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ABSTRACT 

INCORPORATION OF UNCERTAINTIES IN REAL-TIME CATCHMENT FLOOD FORECASTING 

Floods have become the most prevalent and costly natural hazards in the 
U.S. When preparing real-time flood forecasts for a catchment flood warning 
and preparedness system, consideration must be given to four sources of 
uncertainty - -  natural, data, model parameters, and model structure. A 
general procedure has been developed for applying reliability analysis to 
evaluate the effects of the various sources of uncertainty on hydrologic 
models used for forecasting and prediction of catchment floods. Three 
reliability analysis methods - -  Monte Carlo simulation, mean value and 
advanced first-order second moment analyses (MVFOSM and AFOSM, respectively) 
- - were applied to the rainfall -runoff modeling reliability problem. 
Comparison of these methods indicates that the AFOSM method is probably best 
suited to the rainfall-runoff modeling reliability problem with the MVFOSM 
showing some promise. The feasibility and utility of the reliability 
analysis procedure are shown for a case study employing as an example the 
HEC-1 and RORB rainfall-runoff watershed models to forecast flood events on 
the Vermilion River watershed at Pontiac, Illinois. The utility of the 
reliability analysis approach is demonstrated for four important hydrologic 
problems: 1) determination of forecast (or prediction) reliability, 2) 
determination of the flood level exceedance probability due to a current 
storm and development of "rules of thumb" for flood warning decision making 
considering this probabilistic information, 3) determination of the key 
sources of uncertainty influencing model forecast reliability, 4) selection 
of hydrologic models based on comparison of model forecast reliability. 
Central to this demonstration is the reliability analysis methods' ability 
to estimate the exceedance probability for any hydrologic target level of 
interest and, hence, to produce forecast cumulative density functions and 
probability distribution functions. For typical hydrologic modeling cases, 
reduction of the underlying modeling uncertainties is the key to obtaining 
useful, reliable forecasts. Furthermore, determination of the rainfall 
excess is the primary source of uncertainty, especially in the estimation of 
the temporal and areal rainfall distributions. 
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1. INTRODUCTION 

1.1 Severity of the Flooding Problem 

Floods and flash floods have been the most prevalent and costly natural 
disaster in the United States over the last decade resulting in $1 billion 
in damages and 200 deaths annually (Mogil et al., 1978). This annual damage 
figure is expected to grow to around $4.3 billion annually (in 1975 dollars) 
by the year 2000 (Water Resources Council, 1977). White (1975) pointed out 
that flood events provoke far-reaching impacts in society that go beyond 
dollar and fatality numbers. Social disruption caused by floods includes 
social structures (i.e., families, communities, etc.) disruption, disloca- 
tion, unemployment, and deaths and injuries . Furthermore, this problem is 
national in scope since overflowing rivers and streams cause significant 
flooding in about half of the communities (representing approximately half 
of the nation's population) and over at least seven percent of the total 
land area of the United States (White, 1975). Finally, the flood problem is 
not restricted to the United States, floods and flash floods pose a severe 
threat to nearly every country around the globe. This is evidenced by the 
fact that the literature reviewed here describes flood warning schemes from 
countries all around the globe including Australia, Cambodia, India, Japan, 
Sweden, the United Kingdom, and the U.S.S.R. 

The seriousness of flood hazards in the United States (and around the 
globe) has long been recognized and considerable effort has been expended to 
mitigate these hazards. For example, the 1980 fiscal year budgets of the 
Corps of Engineers and the National Weather Service included more than $1 
billion for flood protection and control activities, while the budgets of 
the Federal Insurance Administration, the Office of Disaster Response and 
Recovery, and the Red Cross included nearly $1.2 billion for relief and 
assistance to flood victims (National Science Foundation, 1980). Pilgrim 
et al. (1982) reported even more startling figures for Australia where the 
annual capital investment in flood related works is approximately $30 per 
person. In the last decade non-structural flood control measures - -  such as 
flood plain zoning, flood insurance, flood warning and preparedness systems, 
etc. - -  have received a high priority in research and implementation due to 
Presidential directive (Executive Order 11988) and other statutes. 

Flood warning and preparedness (FWP) systems are one of the most 
promising of the non-structural flood control measures. The goal of this 
study is to develop a methodology for evaluating the reliability of real- 
time flood forecasts produced by rainfall-runoff models which play a key 
role in the effectiveness of FWP systems. In the following sections the 
potential benefits and key characteristics of FWP systems will be discussed. 
The need for and benefits of proper evaluation of the uncertainty in real- 
time flood forecasts are also described in the following sections. 

1.2 Basic Definitions: Flood Warning, Flood Watch, Flood Forecast 

In order to properly understand the historical development and current 
"state-of-the-art" in FWP systems, basic definitions of flood warning, flood 



watch, and flood forecast as typically given in the literature and as used 
in this study need to be discussed. Actually, in the National Weather 
Service (NWS) view of flood protection, these various concepts change 
definition depending on the size of the watershed and the type of flooding 
encountered. 

For flash flood cases on small watersheds, flash flood watches are 
issued by NWS State Forecast Offices if meteorological and watershed 
conditions indicate the potential for flash floods (e.g., if heavy rains 
appear imminent on a fairly wet watershed). Flash flood warnings are issued 
if a NWS office determines a flash flood is occurring or flood producing 
rainfall is indicated by radar, automated gages, satellite data, or rainfall 
observers. 

For larger watersheds, flood watches are not issued, only flood 
warnings based on hydrologic model predictions and observed flooding 
upstream are issued. Sittner (1977) noted that: 

The application of precipitation input to a hydrologic model yields a 
computed hydrograph, not a forecast. The forecast is produced by a 
human forecaster, based principally on the computed hydrograph, but 
using in addition observed stages and/or discharges from various river 
stations, including the one for which the forecast is being prepared. 

Therefore, for larger watersheds, the flood forecast is itself the flood 
warning, i.e., a flood of certain magnitude is forecast to reach a town at a 
certain time and the residents of that town are encouraged to take 
appropriate mitigation measures. 

In this study, the more traditional hydrologic definition of forecast 
is used. Chow (1972) defined a forecast as the transformation of one 
sequence of hydrologic events (the input to a hydrologic system - -  rainfall, 
snowmelt, etc.) into another sequence that results due to the initial 
sequence (the output from the system - -  the hydrograph). Hence, in this 
study, the computed hydrograph is the forecast hydrograph. A staged flood 
warning and preparedness system concept is then used to define the terms 
flood watch and flood warning. As for flash floods, flood watches are 
issued to activate and gear up the city's flood preparedness system, and 
they are issued when the forecast indicates that near flood discharges are 
expected. Flood warnings are issued to initiate the city's actual flood 
mitigation activities, and they are issued when peak discharges in excess of 
flood stage are forecast. 

1.3 Potential Benefits of FWP Systems 

FWP systems are one of the most promising non-structural means of 
reducing avoidable flood damages and fatalities. Day (1970) found that for 
the Susquehanna River basin as much as two-thirds of the avoidable flood 
damage could be realized as net benefits of a FWP system. Day and Lee 
(1976) estimated the potential benefit-cost (B/C) ratio (assuming full, 
timely community response to warnings) of a FWP system for the Connecticut 
River basin to be as high as 7.5, and they concluded that the actual B/C 
ratio from an FWP system should be at least 3. Heatherwick and Quinnell 



(1976) concluded that the potential B/C ratios for total flood warning 
systems for urban areas in Australia, even when subject to rare flood 
events, are very high (e . g . , for Brisbane B/C = 6.6) . White (1975) noted 
that there is reasonable ground for thinking that warning systems might 
yield B/C ratios of 5 for most cases. Finally, Owen et al. (1983) concluded 
virtually any area with a significant flood problem can experience net 
benefits from the availability of adequate FVP systems either alone or in 
conjunction with other measures. 

The benefits of FWP systems go far beyond the potential economic losses 
averted considered above. FVP systems also greatly reduce the social 
disruption, deaths, and injuries caused by floods. Indeed, Owen et al. 
(1983) reported that there are no known cases of avoidable flood deaths 
where well developed local flood warning programs are in operation. 

1.4 Key Characteristics of FWP Systems 

FWP systems require a unique combination of human and technical factors 
to ensure their efficient operation. In recent years, a fair amount of 
research has been devoted to develop methodologies for evaluating the 
performance of a specified flood warning system (e.g., Sniedovich and Davis, 
1977; and Krzysztofowicz and Davis, 1983a-c). This research has resulted in 
several important insights regarding the efficiency of FVP systems, which 
are discussed below. 

FVP systems can be idealized as two sequential systems: a forecasting 
system, which evaluates flood hazards and issues flood warnings, and a 
response system, which enacts protective measures upon receiving the 
warning. The forecasting system involves data collection, flood fore- 
casting, and forecast dissemination steps, and so the proper functioning of 
this system can be controlled by engineering and/or technical factors. 
However, the response system involves decision making and action (i.e., 
protection) implementation steps, which are controlled by human factors. 
Krzysztofowicz and Davis (1983~) found that non-optimal response strategy 
does not allow the full forecast system potential to be realized. As a 
result, the actual value (effectiveness) of the FWP system is low, no matter 
what the quality of the forecasts. Thus, the human factors which control 
the response strategy of the flood plain dwellers are the key elements in 
the overall effectiveness of FVP systems. 

Several researchers (White, 1975; Owen et al., 1983; and Krzysztofowicz 
and Davis, 1983c) have noted that one of the key factors which influences 
response to flood warnings is the public confidence in the warnings. If 
there are many "false alarms" people will tend to ignore warnings and so the 
FVP system becomes ineffective. Conversely, if floods occur without 
adequate warning (i.., warning with a reasonable amount of preparation 
time) the forecasting system is ineffective, and this ineffectiveness also 
lowers public confidence. 

Krzysztofowicz and Davis (1983~) found that the optimal response 
strategy tended to be anticipatory such that people begin to take some 
protective action even before it is expected the flood will reach their 
flood plain level. Such a strategy requires some understanding, usually 



based on past experience, of the variable nature ( i . ,  uncertainty) of 
floods and their forecasts. However, they also noted that: 

"The ability of untrained people to think in probabilistic terms 
is generally very poor. As a result, people tend to ignore 
uncertainty and view future events as perfectly predictable, 
even if their past experience suggests to the contrary." 

The officials in charge of issuing flood warnings should be capable of 
understanding the probabilistic nature of a flood resulting from a current 
storm, and given the proper information they can issue warnings which will 
solicit anticipatory responses from the public. An example of such flood 
warnings are those issued by "staged" flood warning arrangements 
(Owen et al., 1983). "Staged" flood warning provides for identifying 
several levels of flood threat and issuing appropriate warnings based on the 
anticipated magnitude of flooding and the certainty of its occurrence. 

1.5 Uncertainty in Forecasts of the Rainfall-Runoff Process 

Real-time flood forecasting models are the primary source of informa- 
tion regarding potential flooding due to a current storm event. In a 
typical FWP system, the expected flood hydrograph is estimated using the 
available rainfall data (and, possibly, precipitation forecasts), the best 
estimates of the model parameter values, and a hydrologic model the hydrolo- 
gist feels comfortable with. When analyzing a hydrologic system (watershed) 
to determine the runoff (flood) hydrograph resulting from a storm event, a 
hydrologist is faced with four sources of uncertainty: (1) natural, (2) 
data, (3) model parameter, and (4) model structure uncertainties. Natural 
uncertainties refer to the random temporal and areal fluctuations inherent 
in natural processes. Plate (1986) noted the natural variability of the 
rainfall process and of the conversion of rainfall into runoff almost always 
enters a large amount of uncertainty into the physical process of runoff 
generation. The hydrologist, therefore, must deal with a large random 
residue even if a perfect model of the hydrologic cycle were available. 
Data uncertainties refer to: (a) measurement inaccuracy and errors; (b) the 
adequacy of the rain and/or stream gage network, soil data, vegetation data, 
etc.; and (c) data handling and transmission errors. Parameter uncertainty 
reflects variability in the determination of the proper parameter values to 
use in modeling a given storm event. Model structure uncertainty refers to 
the ability of the model to accurately reflect the watershed's true physical 
runoff process. 

The National Science Foundation (1980) recommended that methods must be 
developed to quantify forecast uncertainty caused by the aforementioned 
sources of modeling uncertainty. Nevertheless, in current "state-of-the- 
art" real-time flood forecasting systems, these uncertainties are only 
partially considered either by updating schemes, which adjust the input data 
or model parameters such that the predicted discharge agrees with the 
available discharge measurements, or by adaptive filtering techniques which 
automatically update the forecasts. However, even for one of the most 
sophisticated of these techniques, Kitanidis and Bras (1980~) admitted that 
to truly enhance the accuracy of future forecasts, the correct structure of 
uncertainty, pertinent to the specific model and data must be hypothesized. 



Reliability analysis methods, which were developed for structural 
safety analysis and have been successfully applied to hydraulic structure 
design problems, offer an innovative way to consider the various sources of 
uncertainty and their effects on the accuracy of the forecast hydrograph. 
Reliability analysis methods can provide an estimate of the probability of 
any level of flooding for the current storm event given information 
regarding the various sources of uncertainty. Hence, by applying reliabi- 
lity analysis to the real-time flood forecasting model the officials in 
charge of issuing flood warnings will be provided with not only an estimate 
of the expected flood hydrograph, but also with the probabilities that any 
critical flood level will be exceeded. Georgakakos (1986a) stated that such 
probability values are indispensible in the present day flood warning 
decision making process. Furthermore, such information can greatly aid 
flood warning decision making in two areas: 

1. More definitive criteria can be established regarding when to issue 
a warning such that "false alarms" and unanticipated floods can be 
avoided, 

2. The flood probabilities for different levels are key information 
for establishing a flood warning program which solicits anticipa- 
tory responses (e.g., a "staged" flood warning program). 

Therefore, consideration of forecast uncertainties and reliability is very 
important to FWP system effectiveness since it can potentially improve both 
the information provided by the forecast and the response to the warning 
issued based on the forecast. 

1.6 Research Objectives 

To date, the research on the effects of the various sources of 
uncertainty on the reliability of rainfall-runoff modeling has been aimed at 
demonstrating the severity of these effects not at providing a simple, 
flexible means of estimating the reliability of a forecast or prediction 
made by a rainfall-runoff model. Therefore, the objective of this research 
is to develop a general procedure for using reliability analysis to consider 
the effects of rainfall-runoff model uncertainty on real-time flood 
forecasts to provide more complete information for flood warning decision 
making. The simplicity, flexibility, and utility of the general approach is 
demonstrated through a case study. The utility of the general procedure is 
demonstrated through the attainment of the potential benefits of considering 
uncertainties in rainfall-runoff modeling. These potential benefits 
include : 

1. the enhancement of the forecast itself by providing a measure of its 
precision (this measure of precision may also be used to postulate on 
the reliability of hydrologic models used for design hydrograph 
estimation or synthetic series generation); 

2. information which could allow flood warnings to be issued in such a way 
as to promote a more optimal response (i. e. , an anticipatory response) 
from the flood plain dweller; 



3. a reduction in "false alarms" and unanticipated floods due to more 
complete information on flood potential, leading to increased public 
confidence in the warning system and, hence, improved response to 
warnings ; 

4. determination of which hydrologic areas - -  i.e., data, model parameters, 
and/or model structure - -  will provide the greatest forecast improvement 
given future study; 

5. a criterion for determining the optimal level of model complexity 
required for FWP systems to achieve a prescribed level of reliability; 

A sixth potential benefit - -  determination of the expected flood damage from 
actual or hypothetical (design) storms - -  was not examined here due to the 
lack of adequate economic data on flood loss. 

A secondary objective of this research is to assess the typical 
rainfall-runoff model forecast (or prediction) reliability considering the 
major sources of uncertainty. 

1.7 Research Scope 

The application of reliability analysis to real-time flood forecasting 
models is model and case dependent. Many factors influence the choice of 
the hydrologic model to be incorporated within a FWP system. Among the key 
factors influencing the model choice are watershed size and morphology. For 
large watersheds, where the flood peak reaches the area of interest (i. e. , 
area to be warned) well after the significant runoff producing rainfall has 
ceased, the flood forecasts are usually made by physical or statistical 
routing models without considering the rainfall- runoff process. For medium 
sized watersheds, where the flood peak reaches the area of interest within a 
fairly short time (e.g., a day) after the significant runoff producing 
rainfall has ceased, rainfall-runoff models must be used for flood fore- . 
casting. Small watersheds or watersheds with steep slopes and/or large 
amounts of impervious area are subject to flash floods. The National 
Weather Service defines a flash flood as a flood that follows the causative 
event (usually heavy rainfall) within a few hours (Maddox and Chappell, 
1979) . Thus, precipitation forecasts must be incorporated with 
rainfall-runoff modeling to provide flood warnings with adequate lead times. 

In this study, FWP systems for medium sized watersheds are considered. 
Flood forecasting for medium sized watersheds may make use of precipitation 
forecasts to improve warning lead time. However, in this research, the 
forecast hydrographs were based solely on the rainfall "on the ground" at 
the forecast time. Furthermore, no intermediate forecasts were studied, 
i. e . , the verification event forecasts were made using all the significant 
runoff producing rainfall for the event. Consideration of precipitation 
forecasts and their uncertainties is left for future research. Thus, this 
research centers around using reliability analysis to consider the data, 
model parameter, and model structure uncertainties inherent in real-time 
hydrologic models of the rainfall- runoff process. Even though FWP sys tems 
for large and small watersheds are not specifically addressed, the 
principles described and developed here may be quite useful for analysis of 



flood forecast uncertainties for such watersheds. For example, combining 
hydrologic model and precipitation forecast uncertainty analysis may greatly 
aid a flash flood warning program. 

This study develops the basic concepts for dealing with uncertainties 
and applying reliability analysis so that one may apply the methodology to a 
wide range of models. The application of reliability analysis to selected 
real-time flood forecasting models is demonstrated for a medium sized 
Illinois watershed. 



2. PROCEDURE FOR COMBINING RELIABILITY 
ANALYSIS AND HYDROLOGIC MODELING 

2.1 General Framework 

A review of some existing rainfall-runoff simulation models pertinent 
to the present study is given in Appendix A. A review of existing 
reliability analysis methods is presented in Appendix B. These existing 
tools and techniques can be used as the foundation of the procedure 
developed in this study. In this chapter the basic framework of the 
procedure which combines reliability analysis with hydrologic models to 
assess the reliability of these models and their forecasts or predictions is 
presented. Figure 2.1 presents a flow chart displaying the interrelation- 
ship between the reliability analysis procedure and the typical 
applicationof a hydrologic model for decision making. The double arrow 
between the reliability analysis method and the hydrologic model indicates 
the interplay between the two, wherein the reliability analysis method uses 
the hydrologic model to describe the performance of the system whose 
variability and/or uncertainty is being estimated. 

The general framework is applicable to any hydrologic model except 
those which directly involve nonlinear partial differential equations (e.g., 
dynamic wave flow routing). Hence, the hydrologic models which fit into 
this framework include most of those used for real-time flood forecasting 
and design hydrograph estimation. 

The key assumption in using the general procedure is that the 
hydrologic model and the uncertainties in its basic variables (input data, 
model parameters, and model structure correction factor) adequately describe 
the true variability in the natural rainfall-runoff process. This assump- 
tion must hold true if one wishes to estimate actual probabilities that 
specific hydrologic target levels will be exceeded by the event forecast or 
will be met by predicted design hydrograph. If one wishes to access the 
reliability of a model prediction or forecast or compare the relative 
reliability of models or design cases, the above assumption does not need to 
be closely approximated. In such cases, the description of the basic 
variable uncertainties must be accurate and consistently determined. 

Figure 2.2 presents a flow chart of the general procedure for using 
reliability analysis to determine hydrologic target level exceedance 
probabilities. Each of the steps in this flow chart are described in detail 
in the following sections. Use of the hydrologic target level exceedance 
probabilities in decision making and in evaluating forecast or prediction 
reliability is also described in the following. 

The first step in the approach is for hydrologists to select any model 
they "feel comfortable with" and which they feel is adequate for the problem 
being studied. 

The second step is to formulate the system performance function, Z, (as 
defined in Appendix B. 2) as 
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(2. la) 

(2 .lb) 

where TH = the hydrologic target level whose exceedance probability is 
sought, 

Am = the model correction factor which expresses the relationship 
between the model's optimal performance and the true value of 
the hydrologic information estimated, 

hM(.) = a function which represents the model's estimate of the 
hydrologic information in question, and 

OM = the vector of model basic variables minus the model structure 
correction factor, i.e., OM includes the input data and model 
parameters. 

In this research, the hydrologic information estimated is the peak discharge 
resulting from a storm event (either real or design). Hence, the target 
level TH is set equal to the measured peak discharge to check the model 
forecast and prediction reliability, and it is set equal to the critical 
flood stage to estimate the flood level exceedance probability. In 
evaluating forecast and prediction reliability, the measured peak exceedance 
probability is not the reliability measure. Instead, reliability is 
expressed as the difference between the measured and forecast peaks in terms 
of normalized forecast standard deviations, which may be determined from the 
exceedance probability. This approach is not limited to hydrograph peak 
estimates, it may be applied to check the reliability of model estimates of 
other hydrologic information of interest, e.g., runoff volumes, flood wave 
travel times, etc. 

The third, and most important, step in the approach is to estimate 
measures which express the individual uncertainty in the basic variables of 
the model. In order to analyze the uncertainty in an engineering system, 
the MVFOSM method requires knowledge of the mean and standard deviation of 
the various factors (i.e., basic variables) which influence system response. 
The AFOSM also requires knowledge of the basic variable means and standard 
deviations, and it may use probability distribution data if it is available. 
Monte Carlo simulation requires assumptions regarding the basic variable 
distributions . 

The following sections in this chapter present a general procedure for 
evaluating the uncertainties in data, model parameters, and model structure 
and then estimating the corresponding mean and standard deviation of the 
basic variables. Estimation of basic variable probability distributions is 
much more difficult. For calibrated models, if a representative, 
homogeneous calibration data set of sufficient size (each of these concepts 
is described in detail in section 2.3.1.1) is available, it is possible to 
statistically fit distributions to the calibrated parameter values. For 
non-calibrated physical simulation models, distributions must be assumed 



based on personal experience and suggestions contained in the literature. 
For example, Rajendran et al. (1982) applied a lognormally distributed 
scaling factor to the average catchment hydraulic conductivity, KH, to 
account for KH'S variation throughout the watershed; hence, hydraulic 
conductivity might be assumed as lognormally distributed. 

The fourth step is the estimation of the exceedance probabilities for 
the selected hydrologic target levels. This estimation follows a procedure 
specific to the reliability analysis method utilized. The following sub- 
sections describe the probability estimation procedure for each of the 
reliability analysis methods. 

2.1.1 Monte Carlo Simulation Probability Estimates 

In Monte Carlo simulation, random basic variable values are generated 
in accordance with their corresponding probability distributions. A model 
simulation is performed using these basic variable values and the 
performance function is calculated. The hydrologic target level exceedance 
probability is estimated as the ratio of the number of exceedances (Z < 0) 
divided by the number of simulations. The risk estimated by Monte Carlo 
simulation is not unique, however, it may closely approximate the exact 
value if the number of trials is sufficiently large. Cheng (1982) compared 
Monte Carlo simulation results with direct integration for 

where xi and x2 are uniformly distributed and x3 and xq are lognormally 
distributed. Cheng found that a sample size of 1,000 produced near exact 
results for events with probabilities greater than 0.2 and a sample size of 
8,000 produced near exact results for events with probabilities greater than 
0.01. Thus, for relatively simple models (with four or five basic 
variables), sample sizes of 1,000 and 8,000 may be adequate for events with 
probabilities greater than 0.2 and 0.01, respectively. However, for more 
complex models or lower probability events, much larger sample sizes may be 
required. 

2.1.2 HVFOSM Method Probability Estimates 

In the MVFOSM method, the reliability index, B, is given by 

As discussed in section B.5.1, for many cases of practical interest, B may 



be assumed to follow a normal distribution, and the hydrologic target level 
exceedance probability, PE, is approximately 

PE - 1 - d ( B )  (2.3) 

For simple algebraic models of the rainfall-runoff process, the partial 
derivatives, Ci, may be obtained analytically. For example, if the rational 
formula were used to estimate peak runoff, Qp, 

where C = the runoff coefficient for the area, 

ir - the rainfall intensity in inches per hour, and 
A = the drainage area in acres. 

The system performance function would be 

The resulting partial derivatives are 

aZ/aXm - - C ir A for Eq. 2.5a 

= - l/Xm for Eq. 2.5b 

az/ac - - Am ir A for Eq. 2.5a 

= - 1/C for Eq. 2.5b 

and so on. 

For hydrologic models which use more complex functional relations to 
estimate the hydrologic information of interest, the partial derivatives may 
not be obtained analytically (except for 1,). The partial derivatives for 



the input data and model parameters may be approximated by a forward 
difference at the mean 

where i indicates that all the other basic variables are fixed at their mean va ues. The selection of appropriate Axis is a function of the 
particular model and performance function sensitivity to the basic 
variables. 

2.1.3 AFOSM Method Probability Estimates 

In the AFOSM method, the reliability index, B ,  for the case of 
transformed normal basic variables is given by 

Complete details on the transformation of the basic variables to equivalent 
normal variables are given in section B.6.2. It should be noted that not 
all basic variables must be transformed. In fact, /3 may be calculated 
without any distributional assumptions by using the basic variable means and 
standard deviations in place of xiN and aiN in Eq. 2.8. 

The partial derivatives may be estimated as for MVFOSM. For the case 
where forward differences must be used, zw, zjY, - and xiw should be 
substituted for iw , zj, and xi in Eq. 2.7 to signlfy that the partial is 
taken at point w which is a point in the iterations used to find E*. 

The key problem in using the AFOSM method is locating the failure point 
x*. The failure point may be found by standard iteration approaches (e.g., - 
Rackwitz' approach given in Fig. B.l) or by converting the hydrologic model 
to a subroutine for estimating Z  and then using a standard GRG package 
(e. g. , Lasdon et al. , 1982) to minimize (z I  as calculated by the hydrologic 
model subroutine. The GRG method is preferred for determining the failure 
point (see section B.6.1). However, if the hydrologic model used is a 
complex, established computer program, the difficulties associated with 
converting it to a subroutine may negate the advantages of the GRG approach 
from a practical viewpoint. 

Whether using the standard iteration or the GRG approach, difficulties 
may be encountered in the estimation of /3 due to discontinuities in partial 
derivative approximations, especially for extreme I /3 I values (> 2.5) . For 
the ideal case, the iteration scheme terminates when the system performance 



function approaches zero, the value of i3 converges to the second or third 
decimal place, and the basic variable values converge to within one or two 
percent of their values for the previous iteration. Cheng (1982) noted that 
the iteration approach frequently diverges when the value of B becomes 
large. The reason for this appears to be that as IpI becomes large, the 
basic variable values are far removed from their mean values and in extreme 
cases ( 1 ~ 1  > 2.5), the basic variable values often become somewhat 
unrealistic. As the iterations reach extreme basic variable values, the 
partial derivative values may change very rapidly (i.e., become discon- 
tinuous) in part due to the unrealistic variable values. Hence, the 
iterations approach the failure surface (Z=O) but have difficulty converging 
in both B and the basic variable values. In such cases, choosing the value 
of /3 to be that corresponding to the iteration wherein Z is closest to zero 
seems advisable. The i3 values so approximated are generally greater than 
2.5 and the corresponding exceedance probabilities are less than 0.006. 
Therefore, from a practical viewpoint, the approximation errors are not 
serious. 

For other cases, discontinuities in the effects of basic variables on 
the model output may lead to convergence problems at much smaller i3 values. 
Thus, when using either iteration or GRG to find the failure point, care 
must be taken to identify such discontinuities and to develop appropriate 
convergence criteria. 

2.1.4 Evaluating Model Reliability 

The previous sections describe how to use the reliability analysis to 
evaluate hydrologic target level exceedance probabilities. In this section, 
the use of the previously described probability estimates for model reliabi- 
lity evaluation is described. 

If data is available for verification of the proposed reliability 
analysis approach, set the hydrologic target level equal to the measured 
peak. Determine the exceedance probability and reliability index 
corresponding to the measured peak, BM, using Monte Carlo simulation, the 
MVFOSM method, or the AFOSM method. For Monte Carlo simulation, by assuming 
Z is normally distributed, BM may be estimated as 

In terms of the forecast variability, the BM value is the standardized 
shortest distance between the forecast value and the measured value. If BM 
is small, the forecast is quite reliable in a stochastic forecasting sense. 
However, if / 3 ~  is small and the absolute difference between the forecast and 
the measured value is large, the model is not very reliable in a practical 
sense because in such cases, the forecast variance is quite large. Alterna- 
tively, one may think of BM as defining the forecast confidence interval 
which contains the measured value. In typical stochastic, time-series 
forecasting, a common "rule of thumb" for assessing the quality of the 
forecast is that the measured values fall within the 95 percent confidence 



limits of the forecast. A IpMI value of 1.96 corresponds to the 95 percent 
confidence limit. Thus, all calculated IpMI values less than 1.96 indicate 
a "good" stochastic forecast. However, if the confidence interval (bounded 
by the confidence limits) is large, the utility of the forecasts is small. 
For cases wherein "good" stochastic forecasts of low utility are obtained, 
the model itself is probably capable of producing "good" forecasts from a 
practical viewpoint if the underlying uncertainties can be reduced. 

