial \mathrm{u}}{\partial \xi}=\frac{\partial}{\partial \xi}\left(\frac{\mathrm{u}_{*}}{\mathrm{k}} \ln \frac{\xi}{\xi_{\mathrm{o}}}\right)=\frac{\mathrm{u}_{*}}{\xi \mathrm{k}} \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \tau_{\xi \mathrm{x}}}{\partial \xi}=-\alpha_{1}-2 \alpha_{2}\left(\xi_{\max }-\xi\right) \tag{50}
\end{equation*}
$$

The derivative of h_{η} with respect to ξ can be computed in Y and Z coordinates by using this relationship:

$$
\frac{1}{\mathrm{~h}_{\eta}} \frac{\partial \mathrm{h}_{\eta}}{\partial \xi}=\frac{\partial}{\partial \xi} \quad\left(\ln \mathrm{h}_{\eta}\right)
$$

Therefore

$$
\begin{equation*}
\frac{1}{\mathrm{~h}_{\eta}} \frac{\partial \mathrm{h}_{\eta}}{\partial \xi}=-\frac{\beta_{i} \mathrm{C}_{i} \mathrm{Y}^{2} \mathrm{Z}^{2}(1-\mathrm{Z})^{2}+\mathrm{C}_{\mathbf{i}} \mathrm{Y}^{2}(1-\mathrm{Y})^{2}(1-\mathrm{Z})^{2}}{\xi\left[(1-\mathrm{Y})^{2}(1-\mathrm{Z})^{2}+\beta_{i} \mathrm{C}_{\mathrm{i}} \mathrm{Y}^{2} \mathrm{Z}^{2}\right]^{2}} \tag{51}
\end{equation*}
$$

With these terms known and $\partial u \partial x$ determined from field measurement, the V_{ξ} component at each node is computed in a straightforward manner.

Computation for $V \eta$
Eq. 34 can be rewritten as:
$\mathrm{v}_{\eta}=-\frac{1}{\mathrm{~h}_{\xi}} \int_{\eta *}^{\eta}\left[\mathrm{h}_{\xi^{\prime}} \mathrm{h}_{\eta} \frac{\partial \mathrm{u}}{\partial \mathrm{x}}+\frac{\partial}{\partial \xi}\left(\mathrm{h}_{\xi} \mathrm{V}_{\xi}\right)\right]+\mathrm{v}_{\eta^{*}}$
The following steps are needed to solve Eq. 52.
(1) Determine the boundary value $V_{\eta}{ }^{\star}$

$$
\begin{align*}
& \mathrm{v}_{\mathrm{z}}=\mathrm{v}_{\xi}\left(\mathrm{h}_{\xi} \frac{\partial \xi}{\partial \mathrm{z}}\right)^{-1} \text { or } \mathrm{v}_{\mathrm{z}} \text { from field data } \\
& \mathrm{v}_{\eta *}=\mathrm{h}_{\eta} \quad \mathrm{v}_{\xi} \frac{\partial \eta}{\partial \xi} \tag{53}
\end{align*}
$$

(2) By using Leibnitz's rule, transform Eq. 52 as follows:

$$
\begin{align*}
& \mathrm{v}_{\eta}=-\frac{1}{\mathrm{~h}_{\xi}} \int_{\eta^{*}}^{\eta} \mathrm{h}_{\xi} \mathrm{h}_{\eta} \frac{\partial \mathrm{u}}{\partial \mathrm{x}} \mathrm{~d} \eta-\frac{1}{\mathrm{~h}_{\xi}} \frac{\partial}{\partial \xi} \int_{\eta^{*}}^{\eta}\left(\mathrm{h}_{\eta} \mathrm{v}_{\xi}\right) \mathrm{d} \eta+\mathrm{v}_{\eta^{*}} \tag{54}\\
& \text { or }=\sum \frac{-1}{\mathrm{~h}_{\xi}} \int_{\eta_{\dot{1}}}^{\eta_{\mathrm{i}+1}} \mathrm{~h}_{\xi} \mathrm{h}_{\eta} \frac{\partial \mathrm{u}}{\partial \mathrm{x}} \mathrm{~d} \eta-\sum \frac{1}{\mathrm{~h}_{\xi}} \frac{\partial}{\partial \xi} \Psi+\mathrm{v}_{\eta^{*}} \tag{55}
\end{align*}
$$

where $\Psi=\int_{\eta^{*}}^{\eta}\left(\mathrm{h}_{\eta} \mathrm{V}_{\xi}\right) \mathrm{d} \eta$
(3) The numerical integration for each integral on the right-hand side is evaluated as:

$$
\begin{align*}
& \int_{\eta_{i}}^{\eta_{i+1}} \mathrm{~A} \mathrm{~h}_{\eta} \mathrm{d} \eta=\int_{-1}^{+1}\left(\mathrm{~N}_{1} \mathrm{~A}_{1}+\mathrm{N}_{2} \mathrm{~A}_{2}\right)\left(\mathrm{N}_{1} \mathrm{~h} \eta_{1}+\mathrm{N}_{2} \mathrm{~h} \eta_{2}\right)\left[\frac{\mathrm{dN}}{\mathrm{dr}} 1 \eta_{1}+\frac{\mathrm{dN}}{\mathrm{dr}} 2 \eta_{2}\right] \mathrm{dr} \\
& \quad=\frac{1}{2}\left(\eta_{2}-\eta_{1}\right) \sum_{\mathrm{m}}^{\mathrm{E}} \mathrm{E}_{1}\left(\mathrm{~N}_{1} \mathrm{~A}_{1}+\mathrm{N}_{2} \mathrm{~A}_{2}\right)\left(\mathrm{N}_{\mathrm{i}} \mathrm{~h}_{\eta 1}+\mathrm{N}_{2} \mathrm{~h}_{\eta 2}\right) \mathrm{W}_{\mathrm{m}} \tag{56}
\end{align*}
$$

where $N_{1}=\frac{1-r}{2}, N_{2}=\frac{1+r}{2}, r$ is the reference parameter ranging from -1 to +1 , M is the Gaussian point, and W_{m} is the weight coefficient.
(4) The derivative of Ψ with respect to ξ is calculated by:

$$
\begin{equation*}
\frac{\partial}{\partial \xi} \Psi_{\mathrm{n}}=\frac{\left[\Psi_{\mathrm{n}}\right]_{\mathrm{i}+1}-\left[\Psi_{\mathrm{n}}\right]_{\mathrm{i}-1}}{2 \Delta \xi} \tag{57}
\end{equation*}
$$

which is the central difference approximation.
The whole computation is carried out on an ξ curve, and the values of Ψ on neighboring ξ curves are also required.

A complete listing of the computer program for the model is provided in Appendix A.

The field data collection component of the project consists of development of the instrumentation needed to measure secondary circulation in natural channels, and the actual data collection. A computerized field data collection system was developed for the project and used successfully in the field. In addition to the acquisition of secondary circulation data, other measurements and sampling for flow discharges, suspended sediment concentrations, bed loads, and bed material were performed during the field data collection periods. This section of the report describes the instruments used to collect the data and the data collection procedures, and presents a summary of the data collected.

Field Data Collection Site

Three sets of field data were collected for the project. Data were collected in May and June 1984 and in August 1985. All the data were collected in the Sangamon River near Mahomet (near the junction of Sections 19, 20, 29, and 30, Township 20N., Range 7E.; river mile 180.6 above the Illinois River; and about 3.8 miles downstream of the Highway 47 bridge, Mahomet, IL). The Sangamon River near Mahomet, among other sites considered, was found to be the best site in terms of water depth requirements and site accessibility. The location of the study site is shown in Fig. 11. The stream channel at the study site is nearly a straight reach for about 500 feet, and then follows a gradual bend. At the upstream end of the site there is a bridge. The bridge piers did not obstruct the flow during the field trips; thus there were no eddies from the bridge piers. This was felt to be an important consideration in all secondary circulation measurements.

The channel width at this reach is almost constant (approximately 75 feet) and the cross section geometry is almost trapezoidal, which is an ideal case for the application of the mathematical model. Water depth at the study site varied from 2 to 4 feet, which made the data collection program relatively easy. The site is easily accessible by car, which facilitated the transport of equipment to the study site.

Figure 11. Location of study site

Instrumentation

Three-Dimensional Flow Measurement Setup

The instrumentation for measuring secondary circulation includes a Marsh-McBirney (Model 527) electromagnetic current meter, a Commodore (Model 8032) micro-computer with tape drive, an interface between the current meter and the computer, and a rigid support system for the current meter (Fig. 12). The support system includes a yoke which allows the current meter to be rotated 90 degrees so that both the lateral and vertical components of the secondary velocities may be measured.

Using the setup shown in Fig. 12, a continuous velocity reading from the current meter can be digitized and transmitted to the computer. Either the time history or an average and standard deviation of the velocity for a given period can be calculated and stored on cassette tapes.

Marsh-McBirney 527 Electromagnetic Current Meter

The Marsh-McBirney 527 Electromagnetic Water Current Meter consists of a transducer probe with a geomagnetic compass, a cable, and a signal processor. The probe is a 4-inch-diameter sphere on a l-inch-diameter rod. The current meter measures the flow of water in a plane normal to the longitudinal axis of the probe. The current meter operates on the Faraday Principle of Electromagnetic Induction, which, simply stated, says: "a conductor moving in a magnetic field (generated from within the probe) produces a voltage that is proportional to its velocity." The electrodes placed on the wall of the probe detect the voltages caused by water flowing past the probe in a plane normal to the probe's axes. The flow sensing volume around the probe is a sphere 12 inches in diameter (3 probe diameters).

The two components of velocity together with the compass reading can be directly monitored on the three panel meters on the signal processor. The panel meter has three selectable full-scale ranges of $\pm 2, \pm 5$, and $\pm 10 \mathrm{ft} / \mathrm{sec}$. The outputs are within 2% of full scale over the velocity range of the instrument, and the compass accuracy is $\pm 10^{\circ}$ at tilt angles of up to 25°. Also provided on the signal processor is a voltage output jack, which makes the velocity and the compass readings available to external data logging equipment; i.e., computers or any other data logging devices.

Figure 12. Field instrumentation setup

Since the Marsh-McBirney electromagnetic current meter output is in an analog signal, and it is almost impossible to visually average the velocity readings from the panel meters, it was decided to construct a data logger system based on a micro-computer. The initial step is to build an interface between the current meter and the computer. An interface which can receive the current meter output at selected frequencies and average the values for specified time periods was built at the Illinois State Water Survey Electronic Shop. The interface transfers the voltage outputs to the computer as digital signals.

The computer used for this system is a Commodore micro-computer (Model 8032) with a cassette tape drive. A computer program was developed to control the sampling procedure; to calculate the means, standard deviations of the velocity components, and the angle; and to store the data on cassette tapes. Additional information such as on site descriptions, coordinates and rotation of the current meter, time, and the gain selected for amplification of the signal is entered into the computer before sampling is initiated. The data stored on the tapes include the descriptive information and the actual data.

Once in the office, the data stored in the tapes is transmitted from the micro-computer to a main-frame computer (CYBER) by using a communication program and a modem. Further analysis of the data is carried out on the CYBER computer.

Support System for the Current Meter

The support system for the current meter was an important consideration in the development of the data acquisition system. The current meter has to be placed at a known depth in the stream, and the orientation of the current meter has to remain the same during the sampling period to obtain consistent data. To achieve these objectives, a rigid support system which could be moved from place to place had to be built. This was accomplished by modifying an aluminum stepladder and building a supporting platform, pole, and yoke as shown in Fig. 12. The yoke was designed to allow a 90° rotation of the current meter so that secondary currents both in the transverse and vertical directions could be measured. The yoke is supported by a pole which can be raised or lowered at regular intervals to change the depth of the measuring point. The pole is supported by the platform, which is attached to the
ladder. Additional bracings were used to reduce the vibration of the current meter generated by the stream current. A complete cross-sectional velocity distribution is measured by moving the whole support system along the channel width, lowering and raising the pole, and rotating the current meter.

Rotating Bucket Current Meter

This instrument, a standard Price-type meter, has a rotor with six coneshaped cups mounted on a vertical stainless steel shaft. The meter has been calibrated by the manufacturer to a standard rating table where the number of rotations of the rotor over a specified time corresponds to a specific velocity.

The current meter is attached to a $30-1 b$ weight to keep it from drifting in the current and is suspended into the stream from a bridge deck with a cable/winch/crane assembly. This meter was used to measure flow velocity in the Sangamon River at the bridge site shown in Fig. 11. These velocity data were used to determine the discharge at the test reach.

Suspended Sediment Samplers

Two types of suspended sediment samplers were used for this investigation: the US DH-59 and DH-48, which are standard samplers designed for the United States Geological Survey. These samplers are designed to accumulate a water-sediment sample from a stream vertical at such a rate that the velocity in the nozzle at the point of intake is as close as possible to the stream velocity. These types of samplers, properly used, will withdraw a sample of the sediment water mixture that represents an average of the sediment concentration through a stream vertical weighted for velocity so that proper sediment load calculations can be made.

Both samplers use standard l-pint glass milk bottles to collect the sediment-water samples. The DH-59 sampler was designed to be suspended by a hand-held rope or a cable/winch/crane assembly. This sampler was used to determine sediment concentrations of the stream at the bridge site (Fig. 11). The DH-48 sampler was used to sample for sediment concentration at sites away from the bridge. It was designed to be suspended from a wading rod and lowered into the stream by hand.

Bed Load Sampler

A Helley-Smith bed load sampler was used to measure the component of the total sediment load that moves in close proximity to the streambed. This sampler was designed for sampling coarse material where the diameter of the bed load material is above 0.25 mm . The sampler was designed to be lowered to the streambed, left in contact with the bed for a certain period of time, and then retrieved from the water. Samples are retained by a mesh bag ($0.25-\mathrm{mm}$ mesh openings) open to the flow through a 3 -inch-square opening. The quantity of material trapped by the sampler over a certain period of time indicates the amount of bed load moving through the 3 -inch-square area, and by extrapolation (to the total bed width of the stream) the total quantity of bed load carried by the stream can be calculated.

Sonar Stage Meter

An electronic sonar distance meter was used to measure the stage or height of the stream. Readings were made throughout the data collection period in order to assess the changes over time in stage. The sonar meter is placed at a known datum on the bridge and transmits the sonar signal downward to the stream water surface. The water surface reflects the signal back to the meter and the distance is calculated on the basis of the lag time between transmission and return. The meter is calibrated for the effect of air temperature on the speed of sound. The instrument used was an Exact Technologies Corporation Dimensional Measurement Computer. It has a resolution of 1 inch over a range of up to 50 feet.

Data Collection Procedures

Secondary Circulation

Secondary circulation data were collected from cross section to cross section within the study reach. Measurements are taken at several depths for each vertical. Normally ten or more verticals per cross section were selected for data collection. Generally data collection at one cross section lasted one full day.

The data collection procedure for secondary circulation is as follows: First the support platform and pole are moved into the stream and firmly set at the data collection site. Then the yoke with the current meter is securely attached to the pole on the platform. The cable from the current meter is
then connected to the signal processor, which is located on the stream bank. The output from the signal processor is first transferred to the interface and then to the computer by cables between the devices. After all the connections between the devices are completed, power is turned on to activate the system. The computer program which controls the data collection and storage is then loaded into the computer and run. The computer prompts with header lines for inputting general information such as location, date, and time. It then asks for coordinates and gain (or amplification) being used. Once the above procedures are completed, osampling is initiated and terminated by pressing designated keys on the computer keyboard. Finally, the data are displayed on the screen for inspection and then transferred to cassette tapes for further analysis.

Data Reduction

All the cross sections where measurements were taken were aligned to be normal to the stream banks. However, this selection does not guarantee that the cross sections are normal to the main flow direction. Furthermore, it is very difficult to keep the orientation of the current meter consistent for all measurements. Thus the measured values of secondary flows might not represent the true values. The measured velocities were adjusted to reflect the true longitudinal and secondary currents by using the orientation of the current meter with respect to the magnetic north, which is measured simultaneously with the velocities, and by using one of the following two criteria: 1) The discharges measured by the two current meters, the electromagnetic and the rotating bucket mechanical current meter, should be equal; and 2) the continuity of secondary flows must be satisfied between downstream and upstream cross sections.

The method employed to check the continuity of secondary discharge is that proposed by Dietrich and Smith (22), and also used by Thorne et al. (56). In this method, the net secondary discharge is determined by integrating the secondary velocity over the depth. The continuity of discharge requires that the net secondary discharge at a cross section be equal to that of the section immediately upstream or downstream. If the two differ, the section is reoriented to change the secondary velocities until an agreement is reached.

The measured velocity components V_{x} and V_{y}, shown in Fig. 13, are first converted to resultant velocities from which the downstream and cross-stream velocities are computed.

The magnitude of the resultant velocity $=\sqrt{ } V_{x}{ }^{2}+V_{y}{ }^{2}$
The angle of the resultant velocity with respect to magnetic north (θ) is determined as:

$$
\theta= \begin{cases}\tan ^{-1}\left(V_{x} / V_{y}\right) & \text { if } V_{y}>0 \tag{58}\\ \tan ^{-1}\left(V_{x} / V_{y}\right)+\pi & \text { if } V_{y}<0\end{cases}
$$

The angle of the main downstream velocity with respect to the magnetic north $\left(\theta_{N}\right)$ is given by:

$$
\begin{equation*}
\theta_{\mathrm{N}}=\theta+\theta_{\mathrm{C}} \tag{59}
\end{equation*}
$$

in which

$$
\begin{aligned}
\mathrm{V}_{\mathrm{y}}, \mathrm{~V}_{\mathrm{x}} & =\text { measured velocity } \\
\theta_{\mathrm{c}} & =\text { bearing of sensor with respect to magnetic north } \\
\theta_{\mathrm{N}} & =\text { bearing of left bank with respect to magnetic north } \\
\theta & =\text { bearing of resultant flow with respect to magnetic north }
\end{aligned}
$$

The downstream and cross stream components of the velocity are then given by:

```
downstream velocity = (resultant) ( }\operatorname{cos}0
cross stream velocity = (resultant) ( sin 0)
```


Sampling Period

Two major factors are considered before selecting the sampling period: 1) the sampling period should be long enough that the velocity fluctuations will average out and a true mean velocity will be obtained; and 2) the sampling duration should be short enough that the measurements for at least one cross section can be completed within a day.

Theoretically the true mean velocity is the average of the velocity measurements for an infinite time period. In practice, however, a period of averaging time is determined which gives a mean velocity very close to the long-time average with specified tolerance limits.

One method of estimating the averaging period is to determine the mean velocities for several averaging periods and then select the averaging period which gives a mean within a specified range from the true mean. This will require taking long period samples for each of the sampling periods. However,

Figure 13. Orientation of measured velocities with respect to the main flow direction
an equivalent result is obtained from one long period sample as follows. A set of sampling periods $\tau_{i}, i=1,2,3 \ldots$ are first selected. Then the sample is subdivided into blocks of N_{i} samples for each τ_{i}. The mean, \bar{u}, and the standard error, S_{m}, which is the standard deviation in the mean, for each averaging period are then computed by the following equations (48)

$$
\begin{equation*}
\overline{\mathrm{u}}=\frac{1}{\mathrm{~T}_{\mathrm{m}}} \int_{\mathrm{o}}^{\mathrm{T}_{\mathrm{m}}} \mathrm{udt} \tag{61}
\end{equation*}
$$

$$
\begin{equation*}
S_{m_{i}}=\frac{\left[\sum_{j=i}^{N_{i}}\left(v_{j}-\bar{u}\right)^{2}\right]^{1 / 2}}{N_{i}} \tag{62}
\end{equation*}
$$

where $\quad v_{j}=\frac{1}{\tau_{i}} \int_{0}^{\tau_{i}} u_{i} d t=$ time average velocity for the period of τ_{i}
$N_{i}=$ the number of averages with an average period of τ_{i} $T_{m}=$ the sampling period of the whole sample
$\bar{u}=$ the long-term average or the true mean
$u=$ velocity at time t
To generalize the standard error for variable magnitudes of velocity, it is convenient to non-dimensionalize the standard error by the mean velocity. The normalized error, $S_{m_{i}}$, is therefore given by:

$$
\begin{equation*}
\bar{S}_{\mathrm{m}_{\mathrm{i}}}=\frac{\mathrm{S}_{\mathrm{m}}}{\overline{\mathrm{u}}} \tag{63}
\end{equation*}
$$

Two sets of velocity measurements are shown in Fig. 14 to illustrate how the sampling periods were selected. The first measurement was taken near the center of the channel (42 feet from the left bank) and 1.25 feet from the water surface, while the second sample was taken close to the stream bank (26 feet from the left bank) and 1 foot from the water surface.

