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ABSTRACT

INCORPORATION OF UNCERTAINTIES IN REAL-TIME CATCHMENT FLOOD FORECASTING

Floods have become the most prevalent and costly natural hazards in the
U.S. When preparing real-time flood forecasts for a catchment flood warning
and preparedness system, consideration must be given to four sources of
uncertainty -- natural, data, model parameters, and model structure. A
general procedure has been developed for applying reliability analysis to
evaluate the effects of the various sources of uncertainty on hydrologic
models used for forecasting and prediction of catchment floods. Three
reliability analysis methods -- Monte Carlo simulation, mean value and
advanced first-order second moment analyses (MVFOSM and AFOSM, respectively)
-- were applied to the rainfall-runoff modeling reliability problem.
Comparison of these methods indicates that the AFOSM method is probably best
suited to the rainfall-runoff modeling reliability problem with the MVFOSM
showing some promise. The feasibility and utility of the reliability
analysis procedure are shown for a case study employing as an example the
HEC-1 and RORB rainfall-runoff watershed models to forecast flood events on
the Vermilion River watershed at Pontiac, Illinois. The utility of the
reliability analysis approach is demonstrated for four important hydrologic
problems: 1) determination of forecast (or prediction) reliability, 2)
determination of the flood level exceedance probability due to a current
storm and development of "rules of thumb" for flood warning decision making
considering this probabilistic information, 3) determination of the key
sources of uncertainty influencing model forecast reliability, 4) selection
of hydrologic models based on comparison of model forecast reliability.
Central to this demonstration is the reliability analysis methods' ability
to estimate the exceedance probability for any hydrologic target level of
interest and, hence, to produce forecast cumulative density functions and
probability distribution functions. For typical hydrologic modeling cases,
reduction of the underlying modeling uncertainties is the key to obtaining
useful, reliable forecasts. Furthermore, determination of the rainfall
excess is the primary source of uncertainty, especially in the estimation of
the temporal and areal rainfall distributions.
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1. INTRODUCTION

1.1 Severity of the Flooding Problem

Floods and flash floods have been the most prevalent and costly natural
disaster in the United States over the last decade resulting in $1 billion
in damages and 200 deaths annually (Mogil et al., 1978). This annual damage
figure is expected to grow to around $4.3 billion annually (in 1975 dollars)
by the year 2000 (Water Resources Council, 1977). White (1975) pointed out
that flood events provoke far-reaching impacts in society that go beyond
dollar and fatality numbers. Social disruption caused by floods includes
social structures (i.e., families, communities, etc.) disruption, disloca-
tion, unemployment, and deaths and injuries. Furthermore, this problem is
national in scope since overflowing rivers and streams cause significant
flooding in about half of the communities (representing approximately half
of the nation’s population) and over at least seven percent of the total
land area of the United States (White, 1975). Finally, the flood problem is
not restricted to the United States, floods and flash floods pose a severe
threat to nearly every country around the globe. This is evidenced by the
fact that the literature reviewed here describes flood warning schemes from
countries all around the globe including Australia, Cambodia, India, Japan,
Sweden, the United Kingdom, and the U.S.S.R.

The seriousness of flood hazards in the United States (and around the
globe) has long been recognized and considerable effort has been expended to
mitigate these hazards. For example, the 1980 fiscal year budgets of the
Corps of Engineers and the National Weather Service included more than $1
billion for flood protection and control activities, while the budgets of
the Federal Insurance Administration, the Office of Disaster Response and
Recovery, and the Red Cross included nearly $1.2 billion for relief and
assistance to flood victims (National Science Foundation, 1980). Pilgrim
et al. (1982) reported even more startling figures for Australia where the
annual capital investment in flood related works is approximately $30 per

person. In the last decade non-structural flood control measures -- such as
flood plain zoning, flood insurance, flood warning and preparedness systems,
etc. -- have received a high priority in research and implementation due to

Presidential directive (Executive Order 11988) and other statutes.

Flood warning and preparedness (FWP) systems are one of the most
promising of the non-structural flood control measures. The goal of this
study 1is to develop a methodology for evaluating the reliability of real-
time flood forecasts produced by rainfall-runoff models which play a key
role in the effectiveness of FWP systems. In the following sections the
potential benefits and key characteristics of FWP systems will be discussed.
The need for and benefits of proper evaluation of the uncertainty in real-
time flood forecasts are also described in the following sections.

1.2 Basic Definitions: Flood Warning, Flood Watch, Flood Forecast

In order to propérly understand the historical development and current
"state-of-the-art" in FWP systems, basic definitions of flood warning, flood



watch, and flood forecast as typically given in the literature and as used
in this study need to be discussed. Actually, in the National Weather
Service (NWS) view of flood protection, these various concepts change
definition depending on the size of the watershed and the type of flooding
encountered.

For flash flood cases on small watersheds, flash flood watches are
issued by NWS State Forecast Offices if meteorological and watershed
conditions indicate the potential for flash floods (e.g., if heavy rains
appear imminent on a fairly wet watershed). Flash flood warnings are issued
if a NWS office determines a flash flood is occurring or flood producing
rainfall is indicated by radar, automated gages, satellite data, or rainfall
observers.

For larger watersheds, flood watches are not issued, only flood
warnings based on hydrologic model predictions and observed flooding
upstream are issued. Sittner (1977) noted that:

The application of precipitation input to a hydrologic model yields a
computed hydrograph, not a forecast. The forecast is produced by a
human forecaster, based principally on the computed hydrograph, but
using in addition observed stages and/or discharges from various river
stations, including the one for which the forecast is being prepared.

Therefore, for larger watersheds, the flood forecast is itself the flood
warning, i.e., a flood of certain magnitude is forecast to reach a town at a
certain time and the residents of that town are encouraged to take
appropriate mitigation measures.

In this study, the more traditional hydrologic definition of forecast

is used. Chow (1972) defined a forecast as the transformation of one
sequence of hydrologic events (the input to a hydrologic system -- rainfall,
snowmelt, etc.) into another sequence that results due to the initial
sequence (the output from the system -- the hydrograph). Hence, in this

study, the computed hydrograph is the forecast hydrograph. A staged flood
warning and preparedness system concept is then used to define the terms
flood watch and flood warning. As for flash floods, flood watches are
issued to activate and gear up the city’s flood preparedness system, and
they are issued when the forecast indicates that near flood discharges are
expected. Flood warnings are issued to initiate the city’s actual flood
mitigation activities, and they are issued when peak discharges in excess of
flood stage are forecast.

1.3 Potential Benefits of FWP Systems

FWP systems are one of the most promising non-structural means of
reducing avoidable flood damages and fatalities. Day (1970) found that for
the Susquehanna River basin as much as two-thirds of the avoidable flood
damage could be realized as net benefits of a FWP system. Day and Lee
(1976) estimated the potential benefit-cost (B/C) ratio (assuming full,
timely community response to warnings) of a FWP system for the Connecticut
River basin to be as high as 7.5, and they concluded that the actual B/C
ratio from an FWP system should be at least 3. Heatherwick and Quinnell
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(1976) concluded that the potential B/C ratios for total flood warning

systems for wurban areas in Australia, even when subject to rare flood
events, are very high (e.g., for Brisbane B/C = 6.6). White (1975) noted
that there is reasonable ground for thinking that warning systems might
yield B/C ratios of 5 for most cases. Finally, Owen et al. (1983) concluded
virtually any area with a significant flood problem can experience net
benefits from the availability of adequate FWP systems either alone or in

conjunction with other measures.

The benefits of FWP systems go far beyond the potential economic losses
averted considered above. FWP systems also greatly reduce the social
disruption, deaths, and injuries caused by floods. Indeed, Owen et al.
(1983) reported that there are no known cases of avoidable flood deaths
where well developed local flood warning programs are in operation.

1.4 Key Characteristics of FWP Systems

FWP systems require a unique combination of human and technical factors
to ensure their efficient operation. In recent years, a fair amount of
research has been devoted to develop methodologies for evaluating the
performance of a specified flood warning system (e.g., Sniedovich and Davis,
1977; and Krzysztofowicz and Davis, 1983a-c). This research has resulted in
several important insights regarding the efficiency of FWP systems, which
are discussed below,

FWP systems can be idealized as two sequential systems: a forecasting .
system, which evaluates flood hazards and issues flood warnings, and a
response system, which enacts protective measures upon receiving the
warning. The forecasting system involves data collection, flood fore-
casting, and forecast dissemination steps, and so the proper functioning of
this system can be controlled by engineering and/or technical factors.
However, the response system involves decision making and action (i.e.,
protection) implementation steps, which are controlled by human factors.
Krzysztofowicz and Davis (1983c) found that non-optimal response strategy
does not allow the full forecast system potential to be realized. As a
result, the actual value (effectiveness) of the FWP system is low, no matter
what the quality of the forecasts. Thus, the human factors which control
the response strategy of the flood plain dwellers are the key elements in
the overall effectiveness of FWP systems.

Several researchers (White, 1975; Owen et al., 1983; and Krzysztofowicz
and Davis, 1983c) have noted that one of the key factors which influences
response to flood warnings is the public confidence in the warnings. If
there are many "false alarms" people will tend to ignore warnings and so the
FWP system becomes ineffective. Conversely, if floods occur without
adequate warning (i.e., warning with a reasonable amount of preparation
time) the forecasting system is ineffective, and this ineffectiveness also
lowers public confidence.

Krzysztofowicz and Davis (1983c) found that the optimal response
strategy tended to be anticipatory such that people begin to take some
protective action even before it is expected the flood will reach their
flood plain level. Such a strategy requires some understanding, usually



based on past experience, of the variable nature (i.e., uncertainty) of
floods and their forecasts. However, they also noted that:

"The ability of untrained people to think in probabilistic terms
is generally very poor. As a result, people tend to ignore
uncertainty and view future events as perfectly predictable,
even if their past experience suggests to the contrary."

The officials in charge of issuing flood warnings should be capable of
understanding the probabilistic nature of a flood resulting from a current
storm, and given the proper information they can issue warnings which will
solicit anticipatory responses from the public. An example of such flood
warnings are those issued by "staged" flood warning arrangements

(Owen et al., 1983). "Staged" flood warning provides for identifying
several levels of flood threat and issuing appropriate warnings based on the
anticipated magnitude of flooding and the certainty of its occurrence.

1.5 Uncertainty in Forecasts of the Rainfall-Runoff Process

Real-time flood forecasting models are the primary source of informa-
tion regarding potential flooding due to a current storm event. 1In a
typical FWP system, the expected flood hydrograph is estimated using the
available rainfall data (and, possibly, precipitation forecasts), the best
estimates of the model parameter values, and a hydrologic model the hydrolo-
gist feels comfortable with. When analyzing a hydrologic system (watershed)
to determine the runoff (flood) hydrograph resulting from a storm event, a
hydrologist is faced with four sources of uncertainty: (1) natural, (2)
data, (3) model parameter, and (4) model structure uncertainties. Natural
uncertainties refer to the random temporal and areal fluctuations inherent
in natural processes. Plate (1986) noted the natural variability of the
rainfall process and of the conversion of rainfall into runoff almost always
enters a large amount of uncertainty into the physical process of runoff
generation. The hydrologist, therefore, must deal with a large random
residue even if a perfect model of the hydrologic cycle were available.
Data uncertainties refer to: (a) measurement inaccuracy and errors; (b) the
adequacy of the rain and/or stream gage network, soil data, vegetation data,
etc.; and (c) data handling and transmission errors. Parameter uncertainty
reflects variability in the determination of the proper parameter values to
use in modeling a given storm event. Model structure uncertainty refers to
the ability of the model to accurately reflect the watershed's true physical
runoff process.

The National Science Foundation (1980) recommended that methods must be
developed to quantify forecast uncertainty caused by the aforementioned
sources of modeling uncertainty. Nevertheless, in current "state-of-the-
art" real-time flood forecasting systems, these uncertainties are only
partially considered either by updating schemes, which adjust the input data
or model parameters such that the predicted discharge agrees with the
available discharge measurements, or by adaptive filtering techniques which
automatically update the forecasts. However, even for one of the most
sophisticated of these techniques, Kitanidis and Bras (1980c) admitted that
to truly enhance the accuracy of future forecasts, the correct structure of
uncertainty, pertinent to the specific model and data must be hypothesized.
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Reliability analysis methods, which were developed for structural
safety analysis and have been successfully applied to hydraulic structure

.design problems, offer an innovative way to consider the various sources of

uncertainty and their effects on the accuracy of the forecast hydrograph.
Reliability analysis methods can provide an estimate of the probability of
any level of flooding for the current storm event given information
regarding the various sources of uncertainty. Hence, by applying reliabi-
lity analysis to the real-time flood forecasting model the officials in
charge of issuing flood warnings will be provided with not only an estimate
of the expected flood hydrograph, but also with the probabilities that any
critical flood level will be exceeded. Georgakakos (1986a) stated that such
probability wvalues are indispensible in the present day flood warning
decision making process. Furthermore, such information can greatly aid
flood warning decision making in two areas:

1. More definitive criteria can be established regarding when to issue
a warning such that "false alarms" and unanticipated floods can be
avoided,

2. The flood probabilities for different levels are key information
for establishing a flood warning program which solicits anticipa-
tory responses (e.g., a "staged" flood warning program).

Therefore, consideration of forecast uncertainties and reliability is very
important to FWP system effectiveness since it can potentially improve both
the information provided by the forecast and the response to the warning
issued based on the forecast.

1.6 Research Objectives

To date, the research on the effects of the wvarious sources of
uncertainty on the reliability of rainfall-runoff modeling has been aimed at
demonstrating the severity of these effects mnot at providing a simple,
flexible means of estimating the reliability of a forecast or prediction
made by a rainfall-runoff model. Therefore, the objective of this research
is to develop a general procedure for using reliability analysis to consider
the effects of rainfall-runoff model uncertainty on real-time flood
forecasts to provide more complete information for flood warning decision
making. The simplicity, flexibility, and utility of the general approach is
demonstrated through a case study. The utility of the general procedure is
demonstrated through the attainment of the potential benefits of considering
uncertainties in rainfall-runoff modeling. These potential benefits
include:

1. the enhancement of the forecast itself by providing a measure of its
precision (this measure of precision may also be used to postulate on
the reliability of hydrologic models wused for design hydrograph
estimation or synthetic series generation);

2. information which could allow flood warnings to be issued in such a way
as to promote a more optimal response (i.e., an anticipatory response)
from the flood plain dweller;



3. a reduction in "false alarms" and unanticipated floods due to more
complete information on flood potential, leading to increased public
confidence in the warning system and, hence, improved response to

warnings;
4. determination of which hydrologic areas -- i.e., data, model parameters,
and/or model structure -- will provide the greatest forecast improvement

given future study;

5. a criterion for determining the optimal level of model complexity
~required for FWP systems to achieve a prescribed level of reliability;

A sixth potential benefit -- determination of the expected flood damage from
actual or hypothetical (design) storms -- was not examined here due to the
lack of adequate economic data on flood loss.

A secondary objective of this research is to assess the typical
rainfall-runoff model forecast (or prediction) reliability considering the
major sources of uncertainty.

1.7 Research Scope

The application of reliability analysis to real-time flood forecasting
models is model and case dependent. Many factors influence the choice of
the hydrologic model to be incorporated within a FWP system. Among the key
factors influencing the model choice are watershed size and morphology. For
large watersheds, where the flood peak reaches the area of interest (i.e.,
area to be warned) well after the significant runoff producing rainfall has
ceased, the flood forecasts are usually made by physical or statistical
routing models without considering the rainfall- runoff process. For medium
sized watersheds, where the flood peak reaches the area of interest within a
fairly short time (e.g., a day) after the significant runoff producing
rainfall has ceased, rainfall-runoff models must be used for flood fore-
casting. Small watersheds or watersheds with steep slopes and/or large
amounts of impervious area are subject to flash floods. The National
Weather Service defines a flash flood as a flood that follows the causative
event (usually heavy rainfall) within a few hours (Maddox and Chappell,
1979). Thus, precipitation forecasts must be incorporated with
rainfall-runoff modeling to provide flood warnings with adequate lead times.

In this study, FWP systems for medium sized watersheds are considered.
Flood forecasting for medium sized watersheds may make use of precipitation
forecasts to improve warning lead time. However, in this research, the
forecast hydrographs were based solely on the rainfall "on the ground" at
the forecast time. Furthermore, no intermediate forecasts were studied,
i.e., the verification event forecasts were made using all the significant
runoff producing rainfall for the event. Consideration of precipitation
forecasts and their uncertainties is left for future research. Thus, this
research centers around using reliability analysis to consider the data,
model parameter, and model structure uncertainties inherent in real-time
hydrologic models of the rainfall-runoff process. Even though FWP systems
for 1large and small watersheds are mnot specifically addressed, the
principles described and developed here may be quite useful for analysis of
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flood forecast uncertainties for such watersheds. For example, combining
hydrologic model and precipitation forecast uncertainty analysis may greatly
aid a flash flood warning program.

This study develops the basic concepts for dealing with uncertainties
and applying reliability analysis so that one may apply the methodology to a
wide range of models. The application of reliability analysis to selected
real-time flood forecasting models is demonstrated for a medium sized
I1llinois watershed.



2. PROCEDURE FOR COMBINING RELIABILITY
ANALYSTS AND HYDROLOGIC MODELING

2.1 General Framework

A review of some existing rainfall-runoff simulation models pertinent
to the present study is given in Appendix A. A review of existing
reliability analysis methods is presented in Appendix B. These existing
tools and techniques can be used as the foundation of the procedure
developed in this study. In this chapter the basic framework of the
procedure which combines reliability analysis with hydrologic models to
assess the reliability of these models and their forecasts or predictions is
presented. Figure 2.1 presents a flow chart displaying the interrelation-
ship between the reliability analysis procedure and the typical
applicationof a hydrologic model for decision making. The double arrow
between the reliability analysis method and the hydrologic model indicates
the interplay between the two, wherein the reliability analysis method uses
the hydrologic model to describe the performance of the system whose
variability and/or uncertainty is being estimated.

The general framework is applicable to any hydrologic model except
those which directly involve nonlinear partial differential equations (e.g.,
dynamic wave flow routing). Hence, the hydrologic models which fit into

this framework include most of those used for real-time flood forecasting

and design hydrograph estimation.

The key assumption in wusing the general procedure is that the
hydrologic model and the uncertainties in its basic variables (input data,
model parameters, and model structure correction factor) adequately describe
the true variability in the natural rainfall-runoff process. This assump-
tion must hold true 1if one wishes to estimate actual probabilities that
specific hydrologic target levels will be exceeded by the event forecast or
will be met by predicted design hydrograph. If one wishes to access the
reliability of a model prediction or forecast or compare the relative
reliability of models or design cases, the above assumption does not need to
be closely approximated. In such cases, the description of the basic
variable uncertainties must be accurate and consistently determined.

Figure 2.2 presents a flow chart of the general procedure for using
reliability analysis to determine hydrologic target 1level exceedance
probabilities. Each of the steps in this flow chart are described in detail
in the following sections. Use of the hydrologic target level exceedance
probabilities in decision making and in evaluating forecast or prediction
reliability is also described in the following.

The first step in the approach is for hydrologists to select any model
they "feel comfortable with" and which they feel is adequate for the problem
being studied. '

The second step is to formulate the system performance function, Z, (as
defined in Appendix B.2) as
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Z=T, - Am hM(ﬁM) (2.1a)

H
or
zZ = ln[TH/Am hM(ﬁM)] (2.1b)
where Ty = the hydrologic target level whose exceedance probability is
sought,

Ap = the model correction factor which expresses the relationship
between the model’s optimal performance and the true value of
the hydrologic information estimated,

hy(:) = a function which represents the model’s estimate of the
hydrologic information in question, and

6y = the vector of model basic variables minus the model structure
correction factor, i.e., fy includes the input data and model
parameters.

In this research, the hydrologic information estimated is the peak discharge
resulting from a storm event (either real or design). Hence, the target
level Ty is set equal to the measured peak discharge to check the model
forecast and prediction reliability, and it is set equal to the critical

flood stage to estimate the flood level exceedance probability. In
evaluating forecast and prediction reliability, the measured peak exceedance
probability is not the reliability measure. Instead, reliability is

expressed as the difference between the measured and forecast peaks in terms
of normalized forecast standard deviations, which may be determined from the
exceedance probability. This approach is not limited to hydrograph peak
estimates, it may be applied to check the reliability of model estimates of
other hydrologic information of interest, e.g., runoff volumes, flood wave
travel times, etc.

The third, and most important, step in the approach is to estimate
measures which express the individual uncertainty in the basic variables of
the model. 1In order to analyze the uncertainty in an engineering system,
the MVFOSM method requires knowledge of the mean and standard deviation of
the various factors (i.e., basic variables) which influence system response.
The AFOSM also requires knowledge of the basic variable means and standard
deviations, and it may use probability distribution data if it is available.
Monte Carlo simulation requires assumptions regarding the basic variable
distributions.

The following sections in this chapter present a general procedure for
evaluating the uncertainties in data, model parameters, and model structure
and then estimating the corresponding mean and standard deviation of the
basic variables. Estimation of basic variable probability distributions is
much more difficult. For calibrated models, if a representative,
homogeneous calibration data set of sufficient size (each of these concepts
is described in detail in section 2.3.1.1) is available, it is possible to
statistically fit distributions to the calibrated parameter values. For
non-calibrated physical simulation models, distributions must be assumed

11



based on personal experience and suggestions contained in the literature.
For example, Rajendran et al. (1982) applied a lognormally distributed
scaling factor to the average catchment hydraulic conductivity, Ky, to
account for Kyg's variation throughout the watershed; hence, hydraulic
conductivity might be assumed as lognormally distributed.

The fourth step is the estimation of the exceedance probabilities for
the selected hydrologic target levels. This estimation follows a procedure
specific to the reliability analysis method utilized. The following sub-
sections describe the probability estimation procedure for each of the
reliability analysis methods.

2.1.1 Monte Carlo Simulation Probability Estimates

In Monte Carlo simulation, random basic variable values are generated
in accordance with their corresponding probability distributions. A model
simulation is performed wusing these basic variable values and the
performance function is calculated. The hydrologic target level exceedance
probability is estimated as the ratio of the number of exceedances (Z < 0)

divided by the number of simulations. The risk estimated by Monte Carlo

simulation is not unique, however, it may closely approximate the exact
value if the number of trials is sufficiently large. Cheng (1982) compared
Monte Carlo simulation results with direct integration for

where x] and x9 are uniformly distributed and x3 and x4 are lognormally
distributed. Cheng found that a sample size of 1,000 produced near exact
results for events with probabilities greater than 0.2 and a sample size of
8,000 produced near exact results for events with probabilities greater than
0.01. Thus, for relatively simple models (with four or five basic
variables), sample sizes of 1,000 and 8,000 may be adequate for events with
probabilities greater than 0.2 and 0.0l, respectively. However, for more
complex models or lower probability events, much larger sample sizes may be
required.

2.1.2 MVFOSM Method Probability Estimates
In the MVFOSM method, the reliability index, B, is given by

g(x)
_ (2.2)

z [igl 2 7|12

1 1

As discussed in section B.5.1, for many cases of practical interest, 8 may
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be assumed to follow a normal distribution, and the hydrologic target level
exceedance probability, Pg, is approximately

Po=1 - ¢(8) (2.3)

For simple algebraic models of the rainfall-runoff process, the partial
derivatives, Cj, may be obtained analytically. For example, if the rational
formula were used to estimate peak runoff, Qp,

Q =Ci_aA (2.4)

where C = the runoff coefficient for the area,
i, = the rainfall intensity in inches per hour, and
A = the drainage area in acres.

The system performance function would be

Z = TH - Am c i A (2.5a)

or

Z = In[Ty/(A_C i A)] (2.5b)

The resulting partial derivatives are
dZ/ax = - C i_A for Eq. 2.5a
m b

= - 1/Am for Eq. 2.5b
(2.6)

8z2/8C = - Am ir A for Eq. 2.5a
= -1/C for Eq. 2.5b
and so on.
For hydrologic models which use more complex functional relations to

estimate the hydrologic information of interest, the partial derivatives may
not be obtained analytically (except for )p). The partial derivatives for

13



the input data and model parameters may be approximated by a forward
difference at the mean

- (2.7)

where x; indicates that all the other basic variables are fixed at their
mean values,. The selection of appropriate Axjs is a function of the
particular model and performance function sensitivity to the basic
variables.

2.1.3 AFOSM Method Probability Estimates

In the AFOSM method, the reliability index, fB, for the case of
transformed normal basic variables is given by

P - N
g(x™) + Y. C.(x, - %) _
g = igl "itTi i (2.8)

Complete details on the transformation of the basic variables to equivalent
normal variables are given in section B.6.2. It should be noted that not
all basic variables must be transformed. In fact, B may be calculated
without any distributional assumptions by using the basic variable means and
standard deviations in place of xiN and aiN in Eq. 2.8.

The partial derivatives may be estimated as for MVFOSM. For the case
where forward differences must be wused, zxy, Xjws and xjy, should be

substituted for xw, Xj» and x§ in Eq. 2.7 to signify that the partial is
taken at point w which is a point in the iterations used to find x".

The key problem in using the AFOSM method is locating the failure point
3*. The failure point may be found by standard iteration approaches (e.g.,
Rackwitz' approach given in Fig. B.l) or by converting the hydrologic model
to a subroutine for estimating Z and then using a standard GRG package
(e.g., Lasdon et al., 1982) to minimize |Z| as calculated by the hydrologic
model subroutine. The GRG method is preferred for determining the failure
point (see section B.6.1), However, if the hydrologic model used is a
complex, established computer program, the difficulties associated with
converting it to a subroutine may negate the advantages of the GRG approach
from a practical viewpoint.

Whether using the standard iteration or the GRG approach, difficulties
may be encountered in the estimation of 8 due to discontinuities in partial
derivative approximations, especially for extreme Iﬂl values (> 2.5). For
the ideal case, the iteration scheme terminates when the system performance
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function approaches zero, the value of B converges to the second or third
decimal place, and the basic variable values converge to within one or two
percent of their values for the previous iteration. Cheng (1982) noted that

the iteration approach frequently diverges when the value of B becomes

large. The reason for this appears to be that as |ﬁ| becomes large, the
basic variable values are far removed from their mean values and in extreme
cases (|g] > 2.5), the basic variable values often become somewhat
unrealistic. As the iterations reach extreme basic variable values, the
partial derivative values may change very rapidly (i.e., become discon-
tinuous) iIn part due to the unrealistic wvariable wvalues. Hence, the
iterations approach the failure surface (Z=0) but have difficulty converging
in both B and the basic variable values. In such cases, choosing the value
of B to be that corresponding to the iteration wherein Z is closest to zero
seems advisable. The B values so approximated are generally greater than
2.5 and the corresponding exceedance probabilities are less than 0.006.
Therefore, from a practical viewpoint, the approximation errors are not
serious.

For other cases, discontinuities in the effects of basic variables on
the model output may lead to convergence problems at much smaller B8 values.
Thus, when using either iteration or GRG to find the failure point, care
must be taken to identify such discontinuities and to develop appropriate
convergence criteria.

2.1.4 Evaluating Model Reliability

The previous sections describe how to use the reliability analysis to
evaluate hydrologic target level exceedance probabilities. In this section,
the use of the previously described probability estimates for model reliabi-
lity evaluation is described.

If data is available for verification of the proposed reliability
analysis approach, set the hydrologic target level equal to the measured
peak. Determine the exceedance probability and reliability index
corresponding to the measured peak, Py, using Monte Carlo simulation, the
MVFOSM method, or the AFOSM method. For Monte Carlo simulation, by assuming

. Z is normally distributed, By may be estimated as

-1 :
ﬂM =& (1 - PE) (2.9)

In terms of the forecast variability, the gy value is the standardized
shortest distance between the forecast value and the measured value. If By
is small, the forecast is quite reliable in a stochastic forecasting sense.
However, if fy is small and the absolute difference between the forecast and
the measured value is large, the model is not very reliable in a practical
sense because in such cases, the forecast variance is quite large. Alterna-
tively, one may think of By as defining the forecast confidence interval
which contains the measured value. In typical stochastic, time-series
forecasting, a common "rule of thumb" for assessing the quality of the
forecast is that the measured values fall within the 95 percent confidence
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limits of the forecast. A |Byq| value of 1.96 corresponds to the 95 percent
confidence limit. Thus, all calculated |ﬂM| values less than 1.96 indicate
a "good" stochastic forecast. However, if the confidence interval (bounded
by the confidence limits) is large, the utility of the forecasts is small.
For cases wherein "good" stochastic forecasts of low utility are obtained,
the model itself is probably capable of producing "good" forecasts from a
practical viewpoint if the underlying uncertainties can be reduced.

By calculating By values for a large number of verification events, one
can get an idea of the general reliability of the model and its forecasts.

For an individual forecast or prediction without knowledge of the
measured peak, one estimate of the forecast or prediction reliability is the
forecast standard deviation. For Monte Carlo simulation, the forecast

statistics may be summed directly as the individual simulations are.

performed. For the MVFOSM method, the forecast standard deviation is
approximated as

p
o =[ Y’ 012)]1/2 (2.10)

i=1

For the AFOSM method, the forecast standard deviation is approximated as

P N
o= ) C, a, o, (2.11)
z s i7"l
i=1
with C; and a@j evaluated when B8 = 1, which 1is the case where the
standardized difference between the forecast and the target level equals the
forecast standard deviation. Therefore, trial and error selection of _the

hydrologic target level is necessary to find the case where Z = 0 and g = 1.

The Monte Carlo simulation and the AFOSM methods can also evaluate the
reliability of non-verifiable (at the time of their issuance) forecasts or
predictions by estimating the CDF and PDF of the forecast. For the MVFOSM
method, a normal distribution for Z 1is assumed; hence, this information is
summarized in the mean and variance of the forecast. By varying the
hydrologic target level and calculating the corresponding Py, the forecast
CDF is obtained which may be differentiated to produce the forecast PDF,
Given the initial assumption that the hydrologic model and its uncertainty
accurately reflect the variance of the true hydrologic system is valid, the
reliability of the forecast is indicated by how closely the forecast CDF
approximates a "step function" and the forecast PDF approximates a "spike."
For reliable forecasts, the CDF will have a very steep slope and the PDF
will be very sharp and distinct. For unreliable forecasts, the CDF will
have a mild slope and the PDF will be broad and flat.
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2.2 Model Choice and Uncertainty Analysis

As was discussed in Appendix A, the various types of hydrologic models
which have been used for real-time flood forecasting are grouped into three
types: abstract, physical-conceptual, and physical simulation. Generally,
the choice of which type of model to incorporate in a FWP system is a
function of the size of the watershed, the historical data available for the
watershed, and the personal preference and experience of the hydrologist.

For any watershed size, the primary factor affecting the type of
hydrologic model used is the amount of historical rainfall and runoff data
available for the watershed. If a reasonable amount of historical data is
available, the choice is generally an abstract model or one of the less
complex physical-conceptual models (e.g., HEC-1 or RORB). These models take
a greatly simplified view of the rainfall-runoff process and use calibration
of the parameters to compensate for simplifications. Due to their
simplified nature these models are generally 1less complex and more
parsimonious than physical simulation or more complex physical-conceptual
(e.g., Stanford model, SSARR, etc.) models. Hence, if data is available
for calibration, use of either a stochastic, conceptual, or less complex
physical-conceptual model is preferred. Generally, the choice between these
is a function of the watershed conditions and personal preference. In cases
where the amount of data available for calibration is perhaps a little less
than is desirable, physical-conceptual models might be preferred because the
hydrologist can supplement the calibration information with his knowledge
and experience with such models on similar watersheds, For example,
Muskingum flow routing coefficients may be estimated from physical
considerations and various regionalization studies have been conducted for
synthetic unit hydrograph parameters (e.g., Singh, 1981).

Physical simulation models are capable of generating reasonable
hydrograph estimates wusing only a minimum amount of calibration. The
parameters of the model may be estimated by considering the physical
condition of the watershed (topography, geomorphology, vegetation, etc.) and
by measuring physical properties of the watershed such as soil hydraulic

conductivity, porosity, and capillary tension. Parameters derived from
physical measurements, theoretical inferences, personal experience, or
lumping of watershed conditions (e.g., average overland flow slope) are

* typically much more uncertain than those determined by calibration. Thus,

physical simulation models should only be used as a last resort for cases
with a dearth of calibration data, or where the watershed is continually
changing (e.g., due to urbanization) and previous calibrated parameters are
no longer valid.

The nature of modeling uncertainties is quite different for physical
simulation models as opposed to calibrated models. Thus, two general:
procedures for evaluating data, model parameter, and model structure
uncertainties are outlined in the following sections; one for physical
simulation models, the other for calibrated abstract and physical-conceptual
models (hereafter referred to as calibrated models). While techniques for
evaluating the wuncertainties in both calibrated and physical simulation
models are presented in this chapter, the case study (detailed in Appendix
C) only demonstrates the incorporation of reliability analysis with
calibrated models. A case study considering only calibrated models 1is
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sufficient to show the wutility of reliability analysis of hydrologic
modeling wuncertainty. Hence, a detailed reliability analysis of the
uncertainty encountered when using physical simulation rainfall-runoff
models will be reserved for future research.

2.3 Evaluation of Data Uncertainties

Nearly all rainfall-runoff models require data from some combination of
four sources: rainfall, streamflow, evapotranspiration, and watershed
morphology. The basic sources of error and uncertainty in each of these
types are discussed below, and methods to account for these uncertainties
when using physical simulation or calibrated models are presented.

In this study, it is assumed that there are no problems with the data
transmission network, and all data from the rain and stream gages will be
available in real-time. Thus, the uncertainties introduced to real-time
flood forecasting by missing data are not considered. From a practical
viewpoint the assumption of no missing data is not necessarily good even
with the most advanced telemetry systems. For example, the National Weather
Service’s 1981 report on the central Arizona floods of February, 1980,
revealed the following interesting facts:

"In Arizona . . . the density of real-time rain gage
reports was very inadequate throughout the series of storms.
The shortage of data was aggravated by the fact that some of
the existing "real-time" rainfall and river gages malfunc-
tioned, were late in reporting, or reported erroneous data at
critical times."

The major problems encountered with the river gages were that they were
plugged with debris or damaged on their mountings when rivers became swollen
to near record levels or they mechanically or electrically malfunctioned.
Outages in rainfall data were mainly due to telephone lines being down.
Furthermore, Sargent (1984) reports that for the Haddington (U.K.) flood
warning program radio telemetry was chosen to communicate real-time rain
gage data because the telephone network was thought to be unreliable during
periods of high rainfall. However, the telephone link to the base stream
gage station has never yet failed, while the radio telemetry system has
frequently failed. Thus, the question of whether the necessary rain and
stream gage data will be available for forecasting is potentially a greater
source of uncertainty than the uncertainty in the forecasts. Nevertheless,
in this study only the uncertainty in the forecasts is considered.

2.3.1 Rainfall Data Uncertainty

There are eight primary sources of error or uncertainty involved in
using point rainfall measurements to describe the true precipitation input
for a watershed:

1) measurement error in the gage itself due to malfunction,

2) the gage data's representativeness of ground level precipitation at
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the gaging point,

3) gage location, e.g., pgages are in positions that consistently
result in high or low readings relative to the watershed average,

4) gage network mean areal rainfall versus true mean areal rainfall,
5) effects of rainfall spatial variability,
6) effects of rainfall temporal variability,

7) lack of synchronization between time clocks for rain and stream
gages,

8) lack of synchronization between time clocks for the various rain
gages in the watershed.

Each of these sources of error or uncertainty require some further general
discussion before the procedure for analyzing their total effects on
calibrated models and on physical simulation models is described.

For rain gages, malfunctions include errors in reading, transmitting,
and handling data and mechanical or electronic errors in the actual measure-
ment of point rainfall. For modern telemetry systems such as those used in
"state-of-the-art" real-time forecasting systems, the data communication
errors are greatly reduced, except in cases of transmission failure. If
there is no transmission failure, the rainfall data is fed directly into the
computer data base, eliminating reading and handling errors while leaving
transmission errors negligible. For example, Stalmann (1970) reported that
signals from a radio-telemetry system of river level gages showed an almost
faultless agreement with the water levels simultaneously transmitted by an
automatic telephone telemetry system. The precision of transmission
amounted to *+ 2 cm water level at a total range of 9 m.

Thus, for real-time flood forecasting only the mechanical or electronic
errors in the actual gage measurements need to be considered when using
physical simulation models on previously ungaged watersheds. However, for
calibrated models the nature of the gage network from which the calibration
data was obtained must be considered. If the calibration data was not
obtained from a telemetered system, data reading, transmission, and handling
errors must be considered.

For real-time flood forecasting systems employing a modern telemetry
system, synchronization of the various rain and stream gages is not a
problem, For example, Sargent (1984) reports that for the Haddington
(U.K.) flood warning system each gaging station has its own crystal clock
which is synchronized with the base station clock when the base station
issues a reset command during start up operations. Once again, for cali-
brated models the nature of the gage network from which the calibration data
was obtained must be considered when dealing with time synchronization
errors.,

Errors due to the difference between gage data and the precipitation at
ground level at the gaging point are primarily due to wind effects. A

19



generally accepted theory is that much of the total measurement error is the
result of turbulence and increased wind speed in the vicinity of the gage
orifice resulting from the obstacle of the gage itself to the wind stream.
As the air rises to pass over the gage, precipitation that would have passed
through the gage orifice is instead deflected and carried further downwind
(Larson and Peck, 1974). Other sources of discrepancy between gage measure-
ments and ground level precipitation are the so-called "wetting loss" due to
water drops adhering to the walls of the gage funnel and the collector and
sheltering of the rain gage by trees and buildings.

Gage location uncertainties refer primarily to cases where gages are
located near the boundaries of the watershed. At such locations the gage
measurements are less likely to reflect the true temporal and areal distri-
bution of rainfall over the watershed. Troutman (1983) stated that given
only a small amount of recorded rainfall at a single gage (or a few gages),
it is not known whether the overall storm was indeed small or the storm was
large with a center located at some distance from the gage(s). This could
obviously result in considerable error in runoff prediction, especially if
the gage 1is not located centrally in the basin. Furthermore, Troutman's
(1983) numerical experiments found that for single gage networks, mean
squared prediction bias generally increases as gage distance from the basin
center increases. Hence, he concluded that the nonstationarity of rainfall
imposes an additional form of bias when observed rainfall is from gages not
centrally located within a basin. For previously ungaged watersheds where
flood warning systems are to be established, intelligent network design can
avoid this source of uncertainty. However, for watersheds where existing
gages are adapted to work in a telemetry system consideration of gage
location uncertainties may be necessary.

Even if the gages are located in spots where reasonably representative
rainfall measurements can be. made, there will still be considerable uncer-
tainty regarding the quality of the estimated areal mean rainfall. Troutman
(1982a and 1983) found that even if measured rainfall at a small number of
gages is equal in expected value to the true areal average rainfall, the
variance of basin average rainfall is always less than that for point
rainfall. This difference in variability can result in serious biases in
runoff prediction, e.g., for the models Troutman studied the bias was
overprediction of large events and underprediction of small events. Thus,
for models wusing 1lumped rainfall input data, variance of the network
estimate of mean rainfall relative to the true mean rainfall must be
considered.

Ideally, in order to obtain the best prediction of storm runoff
knowledge of the rainfall intensity at each point in the basin and at each

point in time is necessary. However, measurements of precipitation are
always made at discrete intervals in time and at a limited number of points
in space. Thus, there are wuncertainties in the data due to unsampled

temporal and areal variations in the true rainfall. Furthermore, Bras and
Rodriguez-Iturbe (1976) demonstrated the natural "filter" characteristics of
the watershed runoff process are insufficient to "damp out" the effects of
these unaccounted for variations. Accounting for the data uncertainties due
to spatial and temporal rainfall variability is not an easy task. Realisti-
cally, even if data from an extensive rain gage network with one minute
readings are available, this fairly accurate reporting of spatial and
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temporal variability could not be used by the hydrologic model. Almost all

hydrologic models, even so-called distributed models, "lump"”, to some
extent, the input data and hydrologic characteristics of watersheds in order
to make hydrograph prediction practical. Furthermore, the temporal

variations are also averaged for input to hydrologic models partly for
computational practicality and partly because the model structure is
insensitive to more detailed information. Therefore, the wuncertainty
related to the data's inability to account for the rainfall’s true spatial
and temporal variation is in part a function of the model structure
uncertainties due to temporal and spatial "lumping" of the rainfall-runoff
process.

2.3.1.1 Handling Rainfall Data Uncertainty in Calibrated Models

All eight of the possible errors in rainfall data listed earlier could
have an effect on the reliability of the hydrograph predicted by a cali-
brated model.

Dawdy et al. (1972) reported that the bias (errors and uncertainty) in
the recorded rainfall at each station is compensated by the curve-fitting
ability of the model to adjust parameter values. Hence, bias in the amount
of recorded rainfall affects the resulting fitted-parameter values, rather
than the accuracy of the fit. Troutman (1982a and 1983) also found that
errors and uncertainties in rainfall data were transferred to the parameters
of the model as bias in the parameters (i.e., deviations from their true
values). However, due to the curve-fitting properties of the calibration
routine, the performance of the model wusing erroneous data and biased
parameters is not greatly different from that using true data and parameter
values. In fact, for a simple regression model of rainfall volume to runoff
volume, Troutman (1982b) found two extremely interesting results. First,
for cases where the rainfall input error is equivalent to a random process
(11 of 13 subsets of the gage network considered), it was found that even
though the erroneous rainfall values have more variability than the true
values, runoff computed from the model evaluated with the erroneous rainfall
and the adjusted parameters has less variability than that computed from the
model evaluated with the true rainfall and parameters. Second, model
predictions wusing erroneous rainfall measurements and the corresponding
biased parameter values are unbiased estimates of mean runoff. Troutman
(1982a and b) further pointed out for more realistic nonlinear models of
runoff the curve-fitting never quite eliminates the bias in the mean runoff
estimation. However, if more than one parameter is adjusted, there is a
good chance that the bias will be fairly small over a wide range of rainfall
input values.