By calculating pM values for a large number of verification events, one 
can get an idea of the general reliability of the model and its forecasts. 

For an individual forecast or prediction without knowledge of the 
measured peak, one estimate of the forecast or prediction reliability is the 
forecast standard deviation. For Monte Carlo simulation, the forecast 
statistics may be summed directly as the individual simulations are 
performed. For the MVFOSM method, the forecast standard deviation is 
approximated as 

For the AFOSM method, the forecast standard deviation is approximated as 

with Ci and ai evaluated when /3 = 1, which is the case where the 
standardized difference between the forecast and the target level equals the - 
forecast standard deviation. Therefore, trial and error selection of-the 
hydrologic target level is necessary to find the case where Z = 0 and /3 = 1. 

The Monte Carlo simulation and the AFOSM methods can also evaluate the 
reliability of non-verifiable (at the time of their issuance) forecasts or 
predictions by estimating the CDF and PDF of the forecast. For the MVFOSM 
method, a normal distribution for Z is assumed; hence, this information is 
summarized in the mean and variance of the forecast. By varying the 
hydrologic target level and calculating the corresponding PE, the forecast 
CDF is obtained which may be differentiated to produce the forecast PDF. 
Given the initial assumption that the hydrologic model and its uncertainty 
accurately reflect the variance of the true hydrologic system is valid, the 
reliability of the forecast is indicated by how closely the forecast CDF 
approximates a "step function" and the forecast PDF approximates a "spike." 
For reliable forecasts, the CDF will have a very steep slope and the PDF 
will be very sharp and distinct. For unreliable forecasts, the CDF will 
have a mild slope and the PDF will be broad and flat. 



2 .2  Model Choice and Uncertainty Analysis 

As was discussed in Appendix A, the various types of hydrologic models 
which have been used for real-time flood forecasting are grouped into three 
types: abstract, physical-conceptual, and physical simulation. Generally, 
the choice of which type of model to incorporate in a FWP system is a 
function of the size of the watershed, the historical data available for the 
watershed, and the personal preference and experience of the hydrologist. 

For any watershed size, the primary factor affecting the type of 
hydrologic model used is the amount of historical rainfall and runoff data 
available for the watershed. If a reasonable amount of historical data is 
available, the choice is generally an abstract model or one of the less 
complex physical-conceptual models (e.g., HEC-1 or RORB). These models take 
a greatly simplified view of the rainfall-runoff process and use calibration 
of the parameters to compensate for simplifications. Due to their 
simplified nature these models are generally less complex and more 
parsimonious than physical simulation or more complex physical-conceptual 
(e.g., Stanford model, SSARR, etc.) models. Hence, if data is available 
for calibration, use of either a stochastic, conceptual, or less complex 
physical-conceptual model is preferred. Generally, the choice between these 
is a function of the watershed conditions and personal preference. In cases 
where the amount of data available for calibration is perhaps a little less 
than is desirable, physical-conceptual models might be preferred because the 
hydrologist can supplement the calibration information with his knowledge 
and experience with such models on similar watersheds. For example, 
Muskingum flow routing coefficients may be estimated from physical 
considerations and various regionalization studies have been conducted for 
synthetic unit hydrograph parameters (e.g., Singh, 1981). 

Physical simulation models are capable of generating reasonable 
hydrograph estimates using only a minimum amount of calibration. The 
parameters of the model may be estimated by considering the physical 
condition of the watershed (topography, geomorphology, vegetation, etc.) and 
by measuring physical properties of the watershed such as soil hydraulic 
conductivity, porosity, and capillary tension. Parameters derived from 
physical measurements, theoretical inferences, personal experience, or 
lumping of watershed conditions (e.g., average overland flow slope) are 
typically much more uncertain than those determined by calibration. Thus, 
physical simulation models should only be used as a last resort for cases 
with a dearth of calibration data, or where the watershed is continually 
changing (e.g., due to urbanization) and previous calibrated parameters are 
no longer valid. 

The nature of modeling uncertainties is quite different for physical 
simulation models as opposed to calibrated models. Thus, two general 
procedures for evaluating data, model parameter, and model structure 
uncertainties are outlined in the following sections; one for physical 
simulation models, the other for calibrated abstract and physical-conceptual 
models (hereafter referred to as calibrated models). While techniques for 
evaluating the uncertainties in both calibrated and physical simulation 
models are presented in this chapter, the case study (detailed in Appendix 
C) only demonstrates the incorporation of reliability analysis with 
calibrated models. A case study considering only calibrated models is 



sufficient to show the utility of reliability analysis of hydrologic 
modeling uncertainty. Hence, a detailed reliability analysis of the 
uncertainty encountered when using physical simulation rainfall-runoff 
models will be reserved for future research. 

2.3 Evaluation of Data Uncertainties 

Nearly all rainfall-runoff models require data from some combination of 
four sources: rainfall, streamflow, evapotranspiration, and watershed 
morphology. The basic sources of error and uncertainty in each of these 
types are discussed below, and methods to account for these uncertainties 
when using physical simulation or calibrated models are presented. 

In this study, it is assumed that there are no problems with the data 
transmission network, and all data from the rain and stream gages will be 
available in real-time. Thus, the uncertainties introduced to real-time 
flood forecasting by missing data are not considered. From a practical 
viewpoint the assumption of no missing data is not necessarily good even 
with the most advanced telemetry systems. For example, the National Weather 
Service's 1981 report on the central Arizona floods of February, 1980, 
revealed the following interesting facts: 

"In Arizona . . . the density of real-time rain gage 
reports was very inadequate throughout the series of storms. 
The shortage of data was aggravated by the fact that some of 
the existing "real-time" rainfall and river gages malfunc- 
tioned, were late in reporting, or reported erroneous data at 
critical times." 

The major problems encountered with the river gages were that they were 
plugged with debris or damaged on their mountings when rivers became swollen 
to near record levels or they mechanically or electrically malfunctioned. 
Outages in rainfall data were mainly due to telephone lines being down. 
Furthermore, Sargent (1984) reports that for the Haddington (U.K.) flood 
warning program radio telemetry was chosen to communicate real-time rain 
gage data because the telephone network was thought to be unreliable during 
periods of high rainfall. However, the telephone link to the base stream 
gage station has never yet failed, while the radio telemetry system has 
frequently failed. Thus, the question of whether the necessary rain and 
stream gage data will be available for forecasting is potentially a greater 
source of uncertainty than the uncertainty in the forecasts. Nevertheless, 
in this study only the uncertainty in the forecasts is considered. 

2.3.1 Rainfall Data Uncertainty 

There are eight primary sources of error or uncertainty involved in 
using point rainfall measurements to describe the true precipitation input 
for a watershed: 

1) measurement error in the gage itself due to malfunction, 

2) the gage data's representativeness of ground level precipitation at 



the gaging point, 

3) gage location, e.g., gages are in positions that consistently 
result in high or low readings relative to the watershed average, 

4) gage network mean areal rainfall versus true mean areal rainfall, 

5) effects of rainfall spatial variability, 

6 )  effects of rainfall temporal variability, 

7) lack of synchronization between time clocks for rain and stream 
gages, 

8)' lack of synchronization between time clocks for the various rain 
gages in the watershed. 

Each of these sources of error or uncertainty require some further general 
discussion before the procedure for analyzing their total effects on 
calibrated models and on physical simulation models is described. 

For rain gages, malfunctions include errors in reading, transmitting, 
and handling data and mechanical or electronic errors in the actual measure- 
ment of point rainfall. For modern telemetry systems such as those used in 
"state-of-the-art" real-time forecasting systems, the data communication 
errors are greatly reduced, except in cases of transmission failure. If 
there is no transmission failure, the rainfall data is fed directly into the 
computer data base, eliminating reading and handling errors while leaving 
transmission errors negligible. For example, Stalmann (1970) reported that 
signals from a radio-telemetry system of river level gages showed an almost 
faultless agreement with the water levels simultaneously transmitted by an 
automatic telephone telemetry system. The precision of transmission 
amounted to 2 2 cm water level at a total range of 9 m. 

Thus, for real-time flood forecasting only the mechanical or electronic 
errors in the actual gage measurements need to be considered when using 
physical simulation mode,ls on previously ungaged watersheds. However, for 
calibrated models the nature of the gage network from which the calibration 
data has obtained must be considered. If the calibration data was not 
obtained from a telemetered system, data reading, transmission, and handling 
errors must be considered. 

For real-time flood forecasting systems employing a modern telemetry 
system, synchronization of the various rain and stream gages is not a 
problem. For example, Sargent (1984) reports that for the Haddington 
(U.K.) flood warning system each gaging station has its own crystal clock 
which is synchronized with the base station clock when the base station 
issues a reset command during start up operations. Once again, for cali- 
brated models the nature of the gage network from which the calibration data 
was obtained must be considered when dealing with time synchronization 
errors. 

Errors due to the difference between gage data and the precipitation at 
ground level at the gaging point are primarily due to wind effects. A 



generally accepted theory is that much of the total measurement error is the 
result of turbulence and increased wind speed in the vicinity of the gage 
orifice resulting from the obstacle of the gage itself to the wind stream. 
As the air rises to pass over the gage, precipitation that would have passed 
through the gage orifice is instead deflected and carried further downwind 
(Larson and Peck, 1974). Other sources of discrepancy between gage measure- 
ments and ground level precipitation are the so-called "wetting loss" due to 
water drops adhering to the walls of the gage funnel and the collector and 
sheltering of the rain gage by trees and buildings. 

Gage location uncertainties refer primarily to cases where gages are 
located near the boundaries of the watershed. At such locations the gage 
measurements are less likely to reflect the true temporal and areal distri- 
bution of rainfall over the watershed. Troutman (1983) stated that given 
only a small amount of recorded rainfall at a single gage (or a few gages), 
it is not known whether the overall storm was indeed small or the storm was 
large with a center located at some distance from the gage(s). This could 
obviously result in considerable error in runoff prediction, especially if 
the gage is not located centrally in the basin. Furthermore, Troutman's 
(1983) numerical experiments found that for single gage networks, mean 
squared prediction bias generally increases as gage distance from the basin 
center increases. Hence, he concluded that the nonstationarity of rainfall 
imposes an additional form of bias when observed rainfall is from gages not 
centrally located within a basin. For previously ungaged watersheds where 
flood warning systems are to be established, intelligent network design can 
avoid this source of uncertainty. However, for watersheds where existing 
gages are adapted to work in a telemetry system consideration of gage 
location uncertainties may be necessary. 

Even if the gages are located in spots where reasonably representative 
rainfall measurements can be made, there will still be considerable uncer- 
tainty regarding the quality of the estimated areal mean rainfall. Troutman 
(1982a and 1983) found that even if measured rainfall at a small number of 
gages is equal in expected value to the true areal average rainfall, the 
variance of basin average rainfall is always less than that for point . 
rainfall. This difference in variability can result in serious biases in 
runoff prediction, e.g., for the models Troutman studied the bias was 
overprediction of large events and underprediction of small events. Thus, 
for models using lumped rainfall input data, variance of the network 
estimate of mean rainfall relative to the true mean rainfall must be 
considered. 

Ideally, in order to obtain the best prediction of storm runoff 
knowledge of the rainfall intensity at each point in the basin and at each 
point in time is necessary. However, measurements of precipitation are 
always made at discrete intervals in time and at a limited number of points 
in space. Thus, there are uncertainties in the data due to unsampled 
temporal and areal variations in the true rainfall. Furthermore, Bras and 
Rodriguez-Iturbe (1976) demonstrated the natural "filter" characteristics of 
the watershed runoff process are insufficient to "damp out" the effects of 
these unaccounted for variations. Accounting for the data uncertainties due 
to spatial and temporal rainfall variability is not an easy task. Realisti- 
cally, even if data from an extensive rain gage network with one minute 
readings are available, this fairly accurate reporting of spatial and 



temporal variability could not be used by the hydrologic model. Almost all 
hydrologic models, even so-called distributed models, "lump", to some 
extent, the input data and hydrologic characteristics of watersheds in order 
to make hydrograph prediction practical. Furthermore, the temporal 
variations are also averaged for input to hydrologic models partly for 
computational practicality and partly because the model structure is 
insensitive to more detailed information. Therefore, the uncertainty 
related to the data's inability to account for the rainfall's true spatial 
and temporal variation is in part a function of the model structure 
uncertainties due to temporal and spatial "lumping" of the rainfall-runoff 
process. 

2.3.1.1 Handling Rainfall Data Uncertainty in Calibrated Models 

All eight of the possible errors in rainfall data listed earlier could 
have an effect on the reliability of the hydrograph predicted by a cali- 
brated model. 

Dawdy et al. (1972) reported that the bias (errors and uncertainty) in 
the recorded rainfall at each station is compensated by the curve-fitting 
ability of the model to adjust parameter values. Hence, bias in the amount 
of recorded rainfall affects the resulting fitted-parameter values, rather 
than the accuracy of the fit. Troutman (1982a and 1983) also found that 
errors and uncertainties in rainfall data were transferred to the parameters 
of the model as bias in the parameters (i . e . , deviations from their true 
values). However, due to the curve-fitting properties of the calibration 
routine, the performance of the model using erroneous data and biased 
parameters is not greatly different from that using true data and parameter 
values. In fact, for a simple regression model of rainfall volume to runoff 
volume, Troutman (1982b) found two extremely interesting results. First, 
for cases where the rainfall input error is equivalent to a random process 
(11 of 13 subsets of the gage network considered), it was found that even 
though the erroneous rainfall values have more variability than the true 
values, runoff computed from the model evaluated with the erroneous rainfall 
and the adjusted parameters has less variability than that computed from the 
model evaluated with the true rainfall and parameters. Second, model 
predictions using erroneous rainfall measurements and the corresponding 
biased parameter values are unbiased estimates of mean runoff. Troutman 
(1982a and b) further pointed out for more realistic nonlinear models of 
runoff the curve-fitting never quite eliminates the bias in the mean runoff 
estimation. However, if more than one parameter is adjusted, there is a 
good chance that the bias will be fairly small over a wide range of rainfall 
input values. 

Thus, if the common assumption that the calibration data is a represen- 
tative sample of the range of flows to be predicted and of the range of data 
errors to be encountered is reasonably valid, the data uncertainties may be 
assumed to be included in the calibrated model parameters and their 
corresponding uncertainties. The sample must not only be representative but 
also homogeneous and of sufficient size to justify the statistical 
estimates. A homogeneous sample is one where all the events are a subset of 
the same event population and, hence, a product of a unique physical 
rainfall-runoff process. The primary causes for non-homogeneous samples are 



changing watershed conditions due to human activity and seasonal variation 
in the rainfall-runoff process. With regard to the size of the sample, the 
U.S. Water Resources Council (1981) recommends that stream gaging records be 
at least ten years long before use of flood frequency analysis is warranted. 
Ang and Tang (1975, p. 236) stated that if sample size is large (for 
instance, greater than 20), the sample variance is a good estimator of the 
population variance. 

Having decided to consider rainfall and runoff data uncertainties as 
included in model parameters by the calibration process, two issues still 
need to be addressed. First, how the calibration is to be performed, and 
how does the data uncertainty affect the physical interpretation of the 
calibrated parameters? These questions are addressed in the discussion of 
parameter uncertainties in section 2.4. Second, are there any errors in the 
calibration data that will not be present in the data for generating 
real-time forecasts, and if so, how do these errors affect the validity of 
the proposed reliability analysis? 

If the data used for calibration was obtained from a telemetered gage 
network with data stored directly with a minimum amount of human handling, 
then the parameters will not contain any data uncertainty not present in the 
real-time forecasting data. However, if the existing gage.network currently 
uses strip charts, punched strips, or even cassette recordings of the data, 
this data is subject to errors in interpretation (especially for strip 
charts) and in timing (i.e., synchronization of clocks). When developing a 
flood warning system the old clocks and chart recorders are replaced with 
new clocks and radio or telephone transmitters/receivers, eliminating timing 
and communication errors in the data. Thus, the calibrated parameters, 
which include these errors, are not truly representative of the uncertainty 
in data used for real-time flood forecasting. 

The errors due to data reading, transmission, and handling are probably 
fairly small if the charts are read consistently and the readings are 
carefully checked for nonsensical values. The additional uncertainties 
these errors add to the parameters will not significantly affect the 
reliability analysis. 

The timing errors, i.e., lack of synchronization between the rain gages 
and stream gages, have much greater effects on the calibrated parameters. 
Jackson and Aron (1971) found that timing errors due to clock malfunctions 
and lack of synchronization appear to be the most common cause of rain gage 
unreliability, and these errors take on major importance in parameter 
calibration. Laurenson and O'Donnell (1969) found that synchronization 
errors appear to result in the greatest errors in unit hydrograph deriva- 
tion. Therefore, steps must be taken to account for the extra uncertainty 
in model parameters due to synchronization errors in the calibration data. 

Unfortunately, about the only practical way to account for synchroniza- 
tion errors is to try to detect and eliminate (or at least reduce) them in 
the data. Poor calibration fits in the form of greatly underpredicted or 
overpredicted peak discharges or of extensive smoothing or flattening of the 
hydrograph may be caused by synchronization errors, which should be 
eliminated, or by rainfall temporal and spatial variability errors in data, 
which should be transferred to the parameters. Therefore, there is no 



substitute for good quality calibration data checked carefully for 
synchronization errors. It is believed that the calibration and verifica- 
tion data used in this study (see Appendix C) is free from synchronization 
errors. 

2.3.1.2 Handling Rainfall Data Uncertainty in Physical Simulation Models 

Of the eight possible sources of error or uncertainty in rainfall data, 
only five need be considered in the data uncertainty for physically based 
models. Three other sources may be eliminated due to the design of the data 
network. Physical simulation models should only be used in cases where it 
is desired to establish a flood warning system on a previously ungaged (or 
poorly gaged) watershed or in cases where the watershed is changing (e.g., 
due to urbanization). Thus, a modern telemetry based rain and stream gage 
network should be designed and installed. The design of this network should 
be such that the gages are not in locations that result in consistently high 
or low readings. The telemetry system with its accurate clocks insures that 
timing errors due to clock malfunctions and synchronization problems are 
small. Also, since the telemetry system feeds the data directly into the 
computer for consistency checks and subsequent use in real-time forecasting, 
the data reading, transmission and handling errors are also small. Thus, 
only the gage measurement errors due to mechanical or electronic defects, 
gage measurement errors (e.g., due to wind effects), and the uncertainty 
regarding the quality of the gage network estimate of mean areal rainfall 
need to be considered for physically based models. The errors due to 
inaccurate representation of rainfall spatial and temporal variation are 
partially accounted for in the gage network estimate of mean areal rainfall 
uncertainty and in the model structure uncertainty. 

Given below is an example of how the errors in rainfall measurements 
may be approximated. This example could serve as an initial approximation 
for reliability analysis. For accurate determination of hydrologic target 
level exceedance probabilities, a much more detailed analysis of the error 
sources is necessary. 

Throughout the twentieth century, three types of rain gages have been 
used to provide a continuous record of rain depths and intensities: the 
tipping bucket, weighing-type, and float-type gages. The tipping bucket 
gage was quite popular in the early part of the century, but due to problems 
with jamming and underestimation of heavy rainfalls (see Parsons, 1941) the 
National Weather Service gradually began phasing them out. Float-type gages 
have been used extensively in Europe, while weighing- type gages have been 
used extensively in the United States. Each of these gages has its own 
mechanical problems which lead to inaccurate rainfall estimates. Frictional 
effects in the weighing mechanism of weighing-type gages and in float guides 
of float-type gages are the primary cause of inaccurate rainfall estimates. 
In self-emptying float-type gages the siphoning takes at least a few 
seconds, and hence rain falling into the receiver during siphoning period is 
recorded inaccurately. Furthermore, the rainfall amounts siphoned out are 
not always the same for all emptying cycles (Linsley et al,, 1975). 

For newly installed rain gages, as would be the case for watersheds 
using physical simulation models, frictional effects should be low and may 



be kept that way with regular maintenance. Thus, the gage measurement 
errors due to mechanical defects may be considered insignificant relative to 
the wind effects uncertainty and limited rain gage network estimate of areal 
precipitation uncertainty. The above assumption is especially valid if 
modern electronic liquid level reading gages, such as the one described by 
Permut et al. (1979), are used for rain gage measurement. The gage 
developed by Permut et al. (1979) uses digital electronic elements to detect 
the highest liquid level sensing electrode in contact with the collected 
rainfall at any time. Changes in level must persist for a predetermined 
time period before the level sensing circuits recognize the change in level 
as incoming rainfall and report the corresponding intensity. Hence, short 
term level transient conditions caused by vibration, splashing, or wave 
motion do not influence measurements. With such gage equipment, reliable 
real-time measurements are virtually assured. 

It is generally accepted that wind is the major cause of error in 
precipitation gage measurements. Sevruk (1975) reported that either a gage 
leveled with its orifice at the ground level and protected against in-splash 
and/or a carefully selected well-protected natural gage site can reduce the 
wind effects on precipitation measurement. However, Larson and Peck (1974) 
noted that no combination of gage location and shielding will entirely 
eliminate adverse effects of wind on gage catch. Furthermore, there is no 
guarantee that the gages may be located at ground level or naturally 
protected sites. Therefore, even for new and/or well designed gage networks 
wind effects play a significant role in rainfall measurement uncertainty. 

The question of how to deal with this source of uncertainty is quite 
complicated. Larson and Peck (1974) developed Fig. 2.3 relating gage catch 
deficiencies and wind speed based on their own field studies in Danville, 
Vermont, and Laramie, Wyoming and the work of several other investigators. 
Morgan and Lourence (1969) compared the catch of a standard 8-inch rain gage 
mounted in the normal standing position, a USSR 3000-square-centimeter rain 
gage mounted at ground level, and a highly sensitive weighing lysimeter 20 
feet in diameter for 24 storm events from two winter rainy seasons at Davis, 
California. For storms ranging in average wind speed from 2.5 to 14.3 miles - 
per hour (mph) with the windiest hour speed twice the storm average, they 
found no apparent systematic relation between average wind speed for a 
particular storm and the difference in total storm precipitation caught by 
the rain gage and that measured by the lysimeter. Thus, relations of the 
type defined by Fig. 2.3 do not necessarily reflect the true wind effect on 
gage catch of rainfall. 

A key factor which in addition to wind speed greatly influences the 
wind effect on gage catch accuracy is raindrop size. Mueller and Kidder 
(1972) used wind tunnel experiments with rain gage models to define velocity 
patterns, and then used computer simulation of these velocity patterns and 
drag on raindrops to estimate gage catch deficiencies due to wind speed and 
drop size. Their results are displayed in Fig. 2.4, and it should be noted 
that Mueller and Kidder estimated the maximum probable error of their 
results to be 15 percent. From Fig. 2.4 storms dominated by larger 
raindrops are less likely to be affected by wind. Laws and Parsons (1943) 
reported that high intensity (greater than 5 in./hr) storms have median drop 
diameters greater than 3 mrn, while even medium intensity storms (0.5 to 5.0 
in./hr) have median drop diameters between 2 and 3 mm. Therefore, it seems 
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that Fig. 2.3 may have been obtained from data from lower intensity storms 
dominated by smaller drop sizes (the 1 to 2 mm range), while the work of 
Morgan and Lourence (1969) may be representative of higher intensity storms 
dominated by larger drop sizes (this assumption is reasonable for California 
winter rainy season storms). 

Furthermore, it may be reasonable to assume that for the high intensity 
storms likely to cause floods in small and medium size watersheds, the wind 
effects may not be serious enough to require adjustment of the point 
precipitation measurement. This does not mean that rainfall data uncertain- 
ties due to wind are being ignored, but rather it means that the uncertainty 
can be accounted for in the variance of the measurement alone. That is, if 
the true catch, Px, is considered to be 

where Pxm = the measured point precipitation; 

5 = the correction factor relating for the difference between the 
true and the measured rainfall at a point due to wind effects, 
obtained from Fig. 2.3 for example; 

ea = the uncertainty associated with using B (mean = 0, 
variance = aa2) ; 

all that is being assumed is that B equals unity. The uncertainty expressed 
in terms of variance in Px due to wind effects is still considered and it is 
equal to pXm2 aa2. A reasonable assumption for the value of a, may be 
obtained by using a triangular distribution over 5 ranging between 5 + 0.15 
B (recall 15 percent was the maximum probable error estimated by Mueller and 
Kidder). Actually, with 5 assumed to be unity, 5 - 0.15 5 is unrealistic, 
fortunately within the first-order uncertainty analysis the variance due to 
wind effects can be constrained such that it is only considered when 
estimating the probability of a flood discharge greater than the expected 
flood discharge. 

If a dense-rain-gage-network watershed exists which is subject to 
climatic and topographic conditions similar to those for the watershed being 
studied, then the uncertainty in estimating the mean areal precipitation 
from a small number of gages may be approximated by the following proce- 
dure. Assuming the "true" mean areal precipitation is obtained from the 
complete network information, by comparing the averages estimated by 
different subsets of the total gage network the uncertainty associated with 
mean areal rainfall estimates for various numbers of gages may be approxi- 
mated. For this approximation to be reasonable, the wind effects uncer- 
tainty must be relatively constant for both the entire network and the 
various subsets. This approach has been used quite commonly and success- 
fully in hydrology. 

Horton (1923) compared the mean areal average yearly rainfall for 
various subsets of a 42 gage network for the River Derwent basin in England, 
to develop a criteria for the number of gages necessary to achieve an 



estimate of annual rainfall on a basin within a specified accuracy. Light 
and Shands (1947) used this approach to derive a graph relating percent 
standard error in the estimate of mean areal rainfall volume as a function 
of watershed size and density of rain gages. Data from 38 relatively 
intense storms between 1937-1941 over the Muskingum watershed (8000 mi2) in 
Ohio and from 1500 mi2 and 375 mi2 subareas of it were analyzed. Data from 
as many as 500 gages was available for the early part of the record; this 
number decreased to 250 by the end of the record. Linsley and Kohler (1951) 
sought to determine the relative reliability of the average areal storm 
rainfall computed from networks of different density. Hence, they computed 
the average precipitation for networks consisting of 1, 2, 3, 4, 10, 18, and 
55 gages for each of 68 storms on the 220 square mile Army-Navy-NACA Weather 
Bureau network watershed near Wilmington, Ohio. In each case, the stations 
were selected on as nearly a uniform grid pattern as the network permitted. 
Hence, each sub-network approximated the ideal distribution of gages. Using 
this data, equations were developed which related the average absolute error 
in inches of areal storm rainfall, E, to the "true" precipitation depth, Pt 
in inches and the number of gages, N, for three different watershed sizes, 
100, 160, and 220 square miles. 

While these equations vary with the area of watershed, there appears to be a 
certain general relation form which might be used for the purpose of this 
study . 

McGuinness (1963) used a similar technique to derive an equation 
relating the average absolute error in inches of areal storm rainfall to the 
"true" precipitation and the gaging ratio, G, (i. e. , the number of square 
miles per gage) for 81 storms on the 7.16 square mile Little Mill Creek 
watershed near Coshocton, Ohio. 

Huff (1970) also used this procedure to derive an equation relating the 
average absolute sampling error in inches of areal one-minute rainfall data, 
Ea, to the "true" one-minute average rate, Ra, in inches per minute and the 
gaging ratio for 29 storms on the 100 square mile Goose Creek watershed near 
Monticello, Illinois. 



If the 220 square mile watershed error equation is converted to be a 
function of gaging ratio ,* one obtains 

It can be seen that the average errors in estimating mean areal rain- 
fall for these three midwestern watersheds appear to be fairly consistent. 
Therefore, a general relationship may exist between errors in estimated 
areal precipitation, the "true" areal precipitation, and the gaging ratio 
for watersheds with similar topography in similar climates such as these 
three midwestern watersheds. The work of Huff and Schickedanz (1972) 
supports the above assertion. They developed a model for estimating the 
error in areal precipitation estimates from sparse gage networks based on 
climatological principles and a 4 gage network for the 400 square mile East 
Central Illinois network near Farmer City, Illinois. They found that the 
climatological estimates of the relative standard error of daily areal 
means were nearly the same as the dense network estimates. Hence, climate 
plays a significant role in the uncertainty of sparse gage network estimates 
of true areal precipitation. Therefore, a conglomeration of Eqs. 2.12, 
2.13, and 2.14 could provide a reasonable estimate of variance due to this 
source of uncertainty. 

McGuinness (1963) performed just such a conglomeration, Using his own 
results for Coshocton, Ohio as representative of small midwestern 
watersheds; Huff and Neill's (1957) results for the Panther Creek, Goose 
Creek, El Paso, and east central Illinois networks (see Table 2.1) as 
representative of medium size (25 to 400 mi2) midwestern watersheds; and 
Light and Shands' (1947) results for the Muskingum, Ohio network as 
representative of large midwestern watersheds he prepared a nomogram (Fig. 
2.5) relating average error in mean areal rainfall estimates to rainfall 
depth, gaging ratio, and a climatic/geographic factor (the 5-year 24-hour 
rainfall from Hershfield, 1961). Error estimates from Fig. 2.5 compare well 
with Linsley and Kohler's (1951) results which were not used in deriving the 
nomogram. Therefore, Fig. 2.5 may be used to estimate the average error in 
mean areal total rainfall estimates for midwestern watersheds. 