The total sampling time, Tm, for both samples was 5 minutes. The sampling periods, τ_{i}, were $14,27,50,99$, and 150 seconds. The relationship between the sampling period and the normalized standard error for both samples is shown in Fig. 15. As shown in the figure the normalized standard error near the bank is greater than at the center of the channel. This is probably because of greater secondary currents and turbulence intensity near the banks

Figure 14a. Velocity fluctuations at a point (distance $=42 \mathrm{ft}$, depth $=$ 1.25 ft), cross section 9, August 9, 1985

Figure 14b. Velocity fluctuations at a point (distance $=26 \mathrm{ft}$, depth $=$ 1.00 ft), cross section 7, August 7, 1985

Figure 15. Relationship between sampling period and the normalized standard error for two sets of velocity measurements
than at the center of the channel. However, the normalized error for both samples decreases with increasing sampling period. The error decreases sharply for sampling periods more than 60 seconds and gradually thereafter. It was decided to use 60 seconds as the sampling period for an efficient and reliable data collection procedure.

Stream Discharge Measurement

The discharges of the Sangamon River at the study site were measured several times during each field trip. Two types of instrumentation were used to measure discharge of the Sangamon River: 1) the electromagnetic twodimensional current meter, and 2) the rotating bucket mechanical current meter. The electromagnetic meter was employed primarily to measure secondary circulation. However, since the meter also measures the flow in the downstream direction, the data generated were used to compute the stream discharge. The rotating bucket mechanical meter was used to measure stream velocity and to compute stream discharge for a comparative analysis between results of the two methods.

The stream discharge measurement techniques used for the rotating bucket current meter were those recommended by the United States Geological Survey (9) and the American Society for Testing and Materials, Standard Practice for Open-Channel Flow Measurement of Water by Velocity-Area Method, Designation: D 3858-79 (1). Stream discharges are determined by subdividing a cross section of the stream into partial sections; the average velocity of the flow at each partial section is measured and multiplied by the flow area of the partial section. The sum of the individual partial section discharges equals the total stream discharge.

Discharge measurements performed at the bridge site used the rotating bucket current meter. The stream cross section under the bridge was divided into 7 partial sections, each approximately 10 feet wide. The velocity meter, suspended by a cable/winch/crane assembly, was lowered into the stream at the midpoint of each partial section. A depth gage built into the winch read the total depth of the stream at the midpoint of the partial section. This depth was recorded and later used to calculate the flow area of the partial section. Velocity measurements were then made at the vertical in the midpoint of the partial section. The meter was positioned below the water surface at 0.2 and 0.8 of the total depth (for total depths greater than 2.0 ft) or at 0.6 of the
total depth (for total depths less than 2.0 ft). The velocity of the stream at the measured points was recorded and used to calculate the average velocity of the partial section. Stream discharges were then calculated by multiplying the mean velocity for each partial section by the respective cross-sectional area. Total discharge for the section was obtained by summing all the individual partial discharges.

Suspended Sediment Concentrations and Particle Size Sampling

Sediment sampling was performed using the US DH-59 and US DH-48 samplers as described in "Instrumentation." The sediment sampling was performed to determine the concentration of suspended sediment and the total sediment load in the stream. The methods used were developed by the USGS (31) and are proposed practices of the American Society for Testing and Materials Committee D-19 (water) and Subcommittee D-19.07 (sediment) (1).

The sampling methodology employed the equal width increment method where the stream cross section is divided into three or four partial sections and the midpoint of each partial section is sampled. At each midpoint a clean sample bottle is inserted into the sampler and the sampler is carefully lowered from the stream surface to the bottom and raised back to the surface at a constant rate of 1 foot per second. The sample bottle is then capped, identified, and noted in the field book. This procedure is repeated at each partial section midpoint until the entire width is sampled. The purpose of using equal width increment and depth integrated techniques. is to quantify the total amount of sediment carried in suspension by a stream where the concentration of sediment varies across the width and depth.

Suspended sediment concentration sampling was performed at the study site on most of the days of data collection. The sample bottles were identified and labeled in the field and then brought into the office for logging and preparation for delivery to the Inter-Survey Geotechnical Laboratory for analysis.

Suspended sediment particle size analysis was performed on three samples obtained by dip sampling. Dip sampling was used instead of the methods outlined above for suspended sediment concentration because of the low concentration of suspended sediment, which made it necessary to collect a large quantity of samples for the laboratory analysis.

Bed Load Measurement

The coarse fraction of the sediment load ($>0.25 \mathrm{~mm}$) moving in contact with or within 3 inches of the streambed was sampled using a Helley-Smith bed load sampler. This sampler was lowered to the streambed at the thalweg and left there for a period of five minutes. The sampler allows the streamflow near the bed to pass through the intake opening and into a fine mesh. The sample in the mesh bag at the time of retrieval was then examined for quantity and types of sediment (inorganic, wood, leaves, etc.). Field observations of the sample were then entered into the field notebook. Only one bed load measurement was collected as part of this investigation because of low flow conditions during sampling periods, at which time no appreciable bed load movement was observed.

Bed Material Sampling

The streambed sediment was sampled in order to characterize the stream bed and to determine the distribution of sediment particle sizes that are available for transport as bed load and suspended load. The streambed was sampled across its width 100 ft downstream of the bridge sampling site. Three discrete samples were obtained from the bed at three locations: the midpoint, and the left and right quarter points. The bed samples were obtained using a shallow bucket 10 inches across and 3 inches deep. The bucket was lowered through the water column by hand and then tilted so that one edge could cut a sample from the top inch of the streambed. The bucket and sample were brought to the water surface carefully to avoid agitating or dispersing the material. The excess water was drained away from the sample and the sample was placed into whirl-pack sampling bags. The samples averaged approximately 500 grams each. All sample bags were labeled to identify date, time, and sampling location. The samples were then brought into the office for logging and preparation and delivered to the Inter-Survey Geotechnical Laboratory for analysis.

Stage Measurement

The relative change in the stream surface elevation was monitored daily at the bridge site using a sonar distance meter. At a minimum, readings were made at the beginning and end of the work day. The sonar readings were
adjusted to reflect possible temperature effects on the speed of sound.
Relevant data were recorded in the field notebook for later analysis.

Summary of Field Data Collected

A summary of all the field data collected for the project is presented in this section. A complete list of all the data is included in Appendix B. All the cross sections where data were collected are shown in Fig. 16. Table 1 shows the dates when the data were collected at each cross section.

Secondary Circulation

The velocity measurements used to construct secondary circulation were first processed separately to illustrate the distribution of each component in a cross section. Fig. 17 shows the distribution of the longitudinal, transverse, and vertical components of the velocity at cross section 7. It should be noted that different scales are used for the three components shown in the figure, so that the distributions of the lateral and vertical components, which are much smaller than the longitudinal component, can be shown effectively. The distribution of the longitudinal component (Fig. 17a) indicates that the higher velocities are located close to the center of the channel and the lower velocities are near the banks, as should be the case.

Table 1. Dates of Field Data Collection

Date Month/day/year	Cross section number where data were collected
	7
$06 / 28 / 84$	6
$06 / 29 / 84$	5
$07 / 09 / 84$	3
$07 / 10 / 84$	4
$07 / 12 / 84$	2
$07 / 13 / 84$	1
$08 / 05 / 85$	5
$08 / 06 / 85$	6
$08 / 07 / 85$	7
$08 / 08 / 85$	8
$08 / 09 / 85$	9

Figure 16. Location of cross sections at the study site

Figure 17. Distribution of measured longitudinal, transverse and vertical components of velocity at cross section 7 , June 27,1984

The distribution of the transverse component shown in Fig. 17b is, however, highly variable in magnitude and direction. The vertical components for this particular cross section (Fig. 17c) show some variation in magnitude but not as much as the lateral components. Fig. 17 is just an example to illustrate the type of data collected and how they were analyzed. Similar plots for all the data collected in the field are given in Appendix B.

The longitudinal velocity was further processed to generate isovels as shown in Fig. 18. Since the model used for this project utilizes the isovels as the basis for coordinate transformation, it was felt important to generate the isovels for measured data so that they could be compared with the model. Isovel plots for all the measurements are also shown in Appendix B.

The transverse and vertical components of the velocity were combined to generate the secondary current vectors as shown in Fig. 19. For this particular case, the measured values indicate primarily upward and lateral movements of the secondary currents. The downward currents were either missed in the measuring process or are located close to the banks. As with the previous plots, the rest of the secondary current plots are included in Appendix B.

Stream Discharge

The discharge of the Sangamon River at the study site was measured at the bridge cross section using the rotating bucket current meter for the purposes of monitoring the changes in the daily streamflows. Stream discharges were also calculated on the basis of the secondary current measurements at the different cross sections. Table 2 presents a summary of the discharge measurements, as determined by both the rotating bucket and electromagnetic current meters. As shown in the table there are some differences in the stream discharges calculated from the two sets of measurements. Considering that the discharges were not measured at the same cross sections, and considering the errors in stream flow measurements, the agreement between the two sets of measurements was satisfactory for most cases.

Figure 18. Isovels of the longitudinal velocity at cross section 7 , June 27, 1984

Figure 19. Measured secondary current vectors at cross section 7 , June 27, 1984

Table 2. Water Discharge and Sediment Load Measurements During Data Collection Period

Date	Water discharge (cfs)		Suspended sediment	
	Rotating bucket	Electromagnetic	Concentration (ppm)	$\begin{gathered} \text { Load } \\ \text { (tons/day) } \end{gathered}$
6/27/84	--	139	--	--
6/28/84	--	140	205	77
6/29/84	--	119	--	--
7/09/84	71	48	--	--
7/10/84	65	58	114	20
7/12/84	36	--	--	--
8/05/85	126	75	85	29
8/06/85	100	115	94	25
8/07/85	73	66	48	10
8/08/85	--	115	--	--
8/09/85	80	59	52	11
8/14/85	70	--	103	20

The highest and lowest discharges measured in the 1984 data collection period were 140 cfs on June 28 , and 36 cfs on July 12 , respectively. For the 1985 data the highest discharge was 126 cfs on August 5 and the lowest was 59 cfs on August 9. The discharges measured during the field data collection periods are all below the mean streamflow and generally fall in the range of flows exceeded from 40 to 70 percent of the time as indicated in the flow duration curve shown in Fig. 20. The flow duration curve was developed from historical streamflow records of the Sangamon River gaging station at Mahomet, which is 4 miles upstream of the study site. Data collection was not conducted during higher flows because of logistic requirements of deep water measurements, which require using a boat to move the instrumentation from station to station. For water depths less than 4 feet the instrumentation is moved from station to station by wading in the stream channel and physically carrying the platform.

Figure 20. Flow duration curve for the Sangamon River at Mahomet, Illinois

Suspended Sediment Concentration

A total of 48 suspended sediment concentration measurements were made during the data collection field trips. Several of the measurements were detailed cross-sectional measurements, while some were representative samples for calculating sediment load. The concentration measurements were averaged for the whole cross section and the suspended sediment loads were calculated from the average concentrations. These results are shown in Table 2. The suspended sediment concentrations during the 1984 data collection periods are generally higher than those in 1985. This is probably the influence of a major flood event in 1984 which preceded the data collection period. The suspended sediment load in the Sangamon River during the data collection period ranged from a low of 10 tons per day on August 7, 1985, to a high of 77 tons per day on June 28 , 1984 (Table 2).

One detailed suspended sediment concentration measurement was performed on August 8, 1985, to investigate the distribution of sediment in the stream channel. A total of 21 point samples were collected at seven verticals. Fig. 21 shows the point concentration values and the equal concentration lines generated from the data. As can be seen in the figure, the suspended sediment concentration is higher towards the channel bottom and there are some regions of higher concentration which might be associated with secondary currents. However, there is no significant variation of concentration at that particular time of data collection, and more intensive data collection similar to that done here will be needed at different flows to conclusively associate concentration distribution with secondary currents.

Bed Load

Only one bed load measurement was made at the study site. This measurement, which was made on August 6, 1985, yielded a bed load sample of 4.5 grams for a sampling period of five minutes. The sample consisted of inorganic fine gravel and coarse sand. The bed load flow area was estimated to be the central 50 feet of the stream channel, which had a total width of 69 feet. Bed load was calculated by multiplying the sampler intake width by the bed load flow area width and then extending the rate per unit time to a 24 hour period to determine total load per day. The bed load was estimated to be 0.3 tons per day. In comparison, the suspended load was 25 tons per day.

Figure 21. Distribution of suspended sediment concentration in parts per million, cross section 8, August 8, 1985

Therefore the bed load represents approximately 1.2 percent of the total sediment load (bed and suspended) on August 6, 1985, at this location.

Bed Material Characteristics

The Sangamon River's bed is composed primarily of sand and some gravel. Sand and gravel bars are common in the river. Riffles in the river are composed of gravels up to 3 inches in diameter and coarse sand. Pools in the river occur between the riffles and are underlaid by sand and silt.

Table 3 summarizes the laboratory and statistical analyses of bed material samples obtained at the study site in 1984 and 1985 . In 1984 two composite samples obtained by mixing four discrete samples taken at equal distances across the stream were collected at cross sections 2 and 4 . In 1985 three separate samples were collected at cross section 8 , one at mid-channel and one each at the one-fourth point of the stream width from the stream bank. In table 3 the individual sample results of the 1985 samples are averaged in order to provide a composite average for comparison with the 1984 samples. Sand predominates in the composite samples, and gravel makes up the bulk of the remaining sample with less than 5 percent silt and clay. All the composite samples are descriptively classified as "gravelly sand with silt."

The bed material varies in composition with respect to particle size distribution across the width and length of the river. The individual samples obtained on August 14, 1985, show a trend of increasing average particle size from the west to the east as shown in table 3. The longitudinal variation of particle sizes can also be seen in table 3 by comparing the composite samples obtained at the two cross sections in 1984 . The gravel concentration was higher at cross section 2 than at cross section 4 , and the sand concentrations were lower at cross section 2 than at cross section 4 (Fig. 16). The data provided here are intended to provide a general description of the channel bed material characteristics at the study site for use in comparing and contrasting different study sites. This was not a detailed channel morphologic investigation.

Stage

The stage (height) of the river was measured during the 1985 data collection period to assess changes over time in the stage and water
Table 3. Characteristics of streambed material samples at the study site

$$
\begin{aligned}
& \begin{array}{l}
\text { Description } \\
\text { gravelly sand } \\
\text { gravelly sand } \\
\text { silty sand } \\
\text { gravelly sand } \\
\text { sandy gravel } \\
\text { gravelly sand }
\end{array} \\
& \begin{array}{c}
\text { Silt } \\
\text { and clay } \\
\hline 4.73 \\
1.86 \\
3.61 \\
4.68 \\
4.32 \\
4.20
\end{array} \\
& \begin{array}{rr}
\text { \%Gravel } & \text { \%Sand } \\
\hline 36.83 & 58.44 \\
16.95 & 81.19 \\
2.99 & 93.40 \\
26.15 & 69.17 \\
58.30 & 37.38 \\
29.15 & 66.65
\end{array} \\
& \begin{array}{c}
\begin{array}{r}
\text { Standard } \\
\text { deviation }
\end{array} \\
.25 \\
.41 \\
.53 \\
.33 \\
.21 \\
.29
\end{array} \\
& \begin{array}{c}
\text { Median } \\
1.02 \\
.73 \\
.51 \\
.68 \\
2.85 \\
.31
\end{array} \\
& \begin{array}{r}
\text { Mean } \\
\hline 1.41 \\
.86 \\
.50 \\
.86 \\
2.06 \\
1.17
\end{array} \\
& \begin{array}{l}
\text { Location } \\
\text { x-s \#2* } \\
\text { x-s \#4* } \\
\text { west } 1 / 4 \\
\text { midpoint } \\
\text { east } 1 / 4 \\
\text { composit }
\end{array} \\
& \begin{array}{l}
\text { Date** } \\
7 / 10 / 84 \\
7 / 12 / 84 \\
8 / 14 / 85 \\
8 / 14 / 85 \\
8 / 14 / 85 \\
8 / 14 / 85
\end{array}
\end{aligned}
$$

* $\mathrm{x}-\mathrm{s}=$ cross section

$$
\dot{x} \times \text { A11 } 1985 \text { samples obtained from a cross section } 100^{\prime} \text { downstream of the bridge site. }
$$

A11 1984 samples were composited prior to laboratory analysis from 4 discrete samples obtained at equal distances across the stream width.
discharge. Figure 22 summarizes the stage measurements over the period August 5-14, 1985. The highest stage was recorded on August 5 and 8. The lowest stage occured on August 14. The general trend was a gradual decrease in the stage from August 5 to 7 and from August 8 to 14 , with some rise in between from the 7 th to the 8 th. The change in the stage is similar to that exhibited by the discharge in table 2.

MODEL RESULTS

The mathematical model discussed earlier was used to generate secondary velocities corresponding to seven different measurements in the Sangamon River. In this section the results of the model are discussed and compared to the measured values. The comparisons between the computed and measured values are shown in two sets of figures for each cross section. In the first figure, computed and measured secondary velocity vectors generated from the lateral and vertical components are compared. In the second figure, the primary velocity isovels approximated by the model are compared to the actual isovels developed using the measured values. A table is also presented that summarizes the magnitudes of the computed and measured velocities for all the cases considered. Finally, a section on shear stress distribution is presented.

Comparison of Computed and Measured Velocities

The comparisons for cross section 6 as measured on June 28, 1984, are shown in Figs. 23 and 24. Fig. 23a shows the secondary velocity vectors generated by the model, while Fig. $23 b$ shows the vectors from the measured velocities. It should be mentioned here that the vectors for the measured velocities were obtained by interpolating the vertical components around the points where transverse velocities were measured. This was necessary because it was not possible to measure the vertical and transverse components at the same point simultaneously.

As shown in Fig. 23 the general pattern of secondary circulation generated by the model is similar to the measured one; however, the downward circulation indicated near both the right and left banks by the model (Fig. 23a) are not present in the measured velocities (Fig. 23b). Velocity measurements were not taken very close to the stream banks and the channel

Figure 22. Variation of stream stages during field data collection

Figure 23. Comparison between computed and measured secondary velocities, cross section 6, June 28, 1984

Figure 24. Comparison between isovels derived from computed and measured data, cross section 6, June 28, 1984
bottom because of the physical limitations of the equipment setup. The lack of these measurements makes it difficult to make conclusive remarks on the comparison of the model results with the measured values for areas close to the bank.

The measured secondary velocities are generally smaller than those generated by the model. This is true for all seven cross sections used for the model. The values of the primary, transverse, and vertical components of the velocity for all the cross sections are summarized in table 4. The percentages of the computed with respect to the measured transverse and vertical velocities are given in columns 9 and 11 in table 4 . The percentages in both columns are all higher than 100 percent and in some cases extremely high. Because of the small magnitudes of the velocities, a very small error in velocity measurements or slight overestimation by the model results in very high percentages. However, further refinement of the model is needed and possible. Unfortunately this could not be accomplished within this project.

Table 4 also provides the relative magnitudes of the measured transverse and vertical velocity components with respect to the primary velocity component in columns 5 and 7 , respectively. The transverse components range from 8 to 43.7 percent of the primary velocity, while the vertical components range from 4.1 to 40.4 percent. These values are in most cases higher than those reported in the literature, but might be because of the low flow conditions in the Sangamon River during data collection. Additional data during higher flows are required to more definitely define the relative magnitude of secondary velocity components as compared to the primary velocity.

Fig. 24 shows the primary velocity isovels generated by the model (Fig. 24a) and those developed from the measured velocities for cross section 6 discussed above. There is a clear similarity between these two plots; however, as can be seen in the figure, the isovels for the model are smooth curves, while the isovels from the measured velocities are irregular and show deformations at different places. This discrepancy was anticipated from the beginning since the model formulations assume smooth isovels which can be approximated by mathematical functions. The assumption of smooth isovels is the most limiting factor in secondary circulation models based on coordinate transformation.

The comparisons of the model results with the measured values for the remaining six measurements are shown in Figs. 25 to 36 . In general, the preceding discussion for cross section 6° (June 28 , 1984) is applicable for all the comparisons. Some of the comparisons indicate a better correlation between measured and computed velocities and some are worse than the ones shown for cross section 6, as summarized in Table 4. A complete listing of the velocities generated by the model is included in Appendix C. Additional work both in data collection and in refinement of the model is definitely needed before the model adapted for this project can be applied to flow conditions in natural streams.

Shear Stress Distribution

As discussed in the section on approximation of shear stresses, the shear stresses were assumed to vary quadratically in the ξ direction according to Eq. 35. The coefficients for Eq. 35 are derived from boundary conditions, which depend on the flow conditions and the channel boundary. The shear stress distributions generated by the model for two sets of measurements at cross section 6 are shown in Figs. 37 and $38 . \tau / \tau_{0}$ is the ratio of the shear stress at any point (τ) to that at the channel bottom (τ_{0}). The figures clearly show higher shear stresses around the junctions of the stream bank with the stream bed, which might indicate areas of higher erosion rates as compared to the whole channel cross section.

