Katharine Lee

Department of Anthropology, University of lllinois at Urbana-Champaign

Project Goals:

- Use commercially available physical activity monitors (FitBit
One) to collect detailed data about physical activity in adult
women in rural Poland

- Analyze effects of physical activity in relation to markers of
bone turnover and levels of reproductive hormones

- Leverage continuous data for time-use analysis methods
and daily summary data for overall activity level

- Avoid spending research funds on very expensive activity
monitors and software

Outcomes:

- Code is written to allow for quick downloading of physical
activity data and fast, consistent parsing of files, which will
be useful for the additional data collection | will be
performing in Summer 2016 and Summer 2017.

- Results from this analysis have been presented at 2016
Association of Physical Anthropologists annual meeting in
Atlanta, GA (April 2016)

- Results from this analysis are accepted for presentation at
2016 International Society for Evolutionary Medicine and
Public Health annual meeting in Durham, NC (June 2016)

- | will be applying to present work generated in this class at
the Feminist Biology Symposium at the University of
Wisconsin (October 2016)

Acknowledgements:

- This work was part of a Focal Point grant funded by the Graduate
College at the University of lllinois at Urbana-Champaign

» FitBit One trackers purchased with funding from Beckman Institute
Cognitive Science/Artificial Intelligence grant and UIUC Dept of
Anthropology Summer Graduate Research Assistance Award

- Data collection was possible with M. Rogers and K. Lee NSF GRFP
awards, American Philosophical Society’s Lewis and Clark Fund for
Exploration, and NSF Clancy #1317140

- Additional thanks are due to research participants, Polish field
assistants, Aaron Lee, and the instructors of this class.

Physical Activity Analysis:
A project iIn many languages

Challenges & Solutions:

FitBit does not provide continuous data from web interface
- Request developer API from company with special permissions
- Download physical activity data from FitBit servers using Ruby

puts "Enter the start of the filename:"
nameStem = gets.chomp
intradayFile = File.open("#{nameStem} intraday.csv", "w'")

summaryFile = File.open("#{nameStem} summary.csv","w")
summaryFile.write '"date,floors, lightlyActiveMinutes, fairlyActiveMinutes,veryActiveMinutes,elevation,steps,totalDistance,sedentaryActive, lightlyActive,n

intradayFile.write '"date,time,steps,elevation, floors\n"

[||

2015-08-19", - "2015-08-20", - "2015-08-21", - ''2015-08-22", "'2015-08-23", "2015-08-24","2015-08-25", "2015-08-26"].each do- |query_date|

steps = client.intraday_time_series({resource: :steps, date: query_date, detaillLevel: "15min"}) ["activities—steps—-intraday"]["dataset"]
elevations = client.intraday_time_series({resource: :elevation, date: query_date, detaillLevel: "15min"})["activities-elevation-intraday"]["dataset"]
floors = client.intraday_time_series({resource: :floors, date: query_date, detaillevel: "15min"})["activities-floors—intraday"]["dataset"]
steps.each_index do |i|

step = steps[i] ["value"]

elevation = elevations[i] ["value"]

time = steps[i] ["time"]

floor = floors[i] ["value"]

intradayFile.write "#{query_date},#{time},#{step},#{elevation},#{floor}\n"
end

dailySummary = client.activities_on_date(query_date) ['summary']
puts "#{query_date}"

puts "#{dailySummary}"

puts "-———-=" % 20

for_date = "#{query_date},"

for_date += "#{dailySummary['floors']l},"

for_date += "#{dailySummary['lightlyActiveMinutes']1},"
for_date += "#{dailySummary['fairlyActiveMinutes']},"
for_date += "#{dailySummary['veryActiveMinutes']},"
for_date += "#{dailySummary['elevation']},"

for_date += "#{dailySummary['steps']},"

distances = dailySummary['distances']

total_distance = distances.find{|d| d['activity'] == 'total'}['distance']

sedentary_active = distances.find{|d| d['activity'] == 'sedentaryActive' }['distance']

lightly_active = distances.find{|d| d['activity'] == 'lightlyActive' }['distance'l

moderately_active = distances.find{|d| d['activity'] == 'moderatelyActive' }['distance']

very_active = distances.find{|d| d['activity'] == 'veryActive' }['distance’]

for_date += "#{total_distance},#{sedentary_active},#{lightly_active},#{moderately_active},#{very_active}"

summaryFile.write "#{for_date}\n"