To obtain error estimates for shorter time periods within a storm, 
Eq. 2.14 may be useful for midwestern watersheds. Equation 2.14 was derived 
for one-minute data, however, Huff (1970) found the spatial correlations of 
rainfall rate are not changed significantly by averaging over intervals of 
5 to 10 minutes as opposed to using the one minute rates. Hence, applying 
Eq. 2.14 to longer time period data should provide reasonable estimates of 
the uncertainty. 

*since the independent variable in this equation has been changed from N to 
G, this equation no longer represents a true least squares fit, however, 
the coefficient values are probably still fairly reasonable for comparison 
with the other equations. 
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Unfortunately, in real-time flood forecasting the values of the true 
areal storm, Pt, or one-minute precipitation, Ra, data are not known, but 
rather only the erroneous values Pe and Rae, respectively. If Pe or Rae are 
used in Fig. 2.5 or Eq. 2.14 to estimate the average absolute error, these 
estimates may be greatly over- or under-predicted due to the nature of the 

. error in Pe or Rae. A reasonable way to estimate the true error in Pe or 
Rae, would be to calculate E for Rae and Pe and then for Pe + E and Rae + Ea 
and take a weighted average of the calculated E values as an approximation 
of the true error. For the purpose of FOSM analyses, the standard error 
(i.e., standard deviation of the sample) of the mean areal rainfall estimate 
is needed rather than the average absolute error. Light and Shands (1947) 
note that for normally distributed variables the average error equals 0.8 of 
the standard error. This relation may be used to convert the weighted 
average error to an estimated standard error. 

Similar equations and nomograms may be derived for other regions of the 
country using dense rain gage network information available in these 
regions. Table 2.1 displays a partial listing of dense rain gage networks 
in the United States. Data for additional dense rain gage networks (as well 
as some listed in Table 2.1) may be found in Thurman and Roberts (1986) and 
the references therein. 

Many other factors influence the validity of Fig. 2.5 and Eq. 2.14 
including: (1) rain type, (2) storm type, (3) total storm rainfall 
(Eq. 2.14 only), (4) storm duration, (5) storm mean intensity, (6) location 
of the storm center with respect to the center of the sampling area, (7) the 
direction of movement and orientation of the major axis of the storm, (8) 
the number and distribution of individual storm cells at any given time in 
the sampling area. Huff (1970) attempted to access the first five of these 
factors, however, his 29 storm sample size was too small to detect any 
trends in the data due to these factors. Nevertheless, the fact that he 
frequently found relatively large differences in the sampling errors between 
storms of apparently similar characteristics, led him to believe that these 
factors are quite important. The consistency in the form of Eqs. 2.12, 
2.13, and 2.14 indicates that they will perform well, for the purpose of 
this study, despite these other factors. However, when developing similar 
equations for other areas of the country, attention should be paid to the 
eight factors listed above. Especially for mountainous eastern and western 
watersheds where topography, rain type (i.e., orographic precipitation), and 
storm type (e.g., heavy thunderstorms in the west) greatly influence these 
error relations, 

For the first-order second moment analysis, the mean value of the 
precipitation input is simply the areal mean precipitation estimate from the 
gage network measurements, Pe. If the wind velocities across the watershed 
are fairly uniform, the wind effects errors at each gage will be similar 
percentage-wise. Therefore, the areal mean precipitation estimate may be 
used with the coefficient of variation of the error in rainfall 
measurements due to wind effects, ua, to determine the associated variance. 
Furthermore, the wind effects and inadequate gage network uncertainties may 
be considered independent. Hence, the variance of the precipitation input, 
up2, is the sum of variance in the point measurements due to wind effects 
(only affects the case where the target level is overpredicted) and the 
variance in the gage network estimate of the areal rainfall. 



A 

forQ > T H  
P 

forQ 
< T H  P 
- 

where aA2 - the variance in the difference between "true" areal average 
rainfall and that estimated from the rain gage network, 

A 

Qp = the peak discharge estimated by the flood forecasting model 
using the expected values (best estimates) of the parameters 
and input data. 

The question of how to apply first-order second moment analysis to multi- 
period storms still requires further examination. 

Finally, many of the existing physical simulation rainfall-runoff 
models are so-called distributed models which subdivide the watershed into 
subwatersheds, planes, finite elements, etc. For each of these subdivi- 
sions, the governing physically based equations and procedures for handling 
abstractions and runoff time distribution are applied to the precipitation 
input for that subdivision. The resulting runoff from each of the 
subdivisions is then numerically routed either overland, through the channel 
system, or both to obtain the hydrograph at the channel outlet. The use of 
such subdivisions allows more accurate accounting for the details of the 
physical runoff process by breaking down the watershed into areas of similar 
soil conditions, topography, and geomorphology. Hence, the uncertainties 
due to spatial lumping are reduced. 

Separate rainfall inputs are made to each of the watershed subdivi- 
sions, and the uncertainty for each of these inputs may be estimated as 
described above. However, there may arise occasions when one (or more) of 
the subdivisions does not have a rain gage in it. In these cases the 
uncertainty in the areal rainfall estimates is increased as isohyetal maps 
are extrapolated, data from rain gages outside the subdivisions are used 
(Troutman, 1982a, discusses just how great the errors of this can be), etc. 
It seems ill-advised to use distributed models which subdivide the watershed 
to levels smaller than the resolution of the rain gage data network unless 
topographic conditions require it. As pointed out by Packer (1972), no 
mathematical calculation, however sophisticated, can be better than the 
validity, reliability, adequacy, and completeness of the data used in the 
analysis. Therefore, if new gage networks are being set up for previously 
ungaged watersheds to be incorporated with distributed physical simulation 
models for real-time flood forecasting, these networks should be designed 
considering the model's subdivision of the watershed so that adequate data 
is available to make use of the main advantage of such hydrologic models. 



2.3.2 Streamflow Data Uncertainty 

The uncertainties in streamflow measurement and their effects on 
hydrologic modeling reliability are generally considerably smaller than 
those for uncertainty in rainfall measurement. This is due to the fact that 
streamflow data represents the integration of the watershed system's 
complicated rainfall-runoff process, while rainfall data merely provide 
point measurements from the complicated rainfall process over the watershed 
system. Nevertheless, considerable uncertainty exists in streamflow data, 
and this can be considered as coming from primarily three sources: 

1) uncertainty in the gage measurement, 

2) uncertainty regarding the validity of the derived stage-discharge 
relation, 

3) uncertainty regarding the quality of discharge measurements used to 
derive the stage-discharge relation. 

It is generally conceded that using modern techniques the stage can 
easily be determined with relatively high accuracy (International Organiza- 
tion for Standardization, 1983). Therefore, the last two sources of 
uncertainty should be concentrated on. 

The stage-discharge relation is defined by the complex interaction of 
channel characteristics, including cross-sectional area, shape, slope, and 
roughness. The primary sources of the uncertainty in stage-discharge 
relations are changing stream cross-sectional controls due to the effects of 
a changing (meandering) channel, scour and fill in an alluvial channel, 
backwater, variable channel storage (i.e., hysteresis in the stage-discharge 
relation due to unsteady flow effects), and aquatic vegetation (Boyer, 
1964). Furthermore, there is always uncertainty regarding the fitting of 
the stage-discharge relation to the data. 

The most commonly used method of obtaining actual stream discharge 
measurements is the velocity-area method. This method breaks the stream 
cross section down into a number of verticals. The mean velocity for these 
verticals is determined from one or two point velocity measurements 
(depending on the flow depth with two point measurements preferred) and a 
velocity distribution based on theoretical and empirical evidence. The mean 
velocity is multiplied by the average area represented by the vertical to 
determine the discharge for that vertical, and the overall discharge is the 
sum of the vertical discharges. There are many sources of uncertainty in 
discharge measurements including uncertainties in widths and depths 
represented by a vertical, in determination of mean velocity for the 
vertical, and in determining the number of verticals to use. Furthermore, 
uncertainties in the mean velocity estimate arise from errors in point 
velocity measurements due to instrumentation and turbulence and from errors 
in the assumed velocity distribution. 



2.3.2.1 Handling Streamflow Uncertainties in Calibrated Models 

As was the case with rainfall data, the uncertainties in streamflow 
data are incorporated in the parameters (and their uncertainty) in cali- 
brated models. 

Generally, a flood is defined as the occurrence of flows whose depth 
is greater than some critical stage (e.g., bankfull stage). In order to 
determine whether a flood is imminent, either the critical stage must be 
converted to a critical discharge or the model predicted peak flow must be 
converted into a peak stage. Both of these conversions require the use of 
a stage-discharge relation, and hence the uncertainties associated with 
stage-discharge relations also affect the estimation of whether the critical 
stage will be exceeded. When using calibrated models the uncertainties in 
the stage-discharge relation are already incorporated in the model 
parameters and their uncertainties. Therefore, the conversion of the 
critical stage to the critical discharge can be considered error free with 
the actual uncertainties accounted for in the model peak discharge uncer- 
tainty analysis. 

2.3.2.2 Handling Streamflow Uncertainties in Physical Simulation Models 

When using physical simulation models, the uncertainty in the conver- 
sion of critical stage to critical discharge must be considered based on 
physical reasoning. The sources of uncertainty in the stage-discharge 
relation have been discussed previously. By choosing a stable channel 
control section and performing periodic maintenance on it, several of the 
sources of uncertainty in stage-discharge relations including changing 
channel effects, scour and fill in an alluvial channel, and aquatic vegeta- 
tion may be reduced. 

Even with well selected channel control sections for discharge measure- 
ment, the effects of backwater and variable channel storage (hysteresis) may . 
still greatly effect the stage-discharge relation. In fact, Fread (1975) 
found that the dynamic (unsteady flow) effect may be significant if the 
channel bottom slope is less than 0.001 when the rate of change of stage is 
greater than about 0.10 ft/hr. Boyer (1964) offers insight into the nature 
of these effects and describes some of the procedures proposed to correct 
for them. Nevertheless, the key point is that even under the best 
conditions, the stage discharge relation is non-unique and looped. Thus, 
the analysis of the uncertainties in the stage discharge is quite complex 
and beyond the scope of this study. 

Carter and Anderson (1963) performed an extensive study of the sources 
of error and subsequent total error in discharge measurements using the 
velocity-area method. They used hundreds of laboratory and field measure- 
ments to determine the errors due to current meters, time sampling of 
velocity (i.e., turbulence effects), approximation of the assumed velocity 
distribution in the vertical, point sampling of depth and horizontal 
velocity distribution, and the number of verticals (stations) used. Figure 
2.6 shows the standard deviation of the total error in discharge 
measurements, ST, as a function of the number of verticals (stations) and 
the approximation of mean velocity (equal to velocity at 0.6 of the depth or 
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the average of the velocity 0.2 ad 0.8 of the depth) used. The World 
Meteorological Organization (1984) performed its own assessment of the 
uncertainty in discharge measurements using the velocity-area method. For a 
measurement using 25 verticals, a one minute averaging of point velocity, 
and the 2-point method of mean velocity estimation, the total uncertainty 
was estimated to be + 5.7 percent at the 95 percent confidence level (i.e., 
standard deviation 2.9 percent). This agrees fairly well with the results 
of Carter and Anderson shown in Fig. 2.6; hence, this figure may be used to 
estimate uncertainty in discharge measurements. 

The overall variance in stage-discharge relations is a function of the 
uncertainty in deriving the stage-discharge relation and in the discharge 
measurements. 

2.3.3 Evapotranspiration and Soil Moisture Data Uncertainty 

Generally, the effects of the evapotranspiration are considered to be 
negligible for short term hydrologic events such as floods. Hence, most of 
the hydrologic models proposed for real-time flood forecasting do not 
consider evapotranspiration. However, some physical-conceptual models and 
every physical simulation model require the use of an estimate of the soil 
moisture. For most watersheds, very little data is available on the soil 
moisture and so it is typically estimated using some kind of antecedent 
precipitation index which relates evapotranspiration, antecedent 
precipitation, and soil capillary storage. Previous experience has shown 
these indices to be very rough approximations, at best, especially if the 
time since the last storm is fairly long. Therefore, it is recommended that 
in addition to rain and stream gages, the watershed should be monitored by 
devices which can provide estimates of the actual soil moisture at the 
beginning of the storm. Estimates of soil moisture may be obtained from a 
number of sources including tensiometer data, neutron probes, and remote 
sensing (Jackson and Schmugge, 1986). The uncertainty in these measurements 
may be handled indirectly as described below. 

Generally, in the physical simulation and physical-conceptual models 
which use soil moisture estimates, the estimates are combined with other 
parameters, such as soil porosity, hydraulic conductivity, etc., in order to 
estimate infiltration and, possibly, prompt subsurface flow. If it is 
assumed that the soil moisture is known with certainty, the uncertainty in 
infiltration may be considered as due to uncertainties in the other 
parameters which influence infiltration. The uncertainty in the other 
parameters is generally large enough that it may be assumed to encompass 
soil moisture uncertainties also, especially when consideration is given to 
the fact that the variations in hydraulic conductivity are a function of 
soil moisture. 

2.3.4 Watershed Morphology Uncertainty 

Many of the hydrological models, especially physical simulation and 
physical-conceptual models, used for real-time flood forecasting require 
knowledge of various aspects of watershed morphology, such as total area; 
fractions of ground cover, canopy cover, and impervious area; overland flow 



slope and length; channel slope and length; etc. There is some uncertainty 
or error involved in determining any of these parameters. For example, Yen 
et al. (1976) asked 34 engineering students to inspect a three square mile 
drainage basin at Urbana, Illinois, and then determine the area from a USGS 
7.5 minute map. The average error measured in terms of the coefficient of 
variation was found to be 0.045. Hence, they assumed that the coefficient 
of variation describing the estimation uncertainty associated with N 
persons each making one independent prediction is approximately 0.050/3. 
The relationship may be applied to any of the areal estimates: tota!, 
impervious, ground cover, canopy cover, etc. 

It is unlikely that the expected errors in determining channel length 
will greatly influence the predicted hydrograph. However, local variations 
in channel slope relative to the lengthwise channel average could possibly 
influence the timing of the predicted hydrograph. These local variations 
can partially be accounted for by subdivision of the watershed as done in 
distributed and quasi-distributed physical-conceptual and physical 
simulation models. However, even this will not eliminate problems with 
local variations. Hence, it is probably best to consider uncertainties due 
to the use of a lengthwise channel average slope as part of the model 
structure uncertainty due to "lumping." 

The average overland flow slope is generally computed as the weighted 
average of the overland flow slopes of overland flow paths determined at 
regular intervals along the channel. Hence, data on the variation of 
overland flow slope is readily available for the watershed and may be used 
to estimate the corresponding coefficient of variation. The overland flow 
slope greatly influences the timing of the predicted hydrograph. Thus, it 
is best to consider the overland flow slope uncertainty directly rather than 
as part of the model structure uncertainty, which will be accounted for with 
a magnitude correction factor (see section 2.5). 

For many physical simulation models, the overland flow length is, by 
definition, calculated as the width of a plane which when multiplied by the 
channel length equals the "true" plane area. Hence, it is best to consider 
uncertainty in the overland flow length as a portion of model structure 
uncertainty. Furthermore, the overland flow slope and length work together 
to determine the timing of overland flow, and the weighted average used to 
estimate the average overland slope partially accounts for this. Therefore, 
it is reasonable to account for the uncertainty in the timing of the 
overland flow using the uncertainty in the overland flow slope alone. 

There may be many more watershed morphologic factors used in the 
various real-time flood forecasting models. It is hoped that the above 
discussion presents the basic guidelines on how to deal with uncertainties 
in watershed morphologic parameters, and that these guidelines be applied to 
other morphologic factors. 

2.4 Evaluation of Model Parameter Uncertainties 

Wood (1976) observed that there seemed to be two types of unknown 
parameters, those that are fixed but unknown and those that vary from 
rainfall event to rainfall event. Watershed morphologic characteristics, 



such as area, overland flow slope and length, etc. , are examples of fixed 
but unknown parameters. While those which vary from rainfall event to 
rainfall event are studied in this section. Generally, these may have 
values within a known, specified range, but their true values may be greatly 
different for consecutive storms. When using a rainfall-runoff model in 
current "state-of-the-art" flood forecasting, a "best estimate" of each 
parameter value is determined from the corresponding range and is used 
throughout the forecasting procedure. By assuming the "best estimate" of 
the parameter value is equivalent to its expected value and by knowing the 
range over which the true parameter value is likely to exist, model para- 
meter uncertainties may easily be accounted for in reliability analysis 
methods as described below. 

2.4.1 Handling Model Parameter Uncertainties in Calibrated Models 

For calibrated models, the parameter uncertainty reflects not only the 
uncertainty in estimating the true parameter value for a particular event, 
but it also contains a measure of the data uncertainty which is transferred 
to the parameters by the calibration process. Fortunately, the calibration 
process also provides a significant amount of information regarding the 
range of values over which each of the true values of the parameters is 
likely to exist. Hence, the expected value (mean) and the standard devia- 
tion of the model parameter values may be estimated as follows. First, 
calibrate each of the storm events separately. Second, determine the 
overall mean value for each of the parameters by: 

1) Simultaneous calibration of all the storm events, if practical; if 
this method is used it may be advisable to use some sort of trans- 
formation of the objective function in order to make the error of 
estimation more commensurable for the large and small events; 

2) If (1) is not practical, use some sort of weighted average of the 
calibrated values for the events. 

The standard deviation may then be estimated from the variance of the 
calibrated parameter values for each storm about the overall mean. For 
nonlinear rainfall-runoff models, there is no reason for the mathematical 
mean of the individual event calibration results to be equal to the overall 
best estimate parameter value (however, the two values should be fairly 
close if a good, homogeneous calibration data set is used). Therefore, the 
variance about the overall best estimate is larger than that about the 
mathematical mean, but it is still a reasonable expression of the parameter 
variance for the MVFOSM method. For the AFOSM method, distributions will be 
fit to the basic variables based on the individual event calibration 
results. In such cases, the transformed normal means and standard 
deviations rather than the actual means and standard deviations are of key 
importance (see Eqs. B.37 to B.39). 

An independent check of the estimate of the parameter standard devia- 
tion may be made by using the method proposed by Mein and Brown (1978). For 
the case of models calibrated based on an ordinary least squares (i.e., sum 
of squares difference between measured and calculated discharges) objective 
function, they developed a method to estimate the one standard deviation 



confidence intervals for the calibrated parameters. This method makes use 
of a first-order Taylor series expansion of the model's hydrograph 
prediction and the central limit theorem to derive an approximate multi- 
variate normal distribution for the optimal parameter values. 

The key assumptions of Mein and Brown's method are that the parameter 
calibration is done using an ordinary least squares objective function and 
that the response surface surrounding the optimum is fairly linear such that 
the first-order Taylor series approximation is reasonable. The parameter 
variance calculated by Mein and Brown's method primarily considers 
uncertainty in the parameters due to errors transferred to the parameters 
from the data and, to lesser extent, due to model structure inadequacy 
effects on the parameters. Thus, the variance estimates obtained by Mein 
and Brown's method provide a very interesting comparison with the parameter 
variance estimated from the calibration results, which includes a measure of 
both the parameter and data uncertainty. Unfortunately, Mein and Brown's 
method was not employed in this study due to the fact that the models chosen 
as examples were not easily adapted to a form compatible with Mein and 
Brown's approach (i. e. , HEC-1 has a built-in calibration scheme while RORB 
required the use of an "ad-hoc" optimization approach, see Appendix C). 

The most important factor in the determination of model parameters and 
their uncertainties as outlined above is the calibration procedure used, 
and the key to calibration is the form of the objective function to be 
minimized. The calibrated parameter value may vary greatly depending on the 
criteria chosen to define the "best fit," i.e., a weighted sum of peak 
discharge difference, total runoff volume difference, and sum of squares 
difference between measured and predicted hydrographs. The selection of the 
calibration criteria is a function of what the model is to be used for. For 
real-time flood forecasting, the primary interest is in the magnitude of the 
peak, and if the peak is likely to exceed the critical level, the timing of 
the peak is of great importance. Hence, a criteria which emphasizes 
matching the peak discharge is important for real-time flood forecasting. 
In this study, a weighted sum of squares difference between the measured and 
predicted hydrographs is minimized, as explained in Appendix C. 

When calibrating a physical simulation model, the fitting process 
should be constrained such that the physically determinable parameters 
remain within their reasonable ranges. These constraints may reduce the 
quality of fit obtainable, however, the model structure uncertainty estimate 
(see section 2.5) will be much more reasonable. 

Given that minimization of a weighted sum of squares difference between 
measured and predicted hydrographs has been chosen as the calibration 
criterion, two important causes for poor parameter fitting must be 
discussed. 

First, the use of this criterion presupposes that any errors present in 
the data are uncorrelated, have a constant variance, and zero mean. 
Considering the discussion of data uncertainties in section 2.3 it is clear 
that these assumptions are quite often violated. Hence, Sorooshian et 
al. (1982) developed a maximum likelihood parameter estimation procedure 
which accounts for the autocorrelation and heteroscedasticity (i.e., 
changing variance) of data errors in the fitting process. They showed for a 



simple example that the maximum likelihood criterion provided improved 
parameter values for forecasting relative to those provided by a least 
squares criterion. However, when using reliability analysis, the 
examination of the forecasting uncertainty considers data error autocorrela- 
tion and heteroscedasticity either directly or as part of the parameter 
uncertainty. Thus, it is likely that while the maximum likelihood parameter 
estimates will have a smaller variance, the flood probabilities estimated by 
reliability analysis may not be significantly different. This is a subject 
for further research outside the scope of the this study. Furthermore, by 
considering the uncertainty in parameters obtained by a simple weighted 
least squares criterion, this research provides an uncertainty analysis for 
standard hydrologic practice. 

Second, when calibrating a model using any fit criterion, the question 
of the non-uniqueness of the calibrated parameters must be considered. That 
is, because various parameters tend to have similar effects on the predicted 
hydrograph, it is quite possible that many greatly different combinations of 
parameter values may result in nearly identical hydrographs. Thus, the 
variation in calibrated parameter values may be a function of this non- 
uniqueness property rather than the true parameter variation from storm to 
storm. By using multiple starting points for the least squares calibration, 
it may be possible to identify the true storm to storm variation. However, 
this may not be necessary for hydrologic models with a relatively small 
number of parameters because non-uniqueness becomes more prevalent as 
parameters are added to improve the fit. 

2.4.2 Handling Parameter Uncertainties in Physical Simulation Models 

For physical simulation models, the parameters are directly related to 
the physical characteristics, e.g., soil types, vegetal cover, channel 
morphology, etc., of the watershed, allowing them to be determined without 
using calibration or at most a small amount of calibration. For previously 
ungaged watersheds, parameter information may be obtained from physical . 
measurements at various locations, tables prepared from study of similar 
conditions (e.g., USDA soil surveys), and other relations developed to 
express physical characteristics in terms of commonly used hydrologic/ 
hydraulic parameters (e.g., the pictures relating channel conditions to 
Manning's n in Ramser, 1929; Scobey, 1939; and Barnes, 1967). Using the 
available information, the physically reasonable range for each of the 
parameters may be determined. The best estimate (mean value) of the 
parameter may then be determined by: (1) field measurements at various 
sites in the watershed, or (2) if (1) is not practical, personal judgment 
and experience. Personal experience of using the model on other watersheds 
may also greatly aid in determining the parameter's mean value. For 
example, Melching and Wenzel (1985) found that in calibrating a simple five 
parameter physical simulation model for 17 storm events of five small mid- 
western watersheds, each calibrated parameter tended to stay within a 
certain region of its physically reasonable range. The standard deviation 
may then be estimated by assuming the parameter follows a triangular 
distribution over its range with the apex at the mean value. This procedure 
has worked quite well for determining the coefficient of variation for 
Manning's n in sewer pipes (Yen et al., 1976). 



Also, additional information on physical parameter best estimates and 
standard deviations or coefficients of variation may be found in the 
literature. For example, Rawls et al. (1983) reported mean values and 
standard deviations of Green and Ampt infiltration equation parameters as 
they relate to USDA soil textural classes based on measurements for 1200 
soils in 34 states. McBean et al. (1984) analyzed McLean and Anderson's 
(1980) measurements of Manning's n on the Peace River in northern Alberta, 
Canada, and found that a coefficient of variation of 12 to 18 percent is 
realistic when field measurements have been undertaken. 

For watersheds which are changing in time, e.g., due to urbanization, 
and hence require a physical simulation model for flood forecasting, the 
mean values of the parameters must be evaluated based on current watershed 
conditions. However, the parameter variance may be estimated based on 
previous calibration results. The validity of this estimation of parameter 
variance is based on the reasonable assumption that despite the changing 
watershed morphology, the relative variance of the physical parameters about 
the watershed and the relative uncertainty in determining them remains 
constant . 

2.4.3 Forecast Updating 

The advantages and disadvantages of forecast updating schemes are 
discussed in Appendix A. The primary disadvantage of updating for flood 
events is that a minimum amount of data must be collected before updating 
will yield valid data and/or parameter adjustments. The time necessary to 
gather such data leads to a reduction in the forecast lead time, which is 
very important for flood warning and preparedness systems. 

The goal of this study is to demonstrate the utility and suitability of 
reliability analysis as a means of evaluating the reliability of forecasts 
produced by rainfall-runoff models in real-time and as a means of estimating 
the flood level exceedance probabilities corresponding to these forecasts. 
For forecasts made immediately after the end of the significant rainfall, 
sufficient runoff data for data and parameter updating will not be available 
for typical events on medium sized watersheds. Therefore, forecast updating 
need not be considered in meeting the objectives of this study and it is not 
included. However, reliability analysis may be combined with forecast 
updating schemes to provide supplemental information for flood watch/warning 
decision making. In the following paragraphs, some suggestions are made 
which provide insight on the future combination of reliability analysis with 
forecast updating. 

As described in Appendix A, many technologically advanced methods 
(e.g., adaptive filtering) have been developed to continuously update 
forecasts. Nevertheless, the primary means of updating is still simply 
adjusting the input data or parameters until the predicted hydrograph agrees 
with the available measured hydrograph data. Generally, the input data is 
adjusted because it does not require recalibration of the parameter values. 
However, for calibrated models adjusting the input data violates the 
assumption that the data uncertainty has been transferred to the model 
parameters. Hence, in future research on the combination of reliability 
analysis and forecast updating, updating should involve adjusting the 



parameters so that the available measurements are matched by the predicted 
hydrograph. 

When performing the reliability analysis, the updated parameter value 
is considered the mean value, while the standard deviation remains the same 
as computed earlier. For calibrated models, the standard deviation remains 
unchanged because the parameters are still subject to the same data 
uncertainty transfer. For physical simulation models, the parameter values 
may change with time due to the nature of the runoff process, and so the 
updated value is still quite uncertain. Hence, a constant standard devia- 
tion seems reasonable. 

Combination of reliability analysis with the more advanced adaptive 
filtering automatic updating schemes is not necessary. Georgakakos (1986a) 
pointed out that the updated error covariance matrix may be used to estimate 
the flood level exceedance probability. Nevertheless, the information on 
errors and uncertainties contained in this chapter may be of use for these 
advanced automatic updating schemes. For example, Kitanidis and Bras 
(1980a) developed a scheme for automatic updating wherein the data and 
parameters are adjusted only if the errors found exceed specified 
tolerances. The information summarized in this chapter may aid in selecting 
these tolerances. Also, Kitanidis and Bras (1980~) noted that for longer 
term forecasts, selection of the appropriate error variances is important. 
The information summarized in this chapter may also aid in estimating these 
error variances. 

2.5 Evaluation of Model Structure Uncertainty 

Model structure uncertainty stems from the model's inability to truly 
represent the watershed's physical runoff processes. For stochastic 
hydrologic models, the approximation assumes that the runoff process may be 
adequately described by the correlation between rainfall and streamflow, 
between upstream and downstream flows, and the autocorrelation in downstream 
flow. For conceptual hydrologic models, the approximation assumes a 
specified deterministic function represents the rainfall-runoff process. 
For physical simulation and physical-conceptual models, the approximation 
assumes many simplifications of the natural runoff process, such as spatial 
and temporal lumping of watershed characteristics and input, kinematic flow 
routing, etc., in order to make calculations practical. 

The uncertainties introduced by each of these approximations affect the 
shape, volume, and magnitude and timing of the peak of the predicted 
hydrograph. Hence, it is difficult to consider and account for the total 
effect of model structure uncertainty on the predicted hydrograph. For the 
purpose of this study, the primary interest is the model's ability to 
estimate the magnitude of the peak discharge. Sittner (1977) noted that 
when a stage above flood level is predicted to occur at a certain time, a 
flood plain dweller may be expected to take precautions as soon and as fast 
as is prudently possible. The flood plain dweller does not normally delay 
the start of his protective measures because the predicted interval is 
somewhat greater than the time required to complete these measures. 
Consequently, Sittner reasoned a timing error in an otherwise good forecast 
is not of great importance. Thus, a correction factor, Am, is used to 



account for the model structure's inability to accurately estimate the true 
peak discharge magnitude. The following sections will discuss the deter- 
mination of Am for calibrated models and then for physical simulation 
models. 