Figure 25. Comparison between computed and measured secondary velocities, cross section 5, June 29, 1984

Figure 26. Comparison of isovels derived from computed and measured data, cross section 5, June 29, 1984

Figure 27. Comparison between computed and measured secondary velocities, cross section 3, July 9, 1984

Figure 28. Comparison of isovels derived from computed and measured data, cross section 3, July 9, 1984

Figure 29. Comparison between computed and measured secondary velocities, cross section 4 July 10,1984

Figure 30. Comparison of isovels derived from computed and measured data, cross section 4, July 10 , 1984

Figure 31. Comparison between computed and measured secondary velocities, cross section 5, August 5, 1985

Figure 32. Comparison between isovels derived from computed and measured data, cross section 5, August 5, 1985

Figure 33. Comparison between computed and measured secondary velocities, cross section 6, August 6, 1985

Figure 34. Comparison of isove1s derived from computed and measured data, cross section 6, August 6, 1985

Figure 35. Comparison between computed and measured secondary velocities, cross section 8, August 8, 1985

Figure 36. Comparison of isovels derived from computed and measured data, cross section 8, August 8, 1985

Figure 37. Shear stress distribution, cross section 6, June 28, 1985

Figure 38. Shear stress distribution, cross section 6, August 6, 1985

SUMMARY AND CONCLUSIONS

Secondary circulation is an important hydraulic phenomenon in natural streams. However, studies in the field have been limited, and in particular actual measurements of secondary circulation have been very few. This is because of the difficulty in measuring very small velocities under natural conditions. The development of mathematical models has also been limited, primarily because of the lack of reliable field data for calibration and verification.

This project is one of the few research projects in the United States that has attempted to measure secondary circulation in natural streams. As a result of this project, a reliable field data collection technique has been developed. The data collection system is computerized to reduce the time required in field data recording and reduction. The system has been used successfully several times to measure secondary circulation data in the Sangamon River near Mahomet, Illinois. All the data collected for the project are included in Appendix B. The data are also analyzed and presented graphically to simplify comparison of data with model results.

At the beginning of this project it was anticipated that an existing model would be available for calibration and verification. However, attempts to obtain existing models were not successful because of the early stages of model development by other researchers. Instead of delaying or dropping the task of calibration and verification of existing models, it was decided to develop a model based on information available in the literature. At that time, the model being developed by Chiu and his associates at the University of Pittsburgh was the best documented model available.

A mathematical model based on Chiu's methods has been developed and was used to compare measured secondary velocities with computed velocities. A complete listing of the computer program for the model is included in Appendix A. The mathematical derivations and the equations used in the model are thoroughly discussed in the report. The model has been used to simulate field conditions for all the cases where field data were collected, and the results are included in the report.

Comparisons of field data and model results show mixed results. In some cases the results are satisfactory while in others they are not. In general, the model is capable of generating similar secondary circulation patterns to those indicated by the field data. However, the magnitudes of the secondary
currents generated by the model are greater than those measured in the field. Comparison of model results with measured values was further hampered by the lack of data points very close to the banks, where the model indicates the existence of consistently downward velocity components. Because of the limitations of the physical setup for collecting field data, secondary circulation data very close to the stream banks could not be collected.

The overall results of the research can be summarized by the following statements:

1) A reliable state-of-the-art secondary circulation data collection system has been developed and used successfully in the field. This will significantly increase the productivity of future research in the area.
2) A mathematical model for secondary circulation has been developed and compared with field measurements. The results of the comparison are not totally satisfactory, and further research is needed to improve the application of the model to flow conditions in natural streams.

REFERENCES

1. American Society for Testing and Materials, 1982 Annual Book of ASTM Standards, Part 31, Water. 1982.
2. Ananian, A.K., "An Approximate Theory of Secondary Flows at the Bend of the River Course," Proceedings, 12th Congress of the IAHR, Volume 1 , River Hydraulics, September, 1967, pp. 422-428.
3. Baines, W.D., and Knapp, D.J., "Wind Driven Water Currents," Journal of the Hydraulics Division, ASCE, Volume 91, No. HY2, March, 1965, pp. 205-221.
s
4. Bathurst, J.C., Thorne, C.R., and Hey, R.D., "Direct Measurements of Secondary Currents in River Bends," Nature, Volume 269, No. 5628, October, 1977, pp. 504-506.
5. Bathurst, J.C., Thorne, C.R., and Hey, R.D., "Secondary F1ow and Shear Stress at River Bends," Journal of the Hydraulic Division, ASCE, Volume 105, No. HY10, October, 1979, pp. 1277-1295.
6. Bhowmik, N., "Hydraulics of Flow in the Kaskaskia River, Illinois," I11inois State Water Survey, Report of Investigation 91, 1979, 116p.
7. Bhowmik, Nani G., "Shear Stress Distribution and Secondary Circulation in Straight Open Channels," In Gravel-Bed Rivers, Edited by R.D. Hey, J.C. Bathurst, and C.R. Thorne, John Wiley and Sons, 1982, pp. 31-61.
8. Brundrett, E., and Baines, W.D., "The Production and Diffusion of Vorticity in Duct Flow," Journal of Fluid Mechanics, Volume 19, part 3, 1964, pp. 375-395.
9. Buchanan, T.J., and W.P. Sommers. "Discharge Measurements at Gaging Stations." Book 3, Chapter A8 in Techniques of Water Resource Investigations of the United States Geological Survey, 1969.
10. Chiu, C.L. and McSparran, J.E., "Effect of Secondary Flow on Sediment Transport," Journal of the Hydraulics Division, ASCE, Volume 92, No. HY5, September, 1966, pp. 57-70.
11. Chiu, C.L., "The Role of Secondary Currents in Hydraulics," Proceedings, 12th Congress of the IAHR, Fort Collins, Colorado, 1967, pp. 415-421.
12. Chiu, C.L., Lin, H.C., and Mizumura, K., "Simulation of Hydraulic Processes in Open Channels," Journal of the Hydraulics Division, ASCE, Volume 102, No. HY2, February, 1976, pp. 185-206.
13. Chiu, C.L., Hsiung, D.E., Lin, H.C., "Three Dimensional Open Channe1 Flow," Journal of the Hydraulics Division, ASCE, Volume 104, No. HY8, August, 1978, pp. 1119-1136.
14. Chiu, C.L., and Hsiung, D.E., "Secondary Flow, Shear Stress and Sediment Transport," Journal of the Hydraulics Division, ASCE, Volume 107, No. HY7, July, 1981, pp. 879-898.
15. Chiu, C.L., and Lin, G.F., "Mathematical Modeling of Three-Dimensional Flow and Shear Distribution," 1983, IAHR.
16. Chiu, C.L., and Lin. G.F.,"Computation of Three-Dimensional Flow and Shear in Open Channels," Journal of the Hydraulics Division, ASCE, Volume 109, No. HY11, November, 1983, pp. 1424-1440.
17. Chiu, C.L., Nordin, C.F., and Hu, W.D., "A Method for Mathematical Modeling and Computation of Hydraulic Processes in River Bend," Paper Presented at the ASCE Conference, River '83, New Orleans, October 2426, 1983.
18. Ciray, C., "On Secondary Currents," Proceedings 12 th Congress of the IAHR, Fort Collins, Colorado, 1967, pp. 408-414.
19. Cunningham, A., "Recent Hydraulic Experiments," Minutes of Proceedings, Institution of Civil Engineers, London, England, Volume 71, 1882.
20. Demissie, M., Bhowmik, N., Maxwe11, W., Soong, T.W., and Fitzpatrick, W., "Secondary Circulation in Natural Rivers," Progress Report. Illinois State Water Survey, Champaign, IL, October, 1984, 25p.
21. Demissie, M., Bhowmik, N.G., Maxwell, W.H.C., and T.W. Soong, "Secondary Circulation Data Acquisition System," Proceedings of the Specialty Conference on Hydraulics and Hydrology in the Small Computer Age, Hydraulics Division, ASCE, Volume 2, 1985, pp. 1178-1183.
22. Dietrich, W.E., and Smith, J.D., "Influence of the Point Bar on Flow in Curved Channels," Water Resources Research, Paper 3W1080, Volume 19, No. 4, October, 1983, pp. 1173-1192.
23. Einstein, H.A., and Li, H., "Secondary Currents in Straight Channels," Transactions, American Geophysical Union, Volume 39, No. 6, December, 1958, pp. 1085-1088.
24. Fischer, H.B., "The Mechanics of Dispersion in Natural Streams," Journal of the Hydraulics Division, ASCE, Volume 93, No. HY6, November, 1967, pp. 187-216.
25. Francis, J.B., "On the Cause of the Maximum Velocity of Water Flowing in Open Channels Being Below the Surface," Transactions, ASCE Volume 7, May, 1878.
26. Garde, R.J., and Raju, K.G.R., Mechanics of Sediment Transportation and Alluvial Stream Problems, Wiley Eastern Limited, New Delphi, 1977.
27. Gerard, R., "Secondary Flow in Noncircular Conduits," Journal of the Hydraulics Division, ASCE, Volume 104, No. HY5, May, 1978, pp. 755773.
28. Gessner, F.B., and Jones, J.B., "On Some Aspects of Fully-Developed Turbulent Flow in Rectangular Channels," Journal of Fluid Mechanics, Volume 23, part 4, 1965, pp. 689-713.
29. Ghosh, S.N., and Roy, N., "Boundary Shear Distribution in Open Channel Flow," Journal of the Hydraulics Division, ASCE, Volume 96, No. HY4, April, 1970, pp. 967-994.
30. Gibson, A.H., "On the Depression of the Filament of Maximum Velocity in a Stream Flowing Through an Open Channel," Proceedings of Royal Society, London, England, Series A, Volume 82, 1909, pp. 149-159.
31. Guy, H.P., and Norman, V.W., "Field Methods for Measurement of F1uvial Sediments," Book 3, Chapter C2, Techniques of Water Resources Investigations of the United States Geological Survey, United States Government Printing Office, Washington, 1976.
32. Helstrom, B., Discussion of "Macroturbulence in Natural Stream Flow," Transactions, American Geophysical Union, Volume 29, No. 2, 1948, pp. 272-273.
33. Hoagland, L.C., "Fully-Developed Turbulent Flow in Straight Rectangular Ducts-Secondary Flow, Its Cause and Effect on the Primary Flow," Doctoral Thesis, Massachusetts Institute of Technology, 1960.
34. Ibragimov, M.H., Petrishchev, V.S., and Sabaley, G.I., "Calculation of Heat Transfer in Turbulent Flow with Allowance for Secondary Flow," International Journal of Heat and Mass Transfer, Volume 14, 1971, pp. 1033-1037.
35. Ikeda, S., "Self-Formed Straight Channels in Sandy Beds," Journal of the Hydraulics Division, ASCE, Volume 107, No. HY4, April, 1981.
36. Kanwisher, J., and Lawson, F., "Electromagnetic Flow Sensors," Limnology and Oceanography, Volume 20, 1975, pp. 174-182.
37. Kennedy, R.J., and Fulton, J.F., "The effect of Secondary Currents upon the Capacity of a Straight Open Channel," ASCE, Hydraulics Conference Paper No. 61-EIC-1, Transactions of the E.I.C., Volume 5, No. 1, 1961, pp. 12-18.
38. Kikkawa, H., Ikeda, S., and Kitagawa, A., "Flow and Bed Topography in Curved Open Channels," Journal of the Hydraulics Division, ASCE, Volume 103, No. HY10, October, 1977, pp. 1173-1189.
39. Lau, Y.L., and Kirshnappan, B.G., "Transverse Dispersion in Rectangular Channels," Journal of the Hydraulics Division, ASCE, Vol. 103, No. HY 10, October 1977, pp. 1173-1189.
40. Launder, B.E., and Ying, W.M., "Secondary Flows in Ducts of Square CrossSection," Journal of Fluid Mechanics, Volume 54, part 2, 1972, pp. 289-295.
41. Leopold, L.B., and Wolman, M.G., "River Channel Patterns: Braided, Meandering, and Straight," Professional paper 282-B, U.S. Geological Survey, 1957.
42. Liggett, J.A., Miao, L.S., and Chiu, C.L., "Secondary Current in a Corner," Journal of the Hydraulics Division, ASCE, Volume 91, No. HY6, Nov. 1965, pp. 99-117.
43. Muller, A., "Effect of Secondary Flow on Turbulence in an Open Channel Flow," Hydraulic Problems Solved by Stochastic Methods, edited by Hjorth et al., Water Resources Publications, Fort Collins, Colorado, 1977.
44. Naot, D., "Response of Channel Flow to Roughness Heterogeneity," Journal of the Hydraulics Division, ASCE, Volume 110, No. 11, November 1984, pp. 1568-1587.
45. Nouh, M.A., and Townsend, R.D., "Shear-Stress Distribution in Stable Channel Bends," Journal of the Hydraulics Division, ASCE, Volume 105 , No. HY10, October 1979, pp. 1233-1245.
46. Odgaard, A.J., "Shear-Induced Secondary Currents in Channel Flows," Journal of Hydraulic Engineering, ASCE, Volume 110, No. 7, July, 1984, pp. 996-1004.
47. Onishi, Y., Jain, S.C., and Kennedy, J.F., "Effects of Meandering in Alluvial Streams," Journal of the Hydraulics Division, ASCE, Volume 106, No. HY7, July, 1976, pp. 899-917.
48. Parratt, L.G., Probability and Experimental Errors in Science, John Wiley and Sons, Inc., New York, 1961.
49. Perkins, H.J., "The Formation of Streamwise Vorticity in Turbulent Flow," Journal of Fluid Mechanics, Volume 44, part 4, 1970, pp. 721-740.
50. Prasad, S.N., "Probability Distribution of Cross Transfer of Momentum Through Turbulent Eddies and Secondary Currents in Channel Flow," Hydraulic Problems Solved by Stochastic Methods, edited by Hjorth et al., Water Resources Publications, Fort Collins, Colorado, 1977.
51. Rice, J.R., "Numerical Methods, Software, and Analysis: IMSL Reference Edition," McGraw-Hill Book Company, New York, 1983, 661 p.
52. Shen, H.W., and Komura, S., "Meandering Tendencies in Straight Alluvial Channels," Journal of the Hydraulics Division, ASCE, Volume 94, No. HY4, July, 1968, pp. 997-1016.
53. Sium, O., "Transverse Flow Distribution in Natural Streams as Influenced by Cross-Sectional Shape," Master's Thesis, University of Iowa at Iowa City, Iowa, 1975.
54. Soliman, M.M., and Tinney, E.R., "Flow Around 180 Bends in Open Rectangular Channels," Journal of the Hydraulics Division, ASCE, Volume 94, No. HY4, July, 1968, pp. 893-908.
55. Stearns, F.P., "On the Current Meter, Together with a Reason Why the Maximum Velocity of Water Flowing in Open Channels Is Below the Surface," Transactions, ASCE, Volume 12, No. 261, August, 1883, pp. 331-338.
56. Thorne, C.R., Rais, S., Zevenbergen, L.W., Bradley, J.B., and Julien, P.Y., "Measurements of Bend Flow Hydraulics on the Fall River at Low Stage," WRFSL Project Report No. 83-9P, Department of Civil Engineering, Colorado State University, November 1983, 49p.
57. Tracy, H.J., "Turbulent Flow in Three-Dimensional Channel," Journal of the Hydraulics Division, ASCE, Volume 91, No. HY6, November 1965, pp. 935.
58. Ward, P.R.B., "Transverse Dispersion in Oscillatory Channel Flow," Journal of the Hydraulics Division, ASCE, Volume 100, No. HY6, June, 1974, pp. 755-772.
59. Wood, De Volson, "On the Flow of Water in Rivers," Transactions, ASCE, Volume 8, July, 1879.

(SECONDARY CIRCULATION IN NATURAL STREAMS)

by
Misganaw Demissie, Ta-Wei Soong,
Nani G. Bhowmik, and William P. Fitzpatrick
Surface Water Section
Illinois State Water Survey
Champaign, Illinois 61820
and
W. Hall C. Maxwell

Department of Civil Engineering
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

The research on which this report is based was financed in part by the U.S. Department of the Interior, as authorized by the Water Research and Development Act of 1984. (P.L. 98-242).

Project Completion Report
Project No. G 904-02
Grant Number Int 14-08-0001-G904

July 1986

University of Illinois
Water Resources Center
Urbana, Illinois 61801

Contents of this publication do not necessarily reflect the views and policies of the U.S. Department of the Interior, nor does mention of trade names or commercial products constitute their endorsement by the U.S. Government.
Page
Appendix A - List of Computer Program 1
Appendix B - Measured Velocitiess 23
Appendix C - Computed Velocities 85

```
* DEFIN!TION OF VARIABLES
```

ALPHA 1 (N, KPART) ALPHA2
BETA(KPART)
B((KPART)
CETA(K)
OELY
DUDX
DUDT
DEPTH
DHETA(N,K, KPART)
EPSILON
DELTA(KPART)
DENSITY
DENSITY
DETA
DETA
DETADZ (N, K, KPART)
DSIDZ(N,K, KPART) ETAMIN ETAMAX IN THE FNC CATAGORY
FNC1
FNC2
FNC3
FNC3OY
FNC30Y
FNC4
FNC4
FNC
FNCAOY
FNC
FNC4D
FNC5
FNCG
FNCG
FNC7
FNC7
FNCB
FNCS
FNCIO

HR
META(N, K, KPART)
HS I (N,K,KPART)
ISTOP
JBEO (2.40)
JBEOT2
NAME
NDIVIDE(2)

KTOTAL
NECHO
OPTION

PPLOT1
PPLOT2
PPLOTS
PPLOTA
. PPLOTS
PETA(2)
PHI (N, K KPART)
PRESURE
.SE
SHEAR (N,K, KPART)
SHEARD
SHVELO
VSI (N,K, KPART)
SIDIFF(N,K, KPART)
. SINUT
SIMIN
simax

- SI ZERO

VETA (N, K, KPART)
VY(N,K,KPART)
VMY (N,K, KPART)
. $V Z(N, K, K P A R T)$
VMZ (, K, KPART)
WP
XI(N,K,KPART)
XIMAX(N KPART)

- ETA(N, K, KPART)

Y(N,K,KPART)
YC
YMAX
YMEAN
YMIN
UNI VK
Z(N,K,KPART)