Thus, if the common assumption that the calibration data is a represen-
tative sample of the range of flows to be predicted and of the range of data
errors to be encountered is reasonably wvalid, the data uncertainties may be
assumed to be included in the calibrated model parameters and their
corresponding uncertainties. The sample must not only be representative but
also homogeneous and of sufficient size to justify the statistical
estimates. A homogeneous sample is one where all the events are a subset of
the same event population and, hence, a product of a unique physical
rainfall-runoff process. The primary causes for non-homogeneous samples are
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changing watershed conditions due to human activity and seasonal variation
in the rainfall-runoff process. With regard to the size of the sample, the
U.S. Water Resources Council (1981) recommends that stream gaging records be
at least ten years long before use of flood frequency analysis is warranted.
Ang and Tang (1975, p. 236) stated that if sample size is 1large (for
instance, greater than 20), the sample variance is a good estimator of the
population variance.

Having decided to consider rainfall and runoff data uncertainties as
included in model parameters by the calibration process, two issues still
need to be addressed. First, how the calibration is to be performed, and
how does the data uncertainty affect the physical interpretation of the
calibrated parameters? These questions are addressed in the discussion of
parameter uncertainties in section 2.4. Second, are there any errors in the
calibration data that will not be present in the data for generating
real-time forecasts, and if so, how do these errors affect the validity of
the proposed reliability analysis?

If the data used for calibration was obtained from a telemetered gage
network with data stored directly with a minimum amount of human handling,
then the parameters will not contain any data uncertainty not present in the
real-time forecasting data. However, if the existing gage network currently
uses strip charts, punched strips, or even cassette recordings of the data,
this data 1is subject to errors in interpretation (especially for strip
charts) and in timing (i.e., synchronization of clocks). When developing a
flood warning system the old clocks and chart recorders are replaced with
new clocks and radio or telephone transmitters/receivers, eliminating timing
and communication errors in the data. Thus, the calibrated parameters,
which include these errors, are not truly representative of the uncertainty
in data used for real-time flood forecasting.

The errors due to data reading, transmission, and handling are probably
fairly small if the charts are read consistently and the readings are
carefully checked for nonsensical values. The additional wuncertainties
these errors add to the parameters will not significantly affect the
reliability analysis. '

The timing errors, i.e., lack of synchronization between the rain gages
and stream gages, have much greater effects on the calibrated parameters.
Jackson and Aron (1971) found that timing errors due to clock malfunctions
and lack of synchronization appear to be the most common cause of rain gage
unreliability, and these errors take on major importance in parameter
calibration, Laurenson and O'Donnell (1969) found that synchronization
errors appear to result in the greatest errors in unit hydrograph deriva-
tion. Therefore, steps must be taken to account for the extra uncertainty
in model parameters due to synchronization errors in the calibration data.

Unfortunately, about the only practical way to account for synchroniza-
tion errors is to try to detect and eliminate (or at least reduce) them in
the data. Poor calibration fits in the form of greatly underpredicted or
overpredicted peak discharges or of extensive smoothing or flattening of the
hydrograph may be caused by synchronization errors, which should be
eliminated, or by rainfall temporal and spatial variability errors in data,
which should be transferred to the parameters. Therefore, there is no
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substitute for good quality calibration data checked carefully for
synchronization errors. It is believed that the calibration and verifica-
tion data used in this study (see Appendix C) is free from synchronization
errors.

2.3.1.2 Handling Rainfall Data Uncertainty in Physical Simulation Models

Of the eight possible sources of error or uncertainty in rainfall data,
only five need be considered in the data uncertainty for physically based
models. Three other sources may be eliminated due to the design of the data
network. Physical simulation models should only be used in cases where it
is desired to establish a flood warning system on a previously ungaged (or
poorly gaged) watershed or in cases where the watershed is changing (e.g.,
due to urbanization). Thus, a modern telemetry based rain and stream gage
network should be designed and installed. The design of this network should
be such that the gages are not in locations that result in consistently high
or low readings. The telemetry system with its accurate clocks insures that

“timing errors due to clock malfunctions and synchronization problems are

small. Also, since the telemetry system feeds the data directly into the
computer for consistency checks and subsequent use in real-time forecasting,
the data reading, transmission and handling errors are also small. Thus,
only the gage measurement errors due to mechanical or electronic defects,

gage measurement errors (e.g., due to wind effects), and the uncertainty
regarding the quality of the gage network estimate of mean areal rainfall
need to be considered for physically based models. The errors due to

inaccurate representation of rainfall spatial and temporal variation are
partially accounted for in the gage network estimate of mean areal rainfall
uncertainty and in the model structure uncertainty.

Given below is an example of how the errors in rainfall measurements
may be approximated. This example could serve as an initial approximation
for reliability analysis. For accurate determination of hydrologic target
level exceedance probabilities, a much more detailed analysis of the error
sources is necessary.

Throughout the twentieth century, three types of rain gages have been
used to provide a continuous record of rain depths and intensities: the
tipping bucket, weighing-type, and float-type gages. The tipping bucket
gage was quite popular in the early part of the century, but due to problems
with jamming and underestimation of heavy rainfalls (see Parsons, 1941) the
National Weather Service gradually began phasing them out. Float-type gages
have been used extensively in Europe, while weighing-type gages have been
used extensively in the United States. Each of these gages has its own
mechanical problems which lead to inaccurate rainfall estimates. Frictional
effects in the weighing mechanism of weighing-type gages and in float guides
of float-type gages are the primary cause of inaccurate rainfall estimates.
In self-emptying float-type gages the siphoning takes at least a few
seconds, and hence rain falling into the receiver during siphoning period is
recorded inaccurately. Furthermore, the rainfall amounts siphoned out are
not always the same for all emptying cycles (Linsley et al., 1975).

For newly installed rain gages, as would be the case for watersheds
using physical simulation models, frictional effects should be low and may
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be kept that way with regular maintenance. Thus, the gage measurement
errors due to mechanical defects may be considered insignificant relative to
the wind effects uncertainty and limited rain gage network estimate of areal

precipitation wuncertainty. The above assumption is especially wvalid if
modern electronic liquid level reading gages, such as the one described by
Permut et al. (1979), are wused for rain gage measurement. The gage

developed by Permut et al. (1979) uses digital electronic elements to detect
the highest liquid level sensing electrode in contact with the collected
rainfall at any time. Changes in level must persist for a predetermined
time period before the level sensing circuits recognize the change in level
as incoming rainfall and report the corresponding intensity. Hence, short
term level transient conditions caused by vibration, splashing, or wave
motion do not influence measurements. With such gage equipment, reliable
real-time measurements are virtually assured.

It is generally accepted that wind is the major cause of error in
precipitation gage measurements. Sevruk (1975) reported that either a gage
leveled with its orifice at the ground level and protected against in-splash
and/or a carefully selected well-protected natural gage site can reduce the
wind effects on precipitation measurement. However, Larson and Peck (1974)
noted that no combination of gage location and shielding will entirely
eliminate adverse effects of wind on gage catch. Furthermore, there is no
guarantee that the pgages may be located at ground level or naturally
protected sites. Therefore, even for new and/or well designed gage networks
wind effects play a significant role in rainfall measurement uncertainty.

The question of how to deal with this source of uncertainty is quite
complicated. Larson and Peck (1974) developed Fig. 2.3 relating gage catch
deficiencies and wind speed based on their own field studies in Danville,
Vermont, and Laramie, Wyoming and the work of several other investigators.
Morgan and Lourence (1969) compared the catch of a standard 8-inch rain gage
mounted in the normal standing position, a USSR 3000-square-centimeter rain
gage mounted at ground level, and a highly sensitive weighing lysimeter 20
feet in diameter for 24 storm events from two winter rainy seasons at Davis,
California. For storms ranging in average wind speed from 2.5 to 14.3 miles
per hour (mph) with the windiest hour speed twice the storm average, they
found no apparent systematic relation between average wind speed for a
particular storm and the difference in total storm precipitation caught by
the rain gage and that measured by the lysimeter. Thus, relations of the
type defined by Fig. 2.3 do not necessarily reflect the true wind effect on
gage catch of rainfall.

A key factor which in addition to wind speed greatly influences the
wind effect on gage catch accuracy is raindrop size. Mueller and Kidder
(1972) used wind tunnel experiments with rain gage models to define velocity
patterns, and then used computer simulation of these velocity patterns and
drag on raindrops to estimate gage catch deficiencies due to wind speed and
drop size. Their results are displayed in Fig. 2.4, and it should be noted
that Mueller and Kidder estimated the maximum probable error of their
results to be 15 percent. From Fig. 2.4 storms dominated by larger
raindrops are less likely to be affected by wind. Laws and Parsons (1943)
reported that high intensity (greater than 5 in./hr) storms have median drop
diameters greater than 3 mm, while even medium intensity storms (0.5 to 5.0
in./hr) have median drop diameters between 2 and 3 mm. Therefore, it seems
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that Fig. 2.3 may have been obtained from data from lower intensity storms
dominated by smaller drop sizes (the 1 to 2 mm range), while the work of
Morgan and Lourence (1969) may be representative of higher intensity storms
dominated by larger drop sizes (this assumption is reasonable for California
winter rainy season storms).

Furthermore, it may be reasonable to assume that for the high intensity
storms likely to cause floods in small and medium size watersheds, the wind
effects may not be serious enough to require adjustment of the point
precipitation measurement. This does not mean that rainfall data uncertain-
ties due to wind are being ignored, but rather it means that the uncertainty
can be accounted for in the variance of the measurement alone. That is, if
the true catch, Py, is considered to be

PX = (a + ea) me (2.11)

where Pyy = the measured point precipitation;

4 = the correction factor relating for the difference between the
true and the measured rainfall at a point due to wind effects,
obtained from Fig. 2.3 for example;

= the uncertainty associated with using & (mean = O,
variance = o05¢);

€a

all that is being assumed is that a4 equals unity. The uncertainty expressed
in terms of variance in Py due to wind effects is still considered and it is
equal to meZ 05°. A reasonable assumption for the value of o5 may be
obtained by using a triangular distribution over a ranging between a + 0.15
4 (recall 15 percent was the maximum probable error estimated by Mueller and
Kidder). Actually, with & assumed to be unity, & - 0.15 & is unrealistic,
fortunately within the first-order uncertainty analysis the variance due to
wind effects can be constrained such that it is only considered when
estimating the probability of a flood discharge greater than the expected
flood discharge.

If a dense-rain-gage-network watershed exists which is subject to
climatic and topographic conditions similar to those for the watershed being
studied, then the uncertainty in estimating the mean areal precipitation
from a small number of gages may be approximated by the following proce-
dure. Assuming the "true" mean areal precipitation is obtained from the
complete network information, by comparing the averages estimated by
different subsets of the total gage network the uncertainty associated with
mean areal rainfall estimates for various numbers of gages may be approxi-
mated. For this approximation to be reasonable, the wind effects uncer-
tainty must be relatively constant for both the entire network and the
various subsets. This approach has been used quite commonly and success-
fully in hydrology.

Horton (1923) compared the mean areal average yearly rainfall for

various subsets of a 42 gage network for the River Derwent basin in England,
to develop a criteria for the number of gages necessary to achieve an
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estimate of annual rainfall on a basin within a specified accuracy. Light
and Shands (1947) used this approach to derive a graph relating percent
standard error in the estimate of mean areal rainfall volume as a function
of watershed size and density of rain gages. Data from 38 relatively
intense storms between 1937-1941 over the Muskingum watershed (8000 miz) in
Ohio and from 1500 mi2 and 375 mi? subareas of it were analyzed. Data from
as many as 500 gages was available for the early part of the record; this
number decreased to 250 by the end of the record. Linsley and Kohler (1951)
sought to determine the relative reliability of the average areal storm
rainfall computed from networks of different density. Hence, they computed
the average precipitation for networks consisting of 1, 2, 3, 4, 10, 18, and
55 gages for each of 68 storms on the 220 square mile Army-Navy-NACA Weather
Bureau network watershed near Wilmington, Ohio. In each case, the stations
were selected on as nearly a uniform grid pattern as the network permitted.
Hence, each sub-network approximated the ideal distribution of gages. Using
this data, equations were developed which related the average absolute error
in inches of areal storm rainfall, E, to the "true" precipitation depth, P¢
in inches and the number of gages, N, for three different watershed sizes,
100, 160, and 220 square miles.

— 0.186 Pt0.47 -0 60

Ey90 = (2.12a)
0.36 _-0.52

Eyeo = 0-181 P N (2.12b)
0.44 _-0.78

Bio = 0-176 B, N (2.12¢)

While these equations vary with the area of watershed, there appears to be a
certain general relation form which might be used for the purpose of this
study.

McGuinness (1963) used a similar technique to derive an equation
relating the average absolute error in inches of areal storm rainfall to the
"true" precipitation and the gaging ratio, G, (i.e., the number of square
miles per gage) for 81 storms on the 7.16 square mile Little Mill Creek
watershed near Coshocton, Ohio.

0.54 G0.24

E=0.03 Pt (2.13)

Huff (1970) also used this procedure to derive an equation relating the
average absolute sampling error in inches of areal one-minute rainfall data,
E;, to the "true" one-minute average rate, R, in inches per minute and the
gaging ratio for 29 storms on the 100 square mile Goose Creek watershed near
Monticello, Illinois.

0.87 G0.52

E =0.03R_"° (2.14)
a a
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If the 220 square mile watershed error equation is converted to be a
function of gaging ratio,* one obtains

E=20.0073 P

2.47 G0.60 (2.15)

It can be seen that the average errors in estimating mean areal rain-
fall for these three midwestern watersheds appear to be fairly consistent.
Therefore, a general relationship may exist between errors in estimated
areal precipitation, the "true" areal precipitation, and the gaging ratio
for watersheds with similar topography in similar climates such as these
three midwestern watersheds. The work of Huff and Schickedanz (1972)
supports the above assertion. They developed a model for estimating the
error in areal precipitation estimates from sparse gage networks based on
climatological principles and a 4 gage network for the 400 square mile East
Central Illinois network near Farmer City, Illinois. They found that the
climatological estimates of the relative standard error of daily areal
means were nearly the same as the dense network estimates. Hence, climate
plays a significant role in the uncertainty of sparse gage network estimates
of true areal precipitation. Therefore, a conglomeration of Eqs. 2.12,
2.13, and 2.14 could provide a reasonable estimate of variance due to this
source of uncertainty.

McGuinness (1963) performed just such a conglomeration. Using his own
results for Coshocton, Ohio as representative of small midwestern
watersheds; Huff and Neill’'s (1957) results for the Panther Creek, Goose
Creek, El Paso, and east central Illinois networks (see Table 2.1) as
representative of medium size (25 to 400 miz) midwestern watersheds; and
Light and Shands’ (1947) results for the Muskingum, Ohio mnetwork as
representative of large midwestern watersheds he prepared a nomogram (Fig.
-2.5) relating average error in mean areal rainfall estimates to rainfall
depth, pgaging ratio, and a climatic/geographic factor (the 5-year 24-hour
rainfall from Hershfield, 1961). Error estimates from Fig. 2.5 compare well
with Linsley and Kohler’s (1951) results which were not used in deriving the
nomogram. Therefore, Fig. 2.5 may be used to estimate the average error in
mean areal total rainfall estimates for midwestern watersheds.

To obtain error estimates . for shorter time periods within a storm,
Eq. 2.14 may be useful for midwestern watersheds. Equation 2.14 was derived
for one-minute data, however, Huff (1970) found the spatial correlations of
rainfall rate are not changed significantly by averaging over intervals of
5 to 10 minutes as opposed to using the one minute rates. Hence, applying
Eq. 2.14 to longer time period data should provide reasonable estimates of
the uncertainty.

*Since the independent variable in this equation has been changed from N to
G, this equation no longer represents a true least squares fit, however,
the coefficient values are probably still fairly reasonable for comparison
with the other equations.
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Unfortunately, in real-time flood forecasting the values of the true
areal storm, P, or one-minute precipitation, R,, data are not known, but
rather only the erroneous values P, and R,,, respectively. If P, or Ry, are
used in Fig. 2.5 or Eq. 2.14 to estimate the average absolute error, these
estimates may be greatly over- or under-predicted due to the nature of the
error in P, or Rye. A reasonable way to estimate the true error in P, or
Rze, would be to calculate E for Rz, and P, and then for Pg + E and Rze * E,
and take a weighted average of the calculated E values as an approximation
of the true error. For the purpose of FOSM analyses, the standard error
(i.e., standard deviation of the sample) of the mean areal rainfall estimate
is needed rather than the average absolute error. Light and Shands (1947)
note that for normally distributed variables the average error equals 0.8 of
the standard error. This relation may be used to convert the weighted
average error to an estimated standard error.

Similar equations and nomograms may be derived for other regions of the
country using dense rain gage network information available in these
regions, Table 2.1 displays a partial listing of dense rain gage networks
in the United States. Data for additional dense rain gage networks (as well
as some listed in Table 2.1) may be found in Thurman and Roberts (1986) and
the references therein.

Many other factors influence the validity of Fig. 2.5 and Eq. 2.14
including: (1) rain type, (2) storm type, (3) total storm rainfall
(Eq. 2.14 only), (4) storm duration, (5) storm mean intensity, (6) location
of the storm center with respect to the center of the sampling area, (7) the
direction of movement and orientation of the major axis of the storm, (8)
the number and distribution of individual storm cells at any given time in
the sampling area. Huff (1970) attempted to access the first five of these
factors, however, his 29 storm sample size was too small to detect any
trends in the data due to these factors. Nevertheless, the fact that he
frequently found relatively large differences in the sampling errors between
storms of apparently similar characteristics, led him to believe that these
factors are quite important. The consistency in the form of Eqs. 2.12,
2,13, and 2.14 indicates that they will perform well, for the purpose of
this study, despite these other factors. However, when developing similar
equations for other areas of the country, attention should be paid to the
eight factors listed above. Especially for mountainous eastern and western
watersheds where topography, rain type (i.e., orographic precipitation), and
storm type (e.g., heavy thunderstorms in the west) greatly influence these
error relations.

For the first-order second moment analysis, the mean wvalue of the
precipitation input is simply the areal mean precipitation estimate from the
gage network measurements, P,. If the wind velocities across the watershed
are fairly uniform, the wind effects errors at each gage will be similar
percentage-wise. Therefore, the areal mean precipitation estimate may be
used with the coefficient of variation of the error in rainfall
measurements due to wind effects, o,, to determine the associated variance.
Furthermore, the wind effects and inadequate gage network uncertainties may
be considered independent. Hence, the variance of the precipitation input,
o 2, is the sum of variance in the point measurements due to wind effects
(only affects the case where the target level is overpredicted) and the
variance in the gage network estimate of the areal rainfall.
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(2.16a)

] =0 for Qp < T (2.16b)

H

where aA2 = the variance in the difference between "true" areal average
rainfall and that estimated from the rain gage network,
Qp - the peak discharge estimated by the flood forecasting model
using the expected values (best estimates) of the parameters
and input data.

The question of how to apply first-order second moment analysis to multi-
period storms still requires further examination.

Finally, many of the existing physical simulation rainfall-runoff
models are so-called distributed models which subdivide the watershed into
subwatersheds, planes, finite elements, etc. For each of these subdivi-
sions, the governing physically based equations and procedures for handling
abstractions and runoff time distribution are applied to the precipitation
input for that subdivision. The resulting runoff from each of the
subdivisions is then numerically routed either overland, through the channel
system, or both to obtain the hydrograph at the channel outlet. The use of
such subdivisions allows more accurate accounting for the details of the
physical runoff process by breaking down the watershed into areas of similar
soil conditions, topography, and geomorphology. Hence, the uncertainties
due to spatial lumping are reduced.

Separate rainfall inputs are made to each of the watershed subdivi-
sions, and the uncertainty for each of these inputs may be estimated as
described above. However, there may arise occasions when one (or more) of
the subdivisions does not have a rain gage in it. In these cases the
uncertainty in the areal rainfall estimates 1is increased as isohyetal maps
are extrapolated, data from rain gages outside the subdivisions are used
(Troutman, 1982a, discusses just how great the errors of this can be), etc.
It seems ill-advised to use distributed models which subdivide the watershed
to levels smaller than the resolution of the rain gage data network unless
topographic conditions require it. As pointed out by Packer (1972), no
mathematical calculation, however sophisticated, can be better than the
validity, reliability, adequacy, and completeness of the data used in the
analysis. Therefore, if new gage networks are being set up for previously
ungaged watersheds to be incorporated with distributed physical simulation
models for real-time flood forecasting, these networks should be designed
considering the model'’'s subdivision of the watershed so that adequate data
is available to make use of the main advantage of such hydrologic models.
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2.3.2 Streamflow Data Uncertainty

The uncertainties in streamflow measurement and their effects on
hydrologic modeling reliability are generally considerably smaller than
those for uncertainty in rainfall measurement. This is due to the fact that
streamflow data represents the integration of the watershed system's
complicated rainfall-runoff process, while rainfall data merely provide
point measurements from the complicated rainfall process over the watershed
system. Nevertheless, considerable uncertainty exists in streamflow data,
and this can be considered as coming from primarily three sources:

1) wuncertainty in the gage measurement,

2) uncertainty regarding the validity of the derived stage-discharge
relation,

3) uncertainty regarding the quality of discharge measurements used to
derive the stage-discharge relation.

It is generally conceded that using modern techniques the stage can
easily be determined with relatively high accuracy (International Organiza-
tion for Standardization, 1983). Therefore, the last two sources of
uncertainty should be concentrated on.

The stage-discharge relation is defined by the complex interaction of
channel characteristics, including cross-sectional area, shape, slope, and
roughness. The primary sources of the uncertainty in stage-discharge
relations are changing stream cross-sectional controls due to the effects of
a changing (meandering) channel, scour and fill in an alluvial channel,
backwater, variable channel storage (i.e., hysteresis in the stage-discharge
relation due to unsteady flow effects), and aquatic vegetation (Boyer,
1964). Furthermore, there is always uncertainty regarding the fitting of
the stage-discharge relation to the data.

The most commonly used method of obtaining actual stream discharge
measurements is the wvelocity-area method. This method breaks the stream
cross section down into a number of verticals. The mean velocity for these
verticals is determined from one or two point velocity measurements
(depending on the flow depth with two point measurements preferred) and a
velocity distribution based on theoretical and empirical evidence. The mean
velocity is multiplied by the average area represented by the vertical to
determine the discharge for that vertical, and the overall discharge is the
sum of the vertical discharges. There are many sources of uncertainty in
discharge measurements including wuncertainties in widths and depths
represented by a vertical, in determination of mean velocity for the
vertical, and in determining the number of verticals to use. Furthermore,
uncertainties in the mean velocity estimate arise from errors in point
velocity measurements due to instrumentation and turbulence and from errors
in the assumed velocity distribution. ‘
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2.3.2.1 Handling Streamflow Uncertainties in Calibrated Models

As was the case with rainfall data, the uncertainties in streamflow
data are incorporated in the parameters (and their uncertainty) in cali-
brated models.

Generally, a flood is defined as the occurrence of flows whose depth
is greater than some critical stage (e.g., bankfull stage). In order to
determine whether a flood is imminent, either the critical stage must be
converted to a critical discharge or the model predicted peak flow must be
converted into a peak stage. Both of these conversions require the use of
a stage-discharge relation, and hence the uncertainties associated with
stage-discharge relations also affect the estimation of whether the critical
stage will be exceeded. When using calibrated models the uncertainties in
the stage-discharge relation are already incorporated in the model
parameters and their wuncertainties. Therefore, the conversion of the
critical stage to the critical discharge can be considered error free with
the actual uncertainties accounted for in the model peak discharge uncer-
tainty analysis.

2.3.2.2 Handling Streamflow Uncertainties in Physical Simulation Models

When using physical simulation models, the uncertainty in the conver-
sion of critical stage to critical discharge must be considered based on
physical reasoning. The sources of uncertainty in the stage-discharge
relation have been discussed previously. By choosing a stable channel
control section and performing periodic maintenance on it, several of the
sources of uncertainty iIn stage-discharge relations including changing
channel effects, scour and fill in an alluvial channel, and aquatic vegeta-
tion may be reduced.

Even with well selected channel control sections for discharge measure-
ment, the effects of backwater and variable channel storage (hysteresis) may
still greatly effect the stage-discharge relation. 1In fact, Fread (1975)
found that the dynamic (unsteady flow) effect may be significant if the
channel bottom slope is less than 0.001 when the rate of change of stage is
greater than about 0.10 ft/hr. Boyer (1964) offers insight into the nature
of these effects and describes some of the procedures proposed to correct
for them. Nevertheless, the key point is that even under the best
conditions, the stage discharge relation is non-unique and looped. Thus,
the analysis of the uncertainties in the stage discharge is quite complex
and beyond the scope of this study.

Carter and Anderson (1963) performed an extensive study of the sources
of error and subsequent total error in discharge measurements using the
velocity-area method. They used hundreds of laboratory and field measure-
ments to determine the errors due to current meters, time sampling of
velocity (i.e., turbulence effects), approximation of the assumed velocity
distribution in the vertical, point sampling of depth and horizontal
velocity distribution, and the number of verticals (stations) used. Figure
2.6 shows the standard deviation of the total error 1in discharge
measurements, Sr, as a function of the number of verticals (stations) and
the approximation of mean velocity (equal to velocity at 0.6 of the depth or
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Figure 2.6. Standard deviation of total error of discharge
measurement . (after Carter and Anderson, 1964)
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the average of the velocity 0.2 ad 0.8 of the depth) used. The World
Meteorological Organization (1984) performed its own assessment of the
uncertdinty in discharge measurements using the velocity-area method. For a
measurement using 25 verticals, a one minute averaging of point wvelocity,
and the 2-point method of mean velocity estimation, the total uncertainty
was estimated to be + 5.7 percent at the 95 percent confidence level (i.e.,
standard deviation = 2.9 percent). This agrees fairly well with the results
of Carter and Anderson shown in Fig. 2.6; hence, this figure may be used to

estimate uncertainty in discharge measurements.

The overall variance in stage-discharge relations is a function of the
uncertainty in deriving the stage-discharge relation and in the discharge
measurements.

2.3.3 Evapotranspiration and Soil Moisture Data Uncertainty

Generally, the effects of the evapotranspiration are considered to be
negligible for short term hydrologic events such as floods. Hence, most of
the hydrologic models proposed for real-time flood forecasting do not
consider evapotranspiration. However, some physical-conceptual models and
every physical simulation model require the use of an estimate of the soil
moisture. For most watersheds, very little data is available on the soil
moisture and so it is typically estimated using some kind of antecedent
precipitation 1index which relates evapotranspiration, antecedent
precipitation, and soil capillary storage. Previous experience has shown
these indices to be very rough approximations, at best, especially if the
time since the last storm is fairly long. Therefore, it is recommended that
in addition to rain and stream gages, the watershed should be monitored by
devices which can provide estimates of the actual soil moisture at the
beginning of the storm. Estimates of soil moisture may be obtained from a
number of sources including tensiometer data, neutron probes, and remote
sensing (Jackson and Schmugge, 1986). The uncertainty in these measurements
may be handled indirectly as described below.

Generally, in the physical simulation and physical-conceptual models
which use soil moisture estimates, the estimates are combined with other
parameters, such as soil porosity, hydraulic conductivity, etc., in order to
estimate infiltration and, possibly, prompt subsurface flow. If it is
assumed that the soil moisture is known with certainty, the uncertainty in
infiltration may be considered as due to uncertainties in the other
parameters which influence infiltration. The wuncertainty in the other
parameters is generally large enough that it may be assumed to encompass
soil moisture uncertainties also, especially when consideration is given to
the fact that the variations in hydraulic conductivity are a function of
soil moisture.

2.3.4 WVatershed Morphology Uncertainty
Many of the hydrological models, especially physical simulation and
physical-conceptual models, used for real-time flood forecasting require

knowledge of various aspects of watershed morphology, such as total area;
fractions of ground cover, canopy cover, and impervious area; overland flow
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slope and length; channel slope and length; etc. There is some uncertainty
or error involved in determining any of these parameters. For example, Yen
et al. (1976) asked 34 engineering students to inspect a three square mile
drainage basin at Urbana, Illinois, and then determine the area from a USGS
7.5 minute map. The average error measured in terms of the coefficient of
variation was found to be 0.045. Hence, they assumed that the coefficient
of wvariation describing the estimation uncertainty associated with N
persons each making one independent prediction 1is approximately 0.050//N,.
The relationship may be applied to any of the areal estimates: total,
impervious, ground cover, canopy cover, etc.

It is unlikely that the expected errors in determining channel length
will greatly influence the predicted hydrograph. However, local variations
in channel slope relative to the lengthwise channel average could possibly
influence the timing of the predicted hydrograph. These local variations
can partially be accounted for by subdivision of the watershed as done in
distributed and quasi-distributed physical-conceptual and physical
simulation models. However, even this will not eliminate problems with
local variations. Hence, it is probably best to consider uncertainties due
to the use of a lengthwise channel average slope as part of the model
structure uncertainty due to "lumping."

The average overland flow slope is generally computed as the weighted
average of the overland flow slopes of overland flow paths determined at
regular intervals along the channel. Hence, data on the variation of
overland flow slope is readily available for the watershed and may be used
to estimate the corresponding coefficient of variation. The overland flow
slope greatly influences the timing of the predicted hydrograph. Thus, it
is best to consider the overland flow slope uncertainty directly rather than
as part of the model structure uncertainty, which will be accounted for with
a magnitude correction factor (see section 2.5).

For many physical simulation models, the overland flow length is, by
definition, calculated as the width of a plane which when multiplied by the
channel length equals the "true" plane area. Hence, it is best to consider
uncertainty in the overland flow length as a portion of model structure
uncertainty. Furthermore, the overland flow slope and length work together
to determine the timing of overland flow, and the weighted average used to
estimate the average overland slope partially accounts for this. Therefore,
it 1s reasonable to account for the wuncertainty in the timing of the
overland flow using the uncertainty in the overland flow slope alone.

There may be many more watershed morphologic factors used in the
various real-time flood forecasting models. It is hoped that the above
discussion presents the basic guidelines on how to deal with uncertainties
in watershed morphologic parameters, and that these guidelines be applied to
other morphologic factors.

2.4 Evaluation of Model Parameter Uncertainties
Wood (1976) observed that there seemed to be two types of unknown

parameters, those that are fixed but unknown and those that vary from
rainfall event to rainfall event. Watershed morphologic characteristics,
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such as area, overland flow slope and length, etc., are examples of fixed
but unknown parameters. While those which vary from rainfall event to
rainfall event are studied in this section. Generally, these may have
values within a known, specified range, but their true values may be greatly
different for consecutive storms. When using a rainfall-runoff model in
current "state-of-the-art" flood forecasting, a "best estimate" of each
parameter value is determined from the corresponding range and is wused
throughout the forecasting procedure. By assuming the "best estimate" of
the parameter value is equivalent to its expected value and by knowing the
range over which the true parameter value 1s likely to exist, model para-
meter uncertainties may easily be accounted for in reliability analysis
methods as described below.

2.4.1 Handling Model Parameter Uncertainties in Calibrated Models

For calibrated models, the parameter uncertainty reflects not only the
uncertainty in estimating the true parameter value for a particular event,
but it also contains a measure of the data uncertainty which is transferred
to the parameters by the calibration process. Fortunately, the calibration
process also provides a significant amount of information regarding the
range of values over which each of the true values of the parameters is
likely to exist. Hence, the expected value (mean) and the standard devia-
tion of the model parameter values may be estimated as follows. First,
calibrate each of the storm events separately. Second, determine the
overall mean value for each of the parameters by:

1) Simultaneous calibration of all the storm events, if practical; if
this method is used it may be advisable to use some sort of trans-
formation of the objective function in order to make the error of
estimation more commensurable for the large and small events;

2) If (1) is not practical, use some sort of weighted average of the
calibrated values for the events.

The standard deviation may then be estimated from the variance of the
calibrated parameter values for each storm about the overall mean. For
nonlinear rainfall-runoff models, there is no reason for the mathematical
mean of the individual event calibration results to be equal to the overall
best estimate parameter value (however, the two values should be fairly
close if a good, homogeneous calibration data set is used). Therefore, the
variance about the overall best estimate is larger than that about the
mathematical mean, but it is still a reasonable expression of the parameter
variance for the MVFOSM method. For the AFOSM method, distributions will be
fit to the basic variables based on the individual event calibration
results. In such cases, the transformed normal means and standard
deviations rather than the actual means and standard deviations are of key
importance (see Eqs. B.37 to B.39).

An independent check of the estimate of the parameter standard devia-
tion may be made by using the method proposed by Mein and Brown (1978). For
the case of models calibrated based on an ordinary least squares (i.e., sum
of squares difference between measured and calculated discharges) objective
function, they developed a method to estimate the one standard deviation
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confidence intervals for the calibrated parameters. This method makes use
of a first-order Taylor series expansion of the model’s hydrograph
prediction and the central limit theorem to derive an approximate multi-
variate normal distribution for the optimal parameter values.

The key assumptions of Mein and Brown’s method are that the parameter
calibration is done using an ordinary least squares objective function and
that the response surface surrounding the optimum is fairly linear such that
the first-order Taylor series approximation is reasonable. The parameter
variance calculated by Mein and Brown's method primarily considers
uncertainty in the parameters due to errors transferred to the parameters
from the data and, to lesser extent, due to model structure inadequacy
effects on the parameters. Thus, the variance estimates obtained by Mein
and Brown’s method provide a very interesting comparison with the parameter
variance estimated from the calibration results, which includes a measure of
both the parameter and data uncertainty. Unfortunately, Mein and Brown's
method was not employed in this study due to the fact that the models chosen
as examples were not easily adapted to a form compatible with Mein and
Brown’s approach (i.e., HEC-1 has a built-in calibration scheme while RORB
required the use of an "ad-hoc" optimization approach, see Appendix C).

The most important factor in the determination of model parameters and
their uncertainties as outlined above is the calibration procedure used,
and the key to calibration is the form of the objective function to be
minimized. The calibrated parameter value may vary greatly depending on the
criteria chosen to define the "best fit," i.e., a weighted sum of peak
discharge difference, total runoff volume difference, and sum of squares
difference between measured and predicted hydrographs. The selection of the
calibration criteria is a function of what the model is to be used for. For
real-time flood forecasting, the primary interest is in the magnitude of the
peak, and if the peak is likely to exceed the critical level, the timing of
the peak is of great importance. Hence, a criteria which emphasizes
matching the peak discharge is important for real-time flood forecasting.
In this study, a weighted sum of squares difference between the measured and
predicted hydrographs is minimized, as explained in Appendix C.

When calibrating a physical simulation model, the fitting process
should be constrained such that the physically determinable parameters
remain within their reasonable ranges. These constraints may reduce the
quality of fit obtainable, however, the model structure uncertainty estimate
(see section 2.5) will be much more reasonable.

Given that minimization of a weighted sum of squares difference between
measured and predicted hydrographs has been chosen as the calibration
criterion, two important causes for poor parameter fitting must be
discussed.

First, the use of this criterion presupposes that any errors present in
the data are uncorrelated, have a constant variance, and zero mean.
Considering the discussion of data uncertainties in section 2.3 it is clear
that these assumptions are quite often violated. Hence, Sorooshian et
al. (1982) developed a maximum likelihood parameter estimation procedure
which accounts for the autocorrelation and heteroscedasticity (i.e.,
changing variance) of data errors in the fitting process. They showed for a
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simple example that the maximum likelihood criterion provided improved
parameter values for forecasting relative to those provided by a least
squares criterion. However, when wusing reliability analysis, the
examination of the forecasting uncertainty considers data error autocorrela-
tion and heteroscedasticity either directly or as part of the parameter
uncertainty. Thus, it is likely that while the maximum likelihood parameter
estimates will have a smaller variance, the flood probabilities estimated by
reliability analysis may not be significantly different. This is a subject
for further research outside the scope of the this study. Furthermore, by
conslidering the uncertainty in parameters obtained by a simple weighted
least squares criterion, this research provides an uncertainty analysis for
standard hydrologic practice.

Second, when calibrating a model using any fit criterion, the question
of the non-uniqueness of the calibrated parameters must be considered. That
is, because various parameters tend to have similar effects on the predicted
hydrograph, it is quite possible that many greatly different combinations of
parameter values may result in nearly identical hydrographs. Thus, the
variation in calibrated parameter values may be a function of this non-
uniqueness property rather than the true parameter variation from storm to
storm. By using multiple starting points for the least squares calibration,
it may be possible to identify the true storm to storm variation. However,
this may not be necessary for hydrologic models with a relatively small
number of parameters because non-uniqueness becomes more prevalent as
parameters are added to improve the fit,.

2.4.2 Handling Parameter Uncertainties in Physical Simulation Models

For physical simulation models, the parameters are directly related to
the physical characteristics, e.g., soil types, vegetal cover, channel
morphology, etc., of the watershed, allowing them to be determined without
using calibration or at most a small amount of calibration. For previously
ungaged watersheds, parameter information may be obtained from physical
measurements at various locations, tables prepared from study of similar

conditions (e.g., USDA soil surveys), and other relations developed to
express physical characteristics in terms of commonly used hydrologic/
hydraulic parameters (e.g., the pictures relating channel conditions to

Manning’s n in Ramser, 1929; Scobey, 1939; and Barnes, 1967). Using the
available information, the physically reasonable range for each of the
parameters may be determined. The best estimate (mean value) of the
parameter may then be determined by: (1) field measurements at wvarious
sites in the watershed, or (2) if (1) is not practical, personal judgment
and experience. Personal experience of using the model on other watersheds
may also greatly aid in determining the parameter’s mean value. For
example, Melching and Wenzel (1985) found that in calibrating a simple five
parameter physical simulation model for 17 storm events of five small mid-
western watersheds, each calibrated parameter tended to stay within a
certain region of its physically reasonable range. The standard deviation
may then be estimated by assuming the parameter follows a triangular
distribution over its range with the apex at the mean value. This procedure
has worked quite well for determining the coefficient of variation for
Manning’s n in sewer pipes (Yen et al., 1976).
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Also, additional information on physical parameter best estimates and
standard deviations or coefficients of variation may be found in the
literature. For example, Rawls et al. (1983) reported mean values and
standard deviations of Green and Ampt infiltration equation parameters as
they relate to USDA soil textural classes based on measurements for 1200
soils in 34 states. McBean et al. (1984) analyzed Mclean and Anderson’s
(1980) measurements of Manning’s n on the Peace River in northern Alberta,
Canada, and found that a coefficient of variation of 12 to 18 percent is
realistic when field measurements have been undertaken.

For watersheds which are changing in time, e.g., due to urbanization,
and hence require a physical simulation model for flood forecasting, the
mean values of the parameters must be evaluated based on current watershed
conditions. However, the parameter variance may be estimated based on
previous calibration results. The validity of this estimation of parameter
variance is based on the reasonable assumption that despite the changing
watershed morphology, the relative variance of the physical parameters about
the watershed and the relative uncertainty in determining them remains
constant.

2.4.3 Forecast Updating

The advantages and disadvantages of forecast updating schemes are
discussed in Appendix A. The primary disadvantage of updating for flood
events is that a minimum amount of data must be collected before updating
will yield valid data and/or parameter adjustments. The time necessary to
gather such data leads to a reduction in the forecast lead time, which is
very important for flood warning and preparedness systems.

The goal of this study is to demonstrate the utility and suitability of
reliability analysis as a means of evaluating the reliability of forecasts
produced by rainfall-runoff models in real-time and as a means of estimating
the flood level exceedance probabilities corresponding to these forecasts.
For forecasts made immediately after the end of the significant rainfall,
sufficient runoff data for data and parameter updating will not be available
for typical events on medium sized watersheds. Therefore, forecast updating
need not be considered in meeting the objectives of this study and it is not

included. However, reliability analysis may be combined with forecast
updating schemes to provide supplemental information for flood watch/warning
decision making. In the following paragraphs, some suggestions are made

which provide insight on the future combination of reliability analysis with
forecast updating.

As described in Appendix A, many technologically advanced methods
(e.g., adaptive filtering) have been developed to continuously wupdate
forecasts. Nevertheless, the primary means of updating is still simply
adjusting the input data or parameters until the predicted hydrograph agrees
with the available measured hydrograph data.  Generally, the input data is
adjusted because it does not require recalibration of the parameter values.
However, for calibrated models adjusting the input data violates the
assumption that the data wuncertainty has been transferred to the model
parameters. Hence, in future research on the combination of reliability
analysis and forecast wupdating, updating should involve adjusting the
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parameters so that the available measurements are matched by the predicted
hydrograph.

When performing the reliability analysis, the updated parameter value
is considered the mean value, while the standard deviation remains the same
as computed earlier. For calibrated models, the standard deviation remains
unchanged because the parameters are still subject to the same data
uncertainty transfer. For physical simulation models, the parameter values
may change with time due to the nature of the runoff process, and so the
updated value is still quite uncertain., Hence, a constant standard devia-
tion seems reasonable.

Combination of reliability analysis with the more advanced adaptive
filtering automatic updating schemes is not necessary. Georgakakos (1986a)
pointed out that the updated error covariance matrix may be used to estimate

the flood level exceedance probability. Nevertheless, the information on
errors and uncertainties contained in this chapter may be of use for these
advanced automatic wupdating schemes. For example, Kitanidis and Bras

(1980a) developed a scheme for automatic updating wherein the data and
parameters are adjusted only if the errors found exceed specified
tolerances. The information summarized in this chapter may aid in selecting
these tolerances. Also, Kitanidis and Bras (1980c) noted that for longer
term forecasts, selection of the appropriate error variances is important,
The information summarized in this chapter may also aid in estimating these
error variances.