2.5.1 Handling Model Structure Uncertainties in Calibrated Models 

Garen and Burges (1981) pointed out that if a historical flow record 
representative of a wide range of watershed responses and of sufficient 
length to constitute a statistically significant sample is available, 
comparison of simulated and recorded flows to measure uncertainty might be 
extrapolated to estimate uncertainty in subsequent model predictions. 
Troutman (1982b) pointed out the variance between the measured discharge and 
the estimated discharge using the true input and model parameters is due 
entirely to model structure inadequacies. For calibrated models, the 
variance between the measured discharge and the estimated discharge is not 
truly due to the model structure inadequacy alone, however, the bias in the 
estimate due to error laden data and parameters is minimized by the calibra- 
tion process. Therefore, the expected value and standard deviation of the 
difference between the measured and calibrated peak discharges taken over a 
wide range of storm events provides a reasonable estimate of Am and its 
uncertainty. 

2.5.2 Handling Model Structure Uncertainties in Physical Simulation Models 

Generally, for physical simulation models, calibration data are not 
available to allow approximation of model structure uncertainty via 
comparison of estimated and measured peak discharges for the watershed in 
question. However, by calibratingk the model for data on another watershed 
the model structure uncertainty may be approximated. This transfer of model 
structure uncertainty also applies to the case where a physical simulation 
model is used for real-time flood forecasting for a watershed which is 
changing, e.g., due to urbanization. Calibration of previous data for this 
watershed may be used to determine model structure uncertainty effects, 
i.e., Am and its variance. 

If calibration data is not readily available for the watershed in 
question or other watersheds, the model structure uncertainty may be roughly 
approximated by assuming that the physical approximations made in the model 
are at least as good as the conceptual or stochastic approximations made by 
various other models. Thus, model structure uncertainty estimates gained 
from experience with other models may be applied to the current problem. 
Although this assumption seems quite reasonable, it does lump physical 
simulation models of various levels of complexity at the same uncertainty 
level. Hence, comparison among physical simulation models is not possible 
and the probabilities determined may be somewhat conservative (i.e., over- 
estimated). 

"When calibrating a physical simulation model, physically reasonable bounds 
must be placed on the parameters in order to identify the effects of model 
structure inadequacies. 



A typical example of the model structure uncertainty on the predicted 
peak discharge is provided by Melching and Wenzel (1985). They calibrated 
the predicted hydrographs from a physical simulation model, which uses 
Wooding's open book approximation of watershed geometry, kinematic wave flow 
routing, and a modified Green and Ampt infiltration equation to estimate the 
runoff hydrograph, for 17 storm events on five small midwestern watersheds. 
They found the expected value of the peak discharge was within 2 percent of 
the true peak discharge, the standard deviation was approximately 16 
percent, and values were normally distributed about the mean. Hence, the 
expected value and coefficient of variation of Am may be approximated as 1 
and 0.16, respectively. This provides a rough approximation of the typical 
magnitude of the effects of model structure uncertainties. 



CHAPTER 3. PRESENTATION OF RESULTS 

3.1 Introduction 

In this chapter, the utility of the proposed procedure for employing 
reliability analysis to consider the uncertainties in hydrologic modeling is 
demonstrated for the case of real-time flood forecasting using two simple 
physical-conceptual rainfall-runoff simulation models, HEC-1 and RORB. A 
brief description of these models is given in Appendix C.3. The procedure 
is applied to an Illinois watershed as an example. The description of the 
watershed, calibration of the two models, and statistical analysis of the 
calibration results are presented in Appendix C. It should be noted that 
the case study using the selected models is for demonstration purposes, and 
similar reliability analyses could be carried out for any hydrologic model 
(as described in section 2.1) and for any watershed. Initially, standard 
model verification results are discussed. Subsequently, these verification 
results are reexamined considering the stochastic nature of the forecasts as 
estimated by reliability analysis. Reliability analysis is used to: 

1. determine the key basic variables influencing model forecast (or 
prediction) reliability, 

2. select hydrologic models based on a comparison of model forecast 
(or prediction) reliability, and 

3. develop "rules of thumb" regarding the likelihood of flood 
occurrence to aid in flood warning decision making. 

Finally, the various reliability analysis methods are compared for this case 
study . 

3.2 Real-Time Flood Forecasting Scheme Verification 

Table 3.1 displays the measured Qp and tp values for each of the 
verification storms and the respective percent errors in the HEC-1 and RORB 
forecasts of these values. In general, both models do a reasonable job 
forecasting the peak discharge timing with 10 of the peak times estimated 
within ten percent and another 5 between ten and twenty percent for HEC-1, 
while for RORB these numbers are 7 and 6, respectively. Even for events 
whose peak discharge magnitude is greatly overestimated, the forecast peak 
times are quite reasonable. Only for the May 10, 1962 storm are the tp 
values forecast by HEC-1 and RORB greatly erroneous. 

The forecasts of the peak discharge magnitude display much less 
reliability. For non-summer, non-convective storm events, excluding the 
April 16, 1957 and May 12, 1970 (which is suspect due to incomplete data) 
storms, the average absolute error in the peak discharge magnitude forecast 
is 18 percent for HEC-1 and 19.3 percent for RORB. However, the forecast 
peak magnitudes are more than fifty percent greater than the measured 
magnitudes for six storms for HEC-1 and for eight storms for RORB. With the 
exception of the April 16, 1957 and May 12, 1970 storms, all the extremely 



Table 3.1. Comparison of Measured and Predicted Peaks 
for the Verification Events 

Measured HEC - 1 RORB 
Date Q Percent Error Percent Error t~ 

(cEs) (hr) QP t~ QP t~ 

erroneous forecasts are for summer, convective storms. The July 22, 1957 
storm is tremendously overpredicted by both HEC-1 (180 percent) and RORB 
(240 percent). 

Such results are as expected when the seasonal variation of model 
parameters is recalled (see Tables C.10 and C.ll). The seasonal variation 
indicates that the expected values of the hydrograph parameters, TC and SR 
in HEC-1 and C1 and m in RORB, remain fairly constant throughout the year. 



Hence, the generally good results in the peak time forecasts were expected. 
The expected value of the continuing loss rate is significantly larger for 
summer storms than for those in the remainder of the year. Thus, using the 
overall average continuing loss rate, which is biased toward the lower non- 
summer values, leads to overestimation of the precipitation excess and 
subsequently the peak discharge magnitude. However, these arguments do not 
explain the large error for the April 16, 1957 event or the low error for 
the June 12, 1958 event. 

In general, it appears that the real-time flood forecasting schemes 
perform quite well for non-summer, non-convective storm events. Further- 
more, it seems that if applied properly, either of the real-time flood 
forecasting schemes will provide reasonably reliable and useful forecasts 
for such events. For summer convective storm events, neither model appears 
useful when using the overall mean parameters. 

3.3 Verification of the AFOSM Method 

The AFOSM method has not previously been applied to hydrologic modeling 
cases where the output from a complex nonlinear mathematical model is 
necessary to define the system performance function. Hence, verification of 
the accuracy of the AFOSM method for this problem must be performed before 
comments regarding the reliability of the real-time flood forecasting 
schemes may be made based on the AFOSM method results. 

Assessment of the exact forecast reliability for the real-time flood 
forecasting schemes via direct integration is not possible due to the 
multiple variable, complex, nonlinear mathematical model description of the 
hydrologic loading (forecast peak discharge). Hence, Monte Carlo simulation 
was used to check the accuracy of the AFOSM method. In this study, three 
sets of 1,000 simulations were used to estimate the measured peak and flood 
level exceedance probabilities for events for which these exceedance 
probabilities were estimated as greater than 0.2 by the AFOSM method (the 
April 24, 1957 event is a slight exception to this rule) . For events with 
AFOSM method exceedance probability estimates between 0.01 and 0.2, a single 
set of 10,000 simulations was used to estimate the exceedance probabilities 
for both the measured peak and the flood level. The selection of the 
appropriate number of simulations was based on Cheng's (1982) work reported 
in section 2.1.1. No Monte Carlo simulation was performed for the five 
events with flood level exceedance probabilities estimated by the AFOSM 
method to be less than 0.01 due to the prohibitively large number of 
simulat-ions required to obtain a near exact exceedance probability. In 
fact, the major disadvantage of Monte Carlo simulation is the often 
prohibitive time required to generate a sufficient number of simulations. 
In this study, using an IBM PC-AT with math co-processor chip, 1,000 
simulations took nearly 6.5 hours for HEC-1 and 10.5 hours for RORB. 

Tables 3.2 and 3.3 display the comparison between Monte Carlo simula- 
tion and the AFOSM method for HEC-1 and RORB, respectively. As pointed out 
by Wood (1976), E[f (q) ] (estimated by Monte Carlo simulation) is not equal 
to f (E[x_]) (given by the AFOSM method). However, for this case, the 
difference between the two is acceptably small with the AFOSM approximation 
generally displaying less than five percent errors. 



The comparison between the standard deviation of the simulated Qp 
values and the first-order approximation about the mean basic variable 
values displays greater discrepancy. The forecast standard deviation as 
estimated by the AFOSM method is not truly shown in Tables 3.2 and 3.3;. 
instead, the MVFOSM method estimate is shown because the variance about the 
mean is of greater hydrologic significance. The discrepancy was expected 
because one of the key assumptions of the MVFOSM method, and hence, the 
estimate of the variance at 2 is that the basic variable coefficients of 
variation are small (this is less important for the AFOSM method due to the 
distributional transformations and the analysis at the failure surface). 
For example, Garen and Burges (1981) found that for the first-order 
approximation of the variance at 2 to be reasonable for the Stanford 
watershed model the coefficients of variation of the sensitive basic 
variables should be no greater than about 0.25. For HEC-1, the respective 
coefficients of variation for TC, SR, and CL are 0.24, 0.15, and 0.70, while 
the coefficient of variation values range from 0.29 to 2.51 for IL and from 
0.043 to 0.065 for Xmh. For RORB, the respective coefficients of variation 
for C1 and CLX are 0.18 and 0.67, while the coefficient of variation values 
range from 0.29 to 2.52 for ILR and from 0.057 to 0.086 for Xmh. It should 
be noted that the events for which the agreement in SD(Qp) is good are not 
the events with the smallest IL coefficients of variation. Nevertheless, 
the large coefficients of variation partially explain the disparity between 
the Monte Carlo and first-order estimates of SD(Qp). 

The most important comparison between the two approaches is for the 
exceedance probabilities. The AFOSM method consistently overpredicts the 
exceedance probabilities relative to Monte Carlo simulation. The AFOSM 
method assumes Z is continuous over all the basic variables. However, as 
noted in section C.8.2, Z no longer is continuous in IL when IL and CL are 
related to the accumulated precipitation up to and including period i, Pi, 
such that 

where b = 2 for RORB and is related to the difference between IL and Pi 
for HEC-1. 

Hence, the assumed continuity causes the AFOSM to overestimate the 
exceedance probability relative to Monte Carlo simulation, which accounts 
for the discontinuity. This overestimate results from the fact that by 
ignoring the discontinuity, the partial derivative is overestimated and, 
hence, the AFOSM method perceives the forecast to have greater variability 
than it truly does (recall VAR(Z) - f (ci2) ) . Therefore, is underestimated 
and a higher target level exceedance probability is estimated. 

Events with at least one period of very high rainfall relative to 
E[IL] are affected less by the discontinuity, and thus the Monte Carlo 
simulation and AFOSM methods should be quite close for the measured peak. 
The April 17, 1957, July 13, 1957, July 22, 1957, ~ u l y  14, 1958, and June 
16, 1973 events have such high rainfall periods and, as expected, very close 
agreement between the Monte Carlo simulation and AFOSM methods was found. 
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In general, the comparison over all the events indicates the AFOSM and 
Monte Carlo simulation methods provide quite reasonable and consistent 
estimates of the measured peak and flood level exceedance probabilities. 
However, it is interesting to speculate which method gives the value which 
is closer to the truth. The basic assumption in this reliability analysis 
is that HEC-1 and RORB and their model parameter and model correction factor 
(i.e., model structure) uncertainties approximate the true rainfall-runoff 
process for the Vermilion River watershed. The calibration results reported 
in Appendix C demonstrate that for a wide variety of storms both HEC-1 and 
RORB can accurately model the true Vermilion River watershed rainfall-runoff 
process given the proper parameter values for that storm. These proper 
parameter values are essentially independent and describable by simple 
normal and lognormal distributions, the estimation of which utilizes 
calibration and distribution fitting procedures assuming continuous 
relationships. Furthermore, the true physical rainfall-runoff process is 
continuous for rainfalls in excess of the infiltration capacity. Therefore, 
the AFOSM method, which disregards the discontinuity in the initial loss- 
continuing loss rate scheme, is in better agreement with the true physical 
process and with the underlying assumptions used to derive the basic 
variable uncertainties than is the Monte Carlo simulation method. Hence, 
the somewhat conservative AFOSM method estimates of the hydrologic target 
level exceedance probabilities may be more realistic than the Monte Carlo 
simulation estimates. 

The discontinuity effects also contribute to the difference between the 
Monte Carlo and first-order estimates of the mean and variance of the 
forecast peak discharge. 

3.4 Reliability of the Real-Time Flood Forecasting Schemes 

3.4.1 Forecast Reliability 

The forecasts produced by the HEC-1 and RORB based real-time flood 
forecasting schemes are actually stochastic forecasts. In stochastic, 
time-series forecasting a common "rule of thumb" for assessing the quality 
of the forecasting model is that the measured values fall within the 95 
percent confidence limits of the forecast. Table 3.4 displays the AFOSM 
method P values corresponding to the measured peak, PM, and the flood level, 
PF, for both HEC-1 and RORB. A /3 value of 2 1.96 corresponds to the 95 
percent confidence limits. Hence, all IPMI values less than 1.96 indicate a 
"good" stochastic forecast with the measured peak within the forecast's 95 
percent confidence limits. Discounting the May 12, 1970 event for which 
theinput data is questionable, HEC-1 forecasts violate this rule of thumb 
for 2 of 17 events, while RORB forecasts violate it for 3 of 17 events. 
Furthermore, all five of the violations are very small with the worst 
corresponding to 96.6 percent confidence limits. Hence, from a stochastic 
forecasting viewpoint, both HEC-1 and RORB provide "good" forecasts for all 
the verification events. 

From a practical viewpoint, however, the "good" stochastic forecasts 
with more than 50 percent overpredictions of the peak discharge are not 
particularly useful. For these cases, the forecast variance is very large 
such that large differences between forecast and measured peaks fall into 



the reasonable "stochastic" range when standardized. This high forecast 
variance does not mean that HEC-1 and/or RORB should or should not be used 
for real-time flood forecasting in general. Reliability analysis indicates 
that each model is quite capable of providing adequate forecasts given an 
accounting of the model's stochastic nature. Therefore, to increase the 
reliability of the forecasts, more complex models are not required; instead, 
the high forecast variance must be decreased by reducing the underlying 
uncertainties in modeling. If the underlying basic variable uncertainties 
cannot be appreciably reduced, then the model is not adequate for the task 
at hand and another, possibly more complex, model should be selected. 

Table 3.4. Comparison of AFOSM B Values Between Models 
and Discharge Levels 

HEC- 1 RORB 

Date BM BF ? BM BF 
(CFS) 

l~teration scheme has difficulty converging in the basic variables due to 
discontinuity in ag/aIL. 
2~teration scheme has difficulty converging in the basic variables due to 
the extreme probability of the event. 
3~teration scheme has difficulty converging in the basic variables due to 
both 1 and 2. 



Another means to examine the reliability of the forecasts is to prepare 
the cumulative density function, CDF, for the forecast. The closer the CDF 
curve is to a step function, the more reliable the forecast. By varying the 
hydrologic target level and estimating the exceedance probability, PE, the 
CDF may be obtained by 

CDF = 1 - PE = 4(B) (3.2) 

Figures 3.1 and 3.2 display the exceedance probabilities (which are the 
complements of the CDF) as a function of the discharge level for three 
spring events of various peak discharge magnitudes (April 8, 1965, April 26, 
1959, and May 4, 1965) and one small summer event (July 13, 1957) for 
forecasts using HEC-1 and RORB, respectively. The April 8, 1965 event is 
the most reliably forecast of the four events, and, in general, the curves 
display the consistently high reliability of spring event forecasts. The 
July 13, 1957 event curve displays the high forecast variance and low 
reliability generally encountered for the summer event forecasts. 

The dashed portions of the April 26, 1959 and July 13, 1957 event 
curves at the lower discharge values are due to the discontinuity in the 
initial loss-continuing loss rate abstraction scheme. For discharges 
greater than the break, the failure point is a function of both IL and CL. 
However, for discharges less than the break, the failure point is only a 
function of CL. Hence, this change in problem dimensionality causes CL and 
the other basic variables to move to more extreme values, greatly increasing 
B and PE. 

The forecast probability distribution function, PDF, is the derivative 
of the CDF, and it provides an interesting picture of the forecast variance 
and reliability. Figure 3.3 displays the PDFs for the HEC-1 and RORB 
forecasts of the May 4, 1965 event. The scatter of the points about these 
curves is a function of the method (making the area under the PDF up to a 
point equal to the CDF at that point) and the interval (1000 cfs) used to 
derive the PDF. Nevertheless, the approximate PDF curves shown in Fig. 3.3 
display the reasonable reliability of the HEC-1 and RORB forecasts with the 
measured peak discharge nicely with the peak region of the PDFs. 

3.4.2 Sources of Modeling Uncertainty 

One of the strengths of the first-order second moment techniques is 
that they allow the assessment of the relative contributions of the 
individual basic variable uncertainties to the overall system uncertainty. 
Recall that in the first-order second moment techniques, the variance of Z 
is approximated as 
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representing the Klang river and its two main tributaries. Regression 
equations were prepared for gages on each of these rivers just before their 
confluence. A fourth regression equation was prepared relating the stage at 
these three gages and at Kuala Lumpur. The resulting equations provide 4 
hour lead time forecasts which do not possess a high degree of forecast 
accuracy, but do serve the purpose of the local authorities. 

The most innovative use of stochastic methods in real-time flood 
forecasting has been applying filtering techniques to the output from 
conceptual or physical simulation models to obtain adaptive (i.e., 
continually updated) real-time forecasts. These techniques are described 
in detail in section A.1.5. 

A.1.2.2 Conceptual Models 

Conceptual or "black box" hydrologic models are mathematical transfer 
functions which convert the effective rainfall input to the hydrologic 
system into the runoff hydrograph. These transfer functions are "best fit" 
mathematical formulations which do not consider the physics of the runoff 
process within the watershed system. The unit hydrograph and its relatives 
(i.., synthetic and instantaneous unit hydrographs) are the most common 
examples of conceptual models. For the purest form of conceptual models, 
the rainfall excess is determined by calibrated runoff coefficients, while 
models which determine rainfall excess via physical relations and then 
convert this to runoff via conceptual means are physical-conceptual models 
(see section A.1.3). 

As noted in section A.1.1.2, unit hydrographs were the "state-of-the- 
art" in real-time flood forecasting before the advent of digital computers. 
Sipce the development of digital computers, several conceptual models have 
been proposed and used for real-time flood forecasting. 

Kumaraswamy (1973) used unit hydrographs, synthetic unit hydrographs, 
instantaneous unit hydrographs, and system models of network of linear 
filter models for real-time flood forecasting for rivers in peninsular India 
between latitudes 7"N and 17"N. 

Bel'chikov (1975) used linear reservoir type models to estimate the 
surface runoff and storm seepage from a watershed and a linear model of 
transformation to covert these flows into the runoff hydrograph at the 
outlet. He applied this model to real-time flood forecasting for the Rioni 
River upstream of Sakochakidze (U.S.S.R). Later in 1977, Bel'chikov applied 
this model to estimate runoff from the mountainous upper half of the Ingoda 
River basin upstream of Chita (U.S.S.R.). 

The inflow-storage-outflow (ISO) model used by Lambert (1981) for 
operational forecasting on the River Dee (Wales) is similar to a unit 
hydrograph approach. The method assumes that a natural catchment area may 
be represented by a single unified natural storage. By integrating the 
storage/outflow relation derived for each subcatchment and using standard 
channel routing techniques, the total outflow hydrograph is obtained. 



Nnaji et al. (1983) used an impulse-response function to convert the 
effective rainfall determined from a combined rain gage and radar rainfall 
measurement system into discharge for a South Carolina watershed. 

Goring (1984) 4 used the fast Fourier transform method to find the 
transfer function between upstream and downstream gages on the Grey River 
in New Zealand. For the Grey River, only 57 percent of the outlet 
discharge is accounted for by the upstream gages, and so regression methods 
were deemed unwise. 

The CLS (Constrained Linear System) model developed by Natale and 
Todini (1976a and b) uses a rather interesting hybrid approach by combining 
the instantaneous unit hydrograph with physical principles. They imposed a 
set of constraints that can be deduced from the physics of the hydrologic 
system on the instantaneous unit hydrograph in order to reduce the high 
sensitivity of the classical parameter estimation techniques to errors in 
the available data. Using Monte Carlo tests, they found that in the field 
of "small samples" (<lo0 rainfall-runoff records), which is the usual hydro- 
logic range, constrained estimation is much better than classical uncon- 
strained estimation. Askew (1981) applied the CLS model to real-time flood 
forecasting for Central American watersheds with mixed results. 

The Isolated Event Model is a very simple conceptual model, and yet it 
has been used quite successfully for real-time flood forecasting within a 
FWP system. Eyre and Crees (1984) used this model to simulate runoff from 
the Yeading West catchment (northwest of London), and Sargent (1984) used 
this model for the River Tyne at Haddington (Scotland). The Isolated Event 
Model is a simple four parameter rainfall-runoff model which uses a 
rainfall-runoff ratio based on soil moisture, nonlinear reservoir routing, 
and a pure time delay in the routing to estimate the outflow hydrograph. 

A.1.3 Physical-Conceptual Models 

A large group of models has been developed which combine physical 
principles with the "black box" idealizations of conceptual models. Such 
models are often referred to a "conceptual models" in the literature 
because they are based in part on physical "concepts." However, the term 
conceptual models is probably best reserved for the "black box," input- 
output type models described in section A.1.2.2, while the term physical- 
conceptual models better describes those which combine physical and 
conceptual principles. 

Physical-conceptual models mimic the rainfall-runoff process via a 
combination of physically based and conceptual approximations whose 
parameters are chosen such that they may often be directly obtained from 
physical measurements or inferred from the physical characteristics of the 
watershed. However, the nature of how to infer the parameters from 
physical character is t ic s and measurements is not always known. 
Furthermore, often "curve fitting" parameters are added to these models 
which have no physical meaning, but do improve the quality of the models' 
hydrologic fit. Therefore, in most cases, calibration is required for 
physical-conceptual models. For some physical-conceptual models, if the 



hydrologist has considerable (a) experience with the model and/or (b) know- 
ledge of the watershed's physical characteristics, the model may be applied 
to watersheds without sufficient calibration data (e . g . , ungaged 
watersheds). For example, hydrologists have devoted considerable time to 
estimating the initial values of many of the Stanford Watershed model 
parameters on the basis of observable basin characteristics. However, 
Nordenson (1967) noted that even though this effort has met with some 
success it is doubtful whether this approach can ever provide more than 
reasonable estimates for further refinement . Therefore, when using 
physical-conceptual models for ungaged watersheds, care must be exercised 
in selecting parameter values, and calibration data should be collected and 
utilized as soon as possible. 

There are two main types of physical-conceptual models. Type I 
combines a physically based representation of abstractions with a 
conceptual conversion of the resulting rainfall excess to the runoff 
hydrograph. 

The HEC-1, Flood Hydrograph Package of the U.S. Army Corps of 
Engineers (1985) is perhaps the most well known physical-conceptual model 
of Type I. In its most commonly used form, HEC-1 determines the rainfall 
excess using one of four abstraction approaches (initial loss and 
continuing loss rate, exponential loss rate, SCS curve number, or Holtan 
loss rate), and then the rainfall excess is converted to the runoff 
hydrograph via a synthetic unit hydrograph. For more complex watersheds, 
hydrographs from subareas are synthesized as detailed above and then routed 
through the channel network using any one of a number of routing methods 
(Muskingum, modified Puls, working R&D, level pool reservoir routing, or 
average-lag routing). Recently, kinematic routing methods have been 
incorporated into HEC-1 both for overland flow generation and channel 
routing. Nevertheless, the conceptual options remain most commonly used for 
areal hydrograph generation employing HEC-1. Ford et al. (1980) report the 
application of HEC-1 for forecasting inflows to the W. Kerr Scott Reservoir 
on the Yalkin River in North Carolina. The results of this application will 
be discussed in section A.1.5. 

The RORB (Runoff Routing, the B refers to a version) program is 
another physical-conceptual model of Type I which is gaining popularity. 
RORB breaks the watershed down into a number of subareas each of which may 
have separate rainfall input which is converted to rainfall excess using a 
single initial loss-continuing loss rate scheme. The rainfall excess is 
then routed through the channel .network which is modeled as a series of 
nonlinear reservoirs. RORB has become extremely popular for a wide variety 
of hydrologic studies in Australia and Malaysia. In fact, in Australia it 
was used by all water authorities and consultants working in the water 
business (Laurenson, 1986). 

In the second type of physical-conceptual models, the runoff process 
within sub-basins is modeled as a series of interconnected (generally 
linear) reservoirs. Each of the reservoirs represents a portion of the 
hydrologic flow path taken by the rainfall input, i . e. , a surface storage 
reservoir, an unsaturated subsurface reservoir (vadose zone), and saturated 
subsurface reservoirs (groundwater). The interrelations between these 
reservoirs are modeled using physical and/or empirical considerations. The 



combined output from each of these reservoirs for each of the sub-basins is 
then routed through the watershed's channel network using standard flood 
routing techniques, e.g., the Muskingum-Cunge method, multi-phase lake 
routing, kinematic wave routing, etc. 

The Stanford Watershed model (Crawford and Linsley, 1966) is perhaps 
the most famous and most complex of the physical-conceptual models of Type 
11; and, as noted earlier, a modified version of this model was initially 
adopted for use in the NWS River Forecast System (NWS, 1972). The 
Sacramento model (Burnash et al., 1973) is a somewhat simpler physical- 
conceptual model of Type I1 which has replaced the modified Stanford model 
in the NWS River Forecast System (Peck, 1976). The SSARR model 
(Schermerhorn and Kuehl, 1968) is another well known physical-conceptual 
model of Type 11. The SSARR model was originally developed for operational 
forecasting along the Columbia River, and it has also been used for real- 
time flood forecasting on a number of other watersheds around the world 
including the lower Mekong Basin in Cambodia (Rockwood, 1968, and Sangsit, 
1973). A fourth well known physical-conceptual model of Type I1 is the USGS 
flood hydrograph simulation model (Dawdy and O'Donnell, 1965). 

Several other simpler physical-conceptual models of Type I1 have been 
used by various researchers for real-time flood forecasting applications. 
Kadoya and Hayase (1973) applied such a model to the Shino River in Japan, 
and obtained good forecasts of both long term and short term runoff. Bailey 
and Dobson (1981) applied such a model to the River Teme basin upstream of 
Tenbury (England) with good results. Finally, the Swedish Meteorological 
and Hydrological Institute has developed a model of this type for 
operational forecasting in Sweden (Bergstrom, 1981). 

A.1.4 Physical Simulation Models 

Chow (1972) states that a simulation retains the essence of the 
prototype without actually attaining reality itself. A simulation model 
reproduces the behavior of a hydrologic phenomenon in every important 
detail but does not reproduce the phenomenon itself. Physical simulation 
models attempt to mimic the land phase of the hydrologic cycle in a 
watershed on a digital computer. The key advantage of physical simulation 
models is that all their parameters may be determined from physical measure- 
ments and/or relations developed in the literature. Hence, these models are 
suitable for ungaged watersheds as long as the parameters are selected 
carefully based on physical measurements and experience with the model on 
watersheds where calibration is available. 

The most common type of physical simulation models divides the 
watershed into subcatchments. For each subcatchment, the rainfall excess is 
determined via simple infiltration relations (e.g., Green-Ampt, Holtan, 
etc.) and coefficients for the other abstractions. Kinematic wave flow 
routing is then used to convert the rainfall excess to a runoff hydrograph 
at the subcatchment outlet. The subcatchment hydrographs are then routed 
through the channel system using kinematic flow routing. As noted earlier, 
such an approach has recently been added as an option in the standard HEC-1 
Flood Hydrograph Package (U.S. Army Corps of Engineers, 1985). Chowdhury 
and Bell (1980) have also developed such a model and their verification 



results in simulating floods from the Eastern Creek and South Creek 
Experimental Catchments, Sydney, Australia are quite encouraging. More 
complicated flow routing schemes have also been examined. For example, a 
watershed model using full dynamic wave or kinematic wave overland flow 
routing and dynamic wave channel model has been developed at the University 
of Illinois (Yen, 1984). 

A.1.5 Updating and Hybrid Models 

In real-time flood forecasting the typical means of updating (i.e., 
getting the forecast to agree with the available flow data) is adjusting 
the rainfall input until the forecast hydrograph and available measurements 
agree. However, in recent years several hybrid models combining conceptual 
or physical simulation models with stochastic models have been developed 
with the stochastic part designed to automatically account for the 
discrepancy between the measured and forecast flows. 