ETAMAX LOWER BOUND OF ETA AT TIME OF COMPUTATION ANY FUNCTIONS WHICH ARE USED FREQUENTLY ARE DEFINEO

COEFFICIENTS I IN SHEAR STRESS APPROXIMATION
COEFFICIENT 2 IN SHEAR STRESS APPROXIMATION
GEOMETRY CORRECTION FACTORS
WIOTH OF THE RIVER SURFACE ON EACH COMPUTINO SIDE
GEOMETRIC CORRECTION FACTORS
DEPTH ADJUSTING CEEFFICIENT
INCREAMRNT OF VELOCITY U IN X DIRECTION
U I NCREAMENT OF TIME
DEPTH AT THE Y-AXIS
FNCB K - SI INCREAMENTS, N - ETA INCREAMEMT
LOCATION OF THE POINT OF MAXIMUM VELOCITY
WIDTH ADJUSTING FACTORS
DIOTH ADJUSTING FACTORS
OENSITY OF FLUIO
I NCREAMENTS OF SI VALUE
I NCREAHENTS OF ETA VALUE
DERIVATIVE OF ETA W.R.T. Z
DERIVATIVE OF XI W.R.T.Z
UPPER BOUND OF ETA AT TIME OF COMPUTATION
FNC1 $=$ DEPTH + DELTAY + EPSILON
FNC2 $=$ B! (K) +DELTA(K)
FNC3 = COMPUTE THE SI VALUE
FNC3DY : DERIVATIVE OF FNCS W.R.T. YC
FNCIDZ = DERIVATIVE OF FNCS W.R.T, ZC
FNC4 = COMPUTE THE ETA VALUE
FNCADY = DERIVATIVE OF FNCA W.R.T YC
FNCAOY = OERIVATIVE OF FNC4 W.R.T YC
FNCADZ $=$ DERIVATIVE OF FNC4 W.R.T. ZC
FNCADZ $=$ DERIVATIVE OF FNCA W.R.T. ZC
FNCS $=$ SIMAX(ETA) - S!
FNCG : COMPUTE THE HSI VALUE
FNC7 - COMPUTE THE HETA VALUE
FNCB $=(1, /$ HETA): (D(HETA)/D(SI))
FNC9 = COMPUTE FO VALUE
FNCIO $=$ THE VALUE OF SI AT GIVEN ETA CURVE WHICH INTERSECTS WITH WATER SURFACE
GRAVITATI ONAL ACCELERATION
HYDRAULIC RADIUS
TRANSFORMATION FACTOR IN ETA DIRECTION
TRANSFORMATION FACTOR IN SI DIRECTION
TESTER. ISTOP .LE. I ACCEPTABLE, REJECT OTHERWISE
THE BEGINING NUMBER FOR ETA CURVE ON EACH $X I$ LINE THE BEGINING NUMBER FOR ETA CURVE ON EACH XI LINE KPART 1 OR 2
NAME OF THE CROSS SECTION
INTERVALS FOR VELOCITIES PLOTTER
$1=1, \quad$ SI INTERVALS
$1: 2$ ETA INTERVALS
KTOTAL $=$ TOTAL ETA CURVES USEO ON EACH SIDE
NECHO $=0$, PRINT OUT MRF ERROR MESSAGES
NECHO : 1 , NO PRINT OUT FER MRF ERRERS
OPTION I. NUMERICAL ACCURACY TEST GNLY
OPTION : 2, PLOT I SOVELS AND GRADIENT LINES
OPTION : 2, PLOT ISOVELS AND GRADIENT LINES
OPTION : 3, COMPUTE TOCOEFFICIENTS CHECK INTERV.
OPTION : 3, COMPUTE TOCOEFFICIENTS CHECK INTERV
OPTION : 4, CARRY OUT WHOLE COMPUTATIONS
PPLOT : 1. PLOT ISOVELS AND TRAJECTORS
PPLET 2, PLOT NG GRAPHS
PPLOT : 1, PLOT SHEAR STRESSES DISTRIBUTION
PPLOT $=2$, PLOT NO GRAPHS
PPLET $: 1$, PLOT Y CEMPONENTS OF VELOCITIES
PPLOT $: 2$, PLOT NO GRAPHS
PPLOT : 1, PLOT 2 COMPONENTS OF VELOCITIES
PPLOT : 2, PLOT NG GRAPHS
PPLOT : 1, PLOT SECONDARY VELOCITIES
PPLOT : 2, PLOT NO GRAPHS
CURVELINEAR COORDINATE EDGES ON EACH SIDE
STREAM FUNCTION
HYDROSTATIC PRESSURE
THE ENERGE SLOPE
THE ENERGE SLOP
OHERIVATIVE OF
DERIVATIVE OF SHEAR STRESS, W.R.T. SI CORDINATE
SHEAR VELOCITY OF THE CROSSSECTION SORT(G®RIBE)
VELOCITY COMPONENT IN SI DIRECTION
FNCS
SI VALUE THAT APPROXIMATE THE CHANNEL GEOMETRY
LOWER BOUND OF SI AT TIME OF COMPUTATION
UPPER BOUND OF SI AT TIME OF COMPUTATION
XI ZERO FOR VELOCITY DISTRIBUTION
VELOCITY COMPONENT IN ETA DIRECTION
COMPUTED VELOCITY COMPONENT IN Y DIRECTION
MEASURED VELOCITY COMPONET IN Y DIRECTION
COMPUTED VELOCITY COMPONENT IN Z DIRECTION
MEASURED VELOCITY COMPONENT IN 2 DIRECTION
WEATED PERIMETER
WETTED PERIMETER
XI(N,K,KPART) $~ S I ~ C O O R O I N A T E S ~$
XI(N,K, KPART) $=$ \$I COOROINATES
MAX SI VALUE ALONG A ETA CURVE
ETA COORDINATES
Y COORDINATES AT COMPUTED POINT
MODIFIED Y COERDINATE
FULL DEPTH CONVERTED INTO Y
DISTANCE FRGH ORIGIN TO PT. EF MAX. VEL. CONVERTED INTO Y
SMALLEST COMPUTATION VALUE
UNIVERSAL CONSTANT K
z COORDINATES AT COMPUTED POINT

```
ZCMAX : MODIFIED Z COORDINATE
    ZMAX
MAX. ZC POSSIBLE IN THE COMPUTATION
MIN. ZC POSSIBLE IN THE COMPUTATION
MAIN PROGRAM
    INTEGER NA, OPTION, PPLOT1, PPLOT2, PPLOT3, PPLOTA, PPLOTS
    DIMENSION ALPHA1(50,2),VSI(50,40,2), VETA(50,40,2)
    DIMENSION VY(50,40,2),VZ(50,40,2), ETAMAX(2), FNINE(40)
    DIMENSION OSIOZ(50,40,2),ETAMIN(2),DSI(3)
    DIMENSION DETADZ(SO,40,2),PHI(SO,40,2)
    OIMENSION XI(50,40,2), DRETA(50,40,2),SHEAR(50,40, 2), DUDX(40)
    DIMENSION,XIMAX(50, 2), PETA(2)
    DIMENSION Y(50,40,2),Z(50,40,2), DELTA(2),NOIVIDE(2)
    DIMENSION JBEG(2,40),NB(2),BI(2), ZBOUND(2O),YBOUND(20)
    COMMON /RI/ FNC1
    COMMON /R2/ WP
    COMMON /R3/ SIDIFF(50.40.2)
    CGMMON /R3/ SIOIFFISO
    COMMON /RA/ F2(SO,2)
    COMMON/RG/ ETA(50,40,2)
    COMMON /R1O/ HSI(50,40,2), HETA(SO,40, 2)
    COMMON /RT/ DEPTH, DELY, EPSILON
    COMMON /MRF/ YMAX, ZMAX, YONE,YMIN
    CHARACTER:28 NAME
C1=
INPUT PHASE
    .-. CHANNEL GEOMETRY OATA
    READ(1, 10)OEPTH, YMEAN, HR,WP, B1(1), BI(2), AVOVEL, SE
    -- GENERATED CODRDINATES DATA
        READ(1,11)EPSILON, DELY,SINUT, BETA(1), BETA(2)
    1 DELTA(1), DELTA(2), UNIVK,SIZERO
        --- MAXIMUM NUMBER OF DUOX, AND PLOTTIMO SELECTIONS
    READ(1, 13) NLINES, NOIVIDE(1), NDIVIDE(2)
    --- VELOCITY GRADIENT IN X DIRECTION
    READ(1, 12)(DUOX(1), 1=1, NLINES)
    --- READ IN RANGE OF SPECIFICATION
    READ(1,14)SCALE, SIMAX, ETAMIN(1), ETAMIN(2), ETAMAX(1), ETAMAX(2)
    DS: VALUES FOR g ZONES
    READ(1, 14)DSI(1), DSI(2), DSI(3), DSI(4), OSI(5)
    REAO(1,16)OPTION, PPLOT1, PPLOT2, PPLOT3, PPLOTA, PPLOTS
    --- CHANNEL BOUNDARIES
    READ(1, 13)MCBPTS
    READ(1, 15)(ZBOUND(1), 1=1,MCBPTS)
    READ(1,15)(YBOUND(I),i=1,MCBPTS)
    #.CCROSECTION NAME
    READI 1.303)NAME
C
    KPART = 2
    OENSITY = 1.94
    O = 32.174
    AVGSHEA = DENSITY&G=HR&SE
    FNC1 DEPTH + EPSILON + DELY
    FNC SHVELO E SORT(O&HRISE)
    SHVELO = SORT(OEHRESE)
    ISTOP = MONO = NE
    WRITE(4, 303)NAME
    WRITE(A, 224)DEPTH, (BI(I),I=1,2), YMEAN
    WRITE(4, 225)HR,SE,WP,OPTION
    WRITE(4, 231)
    WRITE(4, 232) (ZBOUND(1),I=1,MCBPTS)
    WRITE(4, 232) (YBOUNDII), I=1,MCBPTS)
    WRITE(4, 226)EPSILON, DELY, (BETA(1),I=1,2), (DELYA(1),{=1,2)
    WRITE(4,233) OSI(1), DSI(2), DSI(3), DSI(4), OSI(S)
    WRITE(4,2OS)AVOSHEA, AVOVEL
```



```
                    GENERATIMO OVERALL COEFFICIENTS FOR EACH HALF
    YMAX = ((YMEAN-EPS\LON) + OELY)/FNC)
    YONE = (YMEAN + DELY)/FNCI
    IF(EPSILON .GT. O.) YONE E YMAX
    YMIN = OELY/FNCI
    OO 20 K % I,KPART
    FNC2 = BI(K) + OELTA(K)
    ZMAX = BI(K)/FNCZ
    CETA(K) = BETA(K)&(FNCI/FNCZ):EZ
            OEFINE A LOWER BOUND FOR ETA VALUE
        TOL =.1E-07
    YA =0.999999
    YA = 0.999999
    IF(YA .GT, YMAX) YA = YMAX
    CALL MRFAIYA, ZA, TOL, BETA(K), SINUT, MONO, NECHO)
    ETALOW E FNCA(YA,ZA, CETA(K))
C
C
    PETA(K) E ETALOW
    +++++++++++++++++++++++++++t++++t++++++++++++++
    ---- DEFINITION BLOCK: CHANNEL BOUNDARIES ...-
    l=3
        FLO
            FLO=?
            MP =1
            MP1 ! 5
```

```
    130
        ZA =0.5/FNC2
        SII = FNC3(YMAX, ZA, BETA(K))
        ETAI = FNCA(YMAX, ZA,CETA(K))
        IF(FLG.EQ.1,) ETAMIN(K) E ETAI
            SI2= FNCS(YMIN,ZA, BETA(K))
            ETAZ = FNCA(YMIN,ZA,CETA(K))
        F(FLG.EQ.I.) ETAMAX(K) E ETA2
        IFIOPTION .NE. I) GOTO I22
            WRITE(4, 229)
            WR1TE(d,230)MP, SI1, ETA1,MP1,SI2,ETA2
            WF(MP.EQ.2) GOTO 20
            IF(MP.EO.2) GOTO 2O
            WRITE(4,220) 2) GOTO I21
            FLO = 10.
            MP =MP + 1
            MP1=4.
C
    121 WRITE(4, 199)K
        UR!TE(4, 200)FNC1, FNC2, ETALOW
        WRITE(4, 220)
c
    IFIOPTION .EO. 4) THEN
            IF(K,EQ, I) REWIND 3
            READ(3)NA,NE(I),N
            READ(3) JBEG(K,I)
            NC m JBEG(K,I)
            O0 110 J N NC, NB(K)
            READ(3) XI(J, I,K),ETA(J, I,K),Y(J,I,K),Z(J,I,K)
            YTURE Y(J,I,K)=FNCI-DELY
            ZTURE = Z(J,I,K) = FNC2
            WRITE(4,201) J,I,XI(J,I,K),ETA(J,I,K),Y(J,I,K),Z(J,I,K),
                * writerure, zture
            CONTINUE
            WRITE(4,215)
            WRITE(4,21
            CONTINUE
            GOTG
c -.- ASSIGN XI CURVE VALUES (NA = NUMAER OF ISOVELS)
    NATIME E I
    TEST = SINUT
C
            \infty 140 1 = 1,40
            IF(I .EQ. 10) NATIME =?
            IF(| .EQ. 18) NATIME S
            IF(I .EO. 28) NATIME = 4
                    c
            IF(I,NE. I' TEST = TEST * OSI(NATIME)
            IF(TEST,GT. SIMAX) GOTO 14B
            NA E I
            CONTINUE
c
    148 MATIME =1
            IF(EPSILON .LT. O.O) THEN
            XI(NA, I,K) = SINUT
            DO 150 i=2.NA
            IFII .EO. IO; NATIME =2
            IFII .EQ. 1B, NATIME = 3
            IF(I .EO. 26) NATIME = 4
            IF(I EO. 32) NATIME = S
            11=1=1
            12=NA=1%
            XI(I2,I,K) = XI(I3,II,K) + DSI(NATIME)
            CONTINUE
    150
        ELSE
            XI(1,1,K) = SINUT
            \infty 159 i = 2,NA
            IF(I EO. 10) NATIME = 2
            IF(I .EO. 18) NATIME = 3
            IF(1 .EQ. 26) MATIME =4
            IF(I EO. 32) NATIME = S
            11=1-1
            IF(EPSILON.EQ.O.O) XI(I,I,K) m XI(I,II,K) + OSI(NATIME)
                IF(EPSILON.GT.O.O) XI(I,I,K) = XI(II,II,K) & DSI(MATIME)
    150 ENO CONTINUE
C --* OETEPMIN ETAMIN GN EACH SI CURVE IF EPSILON IS LE O
            IEPSILON .GE. O.OI GOTO 152
    I=J=0
    185 1: m = 1
```



```
    Y(J,Il,K)=
    CALL MRF4(YMAX, 2A, TOL, BETA(K), XI (J, IT, K), MONO, NECHO)
    ETAMINI = FNCA(YMAX, ZA, CETA(KI)
    IF(It.EO. NA) THEN
            IF(ETAMINI,LT. ETAMIN(K)) STOP
            ETAIJ,II,KI E ETAMINI
            Y(J,Il,K) = YMAX
            Z(J,II,K)=2A
            Di58 M= J1,NA
            Y(M, |I,K)=Z(M,II,K)=0.O
            KI(M,il,K)=XI(J,il,K)
    158 K!
        ETA(J,II,K) = ETAMINI
        ETA(J,II,K) = ETAMINI
        Y(J,il,K) = YMAX
```

```
        2(J,IM,R!: 2A
        00 157M = J1,NA
        Y(J,M,K) = Z(J,M,K) = 0.0
        XI(M, 11,K) = XI(J,11,K)
        D0 158 M = 12.NA
        ETA(J,M,K) = ETA(J,\1,K)
        END !F
            IF(I.LT.NA) GOTO 155
c -..- DO A BOUNDARY LINE ....
    J* J**)
    Xl(J,',K) = SINUT
    ETA(J,l,K) = PETA(K)
    NATIME = 1
    DO 151.M = 2,NA
        IF(M EQ. 10) NATIME =2 
            ETA(\,M,K)= ETA(', 1,K)
            ETA(J,M,K)= ETA(J,l,K)
            M1 =M-1
            XI(J,M,K) = XI(J,MI,K) + OSI(NATIME)
c
C
    152
        ETA(1, 1,K) = PETA(K)
        Y(1,1,K)= Z(1,1,K)=0.0
            JBASEE=1
        | |
        IF(EPSILON .GT. O.O) THEN
        JBEG(K,1)=j
        j = 」:1
        ノ= 」 - 1
        11=1-
        IF(I OT. NA) GOTO 170
        jBEG(K,l) = J
            Y(J,l,K) = Z(J,!,K)=0.0
C -.. dETERINE ETA ON WATER SURFACE ..-
            CALL MRF&(YMAX, ZA, TOL, BETA(K), XI(J, I,K), MONO, NECHO)
            CALL M, K) FNC4(YMAX,ZA,CETA(K))
            ETA(J,1,K) : FNC4(YMAX, ZA,CETA(K))
            Y(J,I,K) = Ymax
            Z(J,l,K) = ZA
            DO iGsM=1,Ji
            "u,m,n! * 4J,m,n! = u.u
            x(J,M,M,K)= XI(Ji,M,K)
            ETA(J,M,K) = ETA(J,l,K)
            GOTO 169
            GOTO,16
            J= ノ
    DERIVE DISTRIBUTION GRID SYSTEM,
    SOLVE THE Y z COORDINATE FOR THE LAST POINT
    Y1 = YMAX
    21= ZMAX
    OUMY = 1.0
    CALL CORDTF(CETA(K), BETA(K), XI(J,I,K),ETA(J,I,K),
    - BI(K), DELTA(K),YI,ZI,YA,ZA, ISTOP,OU#Y)
        Y(J.i,K) = YA
c
74 Ji=J*'t
            IF(J),OT. SO) THEN
            NB(K): 」
            goto }17
            END IF
            IFIYA .GT, O.25I THEN
            YA = YA - 0.1
            CALL MRF&(YA, ZA,TOL, BETA(K),81NUT, MONO, NECHO)
            ETA(JI,I,K) = FNCA(YA,ZA,CETA(K))
            Y(JJ.J.K)= YA
            z(JI,,i,K) = ZA
            Z(J(Ji,i,K)= XI(J,I,K)
            ELSE
            ZA = ZA = 0.03
            F(zA LE.O.OI THEN
                NB(K) = J
            GOTO 172
            ENO if
            CALL MRFI(YA, ZA, TOL, BETA(K), SINUT, ETA(J,I,K), MONO, NECHO)
            ETA(J1,l,K) = FNCA(YA, 2A, CETA(K))
            IF(ETA(J1,I,K).GT. ETAMAX(K)) THEN
                    NB(K) #」 
                    OOTO }17
            ENO IF
            X((J),t,K)=X\(J,l,K)
            Y(J),l,K) # YA
            2(JI,1,K)=2A
        END IF
        DO 173 M = 2,NA
            Y(J1,M,K)=2(J,M,K)=0.0
        XI(JI,M,K)=X|(J,M,K)
```

```
17J ETA(J),M,K)=ETA(JI,1,K)
        J=J*i
        GOTO 174
        END IF
C -. DEFINE DETA VALUES IN THE LOWER PORTION
    DERIVE OISTRIBUTION ON ETA
    SET DYC = 0.1 MANUALLY FOR 10 INTERVALS (YA =.999999 (NITIALLY)
c
    61 \
    JF(JlJ.GT. 50) acTo 154
    IF(YA.GT. O.25) THEN
        YA = Ya - 0.1
            CALL MRFA(YA, ZA, TOL, BETA(K), SINUT, MONG, NECHO)
            ETA(JI,I,K): FNCA(YA,ZA,CETA(KI)
            XI(J!,l,K)=XI(J.l,K).
            Y(J!,i,K)=YA
            Z(JI,l,K)=ZA
            ELSE
            ZA = ZA - 0.03
            IF(ZA.LE. O.O) GOTO 154
            CALL MRFIIYA, ZA,TOL, BETA(K),SINUT, ETA(J, I,K), MONC, NECHO)
            ETA(J1, l,K) = FNCA(YA, ZA, CETA(K))
            IF(ETA(J1,I,K) ,GT. ETAMAX(K)) GGTO 154
            XI(JI,l,K): XI(J,i,K)
            Y(JI, I,K) = YA
            Y(JI,I,K) = YA
            Z(J!,I,K)= ZA
        END IF
        G0TO 153
    NATIMEAS
    DO 165 M
        D 165 M=2,NA
            IF(M,EQ, 1O) NATIME : 2
            IF(M .EO. 1B) NATIME =3
            IFIM .EQ. 26; NATIME = A
            IF(M.EQ. 32) NATIME = 5
            ETA(J,M,K) E ETA(J,T,K)
            M1=M = 1
            MI(J,M,K) XI(J,M!,K) + OSI(PATIME)
            Y(J,M,K)=Z(J,M,K) =0.0
            CONTINUE
        J=j*1
        lF(J.0T. Ne(K)) @ato ise
    OOTO 167
    DO 301 t = I,N4
    IMENALEI'E', O.O) IH=1
        JOEGMR,'': (m
    CONTINUE
    CENTINUE
    IFIOPTION.EO.2 .OR. GPTION.EO.3) WRITE(Z)NA, NS(1), NB(2)
C C .. DEFINE INITIAL OUESSES FOR SUSROUTINE COROTF
    YGPER : YMIN
    20PER : 0.0000
    DYY = 1.0
    OO 132, 1,NA
    IFIOPTION.EO.2.OR. OPTION.EO.3) WRITE(2) JEEO(X,1)
    NCHECK = JBEO(K,I)
    DO 133 J : NCHEGK, NS(K)
    J1:J - 1
    ISTOP :O
    IFIJ.OEFINE UPPER (LONER) LIMITS FOR Y ANO Z
    IF(J EO, NCHECK) THEN
    WRITE(4,21S)
            IF(Y(J,I,K),NE. O.O .AND. Z(J,1,K) .NE. O.O) THEN
            YC=Y(J,1,K)
            ZC=z(J,I,K)
            GOTO 136
            GOTO IF
            |F(ETA(J,i,K) .GE. O.) THEN
            21 = 2MAX
            ZC=21-0.1
            Y1=YONE 
            ELSE
            21-0.00001
            Z1=0.00001
            ZC = Z1 + 0.
            Y1=YMAX
        END IF
    ELSE
        IF(Y(J,!,K),NE. O.O .ANO. Z(J,l,K).NE. O.O) THEN
            YC=Y(J,K,K)
            zC=z(J,l,K)
            OOTO 136
            IF(ETA(J,I,K) .GE. O.) THEN
            IF(ETA(JI,J,K) .LT. O,) THEN
            z1 ZMAX
            Y1 YONE
            END IF
            YC=(Y1 + YOPER)/2.
            ELSE
\begin{tabular}{|c|c|}
\hline & \[
\begin{aligned}
& Y C=(Y)+Y O N E) / z \\
& Z C \\
& \text { END } 1 F
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\(C\)
\(C\)
\(C\)}} \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
c \\
CALL CORDTF(CETA(K), BETA(K), XI(J, I,K), ETA(J, I, \\
- BI(K), DELTA \((K), Y 1, Z 1, Y C, Z C, I S T O P\), OYY)
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\begin{aligned} & \text { c } \\ & \mathrm{c}\end{aligned} \quad \cdots-\mathrm{NOW}\) Y 1 OEFINES THE UPPER LIMITS FOR SEARCHE,}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{C
c}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{c --IF ISTOP = 0 SOLVEO THIS GIVEN PAIR (XI, ETA)} \\
\hline c & \(\ldots\) ISTOP \(=1\) THESE TWO COORDINATES OO NOT REPRESENT A POINT \\
\hline \multirow[t]{7}{*}{c} & \(\cdots\)-- ISTOP \(=2\) this pair does not exist in channel crosssection \\
\hline & \begin{tabular}{l}
If(ISTOP EQ. I) TMEN \\
WRITE(4,219) (STOP, XI(J,I,K), ETA(J,I,K)
\end{tabular} \\
\hline & goto 999 \\
\hline & END IF \\
\hline & IF(ISTOP , EQ, 2) THEN \\
\hline & WRITE(4, 227) ISTOP, XJ(J, J,K), ETA (J, I, K), Y , Z1, YC, ze \\
\hline &  \\
\hline & ENO IF \\
\hline 28 & Y(J, \(1, K\) ) \(=Y C\) \\
\hline & \(2(J, 1, k)=2 C\) \\
\hline \multirow[t]{5}{*}{138} & Ytrue m ycafnci-dely \\
\hline & ZTRUE = 2CaFNC2 \\
\hline &  \\
\hline & IFIOPTION.EO. 2 OR. OPTION.EO, 3) WRITE(2)XI(J, I, K), ETA J, \(1, K\) ), \\
\hline & - Y(J,I,K), 2(J,l,K) \\
\hline \multirow[t]{2}{*}{134} & \(y_{1}=y_{c}\) \\
\hline & \(21: 2 C\) \\
\hline & 1F(J) GE. NCHECK) DYY \(=\) Y(JI, I, K) - Y \\
\hline \multicolumn{2}{|l|}{\(e^{133}\) CONTINUE} \\
\hline \multirow[t]{12}{*}{} & \\
\hline & FOR ALL ETA . GE, O.O. OETERMINE THE MIN Y FOR \\
\hline & the next si curve by using current 2 as 2 UPPER \\
\hline & \\
\hline & JNOW 2 NB(K) \\
\hline &  \\
\hline &  \\
\hline & IF (Y (JNUW, IPLUS, K), NE.O. AND.Z(JNOW, IPLUS, K), NE.O.) ©eto 13 \\
\hline & \(22=2\) (JNOW, I,K) \\
\hline & DUMY = 0.0000i \\
\hline &  \\
\hline & \begin{tabular}{l}
ENO IF \\
BI (K), DELTA(K), Y1, Z2, YOPER, ZOPER, MONO, DUMY)
\end{tabular} \\
\hline \multirow[t]{3}{*}{\(e^{132}\)} & conilinue \\
\hline & \\
\hline & IFIOPTION EG. 2) GOTO 20 \\
\hline \multirow[t]{3}{*}{\[
137
\]} & \\
\hline & continue \\
\hline & .- COMPUTE OVERALL COEFFICIENTS \\
\hline c & \\
\hline \multirow[t]{10}{*}{18} & XITERM - ShVELO / UNIVK \\
\hline & OO 261 : 1, NA \\
\hline & WRITE(4,215) \\
\hline & NC : JBEG(K, I) \\
\hline & XIVELO \(\quad\) XITERM * ALOO(XI(NC, 1, K)/SIZERO) \\
\hline & FNINE(I) F FNCS(DENSITY, OUDT, DUOX (I), XIVELE, HR, AVOSHEA) \\
\hline & DC 21 J. NC, NB(K) \\
\hline &  \\
\hline & HETA \(\left.{ }^{\text {d, }}, i, K\right)=\) FNC7 \((K, F N C 2, X \mid(J, i, K)\), \\
\hline & 1 ETA(J, \(1, K), Y(J, l, K), Z(J, I, K), H S(1), I, K))\) \\
\hline & \\
\hline c & determine simax - si values \\
\hline & IF(EPSILON .LE. O.O) THEN \\
\hline & XImAx \(J, K\) ) 1.0 \\
\hline & SIDIFF(J, \(1, K)=\operatorname{FNCS}(X) \operatorname{Max}(J, K), X(1 J, t, K))\) \\
\hline & ELSE E E 1 , TMEN \\
\hline & \begin{tabular}{l}
IF(1 EO. 1) THEN \\
\(X(\operatorname{Max}(J, K)=\) FNCIO(ETA(J, \(1, K)\) CETA(K), BETA(K))
\end{tabular} \\
\hline & END IF \\
\hline & S(OIFF(J, \(1, K)=F \operatorname{los}(x|\max (J, K), X|(J, 1, K))\) \\
\hline & ENO :F \\
\hline & OHETA \((J, 1, K)=F N C B(K, X I(J, I, K), Y(J, I, K), Z(J, 1, K))\) \\
\hline &  \\
\hline &  \\
\hline 21 & CONTINUE \\
\hline 26 & continue \\
\hline c & \\
\hline & WRITE(4.207) (FNINE(10), 10: \({ }^{\text {a }}\) (MA) \\
\hline & WRITE(4, 203) (FNINE(IO), 10:1, MA) \\
\hline & WRITE(4,202) \\
\hline & OO \(221: 1, \mathrm{NA}\) \\
\hline & WRITE(4,215) \\
\hline & NC a JBEO(K, \()^{\text {a }}\) \\
\hline & DO \(23 \mathrm{~J}=\mathrm{NC}\), NE (K) \\
\hline & URITE(4, 201) \(J, 1, H S 1(J, 1, K), \operatorname{META}(J, 1, K), s 1 D)\) \\
\hline & - DCETA \(J, 1, K)\), SSIOZ \((J, l, K)\), DETADZ \((J, l, K)\) \\
\hline 23 & CONTINUE \\
\hline 22 & continue \\
\hline 20 & continue \\
\hline c & \\
\hline & IF(OPTION .EQ. 3) OOTO 998 \\
\hline
\end{tabular}

IFIOPTION EQ 2) THEN
CALL DIJOISOINA, MCBPTS, OEPTH, EPSILON, Y, Z, JBEG,
ENO IF C
C
C C COMPUTATION ALONG BOUNDARY LINE. DETERMINE SHEAR COEFFICIENTS

C ALPHAZ IS COMPUTED FOR EAT CURVES ON BANKS AND BED ONLY ALPHAZ \(=0\)
DO 30 K = 1, KPART
1FJ1=1
IF(EPSILON.LT. O.O) JI=NA
DO 31 J = Ji, NE (K)
F2(J,K) =
1 SIDIFF(J, I, K)/(1,-DHETA(J, \(1, K)=S I D I F F(J, 1, K))\) CONTINUE
CALL SHEARZ (K, JI, MB (K), AVGSHEA, FNINE(I), ALPHAZ, T1, T2)
HRITE(A, 206) K, J
URITE( 4,203 ) (F2 (J, K), J=J1, NB (K))
CONTINUE
HRITE (4, 208)ALPHA2


\(C\) COMPUTE ALPHAI COEFFICIENT FOR EACH ETA CURVE
1-J. 1
IFIEPSILON,LT, O.O) THEN
I. NA
\(J=N A-1\)
\(0044 \mathrm{~J}=1, \mathrm{~J}\)
ALPHAI \((J, K)=\)-ALPHA2=SIDIFF(J,I,K)
I E ! -
44. CONTINUE
\(1=N A\)
END IF

CALL SHEAR1 (K, J, FNI NE (1), ALPHA2, ALPHA1 (J,K) )
CONT INUE
c
NO 41 I 1, NA
DO 42 J . NC, NB(K)
C ... COMPUTE SHEAR STRESS AND VSI ALONO EACH ETA LINE
SHEAR \((J, I, K)=\operatorname{ALPHAl}(J, K)=S I D I F F(J, I, K)\)
1 ALPHAZESIDIFF(J, I,K)=SIDIFF(J,I,K)
SHEARD : -ALPHAI \(J, K)-2\). AALPHAZ=SIDIFF \((J, i, K)\)
c. C c... COMPUTE VSI (AS U FOLLOWS LOORITHMATIC DISTRIBUTIGN)

ROOUOS! : (DENS ! TY=SHVELO) / (XI ( \(J, 1, K)=\) UNIVK)
TERMI DHETA(J, I,K) ESHEAR (J, I,K)
TERM2 : SHEARD: HETA(J, I,K)WFNINE(1)
VSI(J, I,K) (TEMMI * TERMZ)/RODUDS:
C
c.
c.
c

\section*{COMPUTE STREAM FUNCTIGN ALONO EACH SI LINE, NAMELY SUM(VSIIHETA)} ALSO COMPUTE SUM(HETAEHSI) AND TEMPGRARY BTORE INTO VETA

PH! \((J, I, K)=0\).
VETA \((J, 1, K)=0\).
ELSE
TVXII V V 1 (JI, \(1, K\) )
TVXI2 - VSI(J, I,K)
THETA1 \(=\) HETA \((J 1,1, K)\)
THETAZ \(=\) HETA \((J, i, K)\)
THETAZ E HETA(J, \(i, K)\)
DETA \# ETA \(J, I, K)\) - ETA (JI, I,K)
CALL INTPHI (TVXI1, TVXI2,THETA1, THETAZ, PO, DETA)
PHI (J, I,K) E PHI (JI, I,K) + PC
TVKII = HSI (JI, I,K)
CALL INTPMI (TVXII, TVXI2, THETAI, THETAZ, PO, DETA)
VETA \(J, I, K)\) E VETA \(J, I, K\), PO
END IF
END IF
CONT INUE
CONTINUE

DO \(50 \mathrm{~K}: 1, \mathrm{KPART}\)
WRITE(4, 198)K
NA1 MA = 1
DO \(511=2, N A 1\)
NC JBEO(K,1)
\(T X=H S I(N C, I, K)=O S I D Z(N C, I, K)\)
VZ(NC, I,K): VSI(NC, I,K)/TX
```