2.5 Evaluation of Model Structure Uncertainty

Model structure uncertainty stems from the model’s inability to truly
represent the watershed's physical runoff processes. For stochastic
hydrologic models, the approximation assumes that the runoff process may be
adequately described by the correlation between rainfall and streamflow,
between upstream and downstream flows, and the autocorrelation in downstream
flow. For conceptual hydrologic models, the approximation assumes a
specified deterministic function represents the rainfall-runoff process.
For physical simulation and physical-conceptual models, the approximation
assumes many simplifications of the natural runoff process, such as spatial
and temporal lumping of watershed characteristics and input, kinematic flow
routing, etc., in order to make calculations practical.

The uncertainties introduced by each of these approximations affect the
shape, volume, and magnitude and timing of the peak of the predicted
hydrograph. Hence, it is difficult to consider and account for the total
effect of model structure uncertainty on the predicted hydrograph. For the
purpose of this study, the primary interest is the model’'s ability to
estimate the magnitude of the peak discharge. Sittner (1977) noted that
when a stage above flood level is predicted to occur at a certain time, a
flood plain dweller may be expected to take precautions as soon and as fast
as 1is prudently possible. The flood plain dweller does not normally delay
the start of his protective measures because the predicted interval is
somewhat greater than the time required to complete these measures.
Consequently, Sittner reasoned a timing error in an otherwise good forecast
is not of great importance. Thus, a correction factor, AR, 1is used to
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account for the model structure’s inability to accurately estimate the true
peak discharge magnitude. The following sections will discuss the deter-
mination of A, for calibrated models and then for physical simulation
models.

2.5.1 Handling Model Structure Uncertainties in Calibrated Models

Garen and Burges (1981) pointed out that if a historical flow record
representative of a wide range of watershed responses and of sufficient
length to constitute a statistically significant sample 1is available,
comparison of simulated and recorded flows to measure uncertainty might be
extrapolated to estimate uncertainty in subsequent model predictions.
Troutman (1982b) pointed out the variance between the measured discharge and
the estimated discharge using the true input and model parameters is due
entirely to model structure inadequacies. For calibrated models, the
variance between the measured discharge and the estimated discharge is not
truly due to the model structure inadequacy alone, however, the bias in the
estimate due to error laden data and parameters is minimized by the calibra-
tion process. Therefore, the expected value and standard deviation of the
difference between the measured and calibrated peak discharges taken over a
wide range of storm events provides a reasonable estimate of Ay and its
uncertainty.

2.5.2 Handling Model Structure Uncertainties in Physical Simulation Models

Generally, for physical simulation models, calibration data are not
available to allow approximation of model structure uncertainty via
comparison of estimated and measured peak discharges for the watershed in
question. However, by calibrating* the model for data on another watershed
the model structure uncertainty may be approximated. This transfer of model
structure uncertainty also applies to the case where a physical simulation
model is used for real-time flood forecasting for a watershed which is
changing, e.g., due to urbanization. Calibration of previous data for this
watershed may be used to determine model structure uncertainty effects,
i.e., Ap and its variance.

If calibration data 1is not readily available for the watershed in
question or other watersheds, the model structure uncertainty may be roughly
approximated by assuming that the physical approximations made in the model
are at least as good as the conceptual or stochastic approximations made by
various other models. Thus, model structure uncertainty estimates gained
from experience with other models may be applied to the current problem.
Although this assumption seems quite reasonable, it does lump physical
simulation models of various levels of complexity at the same uncertainty
level. Hence, comparison among physical simulation models is not possible
and the probabilities determined may be somewhat conservative (i.e., over-
estimated). '

*When calibrating a physical simulation model, physically reasonable bounds
must be placed on the parameters in order to identify the effects of model
structure inadequacies.
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A typical example of the model structure uncertainty on the predicted
peak discharge is provided by Melching and Wenzel (1985). They calibrated
the predicted hydrographs from a physical simulation model, which uses
Wooding's open book approximation of watershed geometry, kinematic wave flow
routing, and a modified Green and Ampt infiltration equation to estimate the
runoff hydrograph, for 17 storm events on five small midwestern watersheds.
They found the expected value of the peak discharge was within 2 percent of
the true peak discharge, the standard deviation was approximately 16
percent, and values were normally distributed about the mean. Hence, the
expected value and coefficient of variation of A, may be approximated as 1
and 0.16, respectively. This provides a rough approximation of the typical
magnitude of the effects of model structure uncertainties.
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CHAPTER 3. PRESENTATION OF RESULTS

3.1 Introduction

In this chapter, the utility of the proposed procedure for employing
reliability analysis to consider the uncertainties in hydrologic modeling is
demonstrated for the case of real-time flood forecasting using two simple
physical-conceptual rainfall-runoff simulation models, HEC-1 and RORB. A
brief description of these models is given in Appendix C.3. The procedure
is applied to an Illinois watershed as an example. The description of the
watershed, calibration of the two models, and statistical analysis of the
calibration results are presented in Appendix C. It should be noted that
the case study using the selected models is for demonstration purposes, and
similar reliability analyses could be carried out for any hydrologic model
(as described in section 2.1) and for any watershed. Initially, standard
model verification results are discussed. Subsequently, these verification
results are reexamined considering the stochastic nature of the forecasts as
estimated by reliability analysis. Reliability analysis is used to:

1. determine the key basic variables influencing model forecast (or
prediction) reliability,

2. select hydrologic models based on a comparison of model forecast
(or prediction) reliability, and

3. develop "rules of thumb" regarding the likelihood of flood
occurrence to aid in flood warning decision making.

Finally, the various reliability analysis methods are compared for this case
study.

3.2 Real-Time Flood Forecasting Scheme Verification

Table 3.1 displays the measured Qp and tp values for each of the
verification storms and the respective percent errors in the HEC-1 and RORB
forecasts of these values. In general, both models do a reasonable job
forecasting the peak discharge timing with 10 of the peak times estimated
within ten percent and another 5 between ten and twenty percent for HEC-1,
while for RORB these numbers are 7 and 6, respectively. Even for events
whose peak discharge magnitude is greatly overestimated, the forecast peak
times are quite reasonable. Only for the May 10, 1962 storm are the tp
values forecast by HEC-1 and RORB greatly erroneous.

The forecasts of the peak discharge magnitude display much less
reliability. For non-summer, non-convective storm events, excluding the
April 16, 1957 and May 12, 1970 (which is suspect due to incomplete data)
storms, the average absolute error in the peak discharge magnitude forecast
is 18 percent for HEC-1 and 19.3 percent for RORB. However, the forecast
peak magnitudes are more than fifty percent greater than the measured
magnitudes for six storms for HEC-1 and for eight storms for RORB. With the
exception of the April 16, 1957 and May 12, 1970 storms, all the extremely
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Table 3.1. Comparison of Measured and Predicted Peaks
for the Verification Events

Measured - HEC-1 RORB

Date (Sg tp Percent Error Percent Error
s)  (hr) Qp tp Q tp

6/21/56 2956. 50. 82.65 -28.00 95.77 8.00
4/16/57 4448 , 52. 90.57 7.69 107.22 0.00
4/24/57 9020. 100. -27.68 -12.00 -18.72 -12.00
7/13/57 3334, 30. 62.98 13.33 55.76 20.00
7/22/57 3055. 30. 180.55 6.67 238.63 -13.33
6/09/58 5558 46. 43.02 -4.35 60.18 7.14
6/12/58 6630. 34. -4.60 -6.25 23.24 0.00
7/14/58 8480, 36. 77.68 -5.56 97.56 -22.22
4/26/59 5545, 40. 3.23 -5.00 5.04 15.00
9/23/61 3500. 66. -34.90 3.03 -23.41 12.12
5/10/62 5580. 26. -26.76 38.46 -29.53 61.54
4/05/65 4622, 36. -29.04 16.67 -27.81 27.78
4/08/65 3440, 34, -7.68 0.00 -6.50 5.88
4/23/65 4552, 44 8.95 4.55 21.25 27.27
5/04/65 7700, 32, 4,32 18.75 10.91 18.75
6/16/73 6685, 30. 40.28 13.33 56.92 -6.67
5/12/70 9790. 46. 74.74 -21.74 96.03 -26.09
12/02/82 12300, 34, 19.30 5.88 30.73 0.00
erroneous forecasts are for summer, convective storms. The July 22, 1957

storm 1is tremendously overpredicted by both HEC-1 (180 percent) and RORB
(240 percent).

Such results are as expected when the seasonal variation of model
parameters is recalled (see Tables C.10 and C.11). The seasonal variation
indicates that the expected values of the hydrograph parameters, TC and Sy
in HEC-1 and Cy; and m in RORB, remain fairly constant throughout the year.
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Hence, the generally good results in the peak time forecasts were expected.
The expected value of the continuing loss rate is significantly larger for
summer storms than for those in the remainder of the year. Thus, using the
overall average continuing loss rate, which is biased toward the lower non- .
summer values, leads to overestimation of the precipitation excess and
subsequently the peak discharge magnitude. However, these arguments do not
explain the large error for the April 16, 1957 event or the low error for
the June 12, 1958 event,

In general, it appears that the real-time flood forecasting schemes
perform quite well for non-summer, non-convective storm events. Further-
more, it seems that if applied properly, either of the real-time flood
forecasting schemes will provide reasonably reliable and useful forecasts
for such events. For summer convective storm events, neither model appears
useful when using the overall mean parameters.

3.3 Verification of the AFOSM Method

The AFOSM method has not previously been applied to hydrologic modeling
cases where the output from a complex nonlinear mathematical model is
necessary to define the system performance function. Hence, verification of
the accuracy of the AFOSM method for this problem must be performed before
comments regarding the reliability of the real-time flood forecasting
schemes may be made based on the AFOSM method results.

Assessment of the exact forecast reliability for the real-time flood
forecasting schemes via direct integration is not possible due to the
multiple variable, complex, nonlinear mathematical model description of the
hydrologic loading (forecast peak discharge). Hence, Monte Carlo simulation
was used to check the accuracy of the AFOSM method. In this study, three
sets of 1,000 simulations were used to estimate the measured peak and flood
level exceedance probabilities for events for which these exceedance
probabilities were estimated as greater than 0.2 by the AFOSM method (the
April 24, 1957 event is a slight exception to this rule). For events with
AFOSM method exceedance probability estimates between 0.0l and 0.2, a single
set of 10,000 simulations was used to estimate the exceedance probabilities

for both the measured peak and the flood level. The selection of the
appropriate number of simulations was based on Cheng's (1982) work reported
in section 2,1.1. No Monte Carlo simulation was performed for the five

events with flood level exceedance probabilities estimated by the AFOSM
method to be less than 0.01 due to the prohibitively large number of
simulations required to obtain a near exact exceedance probability. In
fact, the major disadvantage of Monte Carlo simulation is the often
prohibitive time required to generate a sufficient number of simulations.
In this study, wusing an IBM PC-AT with math co-processor chip, 1,000
simulations took nearly 6.5 hours for HEC-1 and 10.5 hours for RORB.

Tables 3.2 and 3.3 display the comparison between Monte Carlo simula-
tion and the AFOSM method for HEC-1 and RORB, respectively. As pointed out
by Wood (1976), E[f(x)] (estimated by Monte Carlo simulation) is not equal
to f£(E[x]) (given by the AFOSM method). However, for this case, the
difference between the two is acceptably small with the AFOSM approximation
generally displaying less than five percent errors.
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The comparison between the standard deviation of the simulated Q
values and the first-order approximation about the mean basic variable
values displays greater discrepancy. The forecast standard deviation as
estimated by the AFOSM method is not truly shown in Tables 3.2 and 3.3;.
instead, the MVFOSM method estimate is shown because the variance about the
mean is of greater hydrologic significance. The discrepancy was expected
because one of the key assumptions of the MVFOSM method, and hence, the
estimate of the wvariance at X is that the basic variable coefficients of
variation are small (this is less Important for the AFOSM method due to the
distributional transformations and the analysis at the failure surface).
For example, Garen and Burges (1981) found that for the first-order
approximation of the variance at % to be reasonable for the Stanford
watershed model the coefficients of wvariation of the sensitive basic
variables should be no greater than about 0.25. For HEC-1, the respective
coefficients of variation for TC, Sp, and CL are 0.24, 0.15, and 0.70, while
the coefficient of variation values range from 0.29 to 2.51 for IL and from
0.043 to 0.065 for Ay,. For RORB, the respective coefficients of variation
for C; and CIR are 0.18 and 0.67, while the coefficient of variation values
range from 0.29 to 2.52 for ILR and from 0.057 to 0.086 for Ayy. It should
be noted that the events for which the agreement in SD(Qp) is good are not
the events with the smallest IL coefficients of wvariation. Nevertheless,
the large coefficients of variation partially explain the disparity between
the Monte Carlo and first-order estimates of SD(Qp).

The most important comparison between the two approaches is for the

exceedance probabilities. The AFOSM method consistently overpredicts the
exceedance probabilities relative to Monte Carlo simulation. The AFOSM
method assumes Z is continuous over all the basic variables. However, as

noted in section C.8.2, Z no longer is continuous in IL when IL and CL are
related to the accumulated precipitation up to and including period i, Pi,
such that

P. - b CL<ILKP, : 3.1
1 1

where b = 2 for RORB and is related to the difference between IL and Pj

for HEGC-1.
Hence, the assumed continuity causes the AFOSM to overestimate the
exceedance probability relative to Monte Carlo simulation, which accounts
for the discontinuity. This overestimate results from the fact that by

ignoring the discontinuity, the partial derivative 1is overestimated and,
hence, the AFOSM method perceives the forecast to have greater variability
than it truly does (recall VAR(Z) = f(Ciz)). Therefore, B is underestimated
and a higher target level exceedance probability is estimated.

Events with at least one period of very high rainfall relative to
E[IL] are affected less by -the discontinuity, and thus the Monte Carlo
simulation and AFOSM methods should be quite close for the measured peak.
The April 17, 1957, July 13, 1957, July 22, 1957, July 14, 1958, and June
16, 1973 events have such high rainfall periods and, as expected, very close
agreement between the Monte Carlo simulation and AFOSM methods was found.
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In general, the comparison over all the events indicates the AFOSM and
Monte Carlo simulation methods provide quite reasonable and consistent
estimates of the measured peak and flood level exceedance probabilities.
However, it is interesting to speculate which method gives the value which
is closer to the truth. The basic assumption in this reliability analysis
is that HEC-1 and RORB and their model parameter and model correction factor
(i.e., model structure) uncertainties approximate the true rainfall-runoff
process for the Vermilion River watershed. The calibration results reported
in Appendix C demonstrate that for a wide variety of storms both HEC-1 and
RORB can accurately model the true Vermilion River watershed rainfall-runoff
process given the proper parameter values for that storm. These proper
parameter values are essentially independent and describable by simple
normal and lognormal distributions, the estimation of which utilizes
calibration and distribution fitting procedures assuming continuous
relationships. Furthermore, the true physical rainfall-runoff process is
continuous for rainfalls in excess of the infiltration capacity. Therefore,
the AFOSM method, which disregards the discontinuity in the initial loss-
continuing loss rate scheme, is in better agreement with the true physical
process and with the underlying assumptions used to derive the basic
variable uncertainties than is the Monte Carlo simulation method. Hence,
the somewhat conservative AFOSM method estimates of the hydrologic target
level exceedance probabilities may be more realistic than the Monte Carlo
simulation estimates.

The discontinuity effects also contribute to the difference between the
Monte Carlo and first-order estimates of the mean and variance of the
forecast peak discharge.

3.4 Reliability of the Real-Time Flood Forecasting Schemes
3.4.1 Forecast Reliability

The forecasts produced by the HEC-1 and RORB based real-time flood
forecasting schemes are actually stochastic forecasts. In stochastic,
time-series forecasting a common "rule of thumb" for assessing the quality
of the forecasting model is that the measured values fall within the 95
percent confidence limits of the forecast. Table 3.4 displays the AFOSM
method B values corresponding to the measured peak, By, and the flood level,
Br, for both HEC-1 and RORB. A B value of + 1.96 corresponds to the 95
percent confidence limits. Hence, all IﬂMI values less than 1.96 indicate a
"good" stochastic forecast with the measured peak within the forecast's 95
percent confidence limits. Discounting the May 12, 1970 event for which
theinput data is questionable, HEC-1 forecasts violate this rule of thumb
for 2 of 17 events, while RORB forecasts violate it for 3 of 17 events.
Furthermore, all five of the violations are very small with the worst
corresponding to 96.6 percent confidence limits. Hence, from a stochastic
forecasting viewpoint, both HEC-1 and RORB provide "good" forecasts for all
the verification events.

From a practical viewpoint, however, the "good" stochastic forecasts
with more than 50 percent overpredictions of the peak discharge are not
particularly useful. For these cases, the forecast variance is very large
such that large differences between forecast and measured peaks fall into
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the reasonable "stochastic" range when standardized. This high forecast
variance does not mean that HEC-1 and/or RORB should or should not be used
for real-time flood forecasting in general. Reliability analysis indicates
that each model is quite capable of providing adequate forecasts given an
accounting of the model’s stochastic nature. Therefore, to increase the
reliability of the forecasts, more complex models are not required; instead,
the high forecast variance must be decreased by reducing the underlying
uncertainties in modeling. If the underlying basic variable uncertainties
cannot be appreciably reduced, then the model is not adequate for the task
at hand and another, possibly more complex, model should be selected.

Table 3.4. Comparison of AFOSM B Values Between Models
and Discharge Levels

HEC-1 RORB
Date Qpm Qp Au BF Q} &)Y PF
(c%s) (cgs) (cgs)
6/21/56  2956. 5399. -0.856  2.8002 5787. -1.600  1.903
4/16/57 4448, 8476. -1.980  0.710 9662. -2.031  0.1891
4/24/57  9020. 6523. 0.696  1.151 7331. 0.527  0.953
7/13/57  3334. 5434, -0.484  1.820 5193. -0.385  1.421
7/22/57  3055. 8571. -1.607.  0.672 10345, -2.105_ -0.011
6/09/58  5558. 7949, -0.9741 0.794 8903. -1.3301  0.413
6/12/58  6630. 6325. -0.124  1.8052 8171. -0.918  0.553
7/14/58  8480. 15067. -2.119 -1.680 16753. -2.136 -1.756
4/26/59 - 5545. 5724. -0.326  1.806 5824 -0.256  1.702
9/23/61  3500. 2278. 0.344  4.4002 2681. 0.217  3.4103
5/10/62  5580. 4087. 0.593  3.4702 3932, 0.720  2.7832
4/05/65  4622. 3280. 0.453  3.7502 3337, 0.496 3.0702
4/08/65  3440. 3176. -0.168  4.0702 3216. -0.091  3.1852
4/23/65 4552, 4960. -0.472  2.350 5519, -0.676  1.748
5/04/65  7700. 8033. -0.401  0.767 8540 . -0.560  0.484
6/16/73 6685, 9377. -1.281  0.427 10490, -1.345  0.130
5/12/70  9790. 17107. -2.941 -2.810 19192. -3.320 -3.163
12/02/82  12300. 14674. -0.987 -1.617 16080. -1.158  -1.689

literation scheme has difficulty converging in the basic variables due to
discontinuity in 8g/81IL.

2Iteration scheme has difficulty converging in the basic variables due to
the extreme probability of the event.

Iteration scheme has difficulty converging in the basic variables due to
both 1 and 2.
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Another means to examine the reliability of the forecasts is to prepare
the cumulative density function, CDF, for the forecast. The closer the CDF
curve is to a step function, the more reliable the forecast. By varying the
hydrologic target level and estimating the exceedance probability, Pg, the
CDF may be obtained by

CDF = 1 - PE = ¢(B) (3.2)

Figures 3.1 and 3.2 display the exceedance probabilities (which are the
complements of the CDF) as a function of the discharge level for three
spring events of various peak discharge magnitudes (April 8, 1965, April 26,
1959, and May 4, 1965) and one small summer event (July 13, 1957) for
forecasts using HEC-1 and RORB, respectively. The April 8, 1965 event is
the most reliably forecast of the four events, and, in general, the curves
display the consistently high reliability of spring event forecasts. The
July 13, 1957 event curve displays the high forecast variance and low
reliability generally encountered for the summer event forecasts.

The dashed portions of the April 26, 1959 and July 13, 1957 event
curves at the lower discharge values are due to the discontinuity in the
initial 1loss-continuing 1loss rate abstraction scheme. For discharges
greater than the break, the failure point is a function of both IL and CL.
However, for discharges less than the break, the failure point is only a
function of CL. Hence, this change in problem dimensionality causes CL and
the other basic variables to move to more extreme values, greatly increasing
B and Pg.

The forecast probability distribution function, PDF, is the derivative
of the CDF, and it provides an interesting picture of the forecast variance
and reliability. Figure 3.3 displays the PDFs for the HEC-1 and RORB
forecasts of the May 4, 1965 event. The scatter of the points about these
curves is a function of the method (making the area under the PDF up to a
point equal to the CDF at that point) and the interval (1000 cfs) used to
derive the PDF. Nevertheless; the approximate PDF curves shown in Fig. 3.3
display the reasonable reliability of the HEC-1 and RORB forecasts with the
measured peak discharge nicely with the peak region of the PDFs. '

3.4.2 Sources of Modeling Uncertainty

One of the strengths of the first-order second moment techniques is
that they allow the assessment of the relative contributions of the
individual basic variable uncertainties to the overall system uncertainty.

Recall that in the first-order second moment techniques, the variance of Z
is approximated as

m .
VAR(Z) = ) c.? o, (3.3)
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where Cj = dg(x)/dxy evaluated at a point of interest in xj, and

oj = the variance of xj.
The contribution of each basic variable to the forecast variance is Ciz aiz
with Cj evaluated at X. Comparison with Monte Carlo simulation (discussed
in section 3.3) reveals that the variance estimated by Eq. 3.3 is not always
a good approximation of the "true" variance. Nevertheless, it is reasonable
to assume that the relative contributions of the basic variables to the true

forecast variance is similar to that for the approximate variance.
Tables 3.5 and 3.6 display the average contribution of each of the

basic variables to the forecast variance and the relative rankings for each

Table 3.5. Contribution of the Basic Variables to the
HEC-1 Forecast Variance

Basic Ave, Percent Number of Times Contribution Ranked
Variable Contribution 1st 2nd 3rd 4th 5th
IL 25.5 3 11 1 0 3
CL 58.4 14 3 0 0 1
TC 7.4 1 4 11 2 0
SR 4.9 0 0 5 12 1
Amh 3.8 0 0 1 4 13

Table 3.6. Contribution of the Basic Variables to the
RORB Forecast Variance

Basic Ave. Percent Number of Times Contribution Ranked
Variable Contribution 1st 2nd 3rd 4th

ILR 31.4 5 9 3 1
CIR 445 9 6 2 1
1 19.2 4 3 10 1
Amr 4.9 0 0 3 15

basic variable summed over 18 verification events for HEC-1 and RORB,
respectively. These tables show that the vast majority of the forecast
variance is contributed by the initial loss-continuing loss rate abstraction
scheme used by both models to determine rainfall excess. On the average,
nearly 84 percent of the HEC-1 forecast variance is due to IL and CL with
these basic variables being the largest contributor to forecast variance for
17 of 18 events and the second largest for 14 of 18 events. While for RORB,
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these values are 76 percent, 14 of 18 events, and 15 of 18 events,
respectively. These number are so dominant that it is unlikely the errors
in the first-order approximation of the variance will bias the following
conclusions.

The relative contribution of the hydrograph parameters and the model
correction factor to the forecast variance is generally quite small for both
models. Therefore, each model’s conversion of rainfall excess into the
runoff hydrograph 1s reasonably accurate (i.e., has relatively small
uncertainty) given average hydrograph parameters derived from careful
calibration of the model over a wide range of events. This conclusion is
supported by the generally reasonable forecasts of the hydrograph peak
times.

It is important to stress that the high forecast variance due to IL and
CL is not simply due to the uncertainty in these basic variables. Rather,
the high forecast variance is due to the uncertainties in the rainfall
excess estimated by the initial loss-continuing loss rate abstraction
scheme, and hence, rainfall data wuncertainties play a major role.
Therefore, in order to improve forecast and prediction reliability, steps
must be taken to reduce the rainfall data uncertainty and research should be
conducted to develop improved methods of modeling abstractions. Actually,
it is likely that the majority of the uncertainty comes from the rainfall
data. For example, McGuinness'’ (1963) nomogram (see Fig. 2.4) estimates the
average absolute error for a 3 in. rainstorm on the Vermilion River
watershed to be 0.6 in. Such an error is much larger than one would expect
to come from the initial loss-continuing loss rate approximation of the true
abstraction process uninfluenced by data uncertainties. Nevertheless,
further study of the abstraction approximation uncertainties 1is also
merited.

The primary sources of rainfall data uncertainties are the descriptions

of the areal and temporal rainfall distributions. Actually, these
descriptions are not totally separate. The areal description has two
facets: accurate estimation of the areal average rainfall (of importance

for lumped models such as HEC-1) and accounting for the actual rainfall
spatial wvariability (of importance to distributed and quasi-distributed
models such as RORB). Furthermore, ignorance of spatial variability may add
increased uncertainty to lumped model predictions.

Laurenson and Mein (1985) noted that a time increment of around one-
fifth the time of hydrograph rise is often satisfactory for RORB. Shorter
time increments increase the processor time and the computer memory
requirements for the computation but often give no significant increase in
modeling accuracy. Thus, the temporal distribution of the rainfall data is
adequately described in this study, and so the description of the areal
rainfall distribution is the main source of rainfall data uncertainty and
forecast uncertainty. This conclusion agrees with the work of Schilling and
Fuchs (1986) who performed a sensitivity analysis considering the major
factors affecting forecast reliability for urban stormwater models and
concluded that the spatial resolution of rainfall has a dominant influence
on the reliability of computed runoff for small urban basins. Furthermore,
this conclusion was expected in light of the large errors in assessing the
average areal rainfall from a limited number of gages, e.g., as reported by

58




[—

McGuinness (1963). Also, as discussed in Appendix A, many researchers
including Bras and Rodriguez-Iturbe (1976), Wilson et al. (1979), Troutman
(1982a and b, 1983), and Schilling (1984), warned of the severe effects of
rainfall spatial variability on runoff predictions from small watersheds,
especially for peak discharge predictions. Interestingly, all of the above
work on the effects rainfall spatial variability has been for small
watersheds (areas less than 82 square miles) both real and hypothetical, far
smaller than the Vermilion River watershed at Pontiac (579 square miles).
It could be that even for a watershed of this size with a fairly long time
of concentration (38 hrs as defined for HEC-1), the natural runoff process
does not filter out the effects of rainfall spatial variability. However,
the data used in this study is not sufficient to separate out the effects of
inaccurate areal average precipitation versus rainfall spatial variability
and to then draw general conclusions.

In summary, accurate and reliable runoff forecasts require detailed
information on the areal distribution of rainfall for any watershed
utilizing rainfall-runoff modeling. Furthermore, the reliability of
forecasts and predictions currently being made by hydrologic models using
data from just a few rain gages is questionable at best.

3.4.3 Forecast Reliability as Guide for Comparing the Selecting Models

In hydrologic modeling, there is a trade-off between a simple model’'s
lesser data requirements and parsimonious and more accurately estimated
parameters versus the greater potential output accuracy from a complex
model. This trade-off obviously affects the accuracy and reliability of the
model forecasts and predictions. Reliability analysis offers a possible
means of evaluating the trade-off. If the forecasts from a simple model and
a complex model are equally reliable, the simple model should be used.

In truth, both HEC-1 and RORB are about equally complex. Each model
uses approximately the same initial loss-continuing loss rate scheme of
determining abstractions. Each model uses conceptual modeling principles to
convert the rainfall excess into runoff: HEC-1 uses Clark’s (1945) time-
area method, while RORB uses a sequential series of nonlinear reservoirs.
Finally, HEC-1 forecasts are a function of five basic variables while RORB’s
are a function of four basic variables (the variance from a fifth basic
variable has been buried in that of another basic variable).

Despite these similarities, there are two important differences between
HEC-1 and RORB. HEC-1 models the watershed as a single, linear lumped
system, while RORB is a quasi-distributed model visualizing the watershed
output as a nonlinear sum of the outputs from conceptually identical lumped

system subwatersheds. In truth, many "distributed" models discussed in
hydrologic literature are actually just a conglomeration of lumped system
models and are correctly described as quasi-distributed. Therefore, the

reliability comparison between HEC-1 and RORB provides an interesting
example of the  relative utility of linear lumped system and nonlinear
quasi-distributed models,

Table 3.4 displays the B values for the measured peak, By, and flood
level A, estimated by the AFOSM method for both HEC-1 and RORB. If the
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concept of considering By as a confidence limit on the forecast is utilized,
the RORB By value would lie outside the corresponding HEC-1 forecast
confidence limits for 13 of 18 events. For four of these events, the
difference between the Py values for HEC-1 and RORB is quite small. Hence,
it appears that the HEC-1 forecasts are generally a bit more reliable than
the RORB forecasts. One reason for HEC-1's slightly better reliability may
be that HEC-1l's conversion of rainfall excess to runoff is purely
conceptual, while RORB's is limited by physical constraints (i.e., the
subdivision of the watershed and stream network). These constraints may
hinder RORB’'s performance for cases with inadequate data.

Comparison of the forecast CDFs and PDFs also provides information on
the relative reliability of models. Comparison of Figs. 3.1 and 3.2 reveals
that the reliabilities of the HEC-1 and RORB are nearly equivalent with the
HEC-1 and RORB CDFs for the April 26, 1959 and April 8, 1965 events nearly
identical. Figure 3.3 also shows good agreement between the HEC-1 and RORB
forecast PDFs for the May 4, 1965. Hence, this more complete check of
forecast reliability indicates that HEC-1 and RORB produce forecasts of
equal reliability for the Vermilion River watershed at Pontiac.

Each model is being used for real-time forecasting of potential flood
events. A comparison of the flood level exceedance probability estimated
based on each model’s forecast and the AFOSM reliability analysis method
provides interesting information on the relative reliability and utility
ofthe two models. A comparison of the S values in Table 3.4 shows the RORB
Br values to be consistently less than the HEC-1 Bf values and often the
difference between the two is quite large. Cornell (1972) pointed out that
the utility of FOSM methods should not be judged solely on the exactness of
the estimated probabilities but rather in terms of whether the errors in the
approximated probabilities significantly change the final decision or design
parameters. Thus, for the assessment of model utility relative to flood
forecast performance, the estimated flood level exceedance probabilities and
their effects on flood watch and warning decisions must be considered.
Table 3.7 displays the flood level exceedance probabilities estimated by
incorporation of the AFOSM method with HEC-1 and RORB. In general, the
probabilities compare quite well and in only four cases -- April 16, 1957,
July 22, 1957, June 12, 1958, and June 16, 1973 events -- would the
difference in Py values be likely to alter the flood warning decision.

The application of the AFOSM reliability analysis method to the
uncertainties in the RORB and HEC-1 modeling schemes has shown that these
models produce forecasts of nearly equal reliability, especially on a flood
warning decision making level. Therefore, relative to each other, both HEC-
1 and RORB will "suffice" for real-time flood forecasting on the Vermilion
River watershed. However, to more stringently test whether these models
truly "suffice" for real-time flood forecasting as an aid to flood warning
decision making, reliability analysis examinations of other models with
better input data must be carried out to determine what reliability levels
can be achieved.

For this case, a simple linear lumped system model performs as well as
a more complex mnonlinear quasi-distributed model. This result is not
surprising in light of the work of Singh (1977) who noted that errors in
estimating rainfall excess often overpower the nonlinearity effects in the
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Table 3.7. Flood Level Exceedance Probabilities for
the Given Events Estimated by HEC-1 and
RORB Incorporating the AFOSM Method

Pr
Date HEC-1 RORB

6/21/56 0.0026 0.029
4/16/57 0.239 0.425
4/24/57 0.125 0.170
7/13/57 0.034 0.078
7/22/57 0.251 0.504
6,/09/58 0.214 0.340
6/12/58 0.036 0.290
7/14/58 0.954 0.960
4/26/59 0.035 0.044
9/23/61 0.000005 0.00033
5/10/62 0.00026 0.0027
4/05/65 0.000088 0.0011
4/08/65 0.000024 0.00072
4/23/65 0.0094 0.040
5/04/65 0.222 0.314
6/16/73 0.335 0.552
5/12/70 0.998 0.999

12/02/82 0.947 0.954

runoff process making linear models preferable to nonlinear models for some
truly nonlinear rainfall-runoff processes. This conclusion also supports
the observation of Packer (1972) that no mathematical calculation, however
sophisticated, can be better than the validity, reliability, adequacy, and
completeness of the data used in the analysis. Thus, the common assumption
that distributed and quasi-distributed models provide greater accuracy and
reliability is only justified when the input data 1is also sufficiently
distributed. TFor cases where the available input data is sparse, simple
lumped system models will "suffice" and are preferred.

3.5 TUse of the Probability of Flooding for Flood Warning Decision Making

The December 12, 1982 event is an example of the hoped for result of
the incorporation of reliability analysis with real-time flood forecasting
models to produce an estimate of the probability of flooding for the given
event to aid flood warning decision making. If the people of Pontiac had
known 20 hours before the peak reach town that there was 95 percent chance
that the most damaging flood level would be exceeded, Pontiac’s f£flood
warning and preparedness program would have greatly reduced the $2.3 million
damages. Unfortunately, as discussed below, the real-time flood forecasting
models -- HEG-1 and RORB -- are not sufficiently accurate or reliable
representations of the true rainfall-runoff process to permit direct use of
the flood level probability estimated by the AFOSM method.
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In statistical testing, confidence limits are often used to define the
confidence with which one can reject a hypothesis that a certain data set is
a subset of the overall population. If the Ay value were considered a
confidence limit on the forecast peak, for 5 of 17 events (excluding the
May 12, 1970 event) for HEC-1 and for 7 of 17 events for RORB, the actual
measured peak value could be rejected with greater confidence than the flood
level (i.e., |Bu| > |Bfr|) even though the flood level was much greater than
the measured peak for 16 of these events. This demonstrates that the two
models are not sufficiently reliable to permit direct use of the flood level
probability estimates in flood warning decision making.

However, by considering the typical, standardized forecast error (i.e.,
the average absolute value of fy) some "rules of thumb" for flood warning
decision making may be derived which consider the forecast and its
reliability. These "rules of thumb" are as follows:

1) For cases where the likelihood of flooding indicated by the value of Bp
is within the bounds of the average |By| for that type of event (summer
or non-summer), the occurrence of a flood has a likelihood equivalent to
that for the typical measured peak. Therefore, a flood watch should be
issued.

2) For cases where the likelihood of flooding is greater than that due to
the typical error in the forecasts (i.e., B < -|ﬂM|), a flood warning
should be issued.

Tables 3.8 and 3.9 display the average magnitudes of IﬂMl from the
various FOSM methods for HEC-1 and RORB, respectively. Using these
average magnitudes "rules of thumb" for flood warning decision makingwere
established for non-summer and summer events as described above.

Table 3.8. Average Magnitudes of |By| from the Various
First-Order Second Moment Methods for HEC-1

Event Type Event MVFOSM AFOSM
Number Z=R-L Z=An(R/L)

Non-Summer 10 0.599 0.611 0.642

Summer 7 1.339 1.798 1.060

Overall 17 0.904 1.010 0.816
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Table 3.9. Average Magnitudes of |By| from the Various
First-Order Second Moment Methods for RORB

Event Type Event MVFOSM AFOSM
Number Z=R-L Z={n(R/L)

Non-Summer 10 0.601 0.679 0.673

Summer 7 1.458 2.069 1.400

Overall 17 0.954 1.250 0.974

Tables 3.10 and 3.11 display the decisions made based on these "rules of
thumb" for HEC-1 and RORB, respectively. Also shown in these tables is the
actual result of the event and the flood warning decision made based on the
forecasts alone (flood watch = expected total runoff peak discharge exceeds
90 in. above the water supply dam or 7270 cfs, flood warning = expected
total runoff peak discharge exceeds flood stage 130 in. above the dam or
10880 cfs).

Table 3.10.  Comparison of Flood Warning Decisions Using
Reliability Analysis Based "Rules of Thumb”
Versus Standard Real-Time Forecasts for HEC-1

Date AFOSM MVFOSM Forecast Actual
=R-L Z=In(R/L) Alone Result
6/21/56 No No No No No
4/16/57 No No No Watch No
4/24/57 No No No Watch Flood™*
7/13/57 No No Watch No No
7/22/57 Watch Watch Watch Watch No
6/09/58 Watch Watch Watch Watch No
6/12/58 No Watch Watch Watch Watch
7/14/58 Warning Warning Warning Warning Evac.*
4/26/59 No No No No No
9/23/61 No No No No , No
5/10/62 No No No No No
4/05/65 No No No No No
4/08/65 No No No No No
4/23/65 No No No No No
5/04/65 No No No Watch Watch
6/16/73 Watch Watch Watch Watch No
5/12/70 Warning Warning Warning Warning Flood
12/02/82 Warning Warning Warning Warning Flood

*For this event, the Evacuation Center in Pontiac would be opened.
**This event does not exceed the worst flood level, but it is one of
the five serious floods listed in Table C.2.
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Table 3.11. Comparison of Flood Warning Decisions Using
Reliability Analysis Based "Rules of Thumb"
Versus Standard Real-Time Forecasts for RORB

Date AFOSM MVFOSM Forecast Actual
Z=R-L Z=in(R/L) Alone Result
6/21/56 No No No No No
4/16/57 Watch Watch Watch Watch No
4/24/57 No No No Watch Flood™*
7/13/57 No No Watch No No
7/22/57 Watch Watch Watch Watch No
6/09/58 Watch Watch Watch Watch No
6/12/58 Watch Watch Watch Watch Watch
7/14/58 Warning Warning Warning Warning Evac.™
4/26/59 No No No No No
9/23/61 No No No No No
5/10/62 No No No No No
4/05/65 No No No No No
4/08/65 No No No No No
4/23/65 No No No No No
5/04/65 Watch Watch Watch Watch Watch
6/16/73 Watch Watch Watch Warning No
5/12/70 Warning Warning Warning =~  Warning Flood
12/02/82 Warning Warning Warning Warning Flood

*For this event, the Evacuation Center in Pontiac would be opened.
**This event does not exceed the worst flood level, but it is one of
the five serious floods listed in Table C.2.

In general, the real-time forecast based flood warning decisions
perform well relative to actual outcome of the event. The advantage of the
real-time forecasting schemes relative to the existing FWP system in Pontiac
is that the forecasts provide civil defense authorities much more time (> 10
hours) to prepare for the flood. The real-time forecasts alone tend to
overestimate the flood potential relative to the forecasts considering
probabilistic information. For HEC-1, the forecast alone indicates watches
where none are needed for the April 16, 1957 and May 4, 1965 events, and for
RORB the forecast alone indicates a warning for the June 16, 1973 while the
probabilistic "rules of thumb" indicate only a watch. However, this
tendency is not always bad because the forecast alone approach is the only
one which indicated even a watch for the severe flood caused by the April
24, 1957 event. Nevertheless, it is felt that the probabilistic "rules of
thumb" generally provide improved decision making, if for no other reason
than the improvement in the forecast gained from knowing its relative
accuracy.
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For the summer events, the performance of the forecast based decisions
is somewhat less desirable with flood watches indicated for the July 22,
1957, June 9, 1958, and June 16, 1973 events where none are really

necessary. To establish a FWP system for Pontiac based on real-time
forecasting, it would be best to establish seasonal modeling schemes using
different parameters for summer and non-summer events. However, the

establishment of such schemes is beyond the scope of this research.

For future incorporation of reliability analysis with real-time flood
forecasting, if large verification data sets are not available, a possible

-set of preliminary "rules of thumb" would be:

Flood watch: absolute value of By less than 1,
Flood warning® pSg value less than -1.

These correspond to the typical results found in this study over all events
for two different hydrologic models. If it is felt that the real-time flood
forecasting scheme being used is more reliable than those studied here
(e.g., better input data is available), the "rules of thumb" found here for
non-summer events may be appropriate.

The accuracy and reliability of the real-time flood forecasting scheme
plays a key role in the utility of the "rules of thumb" as a screening tool
for flood warning decision making. Hence, the utility to flood warning
decision makers of incorporation of reliability analysis with real-time
flood forecasting schemes is a function of the reliability of the schemes.
Nevertheless, it appears that reliability analysis can provide useful
information for flood warning decision making even for real-time flood
forecasting schemes of questionable reliability. An examination of the
proposed procedure for cases with better input data is needed and should
further demonstrate the utility of reliability analysis.

3.6 Comparison of First-Order Second Moment Methods

Tables 3.12 and 3.13 compare the fy values estimated by the two MVFOSM
method formulations to the AFOSM method By estimate and to the relative
errors these fBys represent for HEC-1 and RORB, respectively. Examination of
the Py values shows that the difference in fy values between events 1is
quitesimilar for all three methods, but that the actual values estimated by
the MVFOSM methods are, in general, significantly different from the AFOSM
method values.

It is important to remember that these methods are to be used as
decision tools for the assessment of real-time flood forecasting scheme
reliability and of flood level exceedance probabilities. Hence, the utility
of the simplified approaches should be  judged on the decisions made and not
the absolute accuracy of the probabilities estimated. In terms of the
reliability of the real-time flood forecasting schemes, the MVFOSM method
with Z=R-L indicates the measured value is outside the forecast 95 percent
confidence limits for 2 of 17 events for HEC-1 and 3 of 17 events for RORB,
while the MVFOSM method with Z=£n(R/L) indicates this for 3 of 17 events for
HEC-1 and 4 of 17 events for RORB. Thus, the conclusion that each modeling
scheme provides good forecasts in a stochastic sense would also be reached
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by the MVFOSM methods. In terms of flood warning decision making, the
probabilistic "rules of thumb" for the MVFOSM methods are quite similar to
those for the AFOSM method, and perform equally well, see Tables 3.10 and
3.11.