Jamieson et al. (1972) proposed a two-stage approach to real-time 
forecasting. The first stage comprises a simple rainfall-runoff model such 
as described in the previous sections. Inspection of the first-stage 
residuals show that they are seldom purely random (Dawdy et a1 . , 1972 ; and 
Clarke, 1973) which suggests that there is a residue of information that has 
not been accounted for by the simple model. Rather than resort to 
restructuring the model, Jamieson et al. proposed modeling the residuals 
using time-series analysis as a second stage of the model. Thus, rather 
than using an updating procedure, the time series analysis model simply 
prorates the effects of the known differences between forecast and measure- 
ments to the future time periods. This method was applied to the Brenig 
experimental catchment in Wales with a modified version of the Stanford 
Watershed model as the first stage and a first-order autoregressive model as 
the second. They concluded that forecast errors can be significantly 
reduced by the use of a simple second-stage mathematical model. 

Kitanidis and Bras (1980a-c) developed an innovative means to 
continually update the forecasts from a rainfall-runoff model. They 
defined the state of the real-time flood forecasting system as a set of 
variables which summarize all past inputs into the system. In their 
method, every time an observation becomes available Bayes' theorem is 
utilized to update (via adaptive filtering) the distribution of the states, 
given available information. Filtering is used to update the forecasts 
because the structure of the filter can partially account for the various 
sources of forecast uncertainty. Hence, the model error covariance matrix 
is the critical filter parameter; and in adaptive filtering it is an unknown 
parameter to be estimated, on-line, as part of the filtering objectives. In 
order to apply adaptive filtering to a real-time flood forecasting model, 
each of the individual interactions in the model must be quasi-linearized 
and then combined in a linearized form representing the complete hydrologic 
system. 

Kitanidis and Bras (1980~) applied this methodology to the MJS River 
Forecast System model, and compared forecast results from this model and a 
simple abstract model for the Cohocton River at Campbell, New York. They 
found that for the shortest lead time (six hours), the simple abstract model 



performed as well as the stochastic-physical simulation model. However, for 
longer forecast lead times, the stochastic-physical simulation model gives 
significantly better results than the abstract model. The stochastic- 
physical simulation model was also found to be more reliable than the 
abstract model in &orecasting the most important features of the hydrograph 
such as the beginning of the rising limb, the time and height of the peak, 
and the total water volume. Hence, they concluded the use of feedback via 
adaptive filtering significantly improves the overall forecasting capability 
of the model even when the model and input error statistics are not 
perfectly known. 

Georgakakos and Bras (1982) developed an improved quasi-linearization 
method for linearization of a nonlinear kinematic routing scheme. This 
routing procedure was combined with the adaptive filtering scheme for 
simultaneous stage and parameter estimation developed by Kitanidis and Bras 
(1980a-c). The effectiveness of this adaptive routing procedure was 
demonstrated for flood data from Bird Creek, Oklahoma, using the NWS River 
Forecast System model to obtain the channel inflow hydrographs to be routed. 

Georgakakos (1986a and b) further expanded the application of adaptive 
filtering for automatic updating to consider the uncertainties in a combined 
hydrologic/meteorologic model of the rainfall-runoff process. The 
meteorological model employs the surface temperature, surface pressure, and 
surface dew-point (either measured or interpolated from nearby stations) to 
produce forecasts of areal average precipitation over the basin. The 
precipitation forecasting technique also compensates for orographic effects 
within the watershed and between stations if needed. The precipitation 
forecasts and available precipitation measurements (if any) are input to the 
rainfall-runoff model to produce real-time forecasts of the hydrograph. The 
states of the various sub-models (meteorologic, rainfall-runoff, and 
routing) are recursively updated via adaptive filtering to improve the 
agreement between measured and forecast hydrographs. 

Wood (1981) noted that one drawback of using adaptive filtering 
techniques, like those described previously, is a restriction, related to 
the size of the state vector due to computation and computer limitations, 
which constrains hydrological applications to small headwater catchments. 
He proposed a methodology that allows forecasting of large systems by 
partitioning the system into subsystems, where the filtering of subsystems 
is performed in parallel or sequentially (depending on the situation). The 
interactions between the partitioned subsystems are accounted for by 
supplementing the noise processes. He compared the performance of this 
partitioned filter methodology and the full system filter approach for the 
use of the CLS model on the River Dee watershed in Wales, and found that the 
partitioned method worked equally well at a considerable savings in computer 
time . 

The results of all the adaptive filtering updating reported above 
display excellent one-time step ahead forecasts (30 minutes for Wood, 1981; 
6 hours for all others). However, in real-time flood forecasting, the 
efficiency of the flood warning scheme is a function of the forecast lead 
time (i.e., time between the issuance of the forecast and occurrence of the 
expected peak). For longer term forecasts (on the order of the watershed 



response time, say 24 to 48 hours for medium sized watersheds), the results 
of updating are less encouraging. 

The U.S. Army Corps of Engineers tested updating schemes for real- 
time forecasts of inflows to the W. Kerr Scott reservoir on the Yadkin 
River in North Carolina (Ford et al., 1980). They found that for 23 of 25 
updated forecasts (over four events) predictions made using the average 
parameter values (determined from calibration of seven events) produced 
lower total error for the event than did forecasts using optimal parameter 
values from the previous forecast. Kitanidis and Bras (1980~) also noted 
difficulties in making forecasts with lead times of practical interest. For 
forecast lead times of three to six time steps (18 to 36 hours), the 
standard error of the real-time forecasts from adaptive filter models was 
nearly identical for three different estimations of the model error 
statistics: 1) fixed based on an educated guess; 2) fixed based on final 
statistics for an optimal adaptive filtering of the entire flow period; and 
3) variable estimated by adaptive filtering for rainfall-runoff events where 
errors in data exceed a threshold level, or taken as fixed values otherwise 
(note: this is methodology advocated by Kitanidis and Bras, 1980a). 
Therefore, it seems for forecast lead times of practical interest (e.g., the 
watershed response time) the forecasts are somewhat insensitive to the 
updating procedure and assumed error statistics. 

Ford et al. (1980) suggest a possible reason for the poor performance 
of updating for longer term forecasts. Due to the appreciable lag time 
between the measurement of rainfall on the basin and its occurrence at the 
stream gage, when a forecast is issued early in the flood event, only a 
small portion of the recorded precipitation contributes to the simulated 
(and measured) discharge prior to the time of forecast. In such cases, it 
is possible that the updating scheme may cause substantial changes in the 
model's parameters which do not truly reflect the model parameters for the 
entire event. Kitanidis and Bras (1980a) recognized these facts in 
designing transient error identification approach for adaptive filter 
updating. They noted that in real-time forecasting with hydrologic models, 
a common problem is the incorrect estimation of the time when the rising 
limb begins. They attributed this problem to either model inadequacy, 
especially due to the fact that the spatial distribution of the storm is not 
accounted for, or to the system nonlinearity. Under such conditions, they 
advised that a minimum number of measurements should be collected before the 
presence of an error in the input is inferred. The necessity of making a 
minimum number of measurements before the updating becomes efficient 
obviously limits the utility of such schemes for longer term forecasts of 
the flood hydrograph. Kitanidis and Bras (1980~) note that feedback 
(through adaptive filtering) becomes valuable only after the hydrograph 
starts moving steeply, leaving little time before the peak arrives to adjust 
and correct timing and other errors. 

In summary, despite the fine results obtained via automatic updating 
for short term forecasts, it appears long term (three or more time steps 
ahead) forecasts are still best made with measured input and "best 
estimates" of the parameters. Hence, assessment of forecast reliability 
has high priority. 



A.2 Deterministic Versus Stochastic Models and Forecasts 

A key element in hydrologic modeling is understanding the nature of 
the physical process being modeled. Hydrologic systems (e.g., watersheds) 
may be represented by a series of variables and parameters. Clarke (1973) 
defined a variable as a characteristic of a system which may be measured, 
and which assumes different values when measured at different times (e.g., 
precipitation, streamflow, soil moisture, etc.). He defined a parameter as 
a quantity characterizing a hydrological system, and which remains constant 
in time (e.g., watershed area, channel length and slope, overland flow 
slope, etc.). Hydrologic processes may be classified based on assumptions 
regarding the nature of the variables and modeled based on assumptions 
regarding the nature of both the variables and parameters. Chow (1964) 
stated that if the chance of occurrence of the variables involved in a 
hydrologic process is ignored and the model is considered to follow a 
definite law of certainty but not any law of probability, the process and 
its model are described as deterministic. Conversely, if the chance of 
occurrence of the variables is taken into consideration and the concept of 
probability is introduced in formulating the model, the process and its 
model are described as stochastic or probabilistic. 

When modeling the rainfall-runoff phenomena, there are actually two 
processes which may be considered as either stochastic or deterministic. 
Only if the rainfall process and its conversion to runoff can be properly 
modeled as deterministic will the forecast or prediction made by the model 
be deterministic. If either the rainfall process or its conversion to 
runoff are stochastic, the resulting forecast or prediction will be 
stochastic and uncertain. 

In truth, the actual process converting rainfall to runoff is 
deterministic. However, as pointed out by Plate (1986), even if a perfect 
model of this process were available, a large random residue would exist in 
forecasts made with this model due to the natural variability inherent in 
the pertinent soil, plant, and atmospheric conditions, as well as, in the 
rainfall process. Nevertheless, most rainfall-runoff models used for real- 
time flood forecasting are viewed as deterministic. Even the real-time 
flood forecasts made with stochastic, time-series type models are made in a 
deterministic sense ignoring a portion of the randomness accounted for 
in the model. A deterministic forecast assumes certainty in the outcome of 
an event wherein no matter how many times a hydrologic phenomenon is 
processed under a given set of invariant conditions the same outcome results 
(Chow, 1972). Such a result occurs only when both the rainfall process 
(input data) and its conversion to runoff (model) are truly deterministic. 
In practice, generally, both the input data and the model are stochastic due 
to imperfect information (regarding watershed conditions and the data) and 
to model simplifications. 

When using abstract models such as conceptual rainfall-runoff models 
or stochastic, time-series models for deterministic forecasting, the 
watershed is viewed as "black box" for which a given input yields a 
specific output. However, the inability to properly describe the true 
temporal and areal distribution of rainfall (stochastic input) can lead to 
two very different storms being considered the same hydrologic phenomenon as 
far as the input data is able to discern them. Hence, even under invariant 



conditions, the true results cannot be forecast with certainty. 
Furthermore, truly invariant conditions are difficult to attain in the 
"real-world" and model parameters which are affected by varying conditions 
are rarely adjusted to account for the variations, primarily because such 
adjustments are difficult and poorly understood. 

Physical simulation and physical-conceptual models are subject to all 
the foibles of abstract models given above to some degree. Such physical 
models also often describe physical processes such as infiltration with 
parameters when in truth these processes are better described by variables. 
For example, the resaturated hydraulic conductivity commonly used in the 
infiltration routine of physical models is typically viewed as single lumped 
parameter over an entire subarea. In truth, the resaturated hydraulic 
conductivity varies both spatially over the subarea and temporally through 
the storm event modeled. 

A . 3  Studies of the Effects of Uncertainties on Hydrologic Model 
Predictions 

For most practical real-time flood forecasting cases, the resulting 
forecast is stochastic and uncertain. The various methods developed for 
updating forecasts have been the main attempts to date at considering the 
uncertainty involved in real-time hydrologic modeling within FWP systems. 
When using updating procedures, the various sources of uncertainty are 
lumped together as the procedure seeks to match the predicted discharges 
with the measured discharges up to the current time. While such procedures 
may lead to better estimates of the expected flood hydrograph, the basic 
underlying uncertainties remain, and their analysis is necessary to provide 
better information for the purpose of flood warning. One of the most 
sophisticated and successful updating procedures is the adaptive Kalman 
filter method proposed by Kitanidis and Bras (1980c), and their conclusions 
reinforce this reasoning: 

"This work has suggested that. the problem of real-time 
forecasting of river flows is considerably more difficult than 
has often been implied in the literature . . . Feedback infor- 
mation can only provide better "initial conditions" for the 
forecasting. Even in utilizing feedback information, the 
problem of taking correct compensating actions is not simple. 
In order to make the right corrections in the state of the 
system and thus enhance the accuracy of future forecasts, the 
correct structure of uncertainty, pertinent to the specific 
model and data, must be hypothesized. This is especially 
important in improving the accuracy of the magnitude and timing 
estimate of the hydrograph peak." 

To date, the sources of hydrologic modeling uncertainty have yet to be 
studied in detail in conjunction with current real-time flood forecasting 
models to provide estimates of the reliability of these forecasts. However, 
the basic uncertainty and variability in hydrologic modeling have not been 
ignored. Hydrologists have long been aware that hydrology was a blend of 
science and art, often more the latter than the former, and hence they have 
realized the shortcomings of their assumptions and the uncertainty 



associated with the art of hydrologic modeling. For example, Horton (1932) 
discussed the physical significance and usefulness of various factors 
(parameters) which had been developed to describe watershed morphology 
e l  geometry, slope, shape, overland flow length, etc.) and related to 
the runoff characteristics of the watershed. Before the advent of the 
digital computer, sensitivity analysis was impractical because all 
hydrologic calculations were made by hand. Thus, while early hydrologists 
were aware of the inadequacies of their assumptions, they could do little 
more than acknowledge these inadequacies and qualitatively evaluate the 
corresponding uncertainty based on physical reasoning as Horton had done. 
With the development of the digital computer, hydrologists could perform 
hydrograph calculations in a fraction of the time previously required, and 
this allowed them to perform numerical experiments to quantitatively examine 
the effects of uncertainty on the predicted hydrograph. The results of 
these numerical experiments are discussed in the following sections. 

A.3.1 Studies of the Effects of Rainfall Data Uncertainties on Runoff 
Prediction 

The studies of the effects of rainfall data uncertainties fall mainly 
into two categories: (1) perturbation of an assumed error free rainfall 
trace and (2) comparison of runoff prediction made using different levels of 
the existing (or hypothetical) rain gage network. 

In the perturbation approach, a recorded (or hypothetical) rainfall 
trace is assumed to be error free and is routed through the hydrologic 
model with a set of parameters, which are also assumed to be correct, thus 
obtaining a "true" hydrograph. Then a random error with mean zero and 
standard deviation, or, is applied to all rainfall values. These 
"erroneous" rainfall values are then routed through the "true" model and 
the resulting standard error of the simulated hydrograph is computed. 

Laurenson and OIDonnell (1969) used the perturbation approach to 
examine the effects of the six most likely types of errors in unit 
hydrograph derivation. Combinations of three hyetograph shapes and two 
unit hydrograph shapes were used to detect the effect of data errors on 
estimated unit hydrograph shape and the ability of four common methods of 
unit hydrograph derivation to deal with these errors. They found 
reasonable errors in the estimation of total rainfall, discharge rating 
curve, and base flow separation resulted in surprisingly low unit 
hydrograph errors. However, errors in the assumption of uniform loss rate 
and in rainfall synchronization between rain gages and between rain and 
stream gages resulted in significant unit hydrograph errors. 

Ibbitt (1972) used the perturbation approach to examine the effects of 
random errors in the rainfall, runoff, and evapotranspiration data sets. 
The standard deviation of these random errors was taken as ten percent of 
the error-free value. Various combinations of erroneous and true data sets 
were then calibrated and the resulting optimal parameters were compared. He 
found that the random errors caused no significant change in parameter 
values. Hence, he concluded that since the random errors in the data had 
been deliberately set on the large size to aggravate any effects, the random 
errors of the size, normally encountered in hydrologic records would have 











The basic objective of reliability analysis is to evaluate the model 
output accuracy considering the uncertainty (errors) in the data, model 
parameters, and model structure. Hence, an ad hoc reliability analysis may 
be performed using the principles of sensitivity analysis, i . e . , assuming 
various errors in the data, model parameters, etc. and observing the changes 
in the model output to get an idea of its reliability. Therefore, the 
sensitivity analysis of hydrologic model parameters reported below provides 
some useful information regarding the effect of model parameter errors on 
model output reliability. 

Dawdy and O'Donnell (1965) were among the first to consider sensi- 
tivity analysis in hydrologic modeling. They varied each of the eight 
parameters in the USGS flood hydrograph simulation model by 1, 5, and 10 
percent, and examined the changes in the sum of squares of the difference 
between the true and predicted discharges. Their purpose was to identify 
the most sensitive model parameters so that a more efficient and physically 
reasonable parameter optimization procedure could be developed. Hence, 
their conclusions are not directly applicable to the reliability problem at 
hand. 

Salomonson et al. (1975) demonstrated that watershed model sensitivity 
analyses offer an effective means of obtaining accuracy requirements that 
can be used in developing instrumentation and associated accuracy and 
precision factors for remote sensing programs to improve watershed manage- 
ment. They applied a modified version of the Stanford Watershed Model to 
the Town Creek, Alabama, watershed. Six of the model's parameters may be 
determined by remote sensing. Using sensitivity analysis to determine the 
maximum variation in each of these parameters which will keep the output 
within a specified tolerance of the "true" value, they were able to 
determine the required accuracy of estimating each of these parameters by 
remote sensing. 

Yeh et al. (1978) performed a sensitivity analysis of the input to 
(precipitation and snowmelt) and the embedded parameters of the Sacramento 
model. The purpose of this sensitivity analysis was to examine the value of 
more accurate hydrologic forecasts for hydropower operations considering the 
flows for an entire month. Folsom Lake on the American River and Folsom 
Power Plant of the California Central Valley project were used as a case 
study. The input and watershed parameters were individually varied from -50 
to +50 percent of their expected values, and the resulting volumes were 
compared to the expected volume. They found that the major error sources in 
runoff estimation using the selected model arise from deficiencies in the 
temporal and spatial sampling of the parameters embedded in the model, from 
a lack of predictability of weather and other climatic factors, and from the 
exclusion of other elements that vary with time but are difficult to sense 
on a frequent basis. 

As noted earlier, sensitivity analysis is not the only means with 
which the effects of parameter uncertainty have been examined. The 
following relates some of the other methods used to examine parameter 
uncertainty. 

Wood (1976) considered the uncertainty in an infiltration parameter of 
a simple rainfall-runoff model. By assuming that the other parameters of 



the model were known with certainty and taking advantage of the simple form 
of the model, he was able to analytically solve for the influence of 
infiltration parameter uncertainty on the predicted output in terms of a 
probability distribution. While it is doubtful that such analytical 
solutions would be possible when considering several uncertain parameters, 
more complex models, or both, this work provides considerable insight into 
the effect that even relatively small parameter variations can have on flood 
simulation and especially flood frequency estimates based on a rainfall- 
runoff model generated flood series. 

Mein and Brown (1979) developed a procedure by which the variance of 
each fitted parameter of a watershed model can be determined. This 
information can be used to determine the degree to which the model 
parameters can be related to physical watershed characteristics. That is, 
if the model parameters are insensitive (i.., have coefficient of 
variation > 0 .25 ) ,  then this model may be useful for ungaged watersheds but 
not useful for simulation of flow changes due to physical changes in the 
watershed (e.g., urbanization). Furthermore, this procedure may be quite 
useful when analyzing parameter uncertainty within the reliability 
analysis framework. 

Garen and Burges (1981) offer perhaps the 'most similar work to that 
proposed here except that they consider only parameter uncertainty. They 
use both first-order second moment uncertainty analysis (which will be 
discussed further in Appendix B) and Monte Carlo simulation to evaluate the 
effects of parameter variability for a simplified version of the Stanford 
Watershed model. The end result of their research is the generation of the 
error bounds (i .e. , + one standard deviation) due to parameter uncertainty 
(coefficient of variation values were assumed equal for all parameters) for 
the predicted hydrograph. This type of information could be used to 
determine the probability of different flood magnitudes. Examples of the 
confidence limits they found due to parameter uncertainty alone are shown in 
Fig. A.1. Based on the figure, it is clear that parameter uncertainty can 
have a great effect on forecast reliability even when coefficient of 
variation values are assumed to be small and equal for all parameters. 
Furthermore, their Monte Carlo simulations found that uncertainty in hourly 
flows increased with increasing precipitation intensity and duration (with 
parameter uncertainty held constant). 

The research reviewed in this section demonstrates that errors and 
uncertainties in determining the proper model parameter values for a given 
modeling purpose (forecast, design, etc.) can greatly effect the 
reliability of the model result in relation to its purpose. As was the 
case for the studies of input data uncertainty, these studies of model 
parameter uncertainty do not provide a comprehensive picture of overall 
modeling uncertainty, nor do they consider the true magnitude of the model 
parameter uncertainties instead use is made of assumed errors. 

A . 3 . 3  Studies of Model Structure Uncertainties 

Very little research has been performed to examine the influence of 
model structure uncertainties on runoff prediction. The primary reason for 
this lack of research is the difficulty in separating out the effects of 
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Figure A . 1 .  Channel inflow hydrographs showing the mean, p, and 
one standard deviation, a, error bounds for: 
(a) storm D, wet and dry initial conditions, 
coefficient of variation, CV, of all parameters = 0.10, 
(b) storm H, wet initial conditions, CV of all 
parameters = 0.10 and 0.25. (after Garen and Burges, 1981) 



model structure uncertainties from those in the input data and the model 
parameters. Also, a perfect model of the rainfall runoff process does not 
exist, and so simplified models cannot be compared to the results of a 
perfect model to determine the model structure uncertainties. As pointed 
out by Garen and Burges (1981), if the historical record is representative 
of a wide range of watershed responses and is of sufficient length to 
constitute a statistically significant sample, comparison of simulated and 
recorded flows to measure uncertainty might be extrapolated to estimate 
model structure uncertainties. Hence, in order to study model structure 
uncertainty, a sufficient amount of runoff data must be available so that 
the effects of the other sources of uncertainty may be separated out. 
Another reason for the lack of study is that the results are model dependent 
and cannot be generalized. 

A . 3 . 4  Studies of Overall Modeling Uncertainties 

As discussed in section A.3.1, Dawdy et a1 (1972) presented a 
simplified, somewhat idealized approach to estimating overall model 
prediction error. However, their study concentrated more on data effects 
than a clear view of overall errors. 

Schilling and Fuchs (1986) compared the results from a complicated 
urban rainfall runoff model with distributed rainfall input to the results 
from several simplified models to determine the modeling uncertainty caused 
by the simplifications. The "complex" model used distributed rainfall data 
based on radar measurements as input to the 81 subcatchments in the basin, a 
time varying increasing fraction of paved area to model abstractions, and 
dynamic wave routing of the runoff through the sewer network. The "common 
practice" model assumed one rain gage at the center of the watershed as 
input for all 81 subcatchments, used constant proportional losses to model 
abstractions, and used dynamic wave routing. The "simple" model assumed one 
rain gage at the center of the watershed as input for all 81 subcatchments, 
used constant proportional losses to model abstractions, and used time . 
off set routing. 

Schilling and Fuchs (1986) found that errors in rainfall input are 
amplified by the rainfall-runoff transformation. For example, on the 
average, a rainfall depth error of 30 percent results in a runoff volume 
error of 60 percent and a peak flow error of 80 percent. A better routing 
procedure was also found to improve the accuracy of computed runoff. 
Nevertheless, it was concluded that the spatial resolution of rainfall has a 
dominant influence on the reliability of computed runoff. They recommended 
that it is inappropriate to use a sophisticated runoff model to achieve a 
desired level of modeling accuracy if the spatial resolution of rainfall 
input is low. Instead, increased spatial resolution of rainfall data and 
use of a fast and simple runoff model gives results accurate enough to be 
used for real-time operation. 

As discussed previously, adaptive filtering schemes are able to 
combine the various sources of modeling uncertainty and lump them together 
in the forecast error covariance matrix. Georgakakos (1986a) suggested that 
based on the predicted mean state vector and the predicted covariance 
matrix, the mean and variance of the predicted observation variables can be 















rainfall-runoff model. This probability distribution was integrated to 
determine the probability of a critical flood stage being exceeded given the 
measured rainfall. This study did not consider the uncertainties in the 
data or the parameters of the rainfall or runoff models. 

Kooman et al. (1978) developed a reliability-analysis-based design for 
the foundation of the Oosterschelde storm surge barrier in The Netherlands 
by combining direct integration of the load (wave and static forces) and a 
partial safety factor analysis of the resistance. The results of this 
design method were checked by the advanced first-order second moment method 
and were found to be quite reasonable for practical design applications. 

Tung and Mays (1980 and 1981) proposed perhaps the most innovative 
means of using direct integration. They handled the problems with basic 
variable distributions and their relations to load and resistance by using 
first-order approximations to determine the parameters of the distribution 
functions for the load and resistance. This innovative approach is still 
faced with the problem of selecting appropriate distributions for load and 
resistance and possible numerical integration problems. However, with 
reasonable selections of the distributions fairly good approximations of the 
system risk may be obtained as demonstrated by Tung and Mays for culverts 
(1980) and levees (1981). 

Despite these relative successes for hydraulic systems and others for 
structural systems, the general consensus of several researchers (Cornell, 
1972; Rackwitz, 1976; CIRIA, 1977; and Cheng, 1982) is that direct integra- 
tion me.thods are not suitable for normal design purposes because of their 
theoretical and numerical difficulties. For system design, direct integra- 
tion methods are useful for simple systems, checking the validity and 
accuracy of simplified reliability methods for specific cases, and for 
systems which require highly accurate risk determination. For uncertainty 
analysis of hydrologic models applied to real-time flood forecasting, 
similar conclusions may be made. Direct integration can only be used for 
very simple hydrologic models such as the one used by Wood (1976) . Thus, 
for realistic flood warning cases, direct integration methods are not 
practical. 

B.4 Monte Carlo Simulation Method 

Monte Carlo simulation is a process using, in each simulation, a 
particular set of values of random variables generated in accordance with 
the corresponding basic variable probability distributions. For each 
simulation, the performance function is calculated using the appropriate 
basic variable values, and the risk is estimated as the ratio of the number 
of failures versus the number of simulations. 

The Monte Carlo simulation method is an extremely flexible method 
(i.e., it can be used to solve a great variety of problems); and as such, it 
is a very useful method. In fact it may be the only method which can 
estimate risk for cases with highly nonlinear and/or complex system 
relationships. Despite its flexibility, Monte Carlo simulation is not a 
highly recommended way to analyze system risk. The risk estimated by using 
this method is not unique, i.e., it depends on the size of the samples and 



the number of trials. To combat this flaw, large numbers of trials must be 
performed and thus the computer time required can become prohibitive. These 
high computation costs tend to cancel out the flexibility of Monte Carlo 
simulation methods. Furthermore, Monte Carlo simulation methods are also 
quite sensitive to the assumed distributions for the basic variables. 
Hence, Monte Carlo simulation methods are generally used as a last resort. 

The conclusions reached above are supported for the case of analyzing 
the uncertainty in real-time hydrologic forecasts by the work of Garen and 
Burges (1981). They used Monte Carlo simulation of model parameter variabi- 
lity to estimate error bounds for the hydrograph predicted by a simplified 
version of the Stanford Watershed model. The error bounds estimated by 
Monte Carlo simulation were used to check those estimated using the mean 
value first-order second moment reliability analysis method. The first- 
order method's results compared favorably with the Monte Carlo simulation's 
results. Hence, they recommended the first-order method be used to avoid 
the high computation cost of Monte Carlo simulation. 

B.5 Mean Value First-Order Second Moment (MVFOSM) Method 

The concept behind the first-order second moment reliability analysis 
methods was initially proposed long ago. Mayer (1926) suggested use of the 
mean and variance of the random variables in the analysis of structural 
safety. However, Mayer's suggestion went unheeded for more than thirty 
years, perhaps because engineers were still trying to obtain better formula- 
tions of the physical side of engineering design problems. In 1959, Su 
proclaimed that the physical side of many structural problems is now well 
explored, but the conventional method of structural design is still far from 
satisfactory. He developed a MVFOSM formulation based on the normal 
distribution and recommended its use for more rational determination of 
structural safety factors. But it was not until Cornell (1967) elaborated 
on a formulation very similar to Su's that the MVFOSM method established a 
foothold in structural engineering. The MVFOSM method was first adopted for . 
hydraulic system risk evaluation by Tang and Yen (1972). 

In the first-order methods, a Taylor series expansion of the 
performance function is truncated after the first-order term 

where xi are the mean values of the basic variables. In the MVFOSM method, 
the expansion point is at the mean values of the basic variables. Thus, the 
performance function's expected value and variance are 



where Ci and Cj are the values - of - the partial - derivatives ag/axi and ag/ax 
respectively, evaluated at XI, j 

X2,-.-, X ~ .  
If the variables are statistl- 

cally independent, the covariance terms wlll vanish and Eq. B.7 becomes 

This is a reasonable approximation if the coefficients of variation of the 
basic variables are not large and the system performance function, Z, is 
approximately linear. 

For many practical engineering problems, the partial derivatives, Ci, 
cannot be determined explicitly. For such cases, Ci can be approximated 
numerically by a forward difference at point w. 

where Axi = a small change in the value of xi, and zjw indicates all other 
basic variables are fixed at point w. This method was successfully used 
by Garen and Burges (1981) in their determination of error bounds on 
predictions made by a modified version of the Stanford Watershed model. 
The forward difference method was employed in this study as described in 
Appendix C. 