 VETA(NC,I,K):META(NC,I,K)=DETAOZ(NC,I,K)=VZ(NC,I,K)
 WRITE(4,215)
 CONTINUE
 CONTINUE
 C6
00 60 K = 1,KPART
FNC2 BI(K) * DELTA(K)
WRITE(4,199)K
WRITE(4,222)
WRITE(4,217)
DO 621.2,NA1
WRITE(4,2:5)
NC JBEG(K,I)
DO61 J=NC,NB(K)
YTEMP Y Y, I,K)
ZTEMP = Z(J,l,K)
YTR : YTEMP=FNCI - OELY
ZTR = ZTEMPIFNCZ
IF(K.EO, I) ZTR = BIII) - ZTR
F(K.EO. 2) ZTR = ZTR - BI(I)
OXIOY = FNCSOY(YTEMP,ZTEMP,BETA(K))
OXIOY = FNC3OY(YTEMP,ZTEMP,BETA(K))
OXIDZ * DS!OZ(J,!,K)
PETAPY = FNCAOY(YTEMP, ZTEMP,CETA(K))
PETAPZ OETADZ(J,I,K)
IFIJ,EO.NC) THEN
VY(J,l,K)=0.
ELSE
OO=HSI(J,I,K)=HETA(J,I,K)=(OXIDY\#PETAPZ-DXIDZ=PETAPY)
DI = VS!(J,I,K)\#META(J,I,K)aPETAPZ -
VETA(J,I,K)=HS!(J,I,K)=0XIOZ
O2 - -VSI(J,I,K)\#HETA(J, I,K)EPEPAPY *
VETA(J,I,K)=MSI(J,I,K)=OXIOY
VY(J,I,K)=01/DO
vZ(J,l,K):02%00
NNO!J,
END IF
WRITE(4, 218)I,J,YTR,ZTR,VY(J,I,K),VZ(J,I,K)
CONTINUE
CONTINUE
CONTINUE
ORAW SHEAR STRESSES ANO VELOCITY COMPONENTS
CALL OI 3OSVIMA, MCBPTS, OEPTH, EPSILON,Y, Z, JEEG,
* NB,BI, ZBOUNO, YBOUND, FNCI, DELTA, OELY, SHEAR,VY, VZ,
* PPLOT2,PPLOT3, PPLOT4, PPLOTS, AVOSHEA,NOIVIOE.
* AVGVEL.SCALE,MAME)
O0TO 999
C
998
DO 63 K = 1,2
WRITE(4,199)K
WRITE(4,300)
c
NA1 = NA = ' 2,NA1
C ADO I TO NCI SO THAT IT START AT CORRECT POINT (I \& 1) WILL
HAVE CORRESPGNOING NUMBERS
NC1 JEEG(K,1)+1
DO 65 J NCI,N(N)
OSITEMP= Xi(J,I+I,K) - XI(J,I-1,K)
DSITEMP = XI(J, I+1,K) - XI
A1 = ALOG(HETA(J, 1-1,K))
A2 = ALOS(HETA(J,I+1,
A3 \# (A2-A1)/OS!TEMP
WRITE(4, 302) J,I, HETA(J,I,K), OSITEMP, DMETA(J,I,K), AS
CONTINUE
CONTINUE
CONTINUE

```

```

 43:(z-1.)/2
 END |F
 A4 : (MOE=CETA) / Z
 FNCADZ:AO:A2:A3
 RETJRN
 ENO
 FUNCTION FNCADY(Y, Z,CETA)
 IF Y I 1. ASYMTOTICALLY VALUES ARE CONVERGED
 THEREFORE IT SET Y : 0.99999
 IF(Y .EO. 1,) Y = 0.99999
 A2 EXP(Z+CETA=Y)
 AO = 1. - Y
 IFIY.OT.,I,) AO = Y = I
 A) : AO : (CETA - 1,)
 FNCADY = (CETA/Z)=A1:AZ:(-Y)
 RETURN
 RETUR
    ```

```

 FUNCTION FNCS(V51,VS2)
 30 FNCS = VS1 - VS2
 RETURN
 END
 FUNCTIONFNCG(K,FNC2,ASIS,AY5,AZ5)
 COMMEN /RI/ FNCI
 COMMON /RS/ BETA(2),CETA(2)
 AAS1. = FNC1&AY5=(1,-AZS
 AAS3=(1.-AY5)=(1,-AZ5)
 AAS4 = AAS3×AAS3
 AAS5 = BETA(K)=(FNC1/FNC2)=AY5:AZ5
 AAS6 = AASS:AASS
 AA52 ASI5:SORT(AA54+AA56)
 FNCE = AAS1/AAS2
 RETURN
 END
 COMMON/RI/ FNCI
 COMMON /RS/ BETA(2),CETA(2)
 MA7I : FNC?/FNCI
 AA71 =FNC2/FNCI
 AA72=ASI7(AETA7
 AA73 = A27E(1.-AY7)
 AA74=AY7E(1.-A27)
 RETURN
 END
    ```

```

 FUNCTION FNCB (K,ASIB,AYB,AZB)
 COMMON /RS/ BETA(2),CETA(2)
 AAB1 = (1.-AYB):(1.-AYB)E(1,-AZ青):(1.-AZB)
 AAB2 = AYB=AYE=AZB#AZB
    ```

```

 AAB3 = AABIICETA(K) &AYBaAYB
 AABA = CETA(K)=BETA(K)#AAB2#(1, -AZB):(1, -AZ8)
 AAB5 ASIB=((AAB1+CETA(K)=BETA(K)#AAB2j=
 +
    ```

```

 FNCB - (AAB3+AAB4)/AABS
 RETURN
 END
 *FUNCTION FNCE
 MOMENTU FNCS COMIPUTES FO ON F VALUES ACCORDINS TO THE
 MOMENTUM EQUATION. ALL INP
 FUNCTION FNCS(DENSITY, DELUT, OELUX,XITERM, MR, SHEAR)
 AMT = DELUT * XITERM : DELUX
 AMS : DENSITY&AMT
 AMS DENSITY&AMT
 FNCS:
 METURN
 END
 FUNCTION FNCIO(VIZ,VIS,VIG)
 COMMON /RT/ DEPTH,DELY,EPSILON
 COMMON /MRF/ YMAX, ZMAX,YONE, YMIN
 EXTERNAL FNCS
 TOL :. IE-07
 ON THE WATER SURFACE, Y1 (DEPTH&DELY)/(OEP&DELY&EPI). THEREFORE
 C.... WE HAVE ETA AND YI SPECIFIED
z}=0
2:O.
NECHO :O
CALL MAF2(YMAX, 2, TOL, V1S,VI2, 1STOP, NECHO)
FNC1O I FNC3(YMAX,Z,VIG)
RETURN
ENO
SUBROUTINE COROTF(CETA, BEOA,SI,ETA,BI, DELI,YU,ZU,YI, Z1,MDNO,OYY)
THIS SUBREUTINE IS THE COMEINATION OF NONLINI ANO
NONLIN2, I.E. IT USES MODIFIEO REGULA FALS] MEYMOO
TO FINO Y OR Z, THEN USE BISECTION METHOD ON THE
OTHER DIRECTION
MONO O O COMPLETES THE LOOP
MONO : I NO SOLUTION FROM MRF4 - MRFI
MONO : I NO SOLUTION FROM MRFA:OMRFI
COMMON/RT/ DEPTH, DELY,EPSILON
COMMON /RT/ DEPTH. DELY,EPSILON
COMMON/CIR/ PASI,PAETA
CBMMON /LL/ TOL,TOLETA

```
```

 PAS1 = SI
 PAETA : ETA
 TOL=.1E-OT
 TOLETA = IE-3
 MONO = ITER = 114 = NECHO : O
 C ... - START SEEKING SEQUENCE; DETERMINE UPPER AND LOWER
BOUNOS BEFORE CALL SUBROUTINE CIRCLES
DEFINE UPPER OR LOWER REGION
ifiPAETA.LT. O.igoto>0
LOWER REGION
y:Yu
2:ZU
IF(OYY LLT, O.O1 .AND. Y LT, O.0) GOTO 24
CALL MRF4(Y, Z, TOL, BEDA, PASI, MONG, NECHO)
IF(MONO.NE. I)GOTO 23
YU=Y
BANK AND UPPER BOTTOM REGION COMPUTATION
l14 = A LOWER BOUND BEFORE CALL CIRCLL
NECHO : 1
CALL MRFA(Y1, Z, TOL, BEOA, PASI, MONO, NECHO)
ITER ITEER + 1 OY = (YU - Y1)/8.
IF(ITER EO. 1) OY =
WRITE(4,52)
goto 50
END IF
Y1:Y1 + OY
GOTO 26
25 FIE) = FNCA(YI,Z,CETA) - PAETA
IF(ABS(FIE1).LT.TOLETA) THEN
Y1 = Y1
RETURN
END IF
IF(FIE1)11,12,13
OWER BOTTOM REGION
CHECK LOWER BOUND BEFORE CALL CIRCLL
Yu:Y
114=1
NECHO =O
CALL MRFi(Y, 21, TOL, BEDA, PASI, PAETA, MONO, NECHO)
IFIMONO.NE. 1) GOTO 27
WRITE(4.55)
white So
CHECK IF THIS IS LOWER BOUND
FIE1 = FNC4(Y,Z1, CETA) - PAETA
F(ABS(F|E|).LT.TOLETA) THEN
Y1=Y
RETURN
ENO IF
IF(FIE1)20,12,21
C
FiEi = FNCA(YU',zU,CETA) - PAETA
IF(ABS(FIEI).LT. TOLETA) GOTO 12
CALL MRFA(Y1, Z, TOL, BEDA, PASI, MONO, NECHO)
IFIMONO.NE. I) BeTO 40
FIER = FNC4(YI,Z,CETA) - PAETA
if(ABS(FIE2).LT. TOLETA) GOTO }1
if(F(E)=F|E2) ie,i2,is
Yu:Y1
ZL}=
ZU: ZMAX
YL = YONE
BOTO }7
YL=Y1
geto 77
Yu=Y
YU =21
2L=0.0000
GOTO 60
YL=Y
2L:21
<UTO
YU=Y1
YL = YMIN
2L-0.00001
gote 60
2L = z
CALL CIRCLLIBEDA, CETA,YU,YL,ZU,ZL,Y,Z,114)
IF(114 EO. 100) THEN
MONO : 2
MRITE(4,36)BEDA, CETA,YU,YL,ZU,ZL,Y,Z
goto 12
ELSE
GOTO 12
ENO IF
CALL CIRCLU(BEOA,CETA,YU,YL,ZU,ZL,Y,Z,I14)
fF(114 .EQ. IOO) THEN

```
    FORMAT(SX, UPPER REG!
    format (B(IX, EIO.4)
    FORMAT (B (IX, EIO. 4)
FORMAT \(5 X\), 'UPPER REGION FAILEO - FROM MRF2'/5X,
    * 'NO SÓLUTION FOR THIS ETA VALUE.....',
    FORMAT(SX, LOWER BOTTOM REGION FAILEO - FROM MRF! '/EX,
    - 'SHOULD NOT HAPPEN'/)
    FORMATKSX, UPPER REGION FAILED - FROM MRFZ ' \(/\).
    - 5X,'THIS IS IMPOSSIBLE, Z1 LEE, ZL',

    RETURN
    FORMAT(2(2X,EII.5), 'DIVERGE! --BAD ETA VALUE')
    END
    SURROUTINE CIRCLLIBEDA, CETA, YU, YL, ZU, ZL, Y, Z, I IA
    COMMON /CIR/ PASI, PAETA
    COMMON /LL/ TOL, TOLETA
    COMMON TMRF, YMAX, ZMAX, YONE, YMIN
    10. INO O
    NECHO \(=1\)
    \(A=A 1=0\).
\(c^{100}\)
    WRITE (4, 14O)ID,YU,YL, ZU, ZL, Y, Z,II4
    IFRID.GT. IO: THEN
    \(F 110.67\)
\(10=0\)
        \(I D=0\)
\(I N O=1 N O+1\)