Tables 3.14 and 3.15 compare the By values estimated by the two MVFOSM
method formulations to the AFOSM method Bp estimate and to the relations
between the measured, predicted, and flood 1level discharges for HEC-1
andRORB, respectively. 1In general, the various By values compare quite well
for all three methods with the exception of the values from MVFOSM method
with Z=#n(R/L) for the very low probability events. Tables 3.16 and 3.17
compare the flood level exceedance probabilities corresponding to these By
values and to Monte Carlo simulation for HEC-1 and RORB, respectively.
These probabilities compare very favorably for all events and all estimation
methods, especially if compared in terms of their use in flood warning
decision making.

Table 3.12. HEC-1 B Values Corresponding to the Measured Peak

ﬁM
Date Qom Q* Percent AFOSM MVFOSM
(cgs) (cgs) Error Z=R-L Z=4n(R/L)
6/21/56 2956, 5399. 82.65 -0.856 -1.356 -1.805
4/16/57 4448, 8476. 90.57 -1.980 -1.657 -2.251
4/24/57 9020. 6523, -27.68 0.696 1.045 0.884
7/13/57 3334, 5434, 62.98 -0.484 -0.942 -1.191
7/22/57 3055. 8571. 180.55 -1.607 -2.119 -3.396
6/09/58 5558. 7949, 43.02 - -0.9741 -0.756 -0.899
6/12/58 6630. 6325, -4.60 -0.124 0.112 0.109
7/14/58 8480, 15067. 77.68 -2.119 -2.707 -3.559
4/26/59 5545, 5724, 3.23 -0.326 -0.072 -0.074
9/23/61 3500. 2278. -34.90 0.344 0.648 0.519
5/10/62 5580. 4087. -26.76 0.593 0.782 0.666
4/05/65 4622, 3280, -29.04 0.453 0.810 0.679
4/08/65 3440, 3176. -7.68 -0.168 0.115 0.111
4/23/65 4552, 4960. 8.95 -0.472 -0.127 -0.133
5/04/65 7700, 8033. 4,32 -0.401 -0.118 -0.121
6/16/73 6685, 9377. 40.28 -1.281 -1.378 -1.624
5/12/70 9790, 17107. 74.74 -2.941 -2.646 -3.452
12/02/82 12300. 14674. 19.30 -0.987 -0.618 -0.674

literation scheme has difficulty converging due to discontinuity in
dg/d1IL.
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Table 3.13. RORB 8 Values Corresponding to the Measured Peak

Py
Date Qum Q¥ Percent AFOSM MVFOSM
(c%s) (c%s) Error Z=R-L Z=in(R/L)
6/21/56 2956. 5787. 95.77 -1.600 -1.466 -2.104
- 4/16/57 4448 . 9622.  107.22 -2.031 -2.142 -3.080
4/24/57 9020. 7331.  -18.72 0.527 0.595 0.536
7/13/57 3334, 5193, 55.76 -0.385 -0.745 -0.922
7/22/57 3055.  10345.  238.63 -2.105 -2.782 -4.815
6/09/58 5558. 8903. 60.18 -1.3301  -1.088 -1.365
6/12/58 6630. 8171. 23.24 -0.919 0.517 0.573
7/14/58 8480.  16753. 97.56 -2.136 -2.261 . -3.118
4/26/59 5545. 5824 . 5.04 -0.256 -0.090 -0.092
9/23/61 3500. 2681.  -23.41 0.217 0.340 0.294
5/10/62 5580. 3932.  -29.53 0.720 0.765 0.639
4/05/65 4622. 3337.  -27.81 0.496 0.600 0.508
4/08/65 3440, 3216. -6.50 -0.091 0.084 0.073
4/23/65 4552. 5519. 21.25 -0.676 -0.400 -0.440
5,/04/65 7700. 8540. 10.91 -0.560 -0.234 -0.247
6/16/73 6685. 10490, 56.92 -1.345 -1.350 -1.677
5/12/70 9790.  19192. 96.03 -3.3202  -2.206 -3.031
12/02/82 12300.  16080. 30.73 -1.158 -0.760 -0.866

literation scheme has difficulty converging due to discontinuity in
dg/d1IL.

“Iteration scheme has difficulty converging due to the extreme
probability of the event.

In general, the MVFOSM method with Z=R-L performs much better than with
Z=4n(R/L) for the extreme cases (low probability floods and greatly over-
predicted measured peaks). Initially, one might think that because the two
greatest sources of forecast uncertainty -- the 1initial loss and the
continuing loss rate -- are lognormally distributed, the MVFOSM method with
Z=In(R/L) might offer better estimates than with Z=R-L. However, the
dominating factor appears to be the near linearity in the actual system
performance not the basic variable distributions. When Z is defined as
In(R/L), overprediction errors yield larger (in absolute value) B values
than equal underprediction errors. In the actual system performance,
however, overprediction and underprediction errors of equal magnitude
indicate roughly equal forecast uncertainty. Hence, for summer events with
generally large overpredictions of the measured peak, the MVFOSM method with
Z=fn(R/L) greatly overpredicts the magnitude of By relative to the AFOSM
method. Conversely, for the events with low flood level exceedance
probabilities (greatly underpredicted flood levels), the MVFOSM method with
Z=fn(R/L) greatly underpredicts the magnitude of Bp relative to the AFOSM
method. The linear system performance experienced here seems likely for
typical cases of real-time flood forecasting using hydrologic models.
Therefore, the nonlinearity assumptions of the MVFOSM method with Z=£n(R/L)
are not valid for the analysis of uncertainties in the real-time flood
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forecasting schemes using rainfall-runoff models or for the- analysis of
rainfall-runoff modeling uncertainties in general.

The MVFOSM method with Z=R-L gives quite reasonable estimates of model
reliability and flood 1level exceedance probabilities relative to AFOSM
method and Monte Carlo simulation results. The good agreement between
methods could, in part, be due to the general inaccuracy and unreliability
of the real-time flood forecasting schemes. That is, the unreliability in
the schemes themselves could be so great that the difference between the
reliability analysis methods are relatively insignificant. The real-time
flood forecasting schemes perform quite well for the non-summer events, and
for these events the MVFOSM method with Z=R-L compares quite well (in a
decision sense) with the AFOSM method. Therefore, it seems the differences
between the methods may be insignificant even for cases where the forecasts
are reasonably reliable. Further investigation of the MVFOSM method with
Z=R-L 1is merited to verify its wutility for rainfall-runoff modeling
uncertainty analysis. At this time, the AFOSM method appears to be the best
method to assess the reliability of rainfall-runoff models and real-time
flood forecasting schemes.

Table 3.14. HEGC-1 g Values Corresponding to the Flood Level

ﬁF
A%

Date Qom Q Qr AFOSM MVFOSM
(c%s) (c%s) (cfs) Z=R-L Z=In(R/L)
6/21/56 2956. 5399, 10646. 2.8001 2,911 2.034
4/16/57 4448, 8476. 10418. 0.710 0.800 0.720
4/24/57 9020. 6523. 9930. 1.151 1.425 1.147
7/13/57 3334, 5434, 10774. 1.820 2.396 1.669
7/22/57 3055.. 8571. 10565. 0.672 0.766 0.689
6/09/58 5558. - 7949, 10548. 0.794 0.822 0.711
6/12/58 6630. 6325, 9800. 1.8051 1.251 1.015
7/14/58 8480. 15067. 10690, -1.680 -1.782 -2.126
4/26/59 5545, 5724, 10605. 1.806 1.954 1.425
9/23/61 3500. 2278. 10800. 4.4001 4,523 1.882
5/10/62 5580. 4087. 10220. 3.4701 3.209 1.960
4,/05/65 4622, 3280. 10102, 3.7501 4,119 2.228
4/08/65 3440. 3176. 9680. 4.0701 2.837 1.554
4/23/65 4552, 4960. 10312, 2.3502 1.673 1.135
5/04/65 7700, 8033, 10240. 0.767 0.787 0.696
6/16/73 6685. 9377. 10412. 0.427 0.529 0.502
5/12/70 9790. 17107. 10420, -2.810 -2.418 -3.067
12/02/82 12300. 14674, 10080. -1.617 -1.196 -1.435

literation scheme has difficulty converging due to the extreme
probability of the event.

Iteration scheme has difficulty converging due to discontinuity
in 8g/d1L.
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Table 3.15.

RORB B Values Corresponding to the Flood Level

ﬂF
A

Date Qom Q QF AFOSM MVFOSM
(cgs) (cgs) (cfs) Z=R-L  Z=4n(R/L)
6/21/56 2956. 5787. 10646, 1.9031 2.516 1.827
4/16/57 4448 . 9662, 10418. 0.189 0.310 0.108
4/24/57 9020. 7331. 9930. 0.953 1.091 0.784
7/13/57 3334, 5193. 10774. 1.421 2.235 1.518
7/22/57 3055. 10345, 10565. -0.011 0.084 0.083
6/09/58 5558. 8903, 10548. 0.413 0.535 0.382
6/12/58 6630. 8171. 9800. 0.553 0.547 0.498
7/14/58 8480. 16753. 10690. -1.756 -1.657 -2.057
4/26/59 5545, 5824, 10605. 1.702 1.538 1.123
9/23/61 3500, 2681, 10800, 3.4103 3.188 1.459
5/10/62 5580, 3932. 10220. 2.7832 2.920 1.744
4/05/65 4622. 3337. 10102. 3.0702 3.158 1.725
4/08/65 3440, 3216. 9680, 3.1852 2.186 1.120
4/23/65 4552. 5519, 10312. 1.748 1.981 1.426
5/04/65 7700. 8540, 10240. 0.484 0.474 0.432
6/16/73 6685. 10490. 10412. -0.130 -0.028 -0.028
5/12/70 9790. 19192, 10420. -3.163 -2.058 -2.751
12/02/82 12300. 16080. 10080. -1.689 -1.206 -1.510

literation scheme has difficulty converging due to discontinuity

in 3g/d1IL.

Iteration scheme has difficulty converging due to the extreme

probability of the event.
Iteration scheme has difficulty converging due to both 1 and 2.
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Table 3.16. Probabilities of Flood Level Exceedance Estimated for
HEC-1 Using Monte Carlo, AFOSM, and the MVFOSM Methods

Date Monte AFOSM MVFOSM
Carlo Z=R-L Z=in(R/L)
6/21/56 --- 0.0026 0.0018 0.021
4/16/57 0.192 0.239 0.212 0.236
4/24/57 0.108 0.125 0.077 0.126
7/13/57 0.023 0.034 0.0083 0.048
7/22/57 0.191 0.251 0.222 0.245
6/09/58 0.164 0.214 0.206 0.239
6/12/58 0.023 0.036 0.105 0.155
7/14/58 0.933 0.954 0.962 0.983
4/26/59 0.019 0.035 0.025 0.077
9/23/61 --- 0.000005 0.000003 0.030
5/10/62 .- 0.00026 0.00067 0.025
4/05/65 --- 0.000088 0.000020 0.013
4/08/65 --- 0.000024 0.0023 0.061
4/23/65 0.0046 0.0094 0.047 0.128
5/04/65 0.160 0.222 0.216 0.243
6/16/73 0.260 0.335 0.298 0.308
5/12/70 --- 0.998 0.992 0.999
12/02/82 --- 0.947 0.884 0.924
Table 3.17. Probabilities of Flood Level Exceedance Estimated for
RORB Using Monte Carlo, AFOSM, and the MVFOSM Methods
Date Monte AFOSM MVFOSM
Carlo Z=R-L Z=An(R/L)
6/21/56 --- 0.029 0.0059 0.034
4/16/57 0.363 0.425 0.378 0.457
4/24/57 0.162 0.170 0.138 0.217
7/13/57 0.057 0.078 0.013 0.065
7/22/57 0.438 0.504 0.467 0.467
6/09/58 0.278 0.340 "~ 0.296 0.351
6/12/58 0.228 0.290 0.292 0.309
7/14/58 0.944 0.960 0.951 0.980
4/26/59 0.026 0.044 0.062 0.131
9/23/61 --- 0.00033 0.00091 0.072
5/10/62 --- 0.0027 0.0018 0.041
4/05/65 --- 0.0011 0.00079 0.042
4/08/65 --- 0.00072 0.014 0.131
4/23/65 0.026 0.040 0.024 0.077
5/04/65 0.254 0.314 0.318 0.333
6/16/73 0.485 0.552 0.511 0.511
5/12/70 --- 0.999 0.980 0.997
12/02/82 --- 0.954 0.886 0.934
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4. CONCLUSIONS AND RECOMMENDATTONS

4.1 Conclusions

A general procedure was developed for applying reliability analysis to
consider the uncertainties in hydrologic models used in forecasting and
prediction. The reliability analysis approach is capable of considering all

sources of modeling uncertainty -- data, model parameters, and model
structure -- to produce estimates of the probability that specific hydro-
logic target levels will be exceeded due to actual, design, or simulated
rainstorms. Proper selection of these target levels allows estimation of

interesting hydrologic information including assessment of model reliabi-
lity, supplementation of real-time flood forecasts with flood 1level
exceedance probabilities, etc.

The general procedure describes how reliability analysis may be
incorporated with calibrated or physical simulation (non-calibrated)
models. However, in this study, the approach was demonstrated only for the
case of two calibrated models applied to real-time flood forecasting. In
such cases, the data and model parameter uncertainties are assumed to be
represented by the variation of the individual event calibration results
about the parameter best estimates. The model structure uncertainty is
accounted for by a multiplicative correction factor, which is the ratio
between the measured peak discharge and peak discharge of the best fit
hydrograph. Statistics are estimated and distributions fit for each of the
basic variables (the model parameters and the model correction factor). The
various reliability analysis methods (Monte Carlo simulation, mean value
first-order' second moment, and advanced first-order second moment) are then
employed to evaluate the reliability of the real-time forecasting schemes
utilizing the estimated statistics and distributions.

A case study demonstrated the utility and potential benefits of the
general procedure. Based on the case study, the following conclusions are
made regarding the performance of the various reliability analysis methods;
the reliability of the specific hydrologic models wused and hydrologic
modeling, in general; and the sources of modeling uncertainty.

1. A comparison of system reliability analysis methods indicates:

a. Monte Carlo simulation may be used to analyze hydrologic model
uncertainty and flood likelihood, but its high computer time
requirements make it impractical for real-time forecasting at
this time. As computer capabilities increase, the 1,000 to
10,000 simulations necessary for the Monte-Carlo method may be
obtained inexpensively and efficiently (in about 30 min.).

b. The AFOSM method provides estimates of model uncertainty and

flood 1likelihood comparable to those from Monte Carlo
simulation at a considerable savings in computer time.
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c. The MVFOSM method with Z=R-L provides reasonable estimates of
model uncertainty and flood 1likelihood at the decision
(accuracy) level.

d. The nonlinearity assumptions of the MVFOSM with Z=£n(R/L) are
not valid for the analysis of wuncertainties in rainfall-
runoff models.

e. At this time, the AFOSM method appears to be the best method
to assess the reliability of rainfall-runoff models and real-
time flood forecasting schemes.

Often forecasts of low practical usefulness are "good" stochastic
forecasts. In such cases, the forecast variance (uncertainty) is
high, indicating reduction of this forecast variance via decreasing
the modeling uncertainties is the key to obtaining forecasts with
high practical usefulness.

"Rules of thumb" may be developed by considering typical forecast
reliability to detect likely flood events and aid in flood warning
decision making. These "rules of thumb" work fairly well even for
the case of somewhat unreliable real-time flood forecasting
schemes. o

The bulk of the forecast uncertainty is due to the uncertainties
in the estimation of the rainfall excess via the initial 1loss-
continuing loss rate abstraction scheme. The rainfall data
inadequacies apparently make up the majority of these
uncertainties, :

The reliability of forecasts and predictions currently produced by
hydrologic models using data from just a few rain gages is
questionable at best.

The hydrograph parameters and model (structure) correction factor
contribute relatively little to the forecast uncertainty.

The common assumption that distributed and quasi-distributed
models ©provide greater accuracy and reliability relative to
simpler linear, lumped system models is only justified when the
input data 1is sufficiently distributed. For cases where the
available input data 1is sparse, simple linear, lumped system
models will "suffice" and are preferred.
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4.2 Recommendations for Future Research

Based on the results of this study and the conclusions made in the
previous section, a number of recommendations for future research can be
made.

1. An examination of the general procedure for combining reliability

analysis with real-time rainfall-runoff models should be performed
for cases with better input data to demonstrate the ultimate
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utility of reliability analysis for flood warning decision making.

In order to improve forecast and prediction reliability, steps
must be taken to reduce the uncertainties in the abstraction
model, and especially, in the rainfall data.

Further investigation of the MVFOSM method with Z=R-L is merited,
especially for cases of recommendation 1, to verify its utility for
rainfall-runoff modeling uncertainty analysis.

Based on the results of this study, several other future research
topics should be valuable and feasible.

1.

A reliability analysis of the uncertainty in physical simulation
models should be performed utilizing the basic procedure outlined
in this study. Analysis of the reliability of predictions from
physical simulation models used on ungaged watersheds would be of
great interest in the development of design hydrographs for these
watersheds and in evaluating the usefulness of generating synthetic
series via such models for these watersheds.

Reliability analysis is capable of considering uncertain informa-
tion from a wide variety of sources. The potential usefulness and
reliability of forecasts made using radar rainfall measurements or
remotely sensed soil moisture or snow cover data can be assessed
and compared to the reliability of forecasts made with conven-
tionally obtained data. The uncertainties 1in quantitative
precipitation forecasts may be analyzed and combined with rainfall-
runoff modeling uncertainties to improve forecast lead time and
perhaps be useful for flash flood watch/warning decision making.

Combination of reliability analysis methods with the simple,
currently employed forecast updating techniques may doubly improve
flood warning decision making by improving the forecast and
increasing the information available for decision making.

Collection of the necessary economic data on avoidable (and other)
flood damage versus stage and estimation of expected flood damage
via reliability analysis for specific events may greatly aid flood
warning decision making by allowing an expected net economic
benefit criterion to be developed. Such economic considerations
might also be of interest in determining design hydrographs for
ungaged catchments,

Further case studies should be performed over the wide range of
watershed conditions (and sizes) and the wide variety of models
commonly wused in hydrology. Such studies will undoubtedly
increase knowledge of modeling uncertainty and improve designs and
decisions made based on uncertain information.
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Reliability analysis methods have been shown to easily and efficiently
account for the various sources of modeling uncertainty providing important
supplementary information for designers, forecasters, and decision makers.
It is hoped and recommended that in the future, hydrologists will commonly
employ these simple techniques to deal with the uncertainty over the wide
range of problems faced in hydrology and in the even wider range of methods
used to solve these problems.
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APPENDIX A. REVIEW OF RAINFALL-RUNOFF MODELS
AND THEIR UNCERTAINTY SOURCES

In the first section of Appendix A some of the rainfall-runoff models
which have been proposed for or applied to the task of real-time flood
forecasting within FWP systems are reviewed. Section A.2 describes the
reason for the wuncertainty in the supposedly deterministic forecasts
provided by these models. Section A.3 reviews research studying the effects
of errors and/or uncertainties in the data or model parameters on the output

from the hydrologic model. Consideration of these areas illustrates the
need for the study of the application of reliability analysis methods to
real-time flood forecasting models used in FWP systems. The last part of

Appendix A describes the potential usefulness of such reliability analysis
applications in the highly important selection of the hydrologic model for
use in real-time flood forecasting.

A.1 Real-Time Flood Forecasting Models

Any hydrologic model, which has been proposed for simulation of the
rainfall-runoff process, could be used for real-time flood forecasting.
However, since a comprehensive review of all hydrologic models is beyond
the scope of this research, a review of a cross section of the hydrologic
models which have been used or specifically proposed for real-time flood

forecasting on an event basis is presented. This cross section will
illustrate the wide variety of models which have been proposed, including
models from each of the major classifications (Chow, 1972): abstract

(includes stochastic and conceptual models) and physical simulation models,
as well as physical-conceptual models (which combine aspects of abstract and
physical simulation models). Furthermore, several types of hybrid models
combining properties of conceptual, physical-conceptual, or physical
simulation models with stochastic models have been developed. These models
and their advantages and shortcomings are also reviewed in this section.
This review of real-time flood forecasting models begins with a brief
history of real-time forecasting for flood warning leading to an assessment
of the current "state-of-the-art."

A.1.1 Historical Development of the Current "State-of-the-Art" of
Real-Time Flood Forecasting for Flood Warning

Prior to the development of high speed digital computers, the primary
means of obtaining flood information for the purpose of issuing flood
warnings were:

1) empirical graphical or tabular relations between upstream and
downstream flows developed from the historical record,

2) flood indices which relate rainfall and soil moisture conditions to
flood potential, i.e., when the measured rainfall exceeds the flood
index for the given soil moisture conditions, a flood warning is
issued, ‘
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3) flood alarm systems which set off an alarm in a key public place
(fire station, police station, etc.) when the upstream stage
exceeds a critical level.

These methods remain the primary source of information for flood warnings in
the majority of smaller communities in the U.S. Flood forecasting models of
some sort were developed only for cases where flood warnings were likely to
have very high benefits.

Japanese watersheds are characterized by relatively short river
reaches, remarkably steep river slopes, and tremendously heavy rainfall
intensities due to typhoons. Hence, in 1963 an electric analog model was
developed for flood forecasting on the River Kitakami (Iwasaki, 1967). This
model solved the Laplace transform of the convolution integral for discharge
from sub-basins and lateral inflow to the river using the output from a
cascade delay circuit whose resistance and capacitance were calibrated to
produce the unit hydrograph for the sub-basin. This model performed quite
well in forecasting the September, 1964, and the July and September, 1965,
floods.

The streams along the northern coast of California were subjected to
severe flooding in 1964. Hence, a program was initiated to establish a
flood warning system incorporating real-time flood forecasting. The runoff
hydrograph was generated using unit hydrograph theory with the effective
rainfall estimated from charts relating it to the basin Antecedent Index,
which results from a combination of a modified Antecedent Precipitation
Index and the Integrated Temperature Index (Burnash and Ferral, 1968).
Likewise, up to 1967 real-time flood forecasting in Australia was performed
using unit hydrographs derived for three hour rainfall duration over the
watershed of interest (Heatherwick, 1969).

In the early days of digital computer use in India, the unit hydro-
graph, synthetic unit hydrograph, instantaneous unit hydrograph, and system
models of network of linear filter models were considered for real-time
flood forecasting use for the rivers in peninsular India between 7°N and

17°N (Kumaraswamy, 1973). The results of these mathematical models were
compared and contrasted with the forecasts from a 1:10000 physical scale
model of this portion of peninsular India. The flood £forecasting and

warning system worked as described below. As soon as the telemetered data
are received at the computer center, the computer analyzes it utilizing the
mathematical model already developed and derives all the parameters and
constraints in a dynamic sense. The predicted flow values are computed for
each river cross section and after they are confirmed by the physical model,
they are transmitted to the various field engineers in charge of regulation
and control of the respective river basins. The main advantage of this
approach is that both the physical model and the mathematical model can be
used to calibrate each other in the absence of a truly good hydrologic
record.

The shortcomings of unit hydrograph theory and electric analogs are
well known, and hence théeir use in the pre-digital computer era was out of
necessity. These early approaches generally can deal adequately with
average situations but they lack the flexibility to handle wunusual

76

i -

it

ER———

_—

[—

[ PR

(S



U

a e i

anintend

situations (e.g., large floods) with the same accuracy (Heatherwick,
1969). With the advent of digital computers much more flexible and general
mathematical models of the rainfall-runoff process were developed and
implemented, and the quality of real-time flood forecasts greatly improved.

In the U.S. the effort to establish a large scale real-time forecasting
program on the nation’'s rivers began in 1971 (National Weather Service,
1972). In 1971, a decision was made that the NWS Hydrologic Research
Laboratory should develop a river forecast system based on hydrologic models
and to present the digital computer programs needed for its implementation.
They tested the SSARR (Streamflow Synthesis and Reservoir Regulation) model,
the Sacramento model, and a modified Stanford IV model by applying each to
six river basins representing various climatic and hydrologic regimes
throughout the contiguous U.S. Based on the results of the statistical
analyses of the tests completed as of August 1971, the modified Stanford IV
model was selected for use in the NWS River Forecast System package. In
1976, a major revision was made in the soil moisture accounting for the NWS
system (Peck, 1976). The components for soil moisture accounting of the
Sacramento model replaced those of the modified Stanford IV model. Also,
dynamic (implicit) routing techniques (Fread, 1974) were incorporated into
the system for use on major rivers where serious backwater problems are
encountered due to interconnected river systems or tidal effects.

The NWS River Forecast System package provides continuous simulation
and forecasting of streamflow given soil moisture and rainfall data and
quantitative precipitation forecasts. The standard routing interval is 6
hours, hence, the package forecasts flood discharges at 6 hour intervals
over the expected duration of the flood. The package has a built-in
updating routine which attempts to determine the cause of the error so that
the adjustment applied will correct the error and will minimize future
deviations between the measured and forecast hydrographs. Thus, the NWS
River Forecast System package is quite sophisticated and its use has been
quite successful. However, its 6 hour routing and forecast interval .(which
may be adjusted downward, but generally is not) has led to its being used
primarily for larger watersheds, leaving smaller watersheds (and smaller
communities) generally relying on the pre-computer methods.

Several innovations have been proposed to try to improve the accuracy
of real-time flood forecasts. The wuse of radar to measure rainfall
intensity has long been thought to be potentially useful to hydrologists
preparing real-time flood forecasts. Hughes and Longsdorf (1978) recom-
mended that radar measurements of rainfall intensity be combined with flood
indices and/or flood advisory tables for flash flood warning where insuffi-
cient time is available for real-time flood forecasting. Barge et al.
(1979) recommended the combined use of radar and rain gage measurements to
determine a better estimate of the true areal rainfall with the gage
improving the measurement accuracy of the radar and the radar providing
areal distribution information not available from rain gages. Nnaji et
al. (1983) combined automated rain gage data and radar measurement of
rainfall intensity to determine the temporal and areal rainfall
distribution over a watershed in South Carolina. A simple soil moisture
relation was applied to this rainfall data to determine the precipitation
excess which in turn was converted into the runoff hydrograph by convoluting

77



an impulse response function derived for the watershed. Similar uses have
been proposed for satellite measurements of areal rainfall.

Nevertheless, despite the advances proposed above, the current "state-
of-the-art" involves using the available rainfall data, the best estimates
of the model parameter values, a hydrologic model the hydrologist feels
"comfortable" with, and some sort of updating. 1In the following sections
the various models that some hydrologists have "felt comfortable with" and
have applied to real-time (operational) flood forecasting mostly for larger
watersheds are presented. It is interesting to note that in all the papers
reviewed only Bergstrom (1981) recommended using alternative simulations
(sensitivity analysis based on different meteorological forecasts) to
estimate the risk of flooding.

A.1.2 Abstract Models

Chow (1972) describes abstract models as models which attempt to
represent the prototype theoretically in a mathematical form. 1In abstract
modeling, hydrologic phenomena are treated as systems which convert input to

output via a mathematical transfer function which does not require informa-

tion on the actual physical rainfall-runoff process. Examples of abstract
models include the regression and time series models, commonly thought of
when the term "stochastic modeling" is mentioned, and conceptual "black box"
models.

A.1.2.1 Stochastic Models

In this section, the conventional definition of stochastic models as
models which approximate the relation between random input (rainfall or
streamflow measurements) and the random output (streamflow at the area of
interest). Later, in section A.2, a more general view of stochastic
processes, models, and forecasts 1is discussed. For real-time flood
forecasting, the stochastic models used are generally regression models
which utilize autocorrelation in the downstream flows and the correlation
between downstream flows and the upstream flows, basin precipitation, and
their time series.

The most common of these regression models are the simple single
stream cases where upstream and downstream flows may be related by simple
graphical, equation, or tabular relations. Such graphical or tabular
relations are generally not as reliable as is desired for community flood
warning, but they may be of sufficient reliability for other uses. For
example, Mimikou (1984) wused such relations to protect site workers and
engineering equipment from floods during the construction of diversion works
for the Pournari dam on the Aracthos river in western Greece. 1In this case,
high reliability in forecasts 1s not necessary because the response system
is known with certainty.

Bidwell (1979) used multiple linear regression and autoregression to

forecast flood levels on the Klang river at Kuala Lumpur, Malaysia. The
watershed upstream of Kuala Lumpur was subdivided into three sub-basins
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representing the Klang river and its two main tributaries. Regression

equations were prepared for gages on each of these rivers just before their
confluence. A fourth regression equation was prepared relating the stage at
these three gages and at Kuala Lumpur. The resulting equations provide 4
hour lead time forecasts which do not possess a high degree of forecast
accuracy, but do serve the purpose of the local authorities.

The most innovative use of stochastic methods in real-time flood
forecasting has been applying filtering techniques to the output from
conceptual or physical simulation models to obtain adaptive (i.e.,
continually updated) real-time forecasts. These techniques are described
in detail in section A.l1l.5.

A.1.2.2 Conceptual Models

Conceptual or "black box" hydrologic models are mathematical transfer
functions which convert the effective rainfall input to the hydrologic
system into the runoff hydrograph. These transfer functions are "best fit"
mathematical formulations which do not consider the physics of the runoff
process within the watershed system. The unit hydrograph and its relatives
(i.e., synthetic and instantaneous unit hydrographs) are the most common
examples of conceptual models. For the purest form of conceptual models,
the rainfall excess is determined by calibrated runoff coefficients, while
models which determine rainfall excess via physical relations and then
convert this to runoff via conceptual means are physical-conceptual models
(see section A.1.3).

As noted in section A.1.1.2, unit hydrographs were the "state-of-the-
art" in real-time flood forecasting before the advent of digital computers.
Since the development of digital computers, several conceptual models have
been proposed and used for real-time flood forecasting.

Kumaraswamy (1973) used unit hydrographs, synthetic unit hydrographs,
instantaneous unit hydrographs, and system models of network of linear
filter models for real-time flood forecasting for rivers in peninsular India
between latitudes 7°N and 17°N,

Bel’chikov (1975) used linear reservoir type models to estimate the
surface runoff and storm seepage from a watershed and a linear model of
transformation to covert these flows into the runoff hydrograph at the
outlet. He applied this model to real-time flood forecasting for the Rioni
River upstream of Sakochakidze (U.S.S.R). Later in 1977, Bel'chikov applied
this model to estimate runoff from the mountainous upper half of the Ingoda
River basin upstream of Chita (U.S.S.R.).

The inflow-storage-outflow (ISO) model used by Lambert (1981) for
operational forecasting on the River Dee (Wales) is similar to a unit
hydrograph approach. The method assumes that a natural catchment area may
be represented by a single unified natural storage. By integrating the
storage/outflow relation derived for each subcatchment and using standard
channel routing techniques, the total outflow hydrograph is obtained.
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Nnaji et al. (1983) used an impulse-response function to convert the
effective rainfall determined from a combined rain gage and radar rainfall
measurement system into discharge for a South Carolina watershed.

Goring (1984) jused the fast Fourier transform method to find the
transfer function between upstream and downstream gages on the Grey River
in New Zealand. For the Grey River, only 57 percent of the outlet
discharge is accounted for by the upstream gages, and so regression methods
were deemed unwise.

The CLS (Constrained Linear System) model developed by Natale and
Todini (1976a and b) uses a rather interesting hybrid approach by combining
the instantaneous unit hydrograph with physical principles. They imposed a
set of constraints that can be deduced from the physics of the hydrologic
system on the instantaneous unit hydrograph in order to reduce the high
sensitivity of the classical parameter estimation techniques to errors in
the available data. Using Monte Carlo tests, they found that in the field
of "small samples" (<100 rainfall-runoff records), which is the usual hydro-
logic range, constrained estimation is much better than classical uncon-
strained estimation. Askew (1981) applied the CLS model to real-time flood
forecasting for Central American watersheds with mixed results.

The Isolated Event Model is a very simple conceptual model, and yet it
has been used quite successfully for real-time flood forecasting within a
FWP system. Eyre and Crees (1984) used this model to simulate runoff from
the Yeading West catchment (northwest of London), and Sargent (1984) wused
this model for the River Tyne at Haddington (Scotland). The Isolated Event
Model 1is a simple four parameter rainfall-runoff model which wuses a
rainfall-runoff ratio based on soil moisture, nonlinear reservoir routing,
and a pure time delay in the routing to estimate the outflow hydrograph.

A.1.3 Physical-Conceptual Models

A large group of models has been developed which combine physical

principles with the "black box" idealizations of conceptual models. Such
models are often referred to a '"conceptual models" in the literature
because they are based in part on physical "concepts." However, the term

conceptual models 1is probably best reserved for the "black box," input-
output type models described in section A.1.2.2, while the term physical-
conceptual models better describes those which combine physical and
conceptual principles.

Physical-conceptual models mimic the rainfall-runoff process via a
combination of physically based and conceptual approximations whose
parameters are chosen such that they may often be directly obtained from
physical measurements or inferred from the physical characteristics of the
watershed. However, the mnature of how to infer the parameters from
physical characteristics and measurements is mnot always known.
Furthermore, often "curve fitting" parameters are added to these models
which have no physical meaning, but do improve the quality of the models’
hydrologic fit. Therefore, in most cases, calibration is required for
physical-conceptual models. For some physical-conceptual models, if the
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hydrologist has considerable (a) experience with the model and/or (b) know-
ledge of the watershed’s physical characteristics, the model may be applied
to watersheds without sufficient calibration data (e.g., ungaged
watersheds). For example, hydrologists have devoted considerable time to
estimating the initial values of many of the Stanford Watershed model
parameters on the basis of observable basin characteristics. However,
Nordenson (1967) noted that even though this effort has met with some
success it is doubtful whether this approach can ever provide more than
reasonable estimates for further refinement. Therefore, when using
physical-conceptual models for ungaged watersheds, care must be exercised
in selecting parameter values, and calibration data should be collected and
utilized as soon as possible.

There are two main types of physical-conceptual models. Type I
combines a physically based representation of abstractions with a
conceptual conversion of the resulting rainfall excess to the runoff
hydrograph.

The HEC-1, Flood Hydrograph Package of the U.S. Army Coxps of
Engineers (1985) 1is perhaps the most well known physical-conceptual model
of Type I. In its most commonly used form, HEC-1 determines the rainfall
excess using one of four abstraction approaches (initial 1loss and
continuing loss rate, exponential loss rate, SCS curve number, or Holtan
loss rate), and then the rainfall excess is converted to the runoff
hydrograph via a synthetic unit hydrograph. For more complex watersheds,
hydrographs from subareas are synthesized as detailed above and then routed
through the channel network using any one of a number of routing methods
(Muskingum, modified Puls, working R&D, level pool reservoir routing, or
average-lag routing). Recently, kinematic routing methods have been
incorporated into HEC-1 both for overland flow generation and channel
routing. Nevertheless, the conceptual options remain most commonly used for
areal hydrograph generation employing HEC-1. Ford et al. (1980) report the
application of HEC-1 for forecasting inflows to the W. Kerr Scott Reservoir
on the Yalkin River in North Carolina. The results of this application will
be discussed in section A.1.5.

The RORB (Runoff Routing, the B refers to a version) program is
another physical-conceptual model of Type I which is gaining popularity.
RORB breaks the watershed down into a number of subareas each of which may
have separate rainfall input which is converted to rainfall excess using a
single initial loss-continuing loss rate scheme. The rainfall excess 1is
then routed through the channel network which is modeled as a series of
nonlinear reservoirs. RORB has become extremely popular for a wide variety
of hydrologic studies in Australia and Malaysia. In fact, in Australia it
was used by all water authorities and consultants working in the water
business (Laurenson, 1986).

In the second type of physical-conceptual models, the runoff process
within sub-basins 1s modeled as a series of interconnected (generally
linear) reservoirs. Each of the reservoirs represents a portion of the
hydrologic flow path taken by the rainfall input, i.e., a surface storage
reservoir, an unsaturated subsurface reservoir (vadose zone), and saturated
subsurface reservoirs (groundwater). The 1interrelations between these
reservoirs are modeled using physical and/or empirical considerations. The
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combined output from each of these reservoirs for each of the sub-basins is
then routed through the watershed’s channel network using standard flood
routing techniques, e.g., the Muskingum-Cunge method, multi-phase 1lake
routing, kinematic wave routing, etc.

The Stanford Watershed model (Crawford and Linsley, 1966) is perhaps
the most famous and most complex of the physical-conceptual models of Type
I1; and, as noted earlier, a modified version of this model was initially
adopted for wuse in the NWS River Forecast System (NWS, 1972). The

Sacramento model (Burnash et al., 1973) is a somewhat simpler physical-
conceptual model of Type II which has replaced the modified Stanford model
in the NWS River Forecast System (Peck, 1976). The SSARR model

(Schermerhorn and Kuehl, 1968) is another well known physical-conceptual
model of Type II. The SSARR model was originally developed for operational
forecasting along the Columbia River, and it has also been used for real-
time flood forecasting on a number of other watersheds around the world
including the lower Mekong Basin in Cambodia (Rockwood, 1968, and Sangsit,
1973). A fourth well known physical-conceptual model of Type II is the USGS
flood hydrograph simulation model (Dawdy and O'Donnell, 1965).

Several other simpler physical-conceptual models of Type II have been
used by various researchers for real-time flood forecasting applications.
Kadoya and Hayase (1973) applied such a model to the Shino River in Japan,
and obtained good forecasts of both long term and short term runoff. Bailey
and Dobson (1981) applied such a model to the River Teme basin upstream of
Tenbury (England) with good results. Finally, the Swedish Meteorological
and Hydrological Institute has developed a model of this type for
operational forecasting in Sweden (Bergstrom, 1981).

A.1.4 Physical Simulation Models

Chow (1972) states that a simulation retains the essence of the
prototype without actually attaining reality itself, A simulation model
reproduces the behavior of 'a hydrologic phenomenon in every important
detail but does not reproduce the phenomenon itself. Physical simulation
models attempt to mimic the 1land phase of the hydrologic cycle in a
watershed on a digital computer. The key advantage of physical simulation
models is that all their parameters may be determined from physical measure-
ments and/or relations developed in the literature. Hence, these models are
suitable for ungaged watersheds as long as the parameters are selected
carefully based on physical measurements and experience with the model on
watersheds where calibration is available.

The most common type of physical simulation models divides the
watershed into subcatchments. For each subcatchment, the rainfall excess is
determined via simple infiltration relations (e.g., Green-Ampt, Holtan,
etc.) and coefficients for the other abstractions. Kinematic wave flow
routing is then used to convert the rainfall excess to a runoff hydrograph
at the subcatchment outlet. The subcatchment hydrographs are then routed
through the channel system using kinematic flow routing. As noted earlier,
such an approach has recently been added as an option in the standard HEC-1
Flood Hydrograph Package (U.S. Army Corps of Engineers, 1985). Chowdhury
and Bell (1980) have also developed such a model and their verification

82

———— (SIS



[V

results in simulating floods from the Eastern Creek and South Creek
Experimental Catchments, Sydney, Australia are quite encouraging. More
complicated flow routing schemes have also been examined. For example, a
watershed model using full dynamic wave or kinematic wave overland flow
routing and dynamic wave channel model has been developed at the University
of Illinois (Yen, 1984).

A.1.5 Updating and Hybrid Models

In real-time flood forecasting the typical means of updating (i.e.,
getting the forecast to agree with the available flow data) is adjusting
the rainfall input until the forecast hydrograph and available measurements
agree. However, in recent years several hybrid models combining conceptual
or physical simulation models with stochastic models have been developed
with the stochastic part designed to automatically account for the
discrepancy between the measured and forecast flows.

Jamieson et al. (1972) proposed a two-stage approach to real-time
forecasting. The first stage comprises a simple rainfall-runoff model such
as described in the previous sections. Inspection of the first-stage
residuals show that they are seldom purely random (Dawdy et al., 1972; and
Clarke, 1973) which suggests that there is a residue of information that has

not been accounted for by the simple model. Rather than resort to
restructuring the model, Jamieson et al. proposed modeling the residuals
using time-series analysis as a second stage of the model. Thus, rather

than using an updating procedure, the time series analysis model simply
prorates the effects of the known differences between forecast and measure-
ments to the future time periods. This method was applied to the Brenig
experimental catchment in Wales with a modified version of the Stanford
Watershed model as the first stage and a first-order autoregressive model as
the second. They concluded that forecast errors can be significantly
reduced by the use of a simple second-stage mathematical model.

Kitanidis and Bras (1980a-c) developed an innovative means to

continually wupdate the forecasts from a rainfall-runoff model. They
defined the state of the real-time flood forecasting system as a set of
variables which summarize all past inputs into the system. In their

method, every time an observation becomes available Bayes' theorem is
utilized to update (via adaptive filtering) the distribution of the states,
given available information. Filtering is used to update the forecasts
because the structure of the filter can partially account for the various
sources of forecast uncertainty. Hence, the model error covariance matrix
is the critical filter parameter; and in adaptive filtering it is an unknown
parameter to be estimated, on-line, as part of the filtering objectives. 1In
order to apply adaptive filtering to a real-time flood forecasting model,
each of the individual interactions in the model must be quasi-linearized
and then combined in a linearized form representing the complete hydrologic
system.