B.5.1 Probability Estimates Based on the MVFOSM Method 

Risk is measured in terms of a reliability index, B ,  which is defined 
as 

which is the reciprocal of the coefficient of variation of Z. In many cases 
of engineering system design, the value of B alone is used to compare the 
reliability of various alternatives. In other instances (such as flood 
forecast uncertainty analysis), an estimate of the system risk is required. 
In these cases a probability distribution is assumed for the performance 
function, Z, and B is visualized as a normalized measure of the departure 



from the system's mean state to the system failure level. Thus, the 
probability corresponding to the value of ,5? is taken as the system 
reliability. 

In the MVFOSM method, no distributional assumptions are made regarding 
the basic variables. Hence, the distribution of Z remains undefined, and 
the probability information contained in ,5? is poor. Typically, it is 
assumed that Z is normally distributed, and thus the system risk is 

(B. 11) 

where a( . )  is the standard normal integral (e.g., see Ang and Tang, 1975). 
This assumption has several practical advantages. If the system performance 
function is linear (i . e . , Z=R-L) and the load and resistance are normally 
distributed, Eq. B.ll yields the exact risk. If the system performance 
function is nonlinear such that Z=Rn(R/L) is appropriate and the load and 
resistance are lognormally distributed, Eq. B.ll yields a very close 
approximation of the exact risk as long as the coefficients of variation of 
L and R are relatively small. Therefore, the selection of the normal 
distribution for Z is quite reasonable and efficacious because many natural 
systems and/or variables can be shown to be normally or lognormally distri- 
buted. 

Yen et al. (1986) noted that usually some information on the nature 
of the basic variable distributions is available. Though imperfect and 
imprecise, such limited information provides great help in obtaining risk 
evaluation with acceptable accuracy. For example, they reasoned that if the 
basic variable distributions are uni-modal with the mode near the beginning 
of the range, setting Z=Rn(R/L) and assuming Z is normally distributed will 
provide reasonable estimates of risk. If the basic variable distributions 
are uni-modal with small skewness, setting Z-R-L and assuming Z is normally 
distributed will provide reasonable risk estimates. Furthermore, Cheng . 
(1982) found that even for the case of 

z = x  + x  
1 2 - X3X4 (B. 12) 

where xl and x2 are uniformly distributed and x3 and xq are lognormally 
distributed, the MVFOSM method with Z-R-L (R=xl+x2, bx3xq) and Z assumed 
normal gave acceptable estimates of risk relative to the exact solution when 
the risk is high, e.g., Rs > 0.01. In summary, very reasonable estimates of 
system risk can be made with the MVFOSM method despite the necessity of 
assuming a distribution for Z. 

B.5.2 Practical Advantage of the HVFOSM Method 

The greatest advantage of the MVFOSM method is its simplicity; no 
higher order moments or distributional information on the system's basic 
variables are necessary, only the mean and variance of the variables are 
needed to obtain a reasonable estimate of the system risk. While many may 



argue that first-order methods are oversimplified and too inaccurate to be 
useful, Cornell (1972) made a strong defense of them from a practical 
standpoint. He stated: 

"An approach based on means and variances may be all that is 
justified when one appreciates: (1) that data and physical 
arguments are often insufficient to establish the full proba- 
bility law of a variable; (2) that most engineering analyses 
include an important component of real, but difficult to 
measure, professional uncertainty; and (3) that the final 
output, namely the decision or design parameters, is often 
not sensitive to moments higher than the mean and variance." 

Furthermore, Cornell (1972) pointed out the most important consideration in 
any reliability analysis: 

"It is important to engineering applications that we avoid 
the tendency to model only those probabilistic aspects that 
we think we know how to analyze. It is far better to have an 
approximate model of the whole problem than an exact model of 
only a portion of it." 

B.5.3 Applications of the MVFOSM Method in Hydraulic Engineering 

The simplicity and practicality of the MVFOSM method has made it 
popular for a variety of water resources systems uncertainty analyses. The 
MVFOSM method has been directly applied to hydraulic structure reliability 
analysis for storm sewers (Tang and Yen, 1972) and culverts (Yen et al., 
1980) , and indirectly applied to such analysis by Tung and Mays (1980 and 
1981) as described previously. Burges (1979) applied the MVFOSM method to 
the analysis of flood plain mapping uncertainty due to errors in the 
estimation of the design discharge and in the routing procedures used to 
determine the flood plain. However, Burges' work erroneously equated the 
design discharge uncertainty to the channel capacity uncertainty. McBean 
et al. (1984) and Oegema and McBean (1986) corrected Burges' error and 
determined the one standard deviation error bounds for flood plain width 
combining the design discharge and channel capacity uncertainties. Tung 
(1987) used the MVFOSM to estimate confidence bounds for the precipitation 
depths in the National Weather Service rainfall frequency atlas - -  U-.S. 
Weather Bureau Technical Paper Number 40 (Hershfield, 1961). Finally,Garen 
and Burges (1981) used Eq. B.8 to approximate the error bounds fora 
simulation of total flow volume produced by a modified version of the 
Stanford Watershed model. 

Yen and Tang (1977) applied MVFOSM analysis to flood routing model 
uncertainties for the purpose of evaluating the reliability of real-time 
flood forecasts provided by such models. They separated out the various 
sources of uncertainties as correction factors and then applied the MVFOSM 
analysis. This work marks the first attempt to consider the uncertainties 
involved in real-time flood forecasts, however, the correction factor 
approach reduces the utility of the analysis. The simplification of using 
correction factors allows the MVFOSM method to be used, but it also takes 
away validity from the overall analysis because it is unclear how known 



available information on model parameter and data uncertainties equate to 
correction factors. Thus, some of the knowledge of these sources of 
uncertainty may be lost in the assumptions of the correction factor 
approach. A better approach would be one which can directly make use of 
available information on model parameter and data uncertainties and their 
direct effects on model predictions. 

B.5.4 KVFOSM Method Summary 

When applied to engineering design problems, the MVFOSM method does, 
however, have several theoretical and/or conceptual problems as pointed out 
by Rackwitz (1976) and Cheng (1982). These problems are listed below with 1 
to 3 being the most serious: 

1) the relative accuracy of the first-order Taylor series 
approximation; 

2) for engineering systems the events of failure generally happen at 
extreme values rather than near the mean load and resistance; 

3) most real world engineering systems exhibit nonlinear behavior; 

4) the results of this method vary depending on the particular 
mathematical formulation of Z and on the dimension (i.e., number of 
variables) of the reliability problem; 

5) the reliability index, /3, gives only weak information on the 
probability of failure and thus the appropriate system probability 
distribution must be assumed; 

6) this method provides no logical way to include available informa- 
tion on basic variable probability distributions. 

However, for evaluating the uncertainties in real-time flood forecasts, the 
system failure (i.e., flood peak exceeding critical stage) generally will 
not be at extreme values. Furthermore, the flood risk levels considered are 
high enough such that it is reasonable to assume /3 is normally distributed. 
Therefore, the MVFOSM method might be quite useful for real-time flood 
forecast uncertainty analysis. Finally, both Cheng (1982) and Yen et al. 
(1986) found that Z=(R/L)-1 gave consistently poorer estimates of risk than 
either Z=R-L or Z=Rn(R/L). Hence, in this study, the MVFOSM method with 
Z=R-L and Z=Rn(R/L) is examined for real-time flood forecast uncertainty 
analysis. 

B.6 Advanced First-Order Second Moment (AFOSM) Method 

Recent research has sought to maintain some of the simplicity of the 
MVFOSM method and yet reduce its flaws. The result is the advanced first- 
order second moment method. The basic concept behind the AFOSM method was 
first proposed by Hasofer and Lind (1974), but Rackwitz (1976) was the first 
to tie the entire AFOSM method together. Rackwitz's version of the AFOSM 
method will be outlined in the following paragraphs. 



The essence of this method is to linearize the performance function via 
Taylor series expansion at a likely failure point (xi*, x2*, . . *. , xp*) on 
the failure surface, i.e., when the performance function, g(x ) ,  equals 
zero. The expected value and variance of the performance function as 
approximated by a first-order Taylor series at this point for the case of 
statistically independent basic variables are 

P - 
E[Zl =g(x*) + 1 Ci(xi - xi*) (B. 13) 

i=l 

(B. 14) 

* * where Ci, in this case, is ag/axi evaluated at (xi , x2 , . . . , xp*) 
The expression for uz may be rewritten in a linearized form 

P 
0 = Qi Ci ui z (B. 16) 

i=l 

in which the ~ i ' s  are sensitivity factors and are evaluated from 

(B. 17) 

Substituting Eqs. B.13 and B.16 into Eq. B.9, the reliability index for the 
AFOSM method is 

(B. 18) 



B.6.1 Methods for Finding the Failure Point 

The formulations in the previous paragraph appear to be fairly simple 
and straightforward; however, it must be pointed out that determination of 
the failure point is generally not a simple task. Several iteration methods 
have been proposed for determining the failure point (e.g., Rackwitz, 1976; 
and CIRIA, 1977). The Rackwitz approach has become the "standard" iteration 
approach as evidenced by its inclusion in the text book summary of the AFOSM 
method presented by Ang and Tang (1984, p. 361). A flow chart of the 
Rackwitz iteration scheme is given in Fig. B.1. Recently, the use of 
constrained nonlinear optimization has shown great promise as an alternative 
to the iteration schemes. The constrained nonlinear optimization schemes of 
Shinozuka (1983) and Cheng (1982) are described below. 

If the basic variables are standardized, i.e., 

- (B. 19) 

Y i = (xi - xi> / ai 

The standardized basic variables, yi, have a mean of zero and a standard 
deviation of one. Shinozuka (1983) solved the following optimization 
problem: 

T 
Minimize : -yo = (1 y)1/2 (B. 20) 

Subject to: gl(z) - 0 (B. 21) 

where yT = the transpose of the standardized basic variable matrix. - 
Using the Lagrange multiplier method to solve this problem, the Lagrangian 
is 

(B. 22) 

where A - the Lagrange multiplier. 
Setting aL /ay = aLg/aA = 0, the solution for y* and A* is obtained from g - 

(B. 23) 

where -y = the minimum of -y and 
0 ' 

G = the vector of agl/ayi evaluated at y*. -* - 
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Solving for 7 yields 

The system performance function, Z, may also be expressed in terms of 
the standardized basic variables, yi, i.e,, Z=g2(y). Taking a first-order - 
Taylor series expansion at the failure surface - 

(B. 25) 

(B. 26) 

* where Gzi = ag2/ayi evaluated at y . * At the failure surface, g2(y )=O,-therefore, the reliability index, p ,  is - 

Rewriting Eq. B.26 in vector form, 

(B. 27) 

(B. 28) 

Shinozuka (1983) stated the comparison between Eqs. B.24 and B.28 indicates 
that if gl(y) - is set as g2(y), - the reliability index (or its absolute value) 

is the shortest distance in standardized space between the system mean state 
(i . e . , where all basic variables are at their mean values) and the failure 
surface. Hence, optimization algorithms currently available for nonlinear 
programming methods, including the Lagrange multiplier method, can be used 
for determination of the failure point. 

For example, Wang et al. (1983) used the a Lagrange multiplier approach 
incorporating an iterative "redesign travel" formula to solve for the 
failure point. They found that for the problems they studied, the "redesign 
travel" optimality criterion algorithm is highly efficient with convergence 
generally obtained in 5 to 8 iterations. Furthermore, they found the speed 
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In order to clear up this confusion regarding flood stage, David L. 
Sullivan, Superintendent of the Pontiac Wastewater Treatment Plant, was 
consulted. According to Mr. Sullivan (1986), the current flood warning 
procedure and significant flood stages at Pontiac are as follows: 

1. When the river stage reaches 90 in. above the water supply dam just 
upstream from Mill Street, the fire department monitors the stage 
at two-hour intervals. 

2. When the river stage reaches 100 in. above the dam, street flooding 
begins. 

3. When the river stage reaches 105 in. above the dam, the evacuation 
center in Pontiac is opened. 

4. When the river stage reaches 120-130 in. above the dam, damaging 
flooding occurs. 

The U.S. Army Corps of Engineers (1984) performed a detailed flood routing 
of the Vermilion River through Pontiac using HEC-2, and Harza Engineering 
performed the same task using WSP-2 for the Flood Insurance Study (Federal 
Insurance Administration, 1979). Using their published flood profiles, the 
stages above the dam can be translated to gage heights at Vermilion Street 
and then to the corresponding significant flood discharges via the rating 
table. Table C.3 shows the significant flood stages above the dam and their 
corresponding gage heights and discharges. 

Table C.3. Significant Flood Stages and Their Corresponding 
Gage Heights and Discharges 

Stage Above Dam Gage Height Discharge 
(in. 1 (ft) (cfs1 

*Note: Barza's analysis using WSP-2 yielded 18.05 ft while 
the U.S. Army Corps of Engineers' analysis using 
HEC-2 yielded 17.85 ft. Since the July 10, 1951 
flood had a crest of 17.90 ft and led to considerable 
damage, the lower value was chosen even though the 
channel is significantly different now. 

A comparison of the flood levels given in Table C.3 and the flood 
history given in Table C.2 validates the flood stage guidelines presented by 
Mr. Sullivan. Therefore, in this study the flood level of interest was 
chosen to correspond to the worst flooding level, stage equal to 17.85 ft 
(discharge 10880 cfs). 



C.2.5 Hydrometric Data Available 

C.2.5.1 Rainfall Data 

Three rainfall gages, one daily gage and two hourly recording gages, 
are currently in operation on the Vermilion River at Pontiac watershed. NWS 
hourly gage 11292300 was established at the Fairbury water works on July 1, 
1948. NWS hourly gage 11681900 was established in Piper City on February 1, 
1949. The locations of these rain gages are shown in Fig. C.l, and they are 
used to define the temporal and areal rainfall distribution over the 
watershed for the real-time flood forecasting schemes. NWS daily precipita- 
tion gage 116910 was established in Pontiac on January 1, 1903. Before July 
1952, it was read once daily at 6 p.m. and since that time it has been read 
once daily at 7 a.m. The daily values from this gage have been used to 
check the consistency of the daily totals at Piper City and Fairbury for the 
calibration and verification events. In general, the agreement between the 
daily totals at the three gages is quite good. The Pontiac gage record also 
contains snowfall data which was used to detect snowmelt influenced events 
and to remove them from the list of possible calibration or verification 
events . 

At the start of this research, data from each of these gages had only 
been processed up to 1983. Thus, the records from each of these gages were 
obtained from their beginnings to 1983. 

C.2.5.2 Streamflow Data 

A wire weight gage was placed on the Vermilion Street Bridge in Pontiac 
on September 24, 1942, and continuous records have been maintained from 
October 1, 1942 to date. On November 8, 1965, a digital water stage 
recorder was installed. Prior to this time, the gage was read twice daily 
providing daily average flows and flood peaks. From November 8, 1965 to 
February 4, 1974, bi-hourly streamflows are available, and hourly ' 

streamflows from February 5, 1974 to date. This streamf low data 
availability makes selection of the calibration and verification data sets 
quite easy. From November 8, 1965 to the present, complete hydrograph 
information is available for model calibration, hence, this period provides 
the calibration data set. The flood peaks in the data from 1955 (after 
channelization) to 1965 provide an adequate verification data set given that 
flood peaks are of prime importance for FWP systems. 

On the North Fork of the Vermilion River near Charlotte at Foreman 
Highway Bridge (see Fig. C.l) a temporary wire weight gage was installed on 
October 1, 1942 and this was replaced on January 14, 1943 by a water stage 
recorder. On October 1, 1962, the gate was converted to crest gage. For 
this gage's period of record, continuous strip charts of stage are 
available. 

C.2.5.3 Evapotranspiration Data 

The closest daily evaporation pan to the Vermilion River watershed at 
Pontiac is located in Urbana approximately 50 miles south of the center of 



the watershed. However, John L. Vogel (1986), Head of the Climate 
Information Unit of the Illinois State Water Survey, recommends against 
using the Urbana data due to some inconsistencies in the record in the 
1970s. Also, the pan operates from mid-March or early April to October; 
hence, for many Spring events, insufficient evaporation data would be 
available for proper soil moisture accounting. Vogel (1986) recommended 
instead the use of Hamon's (1960 and 1961) simple equation for estimating 
potential evapotranspiration, which Jones (1966) found to give reasonable 
results for Illinois. 

Hamon's equation requires only the mean daily temperature to estimate 
the potential evapotranspiration. Daily minimum and maximum temperature 
data are available at Pontiac from January 1, 1903 to date. 

C.3 Rainfall-Runoff Models 

The U.S. Army Corps of Engineers (1985) HEC-1, Flood Hydrograph 
Package, and the Australian RORB, Runoff Routing Program (Laurenson and 
Mein, 1985), were chosen as example models to demonstrate the utility and 
feasibility of employing reliability analysis to consider the uncertainties 
in real-time flood forecasting. It should be remembered that the 
reliability analysis approach is not limited to these particular models. 
These models were chosen because each has been well-tested for a variety of 
hydrologic modeling uses, including real-time flood forecasting, under many 
different conditions around the world. Furthermore, HEC-1 has become one of 
the most commonly used rainfall-runoff simulation models in the United 
States; while in Australia, RORB is used by all water authorities and all 
consultants working in the water business (Laurenson, 1986). Brief descrip- 
tions of each of these models are given below. 

C.3.1 HEC-1 Flood Hydrograph Package 

The HEC-1, Flood Hydrograph Package, computer program was originally 
developed in 1967. Since that time, it has been extensively tested and used 
with satisfactory results for a wide range of watersheds across the United 
States and the world. Also since 1967, the program has frequently been 
revised, updated, and/or appended. In the current version of the program 
(U.S. Army Corps of Engineers, 1985), the computational capabilities of the 
dam-break (HEC-lDB), project optimization (HEC-lGS), and kinematic wave 
(HEC-1KW) special versions of HEC-1 have been combined with standard 
hydrologic and hydraulic computation portion of HEC-1. A microcomputer 
version (PC version) developed in 1984 is also available, The PC version 
contains all the hydrologic and hydraulic computation capabilities of the 
mainframe HEC-1; however, the flood damage and ogee spillway capabilities 
were omitted due to PC memory and compiler limitations. 

For this study, only the hydrograph simulation portion of HEC-1 is 
used. Within the hydrograph simulation portion of HEC-1, there are several 
options for calculating abstractions, converting rainfall excess to the 
runoff hydrograph, and routing streamflow. The options used in this study 
are described below. 



For the calibration data set (1965-1983), runoff data is only available 
at Pontiac (the watershed outlet). Therefore, the watershed was modeled as 
a lumped system. Thus, no streamflow routing will be required, and 
rainfall, abstractions, and hence, rainfall excess are viewed as spatially 
uniform over the watershed. The areal average rainfall is estimated by 
applying the Thiessen weights 0.543 and 0.457 to the rain gages at Fairbury 
and Piper City, respectively. 

Abstractions were modeled via the initial loss-continuing loss rate 
option in HEC-1. This simple approach was chosen over the more 
sophisticated exponential loss rate function, SCS curve number, and Holtan 
loss rate options for several reasons. Ford et al. (1980) pointed out that 
if the temporal and spatial distribution of precipitation is not well 
defined (as is the case for the Vermilion River watershed), an initial loss, 
followed by a uniform loss rate may be most appropriate. Furthermore, the 
above fact has led the initial loss-continuing loss rate option to become 
the most commonly used abstraction option for typical hydrologic analyses 
employing HEC-1. Finally, RORB also utilizes an initial loss-continuing 
loss approach, which facilitates a comparison of model results. 

The Clark unit hydrograph option was chosen to convert the rainfall 
excess hyetograph to the runoff hydrograph. This option was chosen because 
it has been the basis of HEC-1 runoff generation since the model's 
development, and as such it has been well tested. 

The Clark method (1945) is based on the principle that the runoff time 
distribution is defined by a time-area curve, which characterizes the 
cumulative area of the watershed contributing runoff to the watershed outlet 
as a function of time. HEC-1 contains a dimensionless time-area curve based 
on a generalized watershed shape. This curve was utilized, and it is given 
as 

A1 = 1.414 T 1.5 for 0 5 T 5 0.5 (C.1.a) 

T)"~ for 0.5 < T < 1 (C.1.b) 

where A1 - the cumulative area contributing runoff as a function of total 
watershed area, and 

T = the fraction of the watershed time of concentration (TC, a model 
parameter). 

Ford et al. (1980) noted that experience by the HEC has indicated the use of 
a detailed time-area relationship is usually not warranted and that the 
time-area curve contained in HEC-1 is satisfactory in most instances. The 
high quality calibration results obtained in this case study (see section 
C.4) support Ford et al.'s argument. 

The ordinates of the time-area curve are converted to volume of runoff 
per second for unit rainfall excess and interpolated to the given time 
interval for the translation hydrograph. To simulate the watershed storage 



effects, the translation hydrograph is routed through the linear reservoir: 

where CA = A~/(SR + 0.5 * At), 
CB = 1 - CA, 

Q(2) = the instantaneous flow at the end of the period, 

Q(1) = the instantaneous flow at the beginning of the period, 

I = the ordinate of the translation hydrograph, 

At = the computation time interval in hours (two hours was chosen 
corresponding with finest runoff time interval available 
throughout the calibration data set), and 

SR = the watershed storage factor in hours (a model parameter). 

The resulting unit hydrograph for instantaneous rainfall excess is then 
averaged to produce the hydrograph for unit rainfall excess occurring in the 
given time interval. 

In this study, only the direct runoff hydrograph is modeled, and hence, 
the baseflow routines in HEC-1 were not used. Therefore, the direct runoff 
hydrograph is a function of four parameters: the initial loss in inches, 
IL; the continuing loss rate in inches per hour, CL; the watershed time of 
concentration in hours, TC; and the watershed storage factor in hours, SR. 
Rough estimates of each of these parameters may be obtained by considering 
the physical conditions of the watershed, but the best way to determine the 
proper parameter values is by calibrating the model to observed rainfall- 
runoff data. Details of the calibration procedure are given in section C.4. 

C.3.2 RORB Runoff Routing Program 

The RORB model has been under development at Monash University in 
Australia since the early 1970s. Mein et al. (1974) first described the 
general principles behind RORB, and since that time it has been further 
refined and tested extensively in Australia. 

In RORB, the watershed is divided into subcatchments that are based on 
the major tributaries with drainage areas of the same order of magnitude. 
Nodes are drawn on the map of the watershed so that there is a node on the 
main stream in each subcatchment at the point nearest its centroid, at each 
confluence where subcatchment flows combine, and at each gaging station. 
Figure C.3 shows how the Vermilion River watershed is divided into 21 
subcatchments and their respective nodes, while Fig. C .4 shows a schematic 
diagram of the stream network and nodes. 
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The rainfall input to each subcatchment is determined by two factors. 
Each subcatchment is assigned to the rain gage which best represents it. 
The rainfall depth for each subwatershed is determined from an isohyetal 
map and this depth is distributed in time proportionally as for the 
representative rain gage. For this study, however, the data needed to 
define such an isohyetal map is not available, and hence, both the depth and 
temporal distribution at the representative rain gage is input to the 
subcatchment. The rainfall excess is determined via an initial loss- 
continuing loss rate scheme similar to that used by HEC-1. The initial 
loss, ILR, and continuing loss rate, CLR, are uniform for each subcatchment 
upstream from a single stream gage. Therefore, RORB is a "quasi- 
distributed" model which allows for varying areal and temporal input but 
then operates on this input uniformly over the watershed. For this study, 
only one stream gage is available, therefore, ILR and CLR are uniform over 
the entire watershed. 

Each of the subcatchments is modeled as a single point in space 
represented by the node. At this point (node), the rainfall excess for the 
subcatchment enters the stream network. The rainfall excess and streamflow 
are then routed from node to node through the stream network using the 
continuity equation: 

where It = inflow to the channel reach between nodes at time t, 

Qt = outflow from the channel reach at time t, 

St = storage in the channel reach at time t, and 

At = the time step. 

The relationship between reach storage and outflow is described by a 
nonlinear reservoir of the form 

where K = a parameter related to the travel time in the reach, and 

m = the nonlinearity exponent. 

Based on Manning's equation, Mein et al. (1974) estimated the 
theoretical values of m for several common channel shapes including wide 
rectangular channels (m=0.60), triangular channels (m=0.75), wide parabolic 
channels (m=0.69), and trapezoidal channels (m=0.74). Laurenson and Mein 
(1985) reported that the typical value of m for catchment studies ranges 
between 0.6 and 1.0 with a value of 0.8 recommended as a first trial value 
for "fit runs." Considering the fact that the majority of the stream 



reaches in the Vermilion River watershed are trapezoidal or approximately 
wide rectangular channels, one might suspect lower values of m to be 
appropriate. However, the appropriate m value is best determined by 
calibration. 

The parameter K is considered to consist of two parts, such that 

where kl = a parameter determined from physical characteristics of the 
stream channel between adjacent nodes and intended to be 
proportional to the delay time of a given reach storage, and 

C1 = a constant for a watershed determined by calibration of the 
model to observed rainfall-runoff data. 

For the simple case of a wide rectangular channel, kl is a function of the 
reach width, roughness, length (L), and bed slope (S,). Laurenson and Mein 
(1985) report that use of the reach length alone to represent kl has proved 
adequate for many watersheds. However, they also note that kl = L/s,~/~ may 
be desirable for cases involving extreme slope variations and including very 
low slopes, say less than 0.05 percent. Therefore, kl is taken as L/S~'/~. 

In this study, the direct runoff hydrograph is a function of four 
parameters: the initial loss in mm, ILR; the continuing loss rate in mm per 
hour, CLR; the nonlinearity exponent, m; and the watershed delay time 
factor, C1. Each of these parameters is best determined by calibrating the 
model to observed rainfall-runoff data as described in section C.4. 

C -4 Calibration Procedure 

C.4.1 Objective Function 

The choice of the calibration objective function depends greatly on the 
proposed use for the model. In this study, the models are to be used for 
real-time flood forecasting within a flood warning and preparedness system. 
Hence, accurately predicting the magnitude and, to a lesser extent, the 
timing of the peak discharge is the goal of modeling. Therefore, an 
objective function which emphasizes the hydrograph peak is appropriate. 

An automatic calibration scheme is built into HEC-1. This scheme 
minimizes a weighted sum of the squared deviations between the measured, 
Qmi, and predicted Q 



where n is the total number of hydrograph ordinates and the weights, WTi, 
emphasize the peak flows: 

where om = the average measured discharge. 

This objective function was chosen for use in this study because while it 
places emphasis on the peak discharge, it also considers matching the entire 
hydrograph. Hence, the parameters obtained are likely to be quite 
representative of the general rainfall-runoff process of the watershed 
system. 

C.4.2 HEC-1 Calibration Methodology 

As noted above, HEC-1 has a built-in calibration scheme. The 
constrained nonlinear optimization scheme employed by HEC-1 is a univariate 
search technique that uses Newton's method. Complete details on this scheme 
are presented by Ford et al. (1980). As for all nonlinear optimization 
schemes, this calibration approach cannot guarantee that a "global" optimum 
will be found for each of the model parameters. Nevertheless, if the "fit" 
quality is acceptable, the calibrated parameters are adequate, representa- 
tive values for consideration of parameter uncertainty. 

C.4.3 RORB Calibration Methodology 

Unlike HEC-1, RORB does not have a built-in automatic calibration 
scheme. Instead, the "fit runs" of RORB proceed as follows. For a given 
value of initial loss, RORB automatically computes the continuing loss rate 
which matches the calculated rainfall excess and the measured runoff volume. 
The user then iterates on m and C1 until a reasonable match between the 
measured and calculated hydrographs is obtained. Therefore, for this study, 
it was necessary to develop a formal calibration procedure for RORB. 

Both HEC-1 and RORB are physical-conceptual models based on hydrograph 
principles (i. e. , the time-area curve for HEC-1 and a network of cascading 
nonlinear reservoirs for RORB) . Therefore, one might expect the "optimal1' 
rainfall excess for both models to be similar. Thus, the optimal initial 
loss found for HEC-1 was also assumed to be optimal for RORB. This 
assumption is slightly erroneous due to the somewhat different initial 
losscontinuing loss schemes used by the two models. In HEC-1, the initial 
loss is assumed to occur only in the initial fraction of the time step with 
the continuing loss rate beginning only after the initial loss is satisfied 
as shown in Fig. C.5a. In RORB, however, both the initial loss and the 
continuing loss are assumed to occur over the entire time step as shown in 
Fig. C.5b. Also, the two models differ somewhat in the weights applied to 
the two rain gages. 



Time (hrs) 

(a) 

Time (hrs) 

Figure C.5. Comparison of initial loss-continuing loss rate 
abstractions schemes for (a) HEC-1 and (b) RORB 



RORB then automatically determines the optimal continuing loss rate 
which matches the measured and calculated runoff volumes. These will differ 
slightly from their HEC-1 counterparts for the reasons given above. 