                IFIABS (YU-YL).LT.. 1E-OT) THEN
                    IF(ABSIA) LEE. ABS(AI)) THEN
                                    IF(ABSCA).LT. ,IE-O1) GOTO 110
                                    Al A
                                    IFIINO.LT. 6) GOTO 150
                                    iF(ABS(A).LT. .i) OOTO 110
                                    GOTO 101
                                    ELSE
                    MAN = \(O\)
                    MAN \(Y O\)
\(Y E Y U+Y L) / 2\).
                    \(Y=(Y U+Y L) / 2\)
MAN E MAN +
                            MAN E MAN + 1
IF(MAN. OT. 101 MO
                            MAN EMAN * I 0 MAN.OT. IOTO 110
                            A : FNCA(Y,Z, CETA) PAETA

                            IF(ABS(A).LT,
IF(A) \(11,110,13\)
                            YU \(\begin{aligned} & \text { Y } \\ & \text { GOTO } 15\end{aligned}\)
                            GOTO 15
                            GOTO 15
YL Y Y
GO TO IS
                            YO :Y
YO TO IS
ENO IF
                    ENO IF
c
            END IF
                IFIIIA.EO. I) THEN
IFIABS ZU-ZC),
                    IFIABS(ZU-ZL),LT. IE-OI) THEN
IF(ABS(A) .LE. ABS(AII) THEN
                    IFIABS (ZU-ZL),LT. IE-01) THEN
IF(ABS(A) LEE.ABS(AI) THEN
                            F(ABS(A).LE. ABS(AII) THEN
IF(ABS(A).LT. . IE-OI) GOTO 110
                            iflas
                            IF(INO LTT. E) क्NTO iso
                                    IF(ABS(A) LT. .I) GOTO 110
                    ENO IF
                END IF
            ENO If
        END IF
    IF(il\&.E日.1) Z (ZU + ZL)/2.
            IF(IIA.EO.4)Y (YU * YLI/2
    IF (IIA.EO. 1 I Y
IF (IIA.EO. 1 THEN
            GALL MRFIIY, 2 , TOL, BEDA, PASI, PAETA, MONO, NECHOI
            IFIMONO.EQ. i) THEN
            MONO. EQ.
ZUE Z
                3070 100
            END IF
        ElSE
            CALL MRFA (Y, Z, TOL, BEDA, PASI , MONO, NECHO)
            IF(MONO.EQ.i) THEN
                YL:Y
            ENO IF
        END \(I_{F}^{F}\)
            A. FNCA(Y, Z,CETA) - PAETA
            A FNCA(Y, Z.CETA) - PA
IF(AI EO. O.O) AI : A
            IF(ABSIA).LF. TOLETAS GOTO 110
            IF(A) 120,110.130
\(20 \mathrm{YU}=\)
    \(Y U=Y\)
\(Z U=Z\)
    gete 100
30
        MONO 2
WRITE(4, 56 IBEDA, CETA, YU, YL, \(Z U, Z L, Y, Z\)
GOTO I?
        GOTO 12
    ELSE
        OOTO 12
    END IF
    \(\begin{array}{ll}\text { Y } 1 \text { Y } \\ z 1 & z\end{array}\)
    \(Y 1: Y\)
\(Z 1: Z\)
    RETURN
    WRITE(4, 201) ITER,YU,YL, ZU, ZL
    WRITE(4, 238)Y, 2
    FORMAT(SX,'ITER', IOX, 'YU', IOX, 'YL', IOX, 'ZU', IOX,'ZL'/
    \(13 x, 14,12 x, 4(3 x, F 8.5))\)
    FORMAT'SX, UPPER REGiON FAILED - FROM MRF4'/,5X.
                        GO TO I
ENO IF
11
                ENO
RETURN
\(Y L=Y\)
\(Z L=Z\)
    \(Z L=2\)
OOTO 100
```

140 FORMAT(5X,13,6(1X,E10.4),14)
101 114.100
RETURN
END

```

```

 SUBROUT iNE CIRCLU(BEDA,CETA,YU,YL,ZU,ZL,Y, Z, 114)
 COMMON /CIR/ PASI,PAETA
 COMMON /LL/ TOL,TOLETA
 COMMON /MRF/ YMAX, ZMAX, YONE, YMIN
 ID:||4: |NO=0
 NECHO - 1
 100 10:10*,
IF(ID.GT, 10) THEN
ID=0
INO: INO - I
NO IF(ABS(YU-YL).LE..IE-2) THEN
IF(ABS(A).LE ABS(A1)) TMEN
IF(ABS(A).LT. .1E-O1) GOTO 110
A1%A
IF(INO.LT. 6) GOTO iso
IF(ABS(A).LT. 1.D) OOTO 110
GOTO 101
ELSE
DIVERGED COMPUTATION
IFIINO.GT. G) GOTO 1OI
END IF
END IF
END IF
150 Y = (YU * YL)/2
CALL MRFAIY,Z, TOL, BEOA, PASI, MONO, NECHO)
IF(MONO.EQ.i) GOTÓ 101
A =FNC4(Y,Z,CETA) - PAETA
IF(A), EO. O.O) AI = A
IF(ABS(A).LT.TOLETA) GOTO 110
C
NEED TO CKECK WHEN Y IS VERY CLOSE TO I
TESTA = ABS(A - AI)
IF((Y-1.).LT. .IE-OS .AND. TESTA .LE. .IE-O2) OOTO 110
IF(A) 120,110,130
1:0 RETURN
130 YL:Y
YL:Y
gOTO 100
120
ZL z
GOTO 100
C1O1 WRITE(4,I4O)IO,Y,Z,A,YL,ZL
CI4O FORMATISX, SUBROUTINE CIRCLU FAIL':3X,'ID : ', 14, 3X,

```

```

 114=100
 RETURN
 END
    ```

```

 SUBROUTINE SHEARZ(KN,KJ,KF,S1,SO, COEFSHE,SUM1, SUMZ)
 THIS SUBROUTINE CALCULATES THE ALPHAZ COEFFICIENT IN
 THE SHEAR STRESS DISTRIBUTION APPROXIMATION ACCOROINO
 TO CHIU'S ASSUMPTION. THIS COEFFICIENT IS A CONSTANT
 AND THE COMPUTATION IS CARRIED ALONG THE CHANNEL BED B BANKS.
 COMMON /R2/ WP
 COMMEN /R3, SIOIFF(50,40,2)
 COMMON /R4/ F2(SO,2)
 COMMON/R6/ ETA(SO,40,2)
 COMMON /RON CTA(50,40,2)
 COMMON /R1O/ HS\(50,40, 2), HETA(50,40, 2)
 -....-...-.--SUM ALONB WETTED PARAMETERS-.............................
 IF(KN.EQ.2) EOTO 30
 SUM1 = SUM2 =0.
 30 TINEW = T2NEW = 0.
 KJI:KJ + I
 00 1001=KJI,KF
 11:1 - 1
 THETA1 : HETA(II,1,KN)
 THETAZ META(i,I,KN)
 TVXII E S!DIFF(II,I,KN) = FZ(II,KN)
 TVXIZ SIOIFF(I,1,KN) = F2(I,KN)
 DETA = ETA(I,I,KN) - ETA(II,I,KN)
 CALL INTPHI ITVXII, TVXI2, THETAI, THETA2, PO, DETA)
 CALL INTPHIITVXII
 TVXII = HSI(II,I,KN) = SO =F2(II,KN)
 TVXII : HSI(II,I,KN) = SO = F2(II,KN
 CALL INTPHI(TVXII,TVXI2,THETAI,THETAZ,PO,DETA)
 SUMZ - SUM2 + PO
 1 0 0
CONTINUE
IF(KN.EO. 1)RETURN
TENTI SUMI/WP
TENT2 = SUMZ/HP
COEFSHE (-1,/TENT1)E(S1+TENT2)
RETURN
RETU

```

```

 SUBROUTINE MRFI{Y1, Z1, TOL, BETA, PASI, PAETA, ISTOP, NECHO)
 THE SUBROUTINE I'S THE MODIFIED REQULA FALSI ALOORITHM
 THE SUBROUTINE
 Z IS FIXED VALUE AND Y IS THE INTERATIVE VALUE.
 OIMENSION A(300), B(300),P(300)
    ```

\section*{COMMON /MRF, YMAX, ZMAX, YONE, YMIN}

EXTERNAL FNC3
        \(A(I M)=0\).
    \(=0\)
    \(P(I M)=0\)
    ISTOP=0

\section*{GIVE EITHER O.O1 OR 0.99 FOR + OR - TEST} THE A IS ALWAYS SEATS AT THE LEFT OF B
IN:I
If(PAETA GE, O.) THEN
\(B(I N)=Y O N E\)
\(A(\mid N)=Y M \mid N\)
ELSE
B(IN) : YMAX
\(A(I N): Y O N E\)
END IF
TL FNC3(A(IN), Z1, BETA) - PASI
\(T R=F N C 3(B(I N), Z 1, B E T A)\) - PASI
IF(TL:TR) 11,12,13
\(P(I N)=A(1 N\)
DO 20 IN \(=1,999\)
\(P(I N+1)=(A(I N) * T R-B(I N)=T L) /(T R-T L)\)
CHECK = FNCJ(P(IN+1),ZI, BETA) - PAS!
IF(ABS (CHECK).GT. TOL)GOTO98
\(Y 1=P(I N)\)
GOT099
1F(TL•CHECK) 14,99, 16
\(A(I N+1)=A(I N)\)
\(B(1 N+1)=P(\mid N+1)\)
TR = CHECK
CHK = FNCJ(P(IN),ZI,BETA) - PAS
IFICHK=TR.GT.O.JTL \(=\) TL/2.
GOTO20
A(1N+1) \(=P(I N+1)\)
\(B(J N+1)=B(I N)\)
TL = CHECK
CHK: FNC3(P(IN), Z1, BETA) - PASI
IFITLECHK.GT.O.JTR = TR/2
GOTO20
IF(TL.EO.O.) GOTOIS
Y1.E(IN)
G0T099
YI:A(IN)
GOTO99
CONTINUE
ISTOP:
IF(NECHO EO. O) WRITE(4,77)A(IN), B(IN),TL,TR

    RETURN TR ',E10.4/)
        RETURN
    END
    SUBROUTINE MRF2(Y) 71 TOL CETA PAETA I STOP NECHOROUTINE MRFZ
        THE SUBROUTINE IS THE MODIFIED REOULA FALSI ALGORITHM
        THE SUBROUTINE
        y is fixeo value and z is the interative value.
        DIMENSION A(300), 8(300), P(300).
        COMMON /MAF/ YMAX, ZMAX, YONE, YMIN
        EXTERNAL FNCA

INITIAL VLAUE TO ZEROS
\(0010 \quad 1 M=1,300\)
    \(A(1 M)=0\).
    \(\theta(I M)=0\)
    \(P(I M)=0\)
    ISTOP = 0
        QIVE EITHER 0.0001 OR 0.9999 FOR + OR - TEST
        THE A IS ALWAYS SEATS AT THE LEFT OF B
    IN:
    \(B(I N)=2\) MAX
    \(A(I N)=0.0000\)
    TL F FNCA(Y1,A(IN),CETA) - PAETA
    TR F FNCA(YI,B(IN), CETA) - PAETA
    IF(TL*TR) 1 1, 12,13
    P(IN) =A(IN)
    \(00201 N=1.990\)
    \(P(I N+1)=(A(I N)=T R-8(I N)=T L) /(T R-T L)\)
    CHECK FNCA(Y1,P(IN+I), CETA) - PAETA
    IF (ABS (CHECK), GT. TOLIGOTOSA
    21 : PIIN
    GOTO99
    IF (TL=CHECK) 14, 99, 18
    A(IN+1) A(IN)
    O(IN+1) P(IN+1)
    TR CHECK
    CHK FNCA(YI,P(IN), CETA) - PAETA
    IFICHETR.OT.O.ITL:TL/2.
    00T020
    A( \(\mid N+1) \quad P(\mid N+1)\)
    \(B(I N+1)=8(I N)\)
```

 TL. SHECK
 CHK = FNCA(Y),P(IN),CETA) - PAETA
 IF(TLECHK GT O.)TR = TR/2
 GOTO2O
 IF(TL EO O.)GOTOIS
 21:B(IN)
 goreg9
 21.:AIIN
 got099
 cONTINUE
 ISTOP = 1
 IF(NECHO EO,O) WRITE(A,TTIA(IN),BIIN),TL,TR
 FORMAT(/SX:MRFZ;'ZL',EIO.4,' ZU ',EIO.A,'TL ',EIO.4.
 RETURN
 ENO
 SUBROUTINE MRF3(YI, 21,TOL, CETA, PAETA, ISTOP, NECHO)
 the subroutine is the modified regula fals! aloorithm
 FOR FUNCTION 4
 z is fixed value ano y is the interative value
 DIMENSION A(300), B(300), P(300)
 COMMON /MRF/ YMAX, ZMAX, YONE, YHIN
 EXTERNAL FNC4
 initial vlaue to zeros
 00 10 1M = 1,300
 A(IM)=0
 B(IM)=0
 B(IM)=0.
 ISTOP=0
 OIVE E!THER O O1 OR O g9 FOR * OR - TEST
 THE A IS ALHAYS SEATS AT THE LEFT OF EST
 IN:1
 if(PAETA .GE, O.) THEN
 B!!N) = YONE
 A(IN) = YMIN
 Else
 B(IN) : Ymax
 B(IN) E YMAN
 END!IF
 TL FNCA(A)(IN),Z1,CETA) - PAETA
 TR : FNCA(BI(N),Z1,CETA) - PAETA
 IF(TLETR)11,12,13
 11 P(IN) =A(IN)
00 20 IN = 1.g99

```

```

 CHECK = FNCA(P(IN+1),Z1,CETA): PAETA
 IF(ABS(CHECK).OT.TOLIGOTOSA
 Y):P(IN)
 G0T099
 IF(TL=CHECK)14,99,16
 A(IN+1):A(IN)
 B(IN+1):P(IN+1)
 TR = CHECK
 CHK FNCA(P(IN),ZI,CETA) - PAETA
 CHK = FNCA(P(IN),ZI,CETA)
 00TO20
 A(IN+1) = P(IN+I)
 B(IN+1)=B(IN)
 TL O CHECK
 CHKK: FNCA(P(IN),Z1,CETA) - PAETA
 IF(TLECHK.GT.O.)TR - TR/2.
 GOTO2O
 IF(TL.EO.O.IGOTOIS
 Y1:B(IN)
 00T099
 Y)=A(IN)
 O0T099
 OOTO99
 CONTINUE
 ISTOP = 1
 IF(NECHO.EO. O) WRITE(A, TTIACIN), B(IN),TL,TR
 FORMATY/SX:'MRF3,'YL',EIO.4,'YU',EIO.A.' TL 'EIO.A,
 * RETURM TR :.ETO.4%
 RETURN
 END
 Sugnoutine mRFa
 SUBRUTINE MRFAIY1,21, TOL, BETA, PASI,ISTOP,NECHO)
 the subroutine is the modifieg regula FalSI algorithm
 FGR FUNCTION 3
 Y IS FIXED VALUE ANO z IS THE INTERATIVE VALUE.
 DIMENSION A(300), B(300), P(300)
 COMMON/MRF/YMAX, ZMAX,YONE,YMIN
 EXTERNAL FNC3
 C
initial vlaue to zeres
D0 10 IM = 1,300
A(IM) =0.
10 B(IM) =0.
ISTOP=0
C

```
                GIvE ETTHER 0.OUUI OR O. #Y39 FOR * OR - TEST
                THE A IS ALWAYS SEATS AT THE LEFT OF B
    [N=
    B(|N) = ZMAX
    A(IN)=0.00001
    TL:FNCZ(Y),A(IN), BETA) - PASI
    TR = FNC3(YI,B(IN),BETA) - PASI
    IF(TL=TR)I1,12,13
    P(IN)=A(IN)
    OO 20 IN = 1.999
    P(IN-1) = (A(IN):TR-B(IN)=TL)/(TR-TL)
    CHECK = FNCS(YI,P(IN+1),BETA) - PASI
    IF(ABS(CHECK).GT.TOL)GOTOQ8
    ZI=P(IN)
    G0T099
    |F(TLICHECK)\4,99,16
4 A(|N+1)=A(IN)
    B(|N+1)=A(IN)
    BR I CHECK
    CHK = FNC3(Y),P(IN), BETA) - PASI
    IF(CHK=TR.GT.O.)TL:TL/2
    got020
    A(IN+1)=P(!N+1)
    B(IN+1)=B(IN)
    TL = CHECK
    CHK = FNC3(Y1,P(IN),BETA) - PASI
    IFITL=CHK.GT.O.ITR = TR/2
    GOT020
    IF(TL.EO.O.)GOTOIS
    Z1=B(IN)
    g0T099
    Z1:A(IN
    GOT099
    GONG99
    CONTINUE 
    ISTOP = '1 EO. O) WRITE(4,77)A(IN),B(IN),TL,TR
    FORMAT(/5X,'MRF4,',ZL ',EIO.4,' ZUU!.EIO.4,' TL ',Elo.4,
    * RETURN'TR ',E1O.4/1
    RETURN
    ENO
    SUBROUTINE SHEARI(K1,K2,FNINE, ALPHAZ, ALPMA)
    COMMON /RJ/ SIDIFF(50,40,2)
    COMMON /R4/ F2(SO,2)
    COMMON /R1O/ MS!(50,40,2), HETA(SO,40, 2)
    1:1
    XBON = SIOIFF(K2,1,K1)/F2(K2,K1)
    TI # -HETA(K2,I,KI)EFNINE
    T2 = ALPHA2=(1, +XBON)=SIDIFF(K2,I,K1)
    LLPHA = (T1 + T2)/XBON
    RETURN
    END
    -.gGUSSINA INTEGRATION FOR PHI
    OIMENSION SHAPE(2),W(3),PT(3)
    DATA PT/-0.77459667,0.000000.0.77459667/
    0ATA U/O.5555555,0.8888888,0.5555555
    C =0
    1=0/2.
    O00 = 1,3.3.0T(1),12
    SHAPE(1)=(1.:PT(1))/2
    C=C+H(I)E(SHAPE(1):Al +SHAPE (2)=A2)=(SMAPE(1) =B1+SHAPE(2)=B2)=D1
    CONTINUE
    RETURN
    END
-.-.--DI3000 ROUTINE
    SUGROUTINE DIMOSVINA, MCBPTS, DEPTH, EPSILON, Y, Z, JBEO,
    NB, BI, 2BOUND, YBOUND, FNCI, DELTA, DELY, SHEAR,VY,VZ,
    * PPLOT2, PPLOT3, PPLOTA, PPLOTS, AVGSHEA,NDIVIDE
    - AVGVEL, SCALE,STATION'
        INTEGER PPLOT2, PPLOT3, PPLOT4, PPLOTS
        NTEGER PPLOT2,PPLOT3,PPLOT4, PPLOTS
        OIMENSION Y(50,40,2),Z(50,40,2), DELTA(2),NDIVIDE(2)
        DIMENSION JBEGi(2,40),NB(2),BI(2), ZBOUND(20), YBOUNO(2O
        DIMENSION SHEAR(50,40,2),VY(50,40,2),VZ(50,40,2), XYL(4)
C
            INITIAL DI3000 PLOT ROUTINE
            CHARACTER=28 STATION
            CHARACTER=21 NOTATU(3)
            DATA NOTATU/'VERTICAL COMPONENTS '.'TRANSVERSE COMPONENTS'
        DATA SECONDARY VELOCITIES ',
            DATA PIE/J,i4159265/
            CALL UUINI(I)
C
            XYL(1):0.0
            XYL(2)=100.
            XYL(3)=0.0
            XYL(4)=5.00
            VMAX = 0.0
            CALL JWINOO(XYL(1),XYL(2),XYL(3),XYL(4))
            CALL JVPORT(-1.0,1.0,-0.7.0.7)