Kitanidis and Bras (1980c) applied this methodology to the NWS River
Forecast System model, and compared forecast results from this model and a
simple abstract model for the Cohocton River at Campbell, New York. They
found that for the shortest lead time (six hours), the simple abstract model
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performed as well as the stochastic-physical simulation model. However, for
longer forecast lead times, the stochastic-physical simulation model gives
significantly better results than the abstract model. The stochastic-
physical simulation model was also found to be more reliable than the
abstract model in forecasting the most important features of the hydrograph
such as the beginning of the rising limb, the time and height of the peak,
and the total water volume. Hence, they concluded the use of feedback via
adaptive filtering significantly improves the overall forecasting capability
of the model even when the model and input error statistics are not
perfectly known.

Georgakakos and Bras (1982) developed an improved quasi-linearization
method for linearization of a nonlinear kinematic routing scheme. This
routing procedure was combined with the adaptive filtering scheme for
simultaneous stage and parameter estimation developed by Kitanidis and Bras
(1980a-c). The effectiveness of this adaptive routing procedure was
demonstrated for flood data from Bird Creek, Oklahoma, using the NWS River
Forecast System model to obtain the channel inflow hydrographs to be routed.

Georgakakos (1986a and b) further expanded the application of adaptive
filtering for automatic updating to consider the uncertainties in a combined
hydrologic/meteorologic model of the rainfall-runoff process. The
meteorological model employs the surface temperature, surface pressure, and
surface dew-point (either measured or interpolated from nearby stations) to

produce forecasts of areal average precipitation over the basin. The
precipitation forecasting technique also compensates for orographic effects
within the watershed and between stations if needed. The precipitation

forecasts and available precipitation measurements (if any) are input to the
rainfall-runoff model to produce real-time forecasts of the hydrograph. The
states of the <various sub-models (meteorologic, rainfall-runoff, and
routing) are recursively updated via adaptive filtering to improve the
agreement between measured and forecast hydrographs.

Wood (1981) noted that one drawback of using adaptive filtering
techniques, like those described previously, is a restriction, related to
the size of the state vector due to computation and computer limitations,
which constrains hydrological applications to small headwater catchments.
He proposed a methodology that allows forecasting of large systems by
partitioning the system into subsystems, where the filtering of subsystems
is performed in parallel or sequentially (depending on the situation). The
interactions between the partitioned subsystems are accounted for by
supplementing the noise processes. He compared the performance of this
partitioned filter methodology and the full system filter approach for the
use of the CLS model on the River Dee watershed in Wales, and found that the
partitioned method worked equally well at a considerable savings in computer
time.

The vresults of all the adaptive filtering updating reported above
display excellent one-time step ahead forecasts (30 minutes for Wood, 1981;
6 hours for all others). However, in real-time flood forecasting, the
efficiency of the flood warning scheme is a function of the forecast lead
time (i.e., time between the issuance of the forecast and occurrence of the
expected peak). For longer term forecasts (on the order of the watershed
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response time, say 24 to 48 hours for medium sized watersheds), the results
of updating are less encouraging.

The U.S. Army Corps of Engineers tested updating schemes for real-
time forecasts of inflows to the W. Kerr Scott reservoir on the Yadkin
River in North Carolina (Ford et al., 1980). They found that for 23 of 25
updated forecasts (over four events) predictions made using the average
parameter values (determined from calibration of seven events) produced
lower total error for the event than did forecasts using optimal parameter
values from the previous forecast. Kitanidis and Bras (1980c) also noted
difficulties in making forecasts with lead times of practical interest. For
forecast lead times of three to six time steps (18 to 36 hours), the
standard error of the real-time forecasts from adaptive filter models was
nearly identical for three different estimations of the model error
statistics: 1) fixed based on an educated guess; 2) fixed based on final
statistics for an optimal adaptive filtering of the entire flow period; and
3) variable estimated by adaptive filtering for rainfall-runoff events where
errors in data exceed a threshold level, or taken as fixed values otherwise
(note: this is methodology advocated by Kitanidis and Bras, 1980a).
Therefore, it seems for forecast lead times of practical interest (e.g., the
watershed response time) the forecasts are somewhat insensitive to the
updating procedure and assumed error statistics.

Ford et al. (1980) suggest a possible reason for the poor performance
of updating for longer term forecasts. Due to the appreciable lag time
between the measurement of rainfall on the basin and its occurrence at the
stream gage, when a forecast is issued early in the flood event, only a
small portion of the recorded precipitation contributes to the simulated
(and measured) discharge prior to the time of forecast. 1In such cases, it
is possible that the updating scheme may cause substantial changes in the
model’s parameters which do not truly reflect the model parameters for the
entire event. Kitanidis and Bras (1980a) recognized these facts in
designing transient error identification approach for adaptive filter
updating. They noted that in real-time forecasting with hydrologic models,
a common problem is the iIncorrect estimation of the time when the rising
limb begins. They attributed this problem to either model inadequacy,
especially due to the fact that the spatial distribution of the storm is not
accounted for, or to the system nonlinearity. Under such conditions, they
advised that a minimum number of measurements should be collected before the
presence of an error in the input is inferred. The necessity of making a
minimum number of measurements before the updating becomes efficient
obviously limits the utility of such schemes for longer term forecasts of
the flood hydrograph. Kitanidis and Bras (1980c) note that feedback
(through adaptive filtering) becomes valuable only after the hydrograph
starts moving steeply, leaving little time before the peak arrives to adjust
and correct timing and other errors.

In summary, despite the fine results obtained via automatic updating
for short term forecasts, it appears long term (three or more time steps
ahead) forecasts are still best made with measured input and "best
estimates" of the parameters. Hence, assessment of forecast reliability
has high priority.
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- A.2 Deterministic Versus Stochastic Models and Forecasts

A key element in hydrologic modeling is understanding the nature of
the physical process being modeled. Hydrologic systems (e.g., watersheds)
may be represented by a series of variables and parameters. Clarke (1973)
defined a variable as a characteristic of a system which may be measured,
and which assumes different values when measured at different times (e.g.,

precipitation, streamflow, soil moisture, etc.). He defined a parameter as
a quantity characterizing a hydrological system, and which remains constant
in time (e.g., watershed area, channel length and slope, overland flow
slope, etc.). Hydrologic processes may be classified based on assumptions
regarding the nature of the variables and modeled based on assumptions
regarding the nature of both the variables and parameters. Chow (1964)

stated that if the chance of occurrence of the variables involved in a
hydrologic process 1is ignored and the model is considered to follow a
definite law of certainty but not any law of probability, the process and
its model are described as deterministic. Conversely, if the chance of
occurrence of the variables is taken into consideration and the concept of
probability is introduced in formulating the model, the process and its
model are described as stochastic or probabilistic.

When modeling the rainfall-runoff phenomena, there are actually two
processes which may be considered as either stochastic or deterministic.
Only if the rainfall process and its conversion to runoff can be properly
modeled as deterministic will -the forecast or prediction made by the model
be deterministic. If either the rainfall process or its conversion to
runoff are stochastic, the resulting forecast or prediction will be
stochastic and uncertain.

In truth, the actual process converting rainfall to runoff is
deterministic. However, as pointed out by Plate (1986), even if a perfect
model of this process were available, a large random residue would exist in
forecasts made with this model due to the natural variability inherent in
the pertinent soil, plant, and atmospheric conditions, as well as, in the
rainfall process. Nevertheless, most rainfall-runoff models used for real-
time flood forecasting are viewed as deterministic. Even the real-time
flood forecasts made with stochastic, time-series type models are made in a
deterministic sense ignoring a portion of the randomness accounted for
in the model. A deterministic forecast assumes certainty in the outcome of
an event wherein no matter how many times a hydrologic phenomenon is
processed under a given set of invariant conditions the same outcome results
(Chow, 1972). Such a result occurs only when both the rainfall process
(input data) and its conversion to runoff (model) are truly deterministic.
In practice, generally, both the input data and the model are stochastic due
to imperfect information (regarding watershed conditions and the data) and
to model simplifications.

When using abstract models such as conceptual rainfall-runoff models
or stochastic, time-series models for deterministic forecasting, the
watershed is viewed as "black box" for which a given input yields a
specific output. However, the inability to properly describe the true
temporal and areal distribution of rainfall (stochastic input) can lead to
two very different storms being considered the same hydrologic phenomenon as
far as the input data is able to discern them. Hence, even under invariant

86

PRV it it

[N



o i
[AeIC—. JA—

[N

L ——

i
P,

conditions, the true results cannot be forecast with certainty.
Furthermore, truly invariant conditions are difficult to attain in the
"real-world" and model parameters which are affected by varying conditions
are rarely adjusted to account for the variations, primarily because such
adjustments are difficult and poorly understood.

Physical simulation and physical-conceptual models are subject to all
the foibles of abstract models given above to some degree. Such physical
models also often describe physical processes such as infiltration with
parameters when in truth these processes are better described by variables.
For example, the resaturated hydraulic conductivity commonly used in the
infiltration routine of physical models is typically viewed as single lumped
parameter over an entire subarea. In truth, the resaturated hydraulic
conductivity varies both spatially over the subarea and temporally through
the storm event modeled.

A.3 Studies of the Effects of Uncertainties on Hydrologic Model
Predictions

For most practical real-time flood forecasting cases, the resulting
forecast is stochastic and uncertain. The various methods developed for
updating forecasts have been the main attempts to date at considering the
uncertainty involved in real-time hydrologic modeling within FWP systems.
When using updating procedures, the various sources of uncertainty are
lumped together as the procedure seeks to match the predicted discharges
with the measured discharges up to the current time. While such procedures
may lead to better estimates of the expected flood hydrograph, the basic
underlying uncertainties remain, and their analysis is necessary to provide
better information for the purpose of flood warning. One of the most
sophisticated and successful updating procedures is the adaptive Kalman
filter method proposed by Kitanidis and Bras (1980c), and their conclusions
reinforce this reasoning:

"This work has suggested that the problem of real-time
forecasting of river flows 1is considerably more difficult than

has often been implied in the literature . . . Feedback infor-
mation can only provide better "initial conditions" for the
forecasting. Even 1in wutilizing feedback information, the

problem of taking correct compensating actions is not simple.
In order to make the right corrections in the state of the
system and thus enhance the accuracy of future forecasts, the
correct structure of uncertainty, pertinent to the specific
model and data, must be hypothesized. This 1is especially
important in improving the accuracy of the magnitude and timing
estimate of the hydrograph peak."

To date, the sources of hydrologic modeling uncertainty have yet to be
studied in detail in conjunction with current real-time flood forecasting
models to provide estimates of the reliability of these forecasts. However,
the basic uncertainty and variability in hydrologic modeling have not been
ignored. Hydrologists have long been aware that hydrology was a blend of
science and art, often more the latter than the former, and hence they have
realized the shortcomings of their assumptions and the wuncertainty
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associated with the art of hydrologic modeling. For example, Horton (1932)
discussed the physical significance and usefulness of various factors
(parameters) which had been developed to describe watershed morphology
(i.e., geometry, slope, shape, overland flow length, etc.) and related to
the runoff characteristics of the watershed. Before the advent of the
digital computer, sensitivity analysis was impractical Dbecause all
hydrologic calculations were made by hand. Thus, while early hydrologists
were aware of the inadequacies of their assumptions, they could do little
more than acknowledge these inadequacies and qualitatively evaluate the
corresponding uncertainty based on physical reasoning as Horton had done.
With the development of the digital computer, hydrologists could perform
hydrograph calculations in a fraction of the time previously required, and
this allowed them to perform numerical experiments to quantitatively examine
the effects of uncertainty on the predicted hydrograph. The results of
these numerical experiments are discussed in the following sections.

A.3.1 Studies of the Effects of Rainfall Data Uncertainties on Runoff
Prediction

The studies of the effects of rainfall data uncertainties fall mainly
into two categories: (1) perturbation of an assumed error free rainfall
trace and (2) comparison of runoff prediction made using different levels of
the existing (or hypothetical) rain gage network.

In the perturbation approach, a recorded (or hypothetical) rainfall
trace is assumed to be error free and is routed through the hydrologic
model with a set of parameters, which are also assumed to be correct, thus
obtaining a "true" hydrograph. Then a random error with mean zero and
standard deviation, o, 1is applied to all rainfall wvalues. These
"erroneous” rainfall values are then routed through the "true" model and
the resulting standard error of the simulated hydrograph is computed.

Laurenson and O'Donnell (1969) wused the perturbation approach to
examine the effects of the six most 1likely types of errors in wunit
hydrograph derivation. Combinations of three hyetograph shapes and two
unit hydrograph shapes were used to detect the effect of data errors on
estimated unit hydrograph shape and the ability of four common methods of

unit hydrograph derivation to deal with these errors. They found
reasonable errors in the estimation of total rainfall, discharge rating
curve, and base flow separation resulted in surprisingly low wunit

hydrograph errors. However, errors in the assumption of uniform loss rate
and in rainfall synchronization between rain gages and between rain and
stream gages resulted in significant unit hydrograph errors.

Ibbitt (1972) used the perturbation approach to examine the effects of
random errors in the rainfall, runoff, and evapotranspiration data sets.
The standard deviation of these random errors was taken as ten percent of
the error-free value. Various combinations of erroneous and true data sets
were then calibrated and the resulting optimal parameters were compared. He
found that the random errors caused no significant change in parameter
values. Hence, he concluded that since the random errors in the data had
been deliberately set on the large size to aggravate any effects, the random
errors of the size normally encountered in hydrologic records would have
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negligible effects on estimates of the true parameter values and on flood
hydrographs. However, these results are somewhat misleading because the
dominant data errors in hydrologic modeling are systematic (e.g., inability
to deal with rainfall spatial variability) not random. Furthermore, while
random errors alone do not cause significant prediction errors, they cannot
be 1ignored in the overall analysis because, when combined with the
systematic errors, their contribution to prediction and forecast uncertainty
may be significant.

Singh (1978) assumed the results from the Converging Overland Flow
Model (CONV), which is a kinematic wave flow routing model that nonlinearly
transforms rainfall excess over a watershed to runoff at its outlet, were
the true watershed outflows. He then fit a nonlinear kinematic plane model,
similar to that wused by Chowdhury and Bell (1980), and three linear
conceptual models, including the Clark unit hydrograph, to the "true"
watershed outflows. Using the perturbation approach, he found that if
rainfall excess errors are sufficiently large, a perfectly identified
nonlinear model does not always perform as well as an optimally identified
linear model in predicting peak runoff. He concluded that under certain
circumstances, a linear model may be preferable to a nonlinear one although
the watershed system is truly nonlinear. These circumstances arise when the
input errors overpower the nonlinearity of the runoff process.

Dawdy (1969) proposed an extension of the perturbation approach which
estimates a hydrologic model’s standard error of prediction. Upon
obtaining the hydrograph resulting from the "erroneous" data and the "true"
model, a calibration run is made to adjust the parameters such that the
"erroneous" hydrograph is reproduced. The "true" rainfall is then routed
through the "calibrated" parameters, and the corresponding standard error is
computed. Assuming independence of the two sources of error, one in the
input data and the other in the model parameters, the error of prediction
should be approximately equal to the square root of the sum of squares of
the two separate estimates. Similarly, such errors may be introduced into
the streamflow or other data and the standard error of prediction due to
errors in these data sources may be estimated. By using this approach and
by varying o,, Dawdy (1969) and Dawdy et al. (1972) were able to study how
errors in data are transmitted to the model and obtain an empirical measure
of the effect of data errors on the accuracy of prediction in simulation.

Dawdy et al. (1972) reasoned that the wvariance, U, in the model
predictions relative to the true streamflow could be approximated as

Q+M+P+V+T-F=U (A.1)

where Q = the variance in discharge computation that results from stream
gage measurement error, from error in the rating curve, and from

undefined rating changes;
M = the variance resulting from the approximations used in the model

in order to simplify known physical laws or to reflect physical
laws which are not exactly known;
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P = the bias error resulting from the use of incorrect mean annual
rainfall values for the basin when determining rain gage weights;

V = the error introduced by the fact that a point measurement of
volume for a given storm differs from the mean basin volume for
that storm;

T = the error introduced by the fact that point measurements of time
variability of intensity during a storm differ, and any point
measurement differs from an "effective time distribution" which
best represents average conditions over the basin for simulation
purposes;

F = the curve-fitting error introduced into the model parameters by
the fitting process; the negative sign is because this error acts
to minimize U for a specific calibration event; however, for use
of the model in prediction, F adds to the modeling error.

Equation A.l1 presents more of a qualitative picture of the sources of
hydrologic model wuncertainty than an estimate of the actual model
prediction uncertainty. In truth, the model prediction uncertainty is a
weighted sum of the variance contributions from each of these sources with
the weights being, in part, functions of how these sources interact leading
to the data, model parameter, and model structure uncertainties.
Nevertheless, Eq. A.1 is adequate for initial studies of the effects of
uncertainties on model predictions.

Dawdy et al. (1972) applied the approach of Dawdy (1969) to examine
the effects of the error sources in Eq. A.l1 on prediction accuracy when
modeling three small watersheds: Santa Anita Creek, California; Beetree
Creek, North Carolina; and Little Beaver Creek, Missouri. For these three
basins the standard error of prediction considering all errors was
generally found to be about 30 to 35 percent. The use of a single rain
gage to estimate rainfall variability over the watershed seems to introduce
an error of about 20 to 25 percent into the simulation. Time variability
errors alone can introduce 20 to 25 percent errors in peak-discharge
estimates. Storm volume errors can introduce as great as 20 percent errors
to the overall predicted hydrograph.

The varying levels of rain gage network complexity approach assumes
that the predicted runoff based on rainfall data from a "large" number of
rain gages (real or hypothetical) is the "true" runoff against which
various predictions based on simpler rain gage networks are compared.

Dawdy and Bergman (1969) wused the rain gage network approach to
examine ' precipitation spatial and temporal distribution effects on USGS
flood hydrograph simulation model runoff prediction for the Santa Anita
Creek basin in southern California. They found that runoff prediction was
enhanced by considering the rainfall spatial distribution using all three
gages as opposed to any single gage.

Bras and Rodriguez-Iturbe (1976) used the rain gage network approach

to study the accuracy of the discharge estimated by a nonlinear, spatially
distributed, runoff model as a function of the spatial variability of the
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rainfall process and the number, location, and inherent measurement error of
the rain pgages in a hypothetical watershed. A multivariate state-space
stochastic rainfall model, which accounts for the nonstationarity and
spatial correlation exhibited by actual rainfall, was used. Infiltration
over the watershed was also modeled as a random process, and hence effective
rainfall was calculated as the difference between two random variables. The
effective rainfall was then input to a nonlinear, spatially distributed
runoff model which estimated the outflow hydrograph based on the solution to
the kinematic wave equations for overland and channel flow. Furthermore,
the storm hyetograph varied as a random process about a mean hyetograph and
the reference hydrograph was generated using the mean hyetograph.

Bras and Rodriguez-Iturbe (1976) found two important conclusions which
influence real-time flood forecasting. First, many investigators have
suspected that the "filter" characteristics of the basin are such that the
spatial variability of rainfall does not greatly influence discharge, and so
only a small number of rain gages is needed for discharge forecasting.
However, Bras and Rodriguez-Iturbe found that the rising 1limb of the
hydrograph was greatly influenced by rainfall near the watershed outlet,
while the magnitude and timing of the peak are influenced by rainfall in
upstream areas. They also found that there is a large decrease in the mean
square error of the predicted hydrograph when the all eight rain gages are
used. Hence, the spatial variability of rainfall is not filtered out by the
natural runoff process and must be accounted for by either a more extensive
rain gage network or reliability analysis measures. Second, it was found
that for most of the rain gage network alternatives, the bulk of the uncer-
tainty is in the peak and rising limb of the hydrograph. These are the most
important hydrograph characteristics for real- time flood forecasting.
Hence, even for watersheds with very good rain gage networks, reliability
analysis should be incorporated with real-time flood forecasting schemes.

Wilson et al. (1979) confirmed the results found by Bras and
Rodriguez-Iturbe (1976) for an example considering a real watershed. They
used Bras and Rodriguez-Iturbe's (1976) nonstationary, spatially varying
multi-dimensional rainfall generation model to produce realistic rainfall
input for a physical simulation rainfall-runoff model of the Rio Fajardo
basin in Puerto Rico. Their experiments found that spatial distribution of
rainfall has a marked influence on the predicted runoff hydrograph,
especially in terms of peak discharge.

Schilling (1984) used the rain gage network approach to examine the
effects of rainfall spatial variability on runoff predictions from small
urban watersheds. A two square kilometer urban watershed with 1,000 inlets
and data available from five rain gages within or close to the watershed was
modeled. His experiments indicated that damping of rainfall depth measure-
ment errors almost never occurs. In fact, errors caused by disregarding the
rainfall spatial distribution were amplified rather than damped by the
rainfall-runoff transformation. These findings add emphasis to those of
Bras and Rodriguez-Iturbe (1976) and Wilson et al. (1979). "Finally,
Schilling concluded that even for small urban catchments, areal averaging of
rainfall measurements means a significant loss of information and, hence, it
is preferable to use a distributed runoff model with multiple input.
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Troutman (1982a and b) used the rain gage network approach to examine
the effects of rainfall spatial variability on runoff prediction and on bias
in model parameters calibrated for inferior rain gage networks. He fitted
both a simple regression model of rainfall volume to runoff volume and the
USGS flood hydrograph simulation model to data from nine rain gages for
Turtle Creek near Dallas, Texas. Troutman (1983) refined his previous work
by using a fairly simple stochastic rainfall generation model, similar to
that of Bras and Rodriguez-Iturbe (1976) except that the storm center
remained stationary, to produce a more accurate "true" rainfall over a’
hypothetical watershed. By doing this he also had more control and
knowledge regarding the storm spatial distribution and storm center relative
to the watershed center. Hence, he was able to derive more general informa-
tion on the bias in model parameters and runoff prediction caused by
inaccurate rainfall data.

All of Troutman'’s studies also support the premise that the effects of
rainfall spatial variability cannot be ignored in hydrologic modeling of
actual events. He concluded that even if measured rainfall at a small
number of gages is equal to the areal average rainfall in an expected value
sense, the variance of basin average precipitation is always less than that
of point rainfall; this difference in variability can result in serious
biases in runoff prediction. For the models he studied, this bias resulted
in overprediction of large events and underprediction of small events. Such
a bias could lead to an abundance of "false alarms" and, hence, poor FWP
system performance. This provides yet another reason to incorporate
reliability analysis with real time flood forecasting.

The research reviewed in this section demonstrates that errors and
uncertainties in input data (especially rainfall data) for hydrologic
models greatly affect the reliability of predictions and forecasts made by
these models. Hence, these uncertainties need to be explicitly considered
when using hydrologic models for real-time forecasting, hydraulic structure
design, synthetic data generation, etc. The research reviewed was designed
to study and demonstrate the effects of data uncertainties on model output,
as such the methods developed do not truly have the capacity to provide
simple, straight-forward estimates of forecast or prediction reliability for
cases of practical interest. Furthermore, the research reviewed only
considers as single source (data uncertainty) of the overall modeling
uncertainty, and it considers assumed error magnitudes as opposed to actual
error magnitudes.

A.3.2 Sensitivity and Error Analysis for Model Parameters

Sensitivity analysis is a common technique in operations research.
Basically, numerical sensitivity analysis involves slightly perturbing the
model parameters, generally one at a time, from the values which best
represent the system modeled to see what changes 1in system output
correspond to small modifications of (errors in) model parameters.

The basic objective of sensitivity analysis 1is to 1identify
particularly sensitive model parameters, so that special care may be taken
in estimating them more closely and in selecting a solution which performs
well for most of their likely values (Hillier and Lieberman, 1980, p. 196).
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The basic objective of reliability analysis is to evaluate the model
output accuracy considering the uncertainty (errors) in the data, model
parameters, and model structure. Hence, an ad hoc reliability analysis may
be performed using the principles of sensitivity analysis, i.e., assuming
various errors in the data, model parameters, etc. and observing the changes
in the model output to get an idea of its reliability. Therefore, the
sensitivity analysis of hydrologic model parameters reported below provides
some useful information regarding the effect of model parameter errors on
model output reliability.

Dawdy and O’Donnell (1965) were among the fifst to consider sensi-
tivity analysis in hydrologic modeling. They varied each of the eight
parameters in the USGS flood hydrograph simulation model by 1, 5, and 10
percent, and examined the changes in the sum of squares of the difference
between the true and predicted discharges. Their purpose was to identify
the most sensitive model parameters so that a more efficient and physically
reasonable parameter optimization procedure could be developed. Hence,
their conclusions are not directly applicable to the reliability problem at
hand.

Salomonson et al. (1975) demonstrated that watershed model sensitivity
analyses offer an effective means of obtaining accuracy requirements that
can be used in developing instrumentation and associated accuracy and
precision factors for remote sensing programs to improve watershed manage-
ment. They applied a modified version of the Stanford Watershed Model to
the Town Creek, Alabama, watershed. Six of the model’'s parameters may be
determined by remote sensing. Using sensitivity analysis to determine the
maximum variation in each of these parameters which will keep the output
within a specified tolerance of the "true" wvalue, they were able to
determine the required accuracy of estimating each of these parameters by
remote sensing.

Yeh et al. (1978) performed a sensitivity analysis of the input to
(precipitation and snowmelt) and the embedded parameters of the Sacramento
model. The purpose of this sensitivity analysis was to examine the value of
more accurate hydrologic forecasts for hydropower operations considering the
flows for an entire month. Folsom Lake on the American River and Folsom
Power Plant of the California Central Valley project were used as a case
study. The input and watershed parameters were individually varied from -50
to +50 percent of their expected values, and the resulting volumes were:
compared to the expected volume. They found that the major error sources in
runoff estimation using the selected model arise from deficiencies in the
temporal and spatial sampling of the parameters embedded in the model, from
a lack of predictability of weather and other climatic factors, and from the
exclusion of other elements that vary with time but are difficult to sense
on a frequent basis.

As noted earlier, sensitivity analysis is not the only means with
which the effects of parameter wuncertainty have been examined. The
following relates some of the other methods used to examine parameter
uncertainty.

Wood (1976) considered the uncertainty in an infiltration parameter of
a simple rainfall-runoff model. By assuming that the other parameters of
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the model were known with certainty and taking advantage of the simple form
of the model, he was able to analytically solve for the influence of
infiltration parameter uncertainty on the predicted output in terms of a
probability distribution. While it 1is doubtful that such analytical
solutions would be possible when considering several uncertain parameters,
more complex models, or both, this work provides considerable insight into
the effect that even relatively small parameter variations can have on flood
simulation and especially flood frequency estimates based on a rainfall-
runoff model generated flood series.

Mein and Brown (1979) developed a procedure by which the variance of
each fitted parameter of a watershed model can be determined. This
information can be wused to determine the degree to which the model
parameters can be related to physical watershed characteristics. That is,
if the model parameters are 1insensitive (i.e., have coefficient of
variation > 0.25), then this model may be useful for ungaged watersheds but
not useful for simulation of flow changes due to physical changes in the
watershed (e.g., urbanization). Furthermore, this procedure may be quite
useful when analyzing parameter wuncertainty within the reliability
analysis framework.

Garen and Burges (1981) offer perhaps the most similar work to that
proposed here except that they consider only parameter uncertainty. They
use both first-order second moment uncertainty analysis (which will be
discussed further in Appendix B) and Monte Carlo simulation to evaluate the
effects of parameter variability for a simplified version of the Stanford
Watershed model. The end result of their research is the generation of the
error bounds (i.e., + one standard deviation) due to parameter uncertainty
(coefficient of variation values were assumed equal for all parameters) for
the predicted hydrograph. This type of information could be wused to
determine the probability of different flood magnitudes. Examples of the
confidence limits they found due to parameter uncertainty alone are shown in
Fig. A.1. Based on the figure, it is clear that parameter uncertainty can
have a great effect on forecast reliability even when coefficient of
variation values are assumed to be small and equal for all parameters.
Furthermore, their Monte Carlo simulations found that uncertainty in hourly
flows increased with increasing precipitation intensity and duration (with
parameter uncertainty held constant).

The research reviewed in this section demonstrates that errors and
uncertainties in determining the proper model parameter values for a given
modeling purpose (forecast, design, etc.) <can greatly effect the
reliability of the model result in relation to its purpose. As was the
case for the studies of input data uncertainty, these studies of model
parameter uncertainty do not provide a comprehensive picture of overall
modeling uncertainty, nor do they consider the true magnitude of the model
parameter uncertainties instead use is made of assumed errors.

A.3.3 Studies of Model Structure Uncertainties
Very little research has been performed to examine the influence of

model structure uncertainties on runoff prediction. The primary reason for
this lack of research is the difficulty in separating out the effects of
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model structure uncertainties from those in the input data and the model
parameters. Also, a perfect model of the rainfall runoff process does not
exist, and so simplified models cannot be compared to the results of a
perfect model to determine the model structure uncertainties. As pointed
out by Garen and Burges (198l), if the historical record is representative
of a wide range of watershed responses and 1s of sufficient length to
constitute a statistically significant sample, comparison of simulated and
recorded flows to measure uncertainty might be extrapolated to estimate
model structure uncertainties. Hence, in order to study model structure
uncertainty, a sufficient amount of runoff data must be available so that
the effects of the other sources of uncertainty may be separated out.
Another reason for the lack of study is that the results are model dependent
and cannot be generalized.

A.3.4 Studies of Overall Modeling Uncertainties

As discussed in section A.3.1, Dawdy et al (1972) presented a
simplified, somewhat idealized approach to estimating overall model
prediction error. However, their study concentrated more on data effects
than a clear view of overall errors.

Schilling and Fuchs (1986) compared the results from a complicated
urban rainfall runoff model with distributed rainfall input to the results
from several simplified models to determine the modeling uncertainty caused
by the simplifications. The "complex" model used distributed rainfall data
based on radar measurements as input to the 81 subcatchments in the basin, a
time varying increasing fraction of paved area to model abstractions, and
dynamic wave routing of the runoff through the sewer network. The "common
practice" model assumed one rain gage at the center of the watershed as
input for all 81 subcatchments, used constant proportional losses to model
~abstractions, and used dynamic wave routing. The "simple" model assumed one
rain gage at the center of the watershed as input for all 81 subcatchments,
used constant proportional losses to model abstractions, and used time
offset routing.

Schilling and Fuchs (1986) found that errors 1in rainfall input are
amplified by the rainfall-runoff transformation. For example, on the
average, a rainfall depth error of 30 percent results in a runoff wvolume
error of 60 percent and a peak flow error of 80 percent. A better routing
procedure was also found to improve the accuracy of computed runoff.
Nevertheless, it was concluded that the spatial resolution of rainfall has a
dominant influence on the reliability of computed runoff. They recommended
that it 1is inappropriate to use a sophisticated runoff model to achieve a
desired level of modeling accuracy if the spatial resolution of rainfall
input is low. Instead, increased spatial resolution of rainfall data and
use of a fast and simple runoff model gives results accurate enough to be
used for real-time operation.

As discussed previously, adaptive filtering schemes are able to
combine the various sources of modeling uncertainty and lump them together
in the forecast error covariance matrix. Georgakakos (1986a) suggested that
based on the predicted mean state vector and the predicted covariance
matrix, the mean and variance of the predicted observation variables can be
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obtained. Then assuming a normal distribution for the prediction errors,
and given a critical flood level, the probability of flood level exceedance

can be computed. However, Kitanidis and Bras (1980a-c) pointed out that
proper determination of the error covariance matrix is the "art" in adaptive
filter wupdating. For flood events, Kitanidis and Bras (1980a and c)

suggested that adaptive filtering should be used to determine the model
parameters only after a minimum number of measurements are available on the
rising limb of the hydrograph. Therefore, the approach suggested by
Georgakakos (1986a) is only useful for longer lead time estimates of flood
level exceedance for cases where good estimates of the component errors are
known a priori.

The majority of research which has been conducted to determine the
nature and/or magnitude of uncertainties in hydrologic model forecasts or
predictions has concentrated on the effects of one source of modeling
uncertainty (generally either data or model parameters). The few attempts
to consider the combined effects of data, model parameter, and model
structure uncertainties have been marred by the need for complex and time
consuming sensitivity calculations of simplified "ad-hoc" interrelations
between the sources (Dawdy et al., 1972; and Schilling and Fuchs, 1986).
The adaptive filter considerations for overall modeling uncertainty are also
very complex mathematically and are of limited use for long term (three or
more time steps ahead) forecasts and design hydrograph prediction. Finally,
all of these studies are marred by the assumption of error magnitudes rather
than some formal determination of truly representative error magnitudes in
hydrograph forecasting (long term) or prediction. Therefore, a simple,
systematic, wunbiased, and consistent approach needs to be developed for
considering overall hydrologic modeling uncertainty and, subsequently,
providing simple and useful information on the reliability of forecasts and
predictions made by hydrologic models. The approach developed in this
study, which uses reliability analysis (see Appendix B) to analyze the
combined effects of data, model parameter, and model structure uncertainties
on hydrologic model reliability, meets the above criteria.

A.4 Model Choice Considerations

When developing an on-line (i.e., real-time) flood forecasting system,
the correct choice of model is the most important single investment decision
from which all other investment decisions naturally follow (Lambert, 1981).
The primary practical problems with the use of complex hydrologic models is
that their extensive data and computer requirements often cancel out their
model structure accuracy advantage. Sangsit (1973) reported the use of the
SSARR model for flood forecasting in the lower Mekong Basin, Cambodia,
produced mixed results. That is, the model produced fairly good forecasts,
but its data and computer requirements made it difficult to run in an area
with limited data and computer facilities. Askew (198l) reported similar
results for the application of the Sacramento model (as operated by the NWS)
and the CLS model to flood forecasting in Central America. Given this
problem and other considerations, Lambert (1981) noted that operational
experience has “shown that it 1is advantageous to use relatively simple
hydrologic models for on-line forecasting, the choice of models being
specifically geared to the simulation problems requiring solution. Dawdy
(1969) agreed with this principle stating 'if a simple model will suffice,
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none more complex is necessary. Chow (1972) pointed out this rule fails in
practice unless "suffice" is better defined. Linsley (1986) advocated
accuracy as the prime definition of "suffice" stating 'until equivalent
accuracy is demonstrated, simplicity should be a second-order criterion in
model selection.’ Clarke (1973) pointed out choosing a model sufficiently
simple for the purpose at hand is the art of model-building.

For the purpose of flood warning, the key characteristics of the
forecasting model are the accuracy, reliability, and timeliness of the
forecasts. Hence, the tendency has been to use more and more complex
hydrologic models because of their potentially greater accuracy. However,
Dawdy (1969) pointed out:

"A desire for completeness in a model tends to lead toward
inclusion of all (hydrologic) components which intuitively are
known to exist. However, the desire for completeness may lead
to the inclusion of many parameters which are merely curve
fitting factors rather than physical parameters describing the
process they supposedly are modeling."

Furthermore, Larimore and Mehra (1985) noted that the purpose of modeling
is to obtain a model of the predictable behavior of the process but to
avoid incorporating the random characteristics of the particular data set.
Beyond a certain complexity, the model ends up fitting to the noise in the
data trying to explain every wiggle in the data. These considerations have
lead several researchers (Wood, 1976; Garen and Burges, 1981; Yeh, 1982) to
conclude that as hydrologic models become larger and more complex, the
information about parameter values often decreases. As the number of
parameters increases, the model structure uncertainty (as represented by a
least-squares criterion) will generally decrease, but in order to estimate
this increasing amount of parameters more and more data is necessary, and
the quality and availability of the data generally decreases as more is
needed. Hence, for more complex models the data and model parameter
uncertainties may be greater than for simpler models. Therefore, in
comparing models an optimum exists that "trades off" the greater potential
output accuracy from a complex model with a simple model’s parsimony and
greater accuracy of parameters and input data (Garen and Burges, 1981).

Reliability analysis methods consider all the sources of uncertainty--
data, model parameter, and model structure -- and 'so they may be quite
useful in determining the nature of the "trade off" between simple and
complex models. By applying reliability analysis to real-time flood
forecasting models of differing complexity, comparison of the flood
probabilities may reveal the models provide comparable estimates of flood
potential even if the  estimated hydrographs are greatly different.
If simpler models provide comparable information regarding flood
probabilities, they are "sufficient for the purpose at hand" and should be
used.

The question of which hydrologic area -- data, model parameters, or
model structure -- should receive the most future attention is similar to
the model complexity question. By applying reliability analysis to the
sources of wuncertainty, those which contribute most to the overall
uncertainty in forecasts can be identified. By identifying the hydrologic
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factors which have significant effects on overall forecast uncertainty and
whose individual uncertainties can be significantly improved through further
study, reliability analysis methods can find those hydrologic areas whose
future study offers the greatest gains in hydrologic modeling reliability.
These gains are not restricted to forecasting, but rather they lead to more
reliable hydrograph simulation and synthetic data generation as well.
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APPENDIX B. RELIABILITY ANALYSIS METHODS

B.1 Introduction

The results of studies of data, model parameter, model structure, and
overall modeling uncertainty effects on predicted hydrographs discussed in
Appendix A, show that the value of any kind of real-time forecast (for flood
warning, reservoir operations, etc.) is enhanced if some measure of its
precision can be derived. Dawdy et al. (1972) pointed out that the standard
error of estimate is a measure of error in reproduction of the fitted data,
while the standard error of prediction is somewhat greater than the standard
error of estimate because it includes both the measure of lack of fit of the
data used to calibrate the model and the measure of error in the fitted
parameters. Dawdy et al. (1972) and Clarke (1973) further pointed out that
if the residuals of the calibrated model (i.e., the differences between the
measured and simulated hydrographs) are uncorrelated, normally distributed,
and homoscedastic (i.e., have constant variance), the standard error of
prediction could be computed from the standard error of estimate, the
deviations of the independent variables (input data) from their means, and
the error in the model parameters. Unfortunately, the nonlinear nature
hydrologic processes precludes any theoretical description of the mechanism
by which errors in data are transferred to model parameters and, in turn,
are combined with input errors in the period studied to produce errors in
the streamflow forecast (Dawdy et al., 1972). Furthermore, for practical
cases, the model residuals very rarely correspond to the above conditions
(Clarke, 1973). Therefore, it is doubtful a theoretically correct measure
of forecast precision can be derived, despite its potential usefulness.

Dawdy et al. (1972) approximated the standard error of prediction via
the method described in section A.3.1. In their study the errors in the
streamflow estimates were found to be approximately related linearly to the
errors in the rainfall input data. They concluded that the linearity of
errors indicates that there may be some hope for the derivation of a theory
of errors for streamflow simulation.

For calibrated models, an estimate of the forecast precision (standard
error of prediction) must consider the data uncertainty which has been
transferred to the model parameters, the uncertainty in the estimate of the
model parameters for a given event, and the model structure uncertainty.
Similarly, for non-calibrated (i.e., physical simulation) models, an
estimate of the forecast precision must consider the data, model parameter,
and model structure uncertainty as specific entities with special interrela-
tions. 1In either case, the forecast precision estimate may take advantage
of the apparent linearity of errors between the rainfall data and predicted
streamflow. Such an estimate may be obtained using modern reliability
analysis methods.

Over the past 30 years, reliability analysis methods have been
developed by structural engineers seeking a scientific base for structural
safety codes. 1In the past 15 years, hydraulic engineers have adapted these
methods to evaluate the safety of hydraulic structures, Yen (1987)
presented a "state-of-the-art” review of the reliability analysis methods
which have been applied to hydraulic structures. Four of these methods
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appear to be potentially useful for evaluating the uncertainties involved in
hydrologic modeling, and hence, for providing estimates of the probability
of flood occurrence given the available real-time storm data and an estimate
of the model parameter and structure uncertainties. These methods are
direct integration, Monte Carlo simulation, the mean value first-order
second moment method, and the advanced first-order second moment method. A
thorough review of all these methods for engineering systems in general is
given by Ang and Tang (1984), while one for hydraulic systems is given by
both Cheng (1982) and Yen (1987). Hence, only brief reviews of the first
two methods and more extensive reviews of the first-order methods,
especially their strengths and weaknesses, are given here.

B.2 Definition of System Risk and Reliability

The risk associated with an engineering system is the probability that
the system will fail to perform the function for which it was designed. For
engineering systems, the concept of the system failure is generally defined
as the load, L, placed on the system exceeding the system’s capacity to
resist, R. For a flood warning system, the resistance may be considered as
the critical flood stage (e.g., bankfull) whose exceedance leads to flooding
of low lying areas where damages could be reduced via flood warning. The
load is the peak discharge estimated by the real-time flood forecasting
model. From the previous chapter, 1t is clear that the peak discharge
estimate (load) is highly uncertain. Furthermore, since the critical flood
stage (resistance) must be converted to an equivalent critical flood
discharge for comparison to the estimated peak discharge, it too may be
uncertain due to errors in the stage-discharge relation. Thus, the flood
risk (system risk), Rg, may then be defined as

‘ RS =1 - Rz = Pr(L > R) | (B.1)

where P,(X) is the probability of event X occurring and Ry is the system
reliability.

A convenient way to evaluate system failure risk is to use a system
performance function, Z, which relates the basic variables (i.e., the data,
model parameters, and model correction factors which describe the system) of
the system to the load and the resistance. The performance function may
take on several equivalent mathematical forms where a negative value
indicates system failure, e.g., R-L, (R/L)-1, and £n(R/L). Thus, the system
risk can be defined as

R~ P (Z<0) (B.2)
where Z = g(x1, X9, . . ., xp) = g(x)
x = the vector of the basic variables of the system, and

the number of basic variables for the system.

o)
]
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B.3. Direct Integration Method

The probability of failure, i.e., the system risk, can be expressed as

2
RS = Im I fR’L(r,B) dr d& (B.3)
ovo

in which £ (r,2) is the joint probability density function of R and L. If
the resistance, R, is statistically independent of the load, L, then Eq. B.3
can be simplified as

2
RS = Iw fL(B) [ Jo fR(r) dr] d2 (B.4)

(o]

If the appropriate distribution functions can be found which describe the
load and resistance correctly, then the risk evaluated by this method is
exact. However, there are several practical problems with this method.

The greatest difficulty with this method is the selection of the proper
distribution functions. The estimated risk is greatly sensitive to the
distribution functions selected, and, in fact, improper assumption of
distribution functions may mnegate the accuracy merits of direct .
integration. Determination of the probability density functions for load
and resistance is further complicated by their dependence upon the probabi-
lity functions of the individual basic variables and the nature of the
functions relating the basic variables to the load and resistance (CIRIA,
1977). Additionally, in many practical cases (although not for the flood
warning case), load and resistance will be related to some of the same basic
variables and will therefore be subject to some degree of correlation
(CIRIA, 1977). Hence, the more complicated form of Eq. B.3 must be used.
Finally, Shinozuka (1983) pointed out that practically for all cases of
engineering interest, the multidimensional integration over the generally
irregular domain is impossible to carry out analytically and quite costly to
perform numerically, if not impossible. Given the nature and severity of
these practical problems in applying the direct integration method, its use
is generally limited to very simple systems or analysis of a portion of the
total system reliability.

Wood (1976) wused direct integration to analyze the effects of the
uncertainty of a single parameter of a very simple hydrologic model on a
flood frequency relation generated from rainfall data and the hydrologic
model.

Davis and Nnaji (1982) performed a simplified study of flood forecast
reliability for a 33 square kilometer drainage basin called the Airport Wash
near Tucson, Arizona. They determined the conditional probability of
streamflow given measured rainfall near the outlet of the Wash based on a
bell shaped model of convective storms and a modification of the Purdue
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rainfall-runoff model. This probability distribution was integrated to
determine the probability of a critical flood stage being exceeded given the
measured rainfall. This study did not consider the uncertainties in the
data or the parameters of the rainfall or runoff models.

Kooman et al. (1978) developed a reliability-analysis-based design for
the foundation of the Oosterschelde storm surge barrier in The Netherlands
by combining direct integration of the load (wave and static forces) and a
partial safety factor analysis of the resistance. The results of this
design method were checked by the advanced first-order second moment method
and were found to be quite reasonable for practical design applications.

Tung and Mays (1980 and 1981) proposed perhaps the most innovative
means of using direct integration. They handled the problems with basic
variable distributions and their relations to load and resistance by using
first-order approximations to determine the parameters of the distribution
functions for the load and resistance. This innovative approach is still
faced with the problem of selecting appropriate distributions for load and
resistance and possible numerical integration problems. However, with
reasonable selections of the distributions fairly good approximations of the
system risk may be obtained as demonstrated by Tung and Mays for culverts
(1980) and levees (1981).

Despite these relative successes for hydraulic systems and others for
structural systems, the general consensus of several researchers (Cornell,
1972; Rackwitz, 1976; CIRIA, 1977; and Cheng, 1982) is that direct integra-
tion methods are not suitable for normal design purposes because of their
theoretical and numerical difficulties. For system design, direct integra-
tion methods are useful for simple systems, checking the wvalidity and
accuracy of simplified reliability methods for specific cases, and for
systems which require highly accurate risk determination. For uncertainty
analysis of hydrologic models applied to real-time flood forecasting,
similar conclusions may be made. Direct integration can only be used for
very simple hydrologic models such as the one used by Wood (1976). Thus,
for 'realistic flood warning cases, direct integration methods are mnot
practical.

B.4 Monte Carlo Simulation Method

Monte Carlo simulation is a process using, in each simulation, a
particular set of values of random variables generated in accordance with
the corresponding basic variable probability distributions. For each
simulation, the performance function is calculated using the appropriate
basic variable values, and the risk is estimated as the ratio of the number
of failures versus the number of simulations.

The Monte Carlo simulation method is an extremely flexible method
(i.e., it can be used to solve a great variety of problems); and as such, it
is a very useful method. 1In fact it may be the only method which can
estimate risk for cases with highly nonlinear and/or complex system
relationships. Despite its flexibility, Monte Carlo simulation is not a
highly recommended way to analyze system risk. The risk estimated by using
this method is not unique, i.e., it depends on the size of the samples and
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the number of trials. To combat this flaw, large numbers of trials must be
performed and thus the computer time required can become prohibitive. These
high computation costs tend to cancel out the flexibility of Monte Carlo
simulation methods. Furthermore, Monte Carlo simulation methods are also
quite sensitive to the assumed distributions for the basic wvariables.
Hence, Monte Carlo simulation methods are generally used as a last resort.

The conclusions reached above are supported for the case of analyzing
the uncertainty in real-time hydrologic forecasts by the work of Garen and
Burges (1981). They used Monte Carlo simulation of model parameter variabi-
lity to estimate error bounds for the hydrograph predicted by a simplified
version of the Stanford Watershed model. The error bounds estimated by
Monte Carlo simulation were used to check those estimated using the mean
value first-order second moment reliability analysis method. The first-
order method’s results compared favorably with the Monte Carlo simulation's
results. Hence, they recommended the first-order method be used to avoid
the high computation cost of Monte Carlo simulation.

B.5 Mean Value First-Order Second Moment (MVFOSM) Method

The concept behind the first-order second moment reliability analysis
methods was initially proposed long ago. Mayer (1926) suggested use of the
mean and variance of the random variables in the analysis of structural

safety. However, Mayer’s suggestion went unheeded for more than thirty
years, perhaps because engineers were still trying to obtain better formula-
~tions of the physical side of engineering design problems. In 1959, Su

proclaimed that the physical side of many structural problems is now well
explored, but the conventional method of structural design is still far from
satisfactory. He developed a MVFOSM formulation based on the normal
distribution and recommended its use for more rational determination of
structural safety factors. But it was not until Cornell (1967) elaborated
on a formulation very similar to Su's that the MVFOSM method established a
foothold in structural engineering. The MVFOSM method was first adopted for
hydraulic system risk evaluation by Tang and Yen (1972).

In the first-order methods, a Taylor series expansion of the
performance function is truncated after the first-order term

P ag

Z=g(x) + .Z (x; - x,)

i) 3% (B.5)
i

where ii are the mean values of the basic variables. In the MVFOSM method,
the expansion point is at the mean values of the basic variables. Thus, the
performance function'’s expected value and variance are

E[Z] = g(x) (B.6)
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P P P
VAR(Z) ~ ) ci2 VAR(x,) + D) ¢, €. COV(x,, x.) (B.7)
i-1 i=1 j=1 J

i=j

where C; and Cj are the values of the partial derivatives dg/dxi and dg/dx%;,
respectively, evaluated at X7, X2,..., Xy. If the variables are statisti-
cally independent, the covariance terms will vanish and Eq. B.7 becomes

2

VAR(Z) = o C,” VAR(x,) (B.8)

N
R
I t~10

i=1

This is a reasonable approximation if the coefficients of variation of the
basic variables are not large and the system performance function, Z, 1is
approximately linear.

For many practical engineering problems, the partial derivatives, Cj,
cannot be determined explicitly. For such cases, Cj can be approximated
numerically by a forward difference at point w. :

. - og By Ry, T A% - B(x) 5.9)
i ox, - bx, '
i Tx=xy i
where Axj = a small change in the value of xj, and x:y, indicates all other

basic variables are fixed at point w. This method was successfully used

by Garen and Burges (198l) in their determination of error bounds on
predictions made by a modified version of the Stanford Watershed model.

The forward difference method was employed in this study as described in
Appendix C.

B.5.1 Probability Estimates Based on the MVFOSM Method

Risk is measured in terms of a reliability index, B, which is defined
as

E[Z]

B = o (B.10)
z

which is the reciprocal of the coefficient of variation of Z. In many cases
of engineering system design, the value of B alone is used to compare the
reliability of wvarious alternatives. In other instances (such as flood
forecast uncertainty analysis), an estimate of the system risk is required.
In these cases a probability distribution is assumed for the performance
function, Z, and B is visualized as a normalized measure of the departure
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from the system’s mean state to the system failure level. Thus, the
probability corresponding to the wvalue of B 1is taken as the system
reliability. '

In the MVFOSM method, no distributional assumptions are made regarding
the basic variables. Hence, the distribution of Z remains undefined, and
the probability information contained in B 1is poor. Typically, it is
assumed that Z is normally distributed, and thus the system risk is

Rs =1 - ®(B8) (B.11)

where ®(:) is the standard normal integral (e.g., see Ang and Tang, 1975).
This assumption has several practical advantages. If the system performance
function is linear (i.e., Z=R-L) and the load and resistance are normally
distributed, Eq. B.ll yields the exact risk. If the system performance
function is nonlinear such that Z=in(R/L) is appropriate and the load and
resistance are lognormally distributed, Eq. B.1ll yields a very close
approximation of the exact risk as long as the coefficients of variation of
L and R are relatively small. Therefore, the selection of the normal
distribution for Z is quite reasonable and efficacious because many natural
systems and/or variables can be shown to be normally or lognormally distri-
buted.

) Yen et al. (1986) noted that wusually some information on the nature

of the basic variable distributions is available. Though imperfect and
imprecise, such limited information provides great help in obtaining risk
evaluation with acceptable accuracy. For example, they reasoned that if the
basic variable distributions are uni-modal with the mode near the beginning
of the range, setting Z=£n(R/L) and assuming Z is normally distributed will
provide reasonable estimates of risk. 1If the basic variable distributions
are uni-modal with small skewness, setting Z=R-L and assuming Z is normally
distributed will provide reasonable risk estimates. Furthermore, Cheng
(1982) found that even for the case of

Z=3x, + X, - X,X (B.12)

where xX] and x are uniformly distributed and x3 and x4 are lognormally
distributed, the MVFOSM method with Z=R-L (R=xj+x9, L=x3x%4) and Z assumed
normal gave acceptable estimates of risk relative to the exact solution when
the risk is high, e.g., Rg > 0.01. In summary, very reasonable estimates of
system risk can be made with the MVFOSM method despite the necessity of
assuming a distribution for Z.

B.5.2 Practical Advantage of the MVFOSM Method
The greatest advantage of the MVFOSM method is its simplicity; no
higher order moments or distributional information on the system’s basic

variables are necessary, only the mean and variance of the variables are
needed to obtain a reasonable estimate of the system risk. While many may
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argue that first-order methods are oversimplified and too inaccurate to be
useful, Cornell (1972) made a strong defense of them from a practical
standpoint. He stated:

"An approach based on means and variances may be all that is
justified when one appreciates: (1) that data and physical
arguments are often insufficient to establish the full proba-
bility law of a variable; (2) that most engineering analyses
include an important component of real, but difficult to
measure, professional wuncertainty; and (3) that the final
output, namely the decision or design parameters, is often
not sensitive to moments higher than the mean and variance."

Furthermore, Cornell (1972) pointed out the most important consideration in
any reliability analysis:

"It is important to engineering applications that we avoid
the tendency to model only those probabilistic aspects that
we think we know how to analyze. It is far better to have an
approximate model of the whole problem than an exact model of
only a portion of it.”

B.5.3 Applications of the MVFOSM Method in Hydraulic Engineering

The simplicity and practicality of the MVFOSM method has made it
popular for a variety of water resources systems uncertainty analyses. The
MVFOSM method has been directly applied to hydraulic structure reliability
analysis for storm sewers (Tang and Yen, 1972) and culverts (Yen et al.,
1980), and indirectly applied to such analysis by Tung and Mays (1980 and
1981) as described previously. Burges (1979) applied the MVFOSM method to
the analysis of flood plain mapping uncertainty due to errors in the
estimation of the design discharge and in the routing procedures used to
determine the flood plain. However, Burges’ work erroneously equated the
design discharge uncertainty to the chamnel capacity uncertainty. McBean
et al. (1984) and Oegema and McBean (1986) corrected Burges’ error and
determined the one standard deviation error bounds for flood plain width

combining the design discharge and channel capacity uncertainties. Tung
(1987) used the MVFOSM to estimate confidence bounds for the precipitation
depths in the National Weather Service rainfall frequency atlas -- U.S.

Weather Bureau Technical Paper Number 40 (Hershfield, 1961). Finally,Garen
and Burges (1981) used Eq. B.8 to approximate the error bounds fora
simulation of total flow volume produced by a modified version of the
Stanford Watershed model.

Yen and Tang (1977) applied MVFOSM analysis to flood routing model
uncertainties for the purpose of evaluating the reliability of real-time
flood forecasts provided by such models. They separated out the various
sources of uncertainties as correction factors and then applied the MVFOSM
analysis. This work marks the first attempt to consider the uncertainties
involved in real-time flood forecasts, however, the correction factor
approach reduces the utility of the analysis. The simplification of using
correction factors allows the MVFOSM method to be used, but it also takes
away validity from the overall analysis because it 1s unclear how known
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available information on model parameter and data uncertainties equate to
correction factors. Thus, some of the knowledge of these sources of
uncertainty may be lost in the assumptions of the correction factor
approach. A better approach would be one which can directly make use of
available information on model parameter and data uncertainties and their
direct effects on model predictions.

B.5.4 MVFOSM Method Summary

- When applied to engineering design problems, the MVFOSM method does,
however, have several theoretical and/or conceptual problems as pointed out
by Rackwitz (1976) and Cheng (1982). These problems are listed below with 1
to 3 being the most serious:

1) the relative accuracy of the first-order Taylor series
approximation;

2) for engineering systems the events of failure generally happen at
extreme values rather than near the mean load and resistance;

3) most real world engineering systems exhibit nonlinear behavior;

4) the results of this method vary depending on the particular
mathematical formulation of Z and on the dimension (i.e., number of
variables) of the reliability problem;

5) the reliability index, B, gives only weak information on the
probability of failure and thus the appropriate system probability
distribution must be assumed;

6) this method provides no logical way to include available informa-
tion on basic variable probability distributions.

However, for evaluating the uncertainties in real-time flood forecasts, the
system failure (i.e., flood peak exceeding critical stage) -generally will
not be at extreme values. Furthermore, the flood risk levels considered are
high enough such that it is reasonable to assume f is normally distributed.
Therefore, the MVFOSM method might be quite useful for real-time flood
forecast uncertainty analysis. Finally, both Cheng (1982) and Yen et al.
(1986) found that Z=(R/L)-1 gave consistently poorer estimates of risk than
either Z=R-L or Z=4In(R/L). Hence, in this study, the MVFOSM method with
Z=R-L and Z=fn(R/L) is examined for real-time flood forecast uncertainty
analysis.

B.6 Advanced First-Order Second Moment (AFOSM) Method

Recent research has sought to maintain some of the simplicity of the
MVFOSM method and yet reduce its flaws. The result is the advanced first-
order second moment method. The basic concept behind the AFOSM method was
first proposed by Hasofer and Lind (1974), but Rackwitz (1976) was the first
to tie the entire AFOSM method together. Rackwitz's version of the AFOSM
method will be outlined in the following paragraphs.
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The essence of this method is to linearize the performance function via

Taylor series expansion at a likely failure point (xl*, xz*, N xp*) on
the failure surface, i.e., when the performance function, g(g*), equals
zero. The expected value and variance of the performance function as

approximated by a first-order Taylor series at this point for the case of
statistically independent basic variables are

* P . *
E[Z] = g(x™) + ) C.(x, - x.7) (B.13)
. it i
i=1
2 B 2
VAR(Z) =0 “ = ) C;” VAR(x,) (B.14)
i-1
P
o = [ z (C. a.)z]l/2 (B.15)
z . i1
i=1
where Cj, in this case, is 8g/dxj evaluated at (xl*, xz*, e, xp*).
The expression for ¢, may be rewritten in a linearized form
P ) .
o, = .Z a, Ci o5 (B.16)
i=1
in which the aj's are sensitivity factors and are evaluated from
Ci o
ai = o (B.17)
2.1/2
1Y, ¢y o1

j=1

Substituting Eqs. B.13 and B.16 into Eq. B.9, the reliability index for the
AFOSM method is -

m _
g(x*) + -§1 C,(x; - x;
g = = (B.18)

*y
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B.6.1 Methods for Finding the Failure Point

The formulations in the previous paragraph appear to be fairly simple
and straightforward; however, it must be pointed out that determination of
the failure point is generally not a simple task. Several iteration methods
have been proposed for determining the failure point (e.g., Rackwitz, 1976;
and CIRIA, 1977). The Rackwitz approach has become the "standard" iteration
approach as evidenced by its inclusion in the text book summary of the AFOSM
method presented by Ang and Tang (1984, p. 361). A flow chart of the
Rackwitz iteration scheme 1is given in Fig. B.1l. Recently, the use of
constrained nonlinear optimization has shown great promise as an alternative
to the iteration schemes. The constrained nonlinear optimization schemes of
Shinozuka (1983) and Cheng (1982) are described below.

If the basic variables are standardized, i.e.,

y., = (x, - x.) / o, ‘ (B.19)

The standardized basic variables, y{, have a mean of zero and a standard

deviation of one. Shinozuka (1983) solved the following optimization
problem:
Minimize: Y9 = (ZT Z)l/Z (B.20)
Subject to: gl(z) =0 (B.21)

where yT = the transpose of the standardized basic variable matrix.

Using the Lagrange multiplier method to solve this problem, the Lagrangian
is ’

L - o /2

. + 2 g () (B.22)

where A = the Lagrange multiplier.

Setting aLg/ay = aLg/aA = 0, the solution for y* and A\* is obtained from

¥ =2y G, (B.23)
where ¥ = the minimum of Yo' and
G, = the vector of dgj/dyj evaluated at Z*.
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Evaluate: .
Ci = (aG/an) at Xj¢ ¥ i

1

Calculate:
XiNt and ojNg ¥ i
(Eqs. B.35 and B.36)

Compute:
aiNt Vi (Eq. B.38)

¥
Cgmpute:

Sufficient information

to assume both

B1 and x;1
?

Evaluate:
Ci = (3G/3Xy) at xiy

L

Calculate:
XyN1 and oyN1 ¥ 1

(Eqs. B.35 and B.36)

Combute:
ajNt ¥ 1 (Eq. B.38)

Compute:

x¥(te1) ¥ 1 (Eq. B.3D[°

y

Compute: .
By+1 using xj(te+1) and

G(xi(ge1)) (EQ. B.39)

l

Rgcompute:
xi§t+1) ¥ 1 using By+q

Eq. B.37)"

YES

81 (Eq. B .39)

* *
Xi(t+1) ~ Xit
< Tolerance ¥
?

i

Compute:
Pep =1 = ¢(Breq)

Figure B.l. Flow chart of Rackwitz's iterative algorithm
(note: the subscipts 1, t, t+l denote trials

in the iterative algorithm)
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Solving for vy yields

T
DA
(Gx Cx)/? :

The system performance function, Z, may also be expressed in terms of
the standardized basic variables, yj, i.e., Z=gp(y). Taking a first-order
Taylor series expansion at the failure surface =

[

* P *
E[Z] = gy (y") - .21 Gys Vi (B.25)
1=

Var[Z] = o 2 _

. G (B.26)

1 21

I 1o

i

where G,i = 8gp/dyi evaluated at y*.
At the failure surface, gz(y*)=0,_therefore, the reliability index, B, is

P
*
i§1 €91 Y1
B =-= (B.27)
% c 2]1/2
Lig 4
Rewriting Eq. B.26 in vector form,
*
G ¥
S v B
2 72

Shinozuka (1983) stated the comparison between Eqs. B.24 and B.28 indicates
that if g1(y) is set as gp(y), the reliability index (or its absolute value)

is the shortest distance in standardized space between the system mean state
(i.e., where all basic variables are at their mean values) and the failure
surface. Hence, optimization algorithms currently available for nonlinear
programming methods, including the Lagrange multiplier method, can be used
for determination of the failure point.

For example, Wang et al. (1983) used the a Lagrange multiplier approach
incorporating an iterative "redesign travel" formula to solve for the
failure point. They found that for the problems they studied, the "redesign
travel” optimality criterion algorithm 1is highly efficient with convergence
generally obtained in 5 to 8 iterations. Furthermore, they found the speed
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generally obtained in 5 to 8 iterations. Furthermore, they found the speed
of convergence appeared to be almost independent of problem size.

Cheng's (1982) constrained 1linear programming approach takes a
different view of the problem. Cheng noted that for points on the failure
surface g(g*) = 0, so Eq. B.18 may be rearranged as

* —
Ci(x; - x; - a;, o) =0 (B.29)

I t~1o

i=1

Solving this equation gives

- * _ . .
X, - X7 - oay B o, = 0 ; for all i (B.30)

Hence, Eq. B.30 defines the failure point x* and it may be thought of as a
series of equality constraints. By selecting an objective function of

Min | g(x™)| (B.31)

subject to Eq. B.30 and the definitions of aj and B as given by Eqs. B.17
and B.18, respectively, the failure surface may be found. It should be
noted that while this problem has an equal number of constraints and
variables, it defies straightforward solution because B and the aj are
different at each point. Hence, at each point, a new optimization problem
must be solved. Cheng (1982) proposed to find the failure point and B8 by
using the generalized reduced gradient algorithm, GRG, (Abadie and
Carpentier, 1969). Like all nonlinear programming algorithms, GRG cannot
guarantee to find the global optimum, and so a number of different starting
points for the algorithm may be necessary. Fortunately, Cheng (1982) found
that if the minimum of |g(3)| approaches zero, the solutions of g and 3*
usually are the global ones. Thus, if the objective function is
sufficiently close to zero, one may conclude that the appropriate valueof B
has been found.

The strength of Cheng’s GRG method is the robustness of the GRG
algorithm. Sandgren and Ragsdell (1980a and b) performed an extensive
review and comparison of the existing computer codes for nonlinear
optimization, and they found that the GRG based codes were far more effi-
cient than the other methods, and GRG based codes were capable of solving a
wide variety of problems. Therefore, the AFOSM method using Cheng’s GRG
method should be useful for any system where a concise, orderly mathematical
description of the problem can be made. Hence, considering the efficiency
of the GRG algorithm and the possible problems in determining the Lagrange
multipliers for real-time flood forecasting cases, the GRG method for
finding the failure point is preferred.
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B.6.2 Probability Estimates Based on the AFOSM Method

Just as with the MVFOSM method, the reliability information in terms
of a probability statement contained in B remains poor and is of the
Tchebychev-inequality type (Rackwitz and Fiessler, 1978). Unlike the MVFOSM
method, however, for the AFOSM method more precise probability statements
can be made if distributional assumptions for the basic variables are
adopted. For linear failure surfaces where all the basic variables are
normally distributed, the probability of failure (risk) is exactly given by
Eq. B.11.

For convex failure surfaces where all the basic variables are normally
distributed, the probability of failure (risk) is bounded as

1-e®) <R =1 - x, (89 (B.32)

where yx 2(') is a chi-squared distribution with p degrees of freedom
(Hasofer, 1974). Rackwitz' (1976) experience with structural problems
indicated that if g (i.e., the distance function from the system mean to the
failure surface) shows a unique minimum, then the lower bound will generally
serve as a relatively good probability estimate within the accuracy of the
first-order approximation. Based on a limited amount of experience with
storm sewer reliability, it would appear that hydraulic problems have a
unique minimum of the distance function, and thus the lower bound is a good
risk estimate for hydraulic systems just as it is for structural problems.

Unfortunately, for most real systems not all the basic variables are
normally distributed. Thus, it 1is desirable to transform the non-normal
variables into equivalent normally distributed variables. Rackwitz (1976)
proposed a transformation where the values of the cumulative distribution
function, CDF, and the probability density function, PDF, of the non-normal
distributions are the same as those of the equivalent normal distributions
at the failure point; i.e.,

) : (B.33)

X,
£oox® = (2—L /N (B.34)
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in which F .(xi*) and fx.(xi*) are the CDF and PDF of xj at xi*, and
&(°) and fﬁﬁk) are the CDF and PDF of the standard normal distribution,
respectively. In order to do this, Rackwitz (1976) approximated the
non-normal distribution function by a first-order Taylor series expansion.
Thus, the mean, EIN, and the standard deviation, aiN, of the equivalent
normal distributions become

N

* -1 *
X, =X, - L] (in(xi » g (B.35)
N
-1 %
N @ (Fey (x5
oV - (B.36)
i £ o(x *)
xj 1
The constraints for the nonlinear optimization problem are then
- N * N ) .
T B o4 o for all i (B.37)
where
Ci aiN
a, = b (B.38)
N.2.1/2
SRR R
j=1
and
* P = *
g + L Cilxy - oxT)
i=1
= > (B.39)
Y Ci a, aiN
i=1

Rackwitz and Fiessler (1978) pointed out that this normal transforma-
tion of non-normal variables is exact within the accuracy of the first-order
theory under consideration. Furthermore, Yen et al. (1986) and Cheng (1982)
compared the AFOSM using transformed normal variables and risk taken as the
lower bound of Eq. B.32 with exact solutions for a number of simple
examples. They found the AFOSM method yields risk wvalues very close to the
exact values even for low risk cases (i.e., Rg < 0.001). Ang and Tang
(1984, p. 383) noted that AFOSM method risk estimates have been found to be
quite accurate for a variety of problems with nonlinear performance
functions which are typical of those found in practical engineering
problems. Therefore, estimating risk as the lower bound in Eq. B.31 appears
to be fairly exact within the accuracy of the first-order approximation for
systems with convex failure surfaces where all the basic variables are
either normally distributed or transformed normal.
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B.6.3 Applications of AFOSM Method to Hydraulic Engineering Problems

The AFOSM method has been used quite successfully in assessing the risk
for several types of hydraulic structures. Kooman et al. (1978) and
Vrijling (1982) wused the AFOSM method to check the reliability of the
components of the Oosterschelde storm surge barrier in The Netherlands,
including the main sections of the concrete components, the steel gate, the
sill, and the foundation. Mol et al. (1983) used the AFOSM method for the
design of rubble mound breakwaters. Melching and Yen (1986) used the AFOSM
method to analyze the effects of construction errors (as they affect the
design slope) on storm sewer reliability. Melching et al. (1986)
demonstrated the potential usefulness of the AFOSM method for hydrologic
problems by studying the uncertainties in a rainfall-runéff flood frequency
model and comparing the AFOSM results with the analytical results obtained

by Wood (1976). Cheng (1982) wused the AFOSM method to evaluate dam
overtopping risk. Cheng (1982) also compared the various risk evaluation
methods for a simple example. He concluded considering accuracy,

consistency, and computational cost, the AFOSM method with the GRG
optimization technique is highly recommended for dam safety evaluation or
for any other system where risk levels less than 1073 are important.

B.6.4 AFOSM Method Summary

Considering the successful uses of the AFOSM method for hydraulic
structure uncertainty evaluation and the general characteristics of this
method, the AFOSM method is probably the reliability analysis method best
suited to engineering system design problems due to its relative simplicity,
accuracy, and robustness. This sentiment is echoed by researchers in
structural engineering who have strongly supported the use of the AFOSM
method as a scientific base for structural safety codes, e.g., Rackwitz
(1976) and CIRIA (1977). Given the strong support the AFOSM method receives
for design problems, it will undoubtedly be of use for real-time flood
forecast uncertainty analysis. The primary strength of the AFOSM method for
flood forecasting problems is its robustness which allows it to work with
many different model formulations of the rainfall-runoff process.

It should be noted that the presentation of the AFOSM method given here
assumes that the basic variables are uncorrelated. Methods exist for
dealing with correlation of the basic variables of the AFOSM method (e.g.,
see Ang and Tang, 1984), but from a practical simplicity viewpoint, it would
be best if these could be avoided. Garen and Burges (1981) found that their
Monte Carlo simulation results considering parameter correlation differed
insignificantly from the results ignoring the correlation. Hence, the
assumption that small correlations between basic variables do not signifi-
cantly affect the AFOSM risk estimates may be justified. 1In this study, for
the example hydrologic models, only a few of the basic variable interrela-
tions have correlations significantly different from 2zero, and it is
reasonable to assume that the nonzero correlations would have small effects
on the risk estimates (see Appendix C).
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APPENDIX C. EXAMPLE WATERSHED FOR CASE APPLICATION

.C.1 Introduction

In this study, two well-known and well-tested rainfall-runoff
simulation models are adapted for real-time flood forecasting on a flood
prone Illinois watershed. This watershed, its flood history, and the data
available to fit hydrologic models to it are described in this appendix.

Brief descriptions are given of the two hydrologic models utilized. The
calibration results for each model are presented. The use of these results
to establish real-time flood forecasting schemes is discussed. Also, the

use of the calibration results to determine the model parameter and model
structure uncertainty measures necessary for incorporation of reliability
analysis into the real-time flood forecasting schemes is described.

C.2 Example Watershed
C.2.1 Watershed Selection Criteria

To adequately meet the objectives of this study, the chosen example
watershed must satisfy the following requirements:

1. It has a history of causing significant flood damages at a city
near its outlet such that a flood warning and preparedness system
would be beneficial, and

2. It is of medium size (say 100-700 square miles) so that rainfall-
runoff modeling is a necessary and efficient tool for flood
warning. If the watershed 1is large, flood forecasts may be
efficiently achieved using stream routing techniques alone without
rainfall-runoff modeling; or if the watershed is small, forecast
lead times may not be sufficient for the flood warning system to be
effective.

Furthermore, for this study it was decided to demonstrate the incorporation
of reliability analysis with rainfall-runoff models for the calibrated model
case only. Therefore, sufficient rainfall and runoff data must be available
to properly identify the "best estimates" of the model parameters and the
corresponding parameter and model structure uncertainties. Data must also
be available to verify the real-time flood forecasting schemes developed.

The Vermilion River watershed at Pontiac, Illinois, meets the criteria
given above. In the following sections, a general description of its
physical properties, flood history, and data inventory are given.

C.2.2 Watershed Description
The Vermilion River watershed at Pontiac comprises 579 square miles

in east central Illinois, primarily in Livingston and Ford counties,
Figure C.1 displays the Vermilion River watershed and its soil types.
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The Vermilion River watershed outline is formed from morainal ridges left
behind by glacial action occurring during the Wisconsin Period, beginning
about 15,000 to 20,000 years ago. With the exception of these morainal
ridges, the watershed is a nearly level plain which ranges in elevation from
600 to 650 ft, while the ridges range in elevation from 750 to 780 ft.
Consequently, the slope of the Vermilion River is quite mild, 0.064 percent
(3.36 ft/mile) over the 50.75 mile length of the Vermilion River and its
North Fork, and ranging from 0.136 percent (7.20 ft/mile) in the upland
21.11 mile reach of the North Fork above Charlotte to 0.012 percent (0.63
ft/mile) for the 29.64 mile reach from Charlotte to Pontiac. The tributary
streams and overland flow paths have similarly mild slopes ranging from
0.017-0.229 percent (0.9-12.1 ft/mile) for the streams and 0.03-0.65 percent
(1.6-34.3 ft/mile) for overland flow.

The Vermilion River watershed consists of extremely rich agricultural
soils and hence the land use in the basin is dominated by cropland. Zebrun
(1969) reported the land use in Livingston county, which includes the
majority of the basin, to be 86 percent cropland, 5 percent pasture, 2
percent woodland, and 3 percent other uses, Visual inspection and
comparison to earlier USGS maps of the watershed reveals the land use
remains approximately the same in the 1980s. Agricultural drainage systems
play a major role in the rainfall-runoff process for this watershed as
expected given the mild slope of the land, the low permeability of the soils
(described in the following section), and the watershed land use. The most
significant impact of agricultural drainage on the watershed rainfall-runoff
process occurred in 1954, The Vermilion River Outlet Drainage District
initiated a major channelization project involving the Vermilion River, its
North Fork, and North Fork tributaries. This project was completed in the
summer of 1955 and resulted in changing the natural 35 ft wide North Fork
channel to a trapezoidal channel 100 ft in width and the natural 75 ft wide
Vermilion River channel to a trapezoidal channel 166 ft in width. Each
channel was also deepened 1 to 6 ft (U.S. Army Corps of Engineers, 1986).
This channelization greatly altered the Charlotte to Pontiac average flood
wave travel time from 24.9 hours prior to 1955 to 17.6 hours after 1955,

The Vermilion River Outlet Drainage District dredged the channel system
again in 1982 to restore it to its 1955 dimensions. Cross sections prepared
for the 1982 channel dredging indicated only a moderate amount of sediment
removal was necessary (U.S. Army Corps of Engineers, 1986). Therefore, it
is reasonable to assume that since the completion of the 1955 channelization
the watershed’s physical characteristics have remained nearly constant and
are likely to remain so for the next 20 to 30 years.

C.2.3 Watershed Soil Conditions

The soils in the Vermilion River watershed upstream of Pontiac are
predominantly silt loams, silty clay loams, and clay loams which are nearly
level to moderately sloping with very slow to moderate permeabilities.
Figure C.l1, compiled from Wascher et al. (1949) and Smith et al. (1933),
displays the major soil groups in the basin and their location. Table C.1
lists the soil types which dominate each of the soil groups, the percentages
of Ford and Livingston county areas occupied by each of these soil types,
and the saturated hydraulic conductivity (permeability) and available water
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capacity* for both the top layer and deep (underlying) layers for each of
these soils as given by USDA Soil Surveys. A brief description of each of
the soil types listed in Table C.1 is given below (based on Wascher et al.,
1949, and Smith et al., 1933).

Ashkum series soils are poorly drained, nearly level to very gently
sloping, dark brown to black silty clay loams with moderately slow permeabi-
lity and high to very high available water capacity. Surface drainage is
slow to ponded, hence, for agricultural use measures should be taken that
will drain the surplus water off promptly. Tile draw is not as free as in
many other soils. Thus, the tile should be laid fairly close together and
as shallow as is safe, open ditches or furrows may be used to advantage to
supplement the tile in places where the lay of land permits.

Brenton series soils are somewhat poorly drained, nearly level to very
gently sloping, brown to dark brown silt loams with moderate permeability
and high available water capacity. Surface drainage is moderate to slow.
The . soil profile 1is permeable to water throughout, and tile draw
satisfactorily.

Bryce series soils are poorly drained, nearly level to very gently
sloping, very dark colored silty clays with slow permeability and high
available water capacity. Surface drainage is slow to ponded. Hence,
underdrainage is quite important for agricultural use of this soil. Tile
are only moderately effective because water moves so slowly through the
subsoil and underlying glacial till. If a tiling system is installed,
surface inlets might well supplement underdrainage with surface drainage.

Clarence series soils are somewhat poorly drained, very gently sloping
to gently sloping, brown to grayish brown silt loams with very slow
permeability and moderate available water capacity. Surface drainage is
moderate to rapid. Due to poor underdrainage, tile are not effective in
this soil and ponded areas should be surface drained.

Drummer series soils are poorly drained, nearly level black clay loams
with moderate permeability and very high available water capacity. Surface
drainage. is slow to ponded. Tile draw adequately in this soil, however,
without proper crop management, the good underdrainage can be adversely
affected.

Elliott series soils are somewhat poorly drained, nearly level to
gently sloping, dark colored silt loams with moderately slow permeability
and high available water capacity. Surface drainage is medium. Tile draw
well with no serious problems reported.

Pella series soils are poorly drained, nearly level to level, black
clay loams with moderate permeability and very high available water
capacity. Surface drainage is slow to ponded. Tile draw readily, but

*Available water capacity is the capacity of the soil to hold water that can
be used by plants, which is defined as water held between the wilting point
(15 atmospheres of tension) and the field capacity (1/3 atmosphere).
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because of lack of adequate slope they require very careful leveling when
installed.

Ridgeville series soils are somewhat poorly drained, nearly level to
gently sloping, brown to dark brown sandy loams with moderate to moderately
rapid permeability and moderate to high available water capacity. Surface
drainage is slow. Tile drainage may be necessary in a few areas to take
care of low wet spots.

Saybrook series soils are moderately well to well drained, very gently
sloping to gently sloping, dark colored silt loams with moderate permea-
bility and high available water capacity. Surface drainage is medium.
Because this soil is moderately well to well drained, tile are not generally
necessary.

Swygert series soils are somewhat poorly drained, nearly level to
sloping, brown to dark-brown silt loams with slow permeability and moderate
available water capacity. Surface drainage is slow to rapid. Underdrainage
for this soil is very slow, hence, tile should be installed to aid this
drainage.

The Vermilion River watershed upstream of Pontiac is a highly
productive agricultural area. In order to maintain this high productivity,
farmers in the basin have generally followed the drainage guidelines for
each soil described above. Hence, the basin is dominated by a complex tile
and surface drainage (i.e., drainage ditch) network which greatly influences
the hydrologic response of the watershed. Consideration of the effects of
this drainage network may be necessary when modeling the basin.

C.2.4 Flood History and Flood Stage

The city of Pontiac has a population of 11,227 (1980 census) and it has
suffered five significant flood events in the last 30 years. The U.S. Army
Corps of Engineers (1984) documented these events, and Table C.2 presents a
summary of their findings. It should be noted that the dates given in Table
C.2 correspond to the day the flood peak reached Pontiac, while for
subsequent tables listing the calibration and verification events, the date
corresponds to the beginning of the rainfall event. Furthermore, Fig. C.2
displays the flood inundation pattern over the city of Pontiac as estimated
by the U.S. Army Corps of Engineers (1984) using the HEC-2 flood routing
package. The extent of the flood severity in Pontiac is well displayed by
this figure.

The definition of the flood stage at Pontiac varies considerably. The
Flood Insurance Study (Federal Insurance Administration, 1979) and the U.S.
Army Corps of Engineers River Basin Study (1986) report the bankfull stage
to be 12.5 ft with a corresponding discharge of 5800 cfs. U.S. Army Corps
of Engineers Section 205 Report (1984) indicates the flood stage at Pontiac
starts at 14 ft (6800 cfs) which agrees with the NWS flood stage commonly
listed in the Weather Section the Chicago Tribune. The 205 Report also
notes that the channel will pass flows of approximately 8000 cfs at bankfull
stage, which makes the bankfull stage approximately 15.4 ft.
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10-year floodplain

—— -—~— 50~year floodplain

& —— ~ —100-year floodplain

Figure C.2,

Flood inundation patern over the city of Pontiac,
Illinois (after U.S. Army Corps of Engineers, 1984)
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In order to clear up this confusion regarding flood stage, David L.
Sullivan, Superintendent of the Pontiac Wastewater Treatment Plant, was
consulted. According to Mr. Sullivan (1986), the current flood warning
procedure and significant flood stages at Pontiac are as follows:

1. When the river stage reaches 90 in. above the water supply dam just
upstream from Mill Street, the fire department monitors the stage
at two-hour intervals.

2. When the river stage reaches 100 in. above the dam, street flooding
begins.

3. When the river stage reaches 105 in. above the dam, the evacuation
center in Pontiac is opened.

4, When the river stage reaches 120-130 in. above the dam, damaging
flooding occurs.

The U.S. Army Corps of Engineers (1984) performed a detailed flood routing
of the Vermilion River through Pontiac using HEC-2, and Harza Engineering
performed the same task using WSP-2 for the Flood Insurance Study (Federal
Insurance Administration, 1979). Using their published flood profiles, the
stages above the dam can be translated to gage heights at Vermilion Street
and then to the corresponding significant flood discharges via the rating
table. Table C.3 shows the significant flood stages above the dam and their
corresponding gage heights and discharges.

+ Table C.3. Significant Flood Stages and Their Corresponding
Gage Heights and Discharges

Stage Above Dam Gage Height Discharge
(in.) (ft) (cfs)
90 14.55 7270
105 15.80 8460
120 17.00 9700
130 17.85% 10880

*Note: Harza's analysis using WSP-2 yielded 18.05 ft while
the U.S. Army Corps of Engineers’ analysis using
HEC-2 yielded 17.85 ft. Since the July 10, 1951
flood had a crest of 17.90 ft and led to considerable
-damage, the lower value was chosen even though the
channel is significantly different now.

A comparison of the flood levels given in Table C.3 and the flood
history given in Table C.2 validates the flood stage guidelines presented by
Mr. Sullivan. Therefore, in this study the flood level of interest was
chosen to correspond to the worst flooding level, stage equal to 17.85 ft
(discharge 10880 cfs).

125



C.2.5 Hydrometric Data Available

C.2.5.1 Rainfall Data

Three rainfall gages, one daily gage and two hourly recording gages,
are currently in operation on the Vermilion River at Pontiac watershed. NWS
hourly gage 11292300 was established at the Fairbury water works on July 1,
1948. NWS hourly gage 11681900 was established in Piper City on February 1,
1949. The locations of these rain gages are shown in Fig. C.1, and they are
used to define the temporal and areal rainfall distribution over the
watershed for the real-time flood forecasting schemes. NWS daily precipita-
tion gage 116910 was established in Pontiac on January 1, 1903. Before July
1952, it was read once daily at 6 p.m. and since that time it has been read
once daily at 7 a.m. The daily wvalues from this gage have been used to
check the consistency of the daily totals at Piper City and Fairbury for the
calibration and verification events. In general, the agreement between the
daily totals at the three gages is quite good. The Pontiac gage record also
contains snowfall data which was used to detect snowmelt influenced events
and to remove them from the list of possible calibration or verification
events.

At the start of this research, data from each of these gages had only
been processed up to 1983. Thus, the records from each of these gages were
obtained from their beginnings to 1983.

C.2.5.2 Streamflow Data

A wire weight gage was placed on the Vermilion Street Bridge in Pontiac
on September 24, 1942, and continuous records have been maintained from
October 1, 1942 to date. On November 8, 1965, a digital water stage
recorder was installed. Prior to this time, the gage was read twice daily
providing daily average flows and flood peaks. From November 8, 1965 to
February 4, 1974, bi-hourly streamflows are available, and hourly

streamflows from February 5, 1974 to date. This streamflow data
availability makes selection of the calibration and verification data sets
quite easy. From November 8, 1965 to the present, complete hydrograph

information is available for model calibration, hence, this period provides
the calibration data -set. The flood peaks in the data from 1955 (after
channelization) to 1965 provide an adequate verification data set given that
flood peaks are of prime importance for FWP systems.

On the North Fork of the Vermilion River near Charlotte at Foreman
Highway Bridge (see Fig. C.l) a temporary wire weight gage was installed on
October 1, 1942 and this was replaced on January 14, 1943 by a water stage
recorder. On October 1, 1962, the gate was converted to crest gage. For

this gage's period of record, continuous strip charts of stage are
available.

C.2.5.3 Evapotranspiration Data

The closest daily evaporation pan to the Vermilion River watershed at
Pontiac is located in Urbana approximately 50 miles south of the center of
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the watershed. However, John L. Vogel (1986), Head of the Climate
Information Unit of the Illinois State Water Survey, recommends against
using the Urbana data due to some inconsistencies in the record in the
1970s. Also, the pan operates from mid-March or early April to October;
hence, for many Spring events, insufficient evaporation data would be
available for proper soil moisture accounting. Vogel (1986) recommended
instead the use of Hamon’s (1960 and 1961) simple equation for estimating
potential evapotranspiration, which Jones (1966) found to give reasonable
results for Illinois.

Hamon’s equation requires only the mean daily temperature to estimate
the potential evapotranspiration. Daily minimum and maximum temperature
data are available at Pontiac from January 1, 1903 to date.

C.3 Rainfall-Runoff Models

The U.S. Army Corps of Engineers (1985) HEC-1, Flood Hydrograph
Package, and the Australian RORB, Runoff Routing Program (Laurenson and
Mein, 1985), were chosen as example models to demonstrate the utility and
feasibility of employing reliability analysis to consider the uncertainties
in real-time flood forecasting. It should be remembered that the
reliability analysis approach is not limited to these particular models,
These models were chosen because each has been well-tested for a variety of
hydrologic modeling uses, including real-time flood forecasting, under many
different conditions around the world. Furthermore, HEC-1 has become one of
the most commonly wused rainfall-runoff simulation models in the -United
States; while in Australia, RORB is used by all water authorities and all
consultants working in the water business (Laurenson, 1986). Brief descrip-
tions of each of these models are given below.

C.3.1 HEC-1 Flood Hydrograph Package

The HEC-1, Flood Hydrograph Package, computer program was originally
developed in 1967. Since that time, it has been extensively tested and used
with satisfactory results for a wide range of watersheds across the United
States and the world. Also since 1967, the program has frequently been
revised, updated, and/or appended. In the current version of the program
(U.S. Army Corps of Engineers, 1985), the computational capabilities of the
dam-break (HEC-1DB), project optimization (HEC-1GS), and kinematic wave
(HEC-1RW) special wversions of HEC-1 have been combined with standard
hydrologic and hydraulic computation portion of HEC-1. A microcomputer
version (PC version) developed in 1984 is also available. The PC version
contains all the hydrologic and hydraulic computation capabilities of the
mainframe HEC-1; however, the flood damage and ogee spillway capabilities
were omitted due to PC memory and compiler limitations.

For this study, only the hydrograph simulation portion of HEC-1 is
used, Within the hydrograph simulation portion of HEC-1, there are several
options for calculating abstractions, converting rainfall excess to the
runoff hydrograph, and routing streamflow. The options used in this study
are described below.
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For the calibration data set (1965-1983), runoff data is only available
at Pontiac (the watershed outlet). Therefore, the watershed was modeled as
a lumped system. Thus, no streamflow routing will be required, and
rainfall, abstractions, and hence, rainfall excess are viewed as spatially
uniform over the watershed. The areal average rainfall is estimated by
applying the Thiessen weights 0.543 and 0.457 to the rain gages at Fairbury
and Piper City, respectively.

Abstractions were modeled via the initial loss-continuing loss rate
option in HEC-1. This simple approach was chosen over the more
sophisticated exponential loss rate function, SCS curve number, and Holtan
loss rate options for several reasons. Ford et al. (1980) pointed out that
if the temporal and spatial distribution of precipitation is not well
defined (as is the case for the Vermilion River watershed), an initial loss,
followed by a uniform loss rate may be most appropriate. Furthermore, the
above fact has led the initial loss-continuing loss rate option to become
the most commonly used abstraction option for typical hydrologic analyses
employing HEC-1. Finally, RORB also utilizes an initial loss-continuing
loss approach, which facilitates a comparison of model results.

The Clark unit hydrograph option was chosen to convert the rainfall
excess hyetograph to the runoff hydrograph. This option was chosen because
it has been the basis of HEC-1 runoff generation since the model’s
development, and as such it has been well tested.

The Clark method (1945) is based on the principle that the runoff time
distribution is defined by a time-area curve, which characterizes the
cumulative area of the watershed contributing runoff to the watershed outlet
as a function of time. HEC-1 contains a dimensionless time-area curve based
on a generalized watershed shape. This curve was utilized, and it is given
as

AL = 1.414 T2 for 0 < T < 0.5 (C.1.a)

1 - AL = 1.414(¢1 - T)}*° for 0.5 < T < 1 (C.1.b)

where Al = the cumulative area contributing runoff as a function of total
watershed area, and

T = the fraction of the watershed time of concentration (TC, a model
parameter).

Ford et al. (1980) noted that experience by the HEC has indicated the use of
a detailed time-area relationship is wusually not warranted and that the
time-area curve contained in HEC-1 is satisfactory in most instances. The
high quality calibration results obtained in this case study (see section
. C.4) support Ford et al.’'s argument.

The ordinates of the time-area curve are converted to volume of runoff

per second for unit rainfall excess and interpolated to the given time
interval for the translation hydrograph. To simulate the watershed storage
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effects, the translation hydrograph is routed through the linear reservoir:

Q(2) = CA * I + CB * Q(1) | (C.2)

where CA = At/(Sgp + 0.5 * At),

CB =1 - CA,
Q(2) = the instantaneous flow at the end of the period,
Q(1) = the instantaneous flow at the beginning of the period,

I = the ordinate of the translation hydrograph,

At = the computation time interval in hours (two hours was chosen
corresponding with finest runoff time interval available
throughout the calibration data set), and

Sp = the watershed storage factor in hours (a model parameter).

The resulting unit hydrograph for instantaneous rainfall excess 1is then
averaged to produce the hydrograph for unit rainfall excess occurring in the
given time interval.

In this study, only the direct runoff hydrograph is modeled, and hence,
the baseflow routines in HEC-1 were not used. Therefore, the direct runoff
hydrograph is a function of four parameters: the initial loss in inches,
IL; the continuing loss rate in inches per hour, CL; the watershed time of
concentration in hours, TC; and the watershed storage factor in hours, Sg.
Rough estimates of each of these parameters may be obtained by considering
the physical conditions of the watershed, but the best way to determine the
proper parameter values is by calibrating the model to observed rainfall-
runoff data. Details of the calibration procedure are given in section C.4.

C.3.2 RORB Runoff Routing Program

The RORB model has been under development at Monash University in
Australia since the early 1970s. Mein et al. (1974) first described the
general principles behind RORB, and since that time it has been further
refined and tested extensively in Australia,

In RORB, the watershed is divided into subcatchments that are based on
the major tributaries with drainage areas of the same order of magnitude.
Nodes are drawn on the map of the watershed so that there is a node on the
main stream in each subcatchment at the point nearest its centroid, at each
confluence where subcatchment flows combine, and at each gaging station.
Figure C.3 shows how the Vermilion River watershed is divided into 21
subcatchments and their respective nodes, while Fig. C.4 shows a schematic
diagram of the stream network and nodes.
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The rainfall input to each subcatchment is determined by two factors.
Each subcatchment is assigned to the rain gage which best represents it.
The rainfall depth for each subwatershed is determined from an isohyetal
map and this depth is distributed in time proportionally as for the
representative rain gage. For this study, however, the data needed to
define such an isohyetal map is not available, and hence, both the depth and
temporal distribution at the representative rain gage is input to the

subcatchment. The rainfall excess is determined via an initial 1loss-
continuing loss rate scheme similar to that used by HEC-1. The initial
loss, ILR, and continuing loss rate, CLR, are uniform for each subcatchment
upstream from a single stream gage. Therefore, RORB is a '"quasi-

distributed" model which allows for varying areal and temporal input but
then operates on this input uniformly over the watershed. For this study,
only one stream gage is available, therefore, ILR and CLR are uniform over
the entire watershed.

Each of the subcatchments is modeled as a single point in space
represented by the node. At this point (node), the rainfall excess for the
subcatchment enters the stream network. The rainfall excess and streamflow
are then routed from node to node through the stream network using the
continuity equation:

et I i Q + Qg _ Sev1 ~ St

2 2 At

(C.3)

where I = inflow to the channel reach between nodes at time t,

outflow from the channel reach at time t,

Qe

St = storage in the channel reach at time t, and

At

the time step.

The relationship between reach storage and outflow is described by a
nonlinear reservoir of the form

m

s, =K Q (C.4)

where K = a parameter related to the travel time in the reach, and

m = the nonlinearity exponent.

Based on Manning's equation, Mein et al. (1974) estimated the
theoretical values of m for several common channel shapes including wide
rectangular channels (m=0.60), triangular channels (m=0.75), wide parabolic
channels (m=0,69), and trapezoidal chamnels (m=0.74). Laurenson and Mein
(1985) reported that the typical value of m for catchment studies ranges
between 0.6 and 1.0 with a value of 0.8 recommended as a first trial value
for "fit rumns.” Considering the fact that the majority of the stream
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reaches in the Vermilion River watershed are trapezoidal or approximately
wide rectangular channels, one might suspect lower values of m to be
appropriate. However, the appropriate m value 1is best determined by
calibration.

The parameter K is considered to consist of two parts, such that

K=2¢C, k (C.5)

a parameter determined from physical characteristics of the
stream channel between adjacent nodes and intended to be
proportional to the delay time of a given reach storage, and

where ki

a constant for a watershed determined by calibration of the
model to observed rainfall-runoff data.

C1

For the simple case of a wide rectangular channel, k] is a function of the
reach width, roughness, length (L), and bed slope (S.). Laurenson and Mein
(1985) report that use of the reach length alone to represent k] has_proved
adequate for many watersheds. However, they also note that k; = L/Scl/2 may
be desirable for cases involving extreme slope variations and including very
low slopes, say less than 0.05 percent. Therefore, ki is taken as L/Sc1 .

In this study, the direct runoff hydrograph is a function of four
parameters: the initial loss in mm, ILR; the continuing loss rate in mm per
hour, CLR; the nonlinearity exponent, m; and the watershed delay time
factor, C;. Each of these parameters is best determined by calibrating the
model to observed rainfall-runoff data as described in section C.4.

C.4 Calibration Procedure
C.4.1 Objective Function

The choice of the calibration objective function depends greatly on the
proposed use for the model. 1In this study, the models are to be used for
real-time flood forecasting within a flood warning and preparedness system.
Hence, accurately predicting the magnitude and, to a lesser extent, the
timing of the peak discharge 1is the goal of modeling. Therefore, an
objective function which emphasizes the hydrograph peak is appropriate.

An automatic calibration scheme 1is built into HEC-1. This scheme
minimizes a weighted sum of the squared deviations between the measured,
Qu; » and predicted Qci’ flows

a 2

Min [}j (Qm' - Q, )< o* WT, / n]1/2 (C.6)
i=1 1 i
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where n is the total number of hydrograph ordinates and the weights, WTj,
emphasize the peak flows:

W= (@ + Q) /(2% Q) (c.7)

where Qn = the average measured discharge.

This objective function was chosen for use in this study because while it
places emphasis on the peak discharge, it also considers matching the entire
hydrograph. Hence, the parameters obtained are 1likely. to be quite
representative of the general rainfall-runoff process of the watershed
system.

C.4.2 HEC-1 Calibration Methodology

As noted above, HEC-1 has a built-in calibration scheme. The
constrained nonlinear optimization scheme employed by HEC-1 is a univariate
search technique that uses Newton’s method. Complete details on this scheme
are presented by Ford et al. (1980). As for. all nonlinear optimization
schemes, this calibration approach cannot guarantee that a "global" optimum
will be found for each of the model parameters. Nevertheless, if the "fit"
quality is acceptable, the calibrated parameters are adequate, representa-
tive values for consideration of parameter uncertainty.

C.4.3 RORB Calibration Methodology

Unlike HEC-1, RORB does mnot have a built-in automatic calibration
scheme. Instead, the "fit runs" of RORB proceed as follows. For a given
value of initial loss, RORB automatically computes the continuing loss rate
which matches the calculated rainfall excess and the measured runoff volume.
The user then iterates on m and €] until a reasonable match between the
measured and calculated hydrographs is obtained. Therefore, for this study,
it was necessary to develop a formal calibration procedure for RORB.

Both HEC-1 and RORB are physical-conceptual models based on hydrograph
principles (i.e., the time-area curve for HEC-1 and a network of cascading
nonlinear reservoirs for RORB). Therefore, one might expect the "optimal"
rainfall excess for both models to be similar. Thus, the optimal initial
loss found for HEC-1 was also assumed to be optimal for RORB. This
assumption is slightly erroneous due to the somewhat different initial
losscontinuing loss schemes used by the two models. In HEC-1, the initial
loss is assumed to occur only in the initial fraction of the time step with
the continuing loss rate beginning only after the initial loss is satisfied
as shown in Fig. C.5a. In RORB, however, both the initial loss and the
continuing loss are assumed to occur over the entire time step as shown in
Fig. C.5b. Also, the two models differ somewhat in the weights applied to
the two rain gages.
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RORB then automatically determines the optimal continuing loss rate
which matches the measured and calculated runoff volumes. These will differ
slightly from their HEC-1 counterparts for the reasons given above.

Laurenson and Mein (1985) noted that C; is the principal parameter of
the model and is the main means of achieving a fit. The effects of m are
sometimes useful in improving a fit, but are less important than those of
C1. Therefore, it was decided to vary the value of m in increments of 0.01
over its reasonable range for this catchment (found to be, generally,
0.83-0.96) and optimize Eq. C.6 over €1 for each m via quadratic
interpolation (Rao, 1979, p. 226). Quadratic interpolation is an efficient
univariate nonlinear optimization technique wherein three values of the true
objective function are used to define a quadratic function. The minimum of
the quadratic function can be calculated directly. If the difference
between the quadratic approximation and the true objective function is
small at the quadratic minimum point, the true minimum has been reached.
Otherwise, a new quadratic approximation should be established with the
previous quadratic minimum and its adjacent points, and this new quadratic
checked for convergence. If the three initial points are chosen properly,
the method converges quite rapidly.

C.4.4 Storms for Calibration

Selection of events for calibration from November 1965 to December 1983
was based on several criteria:

1. The events must be the product of a single separable rainstorm with
no snowmelt in the direct runoff,

2. Complete information from each rain gage and the stream gage must
be available, or the missing data must be easily estimated (e.g., a
few missing points on the rising or recession limbs of the hydro-
graph which may be easily interpolated),

3. The event must be of sufficient magnitude such that it is
representative of the storms for which a flood warning official
may wish to know the predicted peak discharge.

The third criterion given above was developed in a somewhat "ad-hoc"
way. The events considered must include flood events and near flood events,
which are difficult to differentiate from true flood events at the time a

forecast is made. Therefore, events with a total runoff peak in excess of
6800 cfs, the discharge corresponding to the National Weather Service flood
stage, should be included. However, if the set of calibrated events

contained only flood or near flood events, the forecasts made based on the
calibration results may be biased toward predicting such flood or near flood
events., A more unbiased set of calibrated events should include other large
events which lead to runoff sometimes considerably less than flood stage.

The cutoff point for these events was chosen somewhat arbitrarily to be
those events whose direct runoff peaks are greater than 3000 cfs. 1In the
USGS official yearly records for a stream gage, there is a section entitled
"Extremes for Current Year" which separately lists the peak discharges
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occurring during the year that exceed a prescribed target level. For the
Vermilion River at Pontiac, this level is 2500 cfs. Hence, the events with
direct runoff peaks in excess of 3000 cfs are significant events for this
watershed. A second cutoff criterion was chosen for the volume of direct
runoff. Laurenson and Mein (1985) pointed out that small events, containing
less than about 10 mm (0.4 in.) of direct runoff, should be avoided in
calibration data sets because they are often difficult to fit due to extreme
areal variability of runoff, partial area runoff, and large differences in
the time distribution of rainfall excess caused by small errors in the
adopted loss model.

In summary, the calibration events must have snowmelt free direct
runoff hydrographs with peak discharges in excess of 3000 cfs and volumes in

excess of 0.4 in. These direct runoff hydrographs are determined as
follows. For events not immediately preceded by another storm or a snowmelt
period, the baseflow remains fairly constant. Therefore, the baseflow for

the rising limb of the hydrograph up to the peak is assumed to be constant
at this initial value. 1In the recession limb of the hydrograph, the slope
eventually reaches a nearly constant, straight line recession (on linear
graph paper with a slope of 10 to 15 cfs per two hours for this watershed).
This straight line is extended backward to the inflection point on the
recession limb to represent the baseflow at the end of the event. The
baseflow at the peak is then connected to that at the inflection point to
complete the baseflow separation, This approach is illustrated in Fig.
C.6a. For cases where two runoff events must be separated, it is assumed
the recession properties of the first event are essentially the same as for
the second event. Thus, the recession of the first event is extended
approximately parallel to that for the second event. This recession also
serves as the 1nitial baseflow for the second event. The baseflow
separation for the recession limbs of each of these events is handled as
described previously. The event separation and subsequent baseflow
separation techniques are illustrated in Fig. C.6b. '

For the period November 1965 to December 1983, 60 events had total
runoff peak discharges greater than 3000 cfs after checking them versus the
criteria given above, 31 events were selected for calibration (1l events
were eliminated due to snowmelt effects, 10 due to missing data, 5 due to
inadequate direct runoff volume, and 3 due to separation problems). It is
unfortunate that two of the most serious flood producing storms -- May 12,
1970 and December 2, 1982 -- were eliminated due to missing data, but they
may possibly be used for verification. The significant storm and direct
runoff characteristics (including the baseflow at the beginning of the
event, Qp, the measured peak discharge, Qp, and time to peak, ty) for each
of 31 events is given in Table C.4. The jhly 12, 1978 storm falls slightly
under the direct runoff peak and volume requirements. Nevertheless, it was
included in the calibration set because it is representative of large summer
convective storms, and the set of calibrated events should include several
storms of this type.
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Table C.4.

Storms for Calibration

Precipitation

Date Fairbury  Piper City Qp Q tp Volume
(in.) (in.) (cfs) (cgs) (hr.) (in.)
12/24/65 3.90 3.15 43, 5068. 50. 0.727
12/11/67 1.02 0.99 2020. 3207. 36. 0.439
2/01/68 1.60 1.99 1108, 6656 . 48. 1.116
6/24/68 4.27 2.75 335, 7836. 40. 1.388
4/18/70 2.49 2.49 683. 5345. 54. 0.788
9/21/70 2.64 1.67 264, 4269, 60. 0.757
11/12/72 1.12 1.40 630. 3450. 56. 0.484
3/09/73 1.56 1.10 853. 3604 68. 0.414
3/31/73 0.65 0.80 2060. 3127. 50. 0.468
4/20/73 2.50 2.90 592. 6702. 68. 1.238
- 6/03/73 0.75 1.30 715, 3365. 64. 0.441
5/21/74 0.70 1.90 2670.° 3600. 28. 0.458
6/05/74 1.77 0.70 462. 4385. 56. 0.468
6/21/74 2.60 2.30 776. 6220. 58. 1.260
2/16/76 1.37 2.30 306. 4924, 46. 0.629
©2/20/76 1.92 1.30 1500. 4391. 40, 0.623
3/03/76 1.52 1.70 1640. 5670. 56. 0.911
4/23/76 3.01 1.30 193. 3145. 64. 0.432
9/22/77 1.45 1.40 473. 4224, 44, 0.566
. 7/12/78 3.04 2.90 73. 2943. 32. 0.326
. 4/11/79 2.75 2.00 709. 7050. 52. 1.150
8/18/79 4.80 3.20 23. 3566. 82. 0.524
6/01/80 5.51 5.60 347. 10523. 62. 2.510
6/07/80 0.90 0.80 2640.% 3867. 34, 0.462
4/13/81 1.00 1.80 2120. 4510, 32. 0.59
5/09/81 2.10 1.70 437, 3820. 60. 0.465
5/13/81 2.10 1.80 2360. 5676. 52. 0.906
6/24/81 2.90 1.20 1590. 5539. 44, 0.710
8/14/81 2.70 1.70 264, 5631. 42, 0.760
4/01/83 1.50 1.60 744 4707. 54. 0.627
4/12/83 1.40 1.50 1210. 4271. 50. 0.563
5/01/83 1.60 1.00 2300. 5268. 28. 0.598

(storm or snowmelt).

.G.5 CGCalibration Results

C.5.1 HEC-1 Calibration Results

HEC-1 was fit to each of the 32 storm events listed in Table C.4.
C.7 and C.8,

shown in Figs.

* £ - s s - .
Flow at the beginning of this storm is in recession from a previous event

As

the typical quality of the HEC-1 and RORB
calibrated hydrographs relative. to the measured hydrograph is quite good.
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Figure C.7. Comparison of measured and best fit hydrographs
for the February 1, 1968 event
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The high quality of the fits obtained for each event is further illustrated
in Table C.5 where the percent errors in both magnitude and timing of the
calibrated peaks are displayed. Also shown in Table C.5 is the coefficient
of model fit efficiency, EFF (in percent) defined on an event basis as:

- -2 2
i§1 Q. - Q" - izl @, - Q)
EFF = o (C.8)
2,2
L@ - Q)
i-1 le Qm

Table C.5. Quality of Hydrologic Fit

HEC-1 RORB

Date Percent Error EFF Percent Error EFF

Qp tp (*) B tp (%)
12/24/65 3.53 0. 99.6 -1.46 -8.00 97.0
12/11/67 0.65 5.56 98.8 0.70 0. 97.4
2/01/68 12.52 12.50 98.6 9.39 -8.33 97 .4
6/24/68 10.17 -5.00 96.1 9.33 5.00 96.2
4/18/70 -1.23 -3.70 99.7 -2.05 -14.81 98.5
9/21/70 1.73 -3.33 99.7 -8.35 -10.00 94.7
11/12/72 -5.54 -3.57 99.2 -8.11 -3.57 97.3
3/09/73 1.02 0. 99 .6 -2.55 0. 96.1
3/31/73 -2.78 -4.00 99.4 -4.82 -8.00 97.9
4/20/73 4,12 -20.59 97.4 4,27 -8.82 98.3
6/03/73 -9.24 -3.13 97.3 -6.02 -6.25 97.5

5/21/74 9.11 7.14 96.8 -- -- --
6/05/74 -0.59 -3.57 99.0 -2.90 -3.57 96.3
6/21/74 1.67 -6.90 99.0 -10.62 0. 95.9
2/16/76 -5.87 -4.35 99.2 7.60 -4.,35 98.0
2/20/76 3.19 0. 99.7 -2.65 -5.00 95.7
3/03/76 9.07 -3.57 97.0 11.39 -7.14 95.1
4/23/76 -8.17 -3.13 99.1 -3.84 -6.25 96.5
9/30/77 -1.61 0. 98.9 -1.92 -4.55 98.4
7/12/78 5.40 0. 98.7 3.72 -6.25 98.5"
4/11/79 14.71 -3.85 95.9 4.41 -7.69 91.4
8/18/79 3.87 -2.44 98.5 -4.16 -4.88 96.3

6/01/80 22 .44 -9.68 81.0 -- -~ --
6/07/80 1.47 5.88 98.6 15.80 11.76 91.7
4/13/81 11.77 0. 97.0 28.66 6.25 80.0
5/09/81 -10.99 0. 96.4 -12.20 -6.67 93.7
5/13/81 9.57 0. 98.6 6.72 0. 98.8
6/24/81 8.92 0. 96.6 1.59 0. 95.3
8/14/81 17.88 -4.76 92.2 6.90 0. 97.7
4/01/83 < 4,80 0. 99.6 1.28 -3.70 98.6
4/12/83 6.39 -4.00 98.7 -6.70 -4.00 98.1
5/01/83 6.13 0. 98.2 3.95 0. 98.4
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Nash and Sutcliff (1970) suggested this coefficient is analogous to the
fraction of variance explained statistic. commonly 'used in regression
andstochastic analyses. Also, EFF gives an indication of the agreement
between the measured and calibrated hydrograph shapes.

Generally, the HEC-1 calibrated hydrograph peak is within ten percent
of the measured hydrograph peak magnitude and timing. This good calibration
fit in terms of peak time is further amplified when one considers that for
28 of the 32 events the calibrated peak time is within two hours (one time
step) of the measured peak time, and that the hydrograph peaks for this
watershed are typically flat and broad as shown in Figs. C.7 and C.8. The
coefficient of model fit efficiency is also quite acceptable, indicating in
almost all cases that more than 95 percent of the data variance has been
explained. ‘

The calibrated parameter values corresponding to these fine fits are
shown in Table C.6. Also shown in Table C.6 are the optimal parameters TP
and CP for the Synder (1938) unit hydrograph option of HEC-1, which
aredetermined by HEC-1 in addition to the Clark wunit hydrograph
parameters,and the model correction factor App. The model correction
factor, Ayh, is the ratio between the measured, Qp, and calibrated, Qpc:
peak discharges

Amh = Qp/Qpc (C.9)

C.5.2 RORB‘Calibration Results

RORB was fit to 30 of the 32 storm events listed in Table C.4. The May
21, 1974 event and the June 1, 1980 event each had such a large variation in
rainfall measured at Fairbury and Piper City that RORB could not properly
reproduce the measured hydrograph. For the May 21, 1974 event, the rainfall
at Piper City was so large that the optimal continuing loss rate leads to
zero rainfall excess at Fairbury, and subsequently, the rainfall excess
areal distribution and the runoff timing are highly erroneous. A typical
RORB "fit" (m=0.90) for this event is shown in Fig. C.9. For the June 1,
1980 event, the 3.10 in. rainfall at Piper City in the storm’s last two
hours leads to difficulties in properly defining the rainfall temporal
distribution. A typical RORB "fit" (m=0.90) for this event is shown in Fig.
€C.10. These problems do not have the same effects in HEC-1 because it does
not try to explicitly account for the spatial distribution of rainfall over
the watershed, instead it takes an areal average-lumped system approach.
For these two events, the lumped system approach is superior to the quasi-
distributed system approach given the limited data.

For the 30 events, which were calibrated, RORB provides excellent
results as evidenced by Figs. C.7 and C.8 and Table C.5. The initial sharp
rise in the RORB hydrograph is due to the prompt response from the
downstream subcatchments, which does not get smoothed by multiple nonlinear
routing. This effect could be compensated for in RORB, but the high fit
quality makes this unnecessary. Generally, the RORB calibrated hydrograph
peak is within ten percent of the measured hydrograph peak magnitude and
timing (within two hours in 17 of 30 events). The coefficient of model fit
efficiency is also quite acceptable indicating in almost all cases that more
than 95 percent of the data variance has been explained. In summary, both
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RORB and HEC-1 provide excellent calibration fits of comparable quality for
a wide variety direct runoff events for the Vermilion River watershed, and
each 1is potentially wuseful for real-time flood forecasting on this
watershed.

The calibrated parameter values corresponding to the fine RORB fits are
shown in Table C.7. Also shown in Table C,7 are the model correction
factor, Apyr, and the optimal €7 and Ap, values for m fixed at 0.90 (the
reason for including these values in the table is described subsequently).

Table C.6 Calibrated Parameters for HEC-1

Date TC Sr IL CL Anh TP CcP
_ (hr) (hr) (in.) (in. /hr) (hr)
12/24/65 37.61 30.60 1.566 0.134 0.966 34.25 0.64
12/11/67 38.20 30.15 0.192 0.053 0.994 34.74 0.65
2/01/68 39.65 30.49 0.181 0.028 0.889 35.57 0.65
6/24/68 30.28 40.85 0.893 0.119 0.908 28.95 0.49
4/18/70 50.65 26.07 0.378 0.097 1.009 42,73 0.75
9/21/70 59.51 30.56 0.281 0.058 0.983 49,99 0.74
11/12/72 47.89 27.70 0.169 0.040 1.059 41,30 0.72
3/09/73 33.64 22.52 0.319 ~ 0.065 0.982 29.36 0.68
3/31/73 52.62 26.79 0.102 0.015 1.029 44 .01 0.74
4/20/73 39.42 32.69 0.460 0.065 0.960 35.79 0.63
6/03/73 53.49 22.55 0.162 0.040 1.102 43.28 0.78
5/21/74 30.99 26.37 0.487 0.108 0.917 28.39 0.63
6/05/74 28.63 21.42 0.159 0.050 1.006 25.36 0.66
6/21/74 53.22 32.72 0.466 0.042 0.984 46 .22 0.71
2/16/76 45.06 23.85 0.421 0.101 1.062 37.93 0.74
2/20/76 36.41 31.76 0.278 0.105 0.969 33.24 0.62
3/03/76 33.72 31.41 0.097 0.037 0.917 31.04 0.60
4/23/76 36.14 26.33 0.835 0.051 1.089 32.41 0.67
9/30/77 38.39 29.93 0.475 0.063 1.016 34,83 0.65
7/12/78 34.96 19.71 2.451 0.166 0.949 29.69 0.72
4/11/79 44 .84 23.66 0.090 0.101 0.872 37.67 0.74
8/18/79 43.78 28.62 2.825 0.208 0.963 38.62 0.70
6/01/80 25,31 59.37 0.165 0.222 0.817 24,98 0.33
6/07/80 23.76 28.98 0.041 0.035 0.986 22.42 0.52
4/13/81 29.26 28.15 0.340 0.159 0.895 26.89 0.59
5/09/81 35.49 26.21 0.708 0.049 1.124 31.56 0.66
'5/13/81 32.35 32.32 0.071 0.044 0.913 30.08 0.58
6/24/81 34,66 24,72 1.039 0.270 0.918 30.87 0.67
8/14/81 31.86 25.03 1.079 0.108 0.848 28.77 0.65
4,01/83 35.95 26.15 0.352 0.044 0.954 32.14 0.67
4/12/83 31.65 26.12 0.354 0.058 0.940 28.78 0.63
5/01/83 27.22 24,56 0.287 0.068 0.942 24,77 0.60
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Figure C.9.  Typical RORB fit (m=0.90) of the May 21, 1974 event
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Typical RORB fit (m=0.90) of the June 1, 1980 event
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Table C.7. Calibrated Parameters for RORB

Date m c1 c1 ILR¥ CLR Amr Amr

(m=0.90)  (mm)  (mm/hr) (m=0.90)

12/24/65 0.83 94.85 68.48 39.78 3.15 1.015  1.000
12/11/67 0.87 69.94 61.57 4.88 1.25 ' 0.993  0.992
2/01/68 0.90 65.70 65.70 4.60 0.71 0.914  0.914
6/24/68 0.87 96.68 83.17 22.68 3.24 0.915  0.916
4/18/70 0.90 66.40 66.40 9.60 2.37 1.021  1.021
9/21/70 1.04 48.78 92.20 7.14 1.63 1.091  1.124
11/12/72 0.90 65.00 65.00 4.29 1.08 1.088  1.088
3/09/73 0.91 60.51 63.14 = 8.10 1.47 1.026  1.026
3/31/73 0.96 52.29 67.35 2.59 0.48 1.051  1.053
4/20/73 0.96 50.64 68.00 11.68 1.72 0.959  0.957
6/03/73 0.95 48.75 60.86 4.11 1.13 1.064 1.065
6/05/74 0.83 84.98 60.87 4.04 1.46 1.030  1.018
6/21/74 1.09 35.02 86.25 11.84 1.31 1.117  1.149
2/16/76 0.88 60.59 55.14 10.69 2.26 0.929  0.929
2/20/76 0.88 79.64 72.33 7.06 2.56 1.027  1.018
3/03/76 1.01 38.30 65.61 2.46 1.13 0.898  0.885
4/23/76 0.88 80.19 73.50 21.21 1.67 1.040 1,042
9/30/77 0.88 64.95 59.42 12.07 1.90 1.020  1.020
7/12/78 0.95 39.31 48.56 62.26 1.60 0.964  0.972
4/11/79 0.99 45.85 71.89 2.29 2.73 0.958  0.955
8/18/79 0.94 72.61 86.75 71.76 5.94 1.043  1.049
6,07/80 0.74 86.84 41.75 1.04 1.45 0.864  0.919
4/13/81 0.79 85.19 49.99 8.64 3.73 0.777  0.792
5/09/81 0.81 85.23 57.46 17.98 1.26 1.139  1.125
5/13/81 0.77  119.14 64.21 1.80 1.15 0.937  0.934
6/24/81 0.95 58.51 75.07 26.39 6.75 0.984  0.991
8/14/81 0.94 56.09 68.15 27.41 1.96 0.936  0.942
4/01/83 0.85 73.72 58.65 8.9 1.21 0.987  0.990
4/12/83 0.88 55.50 50.70 8.99 1.96 1.072  1.062
5/01/83 0.85 70.31 55.03 7.29 1.68 0.962  0.944

*ILR are the optimal values for HEC-1.
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The values of m and €] are functionally related within RORB and to a
certain extent changes in their values can have similar effects on the
calculated hydrograph. Hence, it is quite likely that the calibrated values
of m and C7 will be significantly correlated due to their functional
interactions and effects on the calculated hydrograph. For the 30 events
calibrated, a correlation coefficient of -0.849 was found between m and Cj.
Thus, the relationship between m and C; must be considered when analyzing
the modeling uncertainty using any of the reliability analysis methods.

Laurenson and Mein (1985) pointed out that varying m generally has much
less of an effect on the calculated hydrograph than does varying Cj. While
calibrating RORB, it was observed that the optimal region of the objective
function is quite flat over m given the optimal value of ¢y for each m
(recall ILR and CLR are already fixed at their "optimal" wvalues). Further-
more, the magnitude and timing of the calibrated peak discharge remain
nearly constant for wide ranges of m. Therefore, it was decided to fix m at
its "best" value and account for the uncertainty of m in Cy and, to a lesser
extent, in Apy. By summing the optimal objective function value for each
value of m over all the events, the overall "best" value of m was found to
be 0.90. Hence, G} for m equal to 0.90 is given in Table C.7. If the
linear regression equation relating the calibrated values of m and C1 were
used to predict €y, it would explain 71 percent of the variance in €. By
fixing m at 0.90, the variance of Cq{ is reduced 63.7 percent. Therefore,
the simplification of fixing m at 0.90 is quite adequate to account for the
relationship between m and Cj.

Table C.8 displays the quality of the hydrologic fits provided when
calibrating RORB with m fixed at 0.90. As expected, the hydrologic fit
quality 1is generally mnot adversely affected. The calibrated peaks
generally are within ten percent of the measured peaks in terms of magnitude
and timing, and the coefficient of model efficiency remains generally
greater than 95 percent. Thus, RORB with m fixed at 0.90 is a reasonable
model of the Vermilion River watershed.

C.6 Real-Time Flood Forecasting Scheme

The calibration results discussed in section C.5 revealed that given
the proper ("optimal") parameter values for a given event both HEC-1 and
RORB are able to accurately simulate that event on the Vermilion River
watershed. However, as shown in Tables C.6 and C.7, the optimal parameter
values often vary considerably from event to event. This parameter
variation is caused by the transfer of data uncertainties (especially
rainfall spatial and temporal variation not measured by the rain gage
network) and model structure uncertainties to the parameters via the
calibration process. Hence, the deterministic HEC-1 and RORB models produce
stochastic forecasts and predictions due to the parameter uncertainties
which have been amplified by the calibration process. The parameter
variation also makes the selection of the "best" parameter values for real-
time forecasting and/or general watershed simulation quite difficult, and it
makes the reliability of such forecasts or simulations suspect.
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Table C.8. Quality of Hydrologic Fit for RORB
with m Fixed at 0.90
Date Percent Error EFF
Qp tp (%)
12/24/65 0. -4.00 96.0
12/11/67 0.86 0. 97.2
2/01/68 9.39 -8.33 97.4
6/24/68 9.19 10.00 96.1
4/18/70 -2.05 -14.81 98.5
9/21/70 -11.00 -13.33 94.3
11/12/72 -8.11 -3.57 97.3
3/09/73 -2.64 0. 96.1
3/31/73 -2.61 -12.00 98.0
4/20/73 4,48 -8.92 98.3
6/03/73 -6.07 -9.38 97.7
5/21/74 -- -- --
6/05/74 -1.77 -3.57 95.0
6/21/74 -12.95 -3.45 95.3
2/16/76 6.81 -4.34 97.9
2/20/76 -1.77 -5.00 95.4
3/03/76 13.01 -3.57 95.0
4/23/76 -4.05 -6.25 96.4
9/30/77 -1.92 -4.54 98.3
7/12/78 2.83 -6.25 98 .4
4/11/79 4.71 -11.54 90.0
8/18/79 -4.65 -4 .88 96.3
6/01/80 -- -- --
6/07/80 8.86 23.53 88.7
4/13/81 26.31 12.50 79.6
5/09/81 -11.09 -3.33 91.6
5/13/81 7.03 3.85 97.7
6/24/81 0.89 0. 95.2
8/14/81 6.21 -4.76 97.5
4/01/83 1.05 -3.70 98.2
4/12/83 -5.87 -4.00 98.0
5/01/83 5.90 7.14 98.1
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The analysis of hydrologic modeling uncertainties is a function of the
specific modeling scheme used and its objective. Hence, in the following
paragraphs, a modeling scheme for real-time flood forecasting for the
Vermilion River at Pontiac using either HEC-1 or RORB is described. The
scheme makes use of the considerable calibration information available.

C.6.1 Best Estimate of the Initial Loss

Typically in hydrology, the term "initial 1losses" refers to
interception and depression storage which must be satisfied before the
initiation of runoff. In HEC-1 and RORB, the initial loss also includes the
high infiltration 1loss which occurs at the beginning of a storm. The
magnitude of this loss is a function of the storm’s antecedent conditions.
The continuing -loss rate approximates the asymptotic equilibrium
infiltration capacity which is nearly a constant for a given soil regardless
of antecedent conditions (Horton, 1939). The various hydrograph parameters,
TC and Sgp for HEC-1 and C; and m for RORB, are considered to be constants
based on the geomorphology of a given watershed. Hence, theoretically the
continuing loss rate and the hydrograph parameters for each model should
have one constant, best value for all events, but due to uncertainties they
do not. The initial loss should vary not only due to uncertainties, but
also due to antecedent conditioms.

The initial loss does indeed display the largest variation of any of

the parameters for either model. However, a significant portion of this
variance can be accounted for by the relation between initial loss and
antecedent conditions. The primary reasons for the reduction of

infiltration capacity during a storm are (Horton, 1939, and ASCE, 1949):

1) occupation of some soil voids by soil water,

2) swelling of colloids and closing of soil-cracks and sun checks,

3) 1inwashing of fine materials to the surface-pores in the soil, and

4) rain-packing, 1i.e., the compaction of the soil surface due to
raindrop impact.

Thus, the initial infiltration capacity and, hence, the initial loss are
functions of the soil surface and soil moisture conditions at the beginning
of the storm. Furthermore, the soil surface condition is related to the
soil moisture because soil-cracking and sun checks are a product of a dry
soil, while high soil moisture may be indicative of recent rainstorms which
led to inwashing and rain-packing. Hence, the initial loss 1is highly
related to the antecedent soil moisture.

Several indices have been proposed to reflect antecedent soil moisture
including (Musgrave and Holtan, 1964):

1) antecedent precipitation indices,

2) 1indices based upon the status of baseflow in the area, and

3) 1indices derived by soil moisture accounting.
For this study, the baseflow at the beginning of each storm was readily
available and was chosen to be representative of the antecedent soil
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moisture. Figure C.11 displays a logarithmic plot of the optimal initial
loss in inches versus the baseflow at the beginning of the rainfall event,
Qp, in cfs. A linear regression of the logarithms of initial loss and
baseflow yields the following expression

-0.599
IL = b1 QB (€.10)

with by equal to 16.13 for IL in inches and 409.7 for IL in mm. A
correlation coefficient of 0.877 describes the relation between the measured
initial loss and that calculated using Eq. C.10. Furthermore, Eq. C.10
explains 72.2 percent of the variance in the measured initial loss values.
Figure C.1ll shows Eq. C.10 and its corresponding one standard deviation (of
the logarithms) confidence bounds.

It should be noted that those events which include recession flow from
a previous storm show much higher variance in the initial loss relative to
Eq. €.10. This is not surprising because for such events the streamflow is
not as accurate a measure of the soil moisture as is a long established near
constant baseflow, Nevertheless, considering the high quality of the
_statistical and visual evidence over the entire range of baseflows, it seems
reasonable to use Eq. C.10 to determine the best estimate of initial loss
for any event to be forecast.

C.6.2 Best Estimates of the Continuing Loss Rate and Unit
Hydrograph Parameters

Theoretically, the continuing loss rate and the unit hydrograph
parameters are functions of the watershed geomorphology and soil types and
as such should remain nearly constant for all events given a relatively
unchanging watershed. However, due to natural, data, and model structure
uncertainties transferred to the model parameters as well as the inherent
uncertainties in the model parameters themselves, the optimal model
parameters display considerable variation as shown in Tables C.6 and C.7.
The effects of each of the parameters on the model output is nonlinear,
hence, merely averaging the parameter values will not provide the parameter
-best estimate for use in forecasting over all events. Instead, the
parameter best estimates for TC, Sg, and CL of HEC-1 and C1 and CLR of RORB
must be found via simultaneous calibration of the parameters over all the
events (32 for HEC-1; 30 for RORB).

The overall parameter calibration scheme used involved one parameter at
a time quadratic interpolation. In this approach, the objective function is
minimized via quadratic interpolation over one parameter with the other
parameters held constant. The locally optimized parameter is then fixed at
its optimal value, and minimization over the next parameter is performed.
The scheme cycles through the parameters until sufficient convergence in the
objective function and the parameters is obtained.

Several different objective functions were examined:
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1. A simple sum of the individual event calibration objective
functions as calculated via Eqs. 5.6 and 5.7. This approach was
used to fix m in RORB, but it is biased toward larger events which
have larger event objective functions.

2. A sum of the fraction of the deviations of the event calibration
objective function, i.e.

I * *
£, (0 - £.(9; £. (4] ] (C.11)
%: [( J( ) J( J)) / J( J)
where fj(') = the calibration objective function (given by Eqs. C.6

and 5.7) for event j with parameters -,

81 = the vector of model parameters for iteration I, and

0? the vector of optimal parameters for event j.

3. A sum of the fraction of the deviations from the minimum sum of
- squares difference, i.e.,

I * * ]
h, (8 - h, (8, h. (8] c.12
?[(J( ) J(J))/ J(J) ( )
where h () = the unweighted sum of squares difference between the

measured and simulated (using parameters -)
hydrographs for event j.

During the overall calibration iterations, the value of initial loss
was fixed at that calculated from Eq. C.10. 1In this way, the parameter best
estimates would be derived corresponding to the conditions of the real-time
flood forecasting scheme.

When performing the overall calibration for HEC-1, some difficulty was
encountered with regard to the optimal value of the storage coefficient, Sp.
The value of Sp moved outside the range of optimal SR values for the
individual events far above the mean value and even above the unusually
large value (59.37) for the June 1, 1980 event. Such large Sp values
flatten and lengthen the recession 1imb and decrease the peak of the
simulated hydrograph. The overall calibration scheme derives such a hydro-
graph because the use of Eq. C.10 to estimate the initial loss and of a
single continuing loss rate for all events often leads to simulated runoff
volumes far in excess of the measured runoff volume, and only by using an
unrealistically high Sp value can the peak magnitude be held near the true
value. The resulting overestimates in the recession limb comparing high Sp
to low Sgp do not have as large an effect on the individual event sum of
squares difference (both weighted by Eq. C.7 or unweighted) as the over-
estimates in the peak region comparing low Sgp to high Sg. Hence, the
overall calibration results lead to a somewhat generic simulated hydrograph
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shape which is the best overall hydrograph shape mathematically, but not a
particularly realistic or representative hydrograph for any of the events
encountered. '

Similar results were not encountered when performing overall
calibration for RORB. In RORB, the nonlinearity exponent, m, performs
essentially the same function (expressing the release from storage) as does
Sp in HEC-1. The value of m was fixed at 0.9 before the overall calibration
was performed. Hence, a similar generic hydrograph shape was not obtained
when overall calibration of RORB was performed. It was decided to fix Sp at
its mean value of 27.71 hr and optimize only TC and CL over all events to
circumvent HEC-1's unrealistic hydrograph shape problem.

The results of the overall calibration for both HEC-1 and RORB are
summarized in Table C.9. The overall best estimates are different from the
parameter mean values, but the improvement in the objective function
obtained by using the best estimates versus the mean value is insignificant

(two to three percent). The reason for this is a combination of two
factors: the aforementioned large overestimation of runoff volume for many
events and the wide variety of events in the calibration data set. The

event variety undoubtedly kept the tradeoff between events best modeled with
parameters close to the mean values versus those close to the best estimates
nearly equal. In fact, the iteration results obtained by the optimization
procedure indicate a flat objective function surface in the vicinity of the
optimal solution. Given these findings, it was decided that wusing the

Table C.9 Overall Calibration Results

(a) HEC-1
Parameters TC Sr CL Obj. Func. Obj. Func.
(hr) (hr) (in. /br) Type Value
Mean 38.02 27.71 0.0876 2 282.81
Optimal 44.76 27.71 0.0813 2 275.07
(b) RORB
Parameters C1 m CLR Obj. Func. Obj. Func.
(mm/hr) Type Value
Mean 65.44 0.90 2.065 1 1285.4
Optimal 70.50 0.90 1.802 1 1259.2
Mean 65.44 0.90 2.065 2 141.80
Optimal 69.50 0.90 1.760 2 138.59
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parameter mean values in the real-time flood forecasting scheme would be
preferred to using the parameter best estimates because the mean values
greatly simplify the application of reliability analysis procedures for
consideration of modeling uncertainties without greatly sacrificing the
validity of the model. Furthermore, the use of the parameter mean values in
rainfall-runoff modeling is not uncommon in hydrology (e.g., see Loague and
Freeze, 1985).

For general modeling cases, using the mean values of the parameters
obtained from individual event calibration is only recommended when
similarly large and diverse event calibration data sets are available. For
cases with smaller or more homogeneous event calibration data sets, overall
calibration of parameters is recommended to determine the parameter best
estimates.

C.6.3 Model Correction Factor Relationship

The model correction factor, My, describes the amount by which the
model using optimal parameters underpredicts or overpredicts the measured
peak flow in the form of a ratio between the measured and predicted peak
flows. As such, the correction factor accounts for remaining errors and
uncertainties in the modeling process (including model structure uncer-
tainty) which due to the modeling scheme cannot be accounted for elsewhere
and yet still lead to error and uncertainty in the peak flow estimate.

Troutman (1983) and others have noted that due to wuncertainties
(especially in the precipitation data), hydrologic models tend to over-
predict large events and underpredict small events. The results of the
extensive calibration work conducted in this study concur with Troutman’s
conclusions. Figures C.12 and .13 display the relationship between AR and
the predicted peak discharge, Q for HEC-1 and RORB, respectively (Note:
values of A, greater than unity indicated underprediction while those less
than unity indicate overprediction). It is believed that the calibration
data set,is sufficiently large and varied such that a mathematical relation
between Qp and Ay may be derived.

Both 1linear and 1logarithmic relationships between Qp and Ay yield
nearly equivalent correlation coefficients and reductions of variance in Ap.
However, when these expressions are extended beyond the range of available
data, the linear relationship leads to a rapid tradeoff between increases
jn Q, angd decreases in )y such that the maximum adjusteqd peak discharge
Q§(=£[Am]Qp) is 11,970 cfs (Qp = 21,810 cfs) and 10,650 (QP = 18,600 cfs)
for HEC-1 and RORB, respectively. This is a very unrealistic situation.
For the logarithmic relationship, a maximum adjusted peak also occurs, but
in this case it is well above 100,000 cfs and corresponds to Q, far greater.
Hence, the logarithmic relationship provides reasonable results for the

range of events encountered when forecasting. Of course, for any forecast
event outside the range of the events used to derive the logarithmic
relations, the calculated E[Ap] will be less reliable. Nevertheless, the

logarithmic relations offer a reasonable extrapolation for the purpose of
demonstrating the incorporation of reliability analysis in a real-time flood
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forecasting scheme. Furthermore, use of the logarithmic relations certainly
provide a better estimate of the true flood peaks than does ignoring the
tendency of the hydrologic models to overpredict large events.

The logarithmic relation between Ay} and 6PH for HEC-1 1is

E[Ay,] = 2.275 - 0.154 40 Qy (c.13)

where apH = the predicted peak discharge estimated by HEC-1 in cfs, and

Amh = the model correction factor for HEC-1.

This equation has a correlation coefficient of 0.762 and it explains 56.6
percent of the ,variance in the measured Ayh. The logarithmic relation
between Apy and Qpr for RORB is

B[\, ] = 1.737 - 0.152 tn Qp (C.14)

where 6 the predicted peak discharge estimated by RORB and in m3/s, and
PR 24 y

Apr = the model correction factor for RORB.

This equation has a correlation coefficient of 0.599 and it explains 34.8

percent of the variance in the measured Ap,. Figures C.12 and C.13 show
plots of Egqs. C.13 and C.l4, respectively, as well as their respective one
standard deviation confidence bounds. Based on this evidence, the use of

Eqs. C.13 and C.14 to estimate the values of A for adjusting the predicted
peak discharges from HEC-1 and RORB, respectively, is an improvement
relative to assuming the Ay values are totally random.

C.6.4 Summary of the Real-Time Flood Forecasting Schemes

For HEC-1, the adjusted flood peak prediction 6;H: is given by

Ak

QU = E[A, ] £,(TC, S, E[IL], CL) (C.15)
where E[Apn] = the expected value of the model correction factor for HEC-1
given by Eq. C.13,
fy(') = function representing the HEC-1 model,

TC

the mean value of the time of concentration, 38.02 hr,

Sr

the mean value of the watershed storage factor, 27.71 hr,
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E[IL] the expected value of the initial loss given by Eq. C.10, and

CL = the mean value of the continuing loss rate, 0.0876 in./hr.

For RORB, the adjusted flood peak prediction, a;R» is given by

* 5% .
QpH = E[Amr] fR(Cl, m~, E[ILR], CLR) (C.16)
where E[Apr] = the expected value of the model correction factor for RORB
given by Eq. C.1l4,
fr(*) = function representing the RORB model,

C1 = the mean value of watershed delay time factor, 65.44,

m”~ = the "best" estimate of the watershed nonlinearity exponent,
fixed at 0.90,
E[ILR] = the expected value of the initial loss given by Eq. C.10, and

CIR = the mean value of the continuing loss rate, 2.065 mm/hr.

It should be noted that the functions fy(:) and fgR(‘) in Egs. C.15 and
¢.16, respectively, could be considered to include the relationship between
Qp and Ay defined by Eqs. C.13 and C.14. This view redefines the model
functions to include the model’'s tendency to overpredict large events and
underpredict smaller events, leaving Ay to describe the random variation
about Eqs. C.13 and C.14, However, the purpose of A is to express the
model structure inadequacies (errors and uncertainty), and hence, it is
probably best to keep the model’s tendencies to overpredict and underpredict
separate from the model function.

C.7 Statistical Analysis

With the exception of n* for RORB, all the parameters in Eqs. C.1l5 and
C.16 are subject to a considerable amount of wvariation and uncertainty as
can be seen in Tables C.6 and C.7 and Figs. C.11, C.12, and C.13. 1In this
section, the appropriate statistics will be derived from the individual
event calibration data to allow the various reliability analysis techniques
to be combined with the real-time flood forecasting schemes. These
appropriate statistics include estimates of the basic variable (i.e., the
parameters of Eqs. C.15 and C.16) means, variances, and probability
distributions.

C.7.1 Assumptions in the Statistical Analysis of Basic Variable Uncertainty
C.7.1.1 Sample Representativeness

The primary assumption in the following statistical analysis is that
the results of the individual event calibration comprise a representative
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sample of the large events likely to occur on the Vermilion River watershed
for which real-time flood forecasts would be needed. The question of sample
representativeness has two facets: Does the sample contain a sufficient
variety of events, and does it contain a sufficient number of events to
justify estimating basic variable statistics and, especially, distributions?

The sample contains a large rainstorm, June 1, 1980 (5.55 in.), which
resulted in a serious flood; another large convective rainstorm, July 12,
1978 (3.00 in.), which due to the watershed being very dry, resulted in a
very low peak discharge (2940 cfs); and a wide variety storm rainfall
depths, watershed soil moisture conditions, and resulting peak discharges in
between. Furthermore, the data set contains events from each season of the
year and nearly every month of the year with the majority of the events in
the heavy rainfall prone spring months (April-June). Also, a variety of
rainstorm types from intense, localized convective thunderstorms to longer
term steady rainstorms are included. Hence, it is 1likely that the common
assumption of statistical hydrology that the events sampled are
representative of the events to be forecast in the future has been
satisfied.

With regard to the size of the sample, the U.S. Water Resources GCouncil
(1981) recommends that stream gaging records be at least ten years long
before use of flood frequency analysis is warranted. Ang and Tang (1975,
p. 236) stated that if sample size is large (for instance, greater than 20),
the sample variance is a good estimator of the population variance.
Therefore, from a practical hydrologic viewpoint, the sample sizes of 32
events for HEC-1 and 30 events for RORB are adequate for the statistical
analysis.

Another key factor tied in with sample representativeness is sample
homogeneity, i.e., is the entire sample of events a subset of the same
population of events and, hence, a product of a unique physical rainfall-
runoff process. Seasonal variation in watershed vegetation and soil
conditions, in storm types, etc., is the most common reason to suspect the
events result from different physical processes and, hence, represent
different populations. Tables C.10 and C.11 display the effects of seasonal
variations on the mean values, Xj, and standard deviations, oj, of the
parameters of HEC-1 and RORB, respectively.

With the exception of the initial loss and the continuing loss rate,
the mean values of the various parameters remain nearly constant for all
seasons. For the summer events, dry watershed conditions may have
contributed to the high mean values of the initial loss and the continuing
loss rate. This contribution in the initial loss is partially accounted for
in Eq. C.10. Considering the general agreement of the mean values over the
seasons, it is reasonable to establish the flood warning schemes based on
the overall mean parameter values and to assume that at least on the first
moment level the events are from the same population.
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Table C.10. Effect of Seasonal Variations on the Basic
Variables of HEC-1
Period TC Sp IL CL ’\mh TP CP
(hr) (hr) (in.) (in./hr) (hr)
All 32 Events Ei 38.02 28.70 0.554 0.088 0.9674 33.64 0.650
gy 8.94 6.98 0.647 0.061 0.0717 6.72 0.088
Summer Storms xj 36.00 30.40 0.928 0.126 0.9479  31.92 0.623
(June-August) g3 10.72 11.91 0.984 0.086 0.0814 8.06 0.136
10 Events
Spring Storms Ei 36.71 27.10 0.349 0.069 0.9672 32.54 0.655
(March-May) o 7.67 3.07 0.227 0.037 0.0729 5.65 0.057
14 Events
Fall & Winter Ei 42 .84 29.38 0.445 0.073 0.9922 37.73 0.676
8 Events oi 7.82 2.51 0.466 0.037 0.0560 5.57 0.049
Table C.11. Effect of Seasonal Variations on the Basic
Variables of RORB
Period m C1 C1(m=0.90) ILR CLR Anr
(mm) (mm/hr)
All 30 Events Ei 0.900 67.04 65.44 14.45 2.065 0.9963
gi 0.078 19.30 11.62 16.90 1.385 0.0779
Summer Storms Ei 0.918 64 .31 67.94 25.73 2.760 .9907
(June-August) oi 0.097 22.02 16.33 25.51 2.133 .0802
9 Events
Spring Storms Ei 0.889 67.94 62.45 8.58 1.735 0.9867
(March-May) o3 0.076 21.46 7.54 5.91 0.831 0.0897
13 Events
Fall & Winter Ei 0.898 68.68 67.48 11.31 1.818 1.0097
8 Events o3 0.062 13.65 11.32 11.84 0.816 0.0645
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The seasonal variation has a much more significant effect on the
parameter standard deviations. The summer events tend to be mainly intense,
localized convective thunderstorms. Hence, large parameter standard
deviations are to be expected for these storms with high temporal and
spatial variability. Events throughout the rest of the year tend to be more
spatially uniform, steady rainstorms. Such events should display much
smaller parameter standard deviations than the summer events. This 1is
indeed the case for the events sampled here. Nevertheless, the reliability
analysis techniques will make use of the statistics of the entire set of
events because the sample really is not large enough to derive separate
statistics for summer events and the error introduced to the analysis by
using a slightly non-homogeneous sample is not large enough to negate the
goals of this research. '

C.7.1.2 Parameter Independence

While methods exist for handling basic variable correlation in first-
order second moment and Monte Carlo analyses, these analyses are much less
complicated when dealing with uncorrelated basic variables. The simplified
expressions for these analyses with independent basic variables are given in
Chapter 3. In the following paragraphs, the independence of the basic
variables is examined.

From a strictly theoretical viewpoint, all of the model parameters for
HEC-1 and RORB are functionally independent with the exception of C{ and m
in RORB whose interdependence has already been accounted for. Even the
initial loss and continuing loss rate are theoretically independent because
the continuing loss rate is a function of the soil type alone while the
initial loss is a function of the soil type and, perhaps to a greater
extent, the antecedent soil conditions. The model correction factor is
correlated to the predicted peak discharge, Qp: which in turn is a function
of the model parameters. Hence, some correlation between the model
correction factor and the model parametgrs is expected. However, after
accounting for the relationship between Qp and A, via Egqs. C.13 and C.14,
the correlation between the model parameters and the data residuals
(measured Ay minus A, estimated from the appropriate equation) is likely to
be insignificant.

While theoretically the interrelations between the model parameters and
between the model parameters and the data residuals of the model correction
factor should be insignificant, the calibration process has long been known
to impose artificial correlation between parameters which serve similar
functions. Tables C€.12 and C.13 display the estimated correlation
coefficients between the basic variables for the real-time flood forecasting
schemes using HEC-1 and RORB, respectively. In the reliability analysis,
the basic variables are not the measured values of the IL and Ap, but rather
the data residuals of their values about the appropriate estimation equation
(Eq. €.10 for IL and Eqs. C.13 and C.14 for Ay). Hence, the correlation of
the other basic variables with the data residuals of IL, res(IL), and of )y,
res(Ap), are also given in Tables C.12 and C.13.
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Table C.12. Correlation Between Basic Variables for HEC-1

Correlation Coefficient

Basic
Variable TC SR IL CL Amh res(IL) res(Aph)
TC .- -0.203 -0.018 -0.246 -0.589 -0.299 -0.379
R -0.203 --- -0.148 0.258 -0.428 -0.355 0.088
IL -0.018 -0.148 --- 0.580 -0.135 --- ---
CL -0.246 0.258 0.580 --- -0.454 0.418 -0.322
Amh -0.589 -0.428 0.135 -0.454 --- --- ---
res(IL) -0.299 -0.355 --- 0.418 --- --- -0.339
res(Apy) ~ -0.379 0.088 --- -0.322 --- -0.339 ---
Table C.13. Correlation Between Basic Variables for RORB
Correlation Coefficient
Basic
Variable C1 I1R CLR Amr res(IL) res(Apy)
C1 --- 0.213 0.324 0.376 -0.035 0.616
ILR 0.213 --- 0.557 0.080 --- ---
CLR 0.324 0.557 --- -0.155 0.396 -0.045
Amr 0.376 0.080 -0.155 --- --- -
res(ILR) -0.035 C--- 0.396 --- --- -0.133
res(Ape) 0.616 .- -0.045 --- -0.133 ---

Yevjevich (1971) discussed several tests for the significance of sample
correlation coefficients. One of the simplest and most powerful tests views
the relation between the sample correlation coefficient, r, and the
population correlation coefficient, p, by using a transformation to a third
variable Z. The standardized value of Z may be assumed to be approximately
normal (i.e., follows the standard normal distribution) for t in the
neighborhood of zero so that (Yevjevich, 1971, p. 238)

2 1- 1+p

[a

N -3 |
£ = —S zn[li-l—'e] ‘ (c.17)

where Ng = the sample size.

Reorganizing Eq. C.17 to define bounds on r in terms of p and t
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(1+p) exp (2t/(N_-3)'?) - (1-p)

r

B (C.18)

(L) exp (2t/(N_-3)"/%) + (1-p)

by setting t = 1.96 and p = 0, the 95 percent confidence bound on r being
not significantly different from O (independent variables case) is obtained.
for HEC-1's 32 events rgs5 = 10.349, while for RORB's 30 events rgs = +0.360.

Based on the results of Eq. C.18, it is safe to assume that seven of
ten basic variable interrelations for HEC-1 are statistically as well as
functionally independent. The correlation coefficients between TC and
res(Agh) and Sp and res(IL) only slightly exceed the 95 percent confidence
bound, and so it is probably reasonable to assume these basic variables are
independent from a practical viewpoint. The correlation coefficient between
CL and res(IL) is slightly more significant, but this correlation only
accounts for approximately 16 percent of the variance in either variable.
Hence, from a practical viewpoint, it 1is reasonable to assume these
variables are independent. It is also reassuring to note that, as expected,
the significant correlation between MAp, and TC, Sg, and CL becomes
insignificant for the data residuals of App.

For RORB, it is safe to assume that four of the six basic wvariable
interrelations are statistically as well as functionally independent. The
correlation coefficient between CLR and res(ILR) is only slightly outside
the 95 percent confidence bounds, and so from a practical viewpoint these
basic variables may be considered independent. The relatively high correla-
tion coefficient ,between C] and res(Aypy) was not expected. The relation
between Apy and Qp 1is not as strong for RORB as for HEC-1. Hence, it is
possible that the relation between Cj ,and Ay, 1s not properly expressed
within the relation between Ay, and Q. Furthermore, by removing the
influence of QP on Apy, the influence of other factors (such as Cj) on the
res(Apy) is magnified in terms of a correlation coefficient because the
residual variance is less than that for the measured parameter. Thus, in
terms of the total variance of measured Apy values, Cp affects a small,
insignificant portion, but C{ affects a much more significant portion of the
reduced variance of res(Apy). Therefore, it seems likely that ignoring this
correlation and assuming C; and res()\p,) are independent will not adversely
effect the reliability analysis from a practical viewpoint.

C.7.2 HEC-1 Basic Variable Statistics
C.7.2.1 1Imnitial Loss, IL

As discussed in section C.6, a strong relation exists between the
logarithms of the initial loss and baseflow (streamflow) at the beginning of
the event. One of the basic assumptions of any linear regression analysis
is that the residuals of the regression equation are independent, normal
variables. Hence, it was felt the data residuals of initial loss might be
lognormally distributed about Eq. C.10. Two well known statistical tests--
the skewness test of normality (Salas et al., 1980, p. 92) and the
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Kolmogorov-Smirnov (K-S) test (Law and Kelton, 1982, p. 199) -- were used to
test the hypothesis that the res(IL) are lognormally distributed.

The skewness test of normality is based on the fact that the skewness
coefficient for a normal variable is zero. Hence, this is a test to
determine if the sample skewness of a variable is significantly different
from zero, if not the hypothesis that the variable is normally distributed
cannot be rejected at the specified significance level. For the logarithms
of res(IL), the skewness coefficient, -y, is 0.0276. Thus, based on the
skewness test, the hypothesis that res(IL) is lognormally distributed cannot
be rejected at very high significance levels (e.g., at the 10 percent
significance level for a sample size of 32 the bound on vy is +0.646).

The K-S test examines the correctness of the assumed distribution by
determining the largest deviation between an empirical cumulative
distribution function derived from the data and the theoretical cumulative
distribution function for the assumed distribution. In this study, an
adjusted, more powerful Kolmogorov-Smirnov statistic (maximum distance) 1is
used. Developed by Stephens (1974), it accounts for the fact that the
sample mean and standard deviation are used instead of the population
values. For this adjusted K-S test, the hypothesis that res(IL) 1is
lognormally distributed cannot be rejected at approximately the four percent
significance level.

Considering the high significance of the skewness test and the
practical advantage of the lognormal distribution, the initial loss is
considered lognormally distributed with

E[4n(IL)] = 2.7806 - 0.599 fn Q (C.19)
1y, = [Var (n(1L)) 1% - 0.7184*

For the MVFOSM method, only the mean and variance of IL are required.
Hence, for this method

E[IL] = 16.13 Qé°'599 (in.) (C.20)

_ * .
SIL = 0.3411" in.

*NOTE: These values are the conditional standard deviations calculated
considering the regression analysis for the mean as described in
Ang and Tang (1975, p. 288).
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C.7.2.2 Continuing Loss Rate, CL

Figure C.14 displays a histogram of the optimal CL values for HEC-1 in
one-third standard deviation intervals. Based on visual inspection, it
seems reasonable to assume that CL is lognormally distributed. The skewness
of the logarithms of CL is 0.0932. Hence, based on the skewness test, the
hypothesis that CL is lognormally distributed cannot be rejected at
significance levels far above ten percent. The adjusted K-S test indicates
that the hypothesis that CL is lognormally distributed cannot be rejected at
the 15 percent significance 1level. Therefore, the continuing loss is
considered lognormally distributed with

E[4n(CL)] = -2.644

Cop = 0.6447

For the MVFOSM method, the mean and standard deviation are
E[CL] = 0.0876 in./hr

SgL = 0-0611 in./hr

C.7.2.3 Time of Concentration, TC

Figure C.15 displays a histogram of the optimal TC values for HEC-1 in
one-half standard deviation intervals. Based on visual inspection, the
distribution of TC might be reasonably assumed to be normal or lognormal.
Upon examining the hypothesis that TC is normally distributed, the skewness
of the TC values was found to be 0.671. Hence, based on the skewness test,
the hypothesis that TC 1is normally distributed cannot be rejected at
approximately the nine percent significance level. The adjusted K-S test
indicates that the hypothesis that TC is normally distributed cannot be
rejected at approximately the eight percent significance level.

Therefore, it is reasonable to consider the time of concentration as
normally distributed with

E[TC] = 38.02 hr

STC = 8.94 hr

These statistics are used in the MVFOSM analysis.
It should be pointed out that the hypothesis that TC is lognormally
distributed cannot be rejected by both the skewness and adjusted K-S tests

at much higher significance 1levels. Nevertheless, the estimated normal
distribution was used in this study for simplicity.
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Figure C.14. Histogram of optimal CL values for HEC-1
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Figure C.15. Histogram of optimal TC values
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C.7.2.4 Watershed Storage Factor, Sp

If the wunusually high Sgp value for the June 1, 1980 storm is
temporarily ignored, the mean and standard deviation of the remaining 31
values are

E[Sp] = 27.71 hr

S. = 4.176 hr
SR

Figure C.16 displays a histogram of the optimal Sgp values for HEC-1 in one
standard deviation intervals (based on the statistics of the 31 event
sample). Based on visual inspection, it seems that the assuming Sp to be
normally distributed is reasonable. The skewness coefficient of the 31 Sy
values is 0.696. Hence, based on the skewness test, the hypothesis that Sp
is normally distributed cannot be rejected at approximately the nine percent
significance level. The adjusted K-S test indicates that the hypothesis
that Sg 1is normally distributed cannot be rejected at the 15 percent
significance level.

When the entire 32 event sample is considered, both the skewness test
and adjusted K-S test indicate that the hypothesis of Sp being normally
distributed can be rejected with a less than one percent chance that the
true distribution is being rejected. If SR was truly normally distributed
as described by the 31 event sample, it is possible that the 32nd event
drawn randomly from the normally distributed population could be seven
standard deviations from the mean. The adjusted K-S test was performed on
the 32 event data set assuming the normal distribution estimated from the 31
event data set. This test indicated the hypothesis that SR is normally
distributed cannot be rejected at the 15 percent significance level.

Therefore, it is reasonable to assume that the storage coefficient is
normally distributed with mean and standard deviation given above. These
statistics are used in the MVFOSM analysis.

This assumed distribution and statistics slightly underestimate the
parameter variance measured for the entire data set, and so the HEC-1
forecast reliability may be slightly overpredicted. Nevertheless, the
amount of this overprediction should not greatly alter the general
conclusions of this research.

C.7.2.5 Model Correction Factor, Ayh
'As noted previously, the residuals of a linear regression equation

should be independent, normal variables. Hence, a normal distribution for
res(A\yh) was estimated and tested. The skewness coefficient for res(App) of

HEC-1 was found to be 0.163. Hence, based on the skewness test, the
hypothesis that res(\y,) 1s normally distributed cannot be rejected at
significance 1levels 1in excess of ten percent. The adjusted K-S test

indicates that the hypothesis that res(App) 1is normally distributed cannot
be rejected at the 15 percent significance level.
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Therefore, the model correction factor for HEC-1 is considered normally
distributed with

E[X

- 2.275 - 0.154 fn Q c.21
wh nQ, (C.21)

S = 0.0472
Amh

These statistics are used in the MVFOSM analysis.

C.7.3 RORB Basic Variable Statistics
C.7.3.1 1Initial Loss, TIR
The same initial loss relation is used for HEC-1 and RORB with only a

change in dimensions from in. to mm. Therefore, in RORB, the initial loss
is considered to be lognormally distributed with

E[£n(ILR)] = 6.015 - 0.599 #n(Q,) (C.22)

0.7184

gILR
For the MVFOSM method, the mean and standard deviation are

E[ILR] = 409.7 Q£0'599(mm) (G.23)

SILR = 8.702 mm

C.7.3.2 Continuing Loss Rate, CIR

Figure C.l17 displays a histogram of the optimal CLR values for RORB in
one-third standard deviation intervals. Based on visual inspection, CIR is
assumed to be lognormally distributed. The skewness of the logarithms of
CLR is 0.370. Hence, based on the skewness test, the hypothesis that CIR is
lognormally distributed cannot be rejected at the ten percent significance
level (bound equal to 0.662 for a sample size of 30). The adjusted K-S test
indicates that the hypothesis that CLR is lognormally distributed cannot be
rejected at the 15 percent significance level. Therefore, the continuing
loss rate for RORB is considered lognormally distributed with
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Figure C.17. Histogram of optimal CLR values for RORB
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0.5636

E[4n(CLR) ]

0.5565

CCIR

For the MVFOSM method, the mean and standard deviation: are

E[CLR]

2.065 mm/hr

S

CIR 1.385 mm/hr

C.7.3.3 WVatershed Delay Time Factor, Cj

Figure C.18 displays a histogram of the optimal Cj values for RORB in
one-half standard deviation intervals. Based on visual inspection, Cj is
assumed to be normally distributed. The skewness coefficient for C; was
found to be 0.380. Hence, based on the skewness test, the hypothesis that
C1 1is normally distributed cannot be rejected at the ten percent
significance 1level. The adjusted K-S test indicates that the hypothesis
that €1 1s normally distributed cannot be rejected at the 15 percent
significance level.

Therefore, the watershed time delay factor is considered normally
distributed with

E[C,] = 65.44

SCl = 11.62

These statistics are also used in the MVFOSM analysis.

C.7.3.4 Model Correction Factor, Ap,

A normal distribution for res()p,) was estimated and tested. The
skewness coefficient for res(My;,) of RORB was found to be 0.0l11l. Based on
the skewness test, the hypothesis that res()ly,) 1is normally distributed
cannot be rejected at significance levels far greater than ten percent. The
adjusted K-S test indicates that the hypothesis that res(Aypy) is normally
distributed cannot be rejected at the five percent significance level.

Therefore, the model correction factor for RORB is considered normally

distributed with

E[Amr] =1.737 -~ 0.152 £n Qp (C.24)
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S, = 0.0635
)‘mr

These statistics are also used in the MVFOSM analysis.

C.8 Application of Reliability Analysis Methods

The Monte Carlo and MVFOSM reliability analysis methods were applied to
the reliability of the real-time flood forecasting schemes as described in
Chapter 2. However, as described in section 2.1 one percent increase in
parameter values is used in HEC-1l's automatic calibration scheme, hence,
such a Af; is 1likely to lead to a reasonable change in the system
performance function for evaluating the partial derivatives.

The AFOSM method calculations followed the standard iteration procedure.
shown schematically in Fig. B.l using an IBM PC-AT with math co-processor
chip. In using this procedure, no initial estimate of B8 was made.

C.8.1 Calculation of the Partial Derivatives
For real-time flood forecasting within a flood warning and preparedness

system, it is desired to know the reliability of the peak discharge
estimate. Hence, the R-L system performance function is

Z= QF - Am Q (8) (C.25)

the peak discharge (flood level) whose probability of
occurring due to the current storm is sought,

where - Qp

Qp(8) = the peak discharge estimated by the hydrologic model in
question, and
§ = the vector of model parameters,

While the 4n(R/L) system performance function is

Q : ,
E ] (C.26)

PRy L
Ay Q0

As recommended in Chapter 2, the partial derivatives for the model
parameters are estimated by taking a forward difference

Z(01 + A01, 8) - Z(9)

3z
Y A9, o (€.27)
i i
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The change in Z also includes the change in Ap as W% changes due to the
change in #3. Furthermore, during iteration i+l, the value of Ap used in
determining the partial derivatives is

Am(i+1) =a+ b £In Qp -y ﬂi SAm (C.28)

where a,b = the appropriate regression coefficients,

aj = the variance weight for A, from iteration i, and

B3 = the reliability index for iteration i(i=1, B;=0).

In this forward difference scheme, the Af; was chosen to be one percent
of parameter value. A one percent increase in parameter values is used in
HEC-1's automatic calibration scheme, hence, such a Af; is likely to lead to
a reasonable change in the system performance function for evaluating the
partial derivatives.

The partial derivatives for ), can be evaluated analytically and they
are for Z=-R-L and Z=4n(R/L), respectively.

9z _ A

a - Y (C.29)
m .

az. 1_

ax. A (C.30)
m m

C.8.2 Termination Criteria

The majority of the cases studied in this research converge as for the
ideal case. However, for several cases, such ideal convergence was not
obtained and the value of ﬂ* (the value of 8 for 3*) must be approximated.

One of the key assumptions of the AFOSM method is that the system
performance function is continuous and differentiable or at least locally
differentiable. Due to the use of block hyetograph data and the initial
loss-continuing loss rate approach, the system performance function is
discontinuous. These discontinuities lead to two significant convergence
problems.

For the case when the relationship between the initial loss and the
precipitation up to and including time period i, Pj, is

P, - bCL < IL < P, (Cc.31)
1 1

where b = 2 for RORB and is related to the difference between IL and Pj
for HEC-1.
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The value of IL between these bonds is irrelevant in the calculation of the
rainfall excess. When the iteration scheme moves to such a point, 9Z/3IL
equals zero which is generally a drastic change from its previous non-zero
value and this leads to problems with iteration convergence. This is more
of a problem with HEC-1, which uses a single hyetograph, than for RORB,
which uses multiple hyetographs (two in this case study). Generally, these
problems can be circumvented by making IL equal to Py. Hence, 3Z/9IL will
have a non- zero value ‘and the iterations w111 continue toward convergence.

The iteration scheme also has problems with iterations which go back
and forth from one side of a discontinuity to the other and, hence, cannot
converge in the basic variables. Generally, for such cases, the value of B
has converged to the second decimal place Hence, a very good approximation
of B* may be obtalned ‘

As discussed in section 2.1.3, the iterations diverged for extreme
probability cases (B > 2.5). The difference in B8 values for Z near zero
(less than three percent of the target flood level) was typically on the
order of 0.2 to 0.4. The iteration whose ﬂ value was closest to zero was
chosen as a reasonable estimate of the true ﬂ In this study, the B values
so approximated were generally on the order of 2.5-4.5. The corresponding
exceedance probabilities are on the order of O 006-0.00004.  Hence, from a
practical viewpoint, such approximations of ﬂ do not greatly change the
estimated flood risk for the event in question.

C.9 Storm Events for Verification

Storm events for verification were chosen from the data from the summer
of 1955 through November 1965 using the guidelines for selecting calibration
events described in section C.4.4 with the exception of the requirement of
total runoff volumes greater than 10 mm (0.4 in.) because storm runoff
volumes are difficult to estimate from daily discharge data (recall hourly
discharge values are mnot available before November 1965). The daily
discharge data also leads to slight differences in the population from which
the calibration and verification data sets are sampled. 1In the calibration
data set for single events, the instantaneous discharge at the beginning of
the event is used to determine the direct runoff peak discharge and to
define the relation which predicts the initial loss. For the verification
data set, the baseflow from the storm date or the previous day is used.
Hence, the estimated initial loss and direct runoff peak discharge are
slightly different than they would be 1f the instantaneous flows were
available.

For cases where event separation must be performed, the divergence
between the calibration and verification data sets becomes more pronounced.
For the - calibration events, separation was performed by assuming the
recession of the first event is parallel to the recession of the final
event. For the verification events, separation was performed by using HEC-1
or RORB to simulate the first event and matching the daily average direct
runoff volumes and the magnitude and timing of peak discharge as best as
possible or by using the recession curve from a similar event in the
calibration data set. Hence, the estimated initial loss and direct runoff
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peak discharge may be considerably different than if estimated from
continuous data. Nevertheless, these events provide an interesting test for
the real-time flood forecasting schemes.

Strictly speaking, the verification data set is not from the same
population as the calibration data set, and so the assumptions of the
reliability analysis techniques and the verification process are violated.
Nevertheless, the effects of the violations on the results of the
reliability analysis and the forecasting scheme verification are
insignificant from a practical viewpoint.

Table C.14 lists the storm events and their significant direct runoff
characteristics (including the discharge level corresponding to the total
runoff flood discharge of 10880 cfs, Qp) used to verify the real-time flood
forecasting schemes. Of the 23 events between the summer of 1955 and

Table C.14. Storms for Verification

Precipitation
Date Fairbury Piper City Qp Q tp Qr

(in.) (in.) " (cfs) (cgs) (hr.) (cfs)
6/21/56 1.05 3.31 234, 2956. 50. 10646.
4/17/57 2.97 2.16 462. 4448, 52. 10418.
4/24/57 3.29 3.47 2400.% 9020. 100. 9930.
7/13/57 2.16 2.24 106. 3334. 30. 10774,
7/22/57 3.23 1.30 315. 3055. 30. 10565.
6/09/58 2.14 3.57 332. 5558. 46. 10548.
6/12/58 1.25 1.97 2900.% 6630. 34, 9800.
7/14/58 4.12 3.09 474 % 8480, 36. 10690.
4/26/59 2.08 2.56 275. 5545, 40, 10605,
9/23/61 2.83 2.14 80, 3500. 66. 10800.
5/10/62 1.07 1.46 1250.% 5580. 26. 10220.
4/05/65 1.40 1.25 778. 4622, 36. 10102,
4/08/65 1.20 0.85 2380.% 3440, 34, 9680.
4/23/65 1.79 2.74 568. 4552, 44 10312,
5/04/65 2.23 2.55 640, 7700. 32. 10240,
6/16/73 3.05 1.60 468. 6685. 30. 10412.
5/12/70 3.551 4.77 1940.% 9790. 46, 10420,
12/02/822 4,40 -- 800. 12300. 34, 10080.

*Flow at the beginning of this storm is in recession from a previous event.

1Only accumulated totals were available at Fairbury. Temporal distribution
weighted as for Piper City.

2Piper City raingage malfunctioned, so Fairbury record is used for the entire

watershed. The streamgage also malfunctioned in early part of the event so
tp is only approximate.
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November 1965, which had total runoff peak discharges greater than 3000 cfs,
15 met the selection criteria (5 were eliminated due to snowmelt, 2 due to
separation problems, and 1 due to missing data). The June 16, 1973 event
was not included in the calibration data set because a second storm event
occurred shortly after the hydrograph recession began making event
separation infeasible, however, it may be included in the verification data
set. For the May 12, 1970 and December 2, 1982 events, either the stream-
gage and/or one of the raingages malfunctioned, but because both of these
events resulted in serious flooding they were included in the verification
data set. Hence, these events were examined to see how the real-time flood
forecasting schemes would perform for actual floods (albeit using even less
reliable input data).
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APPENDIX D. LIST OF SYMBOLS
the correction factor relating the difference between the true and
measured point rainfall due to wind effects

dg/3xi = the partial derivative of the system performance function
with respect to basic variable i

the continuing loss rate in in./hr, a parameter of HEC-1
the continuing loss rate in mm/hr, a parameter of RORB
the watershed delay time factor, a parameter of RORB

the average absolute sampling error in areal storm rainfall due to
gage network inadequacy ‘

the average absolute sampling error in areal one-minute rainfall
due to gage network inadequacy

a random variable describing the uncertainty associated in
determining a

the coefficient of model fit efficiency
the gaging ratio = the number of square miles per rain gage
the functional description of the system performance function

a function which represents the selected hydrologic model's
estimate of the hydrologic information in question

the initial loss in in., a parameter of HEC-1
the initial loss in mm, a parameter of RORB
the soil saturated hydraulic conductivity

the load placed on the system (in this study the peak discharge
forecast by a hydrologic model)

the storage nonlinearity exponent parameter in RORB
the number of rain gages on the watershed

the total number of hydrograph ordinates calculated
the number of basic variables for the system

the hydrologic target level exceedance probability

the estimated, based on point measurements, precipitation depth
over the entire watershed
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Qeci

QFp

Qmi

the true precipitation depth over the entire watershed

the true precipitation at point x

the measured precipitation at point x

the baseflow (streamflow) at the beginning of the rainfall event
the calculated direct runoff discharge at time i

the direct runoff discharge level corresponding to the total
runoff flood discharge of 10880 cfs

the measured direct runoff discharge at time i

the average measured direct runoff discharge for a given event
the measured direct runoff peak discharge

the forecast (or predicted) direct runoff peak discharge produced
by the hydrologic model using the expected values (best estimates)
of the parameters and input data

Ap Qp = the adjusted direct runoff peak discharge forecast (or
prediction) produced by the hydrologic model accounting for the
model correction factor, Ay

the direct runoff peak discharge for the calibrated hydrograph

the system’s resistance capacity (in the study the hydrologic
target level)

the sample correlation coefficient
the true one-minute precipitation rate over the entire watershed

the estimated, based on point measurements, one-minute
precipitation rate over the entire watershed

the system reliability

the system risk (probability of system failure)

the watershed storage factor in hours, a parameter of HEC-1

the watershed time of concentration in hours, a parameter of HEC-1
the hydrologic target level whose exceedance probability is sought

the measured time to peak direct runoff from the beginning of the
event

the computational time interval used in hydrologic modeling
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the vector of the basic variables of the system includes data,
model parameters, and model correction factor

the mean value of basic variable i
the mean value of the transformed normal basic variable i
the value of basic variable i at the failure surface

a small change in the value of xj used to numerically evaluate
partial derivatives

the system performance function

the total forecast variance linearization factor for basic
variable i

the reliability index for the system

the reliability index corresponding to the difference between the
forecast peak discharge and the flood level

the reliability index corresponding to the difference between the
measured and forecast peak discharges

the standard deviation of the logarithms for a lognormally
distributed variable

the model correction factor which expresses the relationship
between the model’s optimal performance and the true value of the
hydrologic information to be estimated (in this study = Qp/Qpc)
the model correction factor for HEC-1

the model correction factor for RORB

the population correction coefficient

the coefficient of variation of the error in precipitation
measurements due to wind effects

the standard deviation of basic variable 1

the standard deviation of the transformed normal basic variable i
the standard deviation of the precipitation input

the standard deviation of the system performance function

the standard normal integral
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