Laurenson and Mein (1985) noted that C1 is the principal parameter of 
the model and is the main means of achieving a fit. The effects of m are 
sometimes useful in improving a fit, but are less important than those of 
C1. Therefore, it was decided to vary the value of m in increments of 0.01 
over its reasonable range for this catchment (found to be, generally, 
0.83-0.96) and optimize Eq. C.6 over C1 for each m via quadratic 
interpolation (Rao, 1979, p. 226). Quadratic interpolation is an efficient 
univariate nonlinear optimization technique wherein three values of the true 
objective function are used to define a quadratic function. The minimum of 
the quadratic function can be calculated directly. If the difference 
between the quadratic approximation and the true obj ective function is 
small at the quadratic minimum point, the true minimum has been reached. 
Otherwise, a new quadratic approximation should be established with the 
previous quadratic minimum and its adjacent points, and this new quadratic 
checked for convergence. If the three initial points are chosen properly, 
the method converges quite rapidly. 

C.4.4 Storms for Calibration 

Selection of events for calibration from November 1965 to December 1983 
was based on several criteria: 

1. The events must be the product of a single separable rainstorm with 
no snowmelt in the direct runoff, 

2. Complete information from each rain gage and the stream gage must 
be available, or the missing data must be easily estimated (e.g., a 
few missing points on the rising or recession limbs of the hydro- 
graph which may be easily interpolated), 

3. The event must be of sufficient magnitude such that it is 
representative of the storms for which a flood warning official 
may wish to know the predicted peak discharge. 

The third criterion given above was developed in a somewhat "ad-hoc" 
way. The events considered must include flood events and near flood events, 
which are difficult to differentiate from true flood events at the time a 
forecast is made. Therefore, events with a total runoff peak in excess of 
6800 cfs, the discharge corresponding to the National Weather Service flood 
stage, should be included. However, if the set of calibrated events 
contained only flood or near flood events, the forecasts made based on the 
calibration results may be biased toward predicting such flood or near flood 
events. A more unbiased set of calibrated events should include other large 
events which lead to runoff sometimes considerably less than flood stage. 

The cutoff point for these events was chosen somewhat arbitrarily to be 
those events whose direct runoff peaks are greater than 3000 cfs. In the 
USGS official yearly records for a stream gage, there is a section entitled 
"Extremes for Current Year" which separately lists the peak discharges 



occurring during the year that exceed a prescribed target level. For the 
Vermilion River at Pontiac, this level is 2500 cfs. Hence, the events with 
direct runoff peaks in excess of 3000 cfs are significant events for this 
watershed. A second cutoff criterion was chosen for the volume of direct 
runoff. Laurenson and Mein (1985) pointed out that small events, containing 
less than about 10 mm (0.4 in.) of direct runoff, should be avoided in 
calibration data sets because they are often difficult to fit due to extreme 
areal variability of runoff, partial area runoff, and large differences in 
the time distribution of rainfall excess caused by small errors in the 
adopted loss model. 

In summary, the calibration events must have snowmelt free direct 
runoff hydrographs with peak discharges in excess of 3000 cfs and volumes in 
excess of 0.4 in. These direct runoff hydrographs are determined as 
follows. For events not immediately preceded by another storm or a snowmelt 
period, the baseflow remains fairly constant. Therefore, the baseflow for 
the rising limb of the hydrograph up to the peak is assumed to be constant 
at this initial value. In the recession limb of the hydrograph, the slope 
eventually reaches a nearly constant, straight line recession (on linear 
graph paper with a slope of 10 to 15 cfs per two hours for this watershed). 
This straight line is extended backward to the inflection point on the 
recession limb to represent the baseflow at the end of the event. The 
baseflow at the peak is then connected to that at the inflection point to 
complete the baseflow separation. This approach is illustrated in Fig. 
C.6a. For cases where two runoff events must be separated, it is assumed 
the recession properties of the first event are essentially the same as for 
the second event. Thus, the recession of the first event is extended 
approximately parallel to that for the second event. This recession also 
serves as the initial baseflow for the second event. The baseflow 
separation for the recession limbs of each of these events is handled as 
described previously. The event separation and subsequent baseflow 
separation techniques are illustrated in Fig. C.6b. 

For the period November 1965 to December 1983, 60 events had total 
runoff peak discharges greater than 3000 cfs after checking them versus the 
criteria given above, 31 events were selected for calibration (11 events 
were eliminated due to snowmelt effects, 10 due to missing data, 5 due to 
inadequate direct runoff volume, and 3 due to separation problems). It is 
unfortunate that two of the most serious flood producing storms - -  May 12, 
1970 and December 2, 1982 - -  were eliminated due to missing data, but they 
may possibly be used for verification. The significant storm and direct 
runoff characteristics (including the baseflow at the beginning of the 
event, QB, the measured peak discharge, Q , and time to peak, t ) for each 
of 31 events is given in Table C.4. The July 12, 1978 storm falTs slightly 
under the direct runoff peak and volume requirements. Nevertheless, it was 
included in the calibration set because it is representative of large summer 
convective storms, and the set of calibrated events should include several 
storms of this type. 
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Table C.4. Storms for Calibration 

Precipitation 
Date Fairbury Piper City QB Q t~ Volume 

(in. ) (in. ) (cfs) (cps) (hr . ) (in. ) 

 l low at the beginning of this storm is in recession from a previous event 
(storm or snowmelt). 

C.5 Calibration Results 

C.5.1 HEC-1 Calibration Results 

HEC-1 was fit to each of the 32 storm events listed in Table C.4. As 
shown in Figs. C.7 and C.8, the typical quality of the HEC-1 and RORB 
calibrated hydrographs relative to the measured hydrograph is quite good. 
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F i g u r e  C . 7 .  Comparison of measured and b e s t  f i t  hydrographs 
f o r  t h e  February 1, 1968 e v e n t  
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Figure C .8 .  Comparison of  measured and best f i t  hydrographs 
for the April 12, 1983 event 



The high quality of the fits obtained for each event is further illustrated 
in Table C.5 where the percent errors in both magnitude and timing of the 
calibrated peaks are displayed. Also shown in Table C.5 is the coefficient 
of model fit efficiency, EFF (in percent) defined on an event basis as: 

Table C.5. Quality of Hydrologic Fit 

HEC-1 RORB 
Date Percent Error EFF Percent Error EFF 

QP t~ (%)  QP t~ ( %  1 



Nash and Sutcliff (1970) suggested this coefficient is analogous to the 
fraction of variance explained statistic commonly used in regression 
andstochastic analyses. Also, EFF gives an indication of the agreement 
between the measured and calibrated hydrograph shapes. 

Generally, the HEC-1 calibrated hydrograph peak is within ten percent 
of the measured hydrograph peak magnitude and timing. This good calibration 
fit in terms of peak time is further amplified when one considers that for 
28 of the 32 events the calibrated peak time is within two hours (one time 
step) of the measured peak time, and that the hydrograph peaks for this 
watershed are typically flat and broad as shown in Figs. C. 7 and C. 8. The 
coefficient of model fit efficiency is also quite acceptable, indicating in 
almost all cases that more than 95 percent of the data variance has been 
explained. 

The calibrated parameter values corresponding to these fine fits are 
shown in Table C. 6. Also shown in Table C.6 are the optimal parameters TP 
and CP for the Synder (1938) unit hydrograph option of HEC-1, which 
aredetermined by HEC-1 in addition to the Clark unit hydrograph 
parameters,and the model correction factor Xmh. The model correction 
factor, Xmh, is the ratio between the measured, Qp, and calibrated, Qpc, 
peak discharges 

C.5.2 RORB Calibration Results 

RORB was fit to 30 of the 32 storm events listed in Table C.4. The May 
21, 1974 event and the June 1, 1980 event each had such a large variation in 
rainfall measured at Fairbury and Piper City that RORB could not properly 
reproduce the measured hydrograph. For the May 21, 1974 event, the rainfall 
at Piper City was so large that the optimal continuing loss rate leads to 
zero rainfall excess at Fairbury, and subsequently, the rainfall excess 
areal distribution and the runoff timing are highly erroneous. A typical 
RORB "fit" (m=O. 90) for this event is shown in Fig. C.9. For the June 1, 
1980 event, the 3.10 in. rainfall at Piper City in the storm's last two 
hours leads to difficulties in properly defining the rainfall temporal 
distribution. A typical RORB "fit" (m=0.90) for this event is shown in Fig. 
C.lO. These problems do not have the same effects in HEC-1 because it does 
not try to explicitly account for the spatial distribution of rainfall over 
the watershed, instead it takes an areal average-lumped system approach. 
For these two events, the lumped system approach is superior to the quasi- 
distributed system approach given the limited data. 

For the 30 events, which were calibrated, RORB provides excellent 
results as evidenced by Figs. C.7 and C.8 and Table C.5. The initial sharp 
rise in the RORB hydrograph is due to the prompt response from the 
downstream subcatchments, which does not get smoothed by multiple nonlinear 
routing. This effect could be compensated for in RORB, but the high fit 
quality makes this unnecessary. Generally, the RORB calibrated hydrograph 
peak is within ten percent of the measured hydrograph peak magnitude and 
timing (within two hours in 17 of 30 events). The coefficient of model fit 
efficiency is also quite acceptable indicating in almost all cases that more 
than 95 percent of the data variance has been explained. In summary, both 



RORB and HEC-1 provide excellent calibration fits of comparable quality for 
a wide variety direct runoff events for the Vermilion River watershed, and 
each is potentially useful for real-time flood forecasting on this 
watershed. 

The calibrated parameter values corresponding to the fine RORB fits are 
shown in Table C.7. Also shown in Table C.7 are the model correction 
factor, Am,, and the optimal C1 and Xmr values for m fixed at 0 .90  (the 
reason for including these values in the table is described subsequently). 

Table C.6 Calibrated Parameters for HEC-1 

Date TC S R I L CL Amh T P C P 
(hr) (hr) (in.) (in./hr) (hr) 
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F igure  C.9. Typ ica l  RORB f i t  (m=0.90) of  t h e  May 21, 1974 e v e n t  
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Figure C.lO. Typical RORB f i t  (mz0.90) o f  the June 1 ,  1980 event 



Table C.7. Calibrated Parameters for RORB 

Date CLR 
( m m m - 1  

*1LR are the optimal values for HEC-1. 



The values of m and C1 are functionally related within RORB and to a 
certain extent changes in their values can have similar effects on the 
calculated hydrograph. Hence, it is quite likely that the calibrated values 
of m and C1 will be significantly correlated due to their functional 
interactions and effects on the calculated hydrograph. For the 30 events 
calibrated, a correlation coefficient of -0.849 was found between m and C1. 
Thus, the relationship between m and C1 must be considered when analyzing 
the modeling uncertainty using any of the reliability analysis methods. 

Laurenson and Mein (1985) pointed out that varying m generally has much 
less of an effect on the calculated hydrograph than does varying C1. While 
calibrating RORB, it was observed that the optimal region of the objective 
function is quite flat over m given the optimal value of C1 for each m 
(recall ILR and CLR are already fixed at their "optimal" values). Further- 
more, the magnitude and timing of the calibrated peak discharge remain 
nearly constant for wide ranges of m. Therefore, it was decided to fix m at 
its "bestt' value and account for the uncertainty of m in C1 and, to a lesser 
extent, in Xmr. By summing the optimal objective function value for each 
value of m over all the events, the overall "best" value of m was found to 
be 0.90. Hence, C1 for m equal to 0.90 is given in Table C.7. If the 
linear regression equation relating the calibrated values of m and C1 were 
used to predict C1, it would explain 71 percent of the variance in C1. By 
fixing m at 0.90, the variance of C1 is reduced 63.7 percent. Therefore, 
the simplification of fixing m at 0.90 is quite adequate to account for the 
relationship between m and C1. 

Table C.8 displays the quality of the hydrologic fits provided when 
calibrating RORB with m fixed at 0.90. As expected, the hydrologic fit 
quality is generally not adversely affected. The calibrated peaks 
generally are within ten percent of the measured peaks in terms of magnitude 
and timing, and the coefficient of model efficiency remains generally 
greater than 95 percent. Thus, RORB with m fixed at 0.90 is a reasonable 
model of the Vermilion River watershed. 

C.6 Real-Time Flood Forecasting Scheme 

The calibration results discussed in section C.5 revealed that given 
the proper ("optimal") parameter values for a given event both HEC-1 and 
RORB are able to accurately simulate that event on the Vermilion River 
watershed. However, as shown in Tables C.6 and C. 7, the optimal parameter 
values often vary considerably from event to event. This parameter 
variation is caused by the transfer of data uncertainties (especially 
rainfall spatial and temporal variation not measured by the rain gage 
network) and model structure uncertainties to the parameters via the 
calibration process. Hence, the deterministic HEC-1 and RORB models produce 
stochastic forecasts and predictions due to the parameter uncertainties 
which have been amplified by the calibration process. The parameter 
variation also makes the selection of the "best" parameter values for real- 
time forecasting and/or general watershed simulation quite difficult, and it 
makes the reliability of such forecasts or simulations suspect. 



Table  13.8. Q u a l i t y  o f  Hydrologic F i t  f o r  RORB 
w i t h  m Fixed a t  0 .90  

Date Percen t  E r r o r  EFF 

QP t~ ( %  > 



The analysis of hydrologic modeling uncertainties is a function of the 
specific modeling scheme used and its objective. Hence, in the following 
paragraphs, a modeling scheme for real-time flood forecasting for the 
Vermilion River at Pontiac using either HEC-1 or RORB is described. The 
scheme makes use of the considerable calibration information available. 

C.6.1 Best Estimate of the Initial Loss 

Typically in hydrology, the term "initial losses" refers to 
interception and depression storage which must be satisfied before the 
initiation of runoff. In HEC-1 and RORB, the initial loss also includes the 
high infiltration loss which occurs at the beginning of a storm. The 
magnitude of this loss is a function of the storm's antecedent conditions. 
The continuing loss rate approximates the asymptotic equilibrium 
infiltration capacity which is nearly a constant for a given soil regardless 
of antecedent conditions (Horton, 1939). The various hydrograph parameters, 
TC and SR for HEC-1 and C1 and m for RORB, are considered to be constants 
based on the geomorphology of a given watershed. Hence, theoretically the 
continuing loss rate and the hydrograph parameters for each model should 
have one constant, best value for all events, but due to uncertainties they 
do not. The initial loss should vary not only due to uncertainties, but 
also due to antecedent conditions. 

The initial loss does indeed display the largest variation of any of 
the parameters for either model. However, a significant portion of this 
variance can be accounted for by the relation between initial loss and 
antecedent conditions. The primary reasons for the reduction of 
infiltration capacity during a storm are (Horton, 1939, and ASCE, 1949): 

1) occupation of some soil voids by soil water, 
2) swelling of colloids and closing of soil-cracks and sun checks, 
3) inwashing of fine materials to the surface-pores in the soil, and 
4) rain-packing, i.e. , the compaction of the soil surface due to 

raindrop impact. 

Thus, the initial infiltration capacity and, hence, the initial loss are 
functions of the soil surface and soil moisture conditions at the beginning 
of the storm. Furthermore, the soil surface condition is related to the 
soil moisture because soil-cracking and sun checks are a product of a dry 
soil, while high soil moisture may be indicative of recent rainstorms which 
led to inwashing and rain-packing. Hence, the initial loss is highly 
related to the ant-ecedent soil moisture. 

Several indices have been proposed to reflect antecedent soil moisture 
including (Musgrave and Holtan, 1964): 

1) antecedent precipitation indices, 
2) indices based upon the status of baseflow in the area, and 
3) indices derived by soil moisture accounting. 

For this study, the baseflow at the beginning of each storm was readily 
available and was chosen to be representative of the antecedent soil 



moisture. Figure C.ll displays a logarithmic plot of the optimal initial 
loss in inches versus the baseflow at the beginning of the rainfall event, 
QB, in cfs. A linear regression of the logarithms of initial loss and 
baseflow yields the following expression 

(C. 10) 

with bl equal to 16.13 for IL in inches and 409.7 for IL in mm. A 
correlation coefficient of 0.877 describes the relation between the measured 
initial loss and that calculated using Eq. C.lO. Furthermore, Eq. C.10 
explains 72.2 percent of the variance in the measured initial loss values. 
Figure C.ll shows Eq. C.10 and its corresponding one standard deviation (of 
the logarithms) confidence bounds. 

It should be noted that those events which include recession flow from 
a previous storm show much higher variance in the initial loss relative to 
Eq. C.lO. This is not surprising because for such events the streamflow is 
not as accurate a measure of the soil moisture as is a long established near 
constant baseflow. Nevertheless, considering the high quality of the 
_statistical and visual evidence over the entire range of baseflows, it seems 
reasonable to use Eq. C.10 to determine the best estimate of initial loss 
for any event to be forecast. 

C.6.2 Best Estimates of the Continuing Loss Rate and Unit 
Hydrograph Parameters 

Theoretically, the continuing loss rate and the unit hydrograph 
parameters are functions of the watershed geomorphology and soil types and 
as such should remain nearly constant for all events given a relatively 
unchanging watershed. However, due to natural, data, and model structure 
uncertainties transferred to the model parameters as well as the inherent 
uncertainties in the model parameters themselves, the optimal model 
parameters display considerable variation as shown in Tables C.6 and C.7. 
The effects of each of the parameters on the model output is nonlinear, 
hence, merely averaging the parameter values will not provide the parameter 
best estimate for use in forecasting over all events. Instead, the 
parameter best estimates for TC, SR, and CL of HEC-1 and C1 and CLR of RORB 
must be found via simultaneous calibration of the parameters over all the 
events (32 for HEC-1; 30 for RORB). 

The overall parameter calibration scheme used involved one parameter at 
a time quadratic interpolation. In this approach, the objective function is 
minimized via quadratic interpolation over one parameter with the other 
parameters held constant. The locally optimized parameter is then fixed at 
its optimal value, and minimization over the next parameter is performed. 
The scheme cycles through the parameters until sufficient convergence in the 
objective function and the parameters is obtained. 

Several different objective functions were examined: 
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1. A simple sum of the individual event calibration objective 
functions as calculated via Eqs. 5.6 and 5.7. This approach was 
used to fix m in RORB, but it is biased toward larger events which 
have larger event objective functions. 

2. A sum of the fraction of the deviations of the event calibration 
objective function, i.e., 

(C. 11) 

where fj(.) = the calibration objective function (given by Eqs. C.6 
and 5.7) for event j with parameters ., 

d1 = the vector of model parameters for iteration I, and 

* 8- = the vector of optimal parameters for event j. J 

3. A sum of the fraction of the deviations from the minimum sum of 
squares difference, i.e., 

(C. 12) 

where hj(.) = the unweighted sum of squares difference between the 
measured and simulated (using parameters . )  
hydrographs for event j. 

During the overall calibration iterations, the value of initial loss 
was fixed at that calculated from Eq. C.lO. In this way, the parameter best 
estimates would be derived corresponding to the conditions of the real-time 
flood forecasting scheme. 

When performing the overall calibration for HEC-1, some difficulty was 
encountered with regard to the optimal value of the storage coefficient, SR. 
The value of SR moved outside the range of optimal SR values for the 
individual events far above the mean value and even above the unusually 
large value (59.37) for the June 1, 1980 event. Such large SR values 
flatten and lengthen the recession limb and decrease the peak of the 
simulated hydrograph. The overall calibration scheme derives such a hydro- 
graph because the use of Eq. C.10 to estimate the initial loss and of a 
single continuing loss rate for all events often leads to simulated runoff 
volumes far in excess of the measured runoff volume, and only by using an 
unrealistically high SR value can the peak magnitude be held near the true 
value. The resulting overestimates in the recession limb comparing high SR 
to low SR do not have as large an effect on the individual event sum of 
squares difference (both weighted by Eq. C.7 or unweighted) as the over- 
estimates in the peak region comparing low SR to high SR. Hence, the 
overall calibration results lead to a somewhat generic simulated hydrograph 



shape which is the best overall hydrograph shape mathematically, but not a 
particularly realistic or representative hydrograph for any of the events 
encountered. 

Similar results were not encountered when performing overall 
calibration for RORB. In RORB, the nonlinearity exponent, m, performs 
essentially the same function (expressing the release from storage) as does 
SR in HEC-1. The value of m was fixed at 0.9 before the overall calibration 
was performed. Hence, a similar generic hydrograph shape was not obtained 
when overall calibration of RORB was performed. It was decided to fix SR at 
its mean value of 27.71 hr and optimize only TC and CL over all events to 
circumvent HEC-1's unrealistic hydrograph shape problem. 

The results of the overall calibration for both HEC-1 and RORB are 
summarized in Table C.9. The overall best estimates are different from the 
parameter mean values, but the improvement in the objective function 
obtained by using the best estimates versus the mean value is insignificant 
(two to three percent). The reason for this is a combination of two 
factors: the aforementioned large overestimation of runoff volume for many 
events and the wide variety of events in the calibration data set. The 
event variety undoubtedly kept the tradeoff between events best modeled with 
parameters close to the mean values versus those close to the best estimates 
nearly equal. In fact, the iteration results obtained by the optimization 
procedure indicate a flat objective function surface in the vicinity of the 
optimal solution. Given these findings, it was decided that using the 

Table C.9 Overall Calibration Results 

(a) HEC-1 

Parameters TC S R CL Obj . Func . Obj . Func . 
(hr) (hr) (in./hr) Type Value 

Mean 38.02 27.71 0.0876 2 282.81 
Optimal 44.76 27.71 0.0813 2 275.07 

(b) RORB 

Parameters C1 m CLR Obj . Func . Obj . Func . 
( mm/hr Type Value 

Mean 65.44 0.90 2.065 1 1285.4 
Optimal 70.50 0.90 1.802 1 1259.2 

Mean 65.44 0.90 2.065 2 
Optimal 69.50 0.90 1.760 2 



parameter mean values in the real-time flood forecasting scheme would be 
preferred to using the parameter best estimates because the mean values 
greatly simplify the application of reliability analysis procedures for 
consideration of modeling uncertainties without greatly sacrificing the 
validity of the model. Furthermore, the use of the parameter mean values in 
rainfall-runoff modeling is not uncommon in hydrology (e.g., see Loague and 
Freeze, 1985). 

For general modeling cases, using the mean values of the parameters 
obtained from individual event calibration is only recommended when 
similarly large and diverse event calibration data sets are available. For 
cases with smaller or more homogeneous event calibration data sets, overall 
calibration of parameters is recommended to determine the parameter best 
estimates. 

C.6.3 Model Correction Factor Relationship 

The model correction factor, Am, describes the amount by which the 
model using optimal parameters underpredicts or overpredicts the measured 
peak flow in the form of a ratio between the measured and predicted peak 
flows. As such, the correction factor accounts for remaining errors and 
uncertainties in the modeling process (including model structure uncer- 
tainty) which due to the modeling scheme cannot be accounted for elsewhere 
and yet still lead to error and uncertainty in the peak flow estimate. 

Troutman (1983) and others have noted that due to uncertainties 
(especially in the precipitation data), hydrologic models tend to over- 
predict large events and underpredict small events. The results of the 
extensive calibration work conducted in this study concur with Troutman's 
conclusions. Figures C.12 and s.13 display the relationship between Am and 
the predicted peak discharge, Q for HEC-1 and RORB, respectively (Note: 

p. values of Am greater than unity Indicated underprediction while those less 
than unity indicate overprediction). It is believed that the calibration 
data setAis sufficiently large and varied such that a mathematical relation 
between Qp and Am may be derived. 

A 

Both linear and logarithmic relationships between Qp and Am yield 
nearly equivalent correlation coefficients and reductions of variance in Am. 
However, when these expressions are extended beyond the range of available 
datq, the linear relationship leads to a rapid tradeoff between increases 

Q an$ decreases in Am spch that the maximum adjustea peak discharge 
Q~(=I![A~]Q~) is 11,970 cfs (Qp = 21,810 cfs) and 10,650 (Qp = 18,600 cfs) 
for HEC-1 and RORB, respectively. This is a very unrealistic situation. 
For the logarithmic relationship, a maximum adjusted peak akso occurs, but 
in this case it is well above 100,000 cfs and corresponds to Qp far greater. 
Hence, the logarithmic relationship provides reasonable results for the 
range of events encountered when forecasting. Of course, for any forecast 
event outside the range of the events used to derive the logarithmic 
relations, the calculated E[Am] will be less reliable. Nevertheless, the 
logarithmic relations offer a reasonable extrapolation for the purpose of 
demonstrating the incorporation of reliability analysis in a real-time flood 
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forecasting scheme. Furthermore, use of the logarithmic relations certainly 
provide a better estimate of the true flood peaks than does ignoring the 
tendency of the hydrologic models to overpredict large events. 

A 

The logarithmic relation between X d  and Q p ~  for HEC-1 is 

(C. 13) 

where Q p ~  = the predicted peak discharge estimated by HEC-1 in cfs, and 

Xmh = the model correction factor for HEC-1. 

This equation has a correlation coefficient of 0.762 and it explains 56.6 
percent of the ,variance in the measured Xmh. The logarithmic relation 
between Xmr and Q p ~  for RORB is 

where 6pR = the predicted peak discharge estimated by RORB and in m3/s, and 

Xmr = the model correction factor for RORB. 

This equation has a correlation coefficient of 0.599 and it explains 34.8 
percent of the variance in the measured Am,. Figures C. 12 and C.13 show 
plots of Eqs. C. 13 and C. 14, respectively, as well as their respective one 
standard deviation confidence bounds. Based on this evidence, the use of 
Eqs. C.13 and C.14 to estimate the values of Am for adjusting the predicted 
peak discharges from HEC-1 and RORB, respectively, is an improvement 
relative to assuming the Am values are totally random. 

C . 6 . 4  Summary of the Real-Time Flood Forecasting Schemes 

A* For HEC-1, the adjusted flood peak prediction Q p ~ ,  is given by 

(C. 15) 

where E[X&] = the expected value of the model correction factor for HEC-1 
given by Eq. C.13, 

fH(') = function representing the HEC-1 model, 

= the mean value of the time of concentration, 38.02 hr , 
- 
SR = the mean value of the watershed storage factor, 27.71 hr, 



E[IL] = the expected value of the initial loss given by Eq. C.lO, and 

= the mean value of the continuing ,loss rate, 0.0876 in./hr. 

For RORB, the adjusted flood peak prediction, GR, is given by 
"* = E[A ] fR(q, m*, E[ILR] , E) 
Q~~ mr 

(C. 16) 

where E[Amr] = the expected value of the model correction factor for RORB 
given by Eq. C.14, 

fR(') = function representing the RORB model, 
- 
C1 = the mean value of watershed delay time factor, 65.44, 

m* = the "best" estimate of the watershed nonlinearity exponent, 
fixed at 0.90, 

E[ILR] = the expected value of the initial loss given by Eq. C.lO, and 

= the mean value of the continuing loss rate, 2.065 mm/hr. 

It should be noted that the functions fH(') and fR(') in Eqs. C.15 and 
s.16, respectively, could be considered to include the relationship between 
Qp and Am defined by Eqs. C.13 and C.14. This view redefines the model 
functions to include the model's tendency to overpredict large events and 
underpredict smaller events, leaving Am to describe the random variation 
about Eqs. C.13 and C.14. However, the purpose of Am is to express the 
model structure inadequacies (errors and uncertainty), and hence, it is 
probably best to keep the model's tendencies to overpredict and underpredict 
separate from the model function. 

C.7 Statistical Analysis 

With the exception of m* for RORB, all the parameters in Eqs. C. 15 and 
C.16 are subject to a considerable amount of variation and uncertainty as 
can be seen in Tables C. 6 and C. 7 and Figs. C. 11, C. 12, and C. 13. In this 
section, the appropriate statistics will be derived from the individual 
event calibration data to allow the various reliability analysis techniques 
to be combined with the real-time flood forecasting schemes. These 
appropriate statistics include estimates of the basic variable (i.e., the 
parameters of Eqs. C.15 and C.16) means, variances, and probability 
distributions. 

C.7.1 Assumptions in the Statistical Analysis of Basic Variable Uncertainty 

C.7.1.1 Sample Representativeness 

The primary assumption in the following statistical analysis is that 
the results of the individual event calibration comprise a representative 



sample of the large events likely to occur on the Vermilion River watershed 
for which real-time flood forecasts would be needed. The question of sample 
representativeness has two facets: Does the sample contain a sufficient 
variety of events, and does it contain a sufficient number of events to 
justify estimating basic variable statistics and, especially, distributions? 

The sample contains a large rainstorm, June 1, 1980 (5.55 in. ) , which 
resulted in a serious flood; another large convective rainstorm, July 12, 
1978 (3.00 in. ) , which due to the watershed being very dry, resulted in a 
very low peak discharge (2940 cfs); and a wide variety storm rainfall 
depths, watershed soil moisture conditions, and resulting peak discharges in 
between. Furthermore, the data set contains events from each season of the 
year and nearly every month of the year with the majority of the events in 
the heavy rainfall prone spring months (April-June). Also, a variety of 
rainstorm types from intense, localized convective thunderstorms to longer 
term steady rainstorms are included. Hence, it is likely that the common 
assumption of statistical hydrology that the events sampled are 
representative of the events to be forecast in the future has been 
satisfied. 

With regard to the size of the sample, the U.S. Water Resources Council 
(1981) recommends that stream gaging records be at least ten years long 
before use of flood frequency analysis is warranted. Ang and Tang (1975, 
p. 236) stated that if sample size is large (for instance, greater than 20), 
the sample variance is a good estimator of the population variance. 
Therefore, from a practical hydrologic viewpoint, the sample sizes of 32 
events for HEC-1 and 30 events for RORB are adequate for the statistical 
analys is . 

Another key factor tied in with sample representativeness is sample 
homogeneity, i.e., is the entire sample of events a subset of the same 
population of events and, hence, a product of a unique physical rainfall- 
runoff process. Seasonal variation in watershed vegetation and soil 
conditions, in storm types, etc., is the most common reason to suspect the 
events result from different physical processes and, hence, represent 
different populations. Tables C.10 and C.ll display the effects of seasonal 
variations on the mean values, ti, and standard deviations, ai, of the 
parameters of HEC-1 and RORB, respectively. 

With the exception of the initial loss and the continuing loss rate, 
the mean values of the various parameters remain nearly constant for all 
seasons. For the summer events, dry watershed conditions may have 
contributed to the high mean values of the initial loss and the continuing 
loss rate. This contribution in the initial loss is partially accounted for 
in Eq. C.lO. Considering the general agreement of the mean values over the 
seasons, it is reasonable to establish the flood warning schemes based on 
the overall mean parameter values and to assume that at least on the first 
moment level the events are from the same population. 



Table C.lO. Effect of Seasonal Variations on the Basic 
Variables of HEC-1 

Period TC S R I L CL Xmh TP C P 
(hr) (hr) (in.) (in./hr) (hr) 

All 32 Events 

Summer Storms 
(June-August) 
10 Events 

Spring Storms 
(March-May) 
14 Events 

Fall & Winter 
8 Events 

Table C.ll. Effect of Seasonal Variations on the Basic 
Variables of RORB 

Period m C1 C1 (m=O .90) ILR CLR A,, 
(mm) (mm/hr> 

- 
All 30 Events xi 0.900 67.04 65.44 14.45 2.065 0.9963 

ui 0.078 19.30 11.62 16.90 1.385 0.0779 

- 
Summer Storms xi 0.918 64.31 67.94 25.73 2.760 0.9907 
(June-August) ui 0.097 22.02 16.33 25.51 2.133 0.0802 
9 Events 

- 
Spring Storms xi 0.889 67.94 62.45 8.58 1.735 0.9867 
(March-May) ui 0.076 21.46 7.54 5.91 0.831 0.0897 
13 Events 

- 
Fall & Winter xi 0.898 68.68 67.48 11.31 1.818 1.0097 
8 Events ui 0.062 13.65 11.32 11.84 0.816 0.0645 



The seasonal variation has a much more significant effect on the 
parameter standard deviations. The summer events tend to be mainly intense, 
localized convective thunderstorms. Hence, large parameter standard 
deviations are to be expected for these storms with high temporal and 
spatial variability. Events throughout the rest of the year tend to be more 
spatially uniform, steady rainstorms. Such events should display much 
smaller parameter standard deviations than the summer events. This is 
indeed the case for the events sampled here. Nevertheless, the reliability 
analysis techniques will make use of the statistics of the entire set of 
events because the sample really is not large enough to derive separate 
statistics for summer events and the error introduced to the analysis by 
using a slightly non-homogeneous sample is not large enough to negate the 
goals of this research. 

C.7.1.2 Parameter Independence 

While methods exist for handling basic variable correlation in first- 
order second moment and Monte Carlo analyses, these analyses are much less 
complicated when dealing with uncorrelated basic variables. The simplified 
expressions for these analyses with independent basic variables are given in 
Chapter 3. In the following paragraphs, the independence of the basic 
variables is examined. 

From a strictly theoretical viewpoint, all of the model parameters for 
HEC-1 and RORB are functionally independent with the exception of C1 and m 
in RORB whose interdependence has already been accounted for. Even the 
initial loss and continuing loss rate are theoretically independent because 
the continuing loss rate is a function of the soil type alone while the 
initial loss is a function of the soil type and, perhaps to a greater 
extent, the antecedent soil conditions. Tke model correction factor is 
correlated to the predicted peak discharge, Qp, which in turn is a function 
of the model parameters. Hence, some correlation between the model 
correction factor and the model parametf;rs is expected. However, after 
accounting for the relationship between Qp and Am via Eqs. C. 13 and C.14, 
the correlation between the model parameters and the data residuals 
(measured Am minus Am estimated from the appropriate equation) is likely to 
be insignificant. 

While theoretically the interrelations between the model parameters and 
between the model parameters and the data residuals of the model correction 
factor should be insignificant, the calibration process has long been known 
to impose artificial correlation between parameters which serve similar 
functions. Tables C.12 and C.13 display the estimated correlation 
coefficients between the basic variables for the real-time flood forecasting 
schemes using HEC-1 and RORB, respectively. In the reliability analysis, 
the basic variables are not the measured values of the IL and Am, but rather 
the data residuals of their values about the appropriate estimation equation 
(Eq. C.10 for IL and Eqs. C.13 and C.14 for Am). Hence, the correlation of 
the other basic variables with the data residuals of IL, res(IL), and of Am, 
res(A,), are also given in Tables C.12 and C.13. 



Table C.12. Correlation Between Basic Variables for HEC-1 

Correlation Coefficient 
Basic 
Variable TC S R I L CL Xmh res (IL) res (Xmh) 

TC - - -  -0.203 -0.018 - 0.246 -0.589 -0.299 -0.379 
R -0.203 - - - -0.148 0.258 -0.428 -0.355 0.088 
I L -0.018 -0.148 - - - 0.580 -0.135 - - - - - -  
C L - 0.246 0.258 0.580 - - - -0.454 0.418 -0.322 

Xmh -0.589 -0.428 0.135 - 0.454 - - - - - -  - - -  
res (IL) -0.299 -0.355 - - - 0.418 - - -  - - -  -0.339 
res (Xmh) -0.379 0.088 - - - -0.322 - - -  -0.339 - - - 

Table C.13. Correlation Between Basic Variables for RORB 

Correlation Coefficient 
Basic 
Variable C1 ILR CLR A,, res(1L) res(Xmr) 

c1 - - -  0.213 0.324 0.376 -0.035 0.616 
ILR 0.213 - - -  0.557 0.080 - - - - - -  
CLR 0.324 0.557 - - - -0.155 0.396 -0.045 

A,, 0.376 0.080 -0.155 - - - - - -  - - - 
res (ILR) -0.035 - - - 0.396 - - -  - - -  -0.133 
res (Xmr) 0.616 - - -  - 0.045 - - - -0.133 - - - 

Yevjevich (1971) discussed several tests for the significance of sample 
correlation coefficients. One of the simplest and most powerful tests views 
the relation between the sample correlation coefficient, r, and the 
population correlation coefficient, p, by using a transformation to a third 
variable Z. The standardized value of Z may be assumed to be approximately 
normal (i.., follows the standard normal distribution) for t in the 
neighborhood of zero so that (Yevjevich, 1971, p. 238) 

(C. 17) 

where Ns = the sample size. 

Reorganizing Eq. C.17 to define bounds on r in terms of p and t 



(l+p) exp (2t/(~--3)l/~) - (1-p) 
J 

r = 
B 

(l+p) exp (2t/(~~-3)~/~) + (1-p) 
(C. 18) 

by setting t = 1.96 and p = 0, the 95 percent confidence bound on r being 
not significantly different from 0 (independent variables case) is obtained. 
for HEC-1's 32 events rg5 = k0.349, while for RORB's 30 events rg5 = k0.360. 

Based on the results of Eq. C. 18, it is safe to assume that seven of 
ten basic variable interrelations for HEC-1 are statistically as well as 
functionally independent. The correlation coefficients between TC and 
res(Xmh) and SR and res(1L) only slightly exceed the 95 percent confidence 
bound, and so it is probably reasonable to assume these basic variables are 
independent from a practical viewpoint. The correlation coefficient between 
CL and res(1L) is slightly more significant, but this correlation only 
accounts for approximately 16 percent of the variance in either variable. 
Hence, from a practical viewpoint, it is reasonable to assume these 
variables are independent. It is also reassuring to note that, as expected, 
the significant correlation between Xmh and TC, SR, and CL becomes 
insignificant for the data residuals of Xmh. 

For RORB, it is safe to assume that four of the six basic variable 
interrelations are statistically as well as functionally independent. The 
correlation coefficient between CLR and res(1LR) is only slightly outside 
the 95 percent confidence bounds, and so from a practical viewpoint these 
basic variables may be considered independent. The relatively high correla- 
tion ~oefficient~between C1 and res(Xmr) was not expected. The relation 
between Xmr and Qp is not as strong for RORB as for HEC-1. Hence, it is 
possible that the relation between CIAand Xmr is not properly expressed 
within the rglation between Xmr and Q . Furthermore, by removing the 
influence of Qp on Amr, the influence 02 other factors (such as C1) on the 
res(Xmr) is magnified in terms of a correlation coefficient because the 
residual variance is less than that for the measured parameter. Thus, in 
terms of the total variance of measured Xmr values, C1 affects a small, 
insignificant portion, but C1 affects a much more significant portion of the 
reduced variance of res(Xmr). Therefore, it seems likely that ignoring this 
correlation and assuming C1 and res(Xmr) are independent will not adversely 
effect the reliability analysis from a practical viewpoint. 

C . 7 . 2  HEC-1 B a s i c  V a r i a b l e  S t a t i s t i c s  

C . 7 . 2 . 1  Init ial  L o s s ,  IL 

As discussed in section C.6, a strong relation exists between the 
logarithms of the initial loss and baseflow (streamflow) at the beginning of 
the event. One of the basic assumptions of any linear regression analysis 
is that the residuals of the regression equation are independent, normal 
variables. Hence, it was felt the data residuals of initial loss might be 
lognormally distributed about Eq. C.lO. Two well known statistical tests-- 
the skewness test of normality (Salas et al., 1980, p. 92) and the 



Kolmogorov-Smirnov (K-S) test (Law and Kelton, 1982, p. 199) - -  were used to 
test the hypothesis that the res(1L) are lognormally distributed. 

The skewness test of normality is based on the fact that the skewness 
coefficient for a normal variable is zero. Hence, this is a test to 
determine if the sample skewness of a variable is significantly different 
from zero, if not the hypothesis that the variable is normally distributed 
cannot be rejected at the specified significance level. For the logarithms 
of res(IL), the skewness coefficient, 7, is 0.0276. Thus, based on the 
skewness test, the hypothesis that res(1L) is lognormally distributed cannot 
be rejected at very high significance levels (e.g., at the 10 percent 
significance level for a sample size of 32 the bound on 7 is k0.646). 

The K-S test examines the correctness of the assumed distribution by 
determining the largest deviation between an empirical cumulative 
distribution function derived from the data and the theoretical cwulative 
distribution function for the assumed distribution. In this study, an 
adjusted, more powerful Kolmogorov-Smirnov statistic (maximum distance) is 
used. Developed by Stephens (1974), it accounts for the fact that the 
sample mean and standard deviation are used instead of the population 
values. For this adjusted K-S test, the hypothesis that res(1L) is 
lognormally distributed cannot be rejected at approximately the four percent 
significance level. 

Considering the high significance of the skewness test and the 
practical advantage of the lognormal distribution, the initial loss is 
considered lognormally distributed with 

(C. 19) 

IL = [Var (Pn(1L)) ]'I2 = 0.7184* 

For the MVFOSM method, only the mean and variance of IL are required. 
Hence, for this method 

-0.599 
E[IL] = 16.13 QB (in.) 

S~~ 
= 0.3411~ in. 

(C. 20) 

*NOTE: These values are the conditional standard deviations calculated 
considering the regression analysis for the mean as described in 
Ang and Tang (1975, p. 288). 



C.7.2.2 Continuing Loss Rate, CL 

Figure C.14 displays a histogram of the optimal CL values for HEC-1 in 
one-third standard deviation intervals. Based on visual inspection, it 
seems reasonable to assume that CL is lognormally distributed. The skewness 
of the logarithms of CL is 0.0932. Hence, based on the skewness test, the 
hypothesis that CL is lognormally distributed cannot be rejected at 
significance levels far above ten percent. The adjusted K-S test indicates 
that the hypothesis that CL is lognormally distributed cannot be rejected at 
the 15 percent significance level. Therefore, the continuing loss is 
considered lognormally distributed with 

For the MVFOSM method, the mean and standard deviation are 

E[CL] = 0.0876 in./hr 

S c ~  - 0.0611 in./hr 

C.7.2.3 Time of Concentration, TC 

Figure C.15 displays a histogram of the optimal TC values for HEC-1 in 
one-half standard deviation intervals. Based on visual inspection, the 
distribution of TC might be reasonably assumed to be normal or lognormal. 
Upon examining the hypothesis that TC is normally distributed, the skewness 
of the TC values was found to be 0.671. Hence, based on the skewness test, 
the hypothesis that TC is normally distributed cannot be rejected at 
approximately the nine percent significance level. The adjusted K-S test 
indicates that the hypothesis that TC is normally distributed cannot be 
rejected at approximately the eight percent significance level. 

Therefore, it is reasonable to consider the time of concentration as 
normally distributed with 

These statistics are used in the MVFOSM analysis 

It should be pointed out that the hypothesis that TC is lognormally 
distributed cannot be rejected by both the skewness and adjusted K-S tests 
at much higher significance levels. Nevertheless, the estimated normal 
distribution was used in this study for simplicity. 



Continuing Loss (in./hr) 

Figure C.14. Histogram of optimal CL values for HEC-1 

Time of Concentration, TC (hrs) 

Figure C.15. Histogram of optimal TC values 
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C.7.2.4 Watershed Storage Factor, SR 

If the unusually high SR value for the June 1, 1980 storm is 
temporarily ignored, the mean and standard deviation of the remaining 31 
values are 

Figure C.16 displays a histogram of the optimal SR values for HEC-1 in one 
standard deviation intervals (based on the statistics of the 31 event 
sample). Based on visual inspection, it seems that the assuming SR to be 
normally distributed is reasonable. The skewness coefficient of the 31 SR 
values is 0.696. Hence, based on the skewness test, the hypothesis that SR 
is normally distributed cannot be rejected at approximately the nine percent 
significance level. The adjusted K-S test indicates that the hypothesis 
that SR is normally distributed cannot be rejected at the 15 percent 
significance level. 

When the entire 32 event sample is considered, both the skewness test 
and adjusted K-S test indicate that the hypothesis of SR being normally 
distributed can be rejected with a less than one percent chance that the 
true distribution is being rejected. If SR was truly normally distributed 
as described by the 31 event sample, it is possible that the 32nd event 
drawn randomly from the normally distributed population could be seven 
standard deviations from the mean. The adjusted K-S test was performed on 
the 32 event data set assuming the normal distribution estimated from the 31 
event data set. This test indicated the hypothesis that SR is normally 
distributed cannot be rejected at the 15 percent significance level. 

Therefore, it is reasonable to assume that the storage coefficient is 
normally distributed with mean and standard deviation given above. These 
statistics are used in the MVFOSM analysis. 

This assumed distribution and statistics slightly underestimate the 
parameter variance measured for the entire data set, and so the HEC-1 
forecast reliability may be slightly overpredicted. Nevertheless, the 
amount of this overprediction should not greatly alter the general 
conclusions of this research. 

C.7.2.5 Model Correction Factor, X d  

As noted previously, the residuals of a linear regression equation 
should be independent, normal variables. Hence, a normal distribution for 
res(Xmh) was estimated and tested. The skewness coefficient for res(Xmh) of 
HEC-1 was found to be 0.163. Hence, based on the skewness test, the 
hypothesis that res(Xmh) is normally distributed cannot be rejected at 
significance levels in excess of ten percent. The adjusted K-S test 
indicates that the hypothesis that res(Xmh) is normally distributed cannot 
be rejected at the 15 percent significance level. 
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Therefore, the model correction factor for HEC-1 is considered normally 
distributed with 

(C. 21) 

These statistics are used in the MVFOSM analysis. 

C.7.3 RORB Basic Variable Statistics 

C.7.3.1 Initial Loss, ILR 

The same initial loss relation is used for HEC-1 and RORB with only a 
change in dimensions from in. to mm. Therefore, in RORB, the initial loss 
is considered to be lognormally distributed with 

E[Rn(ILR)] = 6.015 - 0.599 Rn(QB) (C. 22) 

For the MVFOSM method, the mean and standard deviation are 

(C. 23) 

C.7.3.2 Continuing Loss Rate, CLR 

Figure C.17 displays a histogram of the optimal CLR values for RORB in 
one-third standard deviation intervals. Based on visual inspection, CLR is 
assumed to be lognormally distributed. The skewness of the logarithms of 
CLR is 0.370. Hence, based on the skewness test, the hypothesis that CLR is 
lognormally distributed cannot be rejected at the ten percent significance 
level (bound equal to 0.662 for a sample size of 30). The adjusted K-S test 
indicates that the hypothesis that CLR is lognormally distributed cannot be 
rejected at the 15 percent significance level. Therefore, the continuing 
loss rate for RORB is considered lognormally distributed with 
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Figure C.17. Histogram of optimal CLR values for RORB 
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For the MVFOSM method, the mean and standard deviation-are 

C.7.3.3 Watershed Delay Time Factor, C1 

Figure C.18 displays a histogram of the optimal C1 values for RORB in 
one-half standard deviation intervals. Based on visual inspection, C1 is 
assumed to be normally distributed. The skewness coefficient for C1 was 
found to be 0.380. Hence, based on the skewness test, the hypothesis that 
C1 is normally distributed cannot be rejected at the ten percent 
significance level. The adjusted K-S test indicates that the hypothesis 
that C1 is normally distributed cannot be rejected at the 15 percent 
significance level. 

Therefore, the watershed time delay factor is considered normally 
distributed with 

These statistics are also used in the MVFOSM analysis. 

C.7.3.4 Model Correction Factor, Xmr 

A normal distribution for res(Xmr) was estimated and tested. The 
skewness coefficient for res(Xmr) of RORB was found to be 0.011. Based on 
the skewness test, the hypothesis that res(Xmr) is normally distributed 
cannot be rejected at significance levels far greater than ten percent. The 
adjusted K-S test indicates that the hypothesis that res(Xmr) is normally 
distributed cannot be rejected at the five percent significance level. 

Therefore, the model correction factor for RORB is considered normally 
distributed with 



These statistics are also used in the MVFOSM analysis. 

C.8 Application of Reliability Analysis Methods 

The Monte Carlo and MVFOSM reliability analysis methods were applied to 
the reliability of the real-time flood forecasting schemes as described in 
Chapter 2. However, as described in section 2.1 one percent increase in 
parameter values is used in HEC-1's automatic calibration scheme, hence, 
such a ABj is likely to lead to a reasonable change in the system 
performance function for evaluating the partial derivatives. 

The AFOSM method calculations followed the standard iteration procedure 
shown schematically in Fig. B. 1 using an IBM PC-AT with math co-processor 
chip. In using this procedure, no initial estimate of /3 was made. 

C.8.1 Calculation of the Partial Derivatives 

For real-time flood forecasting within a flood warning and preparedness 
system, it is desired to know the reliability of the peak discharge 
estimate. Hence, the R-L system performance function is 

Z = QF - Am Q (8) (C. 25) 

where QF = the peak discharge (flood level) whose probability of 
occurring due to the current storm is sought, 

Qp(B) = the peak discharge estimated by the hydrologic model in 
question, and 

fl = the vector of model parameters. 

While the Rn(R/L) system performance function is 

(C. 26) 

As recommended in Chapter 2, the partial derivatives for the model 
parameters are estimated by taking a forward difference 

(C. 27) 



A 

The change in Z also includes the change in Am as Qp changes due to the 
change in Bj . Furthermore, during iteration i+l , the value of Am used in 
determhing the partial derivatives is 

'm(i+l) - a + b i n % - a i ~ i ~  Am (C. 28) 

where a,b = the appropriate regression coefficients, 

ai = the variance weight for Am from iteration i, and 

Bi = the reliability index for iteration i(i=l, Bi=O). 

In this forward difference scheme, the Ad- was chosen to be one percent J of parameter value. A one percent increase In parameter values is used in 
HEC-1's automatic calibration scheme, hence, such a ABj is likely to lead to 
a reasonable change in the system performance function for evaluating the 
partial derivatives. 

The partial derivatives for Am can be evaluated analytically and they 
are for Z=R-L and Z=Rn(R/L), respectively. 

(C. 29) 

(C. 30) 

C.8.2  Termination Criteria 

The majority of the cases studied in this research converge as for the 
ideal case. However, for several cases, such ideal convergence was not 
obtained and the value of jl* (the value of j3 for X*) must be approximated. 

One of the key assumptions of the AFOSM method is that the system 
performance function is continuous and differentiable or at least locally 
differentiable. Due to the use of block hyetograph data and the initial 
loss-continuing loss rate approach, the system performance function is 
discontinuous. These discontinuities lead to two significant convergence 
problems. 

For the case when the relationship between the initial loss and the 
precipitation up to and including time period i, Pi, is 

- bCL < IL < Pi (C. 31) 

where b = 2 for RORB and is related to the difference between IL and Pi 
for HEC-1. 
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The value of IL between these bonds is irrelevant in the calculation of the 
rainfall excess. When the iteration scheme moves to such a point, aZ/aIL 
equals zero which is generally a drastic change from its previous non-zero 
value and this leads to problems with iteration convergence. This is more 
of a problem with HEC-1, which uses a single hyetograph, than for RORB, 
which uses multiple hyetographs (two in this case study). Generally, these 
problems can be circumvented by making IL equal to PI. Hence, aZ/aIL will 
have a non-zero value and the iterations will continue toward convergence. 

The iteration scheme also has problems with iterations which go back 
and forth from one side of a discontinuity to the other and, hence, cannot 
converge in the basic variables. Generally, for such cases, the value of p 
has converged to the second decimal place. Hence, a very good approximation 
of p* may be obtained. 

As discussed in section 2.1.3, the iterations diverged for extreme 
probability cases (p > 2.5). The difference in p values for Z near zero 
(less than three percent of the target flood level) was typically on the 
order of 0.2 to 0.4. The iteration whose p value was closest to zero was 
chosen as a reasonable estimate of the true p*. In this study, the p values 
so approximated were generally on the order of 2.5-4.5. The corresponding 
exceedance probabilities are on the order of 0.006-0.00004. Hence, from a 
practical viewpoint, such approximations of p* do not greatly change the 
estimated flood risk for the event in question. 

C . 9  Storm Events for Verification 

Storm events for verification were chosen from the data from the summer 
of 1955 through November 1965 using the guidelines for selecting calibration 
events described in section C .4.4 with the exception of the requirement of 
total runoff volumes greater than 10 mm (0.4 in.) because storm runoff 
volumes are difficult to estimate from daily discharge data (recall hourly 
discharge values are not available before November 1965). The daily 
discharge data also leads to slight differences in the population from which 
the calibration and verification data sets are sampled. In the calibration 
data set for single events, the instantaneous discharge at the beginning 'of 
the event is used to determine the direct runoff peak discharge and to 
define the relation which predicts the initial loss. For the verification 
data set, the baseflow from the storm date or the previous day is used. 
Hence, the estimated initial loss and direct runoff peak discharge are 
slightly different than they would be if the instantaneous flows were 
available. 

For cases where event separation must be performed, the divergence 
between the calibration and verification data sets becomes more pronounced. 
For the calibration events, separation was performed by assuming the 
recession of the first event is parallel to the recession of the final 
event. For the verification events, separation was performed by using HEC-1 
or RORB to simulate the first event and matching the daily average direct 
runoff volumes and the magnitude and timing of peak discharge as best as 
possible or by using the recession curve from a similar event in the 
calibration data set. Hence, the estimated initial loss and direct runoff 



peak discharge may be considerably different than if estimated from 
continuous data. Nevertheless, these events provide an interesting test for 
the real-time flood forecasting schemes. 

Strictly speaking, the verification data set is not from the same 
population as the calibration data set, and so the assumptions of the 
reliability analysis techniques and the verification process are violated. 
Nevertheless, the effects of the violations on the results of the 
reliability analysis and the forecasting scheme verification are 
insignificant from a practical viewpoint. 

Table C.14 lists the storm events and their significant direct runoff 
characteristics (including the discharge level corresponding to the total 
runoff flood discharge of 10880 cfs, QF) used to verify the real-time flood 
forecasting schemes. Of the 23 events between the summer of 1955 and 

Table C.14. Storms for Verification 

Precipitation 
Date Fairbury Piper City QB Q t~ QF 

(in. ) (in. ) (cfs) (cps) (hr (cfs) 

 l low at the beginning of this storm is in recession from a previous event 

'only accumulated totals were available at Fairbury. Temporal distribution 
weighted as for Piper City. 

2~iper City raingage malfunctioned, so Fairbury record is used for the entire 
watershed. The streamgage also malfunctioned in early part of the event so 
tp is only approximate. 



November 1965, which had total runoff peak discharges greater than 3000 cfs, 
15 met the selection criteria (5 were eliminated due to snowmelt, 2 due to 
separation problems, and 1 due to missing data). The June 16, 1973 event 
was not included in the calibration data set because a second storm event 
occurred shortly after the hydrograph recession began making event 
separation infeasible, however, it may be included in the verification data 
set. For the May 12, 1970 and December 2, 1982 events, either the stream- 
gage and/or one of the raingages malfunctioned, but because both of these 
events resulted in serious flooding they were included in the verification 
data set. Hence, these events were examined to see how the real-time flood 
forecasting schemes would perform for actual floods (albeit using even less 
reliable input data). 



APPENDIX D. LIST OF SYMBOLS 

- 
a = the correction factor relating the difference between the true and 

measured point rainfall due to wind effects 

i = ag/axi = the partial derivative of the system performance function 
with respect to basic variable i 

C L = the continuing loss rate in in./hr, a parameter of HEC-1 

CLR = the continuing loss rate in mm/hr, a parameter of RORB 

C1 = the watershed delay time factor, a parameter of RORB 

E = the average absolute sampling error in areal storm rainfall due to 
gage network inadequacy 

E a = the average absolute sampling error in areal one-minute rainfall 
due to gage network inadequacy 

a = a random variable describing the uncertainty associated in 
determining B 

EFF = the coefficient of model fit efficiency 

G = the gaging ratio = the number of square miles per rain gage 

g(.) = the functional description of the system performance function 

hM(-) = a function which represents the selected hydrologic model's 
estimate of the hydrologic information in question 

I L = the initial loss in in., a parameter of HEC-1 

ILR = the initial loss in mm, a parameter of RORB 

KH = the soil saturated hydraulic conductivity 

L = the load placed on the system (in this study the peak discharge 
forecast by a hydrologic model) 

m = the storage nonlinearity exponent parameter in RORB 

N = the number of rain gages on the watershed 

n = the total number of hydrograph ordinates calculated 

P = the number of basic variables for the system 

P E = the hydrologic target level exceedance probability 

P e = the estimated, based on point measurements, precipitation depth 
over the entire watershed 



Pt = the true precipitation depth over the entire watershed 

Px = the true precipitation at point x 

Pxm = the measured precipitation at point x 

QB = the baseflow (streamflow) at the beginning of the rainfall event 

Qc i = the calculated direct runoff discharge at time i 

QFp = the direct runoff discharge level corresponding to the total 
runoff flood discharge of 10880 cfs 

Qmi = the measured direct runoff discharge at time i 
- 
Qm = the average measured direct runoff discharge for a given event 

QP 
= the measured direct runoff peak discharge 

A 

QP = the forecast (or predicted) direct runoff peak discharge produced 
by the hydrologic model using the expected values (best estimates) 
of the parameters and input data 

$ A 

= Am Qp = the adjusted direct runoff peak discharge forecast (or 
prediction) produced by the hydrologic model accounting for the 
model correction factor, Am 

QPC = the direct runoff peak discharge for the calibrated hydrograph 

R = the system's resistance capacity (in the study the hydrologic 
target level) 

r = the sample correlation coefficient 

Ra = the true one-minute precipitation rate over the entire watershed 

Rae = the estimated, based on point measurements, one-minute 
precipitation rate over the entire watershed 

R~ = the system reliability 

R s = the system risk (probability of system failure) 

S R = the watershed storage factor in hours, a parameter of HEC-1 

TC = the watershed time of concentration in hours, a parameter of HEC-1 

T~ = the hydrologic target level whose exceedance probability is sought 

t~ 
= the measured time to peak direct runoff from the beginning of the 

event 

At = the computational time interval used in hydrologic modeling 



= the vector of the basic variables of the system includes data, 
model parameters, and model correction factor 

= the mean value of basic variable i 

= the mean value of the transformed normal basic variable i 

= the value of basic variable i at the failure surface 

= a small change in the value of xi used to numerically evaluate 
partial derivatives 

= the system performance function 

= the total forecast variance linearization factor for basic 
variable i 

= the reliability index for the system 

= the reliability index corresponding to the difference between the 
forecast peak discharge and the flood level 

= the reliability index corresponding to the difference between the 
measured and forecast peak discharges 

= the standard deviation of the logarithms for a lognormally 
distributed variable 

- the model correction factor which expresses the relationship 
between the model's optimal performance and the true value of the 
hydrologic information to be estimated (in this study = Qp/Qpc) 

- the model correction factor for HEC-1 

lmr = the model correction factor for RORB 

P = the population correction coefficient 

a a = the coefficient of variation of the error in precipitation 
measurements due to wind effects 

a i = the standard deviation of basic variable i 

a i = the standard deviation of the transformed normal basic variable i 

= the standard deviation of the precipitation input 

a, = the standard deviation of the system performance function 

( )  = the standard normal integral 
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