CALL UUSTI('ALL EXIST', 1)
CALL UUSTI:'TOP LABEL. TYPE.O)
CALL UUSTII RIGHT. LABEL. TYPE', O)
CALL UUSTI('TOP. TITLE.FONT, S)
CALL UUSTI('TOP. TITLE HORIZONTAL, 1 )
CALL UUSTII ALL TITLE QUAL!TY', 3)
CALL UUSTR ('TOP MAJOR, INWARD'.O.O)
CALL UUSTR('TOP TITLE POSITION', O.1)
CALLL UUSTC( TOP. TITLE.STRING' STATION
CALL UUSTR('LEFT.MAJOR. (NWARD: 0.01)
CALL UUSTR('LEFT SCALE INTERVAL' 1 O
DRAW LEFT AXIS FOR DEPTH
CALL UUSTC('LEFT. TITLE.STRING', DEPTH, FT.')
CALL UUSTC('LEFT. TITLE.STRIMG: DEPTH,
CALL UUSTR('LEFT. LABEL. HSIZE', O.O15)
CALL UUSTR(:LEFT. LABEL.VSIZE, O.015)
CALL UUSTI! ALL.LABEL QUALITY:
CALL UUSTI' LEFT. TITLE.FONT', I')
CALL UUSTI'
ORAW BOTTOM AXIS FOR CROSS SECTION WIDTH
CALL UUSTR('BOTTOM. SCALE. INTERVAL', IO.)
CALL UUSTCI'BOTTOM.TITLE.STRING', "DISTANCE FROM LEFT BANK OF
*RIVER, FT.')
CALL UUSTR('BOTTOM. LABEL.HSIZE', 0.015)
CALL UUSTR('BOTTOM. LABEL.VSIZE',O.015)
CALL UUSTR('BOTTOM. TITLE.HSIZE, O. OZO)
CALL UUSTRI'BOTTOM. TITLE.VSIZE, O. OZO)
CALL UUSTI('BOTTOM. LABEL, OUALITY', 3)
CALL UUSTRI'BOTTGM.MAJOR. OUTWARD': O. OZI
CALL UUSTR('BOTTOM.MAJOR. INWARO' O. OI
CALL UUSTR('BOTTOM. TITLE.DISTANCE', O. OO)
CALL UUSTI('BOTTOM.TITLE. FONT', II)
CALL UUSTI('BOTTGM.TITLE. OUALITY',3)
CALL UUSTI('BOTTOM. LABEL. FONT', 9)
TRANSFER COOROIMATES
DEFINE UNIT IN PLOTS
UNIT \(=(X Y L(2)-X Y L(1)) / 15\).
RATIO \(=\) (XYL(4)-XYL(3))/(XYL(2)-XYL(1))
NA1 : NA -1
ADJUST COORDINATES
DO \(100 \mathrm{~K}=1.2\)
FNC2 = BI(K) - DELTA(K)
DO 110 I \(\quad 1, \mathrm{NA}\)
\(N C=j B E G(K, 1)\)
DO \(120 \mathrm{~J}=\mathrm{NC}, \mathrm{NB}(\mathrm{K})\)
\(Y(J, l, K)=\) OEPTH* \((Y(J, I, K)=F N C I\) - DELY) * 4.0
IF(K.EO.I) Z(J,I,K) Bi(i) - Z(J,I,K)=FNCZ
(F(K,EO.2) Z(J, I,K) = Z(J, I,K)=FNCZ + BI(1)
IF(I GE, 2 AND, 1 LEE. NAI) THEN
(F(K.EO. I) VZ(J,,\(K\) ) \(=-V Z(J, 1, K)\)
[F(VMAX.LT. ABS(VZ(J, I,K))) VMAX \(=A B S(V Z(J, 1, K)]\)
(F (VMAX.LT. ABS (VY(J, I,K))) VMAX \(=\) ABS(VY(J, \(, K, K)\) )
END IF
CONTINUE
CONTINUE
CONTINUE
\(001111=1\) MCBPTS
YBOUND(1):-DEPTH+YBOUND(1) + . 0
CONTINUE
RAT : UNIT / Vmax
DRAW SHEAR STRESSES ALONG BOUNDARY
1F(PPLOT2 EO. 1) THEN
\(1: 1\)
CALL UUAXIS(XYL(1), XYL(2), XYL(3), XYL(4))

DRAN BOUNDARY

\section*{CALL JOPEN}

CALL JLWIDE(18383)
CALL JMOVE (ZBOUND (1), YBOUND (1))
CALL JPOLY(ZBOUND, YBOUUND, MCBPTS)
CALL JPOLY(ZBOUND, YBOUND, MCBPTS)
CALL JDRAW(ZBOUND ( 11 , YBOUND 1 )
CALL JCLOSE
\(00150 K=1.2\)
\(00160 \mathrm{~J}=1, \mathrm{NB}(K)\)
SHEAR(J, I,K) = SHEAR(J, I,K) / AVOSHEA
DO 180 I \(=\) MK, NA
CONTINUE
CONTINUE
CONTINU

WRITE(6, 77)
CALL JPAUSE(1)
END IF
```

DRAW VELOCITIES COMPONENTS

```
```

IFIPPLOT3.EQ. I OR PPLOTA.EQ. I .OR. PPLOTS.EO. I) THEN
ANO = 30.1180.*3.14159265
IF(PPLOT3 .EO. 1) THEN

```
    CALL JFRAME
    CALL UUAX(S (XYL(1), KYL(2), XYL(3), XYL(4))
DRAW BOUNDARY
CALL JOPEN
    CALL JLWIDE(16383)
    CALL JMOVE(ZBQUND (1), YBOUND (1))
    CALL JPOLY(ZBOUND, YBÓUND, MCBPTS)
    CALL JDRAW(ZBOUND(1), YBOUND(1))
CALL JCLOSE
THETA \(=3.14159265 / 2\)
    CALL JOPEN
    CALL JLWIDE(8000)
    \(00200 K=1,2\)
        DO \(2101=2, N A 1, ~ N O I V I D E(1)\)
    NC \(=\) JBEG \((K, 1)\)
        DO 220 J \(\mathrm{NC}, \mathrm{NB}(K)\), NDIVIDE (2)
        CALL JMOVE \(Z(J, l, K), Y(J, l, K))\)
        PVY = VY(J,I,K) = RAT : RATIO + Y(J,I,K)
    PVZ \(=Z(J, l, K)\)
    CALL JDRAW(PVZ, PVY)
    RT: SORT (VY(J, : K) K \(=\operatorname{VY}(3,1, K)+0.0=0.0) / 8.0\)
    OX: RT \(=\) COS(THETA) : RAT
    OY : RT : SIN(THETA) : RAT M RATIO
    IF (VY(J, !,K) LT, O.O) OY - OY
    TY : PVY - OY
        TZ \(: P V Z\) - \(O X\)
            \(D X=R T=S I N(A N G): \cos ((P I E / 2 .-A N B)+T H E T A):\) RAT
            DY = RT = BIN(ANG) E SIN( (PIE/2.-ANG) \& YHETA) : RATERATIG
            OXI RT = SIN(ANG) : COS(THETA-\{P(E/2,-ANO)) : RAT
            DYI RT: SIN(ANG) BIN(THETA-(PIE/2.-ANO)) RATERATIO
            \(Y A=T Y\) - \(O Y\)
            ZA \(=T Z\) - OX
            \(Y A=Y Z * O X\)
\(Y B=Y Y * O Y I\)
            \(Y B=Y Y+O Y I\)
\(Z B-E X I\)
    CALL JMOVE(PVZ, PVY)
    L゙ALL JUKAWI \(\triangle A, Y A)\)
    CALLLL JMOVE(PVZ, PVY)
    CALL JMOVE(PVZ, PVY)
CALL JORAW (ZB,YB)
        continue
        CONTINUE
        CONTINUE
    CALL JCLOSE
    WRITE IDENTIFIGATION
    XPOST KYL(1) - UNIT
    YPOST:XYLIA - O.S
    CALL JOPEN
        CALL JOPEN
            CALL JFONT (3)
                CALL JMOVE (XPOST, YPOST)
                CALL JSIZE(3.3,3,3:RATIO)
                CALL JHSTRG(NOTATU(1))
            CALL JCLOSE
DRAW AN UNIT LENGTH TO EXPRESS SCALE
XPOST - XYL! \()+2\). UNIT
YPOST: XYL(3) *.80
    CALL JOPEN
    CALL JOPEN
        CALL JMOVE(XPOST, YPOST)
        CALL JJUSY(1,2)
        CALL JFONT(3)
        CALL JSIZE(2.8, 3.0.RATIO)
        CALL JHSTRO('SCALE')
        CALL JMOVE(XPOST, YPOST-, 2)
        CALL JORAW (XPOST+1, O\#RAT, YPOST-. 2)
        CALL JMOVE (XPOST-1.2日RAT, YPEST-.2)
    CALL JCLOSE
call jpause (1)
    ENO IF
    IFIPPLOTA.EQ. 11 THEN
        CALL JFRAME
    CALL UUAXIS(XYL(1), XYL(2), XYL(3),XYL(4))
DRAW BOUNDARY
CALL JOPEN
    CALL JLWIDE(18383)

```

PYZ = Z(J,T,K) +VZ(J,I,K) = RAT

```
    RT: SORT(VY(J,I,K)=VY(J,I,K)+VZ(J,I,K)=VZ(J,I,K))/8, O
    OX RT COS(THETA) : RAT
    OY:RT:SIN(THETA): RAT : RATIO


    IF(VZ(J,l,K)
TY PVY,
    TY \(=P V Y-D Y\)
\(T Z=P V Z-D X\)
    \(\begin{aligned} & Z=P V Z=D X \\ & D X=R T: S I N(A N G)\end{aligned} \operatorname{COS}((P I E / Z,-A N E)+T H E T A)=R A T\)
        DY = RT:SIN(ANG) SIN((PIE/Z.-ANE) +THETA) E RAT\#RATIO
        DXI = RT: SIN(ANG) : COS(THETA-(PIE/2.-ANG)) RAT
        DYI = RT : SIN(ANO) : SIN(THETA-(PIE/Z.-AMO)) E RATERATIO
        \(Y A=T Y * D Y\)
\(Z A=T Z * D X\)
        \(Y A=T Y\) + \(D Y 1\)
\(Z B=T Z+D X 1\)
    CALL JMOVE(PVZ, PVY)
        CALL JORAW (ZA,YA)
    CALL JMOVE(PVZ,PVY)
    CALL JDRAW (ZB,YB)
        CONT INUE
        CONTINUE
        CONTINUE
        CALL JCLOSE
        hRITE.IOENTIFICATION
    XPOST = XYL(1) + UNIT
    YPOST: XYL(4) - 0.5
        CALL JOPEN
        CALL JJUST (1, 2)
        CALL JFONT (3)
            CALL JMEVE(XPOST,YPEST)
            CALL JS:ZE(3.3,3.3:RATIO)
            call JhStra(notatu(3))
        CALL JCLESE
    draw an unit length to express scale
    XPOST \(=\) XYL(1) + 2. UNIT
    YPOST \(=\) XYL(3) +.60
    CALL JGPEN
        CALL JMOVE(XPOST,YPOST)
        CALL JJUST(1,2)
        CALL JFONT(3)
        CALL JSIZE(2.6.3.O:RATIO)
        CALL JHSTRG('SCALE')
        CALL JHSTRG SCALE')
        CALL JMOVE(XPOST, YPOST- 2)
        CALL JDRAW(XPOST +1 OI ORAT, YPOST-, 2)
        CALL JMOVE(XPOST+1.2:RAT,YPOST=.2)
        CALL JHSTRG('IFPS')
    call jclese

CALL JPAUSE(1)
END IF
CALL JEND
Formatilizx. Change paper on plotter. enter stop to stop runs') STOP END

NE BNE DI3OISO(MA, HCSPTS, OEPTH، EPSILON, Y, Z, JBEB,
NE, B1, ZGOUND, YBOUND, FNCI, DELTA, DELY)
OIMENSION 2P(50), YP(SO)
OIMENSION Y(50,40,2),Z(50,40,2), OELTA(2)
OIMENSION JBEG(2,40), NB(2), BI(2), ZEOUND(20), YBOUNO(20)
INITIAL DI3000 PLOT ROUTINE
CALL UUINI(1)
YM!N = XMIN \(=0.0\)
Ymax \(=\) DEPTH \(=1.2\)
\(X_{X M A X}=\left(B 1(1)+B_{1}(2)\right)=1.1\)
CALL JWINOO (XMIN, XMAX, YMIN, YMAX)
CALL JVPORT(-1.0,1,0,-1.D,1.0)
CALL UUSTI('ALL.EXIST'.O)
CALL UUAXIS(XMIN, XMAX, YMIN, YMAX)
DRAW BOUNDARY
CALL UUCURV(ZBOUND, YBOUNO, MCBPTS)

ORAW XI CURVES
\(00100 k=1,2\)
FNC2 \(=81(K)+\) DELTA(K)
DO \(1101=1, \mathrm{NA}\)
NC = JBEG(K, i)
```

 NO = 1
 DO 120 J=NC,NB(K)
 YP(ND) = Y(J,I,K) * FNCI - DELY
 IF(K.EQ.1) ZP(ND) = Bl(1) - Z(J,l,K) E FNC2
 IF(K.EQ.2) ZP(NO) = Z(J,1,K) F FNCZ + Bl(1)
 ND = NO + ।
 ND =ND**
 NO = NO - 1
 CALL UUCURV(ZP,YP,NO)
 continue
 continue
 CALL JPAUSE(1)
 c
*
DO 150 K % 1,2 DELTA(K)
MK:NA
MK =NA
DO 160J=2,NB(K)