Summarized data includes days the device was delivered to &
returned by study participant

- Remove incomplete days of data collection, then

- Average data from each individual across days

- Analyzed in R because it would be tedious & error-prone in Excel

summarizeFitBitSummaryData <- function(fnameIn, fxn = 1) {

theData <- read.csv(fnameIn, header = TRUE)
theData <- theDatal-1,]
theData <- theData[-nrow(theData),]

theData <- theData[theData$steps>=200,]

dataOut <- data.frame(matrix(ncol = 13))

names (dataOut) <-- - c("ID","nDays","floors", -"lightlyActiveMinutes" - ,"fairlyActiveMinutes",
"veryActiveMinutes",'"elevation","steps", "totalDistance", "sedentaryActiveDistance" -,
"lightlyActiveDistance","moderatelyActiveDistance","veryActiveDistance")

nrowsData <- nrow(theData)

if(fxn == 1){
dataOut$nDays <- as.numeric(nrowsData)
dataOut$floors <— mean(theData$floors, na.rm = TRUE)
dataOut$lightlyActiveMinutes <- mean(theData$lightlyActiveMinutes, na.rm = TRUE)
dataOut$fairlyActiveMinutes <— mean(theData$fairlyActiveMinutes, na.rm = TRUE)
dataOut$veryActiveMinutes <-— mean(theData$veryActiveMinutes, na.rm = TRUE)
dataOut$elevation <- mean(theData$elevation, na.rm = TRUE)
dataOut$steps <— mean(theData$steps, na.rm = TRUE)
dataOut$totalDistance <- mean(theData$totalDistance, na.rm = TRUE)
dataOut$sedentaryActiveDistance <- mean(theData$sedentaryActive, na.rm = TRUE)
dataOut$lightlyActiveDistance <- mean(theData$lightlyActive, na.rm = TRUE)
dataOut$moderatelyActiveDistance <- mean(theData$moderatelyActive, na.rm = TRUE)
dataOut$veryActiveDistance <— mean(theData$veryActive, na.rm = TRUE)

}

else if(fxn == 2){
dataOut$nDays <- as.numeric(nrowsData)
dataOut$floors <— median(theData$floors)
datalut$lightlyActiveMinutes <- median(theData$lightlyActiveMinutes, na.rm = TRUE)
dataOut$fairlyActiveMinutes <- median(theData$fairlyActiveMinutes, na.rm = TRUE)
dataOut$veryActiveMinutes <- median(theData$veryActiveMinutes, na.rm = TRUE)
dataOut$elevation <- median(theData$elevation, na.rm = TRUE)
dataOut$steps <- median(theData$steps, na.rm = TRUE)
dataOut$totalDistance <- median(theData$totalDistance, na.rm = TRUE)
dataOut$sedentaryActiveDistance <- median(theData$sedentaryActive, na.rm = TRUE)
dataOut$lightlyActiveDistance <- median(theData$lightlyActive, na.rm = TRUE)
dataOut$moderatelyActiveDistance <- median(theData$moderatelyActive, na.rm = TRUE)

dataOut$veryActiveDistance <- median(theData$veryActive, na.rm = TRUE)

Continuous data must be categorized
- Sleep time should not be included in further analyses.

- Remove first & last day from analysis because of incomplete data
- Classify time intensity of activity for each remaining time period
- Used Python (Jupyter notebook) for flexibility with data structures

fbData['epoch cat'] = None

mylen = len(fbData)

tempDate = 1

sedLevel = 20 #Number of steps per 15 minute increment to be calc'd as sedentary

lowLevel = 200 #max number of steps per 15 min increment to be calc'd as low intenstity
modLevel = 1000 #max number of steps per 15 min increment to be calc'd as moderate intensity
measurements = []

state = 'sleep’

for row in fbData.itertuples():
tempRow = row. asdict()

if tempRow['steps'] == 0:
state = 'sleepOrSedentary'

elif tempRow|['steps'] <= sedLevel:
state = 'sedentary'

elif tempRow|['steps'] <= lowLevel:
state = 'low'

elif tempRow['steps'] <= modLevel:
state = 'moderate’

else:
state = 'intense'

tempRow['epoch cat'] = state
measurements.append(tempRow)