```

```

 END IF
 ND = 1
 YP(ND I = MP,MK
 YP(ND)=Y(J,I,K) = FNC) * DELY
 (F(K.EQ.1) ZP(ND) = B!(1) -Z(J,I,K) EFNC2
 IF(K,EQ.2) ZP(ND) = Z(J,I,K)= FNC2 + Bl(I)
 NO = NO - 1
 CONTINUE
 NO = NO - 1
 CALL UUCURV(ZP,YP,ND)
 CONTINUE
 CONTINUE
 labels
 CALL JPAUSE(1)
 CALL JEND

Appendix B

Measured Velocities

Figure B-1. Distribution of measured longitudinal, transverse and vertical components of velocity at cross section 7, June 27, 1984

Figure B-2. Isovels of longitudinal velocity at cross section 7, June 27 , 1984

Figure B-3. Measured secondary current vectors at cross section 7, June 27, 1984

Figure B-4. Distribution of measured longitudinal, transverse and vertical components of velocity at cross section 6, June 28, 1984

Figure B-5. Isovels of longitudinal velocity at cross section 6, June 28, 1984

Figure B-6. Measured secondary current vectors at cross section 6, June 28, 1984

Figure B-7. Distribution of measured longitudinal, transverse and vertical components of velocity at cross section 5 , June 29,1984

Figure B-8. Isovels of longitudinal velocity at cross section 5 , June 29, 1984

Figure B-9. Measured secondary current vectors at cross section 5, June 19, 1984

Figure B-10. Distribution of measured longitudinal, transverse and vertical components of velocity at cross section 3, July 9, 1984

Figure B-11. Isovels of longitudinal velocity at cross section 3, July 9, 1984

Figure B-12. Measured secondary current vectors at cross section 3, July 9, 1984

Figure B-13. Distribution of measured longitudinal, transverse and vertical components of velocity at cross section 4 , July 10 , 1984

Figure B-14. Isovels of longitudinal velocity at cross section 4, July 10, 1984

Figure B-15. Measured secondary current vectors at cross section 4 , July 10, 1984

Figure B-16. Distribution of measured longitudinal, transverse and vertical components of velocity at cross section 2, July 12, 1984

Figure B-17. Isovels of longitudinal velocity at cross section 2, July 12, 1984

Figure B-18. Measured secondary current vectors at cross section 2, July 12, 1984

Figure B-19. Distribution of measured longitudinal, transverse and vertical components of velocity at cross section 1, July 13, 1984

Figure B-20. Isovels of longitudinal velocity at cross section 1 , July 13 , 1984

Figure B-21. Measured secondary current vectors at cross section 1, July 13, 1984

Figure B-22. Distribution of measured longitudinal, transverse and vertical components of velocity at cross section 5, August 5, 1985

Figure B-23. Isovels of longitudinal velocity at cross section 5 , August 5, 1985

Figure B-24. Measured secondary current vectors at cross section 5, August 5, 1985

Figure B-25. Distribution of measured longitudinal, transverse and vertical components of velocity at cross section 6, August 6, 1985

Figure B-26. Isovels of longitudinal velocity at cross section 6 , August 6, 1985

Figure B-27. Measured secondary current vectors at cross section 6 , August 6, 1985

Figure B-28. Distribution of measured longitudinal, transverse and vertical components of velocity at cross section 7, August 7 , 1985

Figure B-29. Isovels of longitudinal velocity at cross section 7, August 7, 1985

Figure B-30. Measured secondary current vectors at cross section 7 , August 7, 1985

Figure B-31. Distribution of measured longitudinal, transverse and vertical components of velocity at cross section 8, August 8, 1985

Figure B-32. Isovels of longitudinal velocity at cross section 8 , August 8, 1985

Figure B-33. Measured secondary current vectors at cross section 8, August 8, 1985

Figure B-34. Distribution of measured longitudinal, transverse and vertical components of velocity at cross section 9, August 9, 1985

$\begin{array}{ll}\text { Figure } B-35 . & \text { Isovels of longitudinal velocity at cross section } 9, \\ \text { August } 9,1985\end{array}$

Figure B-36. Measured secondary current vectors at cross section 9, August 9, 1985

 $\infty \infty \infty \infty \infty-\infty-\infty \times \mathbb{C}$

DISTANCE (FT)	$\begin{aligned} & \text { DEPTH } \\ & (F T) \end{aligned}$	$\underset{(\text { FPS })}{U}$	S. D.	$\stackrel{v}{(F P S)}$	S. D.	$\begin{gathered} W \\ (\text { FPS }) \end{gathered}$	S.D.	ANGLE (DEGREE)	S. D
2.00	0.00	0.000	0.000	0.000	0.000	(-)	0.000	0.000	0.000
7.00	. 25	2.178	. 040	-. 374	. 047	(-)	0.000	87.529	. 000
7.00	. 50	2.218	. 025	-. 044	. 033	(-)	0.000	74.824	. 000
7.00	. 75	2.139	. 068	-. 141	. 051	$1-$	0.000	77.647	. 000
7.00	1.00	2.054	. 054	$-.093$. 026	$1-$	0. 0000	76.235	0.000
7.00	1.50	0.000	0.000	0.000	0.000	-	0.000	0.000	0.000
12.00	. 25	2.598	. 105	. 208	. 124	(-)	0.000	77.647	. 000
12.00	. 50	2.316	. 081	. 130	. 087	(-)	0.000	81.882	. 0000
12.00	75	2.296	. 055	. 194	. 064	(-	0.000	80.471	. 000
12.00	1.00	2.004	. 046	. 113	. 034	(-)	0.000	80.471 0.000	-. 0.00000
12.00	1.50	0.000	0.000	0.000	0.000	$1-$	0.000		
17.00	. 20	1.979	. 063	-. 078	. 121	(-)	0.000	84.706	. 000
17.00	. 45	2.046	. 061	. 071	. 063	(-)	0.000	80.471	. 000
17.00	. 70	1.839	. 114	-. 192	. 148	(-)	-0.000	86.118 0.000	-. 00000
17.00	1.20	0.000	0.000	0.000	0.000	(-)	0.000	0. 000	0.000
22.00	. 20	1.548	. 059	-. 037	. 104	1-1	0.000	81.882	. 000
22.00	. 45	1.677	. 059	. 119	. 036	1-1	0.000	81.882	. 000
22.00	. 95	0.000	0.000	0.000	0.000	(-)	0.000	0.000	0.000
27.00	. 20	1.350	. 104	-. 003	. 106	(-)	0.000	86.118	. 000
27.00	. 70	0.000	0.000	0.000	0.000	(-)	0.000	0.000	0.000
2.00	0.00	0.000	0.000	(-)	0.000	0.000	0.000	0.000	0.000
4.25	0,00	2.296	. 150		0.000	311	. 109	76.235	0.000
4.25	. 25	2.246	. 047	(-)	0.000	. 151	. 026	76.299	
4.25	. 50	2.163	. 021	(-)	0.000	111	. 016	74.824	. 000
4.25	1.00	2.050	. 043	(-)	0.000	098	. 082	74.885	. 294
4.25	1.25	1.711	. 036	(-)	0.000	. 007	. 014	74.824	. 0000
4.25	1.75	0.000	0.000	(-)	0.000	0.000	0.000	0.000	0.000

DISTANCE (FT)	$\begin{gathered} \text { DEPTH } \\ \text { (FT) } \end{gathered}$	$\underset{(F P S)}{\mathbf{U}}$	S.D.	$\begin{gathered} v \\ \text { (FPS) } \end{gathered}$	S. D.	$\begin{gathered} W \\ (\text { FPS }) \end{gathered}$	S.D	ANGLE (DEGREE)	S.D
9.25	. 25	2.676	. 036	-	0.000	. 371	. 055	79.059	000
9.25	. 50	2.615	. 036	(-)	0.000	. 180	. 044	79.059	000
9.25	. 75	2.364	. 084	(-)	0.000	. 098	. 131	79.059	000
9.25	1.00	2.004	. 059	-)	0.000	. 124	. 089	79.059	. 000
9.25	1.50	0.000	0.000	-)	0.000	0.000	0.000	0.000	0.000
14.26	. 20	2.483	. 052	(-)	0.000	. 372	063	83.294	. 000
14.25	. 45	2.189	. 060	(-)	0.000	. 187	. 030	84.706	. 000
14.28	. 70	1.667	. 055	(-)	0.000	. 138	. 039	84.706	. 000
14.25	1.20	0.000	0.000	-)	0.000	0.000	0.000	0.000	0.000
19.26	. 20	2.153	. 067	-)	0.000	. 169	. 042	74.824	0.000
19.25	. 45	1.644	. 043	-)	0.000	. 055	034	74.824	. 000
19.25	. 95	0.000	0.000	- 1	0.000	0.000	0.000	0.000	0.000
24.28	. 20	1.860	. 079	-)	0.000	. 190	. 073	87.529	. 000
24.25	. 70	0.000	0.000	-)	0.000	0.000	0.000	0.000	0.000
29.25	-. 50	1.589	. 085	-)	0.000	. 076	050	69.176	. 000

DISTANCE (FT)	$\begin{gathered} \text { DEPTH } \\ \text { (FT) } \end{gathered}$	$\begin{gathered} U \\ (\text { FPS }) \end{gathered}$	S.D.	$\begin{gathered} \mathbf{V} \\ (\text { FPS }) \end{gathered}$	s.o.	$\begin{gathered} W \\ (F P S) \end{gathered}$	S. 0 .	ANGLE (DEGREE)	S.D.
0.00	0.00	0.000	0.000	0.000	0.000	(-)	0.000	0.000	0.000
5.00	. 25	1.759	. 047	-. 280	. 168	(-)	0.000	81.882	000
5.00	. 50	1.907	. 053	-. 298	. 131	(-)	0.000	84.706	. 000
5.00	. 75	1.826	. 040	-. 333	. 074	(-)	0.000	83.294	000
5.00	1.25	0.000	0.000	0.000	0.000	(-)	0.000	0. 000	0.000
10.00	. 25	1.837	. 047	. 050	. 139	(-)	0.000	77.647	. 000
10.00	. 50	1.663	. 125	-. 155	. 083	(-)	0.000	83.294	. 000
10.00	. 75	1.418	. 080	. 118	. 153	(-)	0.000	83. 294	. 000
10.00	1.00	1.194	. 050	-. 137	. 079	(-)	0.000	84.706	. 000
10.00	1.50	0.000	0.000	0.000	0.000	(-)	0.000	0.000	0.000
15.00	. 25	1.890	. 085	. 202	. 093	(-)	0.000	83.294	. 000
15.00	. 50	1.780	. 036	. 205	. 086	(-)	0.000	83.294	. 000
15.00	. 75	1.592	. 058	. 198	. 087	(-)	0.000	83.294	. 000
15.00	1.25	0.000	0.000	0.000	0.000	(-)	0.000	0.000	0.000
20.00	. 33	1.736	. 133	. 396	. 195	(-)	0.000	79.059	. 000
20.00	. 58	1.879	. 155	. 503	. 352	(-)	0.000	83.294	. 000
20.00	1.08	0.000	0.000	0.000	0.000	(-)	0.000	0.000	0.000
25.00	. 25	1.587	. 052	. 551	. 079	(-)	0.000	83. 294	. 000
25.00	. 50	1.493	. 051	. 452	. 109	(-)	0.000	83.294	. 000
25.00	1.00	0.000	0.000	0.000	0.000	(-)	0.000	0.000	0.000
30.00	. 42	1.447	. 051	. 604	. 086	(-)	0.000	87.529	. 000
30.00	. 92	0.000	0.000	0.000	0.000	(-)	0.000	0.000	0.000
35.00	. 17	. 721	. 265	. 876	. 129	(-)	0.000	84.706	. 000
35.00	. 42	. 845	. 222	. 916	. 101	(-)	0.000	81.882	. 000
35.00	. 92	0.000	0.000	0.000	0.000	(-)	0.000	0.000	0.000
70.00	. 25	. 604	. 072	0.188	. 056	1-1	0.000	84.706	. 0000
70.00	. 75	0.000	0.000	0.000	0.000	(-)	0.000	0.000	0.000

DISTANCE DEPTH
:NNN
$\because \underset{\sim}{\square}$
NNNNN $\quad 0 \quad$ NORNN

DISTANCE (FT)	DEPTH (FT)	$\underset{(F P S)}{U}$	S.D.	$\begin{gathered} V \\ (F P S) \end{gathered}$	S.D.	$\begin{gathered} W \\ (F P S) \end{gathered}$	S.D.	ANGLE DEGREE)	S.D.
49.25	. 20	. 633	. 336	(-)	0.000	-. 014	. 395	76.235	000
49.25	. 70	. 677	. 315	(-)	0.000	. 117	. 323	74.824	000
49.25	. 95	. 718	. 220	(-)	0.000	. 029	. 209	74.824	. 000
49.25	1.45	0.000	0.000	(-)	0.000	0.000	0.000	0.000	0.000
62.75	. 30	. 557	. 322	(-)	0.000	. 076	. 301	72.000	. 000
62.75	. 80	. 708	. 329	(-)	0.000	. 111	. 344	72.000	. 000
62.75	1.05	. 847	. 281	(-)	0.000	. 169	. 227	72.000	. 000
62.75	1.55	0.000	0.000	(-)	0.000	0.000	0.000	0.000	0.000
73.25	. 50	. 539	. 323	(-)	0.000	-. 049	. 292	76. 235	0.000
73.25	1.00	. 587	. 239	(-)	0.000	. 071	. 194	76. 188	. 258
73.25	1.50	. 562	. 324	(-)	0.000	. 055	. 240	70.203	. 638

80
08808
080
0
0

89889890
88088888

888888
808880
$00^{\circ 0} 00^{\circ} 0^{\circ}$
00000° 000000

\qquad
\qquad

NONONN

8888

웅웅웅웅
~N~N~~~

measured data									
DISTANCE (FT)	$\begin{aligned} & \text { DEPTH } \\ & \text { (FT) } \end{aligned}$	$\underset{(\text { FPS })}{U}$	s.0.	$\begin{gathered} v \\ (\text { FPS }) \end{gathered}$	s.o.	$\stackrel{W}{(F P S)}$	s.0.	ANGLE (DEGREE)	s.o.
22.25	. 35	1.390	. 337	(-)	0.000	727	. 336	80.476	000
22.25	60	195	404	,	0.000	-. 580	. 357	79.064	000
22.25	85	1.085	295	-)	0.000	. 470	362	80.476	000
22.25	1.35	. 678	586	-)	0.000	-. 043	. 553	80.637	456
22.25	1.60	. 525	532	(-)	0.000	-. 100	479	81.846	242
22.25	2.10	0.000	0.000	(-)	0.000	0.000	0.000	0.000	0.000
32.25	. 25	. 532	. 362	-	0.000	-. 439	. 391	79.064	000
32.25	. 50	. 591	. 304	(-)	0.000	-. 323	. 267	80.203	567
32.25	1.00	689	. 507	(-)	0.000	-. 013	. 548	76.454	514
32. 25	1.00	426	535	(-)	0.000	-. 159	. 472	77.652	. 000
32.25	1.50	0.000	0.000	(-	0.000	0.000	0. 000	0.000	0.000
46.75	25	. 263	. 311	-)	0.000	-. 582	. 298	79.064	. 000
46.75	. 50	1.183	. 414	1-1	0.000	. 530	. 369	62.081	. 242
46.75	1.00	1.254	. 353	(-)	0.000	. 619	. 316	62.123	000
46.75	1.25	1.368	. 548	(-)	0.000	. 715	. 401	62.123	. 000
46.75	1.75	0.000	0.000	(-)	0.000	0.000	0.000	0.000	0.000
52.25	. 20	. 763	. 180	(-1)	0.000	-. 227	. 241	81.888	. 000
62.25	. 45	. 717	. 258	(-)	0.000	-. 038	. 246.	81.888	. 000
62.25	. 70	581	. 364	(-)	0.000	-. 076	. 384	94.549	. 250
62.25	. 95	1.370	460	(-)	0.000	. 679	. 416	93.229	. 258
62.25	. 95	. 734	. 552	(-)	0.000	. 313	. 442	94.543	. 267
62.25	1.45	0.000	0.000	1 -	0.000	0.000	0.000	0.000	0.000
72.25	. 30	. 614	. 277	-)	0.000	-. 075	. 258	84.711	0.000
72.25	. 55	. 752	. 487	(-)	0.000	. 049	. 452	84.711	0.000
72.25	80	. 694	. 903	(-)	0.000	. 049	855	75.698	. 700
72.25	1.05	. 213	. 644	(-)	0.000	-. 489	569	74.829	. 000
72.25	1.30	. 874	. 677	-)	0.000	226	603	74.829	0.000
72.25	1.55	874	. 436	-)	0.000	245	363	74.829	. 000
72.25	2.05	0.000	0.000	(-)	0.000	0.000	0. 000	0.000	0. 000
76.25	. 30	. 578	. 200	-)	0.000	208	. 232	79.064	. 000
76.25	. 55	. 539	390	(-)	0.000	139	417	77.652	. 000
76.25	. 80	. 505	292	(-)	0.000	. 099	. 283	77.652	000
76.25	1.05	. 464	222	(-)	0.000	. 046	. 203	78.098	665
76.25	1.30	. 600	416	(-)	0.000	. 241	. 365	75.906	608
76.25	1.80	. 440	. 192	- 1	0.000	. 068	. 142	74.829	000

distance (FT)	$\begin{gathered} \text { DEPTH } \\ \text { (FT) } \end{gathered}$	$\left(\begin{array}{c} \text { U } \\ (F P S) \end{array}\right.$	s. ${ }^{\text {d }}$	$\underset{(F P S)}{v}$	s.o.	$\stackrel{W}{(F P S)}$	s.o.	ANGLE (DEGREE)	S. ${ }^{\text {d }}$
1.00	0.00	0.000	0.000	0.000	0.000	(-)	0.000	0.000	0.000
8.50	. 40	. 220	. 358	-. 215	. 411	-)	0.000	86.919	. 709
8. 50	1.40	427	. 277	. 103	. 274	-)	0.000	87.529	. 000
8.50	1.90	0.000	0.000	0.000	0.000	,	0.000	0.000	0.000
14.00	. 10	. 239	. 242	. 090	. 333	,	0.000	79.059	0.000
14.00	. 35	. 415	. 117	-. 070	. 124	-)	0.000	80.426	. 250
14.00	. 85	. 512	. 414	. 035	. 482	-)	0.000	83.294	. 000
14.00	1.85	. 286	308	-. 119	. 390	-)	0.000	84.706	. 000
14.00	2.10	352	415	. 039	. 455	(-)	0.000	84.578	. 412
14.00	2.60	0.000	0.000	0.000	0.000	-)	0.000	0.000	0.000
26.00	25	. 573	. 598	. 148	. 668	-)	0.000	83.294	0.000
26.00	50	. 646	. 343	. 221	. 433	-)	0.000	84.706	. 000
26.00	1.00	. 525	. 372	. 087	. 391	(-)	0.000	86.125	. 100
26.00	1.25	. 597	. 328	. 355	. 420	(-)	0.000	77.647	. 000
26.00	1.50	. 480	. 312	. 077	. 328	(-)	0.000	88.941	0.000
26.00	1.75	337	. 298	. 025	. 294)	0.000	84.706	. 000
26.00	2.25	0.000	0.000	0.000	0.000	-	0.000	0.000	0.000
35.00	30	. 495	402	$\therefore 019$. 502	-)	0.000	81.882	. 000
35.00	55	. 389	. 390	-. 102	. 359	-)	0.000	88.941	. 000
35.00	1.05	. 331	. 316	-. 133	. 277	-)	0.000	89.590	. 713
35.00	1.30	463	. 332	. 084	. 327	(-)	0.000	80.471	. 000
35.00	1.55	400	336	. 009	306	-	0.000	88.941	. 000
35.00	2.05	0.000	0.000	0.000	0.000	(-)	0.000	0.000	0.000
50.00	. 20	. 507	. 480	. 070	. 508		0.000	84. 706	. 000
50.00	. 70	497	. 415	. 058	. 433	-)	0.000	84.706	. 000
50.00	1.20	482	436	. 049	469	-)	0. 000	84.706	000
50.00	1.70	0.000	0.000	0.000	0.000	1 -	0.000	0.000	0.000
65.00	. 10	. 343	. 214	-. 043	. 176	(-)	0.000	84.706	. 000
65.00	. 35	449	. 388	-. 037	440	-)	0.000	84.749	246
65.00	60	378	. 257	. 031	. 331	-)	0.000	84.706	000
65.00	1.10	. 355	. 306	-. 063	. 345	(-)	0.000	84.706	000
65.00	1.35	429	. 385	182	. 334	(-)	0.000	83.294	000
65.00	1.85	0.000	0.000	0.000	0.000	(-)	0.000	0.000	0.000

TABLE B-10 SANGAMON RIVER CROSS SECTION 7 AUGUST 71985 - (CONCLUDED)

DISTANCE (FT)	$\begin{aligned} & \text { DĖPTH } \\ & \text { (FT) } \end{aligned}$	$\begin{gathered} U \\ \text { (FPS) } \end{gathered}$	S.D.	$\begin{gathered} V \\ (F P S) \end{gathered}$	S.D.	$\begin{gathered} W \\ (\text { FPS }) \end{gathered}$	S.D.	ANGLE (DEGREE)	S. D
2.50	0.00	0.000	0.000	0.000	0.000	-	0.000	0.000	0.000
10.50	. 25	. 470	. 676	-. 044	. 434	-	0.000	110.269	434
10.50	. 50	. 500	. 518	-. 000	. 318	(-)	0.000	107. 299	000
10.50	1.00	.131	. 423	-. 203	. 288	(-)	0.000	107.299	000
10.50	1.50	. 351	. 337	-. 108	. 236	-	0.000	108.711	000
10.50	2.00	. 344	. 389	-. 083	. 251	(-)	0.000	110.123	. 000
10.50	2.50	. 375	. 295	-. 045	. 206	(-)	0.000	107.563	. 555
10.50	2.75	. 303	. 440	-. 020	. 208	(-)	0.000	114.213	1.159
10.50	3.00	. 486	. 848	-. 028	. 327	(-)	0.000	115.770	. 000
10.50	3.50	0.000	0.000	0.000	0.000	(-)	0.000	0.000	0.000
29.75	. 10	. 422	. 272	-. 166	. 158	(-)	0.000	110.160	229
29.75	. 35	. 512	. 585	-. 236	. 408	-)	0.000	109.894	
29.75	. 85	. 693	. 527	-. 119	. 353	$(-$	0.000	110.087	226
29.75	1.85	. 494	. 408	-. 149	. 279	$(-$	0.000	111.535	000
29.75	2.35	. 779	. 408	. 048	. 280	1 -	0.000	109.583	852
29.75	2.85	. 506	. 562	-. 010	. 333	-	0.000	113.025	. 328
29.75	3.10	. 259	. 678	. 140	. 599	-	0.000	114.358	. 000
29.75	3.60	0.000	0.000	0.000	0.000	-	0.000	0.000	0.000
45.00	. 15	. 496	1.128	. 040	. 882	-)	0.000	109.874	546
45.00	. 40	. 476	. 544	-. 264	. 355	(-)	0.000	107.299	. 000
45.00	. 90	. 451	. 672	-. 210	. 476	-)	0.000	108.711	. 000
45.00	1.40	. 830	. 513	. 105	. 386	-	0.000	105.888	. 000
45.00	1.90	. 550	. 481	-. 122	. 263	(-)	0.000	105.888	000
45.00	2.90	. 570	. 497	-. 166	. 249	(-)	0.000	114.358	000
45.00	3.40	0.000	0.000	0.000	0.000	-	0.000	0.000	0.000
60.50	. 15	. 412	. 636	-. 124	. 628	-)	0.000	101.652	. 000
60.50	. 40	. 476	. 358	-. 148	. 204	-	0.000	111.535	. 000
60.50	. 90	. 466	. 382	-. 118	. 262	-	0.000	105.888	. 000
60.50	1.40	. 643	. 462	. 033	. 258	-	0.000	104.476	. 000
60.50	1.90	. 512	. 395	-. 024	. 309	-	0.000	104.476	. 000
60.50	2.40	. 509	. 441	. 017	. 286	-	0.000	110.123	. 000
60.50	2.65	. 623	. 554	-. 013	. 316	(-)	0.000	111.535	. 000
60.50	2. 90	. 427	. 493	-. 101	. 268	(-)	0.000	115.808	. 525
60.50	3.40	0.000	0.000	0.000	0.000	(-)	0.000	0.000	0.000

D．

$$
0
$$

8880880880

ल

0
8
0

0.000

8088888888
00000000000

90808080 08088080 00000000

8
0
0

$\circ 9080890$
0808888
0000000

$-$

ーのーのーーのー
$\stackrel{V}{(F P S)}$
S．D．

S．D．

8
0
0

0.000

8

89898908
00000000

N゚N゚NN゚N゚N ninininino

DISTANCE (FT)	$\begin{aligned} & \text { DEPTH } \\ & \text { (FTT) } \end{aligned}$	$\underset{(F P S)}{U}$	S.D.	$\begin{gathered} V \\ (\text { FPS }) \end{gathered}$	S.D.	$\begin{gathered} W \\ (\text { FPS }) \end{gathered}$	S.D.	ANGLE (DEGREE)	S.D.
0.00	0.00	0.000	0.000	0.000	0.000	(-)	0.000	0.000	0.000
11.50	. 20	. 175	. 262	-. 253	. 168	-)	0.000	124.235	000
11.50	. 45	. 218	. 152	-. 299	. 115	(-)	0.000	125.862	513
11.50	. 95	. 192	. 122	-. 285	. 090	-)	0.000	127.059	000
11.50	1.20	. 136	. 132	-. 202	123	-)	0.000	125.647	0
11.50	1.70	0.000	0.000	0.000	0.000	(-)	0.000	0.000	0.000
26.50	. 10	. 182	. 319	-. 420	. 259	(-)	0.000	117.176	000
26.50	. 35	. 326	. 108	-. 355	. 104	- 1	0.000	121.412	000
26.50	. 35	.317	. 129	-. 388	. 086	-)	0.000	121.412	000
26.50	1.35	. 291	. 092	-. 321	. 087	-)	0.000	117.176	0.000
26.50	1.85	. 245	. 126	-. 252	. 108)	0.000	120.000	0.000
26.50	2.10	. 057	. 177	-. 199	. 134)	0.000	122.012	707
26.50	2.60	0.000	0.000	0.000	0.000)	0.000	0.000	0.000
41.50	. 25	. 282	. 187	-. 233	. 139	-)	0.000	120.409	1.464
41.50	. 50	. 247	. 108	-. 269	. 075	-)	0.000	118.588	. 000
41.50	. 75	. 275	. 115	-. 225	. 096	-)	0.000	115.765	. 000
41.50	1.25	. 258	. 107	-. 189	. 077	-)	0.000	118.588	000
41.50	1.75	0.000	0.000	0.000	0.000	-	0.000	0.000	0.000
$51.00{ }^{\circ}$. 15	. 390	. 142	-. 051	. 099		0.000	120.000	0.000
51.00	. 40	. 437	. 120	-. 071	. 100	(-)	0.000	116.887	. 662
51.00	1.40	. 453	. 023	-. 009	. 032	(-)	0.000	114.353	0.000
51.00	1.90	. 450	. 030	-. 010	. 024	(-)	0.000	118.657	. 308
51.00	2.40	. 447	. 053	. 052	. 040	(-)	0.000	115.765	0.000
51.00	2.90	. 402	. 063	. 030	. 048	(-)	0.000	118.588	. 000
51.00	3.40	. 423	. 060	. 058	. 037	(-)	0.000	122.824	. 000
51.00	3.90	0.000	0.000	0.000	0.000	-)	0.000	0.000	0.000
57.00	. 25	. 472	. 042	-. 101	. 038		0.000	116.016	. 546
57.00	. 50	. 515	. 041	-. 092	. 039	(-)	0.000	115.765	. 000
57.00	1.00	. 471	. 039	-. 070	. 044	-)	0.000	115.765	000
57.00	1.50	. 474	. 031	-. 003	. 031	-)	0.000	111.529	000
57.00	1.75	430	. 056	. 015	. 051	-)	0.000	116.336	701
57.00	2.25	. 370	. 037	. 067	. 041	-)	0.000	111.529	000
57.00	2.75	421	. 086	. 061	. 060	-)	0.000	115.154	1.080
57.00	3. 25	0.000	0.000	0.000	0.000)	0.000	0.000	0.000

Appendix C

Computed Velocities

Figure C-1. Computed secondary current vectors at cross section 6 , June 28, 1984

Figure C-2. Computed secondary current vectors at cross section 5 , June 29, 1984

Figure C-3. Computed secondary cur.ment vectors at cross section 3,
July 9, 1984

Figure C-5. Computed secondary current vectors at cross section 5 , August 5, 1985

Figure C-6. Computed secondary current vectors at cross section 6 , August 6, 1985

Figure C-7. Computed secondary current vectors at cross section 8, August 8, 1985

©

[^0]

のが
 NNNNNNNNNNNNNNNNNNNMNNNNNNNNMMNNNNNMNーNNーNNNN

 －

ゥ

¢	-

スス

© 毋

TABLE C-3 SANGAMON RIVER CROSS SECTION 3 JULY 91984 - (CONCLUDED)
COMPUTED SECONDARY VELOCITY
 NoNo

 $\because \because \because \because$
 001

ヘペめN

 $0 i i i i i o j \cdots o i$

table c-6 sangamon river cross section 6 august 61985 - (CONcLuded)

MNへ

 100 i i io i i

[^0]:

